Sample records for l-isoleucine activating reaction

  1. A novel l-isoleucine-4′-dioxygenase and l-isoleucine dihydroxylation cascade in Pantoea ananatis

    PubMed Central

    Smirnov, Sergey V; Sokolov, Pavel M; Kotlyarova, Veronika A; Samsonova, Natalya N; Kodera, Tomohiro; Sugiyama, Masakazu; Torii, Takayoshi; Hibi, Makoto; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2013-01-01

    A unique operon structure has been identified in the genomes of several plant- and insect-associated bacteria. The distinguishing feature of this operon is the presence of tandem hilA and hilB genes encoding dioxygenases belonging to the PF13640 and PF10014 (BsmA) Pfam families, respectively. The genes encoding HilA and HilB from Pantoea ananatis AJ13355 were cloned and expressed in Escherichia coli. The culturing of E. coli cells expressing hilA (E. coli-HilA) or both hilA and hilB (E. coli-HilAB) in the presence of l-isoleucine resulted in the conversion of l-isoleucine into two novel biogenic compounds: l-4′-isoleucine and l-4,4′-dihydroxyisoleucine, respectively. In parallel, two novel enzymatic activities were detected in the crude cell lysates of the E. coli-HilA and E. coli-HilAB strains: l-isoleucine, 2-oxoglutarate: oxygen oxidoreductase (4′-hydroxylating) (HilA) and l-4′-hydroxyisoleucine, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating) (HilB), respectively. Two hypotheses regarding the physiological significance of C-4(4′)-hydroxylation of l-isoleucine in bacteria are also discussed. According to first hypothesis, the l-isoleucine dihydroxylation cascade is involved in synthesis of dipeptide antibiotic in P. ananatis. Another unifying hypothesis is that the C-4(4′)-hydroxylation of l-isoleucine in bacteria could result in the synthesis of signal molecules belonging to two classes: 2(5H)-furanones and analogs of N-acyl homoserine lactone. PMID:23554367

  2. Characterization of Bacillus thuringiensis l-Isoleucine Dioxygenase for Production of Useful Amino Acids▿†

    PubMed Central

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V.; Sokolov, Pavel M.; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-01-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  3. NMR analyses of the conformations of L-isoleucine and L-valine bound to Escherichia coli isoleucyl-tRNA synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohda, D.; Kawai, G.; Yokoyama, S.

    1987-10-06

    The 400-MHz /sup 1/H NMR spectra of L-isoleucine and L-valine were measured in the presence of Escherichia coli isoleucyl-tRNA synthetase (IleRS). Because of chemical exchange of L-isoleucine or L-valine between the free state and the IleRS-bound state, a transferred nuclear Overhauser effect (TRNOE) was observed among proton resonances of L-isoleucine or L-valine. However, in the presence of isoleucyl adenylate tightly bound to the amino acid activation site of IleRS, no TRNOE for L-isoleucine or L-valine was observed. This indicates that the observed TRNOE is due to the interaction of L-isoleucine or L-valine with the amino acid activation site of IleRS.more » The conformations of these amino acids in the amino acid activation site of IleRS were determined by the analyses of time dependences of TRNOEs and TRNOE action spectra. The IleRS-bound L-isoleucine takes the gauche/sup +/ form about the C/sub ..cap alpha../-C/sub ..beta../ bond and the trans form about the C/sub ..beta../-C/sub ..gamma../sub 1// bond. The IleRS-bound L-valine takes the guache/sup -/ form about the C/sub ..cap alpha../-C/sub ..beta../ bond. Thus, the conformation of the IleRS-bound L-valine is the same as that of IleRS-bound L-isoleucine except for the delta-methyl group. The side chain of L-isoleucine or L-valine lies in an aliphatic hydrophobic pocket of the active site of IleRS. Such hydrophobic interaction with IleRS is more significant for L-isoleucine than for L-valine. The TRNOE analysis is useful for studying the amino acid discrimination mechanism of aminoacyl-tRNA synthetases.« less

  4. Induction of β-defensins by l-isoleucine as novel immunotherapy in experimental murine tuberculosis

    PubMed Central

    Rivas-Santiago, C E; Rivas-Santiago, B; León, D A; Castañeda-Delgado, J; Hernández Pando, R

    2011-01-01

    Tuberculosis is a worldwide health problem, and multidrug-resistant (MDR) and extensively multidrug-resistant (XMDR) strains are rapidly emerging and threatening the control of this disease. These problems motivate the search for new treatment strategies. One potential strategy is immunotherapy using cationic anti-microbial peptides. The capacity of l-isoleucine to induce beta-defensin expression and its potential therapeutic efficiency were studied in a mouse model of progressive pulmonary tuberculosis. BALB/c mice were infected with Mycobacterium tuberculosis strain H37Rv or with a MDR clinical isolate by the intratracheal route. After 60 days of infection, when disease was in its progressive phase, mice were treated with 250 µg of intratracheal l-isoleucine every 48 h. Bacillary loads were determined by colony-forming units, protein and cytokine gene expression were determined by immunohistochemistry and reverse transcription–quantitative polymerase chain reaction (RT–qPCR), respectively, and tissue damage was quantified by automated morphometry. Administration of l-isoleucine induced a significant increase of beta-defensins 3 and 4 which was associated with decreased bacillary loads and tissue damage. This was seen in animals infected with the antibiotic-sensitive strain H37Rv and with the MDR clinical isolate. Thus, induction of beta-defensins might be a potential therapy that can aid in the control of this significant infectious disease. PMID:21235540

  5. Induction of β-defensins by l-isoleucine as novel immunotherapy in experimental murine tuberculosis.

    PubMed

    Rivas-Santiago, C E; Rivas-Santiago, B; León, D A; Castañeda-Delgado, J; Hernández Pando, R

    2011-04-01

    Tuberculosis is a worldwide health problem, and multidrug-resistant (MDR) and extensively multidrug-resistant (XMDR) strains are rapidly emerging and threatening the control of this disease. These problems motivate the search for new treatment strategies. One potential strategy is immunotherapy using cationic anti-microbial peptides. The capacity of l-isoleucine to induce beta-defensin expression and its potential therapeutic efficiency were studied in a mouse model of progressive pulmonary tuberculosis. BALB/c mice were infected with Mycobacterium tuberculosis strain H37Rv or with a MDR clinical isolate by the intratracheal route. After 60 days of infection, when disease was in its progressive phase, mice were treated with 250 µg of intratracheal l-isoleucine every 48 h. Bacillary loads were determined by colony-forming units, protein and cytokine gene expression were determined by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively, and tissue damage was quantified by automated morphometry. Administration of l-isoleucine induced a significant increase of beta-defensins 3 and 4 which was associated with decreased bacillary loads and tissue damage. This was seen in animals infected with the antibiotic-sensitive strain H37Rv and with the MDR clinical isolate. Thus, induction of beta-defensins might be a potential therapy that can aid in the control of this significant infectious disease. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  6. Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli.

    PubMed

    Wang, Jian; Wen, Bing; Xu, Qingyang; Xie, Xixian; Chen, Ning

    2015-03-04

    Fed-batch cultivations of L-isoleucine-producing Escherichia coli TRFP (SG r , α -ABA r , with a pTHR101 plasmid containing a thr operon and ilvA) were carried out on different carbon sources: glucose, sucrose, fructose, maltose and glycerol. The results indicated that sucrose was the best initial carbon source for L-isoleucine production and then sucrose concentration of 30 g·L -1 was determined in the production medium. The results of different carbon sources feeding showed that the glucose solution was the most suitable feeding media. The dissolved oxygen (DO) of L-isoleucine fermentation was maintained at 5%, 15% and 30% with DO-stat feeding, respectively. The results indicated that when the DO level was maintained at 30%, the highest biomass and L-isoleucine production were obtained. The accumulation of acetate was decreased and the production of L-isoleucine was increased markedly, when the glucose concentration was maintained at 0.15 g·L -1 by using glucose-stat feeding. Finally, the glucose concentration was maintained at 0.10 g·L -1 and the DO level was controlled at approximately 30% during the whole fermentation period, using the combined feeding strategy of glucose-stat feeding and DO feedback feeding. The acetate accumulation was decreased to 7.23 g·L -1 , and biomass and production of L-isoleucine were increased to 46.8 and 11.95 g·L -1 , respectively.

  7. L-isoleucine-supplemented Oral Rehydration Solution in the Treatment of Acute Diarrhoea in Children: A Randomized Controlled Trial

    PubMed Central

    Raqib, R.; Ashraf, H.; Qadri, F.; Ahmed, S.; Zasloff, M.; Agerberth, B.; Salam, M.A.; Gyr, N.; Meier, R.

    2011-01-01

    Antimicrobial peptides represent an important component of the innate immune defenses of living organisms, including humans. They are broad-spectrum surface-acting agents secreted by the epithelial cells of the body in response to infection. Recently, L-isoleucine and its analogues have been found to induce antimicrobial peptides. The objectives of the study were to examine if addition of L-isoleucine to oral rehydration salts (ORS) solution would reduce stool output and/or duration of acute diarrhoea in children and induce antimicrobial peptides in intestine. This double-blind randomized controlled trial was conducted at the Dhaka Hospital of ICDDR,B. Fifty male children, aged 6-36 months, with acute diarrhoea and some dehydration, attending the hospital, were included in the study. Twenty-five children received L-isoleucine (2 g/L)-added ORS (study), and 25 received ORS without L-isoleucine (control). Stool weight, ORS intake, and duration of diarrhoea were the primary outcomes. There was a trend in reduction in mean±standard deviation (SD) daily stool output (g) of children in the L-isoleucine group from day 2 but it was significant on day 3 (388±261 vs 653±446; the difference between mean [95% confidence interval (CI) (-)265 (−509, −20); p=0.035]. Although the cumulative stool output from day 1 to day 3 reduced by 26% in the isoleucine group, it was not significant. Also, there was a trend in reduction in the mean±SD intake of ORS solution (mL) in the L-isoleucine group but it was significant only on day 1 (410±169 vs 564±301), the difference between mean (95% CI) (-)154 (-288, −18); p=0.04. The duration (hours) of diarrhoea was similar in both the groups. A gradual increase in stool concentrations of ß-defensin 2 and 3 was noted but they were not significantly different between the groups. L-isoleucine-supplemented ORS might be beneficial in reducing stool output and ORS intake in children with acute watery diarrhoea. A further study is warranted

  8. Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli

    PubMed Central

    Wang, Jian; Wen, Bing; Xu, Qingyang; Xie, Xixian; Chen, Ning

    2015-01-01

    Fed-batch cultivations of L-isoleucine-producing Escherichia coli TRFP (SGr, α-ABAr, with a pTHR101 plasmid containing a thr operon and ilvA) were carried out on different carbon sources: glucose, sucrose, fructose, maltose and glycerol. The results indicated that sucrose was the best initial carbon source for L-isoleucine production and then sucrose concentration of 30 g·L−1 was determined in the production medium. The results of different carbon sources feeding showed that the glucose solution was the most suitable feeding media. The dissolved oxygen (DO) of L-isoleucine fermentation was maintained at 5%, 15% and 30% with DO-stat feeding, respectively. The results indicated that when the DO level was maintained at 30%, the highest biomass and L-isoleucine production were obtained. The accumulation of acetate was decreased and the production of L-isoleucine was increased markedly, when the glucose concentration was maintained at 0.15 g·L−1 by using glucose-stat feeding. Finally, the glucose concentration was maintained at 0.10 g·L−1 and the DO level was controlled at approximately 30% during the whole fermentation period, using the combined feeding strategy of glucose-stat feeding and DO feedback feeding. The acetate accumulation was decreased to 7.23 g·L−1, and biomass and production of L-isoleucine were increased to 46.8 and 11.95 g·L−1, respectively. PMID:26019655

  9. Export of l-Isoleucine from Corynebacterium glutamicum: a Two-Gene-Encoded Member of a New Translocator Family

    PubMed Central

    Kennerknecht, Nicole; Sahm, Hermann; Yen, Ming-Ren; Pátek, Miroslav; Saier, Jr., Milton H.; Eggeling, Lothar

    2002-01-01

    Bacteria possess amino acid export systems, and Corynebacterium glutamicum excretes l-isoleucine in a process dependent on the proton motive force. In order to identify the system responsible for l-isoleucine export, we have used transposon mutagenesis to isolate mutants of C. glutamicum sensitive to the peptide isoleucyl-isoleucine. In one such mutant, strong peptide sensitivity resulted from insertion into a gene designated brnF encoding a hydrophobic protein predicted to possess seven transmembrane spanning helices. brnE is located downstream of brnF and encodes a second hydrophobic protein with four putative membrane-spanning helices. A mutant deleted of both genes no longer exports l-isoleucine, whereas an overexpressing strain exports this amino acid at an increased rate. BrnF and BrnE together are also required for the export of l-leucine and l-valine. BrnFE is thus a two-component export permease specific for aliphatic hydrophobic amino acids. Upstream of brnFE and transcribed divergently is an Lrp-like regulatory gene required for active export. Searches for homologues of BrnFE show that this type of exporter is widespread in prokaryotes but lacking in eukaryotes and that both gene products which together comprise the members of a novel family, the LIV-E family, generally map together within a single operon. Comparisons of the BrnF and BrnE phylogenetic trees show that gene duplication events in the early bacterial lineage gave rise to multiple paralogues that have been retained in α-proteobacteria but not in other prokaryotes analyzed. PMID:12081967

  10. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; di Rienzo, Valentina; Boss, Paul K; Davies, Christopher

    2015-07-01

    The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal. © 2014 Institute of Botany, Chinese Academy of Sciences.

  11. Role of BkdR, a Transcriptional Activator of the SigL-Dependent Isoleucine and Valine Degradation Pathway in Bacillus subtilis

    PubMed Central

    Debarbouille, Michel; Gardan, Rozenn; Arnaud, Maryvonne; Rapoport, George

    1999-01-01

    A new gene, bkdR (formerly called yqiR), encoding a regulator with a central (catalytic) domain was found in Bacillus subtilis. This gene controls the utilization of isoleucine and valine as sole nitrogen sources. Seven genes, previously called yqiS, yqiT, yqiU, yqiV, bfmBAA, bfmBAB, and bfmBB and now referred to as ptb, bcd, buk, lpd, bkdA1, bkdA2, and bkdB, are located downstream from the bkdR gene in B. subtilis. The products of these genes are similar to phosphate butyryl coenzyme A transferase, leucine dehydrogenase, butyrate kinase, and four components of the branched-chain keto acid dehydrogenase complex: E3 (dihydrolipoamide dehydrogenase), E1α (dehydrogenase), E1β (decarboxylase), and E2 (dihydrolipoamide acyltransferase). Isoleucine and valine utilization was abolished in bcd and bkdR null mutants of B. subtilis. The seven genes appear to be organized as an operon, bkd, transcribed from a −12, −24 promoter. The expression of the bkd operon was induced by the presence of isoleucine or valine in the growth medium and depended upon the presence of the sigma factor SigL, a member of the sigma 54 family. Transcription of this operon was abolished in strains containing a null mutation in the regulatory gene bkdR. Deletion analysis showed that upstream activating sequences are involved in the expression of the bkd operon and are probably the target of bkdR. Transcription of the bkd operon is also negatively controlled by CodY, a global regulator of gene expression in response to nutritional conditions. PMID:10094682

  12. Identification, Purification, and Characterization of a Novel Amino Acid Racemase, Isoleucine 2-Epimerase, from Lactobacillus Species

    PubMed Central

    Mutaguchi, Yuta; Ohmori, Taketo; Wakamatsu, Taisuke; Doi, Katsumi

    2013-01-01

    Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position. PMID:24039265

  13. Isoleucine/leucine2 is essential for chemoattractant activity of beta-defensin Defb14 through chemokine receptor 6.

    PubMed

    Tyrrell, Christine; De Cecco, Martin; Reynolds, Natalie L; Kilanowski, Fiona; Campopiano, Dominic; Barran, Perdita; Macmillan, Derek; Dorin, Julia R

    2010-03-01

    Beta-defensins are both antimicrobial and able to chemoattract various immune cells including immature dendritic cells and CD4 T cells through CCR6. They are short, cationic peptides with a highly conserved six-cysteine motif. It has been shown that only the fifth cysteine is critical for chemoattraction of cells expressing CCR6. In order to identify other residues essential for functional interaction with CCR6 we used a library of peptide deletion derivatives based on Defb14. Loss of the initial two amino acids from the Defb14-1C(V) derivative destroys its ability to chemoattract cells expressing CCR6. As the second amino acid is an evolutionarily conserved leucine, we make full-length Defb14-1C(V) peptides with substitution of the leucine(2) for glycine (L2G), lysine (L2K) or isoleucine (L2I). Defb14-1C(V) L2G and L2K and are unable to chemoattract CCR6 expressing cells but the semi-conservative change L2I has activity. By circular dichroism spectroscopy we can see no evidence for a significant change in secondary structure as a consequence of these substitutions and so cannot attribute loss of chemotactic activity with disruption of the N-terminal helix. We conclude that isoleucine/leucine in the N-terminal alpha-helix region of this beta-defensin is essential for CCR6-mediated chemotaxis. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Maintenance valine, isoleucine, and tryptophan requirements for poultry.

    PubMed

    de Lima, M B; Sakomura, N K; Dorigam, J C P; da Silva, E P; Ferreira, N T; Fernandes, J B K

    2016-04-01

    Poultry maintenance requirements for valine, isoleucine, and tryptophan were measured by nitrogen balance using different unit systems. The nitrogen balance trial lasted 5 d with 48 h of fasting (with roosters receiving only water+sucrose) and the last 72 h for feeding and excreta collection. Forty grams of each diet first-limiting in valine, isoleucine, or tryptophan was fed by tube each day (3 d) to give a range of intakes from 0 to 101, 0 to 119, and 0 to 34 mg/kg BW d of valine, isoleucine, and tryptophan, respectively. A nitrogen-free diet containing energy, vitamins, and minerals, meeting the rooster requirements, was offered ad libitum during these three d. To confirm that the amino acids studied were limiting, a treatment was added with a control diet formulated by adding 0.24 g/kg of L-valine, 0.21 g/kg of L-isoleucine, and 0.10 g/kg of L-tryptophan to the diets with lower amino acid level. Excreta were collected during the last 3 d of the balance period and the nitrogen content of the excreta was analyzed. For each amino acid, a linear regression between nitrogen retention (NR) and amino acid intake was performed. The equations from linear regression were: NR=-98.6 (±10.1)+2.4 (±0.2)×Val, NR=-46.9 (±7.1)+2.3 (±0.1)×Ile, NR=-39.5 (±7.7)+7.3 (±0.4)×Trp; where Val, Ile, and Trp are the intakes of valine, isoleucine, and tryptophan in mg/kg body weight per d, respectively. The valine, isoleucine, and tryptophan required to maintain the body at zero NR were calculated to be 41, 20, and 5 mg/kg body weight per d, respectively. For the system unit mg per kg of metabolic weight, the intake of valine, isoleucine, and tryptophan was 59, 32, and 9, respectively. Considering the degree of maturity of the animal and body protein content (BPm (0.73)×u), the amounts of valine, isoleucine, and tryptophan required for maintenance were calculated to be 247, 134, and 37 mg per unit of maintenance protein (BPm (0.73)×u) per d. Maintenance requirement is more

  15. Isoleucine Biosynthesis in Leptospira interrogans Serotype lai Strain 56601 Proceeds via a Threonine-Independent Pathway† ‡

    PubMed Central

    Xu, Hai; Zhang, Yuzhen; Guo, Xiaokui; Ren, Shuangxi; Staempfli, Andreas A.; Chiao, Juishen; Jiang, Weihong; Zhao, Guoping

    2004-01-01

    Three leuA-like protein-coding sequences were identified in Leptospira interrogans. One of these, the cimA gene, was shown to encode citramalate synthase (EC 4.1.3.-). The other two encoded α-isopropylmalate synthase (EC 4.1.3.12). Expressed in Escherichia coli, the citramalate synthase was purified and characterized. Although its activity was relatively low, it was strictly specific for pyruvate as the keto acid substrate. Unlike the citramalate synthase of the thermophile Methanococcus jannaschii, the L. interrogans enzyme is temperature sensitive but exhibits a much lower Km (0.04 mM) for pyruvate. The reaction product was characterized as (R)-citramalate, and the proposed β-methyl-d-malate pathway was further confirmed by demonstrating that citraconate was the substrate for the following reaction. This alternative pathway for isoleucine biosynthesis from pyruvate was analyzed both in vitro by assays of leptospiral isopropylmalate isomerase (EC 4.2.1.33) and β-isopropylmalate dehydrogenase (EC 1.1.1.85) in E. coli extracts bearing the corresponding clones and in vivo by complementation of E. coli ilvA, leuC/D, and leuB mutants. Thus, the existence of a leucine-like pathway for isoleucine biosynthesis in L. interrogans under physiological conditions was unequivocally proven. Significant variations in either the enzymatic activities or mRNA levels of the cimA and leuA genes were detected in L. interrogans grown on minimal medium supplemented with different levels of the corresponding amino acids or in cells grown on serum-containing rich medium. The similarity of this metabolic pathway in leptospires and archaea is consistent with the evolutionarily primitive status of the eubacterial spirochetes. PMID:15292141

  16. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    PubMed

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating

  17. Isoleucine epimerization ages of the dwarf elephants of Sicily

    NASA Astrophysics Data System (ADS)

    Belluomini, Giorgio; Bada, Jeffrey L.

    1985-07-01

    The isoleucine epimerization reaction has been used to date tooth enamel from dwarf elephants collected from the Sicilian caves of Spinagallo and Puntali. Elephant teeth from the Isernia la Pineta deposit in central Italy, dated at ˜700 ka by potassium-argon (K-Ar) and paleomagnetics, were used for calibration of the isoleucine epimerization rate. The ages determined for the dwarf elephants found at the Spinagallo Cave are considerably older than the more robust dwarf species found at the Puntali Cave. These dates suggest that more than one invasion of continental elephants have taken place on Sicily. The subsequent isolation of the continental species has apparently produced varying stages of dwarfism.

  18. Selection of the simplest RNA that binds isoleucine

    PubMed Central

    LOZUPONE, CATHERINE; CHANGAYIL, SHANKAR; MAJERFELD, IRENE; YARUS, MICHAEL

    2003-01-01

    We have identified the simplest RNA binding site for isoleucine using selection-amplification (SELEX), by shrinking the size of the randomized region until affinity selection is extinguished. Such a protocol can be useful because selection does not necessarily make the simplest active motif most prominent, as is often assumed. We find an isoleucine binding site that behaves exactly as predicted for the site that requires fewest nucleotides. This UAUU motif (16 highly conserved positions; 27 total), is also the most abundant site in successful selections on short random tracts. The UAUU site, now isolated independently at least 63 times, is a small asymmetric internal loop. Conserved loop sequences include isoleucine codon and anticodon triplets, whose nucleotides are required for amino acid binding. This reproducible association between isoleucine and its coding sequences supports the idea that the genetic code is, at least in part, a stereochemical residue of the most easily isolated RNA–amino acid binding structures. PMID:14561881

  19. Elucidation of an Alternate Isoleucine Biosynthesis Pathway in Geobacter sulfurreducens▿

    PubMed Central

    Risso, Carla; Van Dien, Stephen J.; Orloff, Amber; Lovley, Derek R.; Coppi, Maddalena V.

    2008-01-01

    The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms. PMID:18245290

  20. Integrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence

    PubMed Central

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Ruppin, Eytan; Herskovits, Anat A.

    2012-01-01

    Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence. PMID:22969433

  1. Evidence for isoleucine as a positive effector of the ilvBN operon in Salmonella typhimurium.

    PubMed

    Davidson, J P; Wilson, D J

    1991-08-15

    Concerted efforts were directed towards understanding the control of acetohydroxy acid synthase (AHAS) in the gyrB mutant hisU1820 of Salmonella typhimurium. A media shift from valine to valine plus isoleucine causes a dramatic 4 to 5 fold burst of AHAS valine sensitive activity which appears to be dependent on translation. DJ19, an isolated valine sensitive derivative of the gyrB mutant, maintains a dramatic increase in AHAS valine sensitive activity upon the addition of isoleucine to valine supplemented cultures, suggesting that the isoleucine effect is specific for valine sensitive AHAS. Evidence supports isoleucine as a positive effector on valine sensitive AHAS expression and that the gyrB mutation accentuates the isoleucine effect.

  2. Validation of isoleucine utilization targets in Plasmodium falciparum

    PubMed Central

    Istvan, Eva S.; Dharia, Neekesh V.; Bopp, Selina E.; Gluzman, Ilya; Winzeler, Elizabeth A.; Goldberg, Daniel E.

    2011-01-01

    Intraerythrocytic malaria parasites can obtain nearly their entire amino acid requirement by degrading host cell hemoglobin. The sole exception is isoleucine, which is not present in adult human hemoglobin and must be obtained exogenously. We evaluated two compounds for their potential to interfere with isoleucine utilization. Mupirocin, a clinically used antibacterial, kills Plasmodium falciparum parasites at nanomolar concentrations. Thiaisoleucine, an isoleucine analog, also has antimalarial activity. To identify targets of the two compounds, we selected parasites resistant to either mupirocin or thiaisoleucine. Mutants were analyzed by genome-wide high-density tiling microarrays, DNA sequencing, and copy number variation analysis. The genomes of three independent mupirocin-resistant parasite clones had all acquired either amplifications encompassing or SNPs within the chromosomally encoded organellar (apicoplast) isoleucyl-tRNA synthetase. Thiaisoleucine-resistant parasites had a mutation in the cytoplasmic isoleucyl-tRNA synthetase. The role of this mutation in thiaisoleucine resistance was confirmed by allelic replacement. This approach is generally useful for elucidation of new targets in P. falciparum. Our study shows that isoleucine utilization is an essential pathway that can be targeted for antimalarial drug development. PMID:21205898

  3. THE EFFECT OF dl-METHIONINE, l-CYSTINE, AND dl-ISOLEUCINE ON THE UTILIZATION OF PARENTERALLY ADMINISTERED DOG HEMOGLOBIN

    PubMed Central

    Miller, Leon L.; Alling, Eric L.

    1947-01-01

    1. Further observations on the utilization of parenterally administered dog hemoglobin show that oral supplements of dl-methionine and l-cystine improve the efficiency of utilization of hemoglobin N, while a fed supplement of dl-isoleucine alone is without effect. 2. When N-isoleucine is added to a fed supplement of methionine or methionine and cystine, the utilization of parenterally given hemoglobin N is even better than with the sulfur-containing amino acids alone. 3. A suggested approach to the problem of designing the quantitatively "ideal" amino acid mixture lies in the definition of what may be called total organism-amino acid patterns of rat, dog, man, etc. These may vary considerably not only at different developmental stages in a given species, but also certainly from one species to another. 4. Further attempts to detect globin in the peripheral circulation have pointed to the need for a highly specific procedure such as that an immunologic method may offer. 5. Reduced hemin in dog plasma migrates with α1-globulin and albumin in veronal buffer at pH 8.5 and the colored zones give strong hemochromogen absorption bands. PMID:19871599

  4. Enzymes of the Isoleucine-Valine Pathway in Acinetobacter

    PubMed Central

    Twarog, Robert

    1972-01-01

    Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase. PMID:4669215

  5. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes.

    PubMed

    Johansen, Maja L; Bak, Lasse K; Schousboe, Arne; Iversen, Peter; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Gjedde, Albert; Ott, Peter; Waagepetersen, Helle S

    2007-06-01

    Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and alpha-ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the alpha-ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the alpha-ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially

  6. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector

    PubMed Central

    Borovok, Ilya; Sigal, Nadejda

    2018-01-01

    Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector. PMID:29529043

  7. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector.

    PubMed

    Brenner, Moran; Lobel, Lior; Borovok, Ilya; Sigal, Nadejda; Herskovits, Anat A

    2018-03-01

    Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector.

  8. Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways.

    PubMed

    Perez-Benito, Joaquin F

    2011-09-08

    The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.

  9. Production of volatiles in fresh-cut apple: effect of applying alginate coatings containing linoleic acid or isoleucine.

    PubMed

    Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I

    2014-11-01

    One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. © 2014 Institute of Food Technologists®

  10. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  11. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  12. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  13. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  14. 21 CFR 582.5381 - Isoleucine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Isoleucine. 582.5381 Section 582.5381 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  15. Investigation of Phenolic Acids in Suspension Cultures of Vitis vinifera Stimulated with Indanoyl-Isoleucine, N-Linolenoyl-L-Glutamine, Malonyl Coenzyme A and Insect Saliva

    PubMed Central

    Riedel, Heidi; Akumo, Divine N.; Saw, Nay Min Min Thaw; Smetanska, Iryna; Neubauer, Peter

    2012-01-01

    Vitis vinifera c.v. Muscat de Frontignan (grape) contains various high valuable bioactive phenolic compounds with pharmaceutical properties and industrial interest which are not fully exploited. The focus of this investigation consists in testing the effects of various biological elicitors on a non-morphogenic callus suspension culture of V. vinifera. The investigated elicitors: Indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG), insect saliva (IS) and malonyl coenzyme A (MCoA) were aimed at mimicking the influence of environmental pathogens on plants in their natural habitats and at provoking exogenous induction of the phenylpropanoid pathway. The elicitors’ indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG) and insect saliva (IS), as well as malonyl coenzyme A (MCoA), were independently inoculated to stimulate the synthesis of phenylpropanoids. All of the enhancers positively increased the concentration of phenolic compounds in grape cells. The highest concentration of phenolic acids was detected after 2 h for MCoA, after 48 h for IN and after 24 h for LG and IS respectively. At the maximum production time, treated grape cells had a 3.5-fold (MCoA), 1.6-fold (IN) and 1.5-fold (IS) higher phenolic acid content compared to the corresponding control samples. The HPLC results of grape cells showed two major resveratrol derivatives: 3-O-Glucosyl-resveratrol and 4-(3,5-dihydroxyphenyl)-phenol. Their influences of the different elicitors, time of harvest and biomass concentration (p < 0.0001) were statistically significant on the synthesis of phenolic compounds. The induction with MCoA was found to demonstrate the highest statistical effect corresponding to the strongest stress response within the phenylpropanoid pathway in grape cells. PMID:24957372

  16. Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells.

    PubMed

    Yen, Chi-Liang E; Mar, Mei-Heng; Craciunescu, Corneliu N; Edwards, Lloyd J; Zeisel, Steven H

    2002-07-01

    Cells in culture die by apoptosis when deprived of the essential nutrient choline. We now report that cells (both proliferating PC12 cells and postmitotic neurons isolated from fetal rat brains) undergo apoptosis when deprived of other individual essential nutrients (methionine, tryptophan or isoleucine). In PC12 cells, deficiencies of each nutrient independently led to ceramide accumulation and to caspase activation, both recognized signals of several apoptotic pathways. A similar profile of caspases was activated in PC12 cells deprived of choline, methionine, tryptophan or isoleucine. More than one caspase was involved and these caspases appeared to transmit parallel signals for apoptosis induction because only broad-spectrum caspase inhibitors, but not inhibitors for specific individual caspases inhibited apoptosis in choline- or methionine-deprived cells. The induction of these caspase-dependent apoptosis pathways likely did not involve the same upstream signals. Choline deficiency perturbed choline metabolism but did not affect protein synthesis, whereas amino acid deficiencies inhibited protein synthesis but did not perturb choline metabolism. In addition, a subclone of PC12 cells that was resistant to choline deficiency-induced apoptosis was not resistant to tryptophan deficiency-induced apoptosis. These observations suggest that deficiency of each studied nutrient activates different pathways for signaling apoptosis that ultimately converge on a common execution pathway.

  17. Pseudomonas syringae pv. tomato DC3000 CmaL (PSPTO4723), a DUF1330 Family Member, Is Needed To Produce l-allo-Isoleucine, a Precursor for the Phytotoxin Coronatine

    PubMed Central

    Worley, Jay N.; Russell, Alistair B.; Wexler, Aaron G.; Bronstein, Philip A.; Kvitko, Brian H.; Krasnoff, Stuart B.; Munkvold, Kathy R.; Swingle, Bryan

    2013-01-01

    Pseudomonas syringae pv. tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors; however, it promotes chlorosis in the model plant Nicotiana benthamiana in a manner independent of type III secretion. Coronatine is produced by the ligation of two moieties, coronafacic acid (CFA) and coronamic acid (CMA), which are produced by biosynthetic pathways encoded in separate operons. Cross-feeding experiments, performed in N. benthamiana with cfa, cma, and cmaL mutants, implicate CmaL in CMA production. Furthermore, analysis of bacterial supernatants under coronatine-inducing conditions revealed that mutants lacking either the cma operon or cmaL accumulate CFA rather than coronatine, supporting a role for CmaL in the regulation or biosynthesis of CMA. CmaL does not appear to regulate CMA production, since the expression of proteins with known roles in CMA production is unaltered in cmaL mutants. Rather, CmaL is needed for the first step in CMA synthesis, as evidenced by the fact that wild-type levels of coronatine production are restored to a ΔcmaL mutant when it is supplemented with 50 μg/ml l-allo-isoleucine, the starting unit for CMA production. cmaL is found in all other sequenced P. syringae strains with coronatine biosynthesis genes. This characterization of CmaL identifies a critical missing factor in coronatine production and provides a foundation for further investigation of a member of the widespread DUF1330 protein family. PMID:23144243

  18. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    PubMed

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Dating lacustrine episodes in the eastern Sahara by the epimerization of isoleucine in ostrich eggshells

    USGS Publications Warehouse

    Miller, G.H.; Wendorf, F.; Ernst, R.; Schild, R.; Close, A.E.; Friedman, I.; Schwarcz, H.P.

    1991-01-01

    The eggshell of the African ostrich, Struthio camelus, closely approximates a closed system for the retention of indigenous proteinaceous residues. Epimerization of the protein amino acid isoleucine follows linear first-order kinetics in laboratory simulations nearly to racemic equilibrium, and the variation in D/L ratio within a single fragment, or between fragments of the same age, is significantly less than in other carbonate systems. These observations suggest that the extent of isoleucine epimerization (aIle/Ile ratio) in ostrich eggshell offers the potential for high-resolution geochronology of Quaternary deposits. From the simulation experiments, and dated early Holocene samples for which we have in situ mean annual sediment temperature measurements, Arrhenius parameters have been calculated; the activation energy is 30.33 kcal mol-1, similar to that of other carbonate systems. We have measured the aIle/Ile ratio in ostrich eggshell associated with lacustrine episodes at Bir Tarfawi and Bir Sahara East, two depressions in what is currently the hyperarid eastern Sahara. The ratios can be used directly to indicate qualitatively the time represented by each series of lake sediment, and to correlate disjunct lacustrine deposits within and between the basins. Uranium-series disequilibrium dating of algal mats contained within some of the lake beds indicate that a major wet interval occurred about 130 ka ago. Using the U-series date for calibration, the amino acid ratios are used to date the most recent lacustrine interval to about 100 ka B.P., and two older intervals, one about 200 ?? 25 ka B.P., and an older interval that occurred prior to 250 ka ago. ?? 1991.

  20. Global Expression Profiling and Physiological Characterization of Corynebacterium glutamicum Grown in the Presence of l-Valine

    PubMed Central

    Lange, C.; Rittmann, D.; Wendisch, V. F.; Bott, M.; Sahm, H.

    2003-01-01

    Addition of l-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 ΔilvA ΔpanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of l-isoleucine could relieve the valine effect on VAL1 whereas l-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain. PMID:12732517

  1. An EThcD-Based Method for Discrimination of Leucine and Isoleucine Residues in Tryptic Peptides

    NASA Astrophysics Data System (ADS)

    Zhokhov, Sergey S.; Kovalyov, Sergey V.; Samgina, Tatiana Yu.; Lebedev, Albert T.

    2017-08-01

    An EThcD-based approach for the reliable discrimination of isomeric leucine and isoleucine residues in peptide de novo sequencing procedure has been proposed. A multistage fragmentation of peptide ions was performed with Orbitrap Elite mass spectrometer in electrospray ionization mode. At the first stage, z-ions were produced by ETD or ETcaD fragmentation of doubly or triply charged peptide precursor ions. These primary ions were further fragmented by HCD with broad-band ion isolation, and the resulting w-ions showed different mass for leucine and isoleucine residues. The procedure did not require manual isolation of specific z-ions prior to HCD stage. Forty-three tryptic peptides (3 to 27 residues) obtained by trypsinolysis of human serum albumin (HSA) and gp188 protein were analyzed. To demonstrate a proper solution for radical site migration problem, three non-tryptic peptides were also analyzed. A total of 93 leucine and isoleucine residues were considered and 83 of them were correctly identified. The developed approach can be a reasonable substitution for additional Edman degradation procedure, which is still used in peptide sequencing for leucine and isoleucine discrimination.

  2. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers.

    PubMed

    Ullrich, Sina S; Fitzgerald, Penelope Ce; Schober, Gudrun; Steinert, Robert E; Horowitz, Michael; Feinle-Bisset, Christine

    2016-11-01

    The branched-chain amino acids leucine and isoleucine lower blood glucose after oral glucose ingestion, and the intraduodenal infusion of leucine decreases energy intake in healthy, lean men. We investigated the effects of the intragastric administration of leucine and isoleucine on the gastric emptying of, and blood glucose responses to, a physiologic mixed-macronutrient drink and subsequent energy intake. In 2 separate studies, 12 healthy, lean subjects received on 3 separate occasions an intragastric infusion of 5 g leucine (leucine-5g) or an intragastric infusion of 10 g leucine (leucine-10g), an intragastric infusion of 5 g isoleucine (isoleucine-5g) or an intragastric infusion of 10 g isoleucine (isoleucine-10g), or a control. Fifteen minutes later, subjects consumed a mixed-nutrient drink (400 kcal, 56 g carbohydrates, 15 g protein, and 12 g fat), and gastric emptying ( 13 C-acetate breath test) and blood glucose, plasma insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (leucine study only) were measured for 60 min. Immediately afterward, energy intake from a cold, buffet-style meal was assessed. Compared with the control, leucine-10g decreased the blood glucose area under the curve (AUC) (P < 0.05) and tended to reduce peak blood glucose (P = 0.07), whereas effects of leucine-5g were NS. Leucine-10g, but not leucine-5g, increased plasma insulin and C-peptide AUCs (P < 0.01 for both), but neither dose affected glucagon, GLP-1, GIP, cholecystokinin, gastric emptying, or energy intake. Compared with the control, isoleucine-10g reduced the blood glucose AUC and peak blood glucose (P < 0.01), whereas effects of isoleucine-5g were NS. Neither load affected insulin, C-peptide, glucagon, GLP-1, or GIP. Isoleucine-10g, but not isoleucine-5g, slowed gastric emptying (P < 0.05), but gastric emptying was not correlated with the blood glucose AUC. Isoleucine did not affect energy intake

  3. Prebiotic significance of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.

    2005-09-01

    The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.

  4. Local rhamnosoft, ceramides and L-isoleucine in atopic eczema: a randomized, placebo controlled trial

    PubMed Central

    Marseglia, Alessia; Licari, Amelia; Agostinis, Fabio; Barcella, Antonio; Bonamonte, Domenico; Puviani, Mario; Milani, Massimo; Marseglia, GianLuigi

    2014-01-01

    Background A non-steroidal, anti-inflammatory moisturizing cream containing rhamnosoft, ceramides, and L-isoleucine (ILE) (pro-AMP cream) has been recently developed for the specific treatment of atopic eczema (AE) of the face. In this trial, we evaluated the clinical efficacy and tolerability of pro-AMP cream in the treatment of facial AE in children in comparison with an emollient cream. Methods In a randomized, prospective, assessor-blinded, parallel groups (2:1) controlled trial, 107 children (72 allocated to pro-AMP cream and 35 allocated to control group) with mild-to-moderate chronic AE of the face were enrolled. Treatments were applied twice daily for a 6-week period. Facial Eczema Severity Score (ESS) was evaluated at baseline, week 3, and week 6, by an assessor unaware of treatment allocation. Investigator's Global Assessment (IGA) score was assessed at week 3 and at week 6. Tolerability was evaluated at week 3 and at week 6 using a 4-point score (from 0: low tolerability to 3: very good tolerability). Results At baseline ESS, mean (SD) was 6.1 (2.4) in the pro-AMP cream group and 5.3 (3) in the control group. In the pro-AMP group, in comparison with baseline, ESS was significantly reduced to 2.5 (−59%) after 3 wks and to 1.0 (−84%) at week 6 (p = 0.0001). In the control group, ESS was reduced to 3 (−42%) at week 2 and to 2.6 (−50%) at week 6. At week 6, ESS in pro-AMP cream was significantly lower than the control group (1.0 vs. 2.6; p = 0.001). Both products were well tolerated. Conclusion Pro-AMP cream has shown to be effective in the treatment of mild-to-moderate chronic lesion of AE of the face. Clinical efficacy was greater in comparison with an emollient cream. (Clinical trial Registry: NTR4084). PMID:24750568

  5. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  6. Expression and GTP sensitivity of peptide histidine isoleucine high-affinity-binding sites in rat.

    PubMed

    Debaigt, Colin; Meunier, Annie-Claire; Goursaud, Stephanie; Montoni, Alicia; Pineau, Nicolas; Couvineau, Alain; Laburthe, Marc; Muller, Jean-Marc; Janet, Thierry

    2006-07-01

    High-affinity-binding sites for the vasoactive intestinal peptide (VIP) analogs peptide histidine/isoleucine-amide (PHI)/carboxyterminal methionine instead of isoleucine (PHM) are expressed in numerous tissues in the body but the nature of their receptors remains to be elucidated. The data presented indicate that PHI discriminated a high-affinity guanosine 5'-triphosphate (GTP)-insensitive-binding subtype that represented the totality of the PHI-binding sites in newborn rat tissues but was differentially expressed in adult animals. The GTP-insensitive PHI/PHM-binding sites were also observed in CHO cells over expressing the VPAC2 but not the VPAC1 VIP receptor.

  7. Whey peptide Isoleucine-Tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta.

    PubMed

    Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas

    2016-08-01

    Aortic stiffness is an independent risk factor for development of cardiovascular diseases. Activation of renin-angiotensin-aldosterone system (RAAS) including angiotensin converting enzyme (ACE) activity leads to overproduction of angiotensin II (ANGII) from its precursor angiotensin I (ANGI). ANGII leads to overexpression and activation of matrix metalloproteinase-2 (MMP2), which is critically associated with pathophysiology of aortic stiffness. We previously reported that the whey peptide Isoleucine-Tryptophan (IW) acts as a potent ACE inhibitor. Herein, we critically elucidate the mechanism of action by which IW causes inhibition of expression and activity of MMP2 in aortic tissue. Effects of IW on expression and activity of MMP2 were assessed on endothelial and smooth muscle cells (ECs and SMCs) in vitro and ex vivo (isolated rat aorta). As controls we used the pharmaceutical ACE inhibitor - captopril and the ANGII type 1 receptor blocker - losartan. In vitro, both ANGII and ANGI stimulation significantly (P<0.01) increased expression of MMP2 assessed with western blot. Similarly, to captopril IW significantly (P<0.05) inhibited ANGI, but not ANGII mediated increase in expression of MMP2, while losartan also blocked effects of ANGII. Signaling pathways regulating MMP2 expression in ECs and SMCs were similarly inhibited after treatment with IW or captopril. In ECs IW significantly (P<0.05) inhibited JNK pathway, whereas in SMCs JAK2/STAT3 pathway, assessed with western blot. In vitro findings were fully consistent with results in isolated rat aorta ex vivo. Moreover, IW not only inhibited the MMP2 expression, but also its activation assessed with gelatin zymography. Our findings demonstrate that IW effectively inhibits expression and activation of MMP2 in rat aorta by decreasing local conversion of ANGI to ANGII. Thus, similar to pharmaceutical ACE inhibitor captopril the dipeptide IW may effectively inhibit ACE activity and prevent the age and hypertension

  8. Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp.

    PubMed

    Chen, Wen Ming; Sheu, Fu Sian; Sheu, Shih Yi

    2011-09-10

    A brownish yellow pigmented bacterial strain, designated antisso-27, was recently isolated from a water area of saltpan in Southern Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain antisso-27 belongs the genus Aquimarina in the family Flavobacteriacea and its only closest neighbor is Aquimarina spongiae (96.6%). Based on screening for algicidal activity, strain antisso-27 exhibits potent activity against the toxic cyanobacterium Microcystis aeruginosa. Both the strain antisso-27 bacterial culture and its culture filtrate show algicidal activity against the toxic cyanobacterium, indicating that an algicidal substance is released from strain antisso-27. The algicidal activity of strain antisso-27 occurs during the late stationary phase of bacterial growth. Strain antisso-27 can synthesize an algicidal protein with a molecular mass of 190 kDa, and its isoelectric point is approximately 9.4. This study explores the nature of this algicidal protein such as L-amino acid oxidase with broad substrate specificity. The enzyme is most active with L-leucine, L-isoleucine, L-methionine and L-valine and the hydrogen peroxide generated by its catalysis mediates algicidal activity. This is the first report on an Aquimarina strain algicidal to the toxic M. aeruginosa and the algicidal activity is generated through its enzymatic activity of L-amino acid oxidase. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons.

    PubMed

    Bak, Lasse K; Johansen, Maja L; Schousboe, Arne; Waagepetersen, Helle S

    2012-09-01

    Synthesis of neuronal glutamate from α-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 μM), which results in release of vesicular glutamate. At the end of the superfusion experiment, the vesicular pool of glutamate was released by treatment with α-latrotoxin (3 nM, 5 min). This experimental paradigm allows a separate analysis of the cytoplasmic and vesicular pools of glutamate. Amount and extent of (15) N labeling of intracellular amino acids plus vesicular glutamate were analyzed employing HPLC and LC-MS analysis. Only when [(15) N]valine served as precursor did the labeling of both cytoplasmic and vesicular glutamate increase after synaptic activity. In addition, only [(15) N]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate. Copyright © 2012 Wiley Periodicals, Inc.

  10. Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis

    PubMed Central

    Liu, Dong

    2013-01-01

    Isoleucine is one of the branched-chain amino acids (BCAAs) that are essential substrates for protein synthesis in all organisms. Although the metabolic pathway for isoleucine has been well characterized in higher plants, it is not known whether it plays a specific role in plant development. In this study, an Arabidopsis mutant, lib (low isoleucine biosynthesis), that has defects in both cell proliferation and cell expansion processes during root development, was characterized. The lib mutant carries a T-DNA insertion in the last exon of the OMR1 gene that encodes a threonine deaminase/dehydratase (TD). TD catalyses the deamination and dehydration of threonine, which is the first and also the committed step in the biosynthesis of isoleucine. This T-DNA insertion results in a partial deficiency of isoleucine in lib root tissues but it does not affect its total protein content. Application of exogenous isoleucine or introduction of a wild-type OMR1 gene into the lib mutant can completely rescue the mutant phenotypes. These results reveal an important role for isoleucine in plant development. In addition, microarray analysis indicated that the partial deficiency of isoleucine in the lib mutant triggers a decrease in transcript levels of the genes encoding the major enzymes involved in the BCAA degradation pathway; the analysis also indicated that many genes involved in the biosynthesis of methionine-derived glucosinolates are up-regulated. PMID:23230023

  11. Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition.

    PubMed

    Arrieta-Cruz, Isabel; Su, Ya; Gutiérrez-Juárez, Roger

    2016-02-15

    Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance.

  12. Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition

    PubMed Central

    Arrieta-Cruz, Isabel; Su, Ya; Gutiérrez-Juárez, Roger

    2016-01-01

    Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance. PMID:26891318

  13. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle.

    PubMed

    Sato, Shinya; Miyazono, Sadaharu; Tachibanaki, Shuji; Kawamura, Satoru

    2015-01-30

    Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. CuI/L-proline-catalyzed coupling reactions of aryl halides with activated methylene compounds.

    PubMed

    Xie, Xiaoan; Cai, Guorong; Ma, Dawei

    2005-10-13

    [reaction: see text] The arylation of ethyl acetoacetate, ethyl benzoyl acetate, and diethyl malonate under the catalysis of CuI/L-proline in DMSO proceeds smoothly at 40-50 degrees C in the presence of Cs2CO3 to provide the 2-aryl-1,3-dicarbonyl compounds in good yields. Both aryl iodides and aryl bromides are compatible with these reaction conditions.

  15. Study of solid/liquid and solid/gas interfaces in Cu-isoleucine complex by surface X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.

    2013-02-01

    The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal-amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu-isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal-amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu-isoleucine complex under different ambient conditions. Cu(Ile)2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu-isoleucine crystal was measured under a protective dry N2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.

  16. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs

    PubMed Central

    Mandal, Debabrata; Köhrer, Caroline; Su, Dan; Babu, I. Ramesh; Chan, Clement T.Y.; Liu, Yuchen; Söll, Dieter; Blum, Paul; Kuwahara, Masayasu; Dedon, Peter C.; RajBhandary, Uttam L.

    2014-01-01

    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes. PMID:24344322

  17. Metabolic Engineering of Valine- and Isoleucine-Derived Glucosinolates in Arabidopsis Expressing CYP79D2 from Cassava

    PubMed Central

    Mikkelsen, Michael Dalgaard; Halkier, Barbara Ann

    2003-01-01

    Glucosinolates are amino acid-derived natural products that, upon hydrolysis, typically release isothiocyanates with a wide range of biological activities. Glucosinolates play a role in plant defense as attractants and deterrents against herbivores and pathogens. A key step in glucosinolate biosynthesis is the conversion of amino acids to the corresponding aldoximes, which is catalyzed by cytochromes P450 belonging to the CYP79 family. Expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in Arabidopsis resulted in the production of valine (Val)- and isoleucine-derived glucosinolates not normally found in this ecotype. The transgenic lines showed no morphological phenotype, and the level of endogenous glucosinolates was not affected. The novel glucosinolates were shown to constitute up to 35% of the total glucosinolate content in mature rosette leaves and up to 48% in old leaves. Furthermore, at increased concentrations of these glucosinolates, the proportion of Val-derived glucosinolates decreased. As the isothiocyanates produced from the Val- and isoleucine-derived glucosinolates are volatile, metabolically engineered plants producing these glucosinolates have acquired novel properties with great potential for improvement of resistance to herbivorous insects and for biofumigation. PMID:12586901

  18. Neuropeptide glutamic acid-isoleucine (NEI)-induced paradoxical sleep in rats.

    PubMed

    Fujimoto, Moe; Fukuda, Satoru; Sakamoto, Hidetoshi; Takata, Junko; Sawamura, Shigehito

    2017-01-01

    Neuropeptideglutamic acid-isoleucine (NEI) as well as melanin concentrating hormone (MCH) is cleaved from the 165 amino acid protein, prepro-melanin concentrating hormone (prepro-MCH). Among many physiological roles of MCH, we demonstrated that intracerebroventricular (icv) injection of MCH induced increases in REM sleep episodes as well as in non REM sleep episodes. However, there are no studies on the effect of NEI on the sleep-wake cycle. As for the sites of action of MCH for induction of REM sleep, the ventrolateral periaqueductal gray (vlPAG) has been reported to be one of its site of action. Although MCH neurons contain NEI, GABA, MCH, and other neuropeptides, we do not know which transmitter(s) might induce REM sleep by acting on the vlPAG. Thus, we first examined the effect of icv injection of NEI on the sleep-wake cycle, and investigated how microinjection of either NEI, MCH, or GABA into the vlPAG affected REM sleep in rats. Icv injection of NEI (0.61μg/5μl: n=7) significantly increased the time spent in REM episodes compared to control (saline: 5μl; n=6). Microinjection of either NEI (61ng/0.2μl: n=7), MCH (100ng/0.2μl: n=6) or GABA (250mM/0.2μl: n=7) into the vlPAG significantly increased the time spent in REM episodes and the AUC. Precise hourly analysis of REM sleep also revealed that after those microinjections, NEI and MCH increased REM episodes at the latter phase, compared to GABA which increased REM episodes at the earlier phase. This result suggests that NEI and MCH may induce sustained REM sleep, while GABA may initiate REM sleep. In conclusion, our findings demonstrate that NEI, a cleaved peptide from the same precursor, prepro-MCH, as MCH, induce REM sleep at least in part through acting on the vlPAG. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cold Shock Response of Bacillus subtilis: Isoleucine-Dependent Switch in the Fatty Acid Branching Pattern for Membrane Adaptation to Low Temperatures†

    PubMed Central

    Klein, Wolfgang; Weber, Michael H. W.; Marahiel, Mohamed A.

    1999-01-01

    Bacillus subtilis has developed sophisticated mechanisms to withstand fluctuations in temperature. Membrane fatty acids are the major determinants for a sufficiently fluid membrane state to ensure the membrane’s function at all temperatures. The fatty acid profile of B. subtilis is characterized by a high content of branched fatty acids irrespective of the growth medium. Here, we report on the importance of isoleucine for B. subtilis to survive cold shock from 37 to 15°C. Cold shock experiments with strain JH642 revealed a cold-protective function for all intermediates of anteiso-branched fatty acid biosynthesis. Metabolites related to iso-branched or straight-chain fatty acid biosynthesis were not protective. Fatty acid profiles of different B. subtilis wild-type strains proved the altered branching pattern by an increase in the anteiso-branched fatty acid content and a concomitant decrease of iso-branched species during cold shock. There were no significant changes in the fatty acid saturation or acyl chain length. The cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine correlated with their inability to synthesize more anteiso-branched fatty acids, as shown by the fatty acid profile. The switch to a fatty acid profile dominated by anteiso-C15:0 and C17:0 at low temperatures and the cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine focused our attention on the critical role of anteiso-branched fatty acids in the growth of B. subtilis in the cold. PMID:10464205

  20. Upper gastrointestinal bleeding: an ammoniagenic and catabolic event due to the total absence of isoleucine in the haemoglobin molecule.

    PubMed

    Olde Damink, S W; Dejong, C H; Deutz, N E; van Berlo, C L; Soeters, P B

    1999-06-01

    Upper gastrointestinal bleeding causes increased urea concentrations in patients with normal liver function and high ammonia concentrations in patients with impaired liver function. This ammoniagenesis may precipitate encephalopathy. The haemoglobin molecule is unique because it lacks the essential amino acid isoleucine and has high amounts of leucine and valine. Upper gastrointestinal bleeding therefore presents the gut with protein of very low biologic value, which may be the stimulus to induce a cascade of events culminating in net catabolism. This may influence the function of rapidly dividing cells and short half-life proteins. We hypothesize that, following a variceal bleed in a cirrhotic patient, the lack of isoleucine in blood protein is the cause of the exaggerated ammoniagenesis and catabolism. We propose that intravenous administration of isoleucine may serve as a simple therapeutic that transforms blood protein in a balanced protein, resulting in only a short-lived rise in ammonia and urea production, and preventing interference with protein synthesis.

  1. Jasmonoyl-l-Isoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (Nicotiana attenuata)[C][W][OPEN

    PubMed Central

    Stitz, Michael; Hartl, Markus; Baldwin, Ian T.; Gaquerel, Emmanuel

    2014-01-01

    Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-l-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study. PMID:25326292

  2. Preparation of immobilized L-prolinamide via enzymatic polymerization of phenolic L-prolinamide and evaluation of its catalytic performance for direct asymmetric aldol reaction.

    PubMed

    Qu, Chengke; Zhao, Wenshan; Zhang, Lei; Cui, Yuanchen

    2014-04-01

    Phenolic L-prolinamide was allowed to participate in enzymatic polymerization with horseradish peroxidase as the catalyst, generating immobilized L-prolinamide. The catalytic performance of the resultant polymer-supported L-prolinamide for direct asymmetric aldol reaction between aromatic aldehyde and cyclohexanone was studied. The results show that as prepared L-prolinamide can catalyze the aldol reaction at room temperature in the presence of H2O. Relevant aldol addition products are obtained with good yields (up to 91%), high diastereoselectivities (up to 6:94 dr), and medium enantioselectivities (up to 87% ee). Moreover, the title polymer-supported catalyst can be recovered and reused for at least five cycles while the activity remains almost unchanged. Copyright © 2014 Wiley Periodicals, Inc.

  3. Antioxidant and chelating capacity of Maillard reaction products in amino acid-sugar model systems: applications for food processing.

    PubMed

    Mondaca-Navarro, Blanca A; Ávila-Villa, Luz A; González-Córdova, Aarón F; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Campas-Baypoli, Olga N; Rodríguez-Ramírez, Roberto

    2017-08-01

    Maillard reaction products (MRP) have gained increasing interest owing to their both positive and negative effects on human health. Aqueous amino acid-sugar model systems were studied in order to evaluate the antioxidant and chelating activity of MRP under conditions similar to those of food processing. Amino acids (cysteine, glycine, isoleucine and lysine) combined with different sugars (fructose or glucose) were heated to 100 and 130 °C for 30, 60 and 90 min. Antioxidant capacity was evaluated via ABTS and DPPH free radical scavenging assays, in addition to Fe 2+ and Cu 2+ ion chelating capacity. In the ABTS assay, the cysteine-fructose model system presented the highest antioxidant activity at 7.05 µmol mL -1 (130 °C, 60 min), expressed in Trolox equivalents. In the DPPH assay, the cysteine-glucose system presented the highest antioxidant activity at 3.79 µmol mL -1 (100 °C, 90 min). The maximum rate of chelation of Fe 2+ and Cu 2+ was 96.31 and 59.44% respectively in the lysine-fructose and cysteine-glucose systems (100 °C, 30 min). The model systems presented antioxidant and chelating activity under the analyzed temperatures and heating times, which are similar to the processing conditions of some foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  5. In-Gel Determination of L-Amino Acid Oxidase Activity Based on the Visualization of Prussian Blue-Forming Reaction

    PubMed Central

    Zhou, Ning; Zhao, Chuntian

    2013-01-01

    L-amino acid oxidase (LAAO) is attracting increasing attention due to its important functions. Diverse detection methods with their own properties have been developed for characterization of LAAO. In the present study, a simple, rapid, sensitive, cost-effective and reproducible method for quantitative in-gel determination of LAAO activity based on the visualization of Prussian blue-forming reaction is described. Coupled with SDS-PAGE, this Prussian blue agar assay can be directly used to determine the numbers and approximate molecular weights of LAAO in one step, allowing straightforward application for purification and sequence identification of LAAO from diverse samples. PMID:23383337

  6. An isoleucine to leucine mutation that switches the cofactor requirement of the EcoRV restriction endonuclease from magnesium to manganese.

    PubMed

    Vipond, I B; Moon, B J; Halford, S E

    1996-02-13

    The EcoRV restriction endonuclease cleaves DNA at its recognition sequence more readily with Mg2+ as the cofactor than with Mn2+ but, at noncognate sequences that differ from the EcoRV site by one base pair, Mn2+ gives higher rates than Mg2+. A mutant of EcoRV, in which an isoleucine near the active site was replaced by leucine, showed the opposite behavior. It had low activity with Mg2+, but, in the presence of Mn2+ ions, it cleaved the recognition site faster than wild-type EcoRV with either Mn2+ or Mg2+. The mutant was also more specific for the recognition sequence than the native enzyme: the noncognate DNA cleavages by wild-type EcoRV and Mn2+ were not detected with the mutant. Further mutagenesis showed that the protein required the same acidic residues at its active site as wild-type EcoRV. The Ile-->Leu mutation seems to perturb the configuration of the metal-binding ligands at the active site so that the protein has virtually no affinity for Mg2+ yet it can still bind Mn2+ ions, though the latter only occurs when the protein is at the recognition site. This contrasts to wild-type EcoRV, where Mn2+ ions bind readily to complexes with either cognate and noncognate DNA and only Mg2+ shows the discrimination between the complexes. The structural perturbation is a specific consequence of leucine in place of isoleucine, since mutants with valine or alanine were similar to wild-type EcoRV.

  7. Thiacalix[4]arene functionalized gold nano-assembly for recognition of isoleucine in aqueous solution and its antioxidant study

    NASA Astrophysics Data System (ADS)

    Darjee, Savan M.; Bhatt, Keyur; Kongor, Anita; Panchal, Manthan K.; Jain, Vinod K.

    2017-01-01

    Thiacalix[4]arenes comes under heteracalixarene class which has notable utility in the area of nanoscience. This stimulation has led to the synthesis of water-dispersible gold nanoparticles (AuNps) using thiacalix[4]arene tetrahydrazide (TCTH) as both reducing as well as stabilizing agent. The synthesized nanoparticles (TCTH-AuNps) were characterized by SPR, TEM and EDX. TCTH-AuNps were found to be selective and sensitive for isoleucine. The concentration of isoleucine was detected in the limit of 1 nM to 1.2 μM based on fluorescence enhancement. TCTH-AuNps were also used to measure antioxidant capacity against the standard ascorbic acid.

  8. Organocatalytic C–H activation reactions

    PubMed Central

    2012-01-01

    Summary Organocatalytic C–H activation reactions have recently been developed besides the traditional metal-catalysed C–H activation reactions. The recent non-asymmetric and asymmetric C–H activation reactions mediated by organocatalysts are discussed in this review. PMID:23019474

  9. Conditional solvation thermodynamics of isoleucine in model peptides and the limitations of the group-transfer model.

    PubMed

    Tomar, Dheeraj S; Weber, Valéry; Pettitt, B Montgomery; Asthagiri, D

    2014-04-17

    The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute-solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance.

  10. Isoleucine epimerization and amino acid composition in molecular-weight separations of Pleistocene Genyornis eggshell

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Miller, Gifford H.

    1995-07-01

    This study explores the geochronological utility and analytical reproducibility of separating the high-molecular-weight fraction (HMW) from eggshells of the extinct late Pleistocene ratite, Genyornis, using disposable, prepacked gel-filtration columns. The superior integrity of ratite eggshell for the retention of amino acids indicates that this biomineral is better suited for this type of investigation than previously studied molluscan shell. To evaluate the reproducibility of the gel-filtration technique, we analyzed triplicate subsamples of three eggshells of different ages. The reproducibility, based on the average intrashell variation (coefficient of variation; CV) in the extent of isoleucine epimerization (aIle/Ile) in the HMW (enriched in molecules ca. >10,000 MW) is 3%, well within the range appropriate for geochronological purposes. The average intrashell variation in the total amino acid concentration (Σ[aa]) of the HMW is 5%, somewhat better than for the total acid hydrolysate (TOTAL) of the same samples (7%). To evaluate the relation between molecular weight and the rate of isoleucine epimerization, three molecular-weight fractions were separated using gel filtration, plus the naturally hydrolyzed free fraction (FREE), for each of four fossil eggshells. AIle/Ile increases with decreasing molecular weight in all shells, with a ca. sixfold to ninefold difference in ratios between the HMW andFREE, and a ca. fivefold difference between the HMW andTOTAL. Although linear correlations between aIle/Ile measured in each molecular-weight fraction and in theTOTAL are all highly significant (r ⩾ 0.951), the relation between the extent of epimerization in the HMW and in the TOTAL is best expressed as an exponential function (r = 0.951). This relation is consistent with the idea that, as the epimerization reaction approaches equilibrium in theTOTAL (ca. aIle/Ile > 1.1), its rate decreases beyond that of the HMW. The amino acid composition (relative percent of

  11. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    PubMed

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  12. A Single Acyl-CoA Dehydrogenase Is Required For Catabolism Of Isoleucine, Valine And Short-Chain Fatty Acids In Aspergillus nidulans

    PubMed Central

    Maggio-Hall, Lori A.; Lyne, Paul; Wolff, Jon A.; Keller, Nancy P.

    2010-01-01

    An acyl-CoA dehydrogenase has been identified as part of the mitochondrial β-oxidation pathway in the ascomycete fungus Aspergillus nidulans. Disruption of the scdA gene prevented use of butyric acid (C4) and hexanoic acid (C6) as carbon sources and reduced cellular butyryl-CoA dehydrogenase activity by 7.5-fold. While the mutant strain exhibited wild-type levels of growth on erucic acid (C22:1) and oleic acid (C18:1), some reduction in growth was observed with myristic acid (C14). The ΔscdA mutation was found to be epistatic to a mutation downstream in the β-oxidation pathway (disruption of enoyl-CoA hydratase). The ΔscdA mutant was also unable to use isoleucine or valine as a carbon source. Transcription of scdA was observed in the presence of either fatty acids or amino acids. When the mutant was grown in medium containing either isoleucine or valine, organic acid analysis of culture supernatants showed accumulation of 2-oxo acid intermediates of branched chain amino acid catabolism, suggesting feedback inhibition of the upstream branched-chain α-keto acid dehydrogenase. PMID:17656140

  13. Conditional Solvation Thermodynamics of Isoleucine in Model Peptides and the Limitations of the Group-Transfer Model

    PubMed Central

    2015-01-01

    The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute–solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance. PMID:24650057

  14. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  15. Activated by Combined Magnrtic Field Gravitropic Reaction Reply on Nanodose of Biologicaly Active Compounds

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadezhda; Bogatina, Nina

    The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.

  16. Some Lactobacillus l-Lactate Dehydrogenases Exhibit Comparable Catalytic Activities for Pyruvate and Oxaloacetate

    PubMed Central

    Arai, Kazuhito; Kamata, Takeo; Uchikoba, Hiroyuki; Fushinobu, Shinya; Matsuzawa, Hiroshi; Taguchi, Hayao

    2001-01-01

    The nonallosteric and allosteric l-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate Km values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate. PMID:11114942

  17. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with l-tyrosine and l-DOPA

    PubMed Central

    2014-01-01

    Background Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through l-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, l-tyrosine and l-DOPA. Results The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only l-tyrosine but l-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. Conclusion It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics. PMID:25297374

  18. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins.

    PubMed

    Tugarinov, Vitali; Venditti, Vincenzo; Marius Clore, G

    2014-01-01

    A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

  19. Identification of hydrophobic amino acids required for lipid activation of C. elegans CTP:phosphocholine cytidylyltransferase.

    PubMed

    Braker, Jay D; Hodel, Kevin J; Mullins, David R; Friesen, Jon A

    2009-12-01

    CTP:phosphocholine cytidylyltransferase (CCT), critical for phosphatidylcholine biosynthesis, is activated by translocation to the membrane surface. The lipid activation region of Caenorhabditis elegans CCT is between residues 246 and 266 of the 347 amino acid polypeptide, a region proposed to form an amphipathic alpha helix. When leucine 246, tryptophan 249, isoleucine 256, isoleucine 257, or phenylalanine 260, on the hydrophobic face of the helix, were changed individually to serine low activity was observed in the absence of lipid vesicles, similar to wild-type CCT, while lipid stimulated activity was reduced compared to wild-type CCT. Mutational analysis of phenylalanine 260 implicated this residue as a contributor to auto-inhibition of CCT while mutation of L246, W249, I256, and I257 simultaneously to serine resulted in significantly higher activity in the absence of lipid vesicles and an enzyme that was not lipid activated. These results support a concerted mechanism of lipid activation that requires multiple residues on the hydrophobic face of the putative amphipathic alpha helix.

  20. Prebiotic condensation reactions using cyanamide

    NASA Technical Reports Server (NTRS)

    Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.

    1978-01-01

    Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.

  1. Influence of l-pyroglutamic acid on the color formation process of non-enzymatic browning reactions.

    PubMed

    Wegener, Steffen; Kaufmann, Martin; Kroh, Lothar W

    2017-10-01

    Heating aqueous d-glucose model reactions with l-glutamine and l-alanine yielded similar colored solutions. However, size-exclusion chromatography (SEC) revealed that both non-enzymatic browning reactions proceeded differently. Due to a fast occurring cyclization of l-glutamine to pyroglutamic acid, the typical amino-carbonyl reaction was slowed down. However, l-glutamine and l-alanine model reactions showed the same browning index. Closer investigations could prove that l-pyroglutamic acid was able to influence non-enzymatic browning reactions. SEC analyses of d-glucose model reactions with and without l-pyroglutamic acid revealed an increase of low molecular colored compounds in the presence of l-pyroglutamic acid. Polarimetric measurements showed a doubling of d-glucose mutarotation velocity and HPLC analyses of d-fructose formation during thermal treatment indicated a tripling of aldose-ketose transformation in the presence of l-pyroglutamic acid, which are signs of a faster proceeding non-enzymatic browning process. 2-Pyrrolidone showed no such behavior, thus the additional carboxylic group should be responsible for the observed effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Isoleucine epimerization in the high-molecular-weight fraction of pleistocene Arctica

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Sejrup, Hans-Petter

    The extent of amino acid racemization, as traditionally determined in the entire (total acid hydrolysate) pool of amino acids comprising the organic remains of fossils, is a function of the integrated effects of a complex diagenetic reaction network. We investigated the possibility that some of the complications involved in protein diagenesis might be circumvented by isolating one component of the reaction network and studying the extent of racemization in that fraction alone. We used gel-filtration to extract the high-molecular-weight (HMW) fraction of proteinaceous matter from fossil and modem molluscan shells. This fraction contains the largest (ca. > 15,000 MW), most-pristine macromolecules and has been less affected by diagenesis than the more-degraded, lower molecular-weight fractions. Variations in the extent of racemization (isoleucine epimerization; alle/Ile) measured in the HMW fraction of subsamples taken along cross sections of Arctica shells from two interglacial sites, Bø and Fjøsanger, southwestern Norway, are within the range of analytical uncertainty [coefficient of variation (cv) = 5-8%], despite the strong gradient (cv = 20-24%) in alle/Ile of the total amino acid population. Because there is no age difference across a shell, this finding supports the idea that the HMW fraction contains more geochronologically reliable proteinaceous matter than the total amino acid pool. Weighted mean alle/Ile ratios in the HMW fraction of aliquots of powdered sample from the two shells overlap at ± 1σ, despite significantly different alle/Ile ratios in the total amino acid population of some shells from the two sites. The difference in alle/Ile ratios in the total population is attributed to a greater proportion of low-molecular-weight (ca. 300 MW), and hence, extensively epimerized molecules measured in gel-filtered samples from the Fjøsanger shell. Because the rate of epimerization in the HMW fraction is much lower than in the total population, the

  3. Microcalorimetric, {sup 13}C NMR spectroscopic, and reaction kinetic studies of silica- and L-zeolite-supported platinum catalysts for n-hexane conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.B.; Ouraipryvan, P.; Nair, H.A.

    Reaction kinetics measurement of n-hexane conversion over 4% Pt/SiO{sub 2} and 1% Pt/SiO{sub 2} and 1% Pt/K(Ba)-L catalysts were made at a pressure of 3 atm and temperatures from 698 to 750 K. The rates of benzene and methylcyclopentane formation decrease with time during reaction over Pt/SiO{sub 2}, while 1% Pt/K(Ba)-L does not deactivate significantly. Microcalorimetric measurements at 353 K show that the heat of carbon monoxide adsorption is the same on freshly reduced Pt/SiO{sub 2} and Pt/K(Ba)-L catalysts; however, carbonaceous species that accumulate on Pt/SiO{sub 2} during n-hexane conversion decrease the total number of adsorption sites and the numbermore » of sites that adsorb carbon monoxide strongly. The 1% Pt/K(Ba)-L catalyst retains the adsorptive properties of the freshly reduced catalyst. Nuclear magnetic resonance studies of {sup 13}CO adsorption show that cluster-sized platinum particles are more resistant to deactivation by self-poisoning reactions than larger platinum particles. The greater catalyst stability and higher steady-state activity of L-zeolite-supported platinum catalysts may be attributed to the ability of L-zeolite to stabilize cluster-sized particles under reaction conditions. Differences in dehydrocyclization activity between catalysts may be related to differences in the number of strong adsorption sites that are present under reaction conditions. 31 refs., 7 figs., 4 tabs.« less

  4. Biochemical features of genetic Creutzfeldt-Jakob disease with valine-to-isoleucine substitution at codon 180 on the prion protein gene.

    PubMed

    Ito, Yoko; Sanjo, Nobuo; Hizume, Masaki; Kobayashi, Atsushi; Ohgami, Tetsuya; Satoh, Katsuya; Hamaguchi, Tsuyoshi; Yamada, Masahito; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro; Yokota, Takanori

    2018-02-19

    Valine-to-isoleucine substitution at codon 180 of the prion protein gene is only observed in patients with Creutzfeldt-Jakob disease and accounts for approximately half of all cases of genetic prion disease in Japan. In the present study, we investigated the biochemical characteristics of valine-to-isoleucine substitution at codon 180 in the prion protein gene, using samples obtained from the autopsied brains of seven patients with genetic Creutzfeldt-Jakob disease exhibiting this mutation (diagnoses confirmed via neuropathological examination). Among these patients, we observed an absence of diglycosylated and monoglycosylated forms of PrP res at codon 181. Our findings further indicated that the abnormal prion proteins were composed of at least three components, although smaller carboxyl-terminal fragments were predominant. Western blot analyses revealed large amounts of PrP res in the cerebral neocortices, where neuropathological examination revealed marked spongiosis. Relatively smaller amounts of PrP res were detected in the hippocampus, where milder spongiosis was observed, than in the cerebral neocortex. These findings indicate that abnormal prion proteins in the neocortex are associated with severe toxicity, resulting in severe spongiosis. Our findings further indicate that the valine-to-isoleucine substitution is not a polymorphism, but rather an authentic pathogenic mutation associated with specific biochemical characteristics that differ from those observed in sporadic Creutzfeldt-Jakob disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  6. "Reagent-free" L-asparaginase activity assay based on CD spectroscopy and conductometry.

    PubMed

    Kudryashova, Elena V; Sukhoverkov, Kirill V

    2016-02-01

    A new method to determine the catalytic parameters of L-asparaginase using circular dichroism spectroscopy (CD spectroscopy) has been developed. The assay is based on the difference in CD signal between the substrate (L-asparagine) and the product (L-aspartic acid) of enzymatic reaction. CD spectroscopy, being a direct method, enables continuous measurement, and thus differentiates from multistage and laborious approach based on Nessler's method, and overcomes limitations of conjugated enzymatic reaction methods. In this work, we show robust measurements of L-asparaginase activity in conjugates with PEG-chitosan copolymers, which otherwise would not have been possible. The main limitation associated with the CD method is that the analysis should be performed at substrate saturation conditions (V max regime). For K M measurement, the conductometry method is suggested, which can serve as a complimentary method to CD spectroscopy. The activity assay based on CD spectroscopy and conductometry was successfully implicated to examine the catalytic parameters of L-asparaginase conjugates with chitosan and its derivatives, and for optimization of the molecular architecture and composition of such conjugates for improving biocatalytic properties of the enzyme in the physiological conditions. The approach developed is potentially applicable to other enzymatic reactions where the spectroscopic properties of substrate and product do not enable direct measurement with absorption or fluorescence spectroscopy. This may include a number of amino acid or glycoside-transforming enzymes.

  7. Determination of yeast assimilable nitrogen content in wine fermentations by sequential injection analysis with spectrophotometric detetection.

    PubMed

    Muik, Barbara; Edelmann, Andrea; Lendl, Bernhard; Ayora-Cañada, María José

    2002-09-01

    An automated method for measuring the primary amino acid concentration in wine fermentations by sequential injection analysis with spectrophotometric detection was developed. Isoindole-derivatives from the primary amino acid were formed by reaction with o-phthaldialdehyde and N-acetyl- L-cysteine and measured at 334 nm with respect to a baseline point at 700 nm to compensate the observed Schlieren effect. As the reaction kinetic was strongly matrix dependent the analytical readout at the final reaction equilibrium has been evaluated. Therefore four parallel reaction coils were included in the flow system to be capable of processing four samples simultaneously. Using isoleucine as the representative primary amino acid in wine fermentations a linear calibration curve from 2 to 10 mM isoleucine, corresponding to 28 to 140 mg nitrogen/L (N/L) was obtained. The coefficient of variation of the method was 1.5% at a throughput of 12 samples per hour. The developed method was successfully used to monitor two wine fermentations during alcoholic fermentation. The results were in agreement with an external reference method based on high performance liquid chromatography. A mean-t-test showed no significant differences between the two methods at a confidence level of 95%.

  8. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid.

  9. Flesh quality loss in response to dietary isoleucine deficiency and excess in fish: a link to impaired Nrf2-dependent antioxidant defense in muscle.

    PubMed

    Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Kuang, Sheng-Yao; Feng, Lin; Zhou, Xiao-Qiu

    2014-01-01

    The present study explored the impact of dietary isoleucine (Ile) on fish growth and flesh quality and revealed a possible role of muscle antioxidant defense in flesh quality in relation to dietary Ile. Grass carp (weighing 256.8±3.5 g) were fed diets containing six graded levels of Ile (3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg) for eight weeks. The results indicated that compared with Ile deficiency (3.8 g/kg diets) and excess (18.5 g/kg diets) groups, 9.3-15.2 g Ile/kg diet supplementations promoted fish growth and muscle fat deposition, whereas 6.6-15.2 g Ile/kg diets supplementation enhanced muscle nutrients (protein and total EAAs) deposition. Furthermore, muscle shear force, pH value, and hydroxyproline concentration were improved by 9.3-12.5, 9.3 and 9.3 g Ile/kg diet supplementations, respectively. However, muscle cooking loss, lactate content, and activities of cathepsin B and L were decreased by 6.6-15.2, 9.3-12.5, 9.3-12.5 and 9.3-15.2 g Ile/kg diet supplementations, respectively. Additionally, 6.6-15.2 and 6.6-12.5 g Ile/kg diet supplementations attenuated malondialdehyde and protein carbonyl contents, respectively. The activities of copper/zinc superoxide dismutase (Cu/Zn-SOD) and glutathione peroxidase (GPx), and glutathione content were enhanced by 6.6-9.3, 6.6-12.5 and 6.6-15.2 g Ile/kg diet supplementations, respectively. Moreover, the relative mRNA expressions of antioxidant enzymes, including Cu/Zn-SOD (6.6-12.5 g/kg diets) and GPx (12.5 g/kg diets), as well as antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2) (6.6-12.5 g/kg diets), target of rapamycin (6.6-12.5 g/kg diets), ribosomal S6 protein kinase 1 (9.3-12.5 g/kg diets) and casein kinase 2 (6.6-12.5 g/kg diets), were up-regulated when Ile diet supplementations were administered at these levels, respectively, whereas the relative mRNA expression of Kelch-like ECH-associated protein 1 was down-regulated with 9.3 g Ile/kg diet supplementations. Collectively, the

  10. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide.

    PubMed

    Kaiser, Julienne C; King, Alyssa N; Grigg, Jason C; Sheldon, Jessica R; Edgell, David R; Murphy, Michael E P; Brinsmade, Shaun R; Heinrichs, David E

    2018-01-01

    Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

  11. H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Nakayama, T.; Sawada, S.

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less

  12. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies.

    PubMed

    Birech, Zephania; Mwangi, Peter Waweru; Bukachi, Fredrick; Mandela, Keith Makori

    2017-01-01

    Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.)Chiov. Sprague Dawley (SD) rat's blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm-1), leucine (1106, 1248, 1302, 1395 cm-1) and isolecucine (1108, 1248, 1437 and 1585 cm-1) were observed. The Raman bands centered at 1125 cm-1, 1395 cm-1 and 1437 cm-1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.)Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm-1), leucine (1395 cm-1) and isoleucine (1437 cm-1) in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds) diabetes and pre-diabetes screening in blood (human or rat's) with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for performing comparative

  13. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies

    PubMed Central

    Mwangi, Peter Waweru; Bukachi, Fredrick; Mandela, Keith Makori

    2017-01-01

    Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.)Chiov. Sprague Dawley (SD) rat’s blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm−1), leucine (1106, 1248, 1302, 1395 cm−1) and isolecucine (1108, 1248, 1437 and 1585 cm−1) were observed. The Raman bands centered at 1125 cm−1, 1395 cm−1 and 1437 cm−1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.)Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm−1), leucine (1395 cm−1) and isoleucine (1437 cm−1) in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds) diabetes and pre-diabetes screening in blood (human or rat’s) with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for

  14. Isoleucine Deficiency in a Neonate Treated for Maple Syrup Urine Disease Masquerading as Acrodermatitis Enteropathica.

    PubMed

    Ross, Benjamin; Kumar, Manish; Srinivasan, Hema; Ekbote, Alka V

    2016-08-08

    Special diet with restricted branched-chain-amino-acids used for treating maple syrup urine disease can lead to specific amino acid deficiencies. We report a neonate who developed skin lesions due to isoleucine deficiency while using specialised formula. Feeds were supplemented with expressed breast milk. This caused biochemical and clinical improvement with resolution of skin lesions. Breast milk is a valuable and necessary adjunct to specialized formula in maple syrup urine disease to prevent specific amino acid deficiency in the neonatal period.

  15. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis.

    PubMed

    Koo, Abraham J; Thireault, Caitlin; Zemelis, Starla; Poudel, Arati N; Zhang, Tong; Kitaoka, Naoki; Brandizzi, Federica; Matsuura, Hideyuki; Howe, Gregg A

    2014-10-24

    The plant hormone jasmonate (JA) controls diverse aspects of plant immunity, growth, and development. The amplitude and duration of JA responses are controlled in large part by the intracellular level of jasmonoyl-L-isoleucine (JA-Ile). In contrast to detailed knowledge of the JA-Ile biosynthetic pathway, little is known about enzymes involved in JA-Ile metabolism and turnover. Cytochromes P450 (CYP) 94B3 and 94C1 were recently shown to sequentially oxidize JA-Ile to hydroxy (12OH-JA-Ile) and dicarboxy (12COOH-JA-Ile) derivatives. Here, we report that a third member (CYP94B1) of the CYP94 family also participates in oxidative turnover of JA-Ile in Arabidopsis. In vitro studies showed that recombinant CYP94B1 converts JA-Ile to 12OH-JA-Ile and lesser amounts of 12COOH-JA-Ile. Consistent with this finding, metabolic and physiological characterization of CYP94B1 loss-of-function and overexpressing plants demonstrated that CYP94B1 and CYP94B3 coordinately govern the majority (>95%) of 12-hydroxylation of JA-Ile in wounded leaves. Analysis of CYP94-promoter-GUS reporter lines indicated that CYP94B1 and CYP94B3 serve unique and overlapping spatio-temporal roles in JA-Ile homeostasis. Subcellular localization studies showed that CYP94s involved in conversion of JA-Ile to 12COOH-JA-Ile reside on endoplasmic reticulum (ER). In vitro studies further showed that 12COOH-JA-Ile, unlike JA-Ile, fails to promote assembly of COI1-JAZ co-receptor complexes. The double loss-of-function mutant of CYP94B3 and ILL6, a JA-Ile amidohydrolase, displayed a JA profile consistent with the collaborative action of the oxidative and the hydrolytic pathways in JA-Ile turnover. Collectively, our results provide an integrated view of how multiple ER-localized CYP94 and JA amidohydrolase enzymes attenuate JA signaling during stress responses. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Endoplasmic Reticulum-associated Inactivation of the Hormone Jasmonoyl-l-Isoleucine by Multiple Members of the Cytochrome P450 94 Family in Arabidopsis*

    PubMed Central

    Koo, Abraham J.; Thireault, Caitlin; Zemelis, Starla; Poudel, Arati N.; Zhang, Tong; Kitaoka, Naoki; Brandizzi, Federica; Matsuura, Hideyuki; Howe, Gregg A.

    2014-01-01

    The plant hormone jasmonate (JA) controls diverse aspects of plant immunity, growth, and development. The amplitude and duration of JA responses are controlled in large part by the intracellular level of jasmonoyl-l-isoleucine (JA-Ile). In contrast to detailed knowledge of the JA-Ile biosynthetic pathway, little is known about enzymes involved in JA-Ile metabolism and turnover. Cytochromes P450 (CYP) 94B3 and 94C1 were recently shown to sequentially oxidize JA-Ile to hydroxy (12OH-JA-Ile) and dicarboxy (12COOH-JA-Ile) derivatives. Here, we report that a third member (CYP94B1) of the CYP94 family also participates in oxidative turnover of JA-Ile in Arabidopsis. In vitro studies showed that recombinant CYP94B1 converts JA-Ile to 12OH-JA-Ile and lesser amounts of 12COOH-JA-Ile. Consistent with this finding, metabolic and physiological characterization of CYP94B1 loss-of-function and overexpressing plants demonstrated that CYP94B1 and CYP94B3 coordinately govern the majority (>95%) of 12-hydroxylation of JA-Ile in wounded leaves. Analysis of CYP94-promoter-GUS reporter lines indicated that CYP94B1 and CYP94B3 serve unique and overlapping spatio-temporal roles in JA-Ile homeostasis. Subcellular localization studies showed that CYP94s involved in conversion of JA-Ile to 12COOH-JA-Ile reside on endoplasmic reticulum (ER). In vitro studies further showed that 12COOH-JA-Ile, unlike JA-Ile, fails to promote assembly of COI1-JAZ co-receptor complexes. The double loss-of-function mutant of CYP94B3 and ILL6, a JA-Ile amidohydrolase, displayed a JA profile consistent with the collaborative action of the oxidative and the hydrolytic pathways in JA-Ile turnover. Collectively, our results provide an integrated view of how multiple ER-localized CYP94 and JA amidohydrolase enzymes attenuate JA signaling during stress responses. PMID:25210037

  17. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions.

    PubMed

    Böck, Katharina; Feil, Julia E; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2015-03-27

    Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flesh Quality Loss in Response to Dietary Isoleucine Deficiency and Excess in Fish: A Link to Impaired Nrf2-Dependent Antioxidant Defense in Muscle

    PubMed Central

    Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Kuang, Sheng-Yao; Feng, Lin; Zhou, Xiao-Qiu

    2014-01-01

    The present study explored the impact of dietary isoleucine (Ile) on fish growth and flesh quality and revealed a possible role of muscle antioxidant defense in flesh quality in relation to dietary Ile. Grass carp (weighing 256.8±3.5 g) were fed diets containing six graded levels of Ile (3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg) for eight weeks. The results indicated that compared with Ile deficiency (3.8 g/kg diets) and excess (18.5 g/kg diets) groups, 9.3–15.2 g Ile/kg diet supplementations promoted fish growth and muscle fat deposition, whereas 6.6–15.2 g Ile/kg diets supplementation enhanced muscle nutrients (protein and total EAAs) deposition. Furthermore, muscle shear force, pH value, and hydroxyproline concentration were improved by 9.3–12.5, 9.3 and 9.3 g Ile/kg diet supplementations, respectively. However, muscle cooking loss, lactate content, and activities of cathepsin B and L were decreased by 6.6–15.2, 9.3–12.5, 9.3–12.5 and 9.3–15.2 g Ile/kg diet supplementations, respectively. Additionally, 6.6–15.2 and 6.6–12.5 g Ile/kg diet supplementations attenuated malondialdehyde and protein carbonyl contents, respectively. The activities of copper/zinc superoxide dismutase (Cu/Zn-SOD) and glutathione peroxidase (GPx), and glutathione content were enhanced by 6.6–9.3, 6.6–12.5 and 6.6–15.2 g Ile/kg diet supplementations, respectively. Moreover, the relative mRNA expressions of antioxidant enzymes, including Cu/Zn-SOD (6.6–12.5 g/kg diets) and GPx (12.5 g/kg diets), as well as antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2) (6.6–12.5 g/kg diets), target of rapamycin (6.6–12.5 g/kg diets), ribosomal S6 protein kinase 1 (9.3–12.5 g/kg diets) and casein kinase 2 (6.6–12.5 g/kg diets), were up-regulated when Ile diet supplementations were administered at these levels, respectively, whereas the relative mRNA expression of Kelch-like ECH-associated protein 1 was down-regulated with 9.3 g Ile/kg diet

  19. The effect of aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations on the expression and activity of vasopressin V2 receptor gene.

    PubMed

    Najafzadeh, Hossein; Safaeian, Leila; Mirmohammad Sadeghi, Hamid; Rabbani, Mohammad; Jafarian, Abbas

    2010-01-01

    Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the present study attempted to shed some more light on the role of DRH motif in G protein coupling and V2R function with the use of site-directed mutagenesis. Nested PCR using specific primers was used to produce DNA fragments containing aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations with replacements of the arginine to lysine and histidine to tyrosine, respectively. After digestion, these inserts were ligated into the pcDNA3 vector and transformation into E. coli HB101 was performed using heat shock method. The obtained colonies were analyzed for the presence and orientation of the inserts using proper restriction enzymes. After transient transfection of COS-7 cells using diethylaminoethyl-dextran method, the adenylyl cyclase activity assay was performed for functional study. The cell surface expression was analyzed by indirect ELISA method. The functional assay indicated that none of these mutations significantly altered cAMP production and cell surface expression of V2R in these cells. Since some substitutions in arginine residue have shown to lead to the inactive V2 receptor, further studies are required to define the role of this residue more precisely. However, it seems that the role of the histidine residue is not critical in the V2 receptor function.

  20. Experimental evaluation of the effect of a modified port-location mode on the performance of a three-zone simulated moving-bed process for the separation of valine and isoleucine.

    PubMed

    Park, Chanhun; Nam, Hee-Geun; Kim, Pung-Ho; Mun, Sungyong

    2014-06-01

    The removal of isoleucine from valine has been a key issue in the stage of valine crystallization, which is the final step in the valine production process in industry. To address this issue, a three-zone simulated moving-bed (SMB) process for the separation of valine and isoleucine has been developed previously. However, the previous process, which was based on a classical port-location mode, had some limitations in throughput and valine product concentration. In this study, a three-zone SMB process based on a modified port-location mode was applied to the separation of valine and isoleucine for the purpose of making a marked improvement in throughput and valine product concentration. Computer simulations and a lab-scale process experiment showed that the modified three-zone SMB for valine separation led to >65% higher throughput and >160% higher valine concentration compared to the previous three-zone SMB for the same separation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC 50 >1 mM) on the activities of five major isoforms of human CYP in vitro.

  2. Structural and preliminary molecular dynamics studies of the Rhodobacter sphaeroides reaction center and its mutant form L(M196)H + H(M202)L

    NASA Astrophysics Data System (ADS)

    Klyashtorny, V. G.; Fufina, T. Yu.; Vasilieva, L. G.; Shuvalov, V. A.; Gabdulkhakov, A. G.

    2014-07-01

    Pigment-protein interactions are responsible for the high efficiency of the light-energy transfer and conversion in photosynthesis. The reaction center (RC) from the purple bacterium Rhodobacter sphaeroides is the most convenient model for studying the mechanisms of primary processes of photosynthesis. Site-directed mutagenesis can be used to study the effect of the protein environment of electron-transfer cofactors on the optical properties, stability, pigment composition, and functional activity of RC. The preliminary analysis of RC was performed by computer simulation of the amino acid substitutions L(M196)H + H(M202)L at the pigment-protein interface and by estimating the stability of the threedimensional structure of the mutant RC by the molecular dynamics method. The doubly mutated reaction center was overexpressed, purified, and crystallized. The three-dimensional structure of this mutant was determined by X-ray crystallography and compared with the molecular dynamics model.

  3. Polynucleotide: adenosine glycosidase activity of saporin-L1: effect on DNA, RNA and poly(A).

    PubMed Central

    Barbieri, L; Valbonesi, P; Gorini, P; Pession, A; Stirpe, F

    1996-01-01

    The ribosome-inactivating proteins (RIPs) are a family of plant enzymes for which a unique activity has been determined: rRNA N-glycosidase, which removes adenine at a specific universally conserved position (A4324 in the case of rat ribosomes). Here we report that saporin-L1, a RIP from the leaves of Saponaria officinalis, recognizes other substrates, including RNAs from different sources, DNA and poly(A). Saporin-L1 depurinated DNA extensively and released adenine from all adenine-containing polynucleotides tested. Adenine was the only base released from DNA or artificial polynucleotides. The characteristics of the reactions catalysed by saporin-L1 have been determined: optimal pH and temperature, ionic requirements, and the kinetic parameters Km and kcat. The reaction proceeded without cofactors, at low ionic strength, in the absence of Mg2+ and K+. Saporin-L1 had no activity towards various adenine-containing non-polynucleotide compounds (cytokinins, cofactors, nucleotides). This plant protein may now be classified as a polynucleotide: adenosine glycosidase. PMID:8912688

  4. Polarization effects in the N-bar+N{yields}{pi}+l{sup +}+l{sup -} reaction: General analysis and numerical estimations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gakh, G. I.; Rekalo, A. P.; Tomasi-Gustafsson, E.

    2011-02-15

    A general formalism is developed to calculate the cross section and the polarization observables for the reaction N-bar+N{yields}{pi}+l{sup +}+l{sup -}. The matrix element and the observables are expressed in terms of six scalar amplitudes (complex functions of three kinematical variables) that determine the reaction dynamics. The numerical predictions are given in the frame of a particular model in the kinematical range accessible in the antiproton annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR).

  5. The Recently Identified Isoleucine Conjugate of cis-12-Oxo-Phytodienoic Acid Is Partially Active in cis-12-Oxo-Phytodienoic Acid-Specific Gene Expression of Arabidopsis thaliana

    PubMed Central

    Floková, Kristýna; Miersch, Otto; Strnad, Miroslav; Novák, Ondřej; Wasternack, Claus; Hause, Bettina

    2016-01-01

    Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile. PMID:27611078

  6. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion

    PubMed Central

    Bohlke, Nina; Budisa, Nediljko

    2014-01-01

    One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function – a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. PMID:24433543

  7. MRA_1571 is required for isoleucine biosynthesis and improves Mycobacterium tuberculosis H37Ra survival under stress

    PubMed Central

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Yadav, Shailendra; Singh, Sudheer Kumar

    2016-01-01

    Threonine dehydratase is a pyridoxal 5-phosphate dependent enzyme required for isoleucine biosynthesis. Threonine dehydratase (IlvA) participates in conversion of threonine to 2-oxobutanoate and ammonia is released as a by-product. MRA_1571 is annotated to be coding for IlvA in Mycobacterium tuberculosis H37Ra (Mtb-Ra). We developed a recombinant (KD) Mtb-Ra strain by down-regulating IlvA. The growth studies on different carbon sources suggested reduced growth of KD compared to wild-type (WT), also, isoleucine concentration dependent KD growth restoration was observed. The expression profiling of IlvA suggested increased expression of IlvA during oxygen, acid and oxidative stress. In addition, KD showed reduced survival under pH, starvation, nitric oxide and peroxide stresses. KD was more susceptible to antimycobacterial agents such as streptomycin (STR), rifampicin (RIF) and levofloxacin (LVF), while, no such effect was noticeable when exposed to isoniazid. Also, an increase in expression of IlvA was observed when exposed to STR, RIF and LVF. The dye accumulation studies suggested increased permeability of KD to ethidium bromide and Nile Red as compared to WT. TLC and Mass studies confirmed altered lipid profile of KD. In summary down-regulation of IlvA affects Mtb growth, increases its susceptibility to stress and leads to altered cell wall lipid profile. PMID:27353854

  8. Specific formation of negative ions from leucine and isoleucine molecules

    NASA Astrophysics Data System (ADS)

    Papp, Peter; Shchukin, Pavel; Matejčík, Štefan

    2010-01-01

    Dissociative electron attachment (DEA) to gas phase leucine (Leu) and isoleucine (Ile) molecules was studied using experimental and quantum-chemical methods. The relative partial cross sections for DEA have been measured using crossed electron/molecular beams technique. Supporting ab initio calculations of the structure, energies of neutral molecules, fragments, and negative ions have been carried out at G3MP2 and B3LYP levels in order to interpret the experimental data. Leu and Ile exhibit several common features. The negative ionic fragments from both molecules are formed in the electron energy range from 0 to approximately 14 eV via three resonances (1.2, 5.5, and 8 eV). The relative partial cross sections for DEA Leu and Ile are very similar. The dominant negative ions formed were closed shell negative ions (M-H)- (m/z=130) formed preferentially via low electron energy resonance of 1.23 eV. Additional negative ions with m/z=115, 114, 113, 112, 84, 82, 74, 45, 26, and 17 have been detected.

  9. ISOLEUCINE AND VALINE METABOLISM IN ESCHERICHIA COLI XI. K-12

    PubMed Central

    Leavitt, Richard I.; Umbarger, H. E.

    1962-01-01

    Leavitt, Richard I. (Harvard Medical School, Boston, Mass.) and H. E. Umbarger. Isoleucine and valine metabolism in Escherichia coli. XI. Valine inhibition of the growth of Escherichia coli strain K-12. J. Bacteriol. 83:624–630. 1962.—The inhibition of the growth of Escherichia coli strain K-12 by valine was shown to be due to the sensitivity of the acetohydroxybutyrate-forming system to valine. It was demonstrated that both E. coli strain W, a strain whose growth is unaffected by valine, and a valine-resistant mutant of strain K-12 have acetolactate- and acetohydroxybutyrate-forming systems which are less sensitive to valine than that of strain K-12. It was further shown that α-aminobutyrate accumulates in the culture fluid of the valine-sensitive strain when incubated in the presence of valine. The levels of valine in the “free amino acid pool” were examined and found to be related to the differences in valine sensitivity of the acetolactate-forming systems of the three strains. PMID:14463257

  10. A dipeptide and an amino acid present in whey protein hydrolysate increase translocation of GLUT-4 to the plasma membrane in Wistar rats.

    PubMed

    Morato, P N; Lollo, P C B; Moura, C S; Batista, T M; Carneiro, E M; Amaya-Farfan, J

    2013-08-15

    Whey protein hydrolysate (WPH) is capable of increasing muscle glycogen reserves and of concentrating the glucose transporter in the plasma membrane (PM). The objective of this study was to determine which WPH components could modulate translocation of the glucose transporter GLUT-4 to the PM of animal skeletal muscle. Forty-nine animals were divided into 7 groups (n=7) and received by oral gavage 30% glucose plus 0.55 g/kg body mass of the following WPH components: (a) control; (b) WPH; (c) L-isoleucine; (d) L-leucine; (e) L-leucine plus L-isoleucine; (f) L-isoleucyl-L-leucine dipeptide; (g) L-leucyl-L-isoleucine dipeptide. After receiving these solutions, the animals were sacrificed and the GLUT-4 analysed by western blot. Additionally, glycogen, glycaemia, insulin and free amino acids were also determined by standard methods. Of the WPH components tested, the amino acid L-isoleucine and the peptide L-leucyl-L-isoleucine showed greater efficiency in translocating GLUT-4 to the PM and of increasing glucose capture by skeletal muscle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Surface-Activated Coupling Reactions Confined on a Surface.

    PubMed

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density

  12. Outcomes Following Discontinuation of E. coli l-Asparaginase Upon Severe Allergic Reactions in Children With Acute Lymphoblastic Leukemia.

    PubMed

    Yen, Hsiu-Ju; Chang, Wan-Hui; Liu, Hsi-Che; Yeh, Ting-Chi; Hung, Giun-Yi; Wu, Kang-Hsi; Peng, Ching-Tien; Chang, Yu-Hsiang; Chang, Te-Kao; Hsiao, Chih-Cheng; Sheen, Jiunn-Ming; Chao, Yu-Hua; Chang, Tai-Tsung; Chiou, Shyh-Shin; Lin, Pei-Chin; Wang, Shih-Chung; Lin, Ming-Tsan; Ho, Wan-Ling; Chen, Yu-Chieh; Liang, Der-Cherng

    2016-04-01

    Discontinuation of E. coli l-asparaginase in patients with acute lymphoblastic leukemia (ALL) is unavoidable upon severe allergic reaction. We sought to examine outcomes following E. coli l-asparaginase discontinuation due to severe allergic reactions. We evaluated the outcome of children enrolled in Taiwan Pediatric Oncology Group-2002-ALL protocol between 2002 and 2012, who had E. coli l-asparaginase discontinued due to severe allergic reactions, and compared the outcomes of those who continued with Erwinia l-asparaginase (Erwinase) with those who did not. Among 700 patients enrolled in this study, 33 patients had E. coli l-asparaginase treatment discontinued due to severe allergic reactions. Five-year overall survival did not differ significantly among the 648 patients without discontinuation (81 ± 1.6%, mean ± SE), compared to 17 patients with allergic reactions and treated with Erwinase (88 ± 7.8%) and 16 patients with allergic reactions but not treated with Erwinase (87 ± 8.6%). Among 16 patients who did not receive Erwinase, all 10 who received ≥50% of the scheduled doses of E. coli l-asparaginase before discontinuation survived without events. Erwinase treatment may not be needed for some ALL patients with severe allergy to E. coli l-asparaginase if ≥50% of prescribed doses were received and/or therapy is augmented with other agents. © 2015 Wiley Periodicals, Inc.

  13. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion.

    PubMed

    Bohlke, Nina; Budisa, Nediljko

    2014-02-01

    One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function - a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  14. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Rhamnonate Dehydratase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakus,J.; Fedorov, A.; Fedorov, E.

    2008-01-01

    The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy-l-mannonate) has the 'best' kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg2+; the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy-l-rhamnonatemore » (obtained by reduction of the product with NaBH4). Like other members of the enolase superfamily, RhamD contains an N-terminal a + {beta} capping domain and a C-terminal ({beta}/a)7{beta}-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining '20s loop' in the capping domain is extended in length and the '50s loop' is truncated. The ligands for the Mg2+ are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth {beta}-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth {beta}-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg2+-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and delivers a proton to

  15. Dispersion polymerization of L-lactide utilizing ionic liquids as reaction medium

    NASA Astrophysics Data System (ADS)

    Fahmiati, Sri; Minami, Hideto; Haryono, Agus; Adilina, Indri B.

    2017-11-01

    Dispersion polymerization of L-lactide was proceeded in various ionic liquids. Ionic liquids as 1-Hexyl-3-methylimidazolium bis (trifluormethylsulfonyl) imide, [HMIM] [TFSI], 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, [BMP] [TFSI], and N,N,N-Trimethyl-N-Propylammonium Bis (trifloromethanesulfonyl) imide, [TMPA] [TFSI], were employed as reaction medium that dissolved both of lactide and stabilizer (polyvinylprrolidone). Sn-supported on bentonite was used as a ring opening catalyst of L-lactide. Gel Permeation Chromatography result showed that poly-(L-lactic acid) were formed in ionic liquids [HMIM] [TFSI] and [BMP] [TFSI] with molecular weight as 19390 and 20844, respectively.

  16. Advances in copper-catalyzed C-C coupling reactions and related domino reactions based on active methylene compounds.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2012-06-01

    Active methylene compounds are a major class of reaction partners for C-C bond formation with sp(2) C-X (X = halide) fragments. As one of the most-classical versions of the Ullmann-type coupling reaction, activated-methylene-based C-C coupling reactions have been efficiently employed in a large number of syntheses. Although this type of reaction has long relied on noble-metal catalysis, the renaissance of copper catalysis at the end of last century has led to dramatic developments in Ullmann C-C coupling reactions. Owing to its low cost, abundance, as well as excellent catalytic activity, the exceptional atom economy of copper catalysis is gaining widespread attention in various organic synthesis. This review summarizes the advances in copper-catalyzed intermolecular and intramolecular C-C coupling reactions that use activated methylene species as well as in tandem reactions that are initiated by this transformation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Basolateral Sorting of Furin in MDCK Cells Requires a Phenylalanine-Isoleucine Motif Together with an Acidic Amino Acid Cluster

    PubMed Central

    Simmen, Thomas; Nobile, Massimo; Bonifacino, Juan S.; Hunziker, Walter

    1999-01-01

    Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin. PMID:10082580

  18. Analyzing Reaction Rates with the Distortion/Interaction‐Activation Strain Model

    PubMed Central

    2017-01-01

    Abstract The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. PMID:28447369

  19. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers

    PubMed Central

    2016-01-01

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains. PMID:26252467

  20. Arginine in the salt-induced peptide formation reaction: enantioselectivity facilitated by glycine, L- and D-histidine.

    PubMed

    Li, Feng; Fitz, Daniel; Fraser, Donald G; Rode, Bernd M

    2010-07-01

    The salt-induced peptide formation reaction has been proposed as a conceivable preliminary to the prebiotic evolution of peptides. In the present paper, the behaviour of arginine is reported for this reaction together with a discussion of the catalytic effects of glycine, and L- and D-histidine. Importantly, the behaviour of the two histidine enantiomers is different. Both histidine enantiomers perform better than glycine in enhancing the yields of arginine dipeptide with L-histidine being more effective than D-histidine. Yields in the presence of histidine are up to 70 times greater than for arginine solutions alone. This compares with 4.2 times higher in the presence of glycine. This difference is most pronounced in the most concentrated (containing 80 mM arginine) reaction solution where arginine has the lowest reactivity. A distinct preference for dimerisation of L-arginine also appears in the 80 mM cases for catalyses of other amino acids. This phenomenon is different from the behaviour of aliphatic amino acids, which display obvious inherent enantioselectivity for the L-stereomers in the SIPF reaction on their own rather than when catalysed by glycine or histidine.

  1. Comparison of ALS functionality and plant growth in ALS-inhibitor susceptible and resistant Myosoton aquaticum L.

    PubMed

    Liu, Weitang; Bai, Shuang; Jia, Sisi; Guo, Wenlei; Zhang, Lele; Li, Wei; Wang, Jinxin

    2017-10-01

    Herbicide target-site resistance mutations may cause pleiotropic effects on plant ecology and physiology. The effect of several known (Pro197Ser, Pro197Leu Pro197Ala, and Pro197Glu) target-site resistance mutations of the ALS gene on both ALS functionality and plant vegetative growth of weed Myosoton aquaticum L. (water chickweed) have been investigated here. The enzyme kinetics of ALS from four purified water chickweed populations that each homozygous for the specific target-site resistance-endowing mutations were characterized and the effect of these mutations on plant growth was assessed via relative growth rate (RGR) analysis. Plants homozygous for Pro197Ser and Pro197Leu exhibited higher extractable ALS activity than susceptible (S) plants, while all ALS mutations with no negative change in ALS kinetics. The Pro197Leu mutation increased ALS sensitivity to isoleucine and valine, and Pro197Glu mutation slightly increased ALS sensitivity to isoleucine. RGR results indicated that none of these ALS resistance mutations impose negative pleiotropic effects on relative growth rate. However, resistant (R) seeds had a lowed germination rate than S seeds. This study provides baseline information on ALS functionality and plant growth characteristics associated with ALS inhibitor resistance-endowing mutations in water chickweed. Copyright © 2017. Published by Elsevier Inc.

  2. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.; Kawase, Y.

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less

  3. Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons

    DOE PAGES

    Sun-Mi Hwang; Choi, YongMan; Kim, Min Gyu; ...

    2016-03-08

    The high cost of Pt-based membrane electrode assemblies (MEAs) is a critical hurdle for the commercialization of polymer electrolyte fuel cells (PEFCs). Recently, non-precious metal-based catalysts (NPMCs) have demonstrated much enhanced activity but their oxygen reduction reaction (ORR) activity is still inferior to that of Pt-based catalysts resulting in a much thicker electrode in the MEA. For the reduction of mass transport and ohmic overpotential we adopted a new concept of catalyst that combines an ultra-low amount of Pt nanoclusters with metal–nitrogen (M–Nx) doped ordered mesoporous porphyrinic carbon (FeCo–OMPC(L)). The 5 wt% Pt/FeCo–OMPC(L) showed a 2-fold enhancement in activities comparedmore » to a higher loading of Pt. Our experimental results supported by first-principles calculations indicate that a trace amount of Pt nanoclusters on FeCo–OMPC(L) significantly enhances the ORR activity due to their electronic effect as well as geometric effect from the reduced active sites. Finally, in terms of fuel cell commercialization, this class of catalysts is a promising candidate due to the limited use of Pt in the MEA.« less

  4. Ligand Displacement Reaction Paths in a Diiron Hydrogenase Active Site Model Complex.

    PubMed

    Blank, Jan H; Moncho, Salvador; Lunsford, Allen M; Brothers, Edward N; Darensbourg, Marcetta Y; Bengali, Ashfaq A

    2016-08-26

    The mechanism and energetics of CO, 1-hexene, and 1-hexyne substitution from the complexes (SBenz)2 [Fe2 (CO)6 ] (SBenz=SCH2 Ph) (1-CO), (SBenz)2 [Fe2 (CO)5 (η(2) -1-hexene)] (1-(η(2) -1-hexene)), and (SBenz)2 [Fe2 (CO)5 (η(2) -1-hexyne)] (1-(η(2) -1-hexyne)) were studied by using time-resolved infrared spectroscopy. Exchange of both CO and 1-hexyne by P(OEt)3 and pyridine, respectively, proceeds by a bimolecular mechanism. As similar activation enthalpies are obtained for both reactions, the rate-determining step in both cases is assumed to be the rotation of the Fe(CO)2 L (L=CO or 1-hexyne) unit to accommodate the incoming ligand. The kinetic profile for the displacement of 1-hexene is quite different than that for the alkyne and, in this case, both reaction channels, that is, dissociative (SN 1) and associative (SN 2), were found to be competitive. Because DFT calculations predict similar binding enthalpies of alkene and alkyne to the iron center, the results indicate that the bimolecular pathway in the case of the alkyne is lower in free energy than that of the alkene. In complexes of this type, subtle changes in the departing ligand characteristics and the nature of the mercapto bridge can influence the exchange mechanism, such that more than one reaction pathway is available for ligand substitution. The difference between this and the analogous study of (μ-pdt)[Fe(CO)3 ]2 (pdt=S(CH2 )3 S) underscores the unique characteristics of a three-atom S-S linker in the active site of diiron hydrogenases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The ozone acetylene reaction: concerted or non-concerted reaction mechanism? A quantum chemical investigation

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; Crehuet, Ramon; Anglada, Josep; Gräfenstein, Jürgen

    2001-10-01

    The ozone-acetylene reaction is found to proceed via an intermediate van der Waals complex (rather than a biradical), which is the precursor for a concerted symmetry-allowed [4+2] cycloaddition reaction leading to 1,2,3-trioxolene. CCSD(T)/6-311G+(2d, 2p) and CCSD(T)/CBS (complete basis set) calculations predict the ozone-acetylene van der Waals complex to be stable by 2.2 kcal mol -1, the calculated activation enthalpy for the cycloaddition reaction is 9.6 kcal mol -1 and the reaction enthalpy -55.5 kcal mol -1. Calculated kinetic data for the overall reaction ( k=0.8 l mol -1 s-1, A=1.71×10 6 l mol -1 s-1, E a=8.6 kcal mol -1) suggest that there is a need for refined kinetic measurements.

  6. Contribution of sulfur-containing compounds to the colour-inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates.

    PubMed

    Huang, Meigui; Liu, Ping; Song, Shiqing; Zhang, Xiaoming; Hayat, Khizar; Xia, Shuqin; Jia, Chengsheng; Gu, Fenglin

    2011-03-15

    Light-coloured and savoury-tasting flavour enhancers are attractive to both consumers and food producers. The aim of this study was to investigate the colour-inhibiting effect of L-cysteine and thiamine during the Maillard reaction of soybean peptide and D-xylose. The correlation between volatile compounds and antioxidant activity of the corresponding products was also studied. Colour formation was markedly suppressed by cysteine. Compared with peptide/xylose (PX), the taste profile of Maillard reaction products (MRPs) derived from peptide/xylose/cysteine (PXC) and peptide/xylose/cysteine/thiamine (PXCT) was stronger, including umami, mouthfulness, continuity, meaty and overall acceptance. PXC and PXCT also exihibited distinctly higher antioxidant activity. Principal component analysis was applied to investigate the correlation between antioxidant activity and volatile compounds. Of 88 volatile compounds identified, 55 were significantly correlated with antioxidant activity by two principal components (accounting for 85.05% of the total variance). Effective colour control of the Maillard reaction by L-cysteine may allow the production of healthier (higher antioxidant activity) and tastier foods to satisfy consumers' and food producers' demands. Light-coloured products might be used as functional flavour enhancers in various food systems. Copyright © 2010 Society of Chemical Industry.

  7. Oligopeptides and copeptides of homochiral sequence, via beta-sheets, from mixtures of racemic alpha-amino acids, in a one-pot reaction in water; relevance to biochirogenesis.

    PubMed

    Illos, Roni A; Bisogno, Fabricio R; Clodic, Gilles; Bolbach, Gerard; Weissbuch, Isabelle; Lahav, Meir

    2008-07-09

    As part of our studies on the biochirogenesis of peptides of homochiral sequence during early evolution, the formation of oligopeptides composed of 14-24 residues of the same handedness in the polymerization of dl-leucine (Leu), dl-phenylalanine (Phe), and dl-valine (Val) in aqueous solutions, by activation with N, N'-carbonyldiimidazole and then initiation with a primary amine, in a one-pot reaction, was demonstrated by MALDI-TOF MS using deuterium enantio-labeled alpha-amino acids. The formation of long isotactic peptides is rationalized by the following steps occurring in tandem: (i) creation of a library of short diasteroisomeric oligopeptides containing isotactic peptides in excess in comparison to a binomial kinetics, as a result of an asymmetric induction exerted by the N-terminal residue of a given handedness; (ii) precipitation of the less soluble racemic isotactic penta- and hexapeptides in the form of beta-sheets that are delineated by homochiral rims; (iii) regio-enantiospecific chain elongation occurring heterogeneously at the beta-sheets/solution interface. Polymerization of l-Leu with l-isoleucine (Ile) or l-Phe with l- (1) N-Me-histidine yielded mixtures of copeptides containing both residues. In contrast, in the polymerization of the corresponding mixtures of l- + d-alpha-amino acids, the long oligopeptides were composed mainly from oligo- l-Leu and oligo- d-Ile in the first system and oligo- d-Phe in the second. Furthermore, in the polymerization of mixtures of hydrophobic racemic alpha-amino acids dl-Leu, dl-Val, and dl-Phe and with added racemic dl-alanine and dl-tyrosine, copeptides of homochiral sequences are most dominantly represented. Possible routes for a spontaneous "mirror-symmetry breaking" process of the racemic mixtures of homochiral peptides are presented.

  8. Production of L-valine from metabolically engineered Corynebacterium glutamicum.

    PubMed

    Wang, Xiaoyuan; Zhang, Hailing; Quinn, Peter J

    2018-05-01

    L-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. L-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of L-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of L-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive L-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for L-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.

  9. The role of d-allo-isoleucine in the deposition of the anti-Leishmania peptide bombinin H4 as revealed by 31P solid-state NMR, VCD spectroscopy, and MD simulation.

    PubMed

    Mijiddorj, Batsaikhan; Kaneda, Shiho; Sato, Hisako; Kitahashi, Yuki; Javkhlantugs, Namsrai; Naito, Akira; Ueda, Kazuyoshi; Kawamura, Izuru

    2018-07-01

    Bombinin H4 is an antimicrobial peptide that was isolated from the toad Bombina variegata. Bombinin H family peptides are active against gram-positive, gram-negative bacteria, and fungi as well as the parasite Leishmania. Among them, bombinin H4 (H4), which contains d-allo-isoleucine (d-allo-Ile) as the second residue in its sequence, is the most active, and its l-isomer is bombinin H2 (H2). H4 has a significantly lower LC50 than H2 against Leishmania. However, the atomic-level mechanism of the membrane interaction and higher activity of H4 has not been clarified. In this work, we investigated the behavior of the conformations and interactions of H2 and H4 with the Leishmania membrane using 31 P solid-state nuclear magnetic resonance (NMR), vibrational circular dichroism (VCD) spectroscopy, and molecular dynamics (MD) simulations. The generation of isotropic 31 P NMR signals depending on the peptide concentration indicated the abilities of H2 and H4 to exert antimicrobial activity via membrane disruption. The VCD experiment and density functional theory calculation confirmed the different stability and conformations of the N-termini of H2 and H4. MD simulations revealed that the N-terminus of H4 is more stable than that of H2 in the membrane, in line with the VCD experiment data. VCD and MD analyses demonstrated that the first l-Ile and second d-allo-Ile of H4 tend to take a cis conformation. These residues function as an anchor and facilitate the easy winding of the helical conformation of H4 in the membrane. It may assist to quickly reach to the threshold concentration of H4 on the Leishmania membrane. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Phantom Word Activation in L2

    ERIC Educational Resources Information Center

    Broersma, Mirjam; Cutler, Anne

    2008-01-01

    L2 listening can involve the phantom activation of words which are not actually in the input. All spoken-word recognition involves multiple concurrent activation of word candidates, with selection of the correct words achieved by a process of competition between them. L2 listening involves more such activation than L1 listening, and we report two…

  11. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    ERIC Educational Resources Information Center

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  12. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A [Davis, CA; Woolman, Joseph N [Davis, CA; Petrovic, John J [Los Alamos, NM

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  13. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  14. Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways.

    PubMed

    Liang, Chengwen; Huo, Yanli; Qi, Gaofu; Wei, Xuetuan; Wang, Qin; Chen, Shouwen

    2015-06-01

    Bacillus licheniformis WX-02 is used for the production of many valuable chemicals. Here, we have sought to improve L-valine production by blocking the metabolic pathways related to branched-chain amino acids. The synthesis genes of L-leucine (leuA) and L-isoleucine (ilvA) were deleted to obtain mutant strains. L-Valine yields of WX-02ΔleuA and WX-02ΔilvA reached 33.2 and 21.1 mmol/l, respectively, which are 22 and 14 times higher than the wild-type WX-02 (1.53 mmol/l). After further deletion of L-lactate dehydrogenase gene (ldh) from WX-02ΔleuA, the productivity reached 0.47 mmol/l h, an increase of 19 %. We provide a possibility to over-produce L-valine using genetically-modified B. licheniformis using remodeling of the biosynthetic pathway to L-valine.

  15. Poly(L-lysine) Interfaces via Dual Click Reactions on Surface-Bound Custom-Designed Dithiol Adsorbates.

    PubMed

    Shakiba, Amin; Jamison, Andrew C; Lee, T Randall

    2015-06-09

    Surfaces modified with poly(L-lysine) can be used to immobilize selected biomolecules electrostatically. This report describes the preparation of a set of self-assembled monolayers (SAMs) from three different azide-terminated adsorbates as platforms for performing controlled surface attachments and as a means of determining the parameters that afford stable poly(L-lysine)-modified SAM surfaces having controlled packing densities. A maleimide-terminated alkyne linker was "clicked" to the azide-terminated surfaces via a copper-catalyzed cycloaddition reaction to produce the attachment sites for the polypeptides. A thiol-Michael addition was then used to immobilize cysteine-terminated poly(L-lysine) moieties on the gold surface, avoiding adsorbate self-reactions with this two-step procedure. Each step in this process was analyzed by ellipsometry, X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, and contact angle goniometry to determine which adsorbate structure most effectively produced the targeted polypeptide interface. Additionally, a series of mixed SAMs using an azidoalkanethiol in combination with a normal alkanethiol having an equivalent alkyl chain were prepared to provide data to determine how dilution of the azide reactive site on the SAM surface influences the initial click reaction. Overall, the collected data demonstrate the advantages of an appropriately designed bidentate absorbate and its potential to form effective platforms for biomolecule surface attachment via click reactions.

  16. In vitro antioxidant and cytoprotective properties of Maillard reaction products from phloridzin-amino acid model systems.

    PubMed

    Han, Linna; Li, Feng; Yu, Qijian; Li, Dapeng

    2018-01-01

    The aim of this study was to investigate in vitro antioxidant activities and cytoprotective effect of Maillard reaction products (MRPs) from phloridzin (Pz)-amino acid model systems. Their structures were also characterised by Fourier transform-infrared spectroscopy (FTIR). MRPs were prepared from the Pz-methionine (Met), Pz-lysine (Lys), Pz-isoleucine (Ile), Pz-histidine (His) or Pz-glutamic acid (Glu) model system. The Pz-Lys MRPs, rich in antioxidant potency, were subjected to ultrafiltration to yield four MRPs fractions with different molecular weights (Mw). The fraction with Mw 30-50 kDa had significantly (P < 0.05) higher antioxidant activity than other fractions. Moreover, it significantly (P < 0.05) attenuated the 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH)-elicited decrease in cell viability in HepG2 cells in a concentration-dependent manner. FTIR analysis indicated that the fraction with Mw 30-50 kDa had the strong stretching vibration for the OH, NH, CH, CO and CC groups, suggesting the formation of intermediate MRPs during Maillard reaction. The results obtained in this study may provide some basis for the purported health-promoting effects of MRPs and their potential application as antioxidant agents in food industry. Also, it is important for our understanding of the variation of bioactive substances in food during thermal processing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities

    PubMed Central

    Baraas, Rigmor C.; Hagen, Lene A.; Dees, Elise W.; Neitz, Maureen

    2012-01-01

    Five mutations in the S-cone-opsin gene (OPN1SW) that give rise to different single amino-acid substitutions (L56P, G79R, S214P, P264S, R283Q) are known to be associated with tritan color-vision deficiency. Here we report a sixth OPN1SW mutation (T190I) and the associated color vision phenotype. S-opsin genotyping and clinical evaluation of color vision were performed on affected and unaffected family members and normal controls. Chromatic contrast was tested at different levels of retinal illuminance. Affected family members were heterozygous for a nucleotide change that substituted the amino acid isoleucine (I) in place of threonine (T) that is normally present at position 190 of the S-opsin. The mutation is in extracellular loop II (EII). The association between making tritan errors and having the T190I mutant S opsin was strong (p > 0.0001: Fisher's exact test). The performance of subjects with the T190I mutation was significantly different from that of normal trichromats along the tritan vector under all conditions tested (Mann-Whitney U: p < 0.05), but not along the protan or deutan vectors. Individuals with the T190I S-opsin mutation behaved as mild tritans at 12.3–92.3 Td, but as tritanopes at 1.2–9.2 Td, for both light-adapted and dark-adapted conditions. The results are consistent with the mutant opsin causing abnormal S-cone function. PMID:23022137

  18. Engineering of carboligase activity reaction in Candida glabrata for acetoin production.

    PubMed

    Li, Shubo; Xu, Nan; Liu, Liming; Chen, Jian

    2014-03-01

    Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering C. glabrata. Accordingly, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate decarboxylase, and butanediol dehydrogenase were selected to be manipulated for strengthening the CAR pathway. Following the rational metabolic engineering, the engineered strain exhibited increased acetoin biosynthesis (2.24 g/L). In addition, through in silico simulation and redox balance analysis, NADH was identified as the key factor restricting higher acetoin production. Correspondingly, after introduction of NADH oxidase, the final acetoin production was further increased to 7.33 g/L. By combining the rational metabolic engineering and cofactor engineering, the acetoin-producing C. glabrata was improved stepwise, opening a novel pathway for rational development of microorganisms for bioproduction. Copyright © 2013. Published by Elsevier Inc.

  19. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    PubMed

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-05-21

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  20. Reading Aloud Activity in L2 and Cerebral Activation

    ERIC Educational Resources Information Center

    Takeuchi, Osamu; Ikeda, Maiko; Mizumoto, Atsushi

    2012-01-01

    This article explores the cerebral mechanism of reading aloud activities in L2 learners. These activities have been widely used in L2 learning and teaching, and its effect has been reported in various Asian L2 learning contexts. However, the reasons for its effectiveness have not been examined. In order to fill in this gap, two studies using a…

  1. Pinostrobin Derivatives from PrenylationReaction and their Antibacterial Activity against Clinical Bacteria

    NASA Astrophysics Data System (ADS)

    Marliyana, S. D.; Mujahidin, D.; Syah, Y. M.

    2018-04-01

    Kaempferia pandurata (syn. Boesenbergia rotunda, B. pandurata (Roxb.)Schltr), locally known as "TemuKunci"in Indonesia, is one of the medicinal plants of the family Zingiberaceae. Phytochemical studies on the rhizome of K. pandurata showed the presence of flavonoid derivative, namely flavanones, which constitute as the main components of this plant. Bioactivity studies on this species exhibited various biological activities, such as antibacteria, anti-inflammatory, antitumor, antidiarrhea, antidisentri, anti-HIV, antioxidant, antipyretic, analgesic and insecticides. Among the biological activities, the antibacterial activity results are important as an attempt to answer the emergence of resistance of some bacteria against existing drugs, as well as the emergence of a number of outbreaks of disease caused by bacteria. Therefore, a search to find new compounds that are potential as an antibacterial is an urgent matter. The present study was aimed at the chemical transformation of pinostrobin (1) from K. pandurata rhizome and an antibacterial activity.The chemical transformation was performed through a prenylation reaction of pinostrobin (1) which is the main component of K. pandurata rhizome. The prenylation reaction was carried out by reacting pinostrobin (1) with prenyl bromide and potassium carbonat (K2CO3). The purification of product was done using the radial chromatography with mix solvent n-hexane and ethyl acetate (97.5:2.5; 9.5:0.5; 9.0:1.0.; 8.0:2.0). The purity test of isolated compound was analysedby TLC using different types of eluent. The identification of compounds was determined based on NMR data and mass spectra analysis. Five compounds were obtained from the prenylation reaction, i.e. monooxyprenylated pinostrobin (2), monooxyprenylated chalcone (3), diprenylated chalcone (4), triprenylated chalcone (5), and triprenylated cyclohexene chalcone (6). These compounds were tested for antibacterial activities against four clinical bacteria, namely

  2. Leigh syndrome caused by a novel m.4296G>A mutation in mitochondrial tRNA isoleucine.

    PubMed

    Cox, Rachel; Platt, Julia; Chen, Li Chieh; Tang, Sha; Wong, Lee-Jun; Enns, Gregory M

    2012-03-01

    Leigh syndrome is a severe neurodegenerative disease with heterogeneous genetic etiology. We report a novel m.4296G>A variant in the mitochondrial tRNA isoleucine gene in a child with Leigh syndrome, mitochondrial proliferation, lactic acidosis, and abnormal respiratory chain enzymology. The variant is present at >75% heteroplasmy in blood and cultured fibroblasts from the proband, <5% in asymptomatic maternal relatives, and is absent in 3000 controls. It is located in the highly conserved anticodon region of tRNA(Ile) where three other pathogenic changes have been described. We conclude that there is strong evidence to classify m.4296G>A as a pathogenic mutation causing Leigh syndrome. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  3. Study on COD removal mechanism and reaction kinetics of oilfield wastewater.

    PubMed

    Yin, Xian-Qing; Jing, Bo; Chen, Wen-Juan; Zhang, Jian; Liu, Qian; Chen, Wu

    2017-11-01

    The chemical oxygen demand (COD) removal mechanism and reaction kinetics were mainly studied in the treatment of oilfield oily sewage containing polymer by three-dimensional electrode reactor. The results proved that the residual active oxides O 3 , H 2 O 2 , •OH and active chlorine in the system of electrochemical reaction could be effectively detected, and the COD removal mechanism was co-oxidation of active oxides; Under these experimental conditions: the electrolysis current of 6 A, surface/volume ratio of 6/25(cm 2 ·L -1 ), the reaction time of 50 min, the COD cr of treated sewage was no more than 50 mg·L -1 ; the removal reaction of COD conformed to apparent second-order reaction kinetic model, the correlation coefficient R 2 was 0.9728, and the apparent reaction rate constant was k = 3.58 × 10 -4 (L·min -1 ·mg -1 ·m -2 ). To reach the goal, the COD cr was no more than 50 mg·L -1 in treated sewage, and the theory minimum processing time was 45.73 min. The verification of experimental results was consistent with kinetic equations.

  4. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    PubMed

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  5. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).

    PubMed

    Wakamatsu, Junichiro; Stark, Timo D; Hofmann, Thomas

    2016-07-27

    In order to gain first insight into candidate Maillard reaction products formed upon thermal processing of garlic, mixtures of glucose and S-allyl-l-cysteine, the major sulfur-containing amino acid in garlic, were low-moisture heated, and nine major reaction products were isolated. LC-TOF-MS, 1D/2D NMR, and CD spectroscopy led to their identification as acortatarin A (1), pollenopyrroside A (2), epi-acortatarin A (3), xylapyrroside A (4), 5-hydroxymethyl-1-[(5-hydroxymethyl-2-furanyl)methyl]-1H-pyrrole-2-carbalde-hyde (5), 3-(allylthio)-2-(2-formyl-5-hydroxymethyl-1H-pyrrol-1-yl)propanoic acid (6), (4S)-4-(allylthiomethyl)-3,4-dihydro-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (7), (2R)-3-(allylthio)-2-[(4R)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl]propanoic acid (8), and (2R)-3-(allylthio)-2-((4S)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl)propanoic acid (9). Among the Maillard reaction products identified, compounds 5-9 have not previously been published. The thermal generation of the literature known spiroalkaloids 1-4 is reported for the first time. Sensory analysis revealed a bitter taste with thresholds between 0.5 and 785 μmol/kg for 1-5 and 7-9. Compound 6 did not show any intrinsic taste (water) but exhibited a strong mouthfullness (kokumi) enhancing activity above 186 μmol/kg. LC-MS/MS analysis showed 1-9 to be generated upon pan-frying of garlic with the highest concentration of 793.7 μmol/kg found for 6, thus exceeding its kokumi threshold by a factor of 4 and giving evidence for its potential taste modulation activity in processed garlic preparations.

  6. Activation barriers for series of exothermic homologous reactions. VI. Reactions of lanthanide and transition metal atoms.

    NASA Astrophysics Data System (ADS)

    Blue, Alan S.; Fontijn, Arthur

    2001-09-01

    Semiempirical configuration interaction (SECI) theory to predict activation barriers, E, as given by k(T)=ATn exp(-E(RT), has been applied to homologous series of lanthanide (LN) and transition metal (TM) atom oxidation reactions. This was achieved by considering as homologous series reactions of elements differing only by the number of electrons in one subshell. Comparison between SECI and experimental results leads to an average deviation for the LN+N2O reactions of 0.66 kJ mol-1, and up to 5.5 kJ mol-1 for other series. Thirty-one activation barriers are reported.

  7. Activation barriers for series of exothermic homologous reactions. V. Boron group diatomic species reactions

    NASA Astrophysics Data System (ADS)

    Blue, Alan S.; Belyung, David P.; Fontijn, Arthur

    1997-09-01

    Semiempirical configuration interaction (SECI) theory is used to predict activation barriers E, as defined by k(T)=ATn exp(-E/RT). Previously SECI has been applied to homologous series of oxidation reactions of s1, s2, and s2p1 metal atoms. Here it is extended to oxidation reactions of diatomic molecules containing one s2p1 atom. E values are calculated for the reactions of BH, BF, BCl, AlF, AlCl, AlBr, GaF, GaI, InCl, InBr, InI, TlF, TlCl, TlBr, and TlI with O2, CO2, SO2, or N2O. These values correlate with the sums of the ionization potentials and Σ-Π promotion energies of the former minus the electron affinities of the latter. In the earlier work n was chosen somewhat arbitrarily, which affected the absolute values of E. Here it is shown that examination of available experimental and theoretical results allows determination of the best values of n. Using this approach yields n=1.9 for the present series. For the seven reactions which have been studied experimentally, the average deviation of the SECI activation barrier prediction from experiment is 4.0 kJ mol-1. Energy barriers are calculated for another 52 reactions.

  8. SABER: A computational method for identifying active sites for new reactions

    PubMed Central

    Nosrati, Geoffrey R; Houk, K N

    2012-01-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were l-Ala d/l-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  9. SABER: a computational method for identifying active sites for new reactions.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. Copyright © 2012 The Protein Society.

  10. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    PubMed

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Production of L-allose and D-talose from L-psicose and D-tagatose by L-ribose isomerase.

    PubMed

    Terami, Yuji; Uechi, Keiko; Nomura, Saki; Okamoto, Naoki; Morimoto, Kenji; Takata, Goro

    2015-01-01

    L-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert L-psicose and D-tagatose to L-allose and D-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce L-allose and D-talose. Conversion reaction was performed with the reaction mixture containing 10% L-psicose or D-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of L-allose and D-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert L-psicose to L-allose without remarkable decrease in the enzyme activity over 7 times use and D-tagatose to D-talose over 37 times use. After separation and concentration, the mixture solution of L-allose and D-talose was concentrated up to 70% and crystallized by keeping at 4 °C. L-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% L-allose and 7.30% D-talose that were obtained from L-psicose and D-tagatose, respectively.

  12. The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF

    PubMed Central

    Banerjee, Jayashree; Fischer, Christopher C.; Wedegaertner, Philip B.

    2009-01-01

    PDZ-RhoGEF is a member of the regulator of G protein signaling (RGS) domain-containing RhoGEFs (RGS-RhoGEFs) that link activated heterotrimeric G protein α subunits of the G12 family to activation of the small GTPase RhoA. Unique among the RGS-RhoGEFs, PDZ-RhoGEF contains a short sequence that localizes the protein to the actin cytoskeleton. In this report, we demonstrate that the actin-binding domain, located between amino acids 561–585, directly binds to F-actin in vitro. Extensive mutagenesis identifies isoleucine 568, isoleucine 569, phenylalanine 572, and glutamic acid 573 as necessary for binding to actin and for co-localization with the actin cytoskeleton in cells. These results define a novel actin-binding sequence in PDZ-RhoGEF with a critical amino acid motif of IIxxFE. Moreover, sequence analysis identifies a similar actin-binding motif in the N-terminus of the RhoGEF frabin, and, as with PDZ-RhoGEF, mutagenesis and actin interaction experiments demonstrate a motif of LIxxFE, consisting of the key amino acids leucine 23, isoleucine 24, phenylalanine 27, and glutamic acid 28. Taken together, results with PDZ-RhoGEF and frabin identify a novel actin binding sequence. Lastly, inducible dimerization of the actin-binding region of PDZ-RhoGEF revealed a dimerization-dependent actin bundling activity in vitro. PDZ-RhoGEF exists in cells as a dimer, raising the possibility that PDZ-RhoGEF could influence actin structure independent of its ability to activate RhoA. PMID:19618964

  13. First observation of N-acetyl leucine and N-acetyl isoleucine in diabetic patient hair and quantitative analysis by UPLC-ESI-MS/MS.

    PubMed

    Min, Jun Zhe; Tomiyasu, Yuki; Morotomi, Takashi; Jiang, Ying-Zi; Li, Gao; Shi, Qing; Yu, Hai-Fu; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2015-04-15

    Type 2 diabetes patients (DP) have significantly higher plasma levels of valine, leucine, isoleucine and alanine than the controls. Specific amino acids may acutely and chronically regulate insulin secretion from the pancreatic β-cells. We recently identified a metabolic signature of N-acetyl leucine (Ac-Leu) that strongly predicts diabetes development in mice hair. The Ac-Leu appears to be a potential biomarker candidate related to diabetes. However, the determination of Ac-Leu in human hair has not been reported. We measured the Ac-Leu, and its structure is similar to N-acetyl isoleucine (Ac-Ile) in human hair by ultra-performance liquid chromatography (UPLC) with electrospray ionization tandem mass spectrometry (ESI-MS/MS). The developed method was applied to the determination of Ac-Leu and Ac-Ile in the hair of healthy volunteers (HV) and DP. Ac-Leu, Ac-Ile and N-acetyl norleucine (Ac-Nle, IS) were extracted from human hair samples by a micropulverized extraction procedure, then separated on a C18 column by isocratic elution of acetonitrile-0.1% formic acid in water:0.1% formic acid (14:86, vol./vol.). MRM using the fragmentation transitions of m/z 174.1→86.1 in the positive ESI mode was performed to quantify the N-acetyl leucine, N-acetyl isoleucine and IS. Ac-Leu, Ac-Ile and Ac-Nle in the human hair samples were completely separated by isocratic elution of a 5.0 min duration wash program using a reversed-phase column, and sensitively detected by LC-MS/MS in the ESI(+) MRM mode. The amounts of Ac-Leu and Ac-Ile in the hairs of HV and DP were determined. When comparing the concentrations between DP and those from HV, a statistically significant correlation was observed for the Ac-Leu (p<0.001) and Ac-Ile (p<0.01). The proposed method is useful for the determination of Ac-Leu and Ac-Ile in the hairs of DP and HV. Human hair may serve as a noninvasive biosample for the diagnosis of diabetes. Crown Copyright © 2015. Published by Elsevier B.V. All rights

  14. Synthesis of L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS) with thermostabilized low-specific L-threonine aldolase from Streptomyces coelicolor A3(2).

    PubMed

    Balk, Sang-Ho; Yoshioka, Hideki; Yukawa, Hideaki; Harayama, Shigeaki

    2007-05-01

    Stability-enhanced mutants, H44, 11-94, 5A2-84, and F8, of L-threonine aldolase (L-TA) from Streptomyces coelicolor A3(2) (SCO1085) were isolated by an error-prone PCR followed by a high-throughput screening. Each of these mutant, had a single amino acid substitution: H177Y in the H44 mutant, A169T in the 11-94 mutant, D104N in the 5A2-84 mutant and Fl81 in the F8 mutant. The residual L-TA activity of the wild-type L-TA after a heat treatment for 20 min at 60 degrees C was only 10.6%. However, those in the stability-enhanced mutants were 85.7% for the H44 mutant, 58.6% for the F8 mutant, 62.1% for the 5A2-84 mutant, and 67.6% for the 11-94 mutant. Although the half-life of the wild-type L-TA at 63 degrees C was 1.3 min, those of the mutant L-TAs were longer: 14.6 min for the H44 mutant, 3.7 min for the 11-94 mutant, 5.8 min for the 5A2-84 mutant, and 5.0 min for the F8 mutant. The specific activity did not change in most of the mutants, but it was decreased by 45% in the case of mutant F8. When the aldol condensation of glycine and 3,4-dihydroxybenzaldehyde was studied by using whole cells of Escherichia coli containing the wild-type L-TA gene, L-threo-3,4-dihydroxyphenylserine (L.-threo-DOPS) was successfully synthesized with a yield of 2.0 mg/ml after 20 repeated batch reactions for 100 h. However, the L-threo-DOPS synthesizing activity of the enzyme decreased with increased cycles of the batch reactions. Compared with the wild-type L-TA, H44 L-TA kept its L-threo-DOPS synthesizing activity almost constant during the 20 repeated batch reactions for 100 h, yielding 4.0 mg/ml of L-threo-DOPS. This result showed that H44 L-TA is more effective than the wild-type L-TA for the mass production of L-threo-DOPS.

  15. Valine/isoleucine variants drive selective pressure in the VP1 sequence of EV-A71 enteroviruses.

    PubMed

    Duy, Nghia Ngu; Huong, Le Thi Thanh; Ravel, Patrice; Huong, Le Thi Song; Dwivedi, Ankit; Sessions, October Michael; Hou, Yan'An; Chua, Robert; Kister, Guilhem; Afelt, Aneta; Moulia, Catherine; Gubler, Duane J; Thiem, Vu Dinh; Thanh, Nguyen Thi Hien; Devaux, Christian; Duong, Tran Nhu; Hien, Nguyen Tran; Cornillot, Emmanuel; Gavotte, Laurent; Frutos, Roger

    2017-05-08

    In 2011-2012, Northern Vietnam experienced its first large scale hand foot and mouth disease (HFMD) epidemic. In 2011, a major HFMD epidemic was also reported in South Vietnam with fatal cases. This 2011-2012 outbreak was the first one to occur in North Vietnam providing grounds to study the etiology, origin and dynamic of the disease. We report here the analysis of the VP1 gene of strains isolated throughout North Vietnam during the 2011-2012 outbreak and before. The VP1 gene of 106 EV-A71 isolates from North Vietnam and 2 from Central Vietnam were sequenced. Sequence alignments were analyzed at the nucleic acid and protein level. Gene polymorphism was also analyzed. A Factorial Correspondence Analysis was performed to correlate amino acid mutations with clinical parameters. The sequences were distributed into four phylogenetic clusters. Three clusters corresponded to the subgenogroup C4 and the last one corresponded to the subgenogroup C5. Each cluster displayed different polymorphism characteristics. Proteins were highly conserved but three sites bearing only Isoleucine (I) or Valine (V) were characterized. The isoleucine/valine variability matched the clusters. Spatiotemporal analysis of the I/V variants showed that all variants which emerged in 2011 and then in 2012 were not the same but were all present in the region prior to the 2011-2012 outbreak. Some correlation was found between certain I/V variants and ethnicity and severity. The 2011-2012 outbreak was not caused by an exogenous strain coming from South Vietnam or elsewhere but by strains already present and circulating at low level in North Vietnam. However, what triggered the outbreak remains unclear. A selective pressure is applied on I/V variants which matches the genetic clusters. I/V variants were shown on other viruses to correlate with pathogenicity. This should be investigated in EV-A71. I/V variants are an easy and efficient way to survey and identify circulating EV-A71 strains.

  16. Carbonylation as a Key Reaction in Anaerobic Acetone Activation by Desulfococcus biacutus

    PubMed Central

    Gutiérrez Acosta, Olga B.; Hardt, Norman

    2013-01-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg−1 protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria. PMID:23913429

  17. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.

    PubMed

    Gutiérrez Acosta, Olga B; Hardt, Norman; Schink, Bernhard

    2013-10-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.

  18. Changes in plasma phenylalanine, isoleucine, leucine, and valine are associated with significant changes in intracranial pressure and jugular venous oxygen saturation in patients with severe traumatic brain injury.

    PubMed

    Vuille-Dit-Bille, Raphael N; Ha-Huy, Riem; Stover, John F

    2012-09-01

    Changes in plasma aromatic amino acids (AAA = phenylalanine, tryptophan, tyrosine) and branched chain amino acids (BCAA = isoleucine, leucine, valine) levels possibly influencing intracranial pressure (ICP) and cerebral oxygen consumption (SjvO(2)) were investigated in 19 sedated patients up to 14 days following severe traumatic brain injury (TBI). Compared to 44 healthy volunteers, jugular venous plasma BCAA were significantly decreased by 35% (p < 0.001) while AAA were markedly increased in TBI patients by 19% (p < 0.001). The BCAA to AAA ratio was significantly decreased by 55% (p < 0.001) which persisted during the entire study period. Elevated plasma phenylalanine was associated with decreased ICP and increased SjvO(2), while higher plasma isoleucine and leucine levels were associated with increased ICP and higher plasma leucine and valine were linked to decreased SjvO(2). The amount of enterally administered amino acids was associated with significantly increased plasma levels with the exception of phenylalanine. Contrary to the initial assumption that elevated AAA and decreased BCAA levels are detrimental, increased plasma phenylalanine levels were associated with beneficial signs in terms of decreased ICP and reduced cerebral oxygen consumption reflected by increased SjvO(2); concomitantly, elevated plasma isoleucine and leucine levels were associated with increased ICP while leucine and valine were associated with decreased SjvO(2) following severe TBI, respectively. The impact of enteral nutrition on this observed pattern must be examined prospectively to determine if higher amounts of phenylalanine should be administered to promote beneficial effects on brain metabolism and if normalization of plasma BCAA levels is without cerebral side effects.

  19. Fe Stabilization by Intermetallic L1 0-FePt and Pt Catalysis Enhancement in L1 0-FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junrui; Xi, Zheng; Pan, Yung -Tin

    We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L1 0-MPt alloy nanoparticle (NP) structure and how to surround the L1 0-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L1 0-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Ptmore » shell, especially the 2 atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO 4 solution (both at room temperature and 60°C) and in the membrane electrode assembly (MEA) at 80°C. The L1 0-FePt/Pt catalyst has a mass activity of 0.7 A/mg Pt from the half-cell ORR test and shows no obvious mass activity loss after 30,000 potential cycles between 0.6 V and 0.95 V at 80°C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). Here, we are extending the concept and preparing other L1 0-MPt/Pt NPs, such as L1 0-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.« less

  20. Fe Stabilization by Intermetallic L1 0-FePt and Pt Catalysis Enhancement in L1 0-FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells

    DOE PAGES

    Li, Junrui; Xi, Zheng; Pan, Yung -Tin; ...

    2018-02-07

    We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L1 0-MPt alloy nanoparticle (NP) structure and how to surround the L1 0-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L1 0-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Ptmore » shell, especially the 2 atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO 4 solution (both at room temperature and 60°C) and in the membrane electrode assembly (MEA) at 80°C. The L1 0-FePt/Pt catalyst has a mass activity of 0.7 A/mg Pt from the half-cell ORR test and shows no obvious mass activity loss after 30,000 potential cycles between 0.6 V and 0.95 V at 80°C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). Here, we are extending the concept and preparing other L1 0-MPt/Pt NPs, such as L1 0-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.« less

  1. Antioxidant Activity and Total Phenolic and Flavonoid Contents of Hieracium pilosella L. Extracts

    PubMed Central

    Stanojević, Ljiljana; Stanković, Mihajlo; Nikolić, Vesna; Nikolić, Ljubiša; Ristić, Dušica; Čanadanovic-Brunet, Jasna; Tumbas, Vesna

    2009-01-01

    The antioxidant activity of water, ethanol and methanol Hieracium pilosella L. extracts is reported. The antioxidative activity was tested by spectrophotometrically measuring their ability to scavenge a stable DPPH• free radical and a reactive hydroxyl radical trapped by DMPO during the Fenton reaction, using the ESR spectroscopy. Total phenolic content and total flavonoid content were evaluated according to the Folin-Ciocalteu procedure, and a colorimetric method, respectively. A HPLC method was used for identification of some phenolic compounds (chlorogenic acid, apigenin-7-O-glucoside and umbelliferone). The antioxidant activity of the investigated extracts slightly differs depending on the solvent used. The concentration of 0.30 mg/mL of water, ethanol and methanol extract is less effective in scavenging hydroxyl radicals (56.35, 58.73 and 54.35%, respectively) in comparison with the DPPH• radical scavenging activity (around 95% for all extracts). The high contents of total phenolic compounds (239.59–244.16 mg GAE/g of dry extract) and total flavonoids (79.13–82.18 mg RE/g of dry extract) indicated that these compounds contribute to the antioxidative activity. PMID:22346723

  2. A heuristic approach to the analysis of enzymic catalysis: reaction of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alpha-aminobutyrate and delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-allylglycine catalyzed by isopenicillin N synthase isozymes.

    PubMed

    Blackburn, J M; Sutherland, J D; Baldwin, J E

    1995-06-06

    Isopenicillin N synthase (IPNS) catalyzes the oxidative cyclization of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine to isopenicillin N. It is proposed that the multiple products produced from certain substrate analogues result from pathway branching after formation of a ferryl oxene intermediate. We have been interested in ascertaining the reasons for multiple product formation. One possibility is that the products are predisposed toward formation once the beta-lactam ring and the ferryl oxene are produced. Alternately, the products may be persuaded into being by the enzyme restricting conformations such that otherwise less favorable chemistry can take place. With the existing description of the IPNS catalytic cycle, this fundamental question has not been answerable. We describe here the application of a heuristic method to resolve this key issue. It was reasoned that by comparing the ratios of products formed by a set of perturbed IPNS variants it might be possible to generate qualitative information about the relative magnitude of certain activation parameters. If certain product ratios are affected but others are not, then it should be possible to say which steps in the reaction are dictated merely by chemical fundamentals and which steps are directly effected by the enzyme. In this paper we report the high-level expression, purification, and characterization of four IPNS isozymes. Comparison of the product ratios obtained on incubation of unnatural substrate analogues with four IPNS isozymes corresponding to perturbed active site variants shows substantial variation in some cases and little in others. Interpretation of the results obtained with delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alpha-aminobutyrate (ACAB) allows conclusions to be drawn regarding the role of the enzyme in restricting available conformations of the natural substrate to disfavor certain otherwise chemically favorable pathways and hence products. The results obtained with delta-(L-alpha-aminoadipoyl)-L

  3. Lattice dynamical and dielectric properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2006-08-01

    We present the results of ab initio calculations of the lattice dynamical and dielectric properties of the L-amino acids L-alanine, L-leucine, and L-isoleucine. Normal-mode frequencies and dielectric permittivity tensors are obtained using density-functional perturbation theory implemented within the plane-wave pseudopotential approximation. IR spectra are calculated and are used to analyze the effects of intermolecular interactions and zwitterionization upon the lattice dynamics. It is found that vibronic modes associated with the carboxy and amino functional groups undergo modification from their free-molecule values due to the presence of hydrogen bonds. The role of macroscopic electric fields set up by zone-center normal modes in the lattice dynamics is investigated by analysis of the Born effective charge. Calculated permittivity tensors are found to be greater than would be obtained by a naive use of the isolated molecular values, indicating the role of intermolecular interactions in increasing molecular polarizability.

  4. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.

    PubMed

    Chen, Cheng; Li, Yanyan; Hu, Jinyu; Dong, Xunyan; Wang, Xiaoyuan

    2015-05-01

    In this study, an L-valine-producing strain was developed from Corynebacterium glutamicum ATCC13869 through deletion of the three genes aceE, alaT and ilvA combined with the overexpression of six genes ilvB, ilvN, ilvC, lrp1, brnF and brnE. Overexpression of lrp1 alone increased L-valine production by 16-fold. Deletion of the aceE, alaT and ilvA increased L-valine production by 44-fold. Overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnE and brnF in the triple deletion mutant WCC003 further increased L-valine production. The strain WCC003/pJYW-4-ilvBNC1-lrp1-brnFE produced 243mM L-valine in flask cultivation and 437mM (51g/L) L-valine in fed-batch fermentation and lacked detectable amino-acid byproduct such as l-alanine and l-isoleucine that are usually found in the fermentation of L-valine-producing C. glutamicum. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Bioconversion of D-galactose to D-tagatose: continuous packed bed reaction with an immobilized thermostable L-arabinose isomerase and efficient purification by selective microbial degradation.

    PubMed

    Liang, Min; Chen, Min; Liu, Xinying; Zhai, Yafei; Liu, Xian-wei; Zhang, Houcheng; Xiao, Min; Wang, Peng

    2012-02-01

    The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.

  6. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    PubMed

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Protein A-like activity and streptococcal cross-reactions.

    PubMed Central

    Kingston, D

    1981-01-01

    Recognition of the protein A-like activity of some strains of group A streptococci has thrown doubt on much previous work suggesting antigenic cross-reactions between these streptococci and mammalian tissues. The strains used in our previous studies have now been examined by the mixed reverse passive antiglobulin reaction (MRPAH) for the 'non-specific' absorption of purified Fc portion of human IgG. They were found to have only traces of activity. The strain of Staphylococcus aureus used to control 'non-specific' absorption by bacterial cell walls was strongly positive. Protein A-like material as detected in this way was not therefore responsible for our earlier results. PMID:7039880

  8. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants.

    PubMed

    Altunkaya, Arzu; Gökmen, Vural; Skibsted, Leif H

    2016-01-01

    Influence of pH on the antioxidant activities of combinations of lettuce extract (LE) with quercetin (QC), green tea extract (GTE) or grape seed extract (GSE) was investigated for both reduction of Fremy's salt in aqueous solution using direct electron spin resonance (ESR) spectroscopy and in L-α-phosphatidylcholine liposome peroxidation assay measured following formation of conjugated dienes. All examined phenolic antioxidants showed increasing radical scavenging effect with increasing pH values by using both methods. QC, GTE and GSE acted synergistically in combination with LE against oxidation of peroxidating liposomes and with QC showing the largest effect. The pH dependent increase of the antioxidant activity of the phenols is due to an increase of their electron-donating ability upon deprotonation and to their stabilization in alkaline solutions leading to polymerization reaction. Such polymerization reactions of polyphenolic antioxidants can form new oxidizable -OH moieties in their polymeric products resulting in a higher radical scavenging activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L.

    PubMed

    Akroum, S

    2017-03-01

    Human and animal mycoses become more frequent and more resistant to traditional treatments. In this work, we tested the in vitro antifungal activity of acetonic extracts of Punica granatum L., Quercus suber L. and Vicia faba L. against seven pathogen fungi and the in vivo antifungal activity against Candida albicans and Trichophyton mentagrophytes. The phytochemical screening was also carried out and showed that the extracts contained mainly proanthocyanidins. Other polyphenols were also present but in low quantity. The acetone extract of V. faba L. gave a good in vitro inhibition of yeasts and was the most active for treating candidiasis in mice. It decreased the percentage of mortality with only 20μg. But the in vivo antifungal activity of this extract on T. mentagrophytes was low. It only showed a small diminution of crusting and erythema after the administration of 100μg. On the contrary, the acetone extracts of P. granatum L. had a poor activity against yeasts and a better one against moulds. It gave the best in vivo antifungal activity against T. mentagrophytes by healing animals with 40μg. The extract of P. granatum L. gave also an interesting in vivo antifungal activity against T. mentagrophytes with an active dose of 80μg. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps

    ERIC Educational Resources Information Center

    Jennings, Laura D.; Keller, Steven W.

    2005-01-01

    An interactive classroom activity that includes two-step reaction of unwrapping and eating chocolate candies is described which brings not only the reaction intermediate, but also the reactants and products into macroscopic view. The qualitative activation barriers of both steps can be adjusted independently.

  11. Comparison of Methodologies of Activation Barrier Measurements for Reactions with Deactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhenhua; Yan, Binhang; Zhang, Li

    In this work, methodologies of activation barrier measurements for reactions with deactivation were theoretically analyzed. Reforming of ethane with CO 2 was introduced as an example for reactions with deactivation to experimentally evaluate these methodologies. Both the theoretical and experimental results showed that due to catalyst deactivation, the conventional method would inevitably lead to a much lower activation barrier, compared to the intrinsic value, even though heat and mass transport limitations were excluded. In this work, an optimal method was identified in order to provide a reliable and efficient activation barrier measurement for reactions with deactivation.

  12. Comparison of Methodologies of Activation Barrier Measurements for Reactions with Deactivation

    DOE PAGES

    Xie, Zhenhua; Yan, Binhang; Zhang, Li; ...

    2017-01-25

    In this work, methodologies of activation barrier measurements for reactions with deactivation were theoretically analyzed. Reforming of ethane with CO 2 was introduced as an example for reactions with deactivation to experimentally evaluate these methodologies. Both the theoretical and experimental results showed that due to catalyst deactivation, the conventional method would inevitably lead to a much lower activation barrier, compared to the intrinsic value, even though heat and mass transport limitations were excluded. In this work, an optimal method was identified in order to provide a reliable and efficient activation barrier measurement for reactions with deactivation.

  13. On the possibility of negative activation energies in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1978-01-01

    The temperature dependence of the rate constants for model reacting systems was studied to understand some recent experimental measurements which imply the existence of negative activation energies. A collision theory model and classical trajectory calculations are used to demonstrate that the reaction probability can vary inversely with collision energy for bimolecular reactions occurring on attractive potential energy surfaces. However, this is not a sufficient condition to ensure that the rate constant has a negative temperature dependence. On the basis of these calculations, it seems unlikely that a true bimolecular reaction between neutral molecules will have a negative activation energy.

  14. Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Mian; Lee, Yong-Min; Gupta, Ranjana

    Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less

  15. Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles

    DOE PAGES

    Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...

    2017-10-22

    Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less

  16. L1 English/L2 Spanish: Orthography-Phonology Activation without Contrasts

    ERIC Educational Resources Information Center

    Shea, Christine

    2017-01-01

    We consider how orthography activates sounds that are in a noncontrastive relationship in the second language (L2) and for which only one variant exists in the first language (L1). Participants were L1 English / L2 Spanish and native Spanish listeners. Intervocalically, Spanish graphemes "b d g" correspond phonetically to stops and…

  17. Antioxidant activities of Vaccinium uliginosum L. extract and its active components.

    PubMed

    Kim, Young-Hee; Bang, Chae-Young; Won, Eun-Kyung; Kim, Jong-Pyung; Choung, Se-Young

    2009-08-01

    Vaccinium uliginosum L. (also known as bog bilberry) is a low-growing deciduous shrub classified in the Ericaceae family of plants, which includes numerous Vaccinium berries, blueberries, and cranberries. Berries of the Ericaceae family are known to contain organic acids, vitamins, glycosides, and anthocyanins and have been reported to have antioxidant activity. In order to identify the antioxidative principles of V. uliginosum, we separated water extracts into polyphenol, anthocyanin-rich (pigment), and sugar/acid fractions by using ethyl acetate, acidic methanol (MeOH), and 0.01 N HCl. Antioxidant activities were assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide radical, and hydroxyl radical assays. The crude extract and fractions containing polyphenol and pigment exhibited the greatest antioxidant activities with 50% inhibitory concentration (IC(50)) values of 85.8 microg/mL, 33.2 microg/mL, and 16.7 microg/mL, respectively, for the DPPH assay and 48.1 microg/mL, 83.8 microg/mL, and 51.9 microg/mL for the nonenzymatic superoxide radical assay. The fractions containing polyphenol, pigment, and sugar/acid significantly inhibited xanthine oxidase. To investigate the functional compounds from the active fractions, we purified the polyphenol fraction and separated the compounds by using chromatographic techniques. The crude extract was dissolved in MeOH and further purified by reversed-phase high-performance liquid chromatography (HPLC) using MeOH-water (35:65 vol/vol) (with 0.04% trifluoroacetic acid) to obtain VU-EA-1 (16.6 mg), VU-EA-2 (8.5 mg), VU-EA-3 (19.8 mg), VU-EA-4 (12.8 mg), VU-EA-5 (6.5 mg), and VU-EA-6 (23.5 mg). The MeOH-washed fraction from the HPLC was concentrated and purified by reversed-phase HPLC using MeOH-water (50:50 vol/vol) to give VU-EA-10 (12.4 mg). Antioxidant activity was assessed by DPPH, superoxide radical, and hydroxyl radical assays. The isolated compounds exhibited dose-dependent antioxidant activity with IC(50) values of

  18. Prior lactose glycation of caseinate via the Maillard reaction affects in vitro activities of the pepsin-trypsin digest toward intestinal epithelial cells.

    PubMed

    Wang, X P; Zhao, X H

    2017-07-01

    The well-known Maillard reaction in milk occurs between lactose and milk proteins during thermal treatment, and its effects on milk nutrition and safety have been well studied. A lactose-glycated caseinate was prepared via this reaction and digested using 2 digestive proteases, pepsin and trypsin. The glycated caseinate digest was assessed for its in vitro activities on rat intestinal epithelial cells in terms of growth proliferation, anti-apoptotic effect, and differentiation induction using caseinate digest as reference, to verify potential effects of the Maillard reaction on these activities of caseinate digest to the cells. Two digests had proliferative and anti-apoptotic effects, and reached the highest effects at 0.02 g/L of digest concentration with treatment time of 24 h. In comparison with caseinate digest, glycated caseinate digest always showed weaker proliferative (5.3-14.2%) and anti-apoptotic (5.9-39.0%) effects, and was more toxic to the cells at 0.5 g/L of digest concentration with treatment time of 48 h. However, glycated caseinate digest at 2 incubation times of 4 to 7 d showed differentiation induction higher than caseinate digest, as it could confer the cells with increased activities in lactase (16.3-26.6%), sucrase (22.4-31.2%), and alkaline phosphatase (17.4-24.8%). Transmission electron microscopy observation results also confirmed higher differentiation induction of glycated caseinate digest. Amino acid loss and lactose glycation partially contributed to these decreased and enhanced activities of glycated caseinate digest, respectively. The Maillard reaction of caseinate and lactose is thus shown in this study to have effects on the activities of caseinate digest to intestinal epithelial cells. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate.

    PubMed

    Yu, Min; He, Shudong; Tang, Mingming; Zhang, Zuoyong; Zhu, Yongsheng; Sun, Hanju

    2018-03-15

    Four peptide fractions PF1 (>5;kDa), PF2 (3-5;kDa), PF3 (1-3;kDa), PF4 (<1;kDa) were isolated from soybean hydrolysate using the ultrafiltration method. Then, d-xylose and l-cysteine were reacted with specific peptide solution at 120;°C for 2;h, and the molecular weight distribution (MWD), pH, colour, browning intensity, DPPH radical-scavenging activity, free amino acids and sensory characteristics of corresponding Maillard reaction products (MRPF1, MRPF2, MRPF3 and MRPF4) were evaluated, respectively. Peptides with low molecular weight showed higher contribution to the changes of pH, colour and browning intensity during Maillard reaction. The DPPH radical-scavenging activity of PF4 was significantly improved after Maillard reaction. Aroma volatiles and PLSR analysis suggested MRPF3 had the best sensory characteristics with higher contents of umami amino acids and lower of bitter amino acids, therefore it could be deduced that the umami and meaty characteristics were correlated with the peptides of 1-3;kDa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hypersensitivity reactions associated with L-asparaginase administration in 142 dogs and 68 cats with lymphoid malignancies: 2007-2012.

    PubMed

    Blake, Mary Kay; Carr, Brittany J; Mauldin, Glenna E

    2016-02-01

    Clinically significant hypersensitivity reactions (HSRs) to the chemotherapy drug L-asparaginase are reported in humans and dogs, but frequency in small animals is not well-defined. This study retrospectively evaluated the frequency of HSR to L-asparaginase given by IM injection to dogs and cats with lymphoid malignancies. The medical records of all dogs and cats treated with at least 1 dose of L-asparaginase chemotherapy over a 5-year period were reviewed. A total of 370 doses of L-asparaginase were administered to the dogs, with 88 of 142 dogs receiving multiple doses, and 6 dogs experiencing an HSR. A total of 197 doses were administered to the cats, with 33 of 68 cats receiving multiple doses, and no cats experiencing an HSR. Hypersensitivity reactions were documented in 4.2% of dogs, and in association with 1.6% of L-asparaginase doses administered. These results show that HSRs occur uncommonly among dogs and cats, even with repeated dosing.

  1. Trapping Phyllophaga spp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants.

    PubMed Central

    Robbins, Paul S.; Alm, Steven R.; Armstrong, Charles. D.; Averill, Anne L.; Baker, Thomas C.; Bauernfiend, Robert J.; Baxendale, Frederick P.; Braman, S. Kris; Brandenburg, Rick L.; Cash, Daniel B.; Couch, Gary J.; Cowles, Richard S.; Crocker, Robert L.; DeLamar, Zandra D.; Dittl, Timothy G.; Fitzpatrick, Sheila M.; Flanders, Kathy L.; Forgatsch, Tom; Gibb, Timothy J.; Gill, Bruce D.; Gilrein, Daniel O.; Gorsuch, Clyde S.; Hammond, Abner M.; Hastings, Patricia D.; Held, David W.; Heller, Paul R.; Hiskes, Rose T.; Holliman, James L.; Hudson, William G.; Klein, Michael G.; Krischik, Vera L.; Lee, David J.; Linn, Charles E.; Luce, Nancy J.; MacKenzie, Kenna E.; Mannion, Catherine M.; Polavarapu, Sridhar; Potter, Daniel A.; Roelofs, Wendell L.; Royals, Brian M.; Salsbury, Glenn A.; Schiff, Nathan M.; Shetlar, David J.; Skinner, Margaret; Sparks, Beverly L.; Sutschek, Jessica A.; Sutschek, Timothy P.; Swier, Stanley R.; Sylvia, Martha M.; Vickers, Neil J.; Vittum, Patricia J.; Weidman, Richard; Weber, Donald C.; Williamson, R. Chris; Villani, Michael G

    2006-01-01

    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera: Scarabaeidae: Melolonthinae) were captured and identified. Three major findings included: (1) widespread use of the two compounds [of the 147 Phyllophaga (sensu stricto) species found in the United States and Canada, males of nearly 40% were captured]; (2) in most species intraspecific male response to the pheromone blends was stable between years and over geography; and (3) an unusual pheromone polymorphism was described from P. anxia. Populations at some locations were captured with L-valine methyl ester alone, whereas populations at other locations were captured with L-isoleucine methyl ester alone. At additional locations, the L-valine methyl ester-responding populations and the L-isoleucine methyl ester-responding populations were both present, producing a bimodal capture curve. In southeastern Massachusetts and in Rhode Island, in the United States, P. anxia males were captured with blends of L-valine methyl ester and L-isoleucine methyl ester. PMID:19537965

  2. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions

    PubMed Central

    Sun, Li-rui; Wang, Yan; Xia, Chun-gu

    2017-01-01

    The synthesis of L-ascorbyl flurbiprofenate was achieved by esterification and transesterification in nonaqueous organic medium with Novozym 435 lipase as biocatalyst. The conversion was greatly influenced by the kinds of organic solvents, speed of agitation, catalyst loading amount, reaction time, and molar ratio of acyl donor to L-ascorbic acid. A series of solvents were investigated, and tert-butanol was found to be the most suitable from the standpoint of the substrate solubility and the conversion for both the esterification and transesterification. When flurbiprofen was used as acyl donor, 61.0% of L-ascorbic acid was converted against 46.4% in the presence of flurbiprofen methyl ester. The optimal conversion of L-ascorbic acid was obtained when the initial molar ratio of acyl donor to ascorbic acid was 5 : 1. kinetics parameters were solved by Lineweaver-Burk equation under nonsubstrate inhibition condition. Since transesterification has lower conversion, from the standpoint of productivity and the amount of steps required, esterification is a better method compared to transesterification. PMID:28421196

  3. Oxidation of L-phenylalanine by diperiodatoargentate(III) in aqueous alkaline medium. A Mechanistic approach

    NASA Astrophysics Data System (ADS)

    Lamani, S. D.; Veeresh, T. M.; Nandibewoor, S. T.

    2009-12-01

    The kinetics of oxidation of L-phenylalanine (L-Phe) by diperiodatoargentate(III) (DPA) in alkaline medium at a constant ionic strength of 0.25 mol/dm-3 has been studied spectrophotometrically. The reaction between DPA and L-phenylalanine in alkaline medium exhibits 1: 1 stoichiometry (L-phenylalanine: DPA). The reaction shows first order in [DPA] and has less than unit order dependence each in both [L-Phe] and [Alkali] and retarding effect of [IO{4/-}] under the reaction conditions. The active species of DPA is understood to be as monoperiodatoargentate(III) (MPA). The reaction is shown to proceed via a MPA-L-Phe complex, which decomposes in a rate-determining step to give intermediates followed by a fast step to give the products. The products were identified by spot and spectroscopic studies. The reaction constants involved in the different steps of the mechanisms were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed. The thermodynamic quantities were also determined for the reaction.

  4. Development of various reaction abilities and their relationships with favorite play activities in preschool children.

    PubMed

    Miyaguchi, Kazuyoshi; Demura, Shinich; Sugiura, Hiroki; Uchiyama, Masanobu; Noda, Masahiro

    2013-10-01

    This study examines the development of various reaction movements in preschool children and the relationship between reaction times and favorite play activities. The subjects were 167 healthy preschool children aged 4-6 (96 boys and 71 girls). This study focused on the reaction times of the upper limbs (reaction 1: release; reaction 2: press) and the whole body (reaction 3: forward jump). The activities frequently played in preschools are largely divided into dynamic play activities (tag, soccer, gymnastics set, dodge ball, and jump rope) and static play activities (drawing, playing house, reading, playing with sand, and building blocks). The subjects chose 3 of 10 cards picturing their favorite play activities, depicting 10 different activities. All intraclass correlation coefficients of measured reaction times were high (0.73-0.79). In addition, each reaction time shortened with age. Reaction 1 showed a significant and low correlation with reaction 3 (r = 0.37). The effect size of the whole body reaction time was the largest. Whole body reaction movement, which is largely affected by the exercise output function, develops remarkably in childhood. Children who liked "tag" were faster in all reaction times. The children who chose "soccer" were faster in reactions 2 and 3. In contrast, children who liked "playing house" tended to have slower reaction times. Dynamic activities, such as tag and soccer, promote development of reaction speed and agility in movements involving the whole body. Preschool teachers and physical educators should re-examine the effect of tag and use it periodically as one of the exercise programs to avoid unexpected falls and injuries in everyday life.

  5. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    PubMed

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P < 0.05); however, browning intensity and absorbance at 294 nm increased because of the Maillard reaction (P < 0.05). The ACE inhibitory activity improved greatly within 2 h (from 63.48% to 90.23%), which was mainly due to carbonyl ammonia condensation reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  6. Assessment of antinociceptive, antipyretic and antimicrobial activity of Piper cubeba L. essential oil in animal models.

    PubMed

    Mothana, Ramzi; Alsaid, Mansour; Khaled, Jamal M; Alharbi, Naiyf S; Alatar, Abdulrahman; Raish, Mohammad; Al-Yahya, Mohammed; Rafatullah, Syed; Parvez, Mohammad Khalid; Ahamad, Syed Rizwan

    2016-03-01

    This study was designed to investigate the possible antiniciceptive, antipyretic and antimicrobial activities of the essential oil obtained from the fruits of Piper Cubeba (L.). To assess the antinociceptive and antipyretic activities, three doses (150, 300 and 600 mg/kg, i.p.) were tested in acetic acid-induced abdominal writhing, tail flick reaction and hot-plate and Brewer's yeast-induced hyperpyrexia test models in animals. Moreover, the antimicrobial activity was examined using agar diffusion method and broth micro-dilution assay for minimum inhibitory concentrations (MIC). The Piper Cubeba essential oil (PCEO) showed a marked antinociception (17, 30 and 54%) and an increase in reaction time in mice in the flick tailed and hot-plate tests. The brewer's yeast induced hyperpyrexia was decreased in a dose dependent manner. PCEO also exhibited a strong antimicrobial potential. These findings confirm the traditional analgesic indications of P. cubeba oil and provide persuasive evidence and support its use in Arab traditional medicine.

  7. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    PubMed

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10 -5 U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Direct asymmetric aldol reactions between aldehydes and ketones catalyzed by L-tryptophan in the presence of water.

    PubMed

    Jiang, Zhaoqin; Yang, Hui; Han, Xiao; Luo, Jie; Wong, Ming Wah; Lu, Yixin

    2010-03-21

    Primary amino acids and their derivatives were investigated as catalysts for the direct asymmetric aldol reactions between ketones and aldehydes in the presence of water, and L-tryptophan was shown to be the best catalyst. Solvent effects, substrate scope and the influence of water on the reactions were investigated. Quantum chemical calculations were performed to understand the origin of the observed stereoselectivity.

  9. Mental retardation linked to mutations in the HSD17B10 gene interfering with neurosteroid and isoleucine metabolism

    PubMed Central

    Yang, Song-Yu; He, Xue-Ying; Olpin, Simon E.; Sutton, Vernon R.; McMenamin, Joe; Philipp, Manfred; Denman, Robert B.; Malik, Mazhar

    2009-01-01

    Mutations in the HSD17B10 gene were identified in two previously described mentally retarded males. A point mutation c.776G>C was found from a survivor (SV), whereas a potent mutation, c.419C>T, was identified in another deceased case (SF) with undetectable hydroxysteroid (17β) dehydrogenase 10 (HSD10) activity. Protein levels of mutant HSD10(R130C) in patient SF and HSD10(E249Q) in patient SV were about half that of HSD10 in normal controls. The E249Q mutation appears to affect HSD10 subunit interactions, resulting in an allosteric regulatory enzyme. For catalyzing the oxidation of allopregnanolone by NAD+ the Hill coefficient of the mutant enzyme is ≈1.3. HSD10(E249Q) was unable to catalyze the dehydrogenation of 2-methyl-3-hydroxybutyryl-CoA and the oxidation of allopregnanolone, a positive modulator of the γ-aminobutyric acid type A receptor, at low substrate concentrations. Neurosteroid homeostasis is critical for normal cognitive development, and there is increasing evidence that a blockade of isoleucine catabolism alone does not commonly cause developmental disabilities. The results support the theory that an imbalance in neurosteroid metabolism could be a major cause of the neurological handicap associated with hydroxysteroid (17β) dehydrogenase 10 deficiency. PMID:19706438

  10. Structural basis of potassium activation in plant asparaginases.

    PubMed

    Ajewole, Ebenezer; Santamaria-Kisiel, Liliana; Pajak, Agnieszka; Jaskolski, Mariusz; Marsolais, Frédéric

    2018-04-01

    l-asparaginases (EC 3.5.1.1) play an important role in nitrogen mobilization in plants. Here, we investigated the biochemical and biophysical properties of potassium-dependent (PvAspG1) and potassium-independent (PvAspG-T2) l-asparaginases from Phaseolus vulgaris. Our previous studies revealed that PvAspG1 requires potassium for catalytic activation and its crystal structure suggested that Ser-118 in the activation loop plays a critical role in coordinating the metal cation. This amino acid residue is replaced by isoleucine in PvAspG-T2. Reciprocal mutants of the enzymes were produced and the effect of the amino acid substitution on the kinetic parameters, allosteric effector binding, secondary structure conformation, and pH profile were studied. Introduction of the serine residue conferred potassium activation in PvAspG-T2. Conversely, the PvAspG1-S118I mutant could no longer be activated by potassium. PvAspG1 and the PvAspG-T2-I117S mutant had a similar half-maximal effective concentration (EC 50 ) value for potassium activation, between 0.1 and 0.3 mm. Potassium binding elicited a similar conformational change in PvAspG1 and PvAspG-T2-I117S, as studied by circular dichroism. However, no change in conformation was observed for PvAspG-T2 and PvAspG1-S118I. Analysis of kinetic parameters in function of pH indicated that potassium activation mediated by Ser-118 influences the ionization of specific functional groups in the enzyme-substrate complex. Together, the results indicate that Ser-118 of PvAspG1 is essential and sufficient for potassium activation in plant l-asparaginases. ENZYME: l-Asparaginase (EC 3.5.1.1). © 2018 Federation of European Biochemical Societies.

  11. Quantum Tunneling Contribution for the Activation Energy in Microwave-Induced Reactions.

    PubMed

    Kuhnen, Carlos A; Dall'Oglio, Evandro L; de Sousa, Paulo T

    2017-08-03

    In this study, a quantum approach is presented to explain microwave-enhanced reaction rates by considering the tunneling effects in chemical reactions. In the Arrhenius equation, the part of the Hamiltonian relative to the interaction energy during tunneling, between the particle that tunnels and the electrical field defined in the medium, whose spatial component is specified by its rms value, is taken into account. An approximate evaluation of the interaction energy leads to a linear dependence of the effective activation energy on the applied field. The evaluation of the rms value of the field for pure liquids and reaction mixtures, through their known dielectric properties, leads to an appreciable reduction in the activation energies for the proton transfer process in these liquids. The results indicate the need to move toward the use of more refined methods of modern quantum chemistry to calculate more accurately field-induced reaction rates and effective activation energies.

  12. Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum.

    PubMed

    Karppinen, Katja; Hokkanen, Juho; Tolonen, Ari; Mattila, Sampo; Hohtola, Anja

    2007-04-01

    Hyperforin and adhyperforin contribute to the antidepressant effects of Hypericum perforatum. The involvement of branched-chain amino acids in the biosynthesis of hyperforin and adhyperforin was demonstrated in H. perforatum shoot cultures. L-[U-(13)C(5)]Valine and L-[U-(13)C(6)]isoleucine, upon administration to the shoot cultures, were incorporated into acyl side chain of hyperforin and adhyperforin, respectively. Feeding the shoot cultures with unlabelled L-isoleucine at a concentration of 2mM induced a 3.7-fold increase in the production of adhyperforin. The addition of 3mM L-threonine, a precursor of isoleucine, stimulated a 2.0-fold increase in the accumulation of adhyperforin. The administration of L-valine at concentrations of 0-5mM had no stimulating effect on the hyperforin production in H. perforatum shoot cultures.

  13. Hypersensitivity reactions associated with L-asparaginase administration in 142 dogs and 68 cats with lymphoid malignancies: 2007–2012

    PubMed Central

    Blake, Mary Kay; Carr, Brittany J.; Mauldin, Glenna E.

    2016-01-01

    Clinically significant hypersensitivity reactions (HSRs) to the chemotherapy drug L-asparaginase are reported in humans and dogs, but frequency in small animals is not well-defined. This study retrospectively evaluated the frequency of HSR to L-asparaginase given by IM injection to dogs and cats with lymphoid malignancies. The medical records of all dogs and cats treated with at least 1 dose of L-asparaginase chemotherapy over a 5-year period were reviewed. A total of 370 doses of L-asparaginase were administered to the dogs, with 88 of 142 dogs receiving multiple doses, and 6 dogs experiencing an HSR. A total of 197 doses were administered to the cats, with 33 of 68 cats receiving multiple doses, and no cats experiencing an HSR. Hypersensitivity reactions were documented in 4.2% of dogs, and in association with 1.6% of L-asparaginase doses administered. These results show that HSRs occur uncommonly among dogs and cats, even with repeated dosing. PMID:26834270

  14. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    PubMed

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  15. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  16. A quantitative tool to distinguish isobaric leucine and isoleucine residues for mass spectrometry-based de novo monoclonal antibody sequencing.

    PubMed

    Poston, Chloe N; Higgs, Richard E; You, Jinsam; Gelfanova, Valentina; Hale, John E; Knierman, Michael D; Siegel, Robert; Gutierrez, Jesus A

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  17. Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase.

    PubMed

    Wang, Yi-Qun; Dong, Yi; Yao, Ming-Hui

    2009-08-01

    1. Chromium picolinate (CrPic) has been recommended as an alternative therapeutic regimen for Type 2 diabetes mellitus (T2DM). However, the molecular mechanism underlying the action of CrPic is poorly understood. 2. Using normal and insulin-resistant 3T3-L1 adipocytes, we examined the effects of CrPic on the gene transcription and secretion of adiponectin and resistin. In addition, using immunoblotting, ELISA and real-time reverse transcription-polymerase chain reaction (RT-PCR), we investigated the effects of 10 nmol/L CrPic for 24 h on AMP-activated protein kinase (AMPK) to determine whether this pathway contributed to the regulation of adiponectin and resistin expression and secretion. 3. Chromium picolinate did not modulate the expression of adiponectin and resistin; however, it did significantly inhibit the secretion of resistin, but not adiponectin, by normal and insulin-resistant 3T3-L1 adipocytes in vitro. Furthermore, although CrPic markedly elevated levels of phosphorylated AMPK and acetyl CoA carboxylase in 3T3-L1 adipocytes, it had no effect on the levels of AMPK alpha-1 and alpha-2 mRNA transcripts. Importantly, inhibition of AMPK by 2 h pretreatment of cells with 20 micromol/L compound C completely abolished the CrPic-induced suppression of resistin secretion. 4. In conclusion, the data suggest that CrPic inhibits resistin secretion via activation of AMPK in normal and insulin-resistant 3T3-L1 adipocytes.

  18. Highly Stable and Active Catalyst for Sabatier Reactions

    NASA Technical Reports Server (NTRS)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  19. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity.

    PubMed

    Giri, Ramesh; Shi, Bing-Feng; Engle, Keary M; Maugel, Nathan; Yu, Jin-Quan

    2009-11-01

    This critical review discusses historical and contemporary research in the field of transition metal-catalyzed carbon-hydrogen (C-H) bond activation through the lens of stereoselectivity. Research concerning both diastereoselectivity and enantioselectivity in C-H activation processes is examined, and the application of concepts in this area for the development of novel carbon-carbon and carbon-heteroatom bond-forming reactions is described. Throughout this review, an emphasis is placed on reactions that are (or may soon become) relevant in the realm of organic synthesis (221 references).

  20. Synthesis of novel lipoamino acid conjugates of sapienic acid and evaluation of their cytotoxicity activities.

    PubMed

    Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari

    2014-01-01

    Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.

  1. Identification of two essential aspartates for polymerase activity in parainfluenza virus L protein by a minireplicon system expressing secretory luciferase.

    PubMed

    Matsumoto, Yusuke; Ohta, Keisuke; Yumine, Natsuko; Goto, Hideo; Nishio, Machiko

    2015-11-01

    Gene expression of nonsegmented negative-strand RNA viruses (nsNSVs) such as parainfluenza viruses requires the RNA synthesis activity of their polymerase L protein; however, the detailed mechanism of this process is poorly understood. In this study, a parainfluenza minireplicon assay expressing secretory Gaussia luciferase (Gluc) was established to analyze large protein (L) activity. Measurement of Gluc expression in the culture medium of cells transfected with the minigenome and viral polymerase components enabled quick and concise calculation of L activity. By comparing the amino acid sequences in conserved region III (CRIII), a putative polymerase-active domain of the L protein, two strictly conserved aspartates were identified in all families of nsNSV. A series of L mutants from human parainfluenza virus type 2 and parainfluenza virus type 5 showed that these aspartates are necessary for reporter gene expression. It was also confirmed that these aspartates are important for the production of viral mRNA and antigenome cRNA, but not for a polymerase-complex formation. These findings suggest that these two aspartates are key players in the nucleotidyl transfer reaction using two metal ions. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  2. Maillard reaction products as antimicrobial components for packaging films.

    PubMed

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Development and validation of a rapid, selective, and sensitive LC-MS/MS method for simultaneous determination of D- and L-amino acids in human serum: application to the study of hepatocellular carcinoma.

    PubMed

    Han, Minlu; Xie, Mengyu; Han, Jun; Yuan, Daoyi; Yang, Tian; Xie, Ying

    2018-04-01

    A validated liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of D- and L-amino acids in human serum. Under the optimum conditions, except for DL-proline, L-glutamine, and D-lysine, the enantioseparation of the other 19 enantiomeric pairs of proteinogenic amino acids and nonchiral glycine was achieved with a CROWNPAK CR-I(+) chiral column within 13 min. The lower limits of quantitation for L-amino acids (including glycine) and D-amino acids were 5-56.25 μM and 0.625-500 nM, respectively, in human serum. The intraday precision and interday precision for all the analytes were less than 15%, and the accuracy ranged from -12.84% to 12.37% at three quality control levels. The proposed method, exhibiting high rapidity, enantioresolution, and sensitivity, was successfully applied to the quantification of D- and L-amino acid levels in serum from hepatocellular carcinoma patients and healthy individuals. The serum concentrations of L-arginine, L-isoleucine, L-aspartate, L-tryptophan, L-alanine, L-methionine, L-serine, glycine, L-valine, L-leucine, L-phenylalanine, L-threonine, D-isoleucine, D-alanine, D-glutamate, D-glutamine, D-methionine, and D-threonine were significantly reduced in the hepatocellular carcinoma patients compared with the healthy individuals (P < 0.01). D-Glutamate and D-glutamine were identified as the most downregulated serum markers (fold change greater than 1.5), which deserves further attention in hepatocellular carcinoma research. Graphical abstract Simultaneous determination of D- and L-amino acids in human serum from hepatocellular carcinoma patients and healthy individuals. AA amino acid, HCC hepatocellular carcinoma, LC liquid chromatography, MS/MS tandem mass spectrometry, NC normal control, TIC total ion chromatogram.

  4. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability.

    PubMed

    Kathuria, Sagar V; Chan, Yvonne H; Nobrega, R Paul; Özen, Ayşegül; Matthews, C Robert

    2016-03-01

    Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high-energy states that populate their folding free-energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high-energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high-energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates. © 2015 The Protein Society.

  5. An essential amino acid induces epithelial β-defensin expression

    PubMed Central

    Fehlbaum, Pascale; Rao, Meena; Zasloff, Michael; Anderson, G. Mark

    2000-01-01

    Antimicrobial peptides constitute an important component of the mammalian innate immune response. Several types of antimicrobial peptides, including the β-defensins, are produced at epithelial surfaces in response to infectious threats. Here we show that a class of small molecules, including l-isoleucine and several of its analogs, can specifically induce epithelial β-defensin expression. This induction is transcriptional in nature and involves activation of the NF-κB/rel family of trans-activating factors. We hypothesize that these substances represent unique markers for the presence of pathogens and are recognized by innate immune pattern recognition receptors. Isoleucine or its analogs ultimately may have clinical utility as novel immunostimulants that could bolster the barrier defenses of mucosal surfaces. PMID:11058160

  6. Activation cross-section measurement of proton induced reactions on cerium

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Spahn, I.; Spellerberg, S.

    2017-12-01

    In the framework of a systematic study of proton induced nuclear reactions on lanthanides we have measured the excitation functions on natural cerium for the production of 142,139,138m,137Pr, 141,139,137m,137g,135Ce and 133La up to 65 MeV proton energy using the activation method with stacked-foil irradiation technique and high-resolution γ-ray spectrometry. The cross-sections of the investigated reactions were compared with the data retrieved from the TENDL-2014 and TENDL-2015 libraries, based on the latest version of the TALYS code system. No earlier experimental data were found in the literature. The measured cross-section data are important for further improvement of nuclear reaction models and for practical applications in nuclear medicine, other labeling and activation studies.

  7. Reduction of L-phenylalanine in protein hydrolysates using L-phenylalanine ammonia-lyase from Rhodosporidium toruloides.

    PubMed

    Castañeda, María Teresita; Adachi, Osao; Hours, Roque Alberto

    2015-10-01

    L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.25) from Rhodosporidium toruloides was utilized to remove L-phenylalanine (L-Phe) from different commercial protein hydrolysates. A casein acid hydrolysate (CAH, L-Phe ~2.28 %) was employed as a model substrate. t-Cinnamic acid resulting from deamination of L-Phe was extracted, analyzed at λ = 290 nm, and used for PAL activity determination. Optimum reaction conditions, optimized using successive Doehlert design, were 35 mg mL(-1) of CAH and 800 mU mL(-1) of PAL, while temperature and pH were 42 °C and 8.7, respectively. Reaction kinetics of PAL with CAH was determined under optimized conditions. Then, removal of L-Phe from CAH was tested. Results showed that more than 92 % of initial L-Phe was eliminated. Similar results were obtained with other protein hydrolysates. These findings demonstrate that PAL is a useful biocatalyst for L-Phe removal from protein hydrolysates, which can be evaluated as potential ingredients in foodstuffs for PKU patients.

  8. Interactive effects of dietary leucine and isoleucine on growth, blood parameters, and amino acid profile of Japanese flounder Paralichthys olivaceus.

    PubMed

    Wang, Liping; Han, Yuzhe; Jiang, Zhiqiang; Sun, Menglei; Si, Bin; Chen, Fei; Bao, Ning

    2017-10-01

    A 60-day feeding trial was conducted to assess the interactions of dietary leucine (Leu) and isoleucine (Ile) on Japanese flounder. Fish of 2.69 ± 0.04 g were fed experimental diets containing two levels of Leu (2.58 and 5.08% of diet) combined with three levels of Ile (1.44, 2.21, and 4.44% of diet), respectively. After the feeding trial, growth, proximate composition, muscle total amino acid profile, blood parameters, mucus lysozyme activity, and stress tolerance to freshwater were measured. Statistically significant (P < 0.05) interactive effects of Leu and Ile were found on growth parameters (final body weight, body weight gain, and special growth rate) of Japanese flounder. Antagonism was discovered in high dietary Leu groups, while stimulatory effects were obtained for increased dietary Ile in low Leu groups. Interactive effects of these two branched-chain amino acids were also found on hepatosomatic index of test fish. In addition, crude lipid content of fish whole body was significantly altered by various diets, with antagonism observed in low dietary Leu groups. Interactive effects also existed in muscle amino acid profiles for low fish meal diets, but no interactive impacts were observed on blood parameters. Furthermore, lysozyme activities and freshwater stress were significantly affected by different diets. And antagonism was found on lysozyme activities in low Leu groups. Moreover, high Leu and high Ile levels of diet significantly altered freshwater stress tolerance of Japanese flounder. These findings suggested that dietary Leu and Ile can effect interactively, and fish fed with diets containing 2.58% Leu with 4.44% Ile and 5.08% Leu with 1.44% Ile showed better growth performance.

  9. Comparison of the catalytic activity for the Suzuki-Miyaura reaction of (η(5)-Cp)Pd(IPr)Cl with (η(3)-cinnamyl)Pd(IPr)(Cl) and (η(3)-1-t-Bu-indenyl)Pd(IPr)(Cl).

    PubMed

    Melvin, Patrick R; Hazari, Nilay; Lant, Hannah M C; Peczak, Ian L; Shah, Hemali P

    2015-01-01

    Complexes of the type (η(3)-allyl)Pd(L)(Cl) and (η(3)-indenyl)Pd(L)(Cl) are highly active precatalysts for the Suzuki-Miyaura reaction. Even though allyl and indenyl ligands are similar to cyclopentadienyl (Cp) ligands, there have been no detailed comparative studies exploring the activity of precatalysts of the type (η(5)-Cp)Pd(L)(Cl) for Suzuki-Miyaura reactions. Here, we compare the catalytic activity of (η(5)-Cp)Pd(IPr)(Cl) (IPr = 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene, Cp) with two commercially available catalysts (η(3)-cinnamyl)Pd(IPr)(Cl) (Cin) and (η(3)-1-t-Bu-indenyl)Pd(IPr)(Cl) ( (tBu) Ind). We show that Cp gives slightly better catalytic activity than Cin, but significantly inferior activity than (tBu) Ind. This order of activity is rationalized by comparing the rates at which the precatalysts are activated to the monoligated Pd(0) active species along with the tendency of the starting precatalysts to comproportionate with monoligated Pd(0) to form inactive Pd(I) dimers. As part of this work the Cp supported Pd(I) dimer (μ-Cp)(μ-Cl)Pd2(IPr)2 (Cp (Dim) ) was synthesized and crystallographically characterized. It does not readily disproportionate to form monoligated Pd(0) and consequently Cp (Dim) is a poor catalyst for the Suzuki-Miyaura reaction.

  10. Comparison of the catalytic activity for the Suzuki–Miyaura reaction of (η5-Cp)Pd(IPr)Cl with (η3-cinnamyl)Pd(IPr)(Cl) and (η3-1-t-Bu-indenyl)Pd(IPr)(Cl)

    PubMed Central

    Melvin, Patrick R; Lant, Hannah M C; Peczak, Ian L; Shah, Hemali P

    2015-01-01

    Summary Complexes of the type (η3-allyl)Pd(L)(Cl) and (η3-indenyl)Pd(L)(Cl) are highly active precatalysts for the Suzuki–Miyaura reaction. Even though allyl and indenyl ligands are similar to cyclopentadienyl (Cp) ligands, there have been no detailed comparative studies exploring the activity of precatalysts of the type (η5-Cp)Pd(L)(Cl) for Suzuki–Miyaura reactions. Here, we compare the catalytic activity of (η5-Cp)Pd(IPr)(Cl) (IPr = 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene, Cp) with two commercially available catalysts (η3-cinnamyl)Pd(IPr)(Cl) (Cin) and (η3-1-t-Bu-indenyl)Pd(IPr)(Cl) (tBu Ind). We show that Cp gives slightly better catalytic activity than Cin, but significantly inferior activity than tBu Ind. This order of activity is rationalized by comparing the rates at which the precatalysts are activated to the monoligated Pd(0) active species along with the tendency of the starting precatalysts to comproportionate with monoligated Pd(0) to form inactive Pd(I) dimers. As part of this work the Cp supported Pd(I) dimer (μ-Cp)(μ-Cl)Pd2(IPr)2 (Cp Dim) was synthesized and crystallographically characterized. It does not readily disproportionate to form monoligated Pd(0) and consequently Cp Dim is a poor catalyst for the Suzuki–Miyaura reaction. PMID:26732227

  11. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    PubMed

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  12. Partial reactions of d-glucose 6-phosphate–1 l-myoinositol 1-phosphate cyclase

    PubMed Central

    Barnett, J. E. G.; Rasheed, A.; Corina, D. L.

    1973-01-01

    After removal of tightly bound NAD+ by using charcoal, a preparation of d-glucose 6-phosphate–1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-3H]NADH to give [5-3H]-glucitol 6-phosphate and [5-3H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [3H]myoinositol 1-phosphate in the presence of [4-3H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH4 in the presence of NAD+. Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD+. There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15×105. PMID:4352864

  13. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.

    PubMed

    Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G

    2018-04-25

    This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.

  14. Diastereoselective synthesis of L: -threo-3,4-dihydroxyphenylserine by low-specific L: -threonine aldolase mutants.

    PubMed

    Gwon, Hui-Jeong; Baik, Sang-Ho

    2010-01-01

    Diastereoselectivity-enhanced mutants of L: -threonine aldolase (L: -TA) for L: -threo-3,4-dihydroxyphenylserine (L: -threo-DOPS) synthesis were isolated by error-prone PCR followed by a high-throughput screening. The most improved mutant was achieved from the mutant T3-3mm2, showing a 4-fold increase over the wild-type L: -TA. When aldol condensation activity was examined using whole cells of T3-3mm2, its de was constantly maintained at 55% during the batch reactions for 80 h, yielding 3.8 mg L: -threo-DOPS/ml.

  15. The Sugar Model: Autocatalytic Activity of the Triose-Ammonia Reaction

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2006-01-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose-ammonia reaction product on the kinetics of a second identical triose-ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  16. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  17. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine

    NASA Astrophysics Data System (ADS)

    Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi

    2016-05-01

    Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of

  18. High School Students' Affective Reaction to English Speaking Activities

    ERIC Educational Resources Information Center

    Jorquera Torres, Oliver Camilo; Mendoza Zapata, Jhon Eliot; Díaz Larenas, Claudio Heraldo

    2017-01-01

    This study aims to measure fifty-two high school students' affective reactions after doing individual and pair-based speaking activities then completing a semantic differential scale of nine bipolar adjectives. Results do not show significant statistical differences between the two types of activities or the schools involved in this study, but…

  19. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  20. High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times

    NASA Astrophysics Data System (ADS)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.

  1. Trehalose catabolism enzymes in L3 and L4 larvae of Anisakis simplex.

    PubMed

    Lopieńska-Biernat, E; Zółtowska, K; Rokicki, J

    2007-12-01

    The presence of trehalase and trehalose phosphorylase in L3 and L4 larvae of Anisakis simplex was demonstrated. The activity of trehalase and trehalose phosphorylase in L3 larvae was 6 and 10 times higher, respectively, than in L4 larvae. This suggests that trehalose metabolism is more important for L3 than LA larvae. Trehalases of L3 and L4 differ in their characteristics. The enzyme of L3 was present mainly in the lysosomes and cytosol, whereas in L4 the highest enzyme activity was measured in the lysosomal fraction. Trehalase activity was increased by 29% in L3 and 55% in L4 with the addition of Mg2+ (0.1 mmol). Tris inhibited trehalase in L3 larvae by 42% and in L4 by 25%. The enzymes differed in their reaction to EDTA, CaCl2, ZnCl2, and CH2ICOOH (all 0.1 mmol). High activity of trehalase from L3 larvae was measured within the pH range of 5.0 to 6.5, with an optimum pH of 6.1. The trehalase was a thermally tolerant enzyme from 25 C to 60 C. The enzyme lost half of its activity after preincubation without substrate above 75 C. The paper also discusses the similarities and differences in characteristics of trehalase from A. simplex larvae and presents the comparison to enzymes from other nematodes.

  2. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis.

    PubMed

    Hirao, Yoshinori; Mihara, Yasuhiro; Kira, Ikuo; Abe, Isao; Yokozeki, Kenzo

    2013-01-01

    An enzymatic production method for synthesizing L-alanyl-L-glutamine (Ala-Gln) from L-alanine methyl ester hydrochloride (AlaOMe) and L-glutamine (Gln) was developed in this study. The cultivation conditions for an Escherichia coli strain overexpressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis AJ 2458 (SAET) and reaction conditions for Ala-Gln production were optimized. A high cell density culture broth prepared by fed-batch cultivation showed 440 units/mL of Ala-Gln-producing activity. In addition, an Ala-Gln-producing reaction using intact E. coli cells overexpressing SAET under optimum conditions was conducted. A total Ala-Gln yield of 69.7 g/L was produced in 40 min. The molar yield was 67% against both AlaOMe and Gln.

  3. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    PubMed

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  4. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    PubMed Central

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the

  5. Effects of reaction time variability and age on brain activity during Stroop task performance.

    PubMed

    Tam, Angela; Luedke, Angela C; Walsh, Jeremy J; Fernandez-Ruiz, Juan; Garcia, Angeles

    2015-09-01

    Variability in reaction time during task performance may reflect fluctuations in attention and cause reduced performance in goal-directed tasks, yet it is unclear whether the mechanisms behind this phenomenon change with age. Using fMRI, we tested young and cognitively healthy older adults with the Stroop task to determine whether aging affects the neural mechanisms underlying intra-individual reaction time variability. We found significant between-group differences in BOLD activity modulated by reaction time. In older adults, longer reaction times were associated with greater activity in frontoparietal attentional areas, while in younger adults longer reaction times were associated with greater activity in default mode network areas. Our results suggest that the neural correlates of reaction time variability change with healthy aging, reinforcing the concept of functional plasticity to maintain high cognitive function throughout the lifespan.

  6. Characterisation of chlorophyll oxidation mediated by peroxidative activity in olives (Olea europaea L.) cv. Hojiblanca.

    PubMed

    Vergara-Domínguez, Honorio; Roca, María; Gandul-Rojas, Beatriz

    2013-08-15

    The oxidation of chlorophyll a (chl a) catalysed by peroxidase (POD) from mesocarp of the olive fruit (Olea europaea L., cv Hojiblanca) in the presence of H2O2 and 2,4-dichlorophenol (2,4-DCP), is characterised via the individualised quantification of the products of the enzymatic reaction using a new methodology of HPLC-UV spectrometry. This innovation has allowed the discovery that, in addition to 13(2) OH chl a and 15(1) OH lactone chl a, which are the first products of POD on chl a, the reaction process sequentially creates another series of oxidised chlorophyll derivatives which have not been previously described. Their origins have been linked to POD activity in the presence of 2,4-DCP. Likewise, a study of the effect of the concentration of the various cosubstrates on the POD reaction rate demonstrated that the correct establishment of the relative concentrations of the same ([H2O2]/[2,4-DCP]/[Chl]=1:3:0.02) is crucial to explaining inhibition effects by substrates and carrying out optimum measurements. Therefore, new essential parameters for the determination of POD activity on a chlorophyll substrate are established. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Scanning mass spectrometer for quantitative reaction studies on catalytically active microstructures.

    PubMed

    Roos, M; Kielbassa, S; Schirling, C; Häring, T; Bansmann, J; Behm, R J

    2007-08-01

    We describe an apparatus for spatially resolving scanning mass spectrometry which is able to measure the gas composition above catalytically active microstructures or arrays of these microstructures with a lateral resolution of better than 100 mum under reaction conditions and which allows us to quantitatively determine reaction rates on individual microstructures. Measurements of the three-dimensional gas composition at different vertical distances and separations between active structures allow the evaluation of gas phase mass transport effects. The system is based on a piezoelectrically driven positioning substage for controlled lateral and vertical positioning of the sample under a rigidly mounted capillary probe connecting to a mass spectrometer. Measurements can be performed at pressures in the range of <10(-2)-10 mbars and temperatures between room temperature and 450 degrees C. The performance of the setup is demonstrated using the CO oxidation reaction on Pt microstructures on Si with sizes between 100 and 300 mum and distances in the same order of magnitude, evaluating CO(2) formation and CO consumption above the microstructures. The rapidly decaying lateral resolution with increasing distance between sample and probe underlines the effects of (lateral) gas transport in the room between sample and probe. The reaction rates and apparent activation energy obtained from such measurements agree with previous data on extended surfaces, demonstrating the feasibility of determining absolute reaction rates on individual microstructures.

  8. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Bagherzadeh, Mojtaba

    2015-06-15

    We report the green synthesis of palladium/CuO nanoparticles (Pd/CuO NPs) using Theobroma cacao L. seeds extract and their catalytic activity for the reduction of 4-nitrophenol and Heck coupling reaction under aerobic conditions. The catalyst was characterized using the powder XRD, TEM, EDS, UV-vis and FT-IR. This method has the advantages of high yields, elimination of surfactant, ligand and homogeneous catalysts, simple methodology and easy work up. The catalyst can be recovered from the reaction mixture and reused several times without any significant loss of catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Preparation of optically active bicyclodihydrosiloles by a radical cascade reaction

    PubMed Central

    Miyazaki, Koichiro; Yamane, Yu; Yo, Ryuichiro; Uno, Hidemitsu

    2013-01-01

    Summary Bicyclodihydrosiloles were readily prepared from optically active enyne compounds by a radical cascade reaction triggered by tris(trimethylsilyl)silane ((Me3Si)3SiH). The reaction was initiated by the addition of a silyl radical to an α,β-unsaturated ester, forming an α-carbonyl radical that underwent radical cyclization to a terminal alkyne unit. The resulting vinyl radical attacked the silicon atom in an SHi manner to give dihydrosilole. The reaction preferentially formed trans isomers of bicyclosiloles with an approximately 7:3 to 9:1 selectivity. PMID:23946827

  10. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Black, Joshua A.; Knowles, Peter J.

    2018-06-01

    The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

  11. The glutaminase activity of l-asparaginase is not required for anticancer activity against ASNS-negative cells

    PubMed Central

    Chan, Wai Kin; Lorenzi, Philip L.; Anishkin, Andriy; Purwaha, Preeti; Rogers, David M.; Sukharev, Sergei; Rempe, Susan B.; Weinstein, John N.

    2014-01-01

    l-Asparaginase (l-ASP) is a key component of therapy for acute lymphoblastic leukemia. Its mechanism of action, however, is still poorly understood, in part because of its dual asparaginase and glutaminase activities. Here, we show that l-ASP’s glutaminase activity is not always required for the enzyme’s anticancer effect. We first used molecular dynamics simulations of the clinically standard Escherichia coli l-ASP to predict what mutated forms could be engineered to retain activity against asparagine but not glutamine. Dynamic mapping of enzyme substrate contacts identified Q59 as a promising mutagenesis target for that purpose. Saturation mutagenesis followed by enzymatic screening identified Q59L as a variant that retains asparaginase activity but shows undetectable glutaminase activity. Unlike wild-type l-ASP, Q59L is inactive against cancer cells that express measurable asparagine synthetase (ASNS). Q59L is potently active, however, against ASNS-negative cells. Those observations indicate that the glutaminase activity of l-ASP is necessary for anticancer activity against ASNS-positive cell types but not ASNS-negative cell types. Because the clinical toxicity of l-ASP is thought to stem from its glutaminase activity, these findings suggest the hypothesis that glutaminase-negative variants of l-ASP would provide larger therapeutic indices than wild-type l-ASP for ASNS-negative cancers. PMID:24659632

  12. Synthesis, Characterization and Antibacterial Activity of 1,4-di[ aminomethylene carboxyl] phenylene (H2L) and its Complexes Co(II), Cu (II), Zn(II) and Cd (II)

    NASA Astrophysics Data System (ADS)

    Sultan, J. S.; Fezea, S. M.; Mousa, F. H.

    2018-05-01

    A binucleating tetradentate Schiff base ligand, 1,4- di[amino methylene carboxylic] phenylene (H2L) and its forth new binuclear complexes [Co(II), Cu(II), Zn(II) and Cd(II)] were prepared via reaction metal (II) chloride with ligand (H2L) using 2:1 (M:L) in ethanol solvent. The new ligand (H2L) and its complexes were characterized by elemental microanalysis (C.H.N), atomic absorption, chloride content, molar conductance’s magnetic susceptibility, FTIR UV- Vis spectral and, 1H, 13 C- NMR (for H2L). The antibacterial activity with bacteria activity with bacteria, Staphylococcus aureus, Bacillus and Esccherichia Coli were studied.

  13. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    PubMed

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  14. Lymphogranuloma venereum variant L2b-specific polymerase chain reaction: insertion used to close an epidemiological gap.

    PubMed

    Verweij, S P; Catsburg, A; Ouburg, S; Lombardi, A; Heijmans, R; Dutly, F; Frei, R; Morré, S A; Goldenberger, D

    2011-11-01

    The management of the ongoing lymphogranuloma venereum epidemic in industrialized Western countries caused by Chlamydia trachomatis variant L2b still needs improvements in diagnosis, therapy and prevention. We therefore developed the first rapid C. trachomatis variant L2b-specific polymerase chain reaction to circumvent laborious ompA gene sequencing. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  15. Activities of some enzymes of lignin formation in reaction wood of Thuja orientalis, Metasequoia glyptostroboides and Robinia pseudoacacia.

    PubMed

    Kutsuki, H; Higuchi, T

    1981-07-01

    The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.

  16. Fission Activities of the Nuclear Reactions Group in Uppsala

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.

    This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.

  17. Analysis of the free amino acid content in pollen of nine Asteraceae species of known allergenic activity.

    PubMed

    Mondal, A K; Parui, S; Mandal, S

    1998-01-01

    The study reports the free amino acid composition of the pollen of nine members of the family Asteraceae, i.e. Ageratum conyzoides L., Blumea oxyodonta DC., Eupatorium odoratum L., Gnaphalium indicum L., Mikania scandens Willd., Parthenium hysterophorus L., Spilanthes acmella Murr., Vernonia cinerea (L.) Lees. and Xanthium strumarium L. by thin layer chromatography. The amino acid content was found to vary from 0.5-4.0% of the total dry weight. Fourteen amino acids were identified, among which amino-n-butyric acid, aspartic acid and proline were present in almost all pollen samples. The other major amino acids present in free form included arginine, cystine, glutamic acid, glycine, isoleucine, leucine, methionine, ornithine, tryptophan and tyrosine.

  18. Toward a New Chemotherapy for Breast Cancer: Structural and Functional Mechanism of the Retinoid Receptors Addressed by a Novel Computer Approach

    DTIC Science & Technology

    1999-05-01

    substitution of the second leucine in an LxxLL core with isoleucine still permits a strong hydrophobic interaction with the liganded receptor (Table 2...through electrostatic interactions. Figure 10 illustrates that the two leucines and one isoleucine (green and cyan) of the LxxlL motif are predicted to be...RARox was carried out as described in Materials and methods. The side chains of the two leucines (green) and one isoleucine (cyan) of the LxxIL core fit

  19. Connexins in Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2012-09-01

    Isoleucine and A=alanine. In L212A/I213A the leucine at position 212 and isoleucine at position 213 were mutated to alanine. Similar strategy was used to...and isoleucine at the indicated amino acid residues were mutated to alanine using site-directed mutagenesis (Figure 3). Expression of Cx32 and...Its Mutants and Gap Junction Assembly Human LNCaP cells neither express Cx32 nor form functional GJs [23]. We introduced WT-Cx32 and various

  20. Reactions of monodithiolene tungsten(VI) sulfido complexes with copper(I) in relation to the structure of the active site of carbon monoxide dehydrogenase.

    PubMed

    Groysman, Stanislav; Majumdar, Amit; Zheng, Shao-Liang; Holm, R H

    2010-02-01

    Reactions directed at the synthesis of structural analogues of the active site of molybdenum-containing carbon monoxide dehydrogenase have been investigated utilizing [WO(2)S(bdt)](2-) (1) and [WOS(2)(bdt)](2-) (2) and sterically hindered [Cu(R)L] or [Cu(SSiR'(3))(2)](-) as reactants. All successful reactions of 2 afford the binuclear W(VI)/Cu(I) products [WO(bdt)(mu(2)-S)(2)Cu(L)](2-/-) with L = carbene (3), Ar*S (4), Ar* (7), SSiR(3) (R = Ph (5), Pr(i) (6)). Similarly, [W(bdt)(OSiPh(3))S(2)](-) leads to [W(bdt)(OSiPh(3))(mu(2)-S)(2)Cu(SAr*)](-) (8). These complexes, with apical oxo and basal dithiolato and sulfido coordination (excluding 8), terminal thiolate ligation at Cu(I) (4-6, 8), and W-(mu(2)-S)-Cu bridging, bear a structural resemblance to the enzyme site. Differences include two bridges instead of one and the absence of basal oxo/hydroxo ligation. Complex 8 differs from the others by utilizing apical and basal sulfido ligands in bridge formation. Related reaction systems based on 1 gave 4 in small yield or product mixtures in which the desired monobridged complex [WO(2)(bdt)(mu(2)-S)Cu(R)](2-) was not detected. Mass spectrometric analysis of the reaction system with L = carbene suggests that any monobridged species forms may converted to the dibridged form by disproportionation. In these experiments, the use of W(VI) preserves the structural integrity of Mo(VI), whose analogues of 1 and 2 have not been isolated. (Ar* = 2,6-bis(2,4,6-triisopropylphenyl)phenyl, bdt = benzene-1,2-dithiolate(2-)).

  1. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  2. Adult Schistosoma mansoni express cathepsin L proteinase activity.

    PubMed

    Smith, A M; Dalton, J P; Clough, K A; Kilbane, C L; Harrop, S A; Hole, N; Brindley, P J

    1994-09-01

    This report presents the deduced amino acid sequence of a novel cathepsin L proteinase from Schistosoma mansoni, and describes cathepsin L-like activity in extracts of adult schistosomes. Using consensus primers specific for cysteine proteinases, gene fragments were amplified from adult S. mansoni cDNA by PCR and cloned. One of these fragments showed marked identity to Sm31, the cathepsin B cysteine proteinase of adult S. mansoni, whereas another differed from Sm31 and was employed as a probe to isolate two cDNAs from an adult S. mansoni gene library. Together these cDNAs encoded a novel preprocathepsin L of 319 amino acids; this zymogen is predicted to be processed in vivo into a mature, active cathepsin L proteinase of 215 amino acids. Closest homologies were with cathepsins L from rat, mouse, and chicken (46-47% identity). Southern hybridization analysis suggested that only one or a few copies of the gene was present per genome, demonstrated that its locus was distinct from that of Sm31, and that a homologous sequence was present in Schistosoma japonicum. Because these results indicated that schistosomes expressed a cathepsin L proteinase, extracts of adult S. mansoni were examined for acidic, cysteine proteinase activity. Based on rates of cleavage of peptidyl substrates employed to discriminate between classes of cysteine proteinases, namely cathepsin L (Z-phe-arg-AMC), cathepsin B (Z-arg-arg-AMC) and cathepsin H (Bz-arg-AMC), the extracts were found to contain vigorous cathepsin L-like activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.

    PubMed

    Kanzler, Clemens; Schestkowa, Helena; Haase, Paul T; Kroh, Lothar W

    2017-10-11

    In this study, the Maillard reaction of maltose and d-glucose in the presence of l-alanine was investigated in aqueous solution at 130 °C and pH 5. The reactivity of both carbohydrates was compared in regards of their degradation, browning, and antioxidant activity. In order to identify relevant differences in the reaction pathways, the concentrations of selected intermediates such as 1,2-dicarbonyl compounds, furans, furanones, and pyranones were determined. It was found, that the degradation of maltose predominantly yields 1,2-dicarbonyls that still carry a glucosyl moiety and thus subsequent reactions to HMF, furfural, and 2-acetylfuran are favored due to the elimination of d-glucose, which is an excellent leaving group in aqueous solution. Consequently, higher amounts of these heterocycles are formed from maltose. 3-deoxyglucosone and 3-deoxygalactosone represent the only relevant C 6 -1,2-dicarbonyls in maltose incubations and are produced in nearly equimolar amounts during the first 60 min of heating as byproducts of the HMF formation.

  4. Polymer-Supported Optically Active fac(S)-Tris(thiotato)rhodium(III) Complex for Sulfur-Bridging Reaction With Precious Metal Ions.

    PubMed

    Aizawa, Sen-Ichi; Tsubosaka, Soshi

    2016-01-01

    The optically active mixed-ligand fac(S)-tris(thiolato)rhodium(III) complexes, ΔL -fac(S)-[Rh(aet)2 (L-cys-N,S)](-) (aet = 2-aminoethanethiolate, L-cys = L-cysteinate) () and ΔLL -fac(S)-[Rh(aet)(L-cys-N,S)2 ](2-) were newly prepared by the equatorial preference of the carboxyl group in the coordinated L-cys ligand. The amide formation reaction of with 1,10-diaminodecane and polyallylamine gave the diamine-bridged dinuclear Rh(III) complex and the single-chain polymer-supported Rh(III) complex with retention of the ΔL configuration of , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear-type trinuclear structure with the S-bridged Co(III) center and the two Δ-Rh(III) terminal moieties. The polymer-supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85-91, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jianjun; Wang Jianji; Stell, George

    2006-10-28

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying themore » solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.« less

  6. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  7. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    PubMed

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  8. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    PubMed Central

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  9. New dinuclear palladium(II) complexes: Studies of the nucleophilic substitution reactions, DNA/BSA interactions and cytotoxic activity.

    PubMed

    Ćoćić, Dušan; Jovanović, Snežana; Nišavić, Marija; Baskić, Dejan; Todorović, Danijela; Popović, Suzana; Bugarčić, Živadin D; Petrović, Biljana

    2017-10-01

    Six new dinuclear Pd(II) complexes, [{Pd(2,2'-bipy)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd1), [{Pd(dach)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd2), [{Pd(en)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd3), [{Pd(2,2'-bipy)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd4), [{Pd(dach)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd5) and [{Pd(en)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd6) (where 2,2'-bipy=2,2'-bipyridyl, pz=pyrazine, dach=trans-(±)-1,2-diaminocyclohexane, en=ethylenediamine, 4,4'-bipy=4,4'-bipyridyl) have been synthesized and characterized by elemental microanalysis, IR, 1 H NMR and MALDI-TOF mass spectrometry. The pK a values of corresponding diaqua complexes were determined by spectrophotometric pH titration. Substitution reactions with thiourea (Tu), l-methionine (l-Met), l-cysteine (l-Cys), l-histidine (l-His) and guanosine-5'-monophosphate (5'-GMP) were studied under the pseudo-first order conditions at pH7.2. Reactions of Pd1 with Tu, l-Met and l-Cys were followed by decomposition of complexes, while structures of dinuclear complexes were preserved during the substitution with nitrogen donors. Interactions with calf-thymus DNA (CT-DNA) were followed by absorption spectroscopy and fluorescence quenching measurements. All complexes can bind to CT-DNA exhibiting high intrinsic binding constants (K b =10 4 -10 5 M -1 ). Competitive studies with ethidium bromide (EB) have shown that complexes can displace DNA-bound EB. High values of binding constants towards bovine serum albumin protein (BSA) indicate good binding affinity. Finally, all complexes showed moderate to high cytotoxic activity against HeLa (human cervical epithelial carcinoma cell lines) and MDA-MB-231 (human breast epithelial carcinoma cell lines) tumor cell lines inducing apoptotic type cell death, whereas normal fibroblasts were significantly less sensitive. The impact on cell cycle of these cells was distinctive, where Pd4, Pd5 and Pd6 showed the most prominent effect arresting MDA-MB-231 (human lung fibroblast cell lines) cell in G1/S phase of cell

  10. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase.

    PubMed

    Olteanu, Horatiu; Munson, Troy; Banerjee, Ruma

    2002-11-12

    Methionine synthase reductase (MSR) catalyzes the conversion of the inactive form of human methionine synthase to the active state of the enzyme. This reaction is of paramount physiological importance since methionine synthase is an essential enzyme that plays a key role in the methionine and folate cycles. A common polymorphism in human MSR has been identified (66A --> G) that leads to replacement of isoleucine with methionine at residue 22 and has an allele frequency of 0.5. Another polymorphism is 524C --> T, which leads to the substitution of serine 175 with leucine, but its allele frequency is not known. The I22M polymorphism is a genetic determinant for mild hyperhomocysteinemia, a risk factor for cardiovascular disease. In this study, we have examined the kinetic properties of the M22/S175 and I22/S175 and the I22/L175 and I22/S175 pairs of variants. EPR spectra of the semiquinone forms of variants I22/S175 and M22/S175 are indistinguishable and exhibit an isotropic signal at g = 2.00. In addition, the electronic absorption and reduction stoichiometries with NADPH are identical in these variants. Significantly, the variants activate methionine synthase with the same V(max); however, a 3-4-fold higher ratio of MSR to methionine synthase is required to elicit maximal activity with the M22/S175 and I22/L175 variant versus the I22/S175 enzyme. Differences are also observed between the variants in the efficacies of reduction of the artificial electron acceptors: ferricyanide, 2,6-dichloroindophenol, 3-acetylpyridine adenine dinucleotide phosphate, menadione, and the anticancer drug doxorubicin. These results reveal differences in the interactions between the natural and artificial electron acceptors and MSR variants in vitro, which are predicted to result in less efficient reductive repair of methionine synthase in vivo.

  11. Lipoxygenase activity in different species of sweet lupin (Lupinus L.) seeds and flakes.

    PubMed

    Stephany, Michael; Bader-Mittermaier, Stephanie; Schweiggert-Weisz, Ute; Carle, Reinhold

    2015-05-01

    Lipoxygenase (LOX)-catalysed degradation of polyunsaturated fatty acids is supposed to be a major cause of undesirable off-flavour development in legumes. In the present study, a photometric LOX assay including adequate sample workup was adapted to lupin seeds, kernels and flakes, respectively. Optimum reaction conditions were at pH 7.5 using a phosphate buffer concentration of 150 mmol l(-1) without the addition of sodium chloride. The LOX activities of different lupin species and varieties were compared. Significant variations among the species and varieties ranging from 50 to 1004 units mg(-1) protein were determined, being significantly lower than soybean LOX activity. Hulling and flaking of the seeds resulted in a 15% increase of LOX activity. In contrast to soy and other legumes, LOX from lupin only converted free fatty acids, whereas trilinolein and β-carotene were not oxidised. Consequently, according to the established classification, lupin LOX activity may be assigned to the LOX type-1, which, to the best of our knowledge, was demonstrated for the first time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. In situ Visualization of Electrocatalytic Reaction Activity at Quantum Dots for Water Oxidation.

    PubMed

    Chen, Ying; Fu, Jiaju; Cui, Chen; Jiang, Dechen; Chen, Zixuan; Chen, Hong-Yuan; Zhu, Jun-Jie

    2018-06-11

    Exploring electrocatalytic reactions on nanomaterial surface can give crucial information for the development of robust catalysts. Here, electrocatalytic reaction activity at single quantum dots (QDs) loaded silica micro-particles involved in water oxidation is visualized using electrochemiluminescence (ECL) microscopy. Under positive potential, the active redox centers at QDs induce the generation of hydroperoxide surface intermediates as coreactant to remarkably enhance ECL emission from luminol derivative for imaging. For the first time, in situ visualization of catalytic activity in water oxidation at QDs catalyst was achieved, supported by a linear relation between ECL intensity and turn over frequency. A very slight diffusion trend attributed to only luminol species proved in situ capture of hydroperoxide surface intermediates at catalytic active sites of QDs. This work provides tremendous potential in on-line imaging of electrocatalytic reaction and visual evaluation of catalyst performance.

  13. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine

    PubMed Central

    Jando, Julia; Camargo, Simone M. R.; Herzog, Brigitte

    2017-01-01

    Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary

  14. Cloning of Bordetella pertussis putative outer protein D (BopD) and Leucin/Isoleucine/Valin binding protein (LivJ)

    NASA Astrophysics Data System (ADS)

    Öztürk, Burcu Emine Tefon

    2017-04-01

    Whooping cough also known as pertussis is a contagious acute upper respiratory disease primarily caused by Bordetella pertussis. It is known that this disease may be fatal especially in infants and recently, the number of pertussis cases has been increased. Despite the fact that there are numbers of acellular vaccines on the market, the current acellular vaccine compositions are inadequate for providing sustainable immunity and avoiding subclinical disease cases. Hence, exploring novel proteins with high immune protective capacities is essential to enhance the clinical efficacy of current vaccines. In this study, genes of selected immunogenic proteins via -omics studies, namely Putative outer protein D (BopD) and Leucin/Isoleucine/Valin Binding Protein (LivJ) were first cloned into pGEM-T Easy vector and transformed to into E. coli DH5α cells and then cloned into the expression vector pET-28a(+) and transformed into E. coli BL21 (DE3) cells to express the proteins.

  15. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    DOT National Transportation Integrated Search

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  16. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    PubMed Central

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  17. Jasmonic acid-amino acid conjugation enzyme assays.

    PubMed

    Rowe, Martha L; Staswick, Paul E

    2013-01-01

    Jasmonic acid (JA) is activated for signaling by its conjugation to isoleucine (Ile) through an amide linkage. The Arabidopsis thaliana JASMONIC ACID RESISTANT1 (JAR1) enzyme carries out this Mg-ATP-dependent reaction in two steps, adenylation of the free carboxyl of JA, followed by condensation of the activated group to Ile. This chapter details the protocols used to detect and quantify the enzymatic activity obtained from a glutathione-S-transferase:JAR1 fusion protein produced in Escherichia coli, including an isotope exchange assay for the adenylation step and assays for the complete reaction that involve the high-performance liquid chromatography quantitation of adenosine monophosphate, a stoichiometric by-product of the reaction, and detection of the conjugation product by thin-layer chromatography or gas -chromatography/mass spectrometry.

  18. A novel nano-copper-bearing stainless steel with reduced Cu(2+) release only inducing transient foreign body reaction via affecting the activity of NF-κB and Caspase 3.

    PubMed

    Wang, Lei; Ren, Ling; Tang, Tingting; Dai, Kerong; Yang, Ke; Hao, Yongqiang

    2015-01-01

    Foreign body reaction induced by biomaterials is a serious problem in clinical applications. Although 317L-Cu stainless steel (317L-Cu SS) is a new type of implant material with antibacterial ability and osteogenic property, the foreign body reaction level still needs to be assessed due to its Cu(2+) releasing property. For this purpose, two macrophage cell lines were selected to detect cellular proliferation, apoptosis, mobility, and the secretions of inflammatory cytokines with the influence of 317L-Cu SS. Our results indicated that 317L-Cu SS had no obvious effect on the proliferation and apoptosis of macrophages; however, it significantly increased cellular migration and TNF-α secretion. Then, C57 mice were used to assess foreign body reaction induced by 317L-Cu SS. We observed significantly enhanced recruitment of inflammatory cells (primarily macrophages) with increased TNF-α secretion and apoptosis level in tissues around the materials in the early stage of implantation. With tissue healing, both inflammation and apoptosis significantly decreased. Further, we discovered that NF-κB pathway and Caspase 3 played important roles in 317L-Cu SS induced inflammation and apoptosis. We concluded that 317L-Cu SS could briefly promote the inflammation and apoptosis of surrounding tissues by regulating the activity of NF-κB pathway and Caspase 3. All these discoveries demonstrated that 317L-Cu SS has a great potential for clinical application.

  19. A novel nano-copper-bearing stainless steel with reduced Cu2+ release only inducing transient foreign body reaction via affecting the activity of NF-κB and Caspase 3

    PubMed Central

    Wang, Lei; Ren, Ling; Tang, Tingting; Dai, Kerong; Yang, Ke; Hao, Yongqiang

    2015-01-01

    Foreign body reaction induced by biomaterials is a serious problem in clinical applications. Although 317L-Cu stainless steel (317L-Cu SS) is a new type of implant material with antibacterial ability and osteogenic property, the foreign body reaction level still needs to be assessed due to its Cu2+ releasing property. For this purpose, two macrophage cell lines were selected to detect cellular proliferation, apoptosis, mobility, and the secretions of inflammatory cytokines with the influence of 317L-Cu SS. Our results indicated that 317L-Cu SS had no obvious effect on the proliferation and apoptosis of macrophages; however, it significantly increased cellular migration and TNF-α secretion. Then, C57 mice were used to assess foreign body reaction induced by 317L-Cu SS. We observed significantly enhanced recruitment of inflammatory cells (primarily macrophages) with increased TNF-α secretion and apoptosis level in tissues around the materials in the early stage of implantation. With tissue healing, both inflammation and apoptosis significantly decreased. Further, we discovered that NF-κB pathway and Caspase 3 played important roles in 317L-Cu SS induced inflammation and apoptosis. We concluded that 317L-Cu SS could briefly promote the inflammation and apoptosis of surrounding tissues by regulating the activity of NF-κB pathway and Caspase 3. All these discoveries demonstrated that 317L-Cu SS has a great potential for clinical application. PMID:26604748

  20. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health.

    PubMed

    Oh, N S; Kwon, H S; Lee, H A; Joung, J Y; Lee, J Y; Lee, K B; Shin, Y K; Baick, S C; Park, M R; Kim, Y; Lee, K W; Kim, S H

    2014-01-01

    The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. L-asparaginase activity in Aeromonas sp. isolated from freshwater mussel.

    PubMed

    Pattnaik, S; Kabi, R; Janaki Ram, K; Bhanot, K K

    2000-11-01

    Aeromonas sp. from Lamellidens marginalis produced L-asparaginase when grown at 37 degrees C. The optimum enzyme activity was at pH 9 when temperature was 45 degrees C. Half-life of partially purified enzyme at 50 degrees C and 55 degrees C was 35 and 20 min, respectively. Activation and deactivation energies of partially purified enzyme were 17.48 and 24.86 kcal mol-1 respectively. The enzyme exhibited a Km (L-asparagine) value of 4.9 x 10(-6) mol l-1 and a Vmax of 9.803 IU ml-1. Three metal ions inhibited the enzyme activity at 10-20 mumol l-1 concentrations. Catalytic activity was also inhibited by EDTA, iodoacetic acid, parachloromercuribenzoic acid and phenylmethylsulphonyl fluoride at 0.1 mumol l-1.

  2. Acridine orange staining reaction as an index of physiological activity in Escherichia coli

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Singh, A.; Byun, S.; Callis, P. R.; Williams, S.

    1991-01-01

    The assumption that the acridine orange (AO) color reaction may be used as an index of physiological activity was investigated in laboratory grown Escherichia coli. Spectrofluorometric observations of purified nucleic acids, ribosomes and the microscopic color of bacteriophage-infected cells stained with AO confirmed the theory that single-stranded nucleic acids emit orange to red fluorescence while those that are double-stranded fluoresce green in vivo. Bacteria growing actively in a rich medium could be distinguished from cells in stationary phase by the AO reaction. Cells from log phase appeared red, whereas those in stationary phase were green. However, this differentiation was not seen when the bacteria were grown in a minimal medium or when a variation of the staining method was used. Also, shifting bacteria in stationary phase to starvation conditions rapidly changed their AO staining reaction. Boiling and exposure to lethal concentrations of azide and formalin resulted in stationary-phase cells that appeared red after staining but bacteria killed with chlorine remained green. These findings indicate that the AO staining reaction may be suggestive of physiological activity under defined conditions. However, variables in staining and fixation procedures as well as uncertainties associated with mixed bacterial populations in environmental samples may produce results that are not consistent with the classical interpretation of this reaction. The importance of validating the putative physiological implications of this staining reaction is stressed.

  3. Oligomerization of L-gamma-carboxyglutamic acid

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  4. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by spirulina.

    PubMed

    Kim, H M; Lee, E H; Cho, H H; Moon, Y H

    1998-04-01

    We investigated the effect of spirulina on mast cell-mediated immediate-type allergic reactions. Spirulina dose-dependently inhibited the systemic allergic reaction induced by compound 48/80 in rats. Spirulina inhibited compound 48/80-induced allergic reaction 100% with doses of 100-1000 microg/g body weight, i.p. Spirulina (10-1000 microg/g body weight, i.p.) also significantly inhibited local allergic reaction activated by anti-dinitrophenyl (DNP) IgE. When rats were pretreated with spirulina at a concentration ranging from 0.01 to 1000 microg/g body weight, i.p., the serum histamine levels were reduced in a dose-dependent manner. Spirulina (0.001 to 10 microg/mL) dose-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when spirulina (10 microg/mL) was added, transiently and significantly increased about 70-fold at 10 sec compared with that of control cells. Moreover, spirulina (10 microg/mL) had a significant inhibitory effect on anti-DNP IgE-induced tumor necrosis factor-alpha production. These results indicate that spirulina inhibits mast cell-mediated immediate-type allergic reactions in vivo and in vitro.

  5. 3-Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in Arabidopsis thaliana.

    PubMed

    Schertl, Peter; Danne, Lennart; Braun, Hans-Peter

    2017-09-01

    In plants, amino acid catabolism is especially relevant in metabolic stress situations (e.g. limited carbohydrate availability during extended darkness). Under these conditions, amino acids are used as alternative substrates for respiration. Complete oxidation of the branched-chain amino acids (BCAAs) leucine, isoleucine (Ile), and valine (Val) in the mitochondria efficiently allows the formation of ATP by oxidative phosphorylation. However, the metabolic pathways for BCAA breakdown are largely unknown so far in plants. A systematic search for Arabidopsis ( Arabidopsis thaliana ) genes encoding proteins resembling enzymes involved in BCAA catabolism in animals, fungi, and bacteria as well as proteomic analyses of mitochondrial fractions from Arabidopsis allowed the identification of a putative 3-hydroxyisobutyrate dehydrogenase, AtHDH1 (At4g20930), involved in Val degradation. Systematic substrate screening analyses revealed that the protein uses 3-hydroxyisobutyrate but additionally 3-hydroxypropionate as substrates. This points to a role of the enzyme not only in Val but possibly also in Ile metabolism. At4g20930 knockdown plants were characterized to test this conclusion. Root toxicity assays revealed increased root growth inhibition of the mutants if cultivated in the presence of Val or Ile but not in the presence of leucine. We conclude that AtHDH1 has a dual role in BCAA metabolism in plants. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Kinetic Study of Laboratory Mutants of NDM-1 Metallo-β-Lactamase and the Importance of an Isoleucine at Position 35

    PubMed Central

    Marcoccia, Francesca; Bottoni, Carlo; Sabatini, Alessia; Colapietro, Martina; Mercuri, Paola Sandra; Galleni, Moreno; Kerff, Frédéric; Matagne, André; Celenza, Giuseppe; Amicosante, Gianfranco

    2016-01-01

    Two laboratory mutants of NDM-1 were generated by replacing the isoleucine at position 35 with threonine and serine residues: the NDM-1I35T and NDM-1I35S enzymes. These mutants were well characterized, and their kinetic parameters were compared with those of the NDM-1 wild type. The kcat, Km, and kcat/Km values calculated for the two mutants were slightly different from those of the wild-type enzyme. Interestingly, the kcat/Km of NDM-1I35S for loracarbef was about 14-fold higher than that of NDM-1. Far-UV circular dichroism (CD) spectra of NDM-1 and NDM-1I35T and NDM-1I35S enzymes suggest local structural rearrangements in the secondary structure with a marked reduction of α-helix content in the mutants. PMID:26856833

  7. Antinociceptive and Anti-Inflammatory Activities of Leaf Methanol Extract of Cotyledon orbiculata L. (Crassulaceae).

    PubMed

    Amabeoku, George J; Kabatende, Joseph

    2012-01-01

    Leaf methanol extract of C. orbiculata L. was investigated for antinociceptive and anti-inflammatory activities using acetic acid writhing and hot-plate tests and carrageenan-induced oedema test in mice and rats, respectively. C. orbiculata (100-400 mg/kg, i.p.) significantly inhibited acetic acid-induced writhing and significantly delayed the reaction time of mice to the hot-plate-induced thermal stimulation. Paracetamol (300 mg/kg, i.p.) significantly inhibited the acetic acid-induced writhing in mice. Morphine (10 mg/kg, i.p.) significantly delayed the reaction time of mice to the thermal stimulation produced with hot plate. Leaf methanol extract of C. orbiculata (50-400 mg/kg, i.p.) significantly attenuated the carrageenan-induced rat paw oedema. Indomethacin (10 mg/kg, p.o.) also significantly attenuated the carrageenan-induced rat paw oedema. The LD(50) value obtained for the plant species was greater than 4000 mg/kg (p.o.). The data obtained indicate that C. orbiculata has antinociceptive and anti-inflammatory activities, justifying the folklore use of the plant species by traditional medicine practitioners in the treatment of painful and inflammatory conditions. The relatively high LD(50) obtained shows that C. orbiculata may be safe in or nontoxic to mice.

  8. Reaction Mechanism and Molecular Basis for Selenium/Sulfur Discrimination of Selenocysteine Lyase*

    PubMed Central

    Omi, Rie; Kurokawa, Suguru; Mihara, Hisaaki; Hayashi, Hideyuki; Goto, Masaru; Miyahara, Ikuko; Kurihara, Tatsuo; Hirotsu, Ken; Esaki, Nobuyoshi

    2010-01-01

    Selenocysteine lyase (SCL) catalyzes the pyridoxal 5′-phosphate-dependent removal of selenium from l-selenocysteine to yield l-alanine. The enzyme is proposed to function in the recycling of the micronutrient selenium from degraded selenoproteins containing selenocysteine residue as an essential component. The enzyme exhibits strict substrate specificity toward l-selenocysteine and no activity to its cognate l-cysteine. However, it remains unclear how the enzyme distinguishes between selenocysteine and cysteine. Here, we present mechanistic studies of selenocysteine lyase from rat. ESI-MS analysis of wild-type and C375A mutant SCL revealed that the catalytic reaction proceeds via the formation of an enzyme-bound selenopersulfide intermediate on the catalytically essential Cys-375 residue. UV-visible spectrum analysis and the crystal structure of SCL complexed with l-cysteine demonstrated that the enzyme reversibly forms a nonproductive adduct with l-cysteine. Cys-375 on the flexible loop directed l-selenocysteine, but not l-cysteine, to the correct position and orientation in the active site to initiate the catalytic reaction. These findings provide, for the first time, the basis for understanding how trace amounts of a selenium-containing substrate is distinguished from excessive amounts of its cognate sulfur-containing compound in a biological system. PMID:20164179

  9. Antioxidant activities of methanol extract of Sambucus ebulus L. flower.

    PubMed

    Ebrahimzadeh, M A; Nabavi, S F; Nabavi, S M

    2009-03-01

    In this study antioxidant activity of methanol extract of Sambucus ebulus L. flower was investigated employing various in vitro assay systems, i.e., DPPH and nitric oxide radical scavenging, hydrogen peroxide scavenging, reducing power, iron ion chelating power and linoleic acid. IC50 for DPPH radical-scavenging activity was 228 +/- 12 microg mL(-1). The extract showed very high activity in the reducing power assay that was comparable with positive control, vitamin C. The extract showed good nitric oxide-scavenging activity (IC50 = 309 +/- 14 microg mL(-1). It was found that antioxidant activity was dose dependent i.e., activity was increased with the increase of their concentrations. The extract showed very weak activity in iron ion chelating (IC50 = 1.3 +/- 0.07 mg mL(-1)). It is showed very good activity in scavenging of hydrogen'peroxide. IC50 for scavenging of extract was 59.5 +/- 3.3 mcirog mL(-1). The extracts exhibited no activity in linoleic acid model. The total phenolic content of flower was 56.3 +/- 2.81 mg gallic acid equivalent g(-1) of extract powder and total flavonoid content was 14.5 +/- 0.72 mg quercetin equivalent g(-1) of extract powder by reference to standard curve.

  10. Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Duke, Audrey S.; Xie, Kangmin; Monnier, John R.; Chen, Donna A.

    2017-03-01

    Pt-Re bimetallic catalysts have shown enhanced activity compared to pure Pt for reactions involving oxidation, but the origins of this improved activity are not fully understood. Methanol oxidation on a Pt-Re alloy surface and pure Pt foil was studied in a microreactor coupled to an ultrahigh vacuum chamber. For reaction at 60 °C, the Pt-Re alloy surface exhibits superior long-term activity over a 24 h reaction period compared to pure Pt. The initial activity of Pt is 10-15% higher than on Pt-Re; however, the Pt surface gradually loses activity after 10 h online, whereas the activity of Pt-Re does not diminish. Post-reaction XPS shows that more carbon accumulates on the Pt than on Pt-Re, and the improved long-term activity is attributed to a greater ability of Pt-Re to oxidize the carbonaceous intermediates that eventually poison active sites. Both Pt and Pt-Re surfaces have almost no activity for methanol oxidation until a minimum coverage of oxygen is achieved from O2 dissociation. A comparison with methanol oxidation studies on Pt and Pt-Re in a pressure regime that is 150 times lower than in this work demonstrates that more carbon and less oxygen accumulate on the surfaces during reaction at the lower pressures.

  11. Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design.

    PubMed

    Xu, Li; Liu, Xiaohong; Yin, Zhenhao; Liu, Qian; Lu, Lili; Xiao, Min

    2016-12-01

    The α-L-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-L-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp 252 , Asp 257 , Asp 264 , Glu 530 , Arg 548 , His 553 , and Trp 555 ) and may form the hydrophobic pocket in stabilizing donor (Trp 261 , Tyr 302 , Tyr 316 , and Trp 369 ) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp 257 . Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.

  12. A heterogeneous Pd-Bi/C catalyst in the synthesis of L-lyxose and L-ribose from naturally occurring D-sugars.

    PubMed

    Fan, Ao; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2011-10-26

    A critical step in the synthesis of the rare sugars, L-lyxose and L-ribose, from the corresponding D-sugars is the oxidation to the lactone. Instead of conventional oxidizing agents like bromine or pyridinium dichromate, it was found that a heterogeneous catalyst, Pd-Bi/C, could be used for the direct oxidation with molecular oxygen. The composition of the catalyst was optimized and the best results were obtained with 5 : 1 atomic ratio of Pd : Bi. The overall yields of the five-step procedure to L-ribose and L-lyxose were 47% and 50%, respectively. The synthetic procedure is advantageous from the viewpoint of overall yield, reduced number of steps, and mild reaction conditions. Furthermore, the heterogeneous oxidation catalyst can be easily separated from the reaction mixture and reused with no loss of activity.

  13. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide.

    PubMed

    Matsui, T; Ozaki, S i; Liong, E; Phillips, G N; Watanabe, Y

    1999-01-29

    To clarify how the location of distal histidine affects the activation process of H2O2 by heme proteins, we have characterized reactions with H2O2 for the L29H/H64L and F43H/H64L mutants of sperm whale myoglobin (Mb), designed to locate the histidine farther from the heme iron. Whereas the L29H/H64L double substitution retarded the reaction with H2O2, an 11-fold rate increase versus wild-type Mb was observed for the F43H/H64L mutant. The Vmax values for 1-electron oxidations by the myoglobins correlate well with the varied reactivities with H2O2. The functions of the distal histidine as a general acid-base catalyst were examined based on the reactions with cumene hydroperoxide and cyanide, and only the histidine in F43H/H64L Mb was suggested to facilitate heterolysis of the peroxide bond. The x-ray crystal structures of the mutants confirmed that the distal histidines in F43H/H64L Mb and peroxidase are similar in distance from the heme iron, whereas the distal histidine in L29H/H64L Mb is located too far to enhance heterolysis. Our results indicate that the proper positioning of the distal histidine is essential for the activation of H2O2 by heme enzymes.

  14. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum.

    PubMed

    Singh, Arvind Kumar; Syiem, Mayashree B; Singh, Rajkumar S; Adhikari, Samrat; Rai, Amar Nath

    2008-05-01

    We present evidence, for the first time, of the occurrence of a transport system common for amino acid methionine, and methionine/glutamate analogues L-methionine-DL-sulfoximine (MSX) and phosphinothricin (PPT) in cyanobacterium Nostoc muscorum. Methionine, which is toxic to cyanobacterium, enhanced its nitrogenase activity at lower concentrations. The cyanobacterium showed a biphasic pattern of methionine uptake activity that was competitively inhibited by the amino acids alanine, isoleucine, leucine, phenylalanine, proline, valine, glutamine, and asparagine. The methionine/glutamate analogue-resistant N. muscorum strains (MSX-R and PPT-R strains) also showed methionine-resistant phenotype accompanied by a drastic decrease in 35S methionine uptake activity. Treatment of protein extracts from these mutant strains with MSX and PPT reduced biosynthetic glutamine synthetase (GS) activity only in vitro and not in vivo. This finding implicated that MSX- and PPT-R phenotypes may have arisen due to a defect in their MSX and PPT transport activity. The simultaneous decrease in methionine uptake activity and in vitro sensitivity toward MSX and PPT of GS protein in MSX- and PPT-R strains indicated that methionine, MSX, and PPT have a common transport system that is shared by other amino acids as well in N. muscorum. Such information can become useful for isolation of methionine-producing cyanobacterial strains.

  15. Chemical activation in Rhinella arenarum oocytes: effect of dehydroleucodine (DhL) and its hydrogenated derivative (2H-DhL).

    PubMed

    Medina, M F; Bühler, M I; Sánchez-Toranzo, G

    2015-12-01

    Mature oocytes are arrested in metaphase II due to the presence of high levels of active maturation promoting factor (MPF). After fertilization, active MPF levels decline abruptly, enabling oocytes to complete meiosis II. One of the first and universal events of oocyte activation is an increase in cytosolic Ca2+ that would be responsible for MPF inactivation. Mature oocytes can also be activated by parthenogenetic activation. The aims of this work are to test the ability of dehydroleucodine (DhL) and its hydrogenated derivative 11,13-dihydro-dehydroleucodine (2H-DhL) to induce chemical activation in amphibian oocytes and to study the participation of calcium in the process. Results indicated that DhL and 2H-DhL induced oocyte activation in a dose-dependent manner. After 90 min of treatment, DhL 36 μM was able to induce 95% activation, while 2H-DhL 36 μM was less active, with only 40% activation. Our results suggest that DhL induced the inhibition of MPF activity, probably by an increase in intracellular Ca2+ concentration. Extracellular Ca2+ would not be significant, although Ca2+ release from intracellular stores is critical. In this sense, IP3Rs and RyRs were involved in the Ca2+ transient induced by lactones. In this species, RyRs appears to be the largest contributor to Ca2+ release in DhL-induced activation. Although more studies are needed on the mechanism of action through which these lactones induce oocyte activation in Rhinella arenarum, the results of this research provide interesting perspectives for the use of these lactones as chemical activators in in vitro fertilization and cloning.

  16. Structure of the thermophilic l-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability.

    PubMed

    Choi, Jin Myung; Lee, Yong-Jik; Cao, Thinh-Phat; Shin, Sun-Mi; Park, Min-Kyu; Lee, Han-Seung; di Luccio, Eric; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo

    2016-04-15

    Thermophilic l-arabinose isomerase (AI), which catalyzes the interconversion of l-arabinose and l-ribulose, can be used to produce d-tagatose, a sugar substitute, from d-galactose. Unlike mesophilic AIs, thermophilic AIs are highly dependent on divalent metal ions for their catalytic activity and thermostability at elevated temperatures. However, the molecular basis underlying the substrate preferences and metal requirements of multimeric AIs remains unclear. Here we report the first crystal structure of the apo and holo forms of thermophilic Geobacillus kaustophilus AI (GKAI) in hexamer form. The structures, including those of GKAI in complex with l-arabitol, and biochemical analyses revealed not only how the substrate-binding site of GKAI is formed through displacement of residues at the intersubunit interface when it is bound to Mn(2+), but also revealed the water-mediated H-bonding networks that contribute to the structural integrity of GKAI during catalysis. These observations suggest metal-mediated isomerization reactions brought about by intersubunit interactions at elevated temperatures are responsible for the distinct active site features that promote the substrate specificity and thermostability of thermophilic AIs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  18. Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis L,D-transpeptidase.

    PubMed

    Lecoq, Lauriane; Bougault, Catherine; Hugonnet, Jean-Emmanuel; Veckerlé, Carole; Pessey, Ombeline; Arthur, Michel; Simorre, Jean-Pierre

    2012-05-09

    β-lactams inhibit peptidoglycan polymerization by acting as suicide substrates of essential d,d-transpeptidases. Bypass of these enzymes by unrelated l,d-transpeptidases results in β-lactam resistance, although carbapenems remain unexpectedly active. To gain insight into carbapenem specificity of l,d-transpeptidases (Ldts), we solved the nuclear magnetic resonance (NMR) structures of apo and imipenem-acylated Bacillus subtilis Ldt and show that the cysteine nucleophile is present as a neutral imidazole-sulfhydryl pair in the substrate-free enzyme. NMR relaxation dispersion does not reveal any preexisting conformational exchange in the apoenzyme, and change in flexibility is not observed upon noncovalent binding of β-lactams (K(D) > 37.5 mM). In contrast, covalent modification of active cysteine by both carbapenems and 2-nitro-5-thiobenzoate induces backbone flexibility that does not result from disruption of the imidazole-sulfhydryl proton interaction or steric hindrance. The chemical step of the reaction determines enzyme specificity since no differences in drug affinity were observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Anticipatory activity in the human thalamus is predictive of reaction times.

    PubMed

    Nikulin, V V; Marzinzik, F; Wahl, M; Schneider, G-H; Kupsch, A; Curio, G; Klostermann, F

    2008-09-09

    Responding to environmental stimuli in a fast manner is a fundamental behavioral capacity. The pace at which one responds is known to be predetermined by cortical areas, but it remains to be shown if subcortical structures also take part in defining motor swiftness. As the thalamus has previously been implicated in behavioral control, we tested if neuronal activity at this level could also predict the reaction time of upcoming movements. To this end we simultaneously recorded electrical brain activity from the scalp and the ventral intermediate nucleus (VIM) of the thalamus in patients undergoing thalamic deep brain stimulation. Based on trial-to-trial analysis of a Go/NoGo task, we demonstrate that both cortical and thalamic neuronal activity prior to the delivery of upcoming Go stimulus correlates with the reaction time. This result goes beyond the demonstration of thalamic activity being associated with but potentially staying invariant to motor performance. In contrast, it indicates that the latencies at which we respond to environmental stimuli are not exclusively related to cortical pre-movement states but are also correlated with anticipatory thalamic activity.

  20. Synthesis, spectral characterization and biological studies of some organotin(IV) complexes of L-proline, trans-hydroxy- L-proline and L-glutamine

    NASA Astrophysics Data System (ADS)

    Nath, Mala; Jairath, Ruchi; Eng, George; Song, Xueqing; Kumar, Ashok

    2005-12-01

    New organotin(IV) complexes of the general formula R 3Sn(L) (where R = Me, n-Bu and HL = L-proline; R = Me, Ph and HL = trans-hydroxy- L-proline and L-glutamine) and R 2Sn(L) 2 (where R = n-Bu, Ph and HL = L-proline; R = Ph, HL = trans-hydroxy- L-proline) have been synthesized by the reaction of R nSnCl 4- n (where n = 2 or 3) with sodium salt of the amino acid (HL). n-Bu 2Sn(Pro) 2 was synthesized by the reaction of n-Bu 2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear ( 1H, 13C and 119Sn) NMR spectral studies. The 119Sn Mössbauer and IR studies indicate that L-proline and trans-hydroxy- L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy- L-proline, in which the carboxylate group acts as bidentate group. L-Glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD 50 values are >1000 mg kg -1.

  1. Metabolic Footprint Analysis Uncovers Strain Specific Overflow Metabolism and D-Isoleucine Production of Staphylococcus Aureus COL and HG001

    PubMed Central

    Dörries, Kirsten; Lalk, Michael

    2013-01-01

    During infection processes, Staphylococcus aureus is able to survive within the host and to invade tissues and cells. For studying the interaction between the pathogenic bacterium and the host cell, the bacterial growth behaviour and its metabolic adaptation to the host cell environment provides first basic information. In the present study, we therefore cultivated S. aureus COL and HG001 in the eukaryotic cell culture medium RPMI 1640 and analyzed the extracellular metabolic uptake and secretion patterns of both commonly used laboratory strains. Extracellular accumulation of D-isoleucine was detected starting during exponential growth of COL and HG001 in RPMI medium. This non-canonical D-amino acid is known to play a regulatory role in adaptation processes. Moreover, individual uptake of glucose, accumulation of acetate, further overflow metabolites, and intermediates of the branched-chain amino acid metabolism constitute unique metabolic footprints. Altogether these time-resolved footprint analyses give first metabolic insights into staphylococcal growth behaviour in a culture medium used for infection related studies. PMID:24312553

  2. Conserved Loop Cysteines of Vitamin K Epoxide Reductase Complex Subunit 1-like 1 (VKORC1L1) Are Involved in Its Active Site Regeneration*

    PubMed Central

    Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W.

    2014-01-01

    Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions. PMID:24532791

  3. Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration.

    PubMed

    Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W

    2014-03-28

    Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.

  4. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase.

    PubMed

    Min, Kyungjin; Yoon, Hye-Jin; Matsuura, Atsushi; Kim, Yong Hwan; Lee, Hyung Ho

    2018-04-30

    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes β-deamination of L-lysine into L-pipecolic acid using β-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, μ-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD + , (ii) a ternary complex with NAD + and L-pipecolic acid, (iii) a ternary complex with NAD + and L-proline, and (iv) a ternary complex with NAD + and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida . In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD + is initially converted into NADH and then reverted back into NAD + at a late stage of the reaction.

  5. Enhanced electrocatalytic activity of MoS(x) on TCNQ-treated electrode for hydrogen evolution reaction.

    PubMed

    Chang, Yung-Huang; Nikam, Revannath D; Lin, Cheng-Te; Huang, Jing-Kai; Tseng, Chien-Chih; Hsu, Chang-Lung; Cheng, Chia-Chin; Su, Ching-Yuan; Li, Lain-Jong; Chua, Daniel H C

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo(5+) and S2(2-) species in the MoSx, especially with S2(2-) serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g(-1) cm(-2) h(-1) (286 mmol g(-1) cm(-2) h(-1)) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  6. Lipid metabolites with free-radical scavenging activity from Euphorbia helioscopia L.

    PubMed

    Cateni, F; Zilic, J; Altieri, T; Zacchigna, M; Procida, G; Gaggeri, R; Rossi, D; Collina, S

    2014-07-01

    The methanolic extract of the plant Euphorbia helioscopia L. exhibited an interesting free-radical scavenging activity. From the aerial parts of Euphorbia helioscopia L. (Euphorbiaceae), a complex mixture of seven cerebrosides together with glucoclionasterol, a digalactosyldiacylglycerol and a diacylmonogalactosylglycerol were identified. The structures of the cerebrosides were characterized as 1-O-β-D-glucosides of phytosphingosines, which comprised (2S, 3S, 4E, 8E)-2-amino-4(E),8(E)-octadecadiene-1,3-diol, (2S, 3S, 4E, 8Z)-2-amino-4(E),8(Z)-octadecadiene-1,3-diol, (2S, 3S, 4R, 8Z)-2-amino-8(Z)-octadecene-1,3,4-triol as long chain bases with seven 2-hydroxy fatty acids of varying chain lengths (C16, C24:1, C26:1, C24, C26, C28:1) linked to the amino group. The glycosylglycerides were characterized as (2S)-2,3-O-di-(9,12,15-octadecatrienoyl)-glyceryl-6-O-(α-D-galactopyranosyl)-β-D-galactopyranoside and (2S)-2,3-O-di-(9,12,15-octadecatrienoyl)-glyceryl-1-O-β-D-galactopyranoside. The structures were established on the basis of spectroscopic data and chemical reactions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Determination of sperm acrosin activity in the arctic fox (Alopex lagopus L.)--using method developed for human spermatozoa.

    PubMed

    Stasiak, K; Janicki, B; Glogowski, J

    2012-01-01

    The aim of the study was to adapt a method to determine acrosin activity of human spermatozoa to arctic fox (Alopex lagopus L.) spermatozoa. We modified this method by reducing sperm count per sample from 1 divided by 10 x 10(6) to 25 divided by 200 x 10(3), incubation time from 180 minutes to 60 minutes, and Triton X-100 concentration in the reaction mixture from 0.01% to 0.005% per 100 cm3. It has also confirmed that arctic fox seminal plasma is rich in proteinases and their inhibitors. To completely abolish the inhibitory effect of seminal plasma on acrosin activity it is recommended to wash the spermatozoa four times. Benzamidine served an inhibitor of acrosin activity.

  8. Non-ionic iodinated contrast media related immediate reactions: A mechanism study of 27 patients.

    PubMed

    Zhai, Liqin; Guo, Xiangjie; Zhang, Haoyue; Jin, Qianqian; Zeng, Qiang; Tang, Xiaoxian; Gao, Cairong

    2017-01-01

    The underlying mechanism of non-ionic iodinated contrast media-related immediate reactions was evaluated in this study. Patients presenting at least grade II immediate reactions after non-ionic iodinated contrast media injection were enrolled. Basophil activation was evaluated by flow cytometry. The plasma concentration of human terminal complement complex SC5b-9, as well as concentrations of serum chymase, tryptase, human mast cell carboxypeptidase A3, human prostaglandin D2, and total IgE were measured by enzyme-linked immunosorbent assay. The basophil activation percentage was significantly higher in the study group than in the control group (17.94±21.06% vs 3.45±1.49%). The plasma concentration of human terminal complement complex SC5b-9 and concentrations of serum chymase, human mast cell carboxypeptidase A3, prostaglandin D2, tryptase, and total IgE were also significantly increased (236.99±318.21 vs 49.70±30.41ng/mL, 0.41±0.49 vs 0.09±0.06ng/mL, 1.17±0.67 vs 0.30±0.17ng/mL, 203.52±137.27 vs 102.28±48.72pg/mL, 3.81±0.22 vs 2.70±0.16ng/mL, 102.00±51.84 vs 19.97±2.75ng/mL, respectively). Both mast cells and basophils were activated in non-ionic iodinated contrast media to mediate immediate hypersensitivity, and mast cells may be involved. Different mechanisms, including IgE-dependent, complement-dependent, and direct membrane effects, contributed to mast cell and basophil activation. Individual patients may use a single or combined mechanism involving single or combined mast cells and basophils. Immediate reactions following non-ionic iodinated contrast media injection may be a mechanically heterogenous disease. Copyright © 2016. Published by Elsevier B.V.

  9. Exquisite Modulation of the Active Site of Methanocaldococcus jannaschii Adenylosuccinate Synthetase in Forward Reaction Complexes.

    PubMed

    Karnawat, Vishakha; Mehrotra, Sonali; Balaram, Hemalatha; Puranik, Mrinalini

    2016-05-03

    In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.

  10. Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.

  11. Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts

    DOE PAGES

    Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2018-05-14

    Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.

  12. Reactions of l-ergothioneine and some other aminothiones with 2,2′- and 4,4′-dipyridyl disulphides and of l-ergothioneine with iodoacetamide. 2-Mercaptoimidazoles, 2- and 4-thiopyridones, thiourea and thioacetamide as highly reactive neutral sulphur nucleophiles

    PubMed Central

    Carlsson, Jan; Kierstan, Marek P. J.; Brocklehurst, Keith

    1974-01-01

    1. The reactions of 2,2′- and 4,4′-dipyridyl disulphide (2-Py–S–S–2-Py and 4-Py–S–S–4-Py) with l-ergothioneine (2-mercapto-l-histidine betaine), 2-mercaptoimidazole, 1-methyl-2-mercaptoimidazole, thiourea, thioacetamide, 2-thiopyridone (Py–2-SH) and 4-thiopyridone (Py–4-SH) were investigated spectrophotometrically in the pH range approx. 1–9. 2. These reactions involve two sequential reversible thiol–disulphide interchanges. 3. The reaction of l-ergothioneine with 2-Py–S–S–2-Py and/or with the l-ergothioneine–Py–2-SH mixed disulphide, both of which provide Py–2-SH, is characterized by at least three reactive protonic states. This provides definitive evidence that neutral l-ergothioneine is a reactive nucleophile, particularly towards the highly electrophilic protonated disulphides. 4. A similar situation appears to obtain in the reactions of l-ergothioneine and Py–2-SH with 4-Py–S–S–4-Py and in the reactions of the other 2-mercaptoimidazoles, thiourea and Py–4-SH with 2-Py–S–S–2-Py. The nucleophilic reactivity of Py–4-SH suggests that general base catalysis provided by the disulphide in a cyclic or quasi-cyclic transition state is not necessary to generate nucleophilic reactivity in the other amino-thiones whose geometry could permit such catalysis. 5. The existence of a positive deuterium isotope effect in the l-ergothioneine–2-Py–S–S–2-Py system at pH6–7 provides no evidence for general base catalysis but is in accord with a mechanism involving specific acid catalysis and post-transition-state proton transfer. 6. The pH-dependences of the overall equilibrium positions of the various thiol–disulphide interchanges are described. 7. Reaction of thioacetamide with a stoicheiometric quantity of 2-Py–S–S–2-Py at pH1 provides 2 molecules of Py–2-SH per molecule of thioacetamide and elemental sulphur; these findings can be accounted for by thiol–disulphide interchange to provide a thioacetamide

  13. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    PubMed

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model

    PubMed Central

    Chen, Chunhong; Newell, Kim; Lawrence, Gregory J.; Ellis, Jeffrey G.; Anderson, Peter A.; Dodds, Peter N.

    2016-01-01

    NOD-like receptors (NLRs) are central components of the plant immune system. L6 is a Toll/interleukin-1 receptor (TIR) domain-containing NLR from flax (Linum usitatissimum) conferring immunity to the flax rust fungus. Comparison of L6 to the weaker allele L7 identified two polymorphic regions in the TIR and the nucleotide binding (NB) domains that regulate both effector ligand-dependent and -independent cell death signaling as well as nucleotide binding to the receptor. This suggests that a negative functional interaction between the TIR and NB domains holds L7 in an inactive/ADP-bound state more tightly than L6, hence decreasing its capacity to adopt the active/ATP-bound state and explaining its weaker activity in planta. L6 and L7 variants with a more stable ADP-bound state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the signaling active variants. This contrasts with current models predicting that effectors bind to inactive receptors to trigger activation. Based on the correlation between nucleotide binding, effector interaction, and immune signaling properties of L6/L7 variants, we propose that NLRs exist in an equilibrium between ON and OFF states and that effector binding to the ON state stabilizes this conformation, thereby shifting the equilibrium toward the active form of the receptor to trigger defense signaling. PMID:26744216

  15. Investigation of the Maillard Reaction between Polysaccharides and Proteins from Longan Pulp and the Improvement in Activities.

    PubMed

    Han, Miao-Miao; Yi, Yang; Wang, Hong-Xun; Huang, Fei

    2017-06-05

    The purpose of this study was to investigate the Maillard reaction between polysaccharides and proteins from longan pulp and the effects of reaction on their in vitro activities. The polysaccharide-protein mixtures of fresh longan pulp (LPPMs) were co-prepared by an alkali extraction-acid precipitation method. They were then dry-heated under controlled conditions for monitoring the characterization of the Maillard reaction by the measurement of the free amino group content, ultraviolet-visible spectrum, Fourier transform infrared spectrum and molecular weight distribution. All the physicochemical analyses indicated the development of the Maillard reaction between polysaccharides and proteins. The in vitro activity evaluation indicated that the Maillard reaction could effectively enhance the antioxidant, antitumor and immunostimulating activities of LPPMs. The enhancement of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power displayed both a positive correlation with the reaction time ( p < 0.05). LPPMs dry-heated for three days obtained relatively strong inhibitory activity against HepG2 cells and SGC7901 cells, as well as strong immunostimulating effects on the nitric oxide production and tumor necrosis factor α secretion of macrophages. Maillard-type intermacromolecular interaction is suggested to be an effective and controllable method for improving the functional activities of polysaccharides and proteins from longan pulp.

  16. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    PubMed

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  17. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    PubMed Central

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  18. Spectroscopic characterization of Cu(II) complex of L-phenylalanine and D, L-tryptophan

    NASA Astrophysics Data System (ADS)

    Altun, Özlen; Bilcen, Selin

    2010-02-01

    In this work, the reactions involving L-phenylalanine and D, L-tryptophan in the presence of Cu(II) ion were studied. Optimum conditions for the reactions were established as pH 7 and λ = 641 nm. When the reaction was kinetic, it was observed that the following rate formula was found as dA/ An = k dt and k = 3.2 × 10 -4 s -1, according to absorbance measurements. Using a perpetual change curve, the ratio of [Cu]/[Cu] + L-phenylalanine + [ D, L-tryptophan] was found 1:1:1. According to this result, one molecule of L-phenylalanine and one molecule of D, L-tryptophan react with one molecule Cu(II) ion.

  19. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology.

    PubMed

    Fadil, Mouhcine; Fikri-Benbrahim, Kawtar; Rachiq, Saad; Ihssane, Bouchaib; Lebrazi, Sara; Chraibi, Marwa; Haloui, Taoufik; Farah, Abdellah

    2018-05-01

    To increase the sensibility of Salmonella typhimurium strain, a mixture of Thymus vulgaris L. (T. vulgaris L.), Rosmarinus officinalis L. (R. officinalis L.) and Myrtus communis L. (M. communis L.) essential oils (EOs) was used in combined treatment by experimental design methodology (mixture design). The chemical composition of EOs was firstly identified by GC and GC/MS and their antibacterial activity was evaluated. The results of this first step have shown that thymol and borneol were the major compounds in T. vulgaris and M. communis L. EOs, respectively, while 1,8-cineole and α-pinene were found as major compounds in R. officinalis L. The same results have shown a strong antibacterial activity of T. vulgaris L. EO followed by an important power of M. communis L. EO against a moderate activity of R. officinalis L. EO. Besides, 1/20 (v/v) was the concentration giving a strain response classified as sensitive. From this concentration, the mixture design was performed and analyzed. The optimization of mixtures antibacterial activities has highlighted the synergistic effect between T. vulgaris L. and M. communis L. essential oils. A formulation comprising 55% of T. vulgaris L. and 45% of M. communis L. essential oils, respectively, can be considered for the increase of Salmonella typhimurium sensibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. PD-L1 is an activation-independent marker of brown adipocytes.

    PubMed

    Ingram, Jessica R; Dougan, Michael; Rashidian, Mohammad; Knoll, Marko; Keliher, Edmund J; Garrett, Sarah; Garforth, Scott; Blomberg, Olga S; Espinosa, Camilo; Bhan, Atul; Almo, Steven C; Weissleder, Ralph; Lodish, Harvey; Dougan, Stephanie K; Ploegh, Hidde L

    2017-09-21

    Programmed death ligand 1 (PD-L1) is expressed on a number of immune and cancer cells, where it can downregulate antitumor immune responses. Its expression has been linked to metabolic changes in these cells. Here we develop a radiolabeled camelid single-domain antibody (anti-PD-L1 VHH) to track PD-L1 expression by immuno-positron emission tomography (PET). PET-CT imaging shows a robust and specific PD-L1 signal in brown adipose tissue (BAT). We confirm expression of PD-L1 on brown adipocytes and demonstrate that signal intensity does not change in response to cold exposure or β-adrenergic activation. This is the first robust method of visualizing murine brown fat independent of its activation state.Current approaches to visualise brown adipose tissue (BAT) rely primarily on markers that reflect its metabolic activity. Here, the authors show that PD-L1 is expressed on brown adipocytes, does not change upon BAT activation, and that BAT volume in mice can be measured by PET-CT with a radiolabeled anti-PD-L1 antibody.

  1. Loop L1 governs the DNA-binding specificity and order for RecA-catalyzed reactions in homologous recombination and DNA repair

    PubMed Central

    Shinohara, Takeshi; Ikawa, Shukuko; Iwasaki, Wakana; Hiraki, Toshiki; Hikima, Takaaki; Mikawa, Tsutomu; Arai, Naoto; Kamiya, Nobuo; Shibata, Takehiko

    2015-01-01

    In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions. PMID:25561575

  2. Amine-functionalized Zn(ii) MOF as an efficient multifunctional catalyst for CO2 utilization and sulfoxidation reaction.

    PubMed

    Patel, Parth; Parmar, Bhavesh; Kureshy, Rukhsana I; Khan, Noor-Ul H; Suresh, Eringathodi

    2018-06-19

    Herein, a zinc(ii)-based 3D mixed ligand metal organic framework (MOF) was synthesized via versatile routes including green mechanochemical synthesis. The MOF {[Zn(ATA)(L)·H2O]}n (ZnMOF-1-NH2) has been characterized by various physico-chemical techniques, including SCXRD, and composed of the bipyridyl-based Schiff base (E)-N'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) and 2-aminoterephthalic acid (H2ATA) ligands as linkers. The MOF material has been explored as a multifunctional heterogeneous catalyst for the cycloaddition of alkyl and aryl epoxides with CO2 and sulfoxidation reactions of aryl sulfides. The influence of various reaction parameters is examined to optimize the performance of the catalytic reactions. It is found that solvent-free catalytic reaction conditions offer good catalytic conversion in the case of cyclic carbonates, and for sulfoxide, good conversion and selectivity are achieved in the presence of DCM as a solvent medium under ambient reaction conditions. The chemical and thermal stability of the catalyst are excellent and it is active for up to four catalytic cycles without significant loss in activity. Furthermore, based on the catalytic activity and structural evidence, a plausible mechanism for both catalytic reactions is proposed.

  3. Associations between fatigue, physical activity, and QoL in patients with myeloproliferative neoplasms.

    PubMed

    Tolstrup Larsen, Rasmus; Tang, Lars H; Brochmann, Nana; Meulengracht Flachs, Esben; Illemann Christensen, Anne; Hasselbalch, Hans C; Zwisler, Ann-Dorthe

    2018-06-01

    Patients with Philadelphia chromosome-negative Myeloproliferative Neoplasms (MPNs) report fatigue as the most common symptom and contributing significantly to reduction in their quality of life (QoL). Targeted non-pharmacological intervention to increase levels of physical activity is suggested as a fatigue-reducing and QoL-enhancing intervention in MPN patients. The interrelationship between physical activity, fatigue, and QoL has, to our knowledge, never been reported. We analyzed data from 1807 MPN patients. The primary analysis included a multiple regression model allowing fatigue to mediate the relationship between physical activity and QoL. We herein report the first and the largest study of patients with MPNs, in whom we have investigated the interrelationship between fatigue, physical activity, and QoL. Sedentary patients were more likely to report fatigue compared to highly active patients. There was a negative association between fatigue and QoL, and there was a positive association between physical activity and QoL. There was no interaction between fatigue and physical activity in the association with QoL. We found positive associations between level of physical activity and QoL, independently of fatigue being present. More research is needed before physical activity can be introduced as a targeted intervention to reduce fatigue and increase QoL in the management of patients. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The Hand-Foot Skin Reaction and Quality of Life Questionnaire: An Assessment Tool for Oncology.

    PubMed

    Anderson, Roger T; Keating, Karen N; Doll, Helen A; Camacho, Fabian

    2015-07-01

    Skin toxicity (hand-foot syndrome/hand-foot skin reaction, HFS/R) related to antineoplastic therapy is a significant issue in oncology practice, with potentially large impacts on health-related quality of life (HRQL). A patient-reported questionnaire, the hand-foot skin reaction and quality of life (HF-QoL) questionnaire was developed to measure the HFS/R symptoms associated with cancer therapeutic agents and their effect on daily activities. The validity and reliability of the HF-QoL questionnaire was tested in a randomized trial of capecitabine with sorafenib/placebo in 223 patients with locally advanced/metastatic breast cancer. Other measures completed included patient ratings of condition severity, the Functional Assessment of Cancer Therapy-Breast cancer (FACT-B), and the clinician-rated National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE), version 3.0, hand-foot skin reaction grade. The psychometric properties of the HF-QoL tested included structural validity, internal consistency, construct validity, discriminant validity, and responsiveness. Finally, the minimal clinically important difference (MCID) was estimated. The HF-QoL instrument comprises a 20-item symptom scale and an 18-item daily activity scale. Each scale demonstrated excellent measurement properties and discriminated between NCI-CTCAE grade and patient-rated condition severity with large effect sizes. The daily activity scale had excellent internal consistency and correlated with the FACT-B and HF-QoL symptom scores. Both HF-QoL scale scores increased linearly with increasing patient-rated condition severity. The MCIDs were estimated as 5 units for daily activities and 8 units for symptoms mean scores. The HF-QoL was sensitive to symptoms and HRQL issues associated with HFS/R among participants treated with capecitabine with and without sorafenib. The HF-QoL appears suitable for assessing the HRQL impairment associated with HFS/R to cancer therapies. Skin

  5. 78 FR 39254 - Notification of Proposed Production Activity; Subzone 7G; Schering-Plough Products, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-65-2013] Notification of Proposed Production Activity; Subzone 7G; Schering-Plough Products, L.L.C. (Pharmaceutical Products); Las Piedras, Puerto Rico... proposed production activity to the FTZ Board for its facility in Las Piedras, Puerto Rico. The...

  6. Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) andOriganum vulgare L.

    PubMed

    Faleiro, Leonor; Miguel, Graça; Gomes, Sónia; Costa, Ludmila; Venâncio, Florencia; Teixeira, Adriano; Figueiredo, A Cristina; Barroso, José G; Pedro, Luis G

    2005-10-19

    Antilisterial activities of Thymbra capitata and Origanum vulgare essential oils were tested against 41 strains of Listeria monocytogenes. The oil of T. capitata was mainly constituted by one component, carvacrol (79%), whereas for O. vulgare three components constituted 70% of the oil, namely, thymol (33%), gamma-terpinene (26%), and p-cymene (11%). T. capitata essential oil had a significantly higher antilisterial activity in comparison to O. vulgare oil and chloramphenicol. No significant differences in L. monocytogenes susceptibilities to the essential oils tested were registered. The minimum inhibitory concentration values of T. capitata essential oil and of carvacrol were quite similar, ranging between 0.05 and 0.2 microL/mL. Antioxidant activity was also tested, the essential oil of T. capitata showing significantly higher antioxidant activity than that of O. vulgare. Use of T. capitata and O. vulgare essential oils can constitute a powerful tool in the control of L. monocytogenes in food and other industries.

  7. Immobilization of Escherichia coli Cells Containing Aspartase Activity with Polyurethane and Its Application for l-Aspartic Acid Production

    PubMed Central

    Fusee, Murray C.; Swann, Wayne E.; Calton, Gary J.

    1981-01-01

    Whole cells of Escherichia coli containing aspartase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol). The immobilized cell preparation was used to convert ammonium fumarate to l-aspartic acid. Properties of the immobilized E. coli cells containing aspartase were investigated with a batch reactor. A 1.67-fold increase in the l-aspartic acid production rate was observed at 37°C as compared to 25°C operating temperature. The pH optimum was broad, ranging from 8.5 to 9.2. Increasing the concentration of ammonium fumarate to 1.5 M from 1.0 M negatively affected the reaction rate. l-Aspartic acid was produced at an average rate of 2.18 × 10−4 mol/min per g (wet weight) of immobilized E. coli cells with a 37°C substrate solution consisting of 1.0 M ammonium fumarate with 1 mM Mg2+ (pH 9.0). PMID:16345865

  8. Effects of Maillard reaction products in a glucose-glycine alcoholic solution on antioxidative and antimutagenic activities.

    PubMed

    Ko, Chih-Yuan; Chen, Xiao-Yu; Chang, Wen-Chang; Zeng, Yi-Ming; Lin, Ru-Hai; Zhang, Xiao-Bin; Wu, James Swi-Bea; Shen, Szu-Chuan

    2018-04-12

    Marinating meat with alcohol, such as wine and beer, is a common culinary practice in cultures worldwide. This study we use a model marination solution comprising 0.2 M glucose-0.2 M glycine buffered to pH 4.3 containing either 0% or 50% ethanol and mimicked the cooking process by heating for 12 h. Antioxidative and antimutagenic characteristics of Maillard reaction products (MRPs) were investigated. Reducing power, antioxidant activity (Fe 2+ chelating ability) and free radical neutralization ability generated from DPPH and ABTS were determined. Ames testing was performed. Results indicate that MRPs from aqueous and alcoholic solution exhibit four antioxidative assays in a dose-dependent manner from 0.16 to 10.00 mg mL -1 . However, MRPs from the alcoholic model was superior. In Ames testing, MRPs from both models are neither toxic nor mutagenic at the test concentrations of 0.63-10.00 mg plate -1 . However, MRPs from the alcoholic model exhibited a higher inhibitory effect on the direct-acting mutagen 4-NQNO compared to the aqueous model. This result is consistent with the observation that MRPs with higher antioxidative capacity exhibit superior antimutagenic activity, suggesting that there are more different products in the alcoholic model. Our results add to the current knowledge about the antioxidative and antimutagenic properties of Maillard reaction products arising when food is cooked in the presence of ethanol. This article is protected by copyright. All rights reserved.

  9. Stereoselective protecting group free synthesis of D,L-gulose ethyl glycoside via multicomponent enyne cross metathesis--hetero Diels-Alder reaction.

    PubMed

    Castagnolo, Daniele; Botta, Lorenzo; Botta, Maurizio

    2009-07-27

    An efficient and stereoselective synthesis of D,L-gulose was described. The key step of the synthetic route is represented by a multicomponent enyne cross metathesis-hetero Diels-Alder reaction which allows the formation of the pyran ring from cheap and commercially available substrates in a single synthetic step. The synthesis of D,L-gulose was accomplished without the use of protecting groups making this approach highly desirable also in terms of atom economy.

  10. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection.

    PubMed

    Gardon, J; Gardon-Wendel, N; Demanga-Ngangue; Kamgno, J; Chippaux, J P; Boussinesq, M

    1997-07-05

    In 1995, the World Bank launched an African Programme for Onchocerciasis Control to eliminate Onchocerca volvulus disease from 19 African countries by means of community-based ivermectin treatment (CBIT). Several cases of encephalopathy have been reported after ivermectin in people heavily infected with microfilariae of Loa loa (loiasis). We assessed the incidence of serious events in an area where onchocerciasis and loiasis are both endemic. Ivermectin (at 150 micrograms/kg) was given to 17877 people living in the Lékié area of Cameroon. 50 microL samples of capillary blood were taken during the daytime before treatment from all adults (aged > or = 15 years), and the numbers of L loa and Mansonella perstans microfilariae in them were counted. Patients were monitored for 7 days after treatment. Adverse reactions were classified as mild, marked, or serious. Serious reactions were defined as those associated with a functional impairment that required at least a week of full-time assistance to undertake normal activities. We calculated the relative risk of developing marked or serious reactions for increasing L loa microfilarial loads. Risk factors for serious reactions were identified and assessed with a logistic regression model. 20 patients (0-11%) developed serious reactions without neurological signs but associated with a functional impairment lasting more than a week. Two other patients were in coma for 2-3 days, associated with L loa microfilariae in cerebrospinal fluid. Occurrence of serious reactions was related to the intensity of pretreatment L loa microfilaraemia. The relative risk of developing marked or serious reactions was significantly higher when the L loa load exceeded 8000 microfilariae/mL; for serious reactions, the risk is very high (odds ratio > 1000) for loads above 50000 microfilariae/mL. Epidemiological surveys aimed at assessing the intensity of infection with L loa microfilariae should be done before ivermectin is distributed for

  11. Structural and electronic properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  12. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice.

    PubMed

    Tan, Yi; Zhang, Ling; Man, Ka Ho; Peltier, Raoul; Chen, Ganchao; Zhang, Huatang; Zhou, Liyi; Wang, Feng; Ho, Derek; Yao, Shao Q; Hu, Yi; Sun, Hongyan

    2017-03-01

    Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.

  13. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  14. Antiproliferative and antimicrobial activity of traditional Kombucha and Satureja montana L. Kombucha.

    PubMed

    Cetojevic-Simin, D D; Bogdanovic, G M; Cvetkovic, D D; Velicanski, A S

    2008-01-01

    To carry out a preliminary investigation of the biological activity of Kombucha beverages from Camellia sinensis L. (black tea) and Satureja montana L. (winter savory tea), that have consuming acidity. Cell growth effect was measured by sulforhodamine B colorimetric assay on HeLa (cervix epithelioid carcinoma), HT-29 (colon adenocarcinoma), and MCF-7 (breast adenocarcinoma). Antimicrobial activity to bacteria, yeasts and moulds was determined by agar-well diffusion method. Consuming Kombuchas had the most expressive antimicrobial activity against all investigated bacteria, except Sarcina lutea, while unfermented tea samples had no activity. Traditional Kombucha showed higher activity against Staphylococcus aureus and Escherichia coli than acetic acid, while both neutralized Kombuchas had bacteriostatic activity on Salmonella enteritidis. Examined Kombuchas did not stimulate cell proliferation of the investigated cell lines. Antiproliferative activity of winter savory tea Kombucha was comparable to that of traditional Kombucha made from black tea. Furthermore, in HeLa cell line Satureja montana L. Kombucha induced cell growth inhibition by 20% (IC20) at lower concentration compared to the activity of water extract of Satureja montana L. obtained in our previous research. Presence of more active antiproliferative component(s) in Satureja montana L. Kombucha compared to Satureja montana L. water extract and antimicrobial component(s) other than acetic acid in both Kombuchas is suggested.

  15. Aspartokinase in Lemna minor L

    PubMed Central

    Wong, Kwan F.; Dennis, David T.

    1973-01-01

    The growth of Lemna minor was followed by means of frond number, fresh weight, and dry weight measurements in the presence of various amino acids at a concentration 0.25 mm. Lysine inhibited growth but not to the same extent as threonine and homoserine. Isoleucine was also an inhibitor of growth. In the presence of methionine there was some growth for 2 to 3 days, but by 5 days most of the plants appeared to be dead. When lysine and threonine were added together, there was no growth at all, and the plants were dead after 5 days. This effect of lysine + threonine could be reversed by adding methionine or homoserine to the growth medium. The isolated aspartokinase from Lemna showed inhibition by lysine and higher concentrations of threonine. When these amino acids were added together at low concentrations, there was a concerted inhibition of the aspartokinase. It is suggested that some effects of amino acids on the growth of L. minor can be explained on the basis of a concerted feedback control of aspartokinase. Images PMID:16658324

  16. Evaluation of the antinociceptive activity of extracts of Sonchus oleraceus L. in mice.

    PubMed

    Vilela, Fabiana Cardoso; de Mesquita Padilha, Marina; Dos Santos-E-Silva, Lucas; Alves-da-Silva, Geraldo; Giusti-Paiva, Alexandre

    2009-07-15

    Sonchus oleraceus L. has been used to relieve pain in Brazilian folk medicine. Sonchus oleraceus L. has been used to relieve pain in Brazilian folk medicine. This study was conducted to establish the antinociceptive properties of hydroethanolic and dichloromethane extracts from aerial parts of Sonchus oleraceus in mice using chemical and thermal models of nociception. The formalin, hot plate, and tail immersion tests as well as acetic acid-induced writhing were used to investigate the antinociceptive activity in mice. Given orally, the extracts at test doses of 30-300 mg/kg, produced significant inhibitions on chemical nociception induced by intraperitoneal acetic acid and subplantar formalin since decreased the number of writhing episodes and the time licking. Treatment with the extracts in the same doses produced a significant increase of the reaction time in tail immersion and in the hot plate test. The extracts administered at 300 mg/kg, p.o. had a stronger antinociceptive effect than indomethacin (5mg/kg, p.o.) and morphine (10mg/kg, p.o.). The extracts of Sonchus oleraceus markedly demonstrated antinociceptive action in mice, which supports previous claims of its traditional use.

  17. Reaction Paths and Chemical Activation Reactions of 2-Methyl-5-Furanyl Radical with 3O2.

    PubMed

    Hudzik, Jason M; Bozzelli, Joseph W

    2017-10-05

    Interest in high-energy substituted furans has been increasing due to their occurrence in biofuel production and their versatility in conversion to other useful products. Methylfurans are the simplest substituted furans and understanding their reaction pathways, thermochemical properties, including intermediate species stability, and chemical kinetics would aid in the study of larger furans. Furan ring C-H bonds have been shown to be extremely strong, approximately 120 kcal mol -1 , due in part to the placement of the oxygen atom and aromatic-like resonance, both within the ring. The thermochemistry and kinetics of the oxidation of 2-methyfuran radical at position 5 of the furan ring, 2-methyl-5-furanyl radical (2MF5j), is analyzed. The resulting chemically activated species, 2MF5OOj radical, has a well depth of 51 kcal mol -1 below the 2MF5j + O 2 reactants; this is 4-5 kcal mol -1 deeper than that of phenyl and vinyl radical plus O 2 , with both of these reactions known to undergo chain branching. Important, low-energy reaction pathways include chain branching dissociations, intramolecular abstractions, group transfers, and radical oxygen additions. Enthalpies of formation, entropies, and heat capacities for the stable molecules, radicals, and transition-state species are analyzed using computational methods. Calculated ΔH ° f 298 values were determined using an isodesmic work reaction from the CBS-QB3 composite method. Elementary rate parameters are from saddle point transition-state structures and compared to variational transition-state analysis for the barrierless reactions. Temperature- and pressure-dependent rate constants which are calculated using QRRK and master equation analysis is used for falloff and stabilization.

  18. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  19. Etudes des Reactions de Transfert LITHIUM-7/LITHIUM -6

    NASA Astrophysics Data System (ADS)

    Baddou, Djafer

    Les reactions de transfert de deux nucleons ^7Li/^6Li(^3He, rm p)^8Be/^9Be ont ete effectuees a partir d'um faisceau d'^3He initialement polarise et d'energie incidente egale a 4.58 MeV au centre de la cible. Le faisceau d'^3He est simplement ionise et il est accelere par l'accelerateur Van de Graaff de l'Universite Laval. Ce faisceau d' ^3He est de polarisation egale a 40% et il est obtenu a partir d'une source d'^3He a l'etat metastable. Nous avons decrit la reaction depuis la production et le transport du faisceau initial de l'^3 He jusqu'a la chambre de reaction. Par la suite, nous avons obtenu les distributions angulaires de la section efficace differentielle et du pouvoir d'analyse de ces reactions. Elles ont ete comparees a la theorie DWBA a l'approximation zero. La theorie a montre qu'il s'agit d'un transfert de deux particules independants (neutron, proton) pour le cas de la reaction ^7Li( ^3He,rm p)^9Be et d'un transfert de "cluster" deuteron pour le cas de la reaction ^6Li(^3He, rm p)^8Be. Notons que pour cette reaction l'instabilite du ^8Be ne nous permet pas d'avoir une diffusion elastique permettant la determination des parametres du modele optique entre ce noyau et la particule diffusee. Afin de contourner cette difficulte, nous supposons que le ^8 Be est un noyau compose de deux particules alpha et nous avons teste cette hypothese avec les reactions ^6Li(^3He, rm p)^8Be et ^7Li( ^3He,rm d)^8Be. Nous mentionnons a la fin que nous avons observe que l'etat fondamental de la reaction ^6Li( ^3He,rm p)^8Be et l'etat excite 2.43 MeV de la reaction ^7Li(^3He,rm p)^9Be sont des reactions directes alors que le premier etat excite (2.96 MeV) de la reaction ^6Li(^3He,rm p)^8Be et l'etat fondamental de la reaction ^7Li(^3He,rm p)^9Be peuvent etre domines par une reaction a noyau compose.

  20. CONSIDERATION OF REACTION INTERMEDIATES IN STRUCTURE-ACTIVITY RELATIONSHIPS: A KEY TO UNDERSTANDING AND PREDICTION

    EPA Science Inventory

    Consideration of Reaction Intermediates in Structure- Activity Relationships: A Key to Understanding and Prediction

    A structure-activity relationship (SAR) represents an empirical means for generalizing chemical information relative to biological activity, and is frequent...

  1. Single Amino Acid Alteration between Valine and Isoleucine Determines the Distinct Pyrabactin Selectivity by PYL1 and PYL2*

    PubMed Central

    Yuan, Xiaoqiu; Yin, Ping; Hao, Qi; Yan, Chuangye; Wang, Jiawei; Yan, Nieng

    2010-01-01

    Abscisic acid (ABA) is one of the most important phytohormones in plant. PYL proteins were identified to be ABA receptors in Arabidopsis thaliana. Despite the remarkably high degree of sequence similarity, PYL1 and PYL2 exhibit distinct responses toward pyrabactin, an ABA agonist. PYL1 inhibits protein phosphatase type 2C upon binding of pyrabactin. In contrast, PYL2 appears relatively insensitive to this compound. The crystal structure of pyrabactin-bound PYL1 revealed that most of the PYL1 residues involved in pyrabactin binding are conserved, hence failing to explain the selectivity of pyrabactin for PYL1 over PYL2. To understand the molecular basis of pyrabactin selectivity, we determined the crystal structure of PYL2 in complex with pyrabactin at 1.64 Å resolution. Structural comparison and biochemical analyses demonstrated that one single amino acid alteration between a corresponding valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2. These characterizations provide an important clue to dissecting the redundancy of PYL proteins. PMID:20630864

  2. Method of making L-dopa from L-tyrosine

    DOEpatents

    Xun, Luying; Lee, Jang Young

    1998-01-01

    The invention is a method of making a L-dopa from L-tyrosine in the presence of an enzyme catalyst and oxygen. By starting with L-tyrosine, no variant of the L-dopa is produced and the L-dopa is stable in the presence of the enzyme catalyst. In other words, the reaction favors the L-dopa and is not reversible.

  3. Method of making L-dopa from L-tyrosine

    DOEpatents

    Xun, L.; Lee, J.Y.

    1998-11-17

    The invention is a method of making a L-dopa from L-tyrosine in the presence of an enzyme catalyst and oxygen. By starting with L-tyrosine, no variant of the L-dopa is produced and the L-dopa is stable in the presence of the enzyme catalyst. In other words, the reaction favors the L-dopa and is not reversible. 3 figs.

  4. Reaction of a (Salen)ruthenium(VI) nitrido complex with thiols. C-H bond activation by (Salen)ruthenium(IV) sulfilamido species.

    PubMed

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Peng, Shie-Ming; Wong, Wing-Tak; Lau, Tai-Chu

    2010-01-04

    The reaction of [Ru(VI)(N)(L)(MeOH)](PF(6)) [1; L = N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion] with a stoichiometric amount of RSH in CH(3)CN gives the corresponding (salen)ruthenium(IV) sulfilamido species [Ru(IV){N(H)SR}(L)(NCCH(3))](PF(6)) (2a, R = (t)Bu; 2b, R = Ph). Metathesis of 2a with NaN(3) in methanol affords [Ru(IV){N(H)S(t)Bu}(L)(N(3))] (2c). 2a undergoes further reaction with 1 equiv of RSH to afford a (salen)ruthenium(III) sulfilamine species, [Ru(III){N(H)(2)S(t)Bu}(L)(NCCH(3))](PF(6)) (3). On the other hand, 2b reacts with 2 equiv of PhSH to give a (salen)ruthenium(III) ammine species [Ru(III)(NH(3))(L)(NCCH(3))](PF(6)) (4); this species can also be prepared by treatment of 1 with 3 equiv of PhSH. The X-ray structures of 2c and 4 have been determined. Kinetic studies of the reaction of 1 with excess RSH indicate the following schemes: 1 --> 2a --> 3 (R = (t)Bu), 1 --> 2b --> 4 (R = Ph). The conversion of 1 to 2 probably involves nucleophilic attack of RSH at the nitrido ligand, followed by a proton shift. The conversions of 2a to 3 and 2b to 4 are proposed to involve rate-limiting H-atom abstraction from RSH by 2a or 2b. 2a and 2b are also able to abstract H atoms from hydrocarbons with weak C-H bonds. These reactions occur with large deuterium isotope effects; the kinetic isotope effect values for the oxidation of 9,10-dihydroanthracene, 1,4-cyclohexadiene, and fluorene by 2a are 51, 56, and 11, respectively.

  5. Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.)

    PubMed Central

    Kamal, Rabie; Marmouzi, Ilias; Zerrouki, Asmae; Cherrah, Yahia; Alaoui, Katim

    2016-01-01

    Objective. The aim of this work is to study and compare the antioxidant properties and phenolic contents of aqueous leaf extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus Phoenicea, and Tetraclinis articulata from Morocco. Methods. Antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging ability, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) assays. Also the total phenolic and flavonoids contents of the extracts were determined spectrophotometrically. Results. All the extracts showed interesting antioxidant activities compared to the standard antioxidants (butylated hydroxytoluene (BHT), quercetin, and Trolox). The aqueous extract of Juniperus oxycedrus showed the highest antioxidant activity as measured by DPPH, TEAC, and FRAP assays with IC50 values of 17.91 ± 0.37 μg/mL, 19.80 ± 0.55 μg/mL, and 24.23 ± 0.07 μg/mL, respectively. The strong correlation observed between antioxidant capacities and their total phenolic contents indicated that phenolic compounds were a major contributor to antioxidant properties of these plants extracts. Conclusion. These results suggest that the aqueous extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus phoenicea, and Tetraclinis articulata can constitute a promising new source of natural compounds with antioxidants ability. PMID:27293428

  6. Antiplatelet activity of L-sulforaphane by regulation of platelet activation factors, glycoprotein IIb/IIIa and thromboxane A2.

    PubMed

    Oh, Chung-Hun; Shin, Jang-In; Mo, Sang Joon; Yun, Sung-Jo; Kim, Sung-Hoon; Rhee, Yun-Hee

    2013-07-01

    L-sulforaphane was identified as an anticarcinogen that could produce quinine reductase and a phase II detoxification enzyme. In recent decades, multi-effects of L-sulforaphane may have been investigated, but, to the authors' knowledge, the antiplatelet activation of L-sulforaphane has not been studied yet.In this study, 2 μg/ml of collagen, 50 μg/ml of ADP and 5 μg/ml of thrombin were used for platelet aggregations with or without L-sulforaphane. L-sulforaphane inhibited the platelet aggregation dose-dependently. Among these platelet activators, collagen was most inhibited by L-sulforaphane, which markedly decreased collagen-induced glycoprotein IIb/IIIa activation and thromboxane A2 (TxA2) formation in vitro. L-sulforaphane also reduced the collagen and epinephrine-induced pulmonary embolism, but did not affect prothrombin time (PT) in vivo. This finding demonstrated that L-sulforaphane inhibited the platelet activation through an intrinsic pathway.L-sulforaphane had a beneficial effect on various pathophysiological pathways of the collagen-induced platelet aggregation and thrombus formation as a selective inhibition of cyclooxygenase and glycoprotein IIb/IIIa antagonist. Thus, we recommend L-sulforaphane as a potential antithrombotic drug.

  7. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    PubMed Central

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  8. Linking Central Metabolism with Increased Pathway Flux: l-Valine Accumulation by Corynebacterium glutamicum

    PubMed Central

    Radmacher, Eva; Vaitsikova, Adela; Burger, Udo; Krumbach, Karin; Sahm, Hermann; Eggeling, Lothar

    2002-01-01

    Mutants of Corynebacterium glutamicum were made and enzymatically characterized to clone ilvD and ilvE, which encode dihydroxy acid dehydratase and transaminase B, respectively. These genes of the branched-chain amino acid synthesis were overexpressed together with ilvBN (which encodes acetohydroxy acid synthase) and ilvC (which encodes isomeroreductase) in the wild type, which does not excrete l-valine, to result in an accumulation of this amino acid to a concentration of 42 mM. Since l-valine originates from two pyruvate molecules, this illustrates the comparatively easy accessibility of the central metabolite pyruvate. The same genes, ilvBNCD, overexpressed in an ilvA deletion mutant which is unable to synthesize l-isoleucine increased the concentration of this amino acid to 58 mM. A further dramatic increase was obtained when panBC was deleted, making the resulting mutant auxotrophic for d-pantothenate. When the resulting strain, C. glutamicum 13032ΔilvAΔpanBC with ilvBNCD overexpressed, was grown under limiting conditions it accumulated 91 mM l-valine. This is attributed to a reduced coenzyme A availability and therefore reduced flux of pyruvate via pyruvate dehydrogenase enabling its increased drain-off via the l-valine biosynthesis pathway. PMID:11976094

  9. Antihemolytic activity and mineral contents of Juglans regia L. flowers.

    PubMed

    Ebrahimzadeh, M A; Nabavi, S F; Nabavi, S M

    2013-07-01

    Juglans (J.) regia L. is known to possess many biological properties. In this study, antihemolytic activity of methanol extract of Juglans regia L. flower were investigated. Antihemolytic activities of Juglans regia L. flowers were evaluated by various in vitro assays. In addition, scavenging of hydrogen peroxide and mineral contents of flowers were determined using atomic absorption spectroscopy. Extract showed good antihemolytic activity against H2O2 and CuOOH induced hemolysis in comparison with control. Extract was capable of scavenging H2O2 in a concentration dependent manner. IC50 for H2O2 scavenging activity was 311±12.8 µg ml-1. The amount of eight elements was determined and was in the order: Mn > Cu > Fe > Zn. Our study indicate that J. regia flower has remarkable antihemolytic activity, which maybe result of its high phenol and flavonoid contents, especially quercetin.

  10. Peroxisome proliferator-activated receptor delta-agonist, GW501516, ameliorates insulin resistance, improves dyslipidaemia in monosodium L-glutamate metabolic syndrome mice.

    PubMed

    Chen, Wei; Wang, Li-Li; Liu, Hong-Ying; Long, Long; Li, Song

    2008-09-01

    We evaluated the effects of GW501516, a specific peroxisome proliferator-activated receptor beta/delta (PPARdelta) agonist in metabolic syndrome mice, obtained by perinatal injection of monosodium L-glutamate, to investigate the efficacy of GW501516 against metabolic syndrome and the effectiveness of PPARdelta activation as therapeutic target for metabolic syndrome. After 14 days treatment, GW501516 effectively improved the glucose intolerance, normalized the fasted blood glucose, and increased the serum high-density lipoprotein cholesterol (HDL-C) level. Postprandial blood glucose, serum insulin, leptin, free fatty acid (FFA) levels, and total cholesterol/HDL-C ratio were also significantly decreased. Moreover, semiquantitative reverse transcription-polymerase chain reaction results indicated that the above phenotypes might be due to (i) enhancement of fatty acid oxidation in muscle, adipose tissue and the liver; (ii) improvement of insulin-stimulated glucose transportation in skeletal muscle and adipose tissue; and (iii) reduced local glucocorticoid synthesis. Therefore, GW501516 could significantly ameliorate dyslipidaemia and insulin resistance in monosodium L-glutamate mice and activation of PPARdelta could be envisioned as a useful strategy against human metabolic syndrome and related diseases.

  11. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.

  12. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  13. Evaluated activation cross sections of longer-lived radionuclides produced by deuteron induced reactions on natural nickel

    NASA Astrophysics Data System (ADS)

    Takács, S.; Tárkányi, F.; Király, B.; Hermanne, A.; Sonck, M.

    2007-07-01

    Activation cross sections for deuteron induced nuclear reactions on natural nickel target were studied by using a standard stacked foil technique and gamma spectrometry up to 50 MeV deuteron bombarding energy. Reaction products with half life of at least half an hour were studied. Experimental elemental activation cross sections were determined for reactions on nickel resulting in 61,64Cu, 56,57Ni, 55,56,57,58,60,61Co, 52,54,56Mn and 51Cr radionuclides and were compared with earlier measured data.

  14. Immune reactions and allergy in experimental anisakiasis

    PubMed Central

    Lee, Haneul Nari

    2006-01-01

    The third-stage larvae (L3) of the parasitic nematode, Anisakis simplex, have been implicated in the induction of hyperimmune allergic reactions in orally infected humans. In this work, we have conducted a review of an investigation into immune reactions occurring in animals experimentally infected with A. simplex L3. The patterns of serum antibody productions in the experimental animals against excretory-secretory products (ESP) of A. simplex L3 contributed to our current knowledge regarding specific humoral immune reactions in humans. In our review, we were able to determine that L3 infection of experimental animals may constitute a good model system for further exploration of immune mechanisms and allergy in anisakiasis of humans. PMID:17170569

  15. Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A. V.

    2011-09-01

    In the frame of a systematic study of the activation cross-sections of deuteron induced nuclear reactions, excitation functions of the 103Rh(d,x) 100,101,103Pd, 100g,101m,101g,102m,102gRh and 103gRu reactions were determined up to 40 MeV. Cross-sections were measured with the activation method using a stacked foil irradiation technique. Excitation functions of the contributing reactions were calculated using the ALICE-IPPE, EMPIRE-II and TALYS codes. From the measured cross-section data integral production yields were calculated and compared with experimental integral yield data reported in the literature. From the measured cross-sections and previous data, activation curves were deduced to support thin layer activation (TLA) on rhodium and Rh containing alloys.

  16. Improving the electrocatalytic performance of carbon nanotubes for VO2+/VO2+ redox reaction by KOH activation

    NASA Astrophysics Data System (ADS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-04-01

    In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO2+/VO2+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO2+/VO2+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO2+/VO2+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO2+/VO2+ redox reaction for VRFB system.

  17. Alginate Lyase (AlgL) Activity Is Required for Alginate Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Albrecht, Mark T.; Schiller, Neal L.

    2005-01-01

    To determine whether AlgL's lyase activity is required for alginate production in Pseudomonas aeruginosa, an algLΔ::Gmr mutant (FRD-MA7) was created. algL complementation of FRD-MA7 restored alginate production, but algL constructs containing mutations inactivating lyase activity did not, demonstrating that the enzymatic activity of AlgL is required for alginate production. PMID:15901714

  18. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity.

    PubMed

    Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio

    2018-04-10

    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.

  19. The impact of language co-activation on L1 and L2 speech fluency.

    PubMed

    Bergmann, Christopher; Sprenger, Simone A; Schmid, Monika S

    2015-10-01

    Fluent speech depends on the availability of well-established linguistic knowledge and routines for speech planning and articulation. A lack of speech fluency in late second-language (L2) learners may point to a deficiency of these representations, due to incomplete acquisition. Experiments on bilingual language processing have shown, however, that there are strong reasons to believe that multilingual speakers experience co-activation of the languages they speak. We have studied to what degree language co-activation affects fluency in the speech of bilinguals, comparing a monolingual German control group with two bilingual groups: 1) first-language (L1) attriters, who have fully acquired German before emigrating to an L2 English environment, and 2) immersed L2 learners of German (L1: English). We have analysed the temporal fluency and the incidence of disfluency markers (pauses, repetitions and self-corrections) in spontaneous film retellings. Our findings show that learners to speak more slowly than controls and attriters. Also, on each count, the speech of at least one of the bilingual groups contains more disfluency markers than the retellings of the control group. Generally speaking, both bilingual groups-learners and attriters-are equally (dis)fluent and significantly more disfluent than the monolingual speakers. Given that the L1 attriters are unaffected by incomplete acquisition, we interpret these findings as evidence for language competition during speech production. Copyright © 2015. Published by Elsevier B.V.

  20. Anthelmintic activity of Chenopodium album (L) and Caesalpinia crista (L) against trichostrongylid nematodes of sheep.

    PubMed

    Jabbar, Abdul; Zaman, Muhammad Arfan; Iqbal, Zafar; Yaseen, Muhammad; Shamim, Asim

    2007-10-08

    The present study was carried out to determine the anthelmintic activity of Caesalpinia crista (L.) (Fabaceae) seed kernel and Chenopodium album (L.) (Chenopodiaceae) whole plant in order to justify their traditional use in veterinary medicine. In vitro anthelmintic activity of crude aqueous methanolic extract (AME) of both the plants was determined using mature Haemonchus contortus and their eggs in adult motility assay and egg hatch test, respectively. In vivo anthelmintic activity was evaluated in sheep naturally infected with mixed species of gastrointestinal nematodes by administering crude powder (CP) and AME in increasing doses (1.0-3.0 g/kg). Both plants exhibited dose- and time-dependent anthelmintic effects by causing mortality of worms and inhibition of egg hatching. Caesalpinia crista (LC50=0.134 mg/mL) was found to be more potent than Chenopodium album (LC50=0.449 mg/mL) in egg hatch test. In vivo, maximum reduction in eggs per gram (EPG) of faeces was recorded as 93.9 and 82.2% with Caesalpinia crista and Chenopodium album AME at 3.0 g/kg on day 13 and 5 post-treatment, respectively. Levamisole (7.5 mg/kg), a standard anthelmintic agent, showed 95.1-95.6% reduction in EPG. These data show that both Caesalpinia crista and Chenopodium album possess anthelmintic activity in vitro and in vivo, thus, justifying their use in the traditional medicine system of Pakistan.

  1. Direct sGC Activation Bypasses NO Scavenging Reactions of Intravascular Free Oxy-Hemoglobin and Limits Vasoconstriction

    PubMed Central

    Tabima, D. Marcela; Specht, Patricia A.C.; Tejero, Jesús; Champion, Hunter C.; Kim-Shapiro, Daniel B.; Baust, Jeff; Mik, Egbert G.; Hildesheim, Mariana; Stasch, Johannes-Peter; Becker, Eva-Maria; Truebel, Hubert

    2013-01-01

    Abstract Aims: Hemoglobin-based oxygen carriers (HBOC) provide a potential alternative to red blood cell (RBC) transfusion. Their clinical application has been limited by adverse effects, in large part thought to be mediated by the intravascular scavenging of the vasodilator nitric oxide (NO) by cell-free plasma oxy-hemoglobin. Free hemoglobin may also cause endothelial dysfunction and platelet activation in hemolytic diseases and after transfusion of aged stored RBCs. The new soluble guanylate cyclase (sGC) stimulator Bay 41-8543 and sGC activator Bay 60-2770 directly modulate sGC, independent of NO bioavailability, providing a potential therapeutic mechanism to bypass hemoglobin-mediated NO inactivation. Results: Infusions of human hemoglobin solutions and the HBOC Oxyglobin into rats produced a severe hypertensive response, even at low plasma heme concentrations approaching 10 μM. These reactions were only observed for ferrous oxy-hemoglobin and not analogs that do not rapidly scavenge NO. Infusions of L-NG-Nitroarginine methyl ester (L-NAME), a competitive NO synthase inhibitor, after hemoglobin infusion did not produce additive vasoconstriction, suggesting that vasoconstriction is related to scavenging of vascular NO. Open-chest hemodynamic studies confirmed that hypertension occurred secondary to direct effects on increasing vascular resistance, with limited negative cardiac inotropic effects. Intravascular hemoglobin reduced the vasodilatory potency of sodium nitroprusside (SNP) and sildenafil, but had no effect on vasodilatation by direct NO-independent activation of sGC by BAY 41-8543 and BAY 60-2770. Innovation and Conclusion: These data suggest that both sGC stimulators and sGC activators could be used to restore cyclic guanosine monophosphate-dependent vasodilation in conditions where cell-free plasma hemoglobin is sufficient to inhibit endogenous NO signaling. Antioxid. Redox Signal. 19, 2232–2243. PMID:23697678

  2. In vitro and in silico analyses of Vicia faba L. on Peroxisome proliferator-activated receptor gamma.

    PubMed

    Prabhu, D Sathya; Rajeswari, V Devi

    2018-06-20

    The agonists of peroxisome proliferator-activated receptor gamma (PPARγ) from natural victual products were used as antidiabetic agents. Faba bean (Vicia faba L.) is a consequential legume that was known to possess potential antidiabetic activity, whose mechanism of action was unknown. The current study was focused to ascertain gene expression of the nuclear receptor PPARγ by Faba bean pod extract in rat cell lines (RINm5F).The real-time polymerase chain reaction analysis demonstrated that Faba bean pod extract in concentrations of 160 µg/mL have shown 4.97-fold stimulation compared with control. The cells treated with 320 µg/mL has shown 5.89-fold upregulation, respectively. Furthermore, in silico docking analysis was carried out against PPARγ, using the bioactive compounds identified from Faba bean pod extracts, which were known reported compounds from the literature. The results suggest that gene expression of PPARγ was inhibited by the constituents in Faba bean. In silico analysis prognosticates, butein has a high binding energy (-8.6 kcal/mol) with an atomic contact energy of -214.10, followed by Apigenin and Quercetin against PPARγ. Similarly, the percentage of interaction was high for butein, followed by Apigenin and Quercetin than other compounds comparatively. Hence, the results conclude inhibition of PPARγ by the bioactive compounds from Faba bean, which may provide insights into developing future therapeutic molecules for diabetes mellitus. © 2018 Wiley Periodicals, Inc.

  3. Monoterpenic aldehydes as potential anti-Leishmania agents: activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major.

    PubMed

    Machado, M; Pires, P; Dinis, A M; Santos-Rosa, M; Alves, V; Salgueiro, L; Cavaleiro, C; Sousa, M C

    2012-03-01

    In order to contribute for the search of new drugs for leishmaniasis, we study the susceptibility of Leishmania infantum, Leishmania tropica and Leishmania major to Cymbopogon citratus essential oil and major compounds, mrycene and citral. C. citratus and citral were the most active inhibiting L. infantum, L. tropica and L. major growth at IC(50) concentrations ranging from 25 to 52 μg/ml and from 34 to 42 μg/ml, respectively. L. infantum promastigotes exposed to essential oil and citral underwent considerable ultrastructural alterations, namely mitochondrial and kinetoplast swelling, autophagosomal structures, disruption of nuclear membrane and nuclear chromatin condensation. C. citratus essential oil and citral promoted the leishmanicidal effect by triggering a programmed cell death. In fact, the leishmanicidal activity was mediated via apoptosis as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, and cell-cycle arrest at the G(0)/G(1) phase. Taken together, ours findings lead us to propose that citral was responsible for anti-Leishmania activity of the C. citratus and both may represent a valuable source for therapeutic control of leishmaniasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.

    PubMed

    Zhenyukh, Olha; Civantos, Esther; Ruiz-Ortega, Marta; Sánchez, Maria Soledad; Vázquez, Clotilde; Peiró, Concepción; Egido, Jesús; Mas, Sebastián

    2017-03-01

    Leucine, isoleucine and valine are essential aminoacids termed branched-chain amino acids (BCAA) due to its aliphatic side-chain. In several pathological and physiological conditions increased BCAA plasma concentrations have been described. Elevated BCAA levels predict insulin resistance development. Moreover, BCAA levels higher than 2mmol/L are neurotoxic by inducing microglial activation in maple syrup urine disease. However, there are no studies about the direct effects of BCAA in circulating cells. We have explored whether BCAA could promote oxidative stress and pro-inflammatory status in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. In cultured PBMCs, 10mmol/L BCAA increased the production of reactive oxygen species (ROS) via both NADPH oxidase and the mitochondria, and activated Akt-mTOR signalling. By using several inhibitors and activators of these molecular pathways we have described that mTOR activation by BCAA is linked to ROS production and mitochondrial dysfunction. BCAA stimulated the activation of the redox-sensitive transcription factor NF-κB, which resulted in the release of pro-inflammatory molecules, such as interleukin-6, tumor necrosis factor-α, intracellular adhesion molecule-1 or CD40L, and the migration of PBMCs. In conclusion, elevated BCAA blood levels can promote the activation of circulating PBMCs, by a mechanism that involving ROS production and NF-κB pathway activation. These data suggest that high concentrations of BCAA could exert deleterious effects on circulating blood cells and therefore contribute to the pro-inflammatory and oxidative status observed in several pathophysiological conditions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Evolution of the Copper Surface in the Course of Oxidation by CCl4-L (L=THF, Dmf, Dmso): Scanning Probe Microscope Study

    NASA Astrophysics Data System (ADS)

    Panteleev, S. V.; Maslennikov, S. V.; Ignatov, S. K.; Spirina, I. V.; Kruglova, M. V.; Gribkov, B. A.; Vdovichev, S. N.

    2013-04-01

    The evolution of compact surface of the 100 nm copper film deposited on the glass-ceramics doped with vanadium coating in the course of the oxidation by the CCl4-L (L = dimethylformamide (DMF), tetrahydrofuran (THF), dimethylsulfoxide (DMSO), CCl4 concentration ≈ 1 mol/L) was studied by atomic force microscopy (AFM) in contact mode. The dynamics of active centers formation and destruction was investigated in the course of the oxidation process. The metallic sample dissolution rate was estimated as a function of the coordinating solvent nature. The development of the metal surface oxidation was established to lead to a significant increase of surface roughness. This phenomenon can be explained by the fact that different parts of the surface react at different rates. Further course of the reaction leads to a significant decrease of the surface roughness of copper films. The amount of the metal reacted has an almost linear dependence on the reaction time. AFM scans indicate that there is the same mechanism of the reaction between copper and carbon tetrachloride for all solvents.

  6. Effet de la substitution du cuivre par du lithium sur les proprietes de l'oxyde spinelle lithium(x)cuivre(y-x)cobalt(3-y)oxygen(4) etudie pour l'electrocatalyse de la reaction de degagement de l'oxygene en milieu alcalin

    NASA Astrophysics Data System (ADS)

    Fatih, Khalid

    L'electrolyse de l'eau demeure la seule technologie industrielle de generation de l'hydrogene et de l'oxygene tres purs sans rejet de CO2 dans l'atmosphere, ce qui le rend tres attrayant par rapport a la combustion de carburants fossiles qui provoque presentement de serieux problemes environnementaux. Dans le but d'ameliorer le rendement de ce procede, nous avons developpe de nouveaux materiaux d'anode peu couteux, a base de l'oxyde mixte CuyCo3-yO 4, qui possedent une cinetique rapide pour la reaction de degagement de l'oxygene (RDO). Cette reaction suscite un interet particulier en raison de la surtension d'activation relativement elevee a l'anode qui cause la principale perte de rendement du procede. Une etude systematique a ete effectuee sur la substitution du Cu par du Li (0 a 40%), afin d'elucider les proprietes electrocatalytiques des oxydes LixCuy-xCo3-yO4. Ces oxydes, prepares sous forme de poudres par decomposition thermique des nitrates precurseurs entre 300 et 500°C, ont montre (DRX et FTIR) une structure spinelle inverse non-stcechiometrique avec une diminution du volume de la maille cristalline. La surface specifique par BET est d'environ 6 m2 g-1. Le pcn, obtenu par titrage acido-basique, a indique une diminution de la force du lien M-OH avec le taux du Li dans l'oxyde. Les analyses par XPS, realisees sur des films d'oxyde prepares par nebulisation reactive sur un substrat lisse de nickel, revelent un enrichissement de la surface en Cu a partir de 30% Li, et la presence des cations de surface Co2+, Co3+, Cu +, Cu2+ et Cu3+. La concentration de ce dernier montre un maximum a 10 et 20% Li. Suite a la substitution du Cu par du Li, la compensation de la charge serait assuree principalement par la formation d'especes Cu3+ pour les oxydes contenant jusqu'a 20% Li, et par la formation d'especes Co3+ aux taux de substitution superieurs. Les micrographies MEB montrent une morphologie hemispherique des particules d'oxyde reparties uniformement sur le substrat

  7. Understanding ligninase-mediated reactions of endocrine disrupting chemicals in water: reaction rates and quantitative structure-activity relationships.

    PubMed

    Mao, Liang; Colosi, Lisa M; Gao, Shixiang; Huang, Qingguo

    2011-07-15

    We have verified in our previous work that lignin peroxidase (LiP) mediates effective removal of selected natural and synthetic estrogens. The efficiency of these reactions was greatly enhanced in the presence of veratryl alcohol (VA), a chemical that is produced along with LiP by certain white rot fungi, for example, Phanerochaete chrysosporium. In this study, we systematically evaluated the kinetic behaviors of LiP-mediated reactions for six endocrine disrupting compounds (EDCs), that is, steroid estrogens and their structural analogs, in both the presence and absence of VA. Resulting kinetic parameters were then correlated with structural features of LiP/substrate binding complexes, as quantified using molecular simulation, to create quantitative structure-activity relationship (QSAR) equations. These equations suggest that binding distance between a substrate's phenolic proton and δN of HIS47's imidazole ring plays an important role in modulating substrate reactivity toward LiP in both the presence and absence of VA. This information provides insight into an important enzymatic reaction process that occurs in the natural environment affecting EDC transformation, a process that may be used in engineered systems to achieve EDC removal from water.

  8. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro

    PubMed Central

    Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product. PMID:27558633

  9. Antioxidant activity of Vitex agnus-castus L. extracts.

    PubMed

    Sağlam, Hüsniye; Pabuçcuoğlu, Aysun; Kivçak, Bijen

    2007-11-01

    The ethanol, n-hexane and water extracts of Vitex agnus-castus L. leaves and fruits were screened for antioxidant activity. The antioxidant activity of plant extracts was determined by an improved assay based on the decolorization of the radical monocation of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS.+). The water and ethanol extracts showed stronger antioxidant activity than the n-hexane extracts. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. Trans-methylation reactions in plants: focus on the activated methyl cycle.

    PubMed

    Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa

    2018-02-01

    Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.

  11. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    ERIC Educational Resources Information Center

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  12. Self-Evaluative Reactions: The Role of Personal Valuation of the Activity.

    ERIC Educational Resources Information Center

    Simon, Karen M.

    The differential activation of self-evaluative reactions to performance attainments on tasks varying on their relevance for subjects' sense of personal adequacy was investigated. All subjects (N=97) spoke extemporaneously on prescribed topics and received the same random sequence of performance scores. The same task was designated as assessing…

  13. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  14. The Differential Gibbs Free Energy of Activation and its Implications in the Transition-State of Enzymatic Reactions

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Riley, W. J.

    2016-12-01

    We propose a mathematical framework to introduce the concept of differential free energy of activation in enzymatically catalyzed reactions, and apply it to N uptake by microalgae and bacteria. This framework extends the thermodynamic capabilities of the classical transition-state theory in and harmonizes the consolidated definitions of kinetic parameters with their thermodynamic and physical meaning. Here, the activation energy is assumed to be a necessary energetic level for equilibrium complexation between reactants and activated complex; however, an additional energy contribution is required for the equilibrium activated complex to release reaction products. We call this "differential free energy of activation"; it can be described by a Boltzmann distribution, and corresponds to a free energy level different from that of complexation. Whether this level is above or below the free energy of activation depends on the reaction, and defines energy domains that correspond to "superactivated", "activated", and "subactivated" complexes. The activated complex reaching one of those states will eventually release the products from an energy level different than that of activation. The concept of differential free energy of activation was tested on 57 independent experiments of NH­4+ and NO3- uptake by various microalgae and bacteria at temperatures ranging between 1 and 45oC. Results showed that the complexation equilibrium always favored the activated complex, but the differential energy of activation led to an apparent energy barrier consistent with observations. Temperature affected all energy levels within this framework but did not alter substantially these thermodynamic features. Overall the approach: (1) provides a thermodynamic and mathematical link between Michaelis-Menten and rate constants; (2) shows that both kinetic parameters can be described or approximated by Arrhenius' like equations; (3) describes the likelihood of formation of sub-, super-, and

  15. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity.

    PubMed

    Aapola, Ulla; Liiv, Ingrid; Peterson, Pärt

    2002-08-15

    DNMT3L is a regulator of imprint establishment of normally methylated maternal genomic sequences. DNMT3L shows high similarity to the de novo DNA methyltransferases, DNMT3A and DNMT3B, however, the amino acid residues needed for DNA cytosine methyltransferase activity have been lost from the DNMT3L protein sequence. Apart from methyltransferase activity, Dnmt3a and Dnmt3b serve as transcriptional repressors associating with histone deacetylase (HDAC) activity. Here we show that DNMT3L can also repress transcription by binding directly to HDAC1 protein. We have identified the PHD-like zinc finger of the ATRX domain as a main repression motif of DNMT3L, through which DNMT3L recruits the HDAC activity needed for transcriptional silencing. Furthermore, we show that DNMT3L protein contains an active nuclear localisation signal at amino acids 156-159. These results describe DNMT3L as a co-repressor protein and suggest that a transcriptionally repressed chromatin organisation through HDAC activity is needed for establishment of genomic imprints.

  16. Activation Strain Analysis of SN2 Reactions at C, N, O, and F Centers

    PubMed Central

    2017-01-01

    Fundamental principles that determine chemical reactivity and reaction mechanisms are the very foundation of chemistry and many related fields of science. Bimolecular nucleophilic substitutions (SN2) are among the most common and therefore most important reaction types. In this report, we examine the trends in the SN2 reactions with respect to increasing electronegativity of the reaction center by comparing the well-studied backside SN2 Cl– + CH3Cl with similar Cl– substitutions on the isoelectronic series with the second period elements N, O, and F in place of C. Relativistic (ZORA) DFT calculations are used to construct the gas phase reaction potential energy surfaces (PES), and activation strain analysis, which allows decomposition of the PES into the geometrical strain and interaction energy, is employed to analyze the observed trends. We find that SN2@N and SN2@O have similar PES to the prototypical SN2@C, with the well-defined reaction complex (RC) local minima and a central barrier, but all stationary points are, respectively, increasingly stable in energy. The SN2@F, by contrast, exhibits only a single-well PES with no barrier. Using the activation strain model, we show that the trends are due to the interaction energy and originate mainly from the decreasing energy of the empty acceptor orbital (σ*A–Cl) on the reaction center A in the order of C, N, O, and F. The decreasing steric congestion around the central atom is also a likely contributor to this trend. Additional decomposition of the interaction energy using Kohn–Sham molecular orbital (KS-MO) theory provides further support for this explanation, as well as suggesting electrostatic energy as the primary reason for the distinct single-well PES profile for the FCl reaction. PMID:28045531

  17. Activation Strain Analysis of SN2 Reactions at C, N, O, and F Centers.

    PubMed

    Kubelka, Jan; Bickelhaupt, F Matthias

    2017-02-02

    Fundamental principles that determine chemical reactivity and reaction mechanisms are the very foundation of chemistry and many related fields of science. Bimolecular nucleophilic substitutions (S N 2) are among the most common and therefore most important reaction types. In this report, we examine the trends in the S N 2 reactions with respect to increasing electronegativity of the reaction center by comparing the well-studied backside S N 2 Cl - + CH 3 Cl with similar Cl - substitutions on the isoelectronic series with the second period elements N, O, and F in place of C. Relativistic (ZORA) DFT calculations are used to construct the gas phase reaction potential energy surfaces (PES), and activation strain analysis, which allows decomposition of the PES into the geometrical strain and interaction energy, is employed to analyze the observed trends. We find that S N 2@N and S N 2@O have similar PES to the prototypical S N 2@C, with the well-defined reaction complex (RC) local minima and a central barrier, but all stationary points are, respectively, increasingly stable in energy. The S N 2@F, by contrast, exhibits only a single-well PES with no barrier. Using the activation strain model, we show that the trends are due to the interaction energy and originate mainly from the decreasing energy of the empty acceptor orbital (σ* A-Cl ) on the reaction center A in the order of C, N, O, and F. The decreasing steric congestion around the central atom is also a likely contributor to this trend. Additional decomposition of the interaction energy using Kohn-Sham molecular orbital (KS-MO) theory provides further support for this explanation, as well as suggesting electrostatic energy as the primary reason for the distinct single-well PES profile for the FCl reaction.

  18. Induced Phenotypic Resistance to Valine in Mycobacterium pellegrino

    PubMed Central

    Horvath, Istvan; Szentirmai, A.; Zsadanyi, J.

    1967-01-01

    Valine coordinately increases the levels of three of the enzymes participating in the biosynthesis of isoleucine and valine in Mycobacterium pellegrino. The amount of valine required for end-product induction depends on the condition of the cells. Isoleucine inhibits the effect of valine. Acetohydroxy acid synthetase, the enzyme catalyzing the first common step in the biosynthesis of valine and isoleucine, is inhibited by valine. The induction effect of valine appears to be due to its ability to inhibit the activity of this enzyme, thus causing isoleucine deficiency, which in turn leads to derepression. This conclusion is supported by the fact that valine, under certain conditions, inhibits growth. PMID:6051357

  19. Moderate anxiety modifies the electromyographic activity of a forearm muscle during a time-reaction task in women.

    PubMed

    Langlet, C; Hainaut, J P; Bolmont, B

    2017-03-16

    Arousal anxiety has a great impact on reaction time, physiological parameters and motor performance. Numerous studies have focused on the influence of anxiety on muscular activity during simple non ecologic task. We investigate the impact of a moderate state-anxiety (arousal stressor) on the specific component of a complex multi-joint ecologic movement during a reaction time task of auditory stimulus-response. Our objective is to know if central and peripheral voluntary motor processes were modulated in the same way by an arousal stressor. Eighteen women volunteers performed simple reaction time tasks of auditory stimulus-response. Video-recorded Stroop test with interferences was used to induced moderate state-anxiety. Electromyographic activity of the wrist extensor was recorded in order to analyse the two components of the reaction time: the premotor and motor time. In anxiogenic condition, an acceleration and an increase of muscular activity of the reaction time was obtained. This increase was due to a stronger muscle activity during the premotor time in the anxiogenic condition. Arousal anxiety has a different impact on central and peripheral voluntary motor processes. The modifications observed could be related to an increase in arousal related to a higher anxiety in order to prepare the body to act. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A molecular model for the active site of S-adenosyl- l-homocysteine hydrolase

    NASA Astrophysics Data System (ADS)

    Yeh, Jerry C.; Borchardt, Ronald T.; Vedani, Angelo

    1991-06-01

    S-adenosyl- l-homocysteine hydrolase (AdoHcy hydrolase, EC 3.3.1.1.), a specific target for antiviral drug design, catalyzes the hydrolysis of AdoHcy to adenosine (Ado) and homocysteine (Hcy) as well as the synthesis of AdoHcy from Ado and Hcy. The enzyme isolated from different sources has been shown to contain tightly bound NAD+. Based on the 2.0 Å-resolution X-ray crystal structure of dogfish lactate dehydrogenase (LDH), which is functionally homologous to AdoHcy hydrolase, and the primary sequence of rat liver AdoHcy hydrolase, we have derived a molecular model of an extended active site for AdoHcy hydrolase. The computational mutation was performed using the software MUTAR (Yeh et al., University of Kansas, Lawrence), followed by molecular mechanics optimizations using the programs AMBER (Singh et al., University of California, San Francisco) and YETI (Vedani, University of Kansas). Solvation of the model structure was achieved by use of the program SOLVGEN (Jacober, University of Kansas); 56 water molecules were explicitly included in all refinements. Some of these may be involved in the catalytic reaction. We also studied a model of the complex of AdoHcy hydrolase with NAD+, as well as the ternary complexes of the redox reaction catalyzed by AdoHcy hydrolase and has been used to differentiate the relative binding strength of inhibitors.

  1. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    NASA Astrophysics Data System (ADS)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  2. Person-based differences in pay reactions: A compensation-activation theory and integrative conceptual review.

    PubMed

    Fulmer, Ingrid Smithey; Shaw, Jason D

    2018-06-07

    Compensation research has focused traditionally on how pay design characteristics (e.g., pay level, individual or group incentives) relate to average employee outcomes and, in toto, on how these outcomes affect organizational performance. Recently, scholars have begun to pay more attention to how individuals vary in the strength of their reactions to pay. Empirical research in several disciplines examines how the interplay of pay systems and person-based characteristics (psychological individual differences, demographics, and relative performance or position in a group) relate to important work-related outcomes. We develop a compensation-activation theory that frames compensation design characteristics as workplace "situations" providing cues that activate individuals' corresponding fundamental social motives made salient due to chronic or transient person-based characteristics. Where activation occurs, stronger-than-average responses to the compensation "situation" are expected. Using the theory as a lens, we synthesize and reinterpret existing research on person-based reactions to pay characteristics, including sorting, incentive/motivational effects, and effects on collective pay system reactions and unit/organizational outcomes. We conclude with a research agenda aimed at refining compensation-activation theory and advancing the study of compensation as it affects individual and organizational outcomes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Antimicrobial activity of Gentiana lutea L. extracts.

    PubMed

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  4. Antibody-based delivery of tumor necrosis factor (L19-TNFα) and interleukin-2 (L19-IL2) to tumor-associated blood vessels has potent immunological and anticancer activity in the syngeneic J558L BALB/c myeloma model.

    PubMed

    Menssen, Hans D; Harnack, Ulf; Erben, Ulrike; Neri, Dario; Hirsch, Burkhard; Dürkop, Horst

    2018-03-01

    To analyze the impact of TNFα or IL2 on human lymphocytes in vitro and the anti-tumor and immune-modifying effects of L19-IL2 and L19-TNFα on subcutaneously growing J558L myeloma in immunocompetent mice. PBMCs from three healthy volunteers were incubated with IL2, TNFα, or with IL2 plus addition of TNFα (final 20 h). BALB/c J558L mice with subcutaneous tumors were treated with intravenous L19-TNFα plus L19-IL2, or controls. Tumor growth and intra- and peri-tumoral tissues were analyzed for micro-vessel density, necrosis, immune cell composition, and PD1 or PD-L1 expressing cells. Exposure of PBMC in vitro to IL2, TNFα, or to IL2 over 3 and 5 days plus TNFα for the final 20 h resulted in an approximately 50 and 75% reduction of the CD25low effector cell/CD25high Treg cell ratio, respectively, compared to medium control. IL2 or TNFα increased the proportion of CD4- CD25low effector lymphocytes while reducing the proportion of CD4+ CD25low Teff cells. In the J558L myeloma model, tumor eradication was observed in 58, 42, 25, and 0% of mice treated with L19-TNFα plus L19-IL2, L19-TNFα, L19-IL2, and PBS, respectively. L19-TNFα/L19-IL2 combination caused tumor necrosis, capillary density doubling, peri-tumoral T cell and PD1+ T cell reduction (- 50%), and an increase in PD-L1+ myeloma cells. IL2, TNFα, or IL2 plus TNFα (final 20 h) increased the proportion of CD4- CD25low effector lymphocytes possibly indicating immune activation. L19-TNFα/L19-IL2 combination therapy eradicated tumors in J558L myeloma BALB/c mice likely via TNFα-induced tumor necrosis and L19-TNFα/L19-IL2-mediated local cellular immune reactions.

  5. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  6. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  7. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  8. Role of the Zn1 and Zn2 sites in metallo-β-lactamase L1

    PubMed Central

    Hu, Zhenxin; Periyannan, Gopalraj; Bennett, Brian; Crowder, Michael W.

    2009-01-01

    In an effort to probe the role of the Zn(II) sites in metallo-β-lactamase L1, mononuclear metal ion containing and heterobimetallic analogs of the enzyme were generated and characterized using kinetic and spectroscopic studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to be slightly active; however, this enzyme did not stabilize a nitrocefin-derived reaction intermediate that had been previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic analogs (ZnCo and ZnFe) analogs of L1 were generated, and stopped-flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and that there are large amounts of the reaction intermediate formed during the reaction. The heterobimetallic analogs were reacted with nitrocefin, and the reactions were rapidly freeze quenched. EPR studies on these samples demonstrate that Co(II) is five-coordinate in the resting state, proceeds through a four-coordinate species during the reaction, and is five-coordinate in the enzyme-product complex. These studies demonstrate that the metal ion in the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of the nitrocefin-derived reaction intermediate. PMID:18831550

  9. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1.

    PubMed

    Hu, Zhenxin; Periyannan, Gopalraj; Bennett, Brian; Crowder, Michael W

    2008-10-29

    In an effort to probe the role of the Zn(II) sites in metallo-beta-lactamase L1, mononuclear metal ion containing and heterobimetallic analogues of the enzyme were generated and characterized using kinetic and spectroscopic studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to be slightly active; however, this enzyme did not stabilize a nitrocefin-derived reaction intermediate that had been previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic analogues (ZnCo and ZnFe) analogues of L1 were generated, and stopped-flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and that there are large amounts of the reaction intermediate formed during the reaction. The heterobimetallic analogues were reacted with nitrocefin, and the reactions were rapidly freeze quenched. EPR studies on these samples demonstrate that Co(II) is 5-coordinate in the resting state, proceeds through a 4-coordinate species during the reaction, and is 5-coordinate in the enzyme-product complex. These studies demonstrate that the metal ion in the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of the nitrocefin-derived reaction intermediate.

  10. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  11. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE PAGES

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less

  12. Prevention Activities in Professional Psychology: A Reaction to the Prevention Guidelines

    ERIC Educational Resources Information Center

    Rivera-Mosquera, Evelyn; Dowd, E. Thomas; Mitchell-Blanks, Marsha

    2007-01-01

    In this reaction article, the authors provide a historical context for prevention activities and their place in psychological practice. They then discuss the prevention guidelines in the Major Contribution authored by S. M. Hage et al. (2007 [this issue]) and provide their critique. Finally, the authors offer ideas for the future specific…

  13. Downregulation of Rubisco Activity by Non-enzymatic Acetylation of RbcL.

    PubMed

    Gao, Xiang; Hong, Hui; Li, Wei-Chao; Yang, Lili; Huang, Jirong; Xiao, You-Li; Chen, Xiao-Ya; Chen, Gen-Yun

    2016-07-06

    Atmospheric carbon dioxide (CO2) is assimilated by the most abundant but sluggish enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Here we show that acetylation of lysine residues of the Rubisco large subunit (RbcL), including Lys201 and Lys334 in the active sites, may be an important mechanism in the regulation of Rubisco activities. It is well known that Lys201 reacts with CO2 for carbamylation, a prerequisite for both carboxylase and oxygenase activities of Rubisco, and Lys334 contacts with ribulose-1,5-bisphosphate (RuBP). The acetylation level of RbcL in plants is lower during the day and higher at night, inversely correlating with the Rubisco carboxylation activity. A search of the chloroplast proteome database did not reveal a canonical acetyltransferase; instead, we found that a plant-derived metabolite, 7-acetoxy-4-methylcoumarin (AMC), can non-enzymatically acetylate both native Rubisco and synthesized RbcL peptides spanning Lys334 or Lys201. Furthermore, lysine residues were modified by synthesized 4-methylumbelliferone esters with different electro- and stereo-substitutes, resulting in varied Rubisco activities. 1-Chloroethyl 4-methylcoumarin-7-yl carbonate (ClMC) could transfer the chloroethyl carbamate group to lysine residues of RbcL and completely inactivate Rubisco, whereas bis(4-methylcoumarin-7-yl) carbonate (BMC) improved Rubisco activity through increasing the level of Lys201 carbamylation. Our findings indicate that RbcL acetylation negatively regulates Rubisco activity, and metabolic derivatives can be designed to dissect and improve CO2 fixation efficiency of plants through lysine modification. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  14. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction.

    PubMed

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl 2 ]·2H 2 O (1) , [Co(L)Cl 2 (H 2 O) 2 ] (2) and [Ni(L)Cl 2 (H 2 O) 2 ] (3) , having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1 . The esterification of butanol gave butyl acetate with 100% selectivity.

  15. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction

    PubMed Central

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    Abstract In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl2]·2H2O (1), [Co(L)Cl2(H2O)2] (2) and [Ni(L)Cl2(H2O)2] (3), having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1. The esterification of butanol gave butyl acetate with 100% selectivity. PMID:29491815

  16. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    PubMed

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Collaborative Revision in L2 Writing: Learners' Reflections

    ERIC Educational Resources Information Center

    Memari Hanjani, Alireza

    2016-01-01

    L2 learning literature has reflected on the problems surrounding the application of teacher written feedback and peer feedback in EFL contexts. To address the disadvantages of these feedback forms, this exploratory case study examined EFL learners' reactions to a collaborative revision activity. Interview data were collected from eight native…

  18. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  19. Evaluation of antitumoral and antimicrobial activity of Morinda lcitrifolia L. grown in Southeast Brazil.

    PubMed

    Candida, Thamyris; França, Jerônimo Pereira de; Chaves, Alba Lucilvânia Fonseca; Lopes, Fernanda Andrade Rodrigues; Gaiba, Silvana; Sacramento, Celio Kersul do; Ferreira, Lydia Masako; França, Lucimar Pereira de

    2014-01-01

    To evaluate the antitumor and antimicrobial activity of ethanolic extract of Morinda citrifolia L. fruit cultivated in southeastern Brazil. Preparation ethanolic extract of the fruit of Morinda citrifolia L. Culture of melanoma cells B16-F10 for treatment with ethanolic extract of Morinda citrifolia L. fruit to determine cell viability by MTT and determination temporal effect of ethanolic extract fruit on the cell growth B16-F10 for 8 days. Evaluation of antimicrobial activity of ethanolic extract fruit against Staphylococcus aureus and Escherichia coli by determination of Minimum Inhibitory Concentration (MIC). The ethanolic extract of Morinda citrifolia L. fruit (10mg/mL) decreased cellular activity and inhibited 45% the rate of cell proliferation of B16-F10 melanoma treated during period studied. The ethanolic extract of Morinda citrifolia L. fruit demonstrated antimicrobial activity inhibiting the growth of both microorganisms studied. Staphylococcus aureus was less resistant to ethanolic extract of Morinda citrifolia L. fruit than Escherichia coli, 1 mg/mL and 10 mg/mL, respectively. What these results indicate that the ethanolic extract of the fruit of Morinda citrifolia L. showed antitumor activity with inhibition of viability and growth of B16-F10 cells and also showed antibacterial activity as induced inhibition of growth of Staphylococcus aureus and Escherichia coli.

  20. Phenolic content, antibacterial and antioxidant activities of Erica herbacea L.

    PubMed

    Vucić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2013-01-01

    Antibacterial and antioxidant activity, total phenolic and flavonoid concentrations of aqueous, ethanol and ethyl acetate extracts from the leaves and flowers of Erica herbacea L. were studied. In vitro antibacterial activity of the extracts was determined by macrodilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been determined. Testing was performed on 30 clinical isolates, including different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris. The values for MIC were in the range from 2.5 mg/mL to 40 mg/mL. The most sensitive bacterial strains were Proteus vulgaris strains. The aqueous extract from E. herbacea was found the most active. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 14.98 and 119.88 mg GA/g. The concentration of flavonoids in extracts was determined using spectrophotometric method with aluminium chloride and obtained results varied from 16.19 to 26.90 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent. The highest capacity to neutralize DPPH radicals was found in the aqueous extract from E. herbacea. The results of the total phenolic content determination of the examined extracts indicate that E. herbacea extracts are a rich source of phenolic compounds and also possess a significant antioxidant activity and moderate antibacterial activity.

  1. Purification and characterization of ribosomal proteins L27 and L30 having antimicrobial activity produced by the Lactobacillus salivarius SGL 03.

    PubMed

    Pidutti, P; Federici, F; Brandi, J; Manna, L; Rizzi, E; Marini, U; Cecconi, D

    2018-02-01

    The aim of this study was to investigate the antimicrobial potential of proteins secreted by a new strain of Lactobacillus salivarius. The secretome of L. salivarius SGL 03 strain was analysed by gel-assisted fractionation and MS/MS to identify low-molecular-mass proteins. This strategy allowed us to identify 10 secreted proteins. Then, a combination of heterologous expression and agar well diffusion was used to characterize them as to their antimicrobial activity, mechanisms of action and stability. Our findings indicate that L27 and L30 proteins of the 50S ribosomal subunit have antimicrobial activity against Streptococcus pyogenes, Streptococcus uberis and Enterococcus faecium. In addition, both proteins are bactericidal against S. pyogenes and maintain their antimicrobial activity after different protease treatments, at acidic pH, after heat treatment, and if stored in a refrigerated ambient at least at 4°C. The overall results demonstrated that the L27 and L30 ribosomal proteins are of interest as new antimicrobial molecules to prevent the growth of S. pyogenes, S. uberis and E. faecium. Our results provide the first insight into the extra-ribosomal activity of L27 and L30 secreted proteins of L. salivarius. This study demonstrated the capacity of L. salivarius SGL 03 to produce antimicrobial molecules and suggested this strain as a promising probiotic candidate. © 2017 The Society for Applied Microbiology.

  2. Operando investigation of Au-MnO x thin films with improved activity for the oxygen evolution reaction

    DOE PAGES

    Frydendal, Rasmus; Seitz, Linsey C.; Sokaras, Dimosthenis; ...

    2017-01-20

    The electrochemical splitting of water holds great potential as a method for producing clean fuels by storing electricity from intermittent energy sources. The efficiency of such a process would be greatly facilitated by incorporating more active catalysts based on abundant materials for the oxygen evolution reaction. Manganese oxides are promising as catalysts for this reaction. Recent reports show that their activity can be drastically enhanced when modified with gold. Herein, we investigate highly active mixed Au-MnO x thin films for the oxygen evolution reaction, which exhibit more than five times improvement over pure MnO x. These films are characterized withmore » operando X-ray Absorption Spectroscopy, which reveal that Mn assumes a higher oxidation state under reaction conditions when Au is present. As a result, the magnitude of the enhancement is correlated to the size of the Au domains, where larger domains are the more beneficial.« less

  3. Nucleotides as nucleophiles: Reactions of nucleotides with phosphoimidazolide activated guanosine

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia; Rosenbach, Morgan T.; Brian Hurley, T.

    1992-07-01

    An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N=guanosine, adenosine and uridine) in the range 6.9 ≤ pH ≤ 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-:k {/n pN}=0.17±0.02 M-1 h-1 for nucleophilic attack andk {/h pN}=0.11±0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare withk p 2=0.415 M-1 h-1 andk_h^{p^2 } =0.217 M-1 h-1 for the reactions of HPO{4/2-}. In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts ≥1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.

  4. High performance microbiological transformation of L-tyrosine to L-dopa by Yarrowia lipolytica NRRL-143

    PubMed Central

    Ali, Sikander; Shultz, Jeffry L; Ikram-ul-Haq

    2007-01-01

    Background The 3,4-dihydroxy phenyl L-alanine (L-dopa) is a drug of choice for Parkinson's disease, controlling changes in energy metabolism enzymes of the myocardium following neurogenic injury. Aspergillus oryzae is commonly used for L-dopa production; however, potential improvements in ease of handling, growth rate and environmental impact have led to an interest in exploiting alternative yeasts. The two important elements required for L-dopa production are intracellular tyrosinases (thus pre-grown yeast cells are required for the transformation of L-tyrosine to L-dopa) and L-ascorbate, which acts as a reducing agent. Results Pre-grown cells of Yarrowia lipolytica NRRL-143 were used for the microbiological transformation of L-tyrosine to L-dopa. Different diatomite concentrations (0.5–3.0 mg/ml) were added to the acidic (pH 3.5) reaction mixture. Maximum L-dopa biosynthesis (2.96 mg/ml L-dopa from 2.68 mg/ml L-tyrosine) was obtained when 2.0 mg/ml diatomite was added 15 min after the start of the reaction. After optimizing reaction time (30 min), and yeast cell concentration (2.5 mg/ml), an overall 12.5 fold higher L-dopa production rate was observed when compared to the control. Significant enhancements in Yp/s, Qs and qs over the control were observed. Conclusion Diatomite (2.0 mg/ml) addition 15 min after reaction commencement improved microbiological transformation of L-tyrosine to L-dopa (3.48 mg/ml; p ≤ 0.05) by Y. lipolytica NRRL-143. A 35% higher substrate conversion rate was achieved when compared to the control. PMID:17705832

  5. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzato, Annalisa; Biolatti, Marta; Institute for Cancer Research at Candiolo, Candiolo, Torino

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancermore » cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.« less

  6. Structure and magnetic properties of L10-MnGa nanoparticles prepared using direct reactions between Mn nanoparticles and Ga

    NASA Astrophysics Data System (ADS)

    Si, P. Z.; Qian, H. D.; Park, J.; Ge, H. L.; Shinde, K. P.; Chung, K. C.; Choi, C. J.

    2018-05-01

    The tetragonal L10-Mn1+xGa (x<0.8) nanoparticles and bcc-Mn23Ga77 nanoparticles with large coercivity were prepared using direct reactions between Mn nanoparticles and Ga at elevated temperatures. The Mn23Ga77 phase was formed at ˜573 K while the L10-structured Mn1+xGa was formed at ˜850 K. After ball-milling, the L10-Mn1+xGa nanoparticles transformed into nano-flakes with enhanced coercivity. The size of the as-prepared Mn23Ga77 nanoparticles is comparable to that of the precursor Mn nanoparticles. An aggregation of the nanoparticles and thus a larger particle size were observed in the L10-Mn1+xGa nanoparticles obtained at 850 K. The size of the L10-Mn1+xGa nano-flakes is reduced to about 200-400 nm with a thickness of ˜20 nm. The coercivity of the Mn23Ga77 nanoparticles and the L10-Mn1+xGa nanoparticles at 300 K reached up to 0.2 T and 0.43 T, respectively. The coercivity of L10-Mn1+xGa ball-milled nano-flakes is 0.59 T at 300 K.

  7. Shock-activated reaction synthesis and high pressure response of titanium-based ternary carbide and nitride ceramics

    NASA Astrophysics Data System (ADS)

    Jordan, Jennifer Lynn

    The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the "run-away" combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95--120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is

  8. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  9. Anti-Fungal activity of essential oil from Baeckea frutescens L against Pleuratus ostreatus

    NASA Astrophysics Data System (ADS)

    Jemi, Renhart; Barus, Ade Irma; Nuwa, Sarinah, Luhan, Gimson

    2017-11-01

    Ujung Atap is an herb that have distinctive odor on its leaves. The plant's essential oil contains bioactive compounds but has not been investigated its anti-fungal activity against Pleurotus ostreatus. Essential oil from Ujung Atap leaves is one environmentally friendly natural preservative. This study consisted of distillation Ujung Atap leaves with boiled method, determining the number of acid, essential oil ester, and anti-fungal activity against Pleurotus ostreatus. Analysis of the data to calculate anti-fungal activity used probit analysis method to determine the IC50. Results for the distillation of leaves Ujung Atap produce essential oil yield of 0.071% and the average yield of the acid number and the ester of essential oils Ujung Atap leaves are 5.24 and 12.15. Anti-fungal activity Pleurotus ostreatus at a concentration of 1000 µg/mL, 100 µg/mL, 75 µg/mL, 50 µg/mL and 100 µg/mL BA defunct or fungi was declared dead, while at a concentration of 25 µg/mL, 10 µg/mL and 5 µg/mL still occur inhibitory processes. Results obtained probit analysis method IC50 of 35.48 mg/mL; means the essential oil of Ujung Atap leaf can inhibit fungal growth by 50 percent to 35.48 µg/mL concentration.

  10. Flavonoid Composition of Tarocco (Citrus sinensis L. Osbeck) Clone "Lempso" and Fast Antioxidant Activity Screening by DPPH-UHPLC-PDA-IT-TOF.

    PubMed

    Sommella, Eduardo; Pagano, Francesco; Pepe, Giacomo; Ostacolo, Carmine; Manfra, Michele; Chieppa, Marcello; Di Sanzo, Rosa; Carabetta, Sonia; Campiglia, Pietro; Russo, Mariateresa

    2017-11-01

    Clonal selection and hybridisation are valid strategies to obtain fruits with enhanced sensorial and nutraceutical properties. Within Citrus sinensis varieties, Tarocco clone "Lempso" is a typical product of the Calabria region (Italy) characterised by its red pulp. This is the first report concerning its accurate profiling. To characterise in detail the flavonoid composition of Lempso clone and to compare its antioxidant potential with other Citrus varieties by a fast screening method. Extracts were subjected to solid phase extraction and the qualitative/quantitative profile was elucidated through ultra-high performance liquid chromatography (UHPLC) coupled to photodiode array (PDA) and ion trap time-of-flight (IT-TOF) mass spectrometry detection, and compared to both Cleopatra mandarin (Citrus reticulata) and blood orange (Citrus sinensis (L.) Osbeck) Sanguinello varieties. The antioxidant activity was assessed by pre-column 2,2'-diphenyl-1-picrylhydrazyl (DPPH) reaction coupled to UHPLC-PDA. Lempso is characterised by flavonoids (17) and anthocyanins (8). Flavanones content (Hesperidin: 57.19 ± 0.49, Vicenin-2: 4.59 ± 0.03, Narirutin: 5.78 ± 0.13 mg/100 mL) was considerably higher than Cleopatra and Sanguinello varieties. The developed DPPH-UHPLC-PDA method provides information regarding the single contributions to antioxidant activity, highlighting how Ferulic acid, Quercetin and Cyanidin derivatives possess considerable radical scavenging activity (> 50%). The total antioxidant activity was also evaluated and compared with positive controls, showing higher scavenging activity than Cleopatra and Sanguinello (IC 50 : 333.76 ± 10.81 μg/mL vs. 452.62 ± 10.81 and 568.39 ± 26.98 μg/mL, respectively). These data evidence the nutraceutical potential of Lempso variety, which could be an ingredient for functional beverages. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Theoretical study of the gas-phase structures of sodiated and cesiated leucine and isoleucine: zwitterionic structure disfavored in kinetic method experiments.

    PubMed

    Rozman, Marko

    2005-10-01

    The most stable charge-solvated (CS) and zwitterionic (ZW) structures of sodiated and cesiated leucine and isoleucine were studied by density functional theory methods. According to the Boltzmann distribution in gas phase, both forms of LeuNa+ and IleNa+ exist, but in LeuCs+ and IleCs+, the ZW forms are dominant. Results for the sodiated compounds are consistent with the relationship found between decrease in relative stability of CS versus ZW form and aliphatic amino acid side chain length. The observed degeneracy in energy for IleNa+ conformers is at odds with kinetic method results. Additional calculations showed that kinetic method structural determinations for IleNa+ do not reflect relative order of populations in the lowest energy conformers. Since complexation of cationized amino acids into ion-bound dimers disfavors ZW structure by approximately 8 kJ mol(-1), it is suggested that for energy close conformers of sodium-cationized amino acids, the kinetic method may not be reliable for structural determinations. Copyright (c) 2005 John Wiley & Sons, Ltd.

  12. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts

    PubMed Central

    2012-01-01

    Background Arnica montana L. and Artemisia absinthium L. (Asteraceae) are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. Results A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10–100 mg/L A. montana and 10–500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10–300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. Conclusions A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders. PMID:22958433

  13. Comparative Agronomic Performance and Reaction to Fusarium wilt of Lens culinaris × L. orientalis and L. culinaris × L. ervoides derivatives.

    PubMed

    Singh, Mohar; Rana, Jai C; Singh, Badal; Kumar, Sandeep; Saxena, Deep R; Saxena, Ashok; Rizvi, Aqeel H; Sarker, Ashutosh

    2017-01-01

    The development of transgressive phenotype in the segregating populations has been speculated to contribute to niche divergence of hybrid lineages, which occurs most frequently at larger genetic distances. Wild Lens species are considered to be more resistant against major biotic and abiotic stresses than that of the cultivated species. In the present study, we assessed the comparative agronomic performance of lentil ( Lens culinaris subsp. culinaris ) inter-sub-specific ( L. culinaris subsp. orientalis ) and interspecific ( L. ervoides ) derivatives, also discussed its probable basis of occurrence. The F 3 , F 4 , and F 5 inter sub-specific and interspecific populations of ILL8006 × ILWL62 and ILL10829 × ILWL30, respectively revealed a substantial range of variation for majority of agro-morphological traits as reflected by the range, mean and coefficient of variation. A high level of fruitful heterosis was also observed in F 3 and F 4 progeny for important traits of interest. Phenotypic coefficient of variation (PCV) was higher in magnitude than genotypic coefficient of variation (GCV) in all generations for several quantitative characters. The results showed high heritability estimates for majority of traits in conjunction with low to high genetic advance in F 3 and F 4 generations. Further, F 5 progeny of ILL10829 × ILWL30, manifested resistant disease reaction for fifteen recombinant inbred lines (RILs) against ( Fusarium oxysporum f. sp. lentis ( Vasd. Srin .) Gord.). The multilocation agronomic evaluation of both crosses showed better results for earliness, desirable seed yield and Fusarium wilt resistance under two agro-ecological regions of north-western India. These better performing recombinants of ILL8006 × ILWL62 and ILL10829 × ILWL30 can be advanced for further genetic improvement and developing high yielding disease resistant cultivars of lentil.

  14. Comparative Agronomic Performance and Reaction to Fusarium wilt of Lens culinaris × L. orientalis and L. culinaris × L. ervoides derivatives

    PubMed Central

    Singh, Mohar; Rana, Jai C.; Singh, Badal; Kumar, Sandeep; Saxena, Deep R.; Saxena, Ashok; Rizvi, Aqeel H.; Sarker, Ashutosh

    2017-01-01

    The development of transgressive phenotype in the segregating populations has been speculated to contribute to niche divergence of hybrid lineages, which occurs most frequently at larger genetic distances. Wild Lens species are considered to be more resistant against major biotic and abiotic stresses than that of the cultivated species. In the present study, we assessed the comparative agronomic performance of lentil (Lens culinaris subsp. culinaris) inter-sub-specific (L. culinaris subsp. orientalis) and interspecific (L. ervoides) derivatives, also discussed its probable basis of occurrence. The F3, F4, and F5 inter sub-specific and interspecific populations of ILL8006 × ILWL62 and ILL10829 × ILWL30, respectively revealed a substantial range of variation for majority of agro-morphological traits as reflected by the range, mean and coefficient of variation. A high level of fruitful heterosis was also observed in F3 and F4 progeny for important traits of interest. Phenotypic coefficient of variation (PCV) was higher in magnitude than genotypic coefficient of variation (GCV) in all generations for several quantitative characters. The results showed high heritability estimates for majority of traits in conjunction with low to high genetic advance in F3 and F4 generations. Further, F5 progeny of ILL10829 × ILWL30, manifested resistant disease reaction for fifteen recombinant inbred lines (RILs) against (Fusarium oxysporum f. sp. lentis (Vasd. Srin.) Gord.). The multilocation agronomic evaluation of both crosses showed better results for earliness, desirable seed yield and Fusarium wilt resistance under two agro-ecological regions of north-western India. These better performing recombinants of ILL8006 × ILWL62 and ILL10829 × ILWL30 can be advanced for further genetic improvement and developing high yielding disease resistant cultivars of lentil. PMID:28751897

  15. Computer-assisted study on the reaction between pyruvate and ylide in the pathway leading to lactyl-ThDP.

    PubMed

    Alvarado, Omar; Jaña, Gonzalo; Delgado, Eduardo J

    2012-08-01

    In this study the formation of the lactyl-thiamin diphosphate intermediate (L-ThDP) is addressed using density functional theory calculations at X3LYP/6-31++G(d,p) level of theory. The study includes potential energy surface scans, transition state search, and intrinsic reaction coordinate calculations. Reactivity is analyzed in terms of Fukui functions. The results allow to conclude that the reaction leading to the formation of L-ThDP occurs via a concerted mechanism, and during the nucleophilic attack on the pyruvate molecule, the ylide is in its AP form. The calculated activation barrier for the reaction is 19.2 kcal/mol, in agreement with the experimental reported value.

  16. Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad

    2016-03-01

    A green synthesis process was developed for production of the Pd/TiO2 nanoparticles (NPs) without using toxic, hazardous and dangerous materials. Myrtus communis L. leaf extract serves as a mild, renewable and non-toxic reducing agent. The advantages of this biosynthesis method include use of cheap, clean, nontoxic and environmentally benign precursors and simple procedures without time-consuming polymerization and problems with treatment of a highly viscous polymeric resin. More importantly, the synthesized Pd/TiO2 NPs presented excellent catalytic activity for ligand-free Suzuki-Miyaura coupling which could be easily separated from the reaction mixture and reused many times with no loss of activity. Therefore, these properties indicate demonstrative benefits of the catalyst. The Pd/TiO2 NPs was characterized by FESEM, TEM, FT-IR, UV-vis spectroscopy and EDS. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect.

    PubMed

    Mescka, Caroline Paula; Wayhs, Carlos Alberto Yasin; Vanzin, Camila Simioni; Biancini, Giovana Brondani; Guerreiro, Gilian; Manfredini, Vanusa; Souza, Carolina; Wajner, Moacir; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2013-02-01

    Maple syrup urine disease (MSUD) is an inborn error of metabolism biochemically characterized by elevated levels of the branched chain amino acids (BCAA) leucine, isoleucine, valine and the corresponding branched-chain α-keto acids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. l-Carnitine (l-Car) plays a central role in the cellular energy metabolism because it transports long-chain fatty acids for oxidation and ATP generation. In recent years many studies have demonstrated the antioxidant role of this compound. In this work, we investigated the effect of BCAA-restricted diet supplemented or not with l-Car on lipid peroxidation and in protein oxidation in MSUD patients. We found a significant increase of malondialdehyde and of carbonyl content in plasma of MSUD patients under BCAA-restricted diet compared to controls. Furthermore, patients under BCAA-restricted diet plus l-Car supplementation presented a marked reduction of malondialdehyde content in relation to controls, reducing the lipid peroxidation. In addition, free l-Car concentrations were negatively correlated with malondialdehyde levels. Our data show that l-Car may have an antioxidant effect, protecting against the lipid peroxidation and this could represent an additional therapeutic approach to the patients affected by MSUD. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Activation of EGF Receptor Kinase by L1-mediated Homophilic Cell Interactions

    PubMed Central

    Islam, Rafique; Kristiansen, Lars V.; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-01-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo. PMID:14718570

  19. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions.

    PubMed

    Islam, Rafique; Kristiansen, Lars V; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-04-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.

  20. Oleoyl-L-carnitine inhibits glycine transport by GlyT2

    PubMed Central

    Carland, JE; Mansfield, RE; Ryan, RM; Vandenberg, RJ

    2013-01-01

    Background and Purpose Concentrations of extracellular glycine in the CNS are regulated by two Na+/Cl–-dependent glycine transporters, GlyT1 and GlyT2. Selective inhibitors of GlyT1 have been developed for the treatment of schizophrenia, whilst selective inhibitors of GlyT2 are analgesic in animal models of pain. We have assessed a series of endogenous lipids as inhibitors of GlyT1 and GlyT2. Experimental Approach Human GlyT1 and GlyT2 were expressed in Xenopus laevis oocytes, and the inhibitory actions of a series of acylcarnitines on glycine transport were measured using electrophysiological techniques. Key Results Oleoyl-l-carnitine inhibited glycine transport by GlyT2, with an IC50 of 340 nM, which is 15-fold more potent than the previously identified lipid inhibitor N-arachidonyl-glycine. Oleoyl-l-carnitine had a slow onset of inhibition and a slow washout. Using a series of chimeric GlyT1/2 transporters and point mutant transporters, we have identified an isoleucine residue in extracellular loop 4 of GlyT2 that conferred differences in sensitivity to oleoyl-l-carnitine between GlyT2 and GlyT1. Conclusions and Implications Oleoyl-l-carnitine is a potent non-competitive inhibitor of GlyT2. Previously identified GlyT2 inhibitors show potential as analgesics and the identification of oleoyl-l-carnitine as a novel GlyT2 inhibitor may lead to new ways of treating pain. PMID:22978602

  1. Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type Ca{sup 2+} channel-mediated PGC-1α/ERRα activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yoon Kyung; Park, Joon Ha; Baek, Yi-Yong

    Carbon monoxide (CO), derived by the enzymatic reaction of heme oxygenase (HO), is a cellular regulator of energy metabolism and cytoprotection; however, its underlying mechanism has not been clearly elucidated. Astrocytes pre-exposed to the CO-releasing compound CORM-2 increased mitochondrial biogenesis, mitochondrial electron transport components (cytochrome c, Cyt c; cytochrome c oxidase subunit 2, COX2), and ATP synthesis. The increased mitochondrial function was correlated with activation of AMP-activated protein kinase α and upregulation of HO-1, peroxisome proliferators-activated receptor γ-coactivator-1α (PGC-1α), and estrogen-related receptor α (ERRα). These events elicited by CORM-2 were suppressed by Ca{sup 2+} chelators, a HO inhibitor, and anmore » L-type Ca{sup 2+} channel blocker, but not other Ca{sup 2+} channel inhibitors. Among the HO byproducts, combined CORM-2 and bilirubin treatment effectively increased PGC-1α, Cyt c and COX2 expression, mitochondrial biogenesis, and ATP synthesis, and these increases were blocked by Ca{sup 2+} chelators. Moreover, cerebral ischemia significantly increased HO-1, PGC-1α, and ERRα levels, subsequently increasing Cyt c and COX2 expression, in wild-type mice, compared with HO-1{sup +/−} mice. These results suggest that HO-1-derived CO enhances mitochondrial biogenesis in astrocytes by activating L-type Ca{sup 2+} channel-mediated PGC-1α/ERRα axis, leading to maintenance of astrocyte function and neuroprotection/recovery against damage of brain function. - Highlights: • CORM-pretreated astrocytes induces mitochondrial biogenesis by activating L-type Ca{sup 2+} channel-mediated PGC-1α stabilization. • Cerebral ischemia increased electron transport chain proteins (e.g. Cyt c and COX2), in WT mice, compared with HO-1{sup +/−} mice. • CO/HO-1 pathway increases astrocytic mitochondrial functions via a PGC-1α/ERRα axis.« less

  2. Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity

    PubMed Central

    Tiwari, Jitendra N.; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N.; Kemp, K. Christian; Le, Nhien H.; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S.

    2013-01-01

    Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries. PMID:23900456

  3. The interaction of methanol dehydrogenase and cytochrome cL in the acidophilic methylotroph Acetobacter methanolicus.

    PubMed Central

    Chan, H T; Anthony, C

    1991-01-01

    The quinoprotein methanol dehydrogenase (MDH) of Acetobacter methanolicus has an alpha 2 beta 2 structure. By contrast with other MDHs, the beta-subunit (approx. 8.5 kDa) does not contain the five lysine residues previously proposed to be involved in ionic interactions with the electron acceptor cytochrome cL. That electrostatic interactions are involved was confirmed by the demonstration that methanol:cytochrome cL oxidoreductase activity was inhibited by high ionic strength (I), the strength of interaction being inversely related to the square root of I. Specific modifiers of arginine residues on MDH inhibited this reaction but not the dye-linked MDH activity. Modification of lysine residues on MDH that altered its charge had no effect on the dye-linked activity but inhibited reaction with cytochrome cL. When the charge was retained on modification of lysine residues, little effect on either activity was observed. Cross-linking experiments confirmed that lysine residues on the alpha-subunit, but not the beta-subunit, are involved in the 'docking' process between the proteins. Images Fig. 4. PMID:1660263

  4. Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor.

    PubMed

    Benito-Lopez, Fernando; Verboom, Willem; Kakuta, Masaya; Gardeniers, J Han G E; Egberink, Richard J M; Oosterbroek, Edwin R; van den Berg, Albert; Reinhoudt, David N

    2005-06-14

    With a miniaturized (3 microL volume) fiber-optics based system for on-line measurement by UV/Vis spectroscopy, the reaction rate constants (at different pressures) and the activation volumes (deltaV(not =)) were determined for a nucleophilic aromatic substitution and an aza Diels-Alder reaction in a capillary microreactor.

  5. Formation of multi-stereogenic centers using a catalytic diastereoselective Henry reaction.

    PubMed

    Arai, Takayoshi; Taneda, Yoshinori; Endo, Yoko

    2010-11-14

    A diastereoselective Henry reaction of chiral aldehydes with nitroalkanes was developed using a chiral sulfonyldiamine (L1)-CuCl complex. The reaction of (R)-2-phenylpropanal and nitromethane was smoothly catalyzed by the (S,S,S)-L1-CuCl complex to give the adduct with 99/1 syn/anti selectivity in 99% ee. In the reaction of (S)-2-phenylpropanal and nitroethane, the (R,R,R)-L1-CuCl catalyst yielded the expected three contiguous stereogenic centers in a highly syn-selective Henry reaction.

  6. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    PubMed Central

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  7. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Jingke; Kang, Zhenye; Retterer, Scott T.

    Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time. Surprisingly, reactions occur only on the CL adjacent tomore » good electrical conductors. On the basis of these findings, new CL fabrications on the novel LGDLs exhibit more than 50 times higher mass activity than conventional catalyst-coated membranes in PEMECs. In conclusion, this discovery presents an opportunity to enhance the multiphase interfacial effects, maximizing the use of the catalysts and significantly reducing the cost of these devices.« less

  8. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting

    PubMed Central

    Mo, Jingke; Kang, Zhenye; Retterer, Scott T.; Cullen, David A.; Toops, Todd J.; Green, Johney B.; Mench, Matthew M.; Zhang, Feng-Yuan

    2016-01-01

    Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time. Surprisingly, reactions occur only on the CL adjacent to good electrical conductors. On the basis of these findings, new CL fabrications on the novel LGDLs exhibit more than 50 times higher mass activity than conventional catalyst-coated membranes in PEMECs. This discovery presents an opportunity to enhance the multiphase interfacial effects, maximizing the use of the catalysts and significantly reducing the cost of these devices. PMID:28138516

  9. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting

    DOE PAGES

    Mo, Jingke; Kang, Zhenye; Retterer, Scott T.; ...

    2016-11-18

    Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time. Surprisingly, reactions occur only on the CL adjacent tomore » good electrical conductors. On the basis of these findings, new CL fabrications on the novel LGDLs exhibit more than 50 times higher mass activity than conventional catalyst-coated membranes in PEMECs. In conclusion, this discovery presents an opportunity to enhance the multiphase interfacial effects, maximizing the use of the catalysts and significantly reducing the cost of these devices.« less

  10. Spoken Language Activation Alters Subsequent Sign Language Activation in L2 Learners of American Sign Language.

    PubMed

    Williams, Joshua T; Newman, Sharlene D

    2017-02-01

    A large body of literature has characterized unimodal monolingual and bilingual lexicons and how neighborhood density affects lexical access; however there have been relatively fewer studies that generalize these findings to bimodal (M2) second language (L2) learners of sign languages. The goal of the current study was to investigate parallel language activation in M2L2 learners of sign language and to characterize the influence of spoken language and sign language neighborhood density on the activation of ASL signs. A priming paradigm was used in which the neighbors of the sign target were activated with a spoken English word and compared the activation of the targets in sparse and dense neighborhoods. Neighborhood density effects in auditory primed lexical decision task were then compared to previous reports of native deaf signers who were only processing sign language. Results indicated reversed neighborhood density effects in M2L2 learners relative to those in deaf signers such that there were inhibitory effects of handshape density and facilitatory effects of location density. Additionally, increased inhibition for signs in dense handshape neighborhoods was greater for high proficiency L2 learners. These findings support recent models of the hearing bimodal bilingual lexicon, which posit lateral links between spoken language and sign language lexical representations.

  11. Electrostatics of the photosynthetic bacterial reaction center. Protonation of Glu L 212 and Asp L 213 - A new method of calculation.

    PubMed

    Ptushenko, Vasily V; Cherepanov, Dmitry A; Krishtalik, Lev I

    2015-12-01

    Continuum electrostatic calculation of the transfer energies of anions from water into aprotic solvents gives the figures erroneous by order of magnitude. This is due to the hydrogen bond disruption that suggests the necessity to reconsider the traditional approach of the purely electrostatic calculation of the transfer energy from water into protein. In this paper, the method combining the experimental estimates of the transfer energies from water into aprotic solvent and the electrostatic calculation of the transfer energies from aprotic solvent into protein is proposed. Hydrogen bonds between aprotic solvent and solute are taken into account by introducing an imaginary aprotic medium incapable to form hydrogen bonds with the solute. Besides, a new treatment of the heterogeneous intraprotein dielectric permittivity based on the microscopic protein structure and electrometric measurements is elaborated. The method accounts semi-quantitatively for the electrostatic effect of diverse charged amino acid substitutions in the donor and acceptor parts of the photosynthetic bacterial reaction center from Rhodobacter sphaeroides. Analysis of the volatile secondary acceptor site QB revealed that in the conformation with a minimal distance between quinone QB and Glu L 212 the proton uptake upon the reduction of QB is prompted by Glu L 212 in alkaline and by Asp L 213 in slightly acidic regions. This agrees with the pH dependences of protonation degrees and the proton uptake. The method of pK calculation was applied successfully also for dissociation of Asp 26 in bacterial thioredoxin. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Magnetic Activity Dependence of the Electric Drift Below L = 3

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Mozer, F. S.

    2018-05-01

    More than 2 years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L = 3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the nightside. The amplitude of the slowdown is a function of L, magnetic local time, and Kp, in a pattern consistent with the storm time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L = 3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and magnetic local time. It is the first time that the signature of the ionospheric disturbance dynamo is observed in near-equatorial electric drift measurements.

  13. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies.

    PubMed

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Synthesis of Fucosyl-N-Acetylglucosamine Disaccharides by Transfucosylation Using α-l-Fucosidases from Lactobacillus casei

    PubMed Central

    Rodríguez-Díaz, Jesús; Carbajo, Rodrigo J.; Pineda-Lucena, Antonio; Monedero, Vicente

    2013-01-01

    AlfB and AlfC α-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-α-1,3-N-acetylglucosamine and fucosyl-α-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-α-l-fucopyranoside into fucosyl-α-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-α-1,6-N-acetylglucosamine. PMID:23542622

  15. Gelatin-induced T-cell activation in children with nonanaphylactic-type reactions to vaccines containing gelatin.

    PubMed

    Taniguchi, K; Fujisawa, T; Ihara, T; Kamiya, H

    1998-12-01

    Many cases of anaphylactic or nonanaphylactic reactions have been reported to measles-mumps-rubella vaccine or its component vaccines that contain gelatin as a stabilizer. Increased levels of specific IgE antibodies to gelatin have been reported in children with anaphylactic reactions. However, IgE is not increased in cases of nonanaphylactic reaction, and the mechanisms of the reaction are still controversial. The study was aimed to elucidate the relationship between nonanaphylactic reaction and gelatin. We investigated in vitro induction of activated memory helper T cells (CD4(+ )CD25(+ )CD45RO+ cells) in response to gelatin in children with nonanaphylactic reactions to vaccines containing gelatin. In patients with delayed-type sensitivity to gelatin confirmed with a positive skin test response, CD4(+ )CD25(+ )CD45RO+ cells were significantly more strongly induced in culture containing gelatin than in control cultures. However, there was no significant difference between cultures with gelatin and those with control solvent in patients without reactions after vaccination. Of 76 patients with nonanaphylactic reactions after immunization with vaccine containing gelatin, 61 had an increased lymphocyte stimulation index to gelatin versus control children. These results suggest the possibility that nonanaphylactic reactions to gelatin-containing vaccine in Japan might be mediated by delayed hypersensitivity reactions against gelatin.

  16. Properties of Acetate Kinase Isozymes and a Branched-Chain Fatty Acid Kinase from a Spirochete

    PubMed Central

    Harwood, Caroline S.; Canale-Parola, Ercole

    1982-01-01

    Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids. PMID:6288660

  17. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy.

    PubMed

    Bahia El Idrissi, N; Hakobyan, S; Ramaglia, V; Geluk, A; Morgan, B Paul; Das, P Kumar; Baas, F

    2016-06-01

    Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions. © 2016 British Society for Immunology.

  18. Three VO2+ complexes of the pyridoxal-derived Schiff bases: Synthesis, experimental and theoretical characterizations, and catalytic activity in a cyclocondensation reaction

    NASA Astrophysics Data System (ADS)

    Jafari-Moghaddam, Faezeh; Beyramabadi, S. Ali; Khashi, Maryam; Morsali, Ali

    2018-02-01

    Three oxovanadium(IV) complexes of the pyridoxal Schiff bases have been newly synthesized and characterized. The used Schiff bases were N,N‧-dipyridoxyl(ethylenediamine), N,N‧-dipyridoxyl(1,3-propanediamine) and N,N‧-dipyridoxyl(1,2-benzenediamine). Also, the optimized geometry, assignment of the IR bands and the Natural Bond Orbital (NBO) analysis of the complexes have been computed using the density functional theory (DFT) methods. Dianionic form of the Schiff bases (L2-) acts as a tetradentate N2O2 ligand. The coordinating atoms of the Schiff base are the phenolate oxygens and imine nitrogens, which occupy four base positions of the square-pyramidal geometry of the complexes. The oxo ligand occupies the apical position of the [VO(L)] complexes. In the optimized geometry of the complexes, the coordinated Schiff bases have more planar structure than their free form. Due to the high-energy gaps, all of the complexes are predicted to be stable. Good agreement between the experimental values and the DFT-computed results supports suitability of the optimized geometries for the complexes. The investigated complexes show high catalytic activities in synthesis of the tetrahydrobenzo[b]pyrans through a three-component cyclocondensation reaction of dimedone, malononitrile and some aromatic aldehydes. The complexes catalyzed the reaction in solvent free conditions and the catalysts were found to be reusable.

  19. Automatically activated shame reactions and perceived legitimacy of discrimination: A longitudinal study among people with mental illness

    PubMed Central

    Rüsch, Nicolas; Todd, Andrew R.; Bodenhausen, Galen V.; Olschewski, Manfred; Corrigan, Patrick W.

    2009-01-01

    Perceived legitimacy of discrimination shapes reactions to mental illness stigma among stigmatized individuals. We assessed deliberately endorsed versus automatic shame-related reactions to mental illness as predictors of change in perceived legitimacy of discrimination over six months among 75 people with mental illness. Automatically activated shame-related associations with mental illness were measured using the Brief Implicit Association Test, deliberately endorsed beliefs via self-report. Controlling for depression and perceived stigma, stronger baseline automatic shame-related associations, but not deliberately endorsed beliefs, predicted higher perceived legitimacy of discrimination after six months. Automatically activated shame reactions may increase vulnerability to mental illness stigma. PMID:19897173

  20. [Activity of tissue cathepsin-L-like proteinases of women with womb body oncopathology].

    PubMed

    Vovchuk, I L; Chernadchuk, S S

    2004-01-01

    Activity and optimal pH of cathepsin-L-like proteinases was studied in benign and malignant tumours of the womb body. In the benign tumors activity of cathepsin-L-like proteinases changes depending on the expansion and depth of extension benign tumour and is defined by proliferative potential of tumour cells of myometrium and endometrium. Activity of cathepsin-L-like proteinases in malignant epithelial tumour of endometrium--adenocarcinoma is inversely proportional to the level of differentiation of the tumour cells.

  1. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay.

    PubMed

    McDowell, Arlene; Thompson, Scott; Stark, Mirjam; Ou, Zong-Quan; Gould, Kevin S

    2011-12-01

    There is considerable interest in antioxidant dietary components that can be protective against degenerative diseases in humans. Puha (Sonchus oleraceus L.) is a rich source of polyphenols, and exhibits strong antioxidant activity as measured by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. However, the potential of puha to protect against degenerative diseases requires that low molecular weight antioxidants (LMWA) are absorbed by, and active in, human cells. The cellular antioxidant activity (CAA) assay was used to investigate the antioxidant activity of puha leaf extracts. Preparation methods of freezing and freeze-drying reduced the total polyphenolic content compared with fresh puha, but did not affect the LMWA potential as determined by the DPPH assay. The IC(50) values were 0.012 ± 0.003 mg/mL and 0.010 ± 0.005 mg/mL for freeze-dried and fresh puha leaves, respectively. Using the CAA assay, it was shown that LMWAs from foliar extracts of puha were effectively absorbed into HepG2 cells, and exerted antioxidant activity at levels comparable to those of extracts from blueberry fruits, the much-touted antioxidant superfood. Methylene blue staining of HepG2 cells indicated that puha extracts were not cytotoxic at concentrations below 100 mg DW/mL. The data indicate the potential of puha as a nutraceutical supplement for human health. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Prevention of DNA damage by L-carnitine induced by metabolites accumulated in maple syrup urine disease in human peripheral leukocytes in vitro.

    PubMed

    Mescka, Caroline Paula; Wayhs, Carlos Alberto Yasin; Guerreiro, Gilian; Manfredini, Vanusa; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2014-09-15

    Maple syrup urine disease (MSUD) is an inherited aminoacidopathy caused by a deficiency in branched-chain α-keto acid dehydrogenase complex activity that leads to the accumulation of the branched-chain amino acids (BCAAs) leucine (Leu), isoleucine, and valine and their respective α-keto-acids, α-ketoisocaproic acid (KIC), α keto-β-methylvaleric acid, and α-ketoisovaleric acid. The major clinical features presented by MSUD patients include ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay, and mental retardation; however, the pathophysiology of this disease is poorly understood. MSUD treatment consists of a low protein diet supplemented with a mixture containing micronutrients and essential amino acids but excluding BCAAs. Studies have shown that oxidative stress may be involved in the neuropathology of MSUD, with the existence of lipid and protein oxidative damage in affected patients. In recent years, studies have demonstrated the antioxidant role of L-carnitine (L-Car), which plays a central function in cellular energy metabolism and for which MSUD patients have a deficiency. In this work, we investigated the in vitro effect of Leu and KIC in the presence or absence of L-Car on DNA damage in peripheral whole blood leukocytes using the alkaline comet assay with silver staining and visual scoring. Leu and KIC resulted in a DNA damage index that was significantly higher than that of the control group, and L-Car was able to significantly prevent this damage, mainly that due to KIC. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nucleotides as nucleophiles: reactions of nucleotides with phosphoimidazolide activated guanosine

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.; Hurley, T. B.

    1991-01-01

    An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N = guanosine, adenosine and uridine) in the range 6.9 less than or equal to pH less than or equal to 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-: knpN = 0.17 +/- 0.02 M-1 h-1 for nucleophilic attack and khpN = 0.11 +/- 0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare with kp.2 = 0.415 M-1 h-1 and khp2. = 0.217 M-1 h-1 for the reactions of HPO4(2-). In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts greater than or equal to 1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.

  4. Touch-Initiated Reaction of Nitrogen Triiodide as a Template for Activation Energy Classroom Discussions

    ERIC Educational Resources Information Center

    Short, Duncan

    2017-01-01

    Activation energies form an energy barrier to a chemical reaction taking place. Simple collision theory, i.e. that particles need to collide to react, would suggest that activation energy is the energy needed to overcome a coulombic barrier provided by the negatively charged electrons contained within energy shells surrounding an atomic nucleus.…

  5. Serine protease activity of Cur l 1 from Curvularia lunata augments Th2 response in mice.

    PubMed

    Tripathi, Prabhanshu; Kukreja, Neetu; Singh, B P; Arora, Naveen

    2009-05-01

    Studies with mite allergens demonstrated that proteolytic activity augments allergic airway inflammation. This knowledge is limited to few enzyme allergens. The objective of this study is to investigate the effect of serine protease Cur l 1 from Curvularia lunata in airway inflammation/hyper-responsiveness. Cur l 1 was purified and inactivated using a serine protease inhibitor. Balb/c mice were sensitized with enzymatically active Cur l 1 or C. lunata extract. Sensitized mice were given booster dose on day 14 with active or inactivated Cur l 1. Intranasal challenge was given on day 28, 29, and 30. Airway hyper-responsiveness was measured by plethysmography. Blood, bronchoalveolar lavage fluid (BALF), spleen, and lungs from mice were analyzed for cellular infiltration, immunoglobulins, and cytokine levels. Mice challenged with enzymatically active Cur l 1 demonstrated significantly higher airway inflammation than inactive Cur l 1 group mice (p < 0.01). There was a significant difference in serum IgE and IgG1 levels among mice immunized with active Cur l 1 and inactive Cur l 1 (p < 0.01). IL-4 and IL-5 were higher in BALF and splenocyte culture supernatant of active Cur l 1 than inactive Cur l 1 mice. Lung histology revealed increased eosinophil infiltration, goblet cell hyperplasia and mucus secretion in active group. Proteolytic activity of Cur l 1 plays an important role in airway inflammation and the inactivated Cur l 1 has potential to be explored for immunotherapy.

  6. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    PubMed

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Primary photochemical processes in fac-ClRe(CO){sub 3}L{sub 2} (L = 4-phenylpyridine and 4-cyanopyridine): A steady-state and flash photochemical study of reaction products and intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feliz, M.; Ferraudi, G.; Altmiller, H.

    1992-01-09

    The photochemistry of fac-ClRe(CO){sub 3}L{sub 2}, L = 4-phenylpyridine and 4-cyanopyridine, has been investigated by monochromatic steady-state and flash photolyses between 400 and 229 nm. Two parallel photoprocesses, the photogeneration of the emissive MLCT state and the photoredox dissociation in (ClRe(CO){sub 3}L{sup +}, L{sup {sm_bullet}{minus}}) products, have been observed with both compounds. A third photoprocess, namely, the photogeneration of a Re(I)-ligand biradical, has been observed only in photolyses of the 4-phenylpyridine complex. While this Re(I)-ligand biradical reduces Cu{sup II}(TIM){sup 2+} to the corresponding Cu(I) species, no such reaction is undergone by the MLCT state. Differences between the electronic structures ofmore » these complexes, shown by extended Hueckel MO calculations, were related to their intrinsic photochemical behavior. 54 refs., 9 figs., 1 tab.« less

  8. Hydrazine-induced post-chemiluminescence phenomenon of permanganate-luminol reaction and its applications.

    PubMed

    Du, Jianxiu; Lu, Jiuru

    2004-01-01

    The post-chemiluminescence phenomenon arising from the permanganate-luminol reaction induced by hydrazine and isoniazid was investigated. When hydrazine or isoniazid was injected into the mixture after the end of the reaction of permanganate with alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A possible CL mechanism is suggested, based upon the studies of the kinetic characteristics of the CL reaction, the UV-visible spectra, the CL spectra and some other experiments. The present reactions allow the determination of 0.1-10.0 mg/L hydrazine and 0.02-1.0 mg/L isoniazid, with detection limits of 0.03 mg/L and 0.006 mg/L, respectively. The method was applied to the determination of isoniazid in pharmaceutical preparations.

  9. Anthelmintic activity of Trianthema portulacastrum L. and Musa paradisiaca L. against gastrointestinal nematodes of sheep.

    PubMed

    Hussain, Altaf; Khan, Muhammad Nisar; Iqbal, Zafar; Sajid, Muhammad Sohail; Khan, Muhammad Kasib

    2011-06-30

    Evaluation of anthelmintic effects of Trianthema (T.) portulacastrum L. (Aizoaceae) whole plant and Musa (M.) paradisiaca L. (Musaceae) leaves against prevalent gastrointestinal worms of sheep was done that may justify their traditional use in veterinary clinical medicine. In vitro anthelmintic activity of the crude aqueous methanolic extract (CAME) of both the plants was determined using mature female Haemonchus (H.) contortus and their eggs in adult motility assay (AMA) and egg hatch test (EHT), respectively. In vivo anthelmintic activity of crude powder (CP) and CAME in increasing doses (1.0-8.0 g kg(-1)) was determined in sheep naturally infected with mixed species of nematodes using fecal egg count reduction test (FECRT) and larval counts. The study design also included untreated as well as treated controls. Fecal egg count reduction and larval counts from coprocultures were performed pre- and post-treatments to assess the anthelmintic activity of the plants. CAME of T. portulacastrum and M. paradisiaca showed a strong in vitro anthelmintic activity and pronounced inhibitory effects on H. contortus egg hatching as observed through AMA and EHT, respectively. Both plants exhibited dose and time dependent anthelmintic effects on live worms as well as egg hatching. M. paradisiaca (LC(50)=2.13 μg mL(-1)) was found to be more potent than T. portulacastrum (LC(50)=2.41 μg mL(-1)) in EHT. However, in vivo, maximum reduction in eggs per gram (EPG) of faeces was recorded as 85.6% and 80.7% with CAME of T. portulacastrum and M. paradisiaca at 8.0 g kg(-1) on 15th day post-treatment, respectively as compared to that of Levamisole (7.5 mg kg(-1)) that caused 97.0% reduction in EPG. All the species of gastrointestinal nematodes (GINs), i.e. Haemonchus contortus, Trichostronglyus spp., Oesophagostomum columbianum and Trichuris ovis which were prevalent, found susceptible (P<0.01) to the different doses of CP and CAME of both plants. The data showed that both T

  10. Visible-light promoted catalytic activity of dumbbell-like Au nanorods supported on graphene/TiO2 sheets towards hydrogenation reaction.

    PubMed

    Dai, Yunqian; Zhu, Mingyun; Wang, Xiaotian; Wu, Yanan; Huang, Chengqian; Fu, Wanlin; Meng, Xiangyu; Sun, Yueming

    2018-06-15

    In this work, the rationally-designed sharp corners on Au nanorods tremendously improved the catalytic activity, particularly in the presence of visible light irradiation, towards the hydrogenation of 4-nitrophenol to 4-aminophenol. A strikingly increased rate constant of 50.6 g -1 s -1 L was achieved in M-Au-3, which was 41.8 times higher than that of parent Au nanorods under dark conditions. The enhanced activities were proportional to the extent of the protruding sharp corners. Furthermore, remarkably enhanced activities were achieved in novel ternary Au/RGO/TiO 2 sheets, which were endowed with a 52.0 times higher rate constant than that of straight Au nanorods. These remarkably enhanced activities were even higher than those of previously reported 3-5 nm Au and 3 nm Pt nanoparticles. It was systematically observed that there are three aspects to the synergistic effects between Au and RGO sheets: (i) electron transfer from RGO to Au, (ii) a high concentration of p-nitrophenol close to dumbbell-like Au nanorods on RGO sheets, and (iii) increased local reaction temperature from the photothermal effect of both dumbbell-like Au nanorods and RGO sheets.

  11. Visible-light promoted catalytic activity of dumbbell-like Au nanorods supported on graphene/TiO2 sheets towards hydrogenation reaction

    NASA Astrophysics Data System (ADS)

    Dai, Yunqian; Zhu, Mingyun; Wang, Xiaotian; Wu, Yanan; Huang, Chengqian; Fu, Wanlin; Meng, Xiangyu; Sun, Yueming

    2018-06-01

    In this work, the rationally-designed sharp corners on Au nanorods tremendously improved the catalytic activity, particularly in the presence of visible light irradiation, towards the hydrogenation of 4-nitrophenol to 4-aminophenol. A strikingly increased rate constant of 50.6 g‑1 s‑1 L was achieved in M-Au-3, which was 41.8 times higher than that of parent Au nanorods under dark conditions. The enhanced activities were proportional to the extent of the protruding sharp corners. Furthermore, remarkably enhanced activities were achieved in novel ternary Au/RGO/TiO2 sheets, which were endowed with a 52.0 times higher rate constant than that of straight Au nanorods. These remarkably enhanced activities were even higher than those of previously reported 3–5 nm Au and 3 nm Pt nanoparticles. It was systematically observed that there are three aspects to the synergistic effects between Au and RGO sheets: (i) electron transfer from RGO to Au, (ii) a high concentration of p-nitrophenol close to dumbbell-like Au nanorods on RGO sheets, and (iii) increased local reaction temperature from the photothermal effect of both dumbbell-like Au nanorods and RGO sheets.

  12. Understanding the physics and chemistry of reaction mechanisms from atomic contributions: a reaction force perspective.

    PubMed

    Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro

    2012-07-12

    Studying chemical reactions involves the knowledge of the reaction mechanism. Despite activation barriers describing the kinetics or reaction energies reflecting thermodynamic aspects, identifying the underlying physics and chemistry along the reaction path contributes essentially to the overall understanding of reaction mechanisms, especially for catalysis. In the past years the reaction force has evolved as a valuable tool to discern between structural changes and electrons' rearrangement in chemical reactions. It provides a framework to analyze chemical reactions and additionally a rational partition of activation and reaction energies. Here, we propose to separate these energies further in atomic contributions, which will shed new insights in the underlying reaction mechanism. As first case studies we analyze two intramolecular proton transfer reactions. Despite the atom based separation of activation barriers and reaction energies, we also assign the participation of each atom in structural changes or electrons' rearrangement along the intrinsic reaction coordinate. These participations allow us to identify the role of each atom in the two reactions and therfore the underlying chemistry. The knowledge of the reaction chemistry immediately leads us to suggest replacements with other atom types that would facilitate certain processes in the reaction. The characterization of the contribution of each atom to the reaction energetics, additionally, identifies the reactive center of a molecular system that unites the main atoms contributing to the potential energy change along the reaction path.

  13. [Ion chromatography of L-ascorbic acid, sulfite and thiosulfate using their postcolumn reactions with cerium (IV) and fluorescence detection of cerium (III)].

    PubMed

    Chen, Q; Hu, K; Miura, Y

    1999-09-01

    An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected.

  14. Alternansucrase acceptor reactions with D-tagatose and L-glucose.

    PubMed

    Côté, Gregory L; Dunlap, Christopher A; Appell, Michael; Momany, Frank A

    2005-02-07

    Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.

  15. Activation energy of tantalum-tungsten oxide thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, Octavio G.; Munir, Zuhair A.; Chemical Engineering and Materials Science, University of California, Davis, CA

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derivedmore » Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)« less

  16. Antimicrobial activity of Willowherb (Epilobium angustifolium L.) leaves and flowers.

    PubMed

    Kosalec, Ivan; Kopjar, Nevenka; Kremer, Dario

    2013-08-01

    Since the aetiology of benign prostatic hyperplasia (BHP) is still unknown, the use of medicinal herb extracts and products prepared thereof are recommended due to their antimicrobial activity, especially during early stages of BHP. A comparison was performed of the in vitro antimicrobial activity (using broth microdilution assay) of flowers and leaves of willowherb (Epilobium angustifolium L., Onagraceae) from Mt. Velebit (Croatia). The strains (standard ATCC and clinical isolates) of Staphylococcus aureus (including MRSA), Bacillus subtilis, Escherichia coli (including p-fimbriae positive strain), Pseudomonas aeruginosa, Proteus mirabilis, Candida albicans, C. tropicalis, C. dubliniensis and Saccharomyces cerevisiae were susceptible with MIC values between 4.6±0.2 and 18.2±0.8 mg/mL. The results of in vitro studies showed that no differences were found in the antimicrobial activity between the ethanol extracts of leaves and flowers of E. angustifolium. Using the quantitative fluorescent assay with ethidium bromide and acridine orange, the viability of C. albicans ATCC 10231 was assessed after in vitro exposure to E. angustifolium leaf and flower ethanol extracts. Apoptosis of C. albicans blastospores dominated over necrosis in all treated samples after short-term exposure with 6 to 12 mg/mL of extracts. In addition to the valuable biological activity of E. angustifolium extracts, the data obtained from the in vitro diffusion, the dilution assay and antifungal viability fluorescent assay suggest that leaf and flower ethanol extracts of E. angustifolium L. are a promising complementary herbal therapy of conditions such as BHP.

  17. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells.

    PubMed

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. © 2013 Elsevier Inc. All rights reserved.

  18. One-dimensional poly(L-lysine)-block-poly(L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis.

    PubMed

    Chen, Yu-Fon; Shiau, Ai-Li; Chang, Sue-Joan; Fan, Nai-Shin; Wang, Chung-Teng; Wu, Chao-Liang; Jan, Jeng-Shiung

    2017-06-01

    Herein, we report the oncolytic activity of cationic, one-dimensional (1D) fibril assemblies formed from coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides for cancer therapy. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via the mitochondria-lytic effect. The concept is analogous to that of 1D drug carriers that exhibit enhanced cell penetration. In comparison to free PLL chains, PLL-b-PLT fibril assemblies exhibit selective cytotoxicity toward cancer cells, low hemolysis activity, enhanced membranolytic activity, and a different apoptosis pathway, which may be due to differences in the peptide-membrane interactions. Antitumor studies using a metastatic LL2 lung carcinoma model indicate that the fibril assemblies significantly inhibited tumor growth, improved survival in tumor-bearing mice and suppressed lung metastasis without obvious body weight loss. An additive efficacy was also observed for treatment with both PLL-b-PLT and cisplatin. These results support the feasibility of using 1D fibril assemblies as potential apoptotic anticancer therapeutics. We report that cationic, one-dimensional (1D) fibril assemblies formed by coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides exhibited potent anticancer activity by enhancing membranolysis. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via mitochondria-lytic effect. Moreover, the fibril assemblies exhibited low hemolytic activity and selective cytotoxicity toward cancer cell, which is advantageous as compared to PLL and most antimicrobial/anticancerous peptides. This study provides a new concept of using cationic, 1D fibril assemblies for cancer therapy

  19. Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Jiang, Li; Li, Suyuan

    2017-10-01

    The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  20. Regulation of Hemoglobin β-Chain Synthesis in Bone Marrow Erythroid Cells by α Chains

    PubMed Central

    Wolf, Jeffrey L.; Mason, R. George; Honig, George R.

    1973-01-01

    Synthesis of α and β chains of hemoglobin was studied in vitro in intact reticulocytes and bone marrow cells. The cells were from rabbits having a variant form of hemoglobin in which L-isoleucine is in the α but not in the β chains. This characteristic permitted a selective inhibition of α-chain synthesis to be produced by addition to the incubation medium of L-O-methylthreonine, an inhibitor of protein synthesis that is a specific antagonist of L-isoleucine. In studies with reticulocytes, 25 mM L-O-methylthreonine produced a 60-70% inhibition of α-chain synthesis, but β-chain synthesis was unaffected even after incubation times for 4 hr. Because reticulocytes contain a pool of uncombined α chains which might have obscured the demonstration of an α chain-dependent mechanism for β-chain synthesis, subsequent studies were done with bone marrow cells. The latter had little or no detectable α-chain pool. A substantial inhibition of α-chain synthesis by the bone marrow cells was produced by the isoleucine antagonist but was also accompanied by a significantly decreased rate of β-chain synthesis. These findings suggest that the coordinated synthesis of the complementary α- and β-globin chains of hemoglobin may reflect in part a modifying effect of α-chain synthesis on the synthesis of β chains. PMID:4519634

  1. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    PubMed Central

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  2. The catalytic activity of CoMo/USY on deoxygenation reaction of anisole in a batch reactor

    NASA Astrophysics Data System (ADS)

    Nugrahaningtyas, K. D.; Putri, I. F.; Heraldy, E.; Hidayat, Y.

    2018-04-01

    The catalytic hydrodeoxigenation of the bio oil model compounds (biomass pyrolysis results) typically uses sulphide catalysts. In this study, we studied the activity of non-sulphide catalyst, the effect of temperature and reaction time on anisole deoxygenation. The catalytic activity was performed in a batch reactor, using N2 gas at 1 bar of pressure. The product was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The result showed that the Co-Mo/USY catalyst perform a highest activity and produce pentamethylbenzene, an oxygen free products, when reaction time is 2 hours. The Co-Mo/USY catalysts has the value of the total yield of the product increased with time increase drastically.

  3. The effect of repetitive ankle perturbations on muscle reaction time and muscle activity.

    PubMed

    Thain, Peter Kevin; Hughes, Gerwyn Trefor Gareth; Mitchell, Andrew Charles Stephen

    2016-10-01

    The use of a tilt platform to simulate a lateral ankle sprain and record muscle reaction time is a well-established procedure. However, a potential caveat is that repetitive ankle perturbation may cause a natural attenuation of the reflex latency and amplitude. This is an important area to investigate as many researchers examine the effect of an intervention on muscle reaction time. Muscle reaction time, peak and average amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain (combined inversion and plantar flexion movement) were calculated in twenty-two physically active participants. The 40 perturbations were divided into 4 even groups of 10 dominant limb perturbations. Within-participants repeated measures analysis of variance (ANOVA) tests were conducted to assess the effect of habituation over time for each variable. There was a significant reduction in the peroneus longus average amplitude between the aggregated first and last 10 consecutive ankle perturbations (F2.15,45.09=3.90, P=0.03, ɳp(2)=0.16). Authors should implement no more than a maximum of 30 consecutive ankle perturbations (inclusive of practice perturbations) in future protocols simulating a lateral ankle sprain in an effort to avoid significant attenuation of muscle activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Laboratory Study of the OH + Permethylsiloxane (L2, L3, D3, and D4) Reaction Rate Coefficients Between 240 and 370 K

    NASA Astrophysics Data System (ADS)

    Burkholder, J. B.; Bernard, F.; Papadimitriou, V. C.

    2016-12-01

    The atmospheric chemistry of organosiloxanes has recently been implicated in the formation of new particles as well as regional and indoor air quality. Methylsiloxanes with Si<6 are relatively volatile compounds with either linear or cyclic molecular structures. Methylsiloxanes are found in consumer goods such as cosmetics, textiles, health care and household products and in industrial applications as solvents and lubricants. They are released into the atmosphere during manufacturing, use, and disposal and have been observed in the atmosphere in ppb levels in certain locations. However, the fundamental chemical properties of this class of compounds, particularly their reactivity with the OH radical, are presently not fully characterized. In this work, the temperature dependence of the rate coefficients for the OH radical reaction with the simplest linear (L2 and L3) and cyclic (D3 and D4) siloxanes were measured: OH + (CH3)3SiOSi(CH3)3 = Products L2OH + [(CH3)3SiO]2Si(CH3)2 = Products L3OH + [-Si(CH3)2O-]3 = Products D3OH + [-Si(CH3)2O-]4 = Products D4OH rate coefficients were measured under pseudo-first conditions in OH over the temperature range 240-370 K using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique and at 296 K using a relative rate method. The present results are compared with available literature data where possible and discrepancies are discussed. The results from this work will be discussed in terms of the atmospheric lifetimes of these methylsiloxanes and the reactivity trends for this class of compound.

  5. L'analyse par activation de neutrons de réacteur

    NASA Astrophysics Data System (ADS)

    Meyer, G.

    2003-02-01

    Quand les neutrons traversent la matière, certains sont transmis sans interaction, les autres interagissent avec le milieu traversé par diffusion et par absorption. Ce phénomène d'absorption est utilisé pour se protéger des neutrons, mais aussi pour les détecter; il peut également être utilisé pour identifier les noyaux “absorbants" et ainsi analyser le milieu traversé. En effet par différentes réactions nucléaires (n,γ), (n,p), (n,α), (n,fission), on obtient des noyaux résiduels qui sont souvent radioactifs; on dit que l'échantillon est “activé". Si l'on connaît le rendement d'activation et donc le pourcentage de noyaux ainsi “transmutés", les mesures de radioactivité induite vont permettre de déterminer la composition de l'échantillon irradié. Cette méthode dite d'analyse par activation neutronique est pratiquée depuis la découverte du neutron. Elle a permis grâce à sa sélectivité et à sa sensibilité d'avoir accès au domaine des traces et des ultra-traces dans des champs d'application très divers comme la métallurgie, l'archéologie, la biologie, la géochimie etc...

  6. The VPAC2 agonist peptide histidine isoleucine (PHI) up-regulates glutamate transport in the corpus callosum of a rat model of amyotrophic lateral sclerosis (hSOD1G93A) by inhibiting caspase-3 mediated inactivation of GLT-1a.

    PubMed

    Goursaud, Stéphanie; Focant, Marylène C; Berger, Julie V; Nizet, Yannick; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2011-10-01

    Degeneration of corpus callosum appears in patients with amyotrophic lateral sclerosis (ALS) before clinical signs of upper motor neuron death. Considering the ALS-associated impairment of astrocytic glutamate uptake, we have characterized the expression and activity of the glutamate transporter isoforms GLT-1a and GLT-1b in the corpus callosum of transgenic rats expressing a mutated form of the human superoxide dismutase 1 (hSOD1(G93A)). We have also studied the effect of peptide histidine isoleucine (PHI), a vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 2 (VPAC(2)) agonist on glutamate transporters both in vivo and in callosal astrocytes. Before the onset of motor symptoms, the expression of both transporter isoforms was correlated with a constitutive activity of caspase-3. This enzyme participates in the down-regulation of GLT-1 in ALS, and here we demonstrated its involvement in the selective degradation of GLT-1a in the white matter. A single stereotactic injection of PHI into the corpus callosum of symptomatic rats decreased caspase-3 activity and promoted GLT-1a expression and uptake activity. Together, with evidence for a reduced expression of prepro-VIP/PHI mRNA in the corpus callosum of transgenic animals, these data shed light on the modulatory role of the VIP/PHI system on the glutamatergic transmission in ALS.

  7. In vitro antioxidant activity of different cultivars of banana flower (Musa paradicicus L.) extracts available in India.

    PubMed

    China, Ratna; Dutta, Sanjukta; Sen, Sauradip; Chakrabarti, Rajarshi; Bhowmik, Debajit; Ghosh, Santinath; Dhar, Pubali

    2011-01-01

    Six different cultivars of banana flowers (Musa paradicicus) (Kathali, Bichi, Shingapuri, Kacha, Champa, and Kalabou) were analyzed for the content of polyphenol expressed as gallic acid equivalent and flavonoid expressed as quercetein equivalent, and the in vitro total antioxidative activities of the flower extracts were compared with standard and expressed as trolox equivalent. The reducing power, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•(+)) scavenging activities, inhibition of lipid peroxidation in a linoleic acid emulsion system, and liposome peroxidation system were measured and compared with respective standard antioxidants. Iron-mediated Fenton reaction was carried out to evaluate the protective effect of the extract of banana flower (Kacha cultivar) against H(2)O(2)-induced DNA damage. The Kacha variety contains the maximum amount of polyphenol (11.94 ± 0.03 mg of gallic acid equivalent/g of dry weight) and flavonoid (0.174 ± 0.001 g of quercetin equivalent/g of polyphenol). It also has the highest total antioxidant capacity, DPPH radical scavenging activity, and ABTS•(+) radical scavenging activity with a least EC(50) value of 0.051 mg/mL. Hepatic cell damage in iron-mediated Fenton reaction caused by free radicals is reduced by the banana flower extract. On the basis of the results obtained, the banana flowers are found to be a potential source of natural antioxidants. This is the first report on the antioxidant properties of the extracts from banana flowers. The study suggests that the flowers of M. paradicicus that are found in India and consumed as vegetable can provide valuable functional ingredients that help in the prevention of oxidative stress. © 2011 Institute of Food Technologists®

  8. Composition and antimicrobial activity of the essential oils of Laserpitium latifolium L. and L. ochridanum Micevski (Apiaceae).

    PubMed

    Popović, Višnja B; Petrović, Silvana D; Milenković, Marina T; Drobac, Milica M; Couladis, Maria A; Niketić, Marjan S

    2015-01-01

    The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC-FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α-pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth-microdilution method against four Gram-positive and three Gram-negative bacteria and two Candida albicans strains. Except the L. latifolium underground-parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0-73.0 μg/ml), comparable to or even higher than that of thymol, which was used as reference compound. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  9. NAD deamidation "a new reaction" by an enzyme from Aspergillus terreus DSM 826.

    PubMed

    Elzainy, Tahany A; Ali, Thanaa H

    2005-02-01

    NAD deamidation is a non-previously recognized reaction. This reaction has been found to be catalyzed by extracts of Aspergillus terreus DSM 826. Conversion of NAD to the biosynthetic intermediate, deamido NAD, by these extracts, at the optimum pH and temperature did not exceed about 55 of the amount of the substrate added. Completion of the reaction was achieved when the extracts were pre-heated at 50 degrees C for 15 min in absence of the substrate. In a very similar manner, the extracts catalyzed hydrolytic cleavage of the amide linkages of different biomolecules such as nicotinamide, nicotinamide riboside, nicotinamide mononucleotide, L-glutamine, L-asparagine and acetamide. Polyacrylamide was also deamidated under the same conditions. In addition, complete dephosphorylation of the dinucleotide molecule was also effected by the same extracts. Separation of the NAD deamidating enzyme from the NAD dephosphorylating enzyme was achieved on using either DEAE - Sephadex A-25 or Sephadex G-200 column chromatography. The obtained phosphohydrolase-free-deamidase showed optimum activity at pH 8 of 0.1 M phosphate buffer and 50 degrees C. It exhibited broad substrate specificity and hyperbolic substrate saturation kinetics. It was isosterically inhibited by the product of its activity and this inhibition was prevented by heating the extracts at 50 degrees C for 15 min. Its activity was not affected in presence of sodium fluoride, partially inhibited in presence of magnesium chloride and was retained in the freezer for some months.

  10. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  11. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    PubMed

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Radical Scavenging Activities of Tannin Extracted from Amaranth (Amaranthus caudatus L.).

    PubMed

    Jo, Hyeon-Ju; Chung, Kang-Hyun; Yoon, Jin A; Lee, Kwon-Jai; Song, Byeong Chun; An, Jeung Hee

    2015-06-01

    This study investigates the bioactivity of tannin from amaranth (Amaranthus caudatus L.) extracts. The antioxidant activities of the extracts from amaranth leaves, flowers, and seeds were evaluated. Tannin from leaves of amaranth has been evaluated for superoxide scavenging activity by using DPPH and ABTS(+) analysis, reducing power, protective effect against H2O2-induced oxidative damage in L-132 and BNL-CL2 cells, and inhibition of superoxide radical effects on HL-60 cells. At a concentration of 100 μg/ml, tannin showed protective effects and restored cell survival to 69.2% and 41.8% for L-132 and BNL-CL2 cells, respectively. Furthermore, at the same concentration, tannin inhibited 41% of the activity of the superoxide radical on HL-60 cells and 43.4% of the increase in nitric oxide levels in RAW 264.7 cells. The expression levels of the antioxidant-associated protein SOD-1 were significantly increased in a concentration-dependent manner in RAW 264.7 cells treated with tannin from amaranth leaves. These results suggest that tannin from the leaves of Amaranthus caudatus L. is a promising source of antioxidant component that can be used as a food preservative or nutraceutical.

  13. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification.

    PubMed

    Cheng, Rui; Tao, Mangjuan; Shi, Zhilu; Zhang, Xiafei; Jin, Yan; Li, Baoxin

    2015-11-15

    Several fluorescence signal amplification strategies have been developed for sensitive detection of T4 polynucleotide kinase (T4 PNK) activity, but they need fluorescence dye labeled DNA probe. We have addressed the limitation and report here a label-free strategy for sensitive detection of PNK activity by coupling DNA strand displacement reaction with enzymatic-aided amplification. A hairpin oligonucleotide (hpDNA) with blunt ends was used as the substrate for T4 PNK phosphorylation. In the presence of T4 PNK, the stem of hpDNA was phosphorylated and further degraded by lambda exonuclease (λ exo) from 5' to 3' direction to release a single-stranded DNA as a trigger of DNA strand displacement reaction (SDR). The trigger DNA can continuously displace DNA P2 from P1/P2 hybrid with the help of specific cleavage of nicking endonuclease (Nt.BbvCI). Then, DNA P2 can form G-quadruplex in the presence of potassium ions and quadruplex-selective fluorphore, N-methyl mesoporphyrin IX (NMM), resulting in a significant increase in fluorescence intensity of NMM. Thus, the accumulative release of DNA P2 led to fluorescence signal amplification for determining T4 PNK activity with a detection limit of 6.6×10(-4) U/mL, which is superior or comparative with established approaches. By ingeniously utilizing T4 PNK-triggered DNA SDR, T4 PNK activity can be specifically and facilely studied in homogeneous solution containing complex matrix without any external fluorescence labeling. Moreover, the influence of different inhibitors on the T4 PNK activity revealed that it also can be explored to screen T4 PNK inhibitors. Therefore, this label-free amplification strategy presents a facile and cost-effective approach for nucleic acid phosphorylation related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cross-reactions in Legionella antisera with Bordetella pertussis strains.

    PubMed Central

    Benson, R F; Thacker, W L; Plikaytis, B B; Wilkinson, H W

    1987-01-01

    While preparing slide agglutination test antisera and immunofluorescence conjugates for the identification of Legionella species and serogroups, we found that several of the reagents cross-reacted with Bordetella pertussis strains. To determine the extent of this problem and to estimate the specificity of Legionella reagents, we tested slide agglutination test antisera against 22 species and 35 serogroups with 92 bacterial strains representing 19 genera. The only cross-reactions observed were with Legionella pneumophila serogroup 10, L. maceachernii, L. gormanii, and L. feeleii serogroup 1 antisera and 4 of 10 B. pertussis strains. Nineteen conjugates, previously available from the Centers for Disease Control but no longer distributed as reference reagents, were tested with the four cross-reactive B. pertussis strains. Two conjugates, L. micdadei and L. wadsworthii, stained three of the B. pertussis strains at a fluorescence intensity of greater than or equal to 3+. All cross-reactions were removed from the antisera and conjugates by absorption with the cross-reacting strain without diminishing the homologous reaction. Special emphasis should be placed on the identification and removal of cross-reactions in Legionella reagents with strains that have similar morphologic and growth characteristics. PMID:2883198

  15. Thermal ring closure in Mo(CO){sub 5}L (L = bpy, dmbpy, dpbpy) transients generated by pulsed laser flash photolysis. Mechanistic information from high-pressure effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.B.; Hoffmann, R.; Konya, G.

    1992-06-01

    The kinetics of the ring-closure reactions of Mo(CO){sub 5}L, produced during the laser flash photolysis of Mo(CO){sub 6} and L where L = 2,2{prime}-bipyridine (bpy), 4,4{prime}-dimethyl-2,2{prime}-bipyridine (dpbpy) and 4,4{prime}-dephenyl-2,2{prime}-bipyridine (dpbpy) were studied as a function of temperature and pressure. The values of the activation parameters and pressure. The values of the activation parameters {Delta}S and {Delta}V are small and negative for L = bpy and dmbpy supporting an associative interchange mechanism (I{sub a}) for CO extrusion. For L = dpbpy, {Delta}V is small and positive in line with a dissociative interchange mechanism (I{sub d}). The results demonstrate a changeover inmore » mechanism from I{sub a} to I{sub d} with increasing steric hindrance on the bidentate ligand L. 36 refs., 1 fig., 2 tabs.« less

  16. A novel thermal biosensor based on enzyme reaction for pesticides measurement.

    PubMed

    Zheng, Yi-Hu; Hua, Tse-Chao; Xu, Fei

    2005-01-01

    A novel thermal biosensor based on enzyme reaction for pesticides detection has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and identical reference column, which is set for eliminating the unspecific heat. The enzyme reaction takes place in the enzyme reaction column at a constant temperature (40 degrees C) realized by a thermoelectric thermostat. Thermosensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two effluents from enzyme reaction column and reference column. The ability of this biosensor to detect pesticides is demonstrated by the decreased degree of the hydrolytic heat in two types of thermosensor mode. The hydrolytic reaction is inhibited by 36% at 1 mg/L DDVP and 50% at 10 mg/L DDVP when cell-typed thermosensor is used. The percent inhibition is 30% at 1 mg/L DDVP and 42% at 10 mg/L DDVP in tube-typed thermosensor mode. The detection for real sample shows that this biosensor can be used for detection of organophosphate pesticides residue.

  17. Meursault on Trial: Multi-Skills Activities for Teaching "L'Etranger."

    ERIC Educational Resources Information Center

    Polly, Lyle R.; Buscaglia, Michael J.

    1978-01-01

    Presents a unit of activities based on a reading of Albert Camus'""L'Etranger." The activities, which can be adapted to various levels and abilities in an intermediate French class, incorporate reading, writing, listening and speaking skills. Sample materials and a bibliography are appended. (AM)

  18. Primary charge separation between P* and B A: Electron-transfer pathways in native and mutant GM203L bacterial reaction centers

    NASA Astrophysics Data System (ADS)

    Yakovlev, Andrey G.; Jones, Michael R.; Potter, Jane A.; Fyfe, Paul K.; Vasilieva, Lyudmila G.; Shkuropatov, Anatoli Ya.; Shuvalov, Vladimir A.

    2005-12-01

    Coherent components in the dynamics of decay of stimulated emission from the primary electron donor excited state P*, and of population of the product charge-separated states P+BA- and P+HA-, were studied in GM203L mutant reaction centers (RCs) of Rhodobacter (Rb.) sphaeroides by measuring oscillations in the kinetics of absorbance changes at 940 nm (P* stimulated emission region), 1020 nm ( BA- absorption region) and 760 nm (H A bleaching region). Absorbance changes were induced by excitation of P (870 nm) with 18 fs pulses at 90 K. In the GM203L mutant, replacement of Gly M203 by Leu results in exclusion of the crystallographically defined water molecule (HOH55) located close to the oxygen of the 13 1-keto carbonyl group of B A and to His M202, which provides the axial ligand to the Mg of the P B bacteriochlorophyll. The results of femtosecond measurements were compared with those obtained with Rb. sphaeroides R-26 RCs containing an intact water HOH55. The main consequences of the GM203L mutation were found to be as follows: (i) a low-frequency oscillation at 32 cm -1, which is characteristic of the HOH55-containing RCs, disappears from the kinetics of absorbance changes at 1020 and 760 nm in the mutant RC; (ii) electron transfer from P* to B A in the wild type RC was characterized by two time constants of 1.1 ps (80%) and 4.3 ps (20%), but in the GM203L mutant was characterized by a single time constant of 4.3 ps, demonstrating a slowing of primary charge separation. The previously postulated rotation of water HOH55 with a fundamental frequency of 32 cm -1, triggered by electron transfer from P* to B A, was confirmed by observation of an isotopic shift of the 32 cm -1 oscillation in the kinetics of P+BA- population in deuterated, pheophytin-modified RCs of Rb. sphaeroides R-26, by a factor of 1.6. These data are discussed in terms of the influence of water HOH55 on the energetics of the P∗→P+BA- reaction, and protein dynamic events that occur on the time

  19. Biochemical and nutritional characterization of coconut (Cocos nucifera L.) haustorium.

    PubMed

    Manivannan, Arivalagan; Bhardwaj, Rakesh; Padmanabhan, Sugatha; Suneja, Poonam; Hebbar, K B; Kanade, Santosh R

    2018-01-01

    Study was conducted to determine the biochemical constituents in coconut (Cocos nucifera L.) haustorium, a spongy tissue formed during coconut germination. Results indicated that 100g of dried coconut haustorium contained 1.05±0.2% ash, 44.2±4.6% soluble sugar, 24.5±3.2% starch, 5.50±0.3% protein, 1.99±0.9% fat, 5.72±0.4% soluble dietary fibre, 20.3±1.9% insoluble dietary fibre, and 146±14.3mg phenolics. Mineral profiling showed that it contained 145±8.6, 104±9.6, 33.9±8.2, 30.9±1.9, 9.45±2.1, 0.292±0.1, 2.53±0.2 and 1.20±0.1mg of K, Mg, Ca, P, Mn, Cu, Fe and Zn, respectively. Antioxidant activity assay indicated that 100g haustorium was equivalent to 1918±173, 170±20.4, 72.8±14.7 and 860±116mg of Trolox as measured by CUPRAC, FRAP, DPPH and ABTS, respectively. Amino acid score indicated that methionine+cysteine (57.6%), phenylalanine+tyrosine (32.6%), leucine (45.7%) and isoleucine (68%) are found less in haustorium. Further studies needed in developing nutritionally balanced formulations using coconut haustorium, which will be useful for lactose intolerant children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. (L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum.

    PubMed

    Hou, Xiaohu; Chen, Xinde; Zhang, Yue; Qian, He; Zhang, Weiguo

    2012-12-01

    Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for L-valine production by over-expressing ilvEBN ( r ) C genes at 31 °C in 72 h fermentation. Different strategies were carried out to reduce the by-products' accumulation in L-valine fermentation and also to increase the availability of precursor for L-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of L-isoleucine. Effect of different relative dissolved oxygen on L-valine production and by-products' formation was recorded, indicating that 15 % saturation may be the most appropriate relative dissolved oxygen for L-valine fermentation with almost no L-lactic acid and L-glutamate formed. To minimize L-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of L-alanine accumulated by alaT inactivated strains harboring ilvEBN ( r ) C genes, L-alanine concentration was reduced to 0.18 g/L by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, and 0.22 g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. Meanwhile, L-valine production and conversion efficiency were enhanced to 31.15 g/L and 0.173 g/g by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, 38.82 g/L and 0.252 g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. This study provides combined strategies to improve L-valine yield by minimization of by-products' production.

  1. Chemical and thermal stability of N-heterocyclic ionic liquids in catalytic C-H activation reactions.

    PubMed

    Chen, Guanyi; Kang, Shujuan; Ma, Qisheng; Chen, Weiqun; Tang, Yongchun

    2014-11-01

    (1)H-NMR spectrum analyses are applied to study the chemical and thermal stability of selected N-heterocyclic ionic liquids within the reaction system that can highly efficiently activate a C-H bond of methane and convert it into the C-O bond in methanol. Our results indicate that under such reaction conditions involving using a powerful Pt-based catalyst and strong acidic solvent, the aromatic ring of an imidazolium cation becomes unstable generating an ammonium ion (NH(4)(+)). Our results also suggest that the instability of the imidazolium ring is more chemically (participation in reactions) than thermally based. Modifications of the aromatic ring structure such as pyrazolium and triazolium cations can increase the chemical/thermal stability of ionic liquids under these reaction conditions. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology

    PubMed Central

    Körbahti, Bahadır K.; Demirbüken, Pelin

    2017-01-01

    Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD) was investigated in a batch electrochemical reactor in the presence of Na2SO4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100–500 g/L), current density (2–10 mA/cm2), Na2SO4 concentration (0–20 g/L), and reaction temperature (25–45°C) was analyzed on electrochemical oxidation using response surface methodology (RSM). The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm2 current density, 12 g/L Na2SO4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction. PMID:29082225

  3. Optimization of the THP-1 activation assay to detect pharmaceuticals with potential to cause immune mediated drug reactions.

    PubMed

    Corti, Daniele; Galbiati, Valentina; Gatti, Nicolò; Marinovich, Marina; Galli, Corrado L; Corsini, Emanuela

    2015-10-01

    Despite important impacts of systemic hypersensitivity induced by pharmaceuticals, for such endpoint no reliable preclinical approaches are available. We previously established an in vitro test to identify contact and respiratory allergens based on interleukin-8 (IL-8) production in THP-1 cells. Here, we challenged it for identification of pharmaceuticals associated with systemic hypersensitivity reactions, with the idea that drug sensitizers share common mechanisms of cell activation. Cells were exposed to drugs associated with systemic hypersensitivity reactions (streptozotocin, sulfamethoxazole, neomycin, probenecid, clonidine, procainamide, ofloxacin, methyl salicylate), while metformin was used as negative drug. Differently to chemicals, drugs tested were well tolerated, except clonidine and probenecid, with no signs of cytotoxicity up to 1-2mg/ml. THP-1 activation assay was adjusted, and conditions, that allow identification of all sensitizing drugs tested, were established. Next, using streptozotocin and selective inhibitors of PKC-β and p38 MAPK, two pathways involved in chemical allergen-induced cell activation, we tested the hypothesis that similar pathways were also involved in drug-induced IL-8 production and CD86 upregulation. Results indicated that drugs and chemical allergens share similar activation pathways. Finally, we made a structure-activity hypothesis related to hypersensitivity reactions, trying to individuate structural requisite that can be involved in immune mediated adverse reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Iron-platinum multilayer thin film reactions to form L1(0) iron-platinum and exchange spring magnets

    NASA Astrophysics Data System (ADS)

    Yao, Bo

    FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of [Fe/Pt] n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of [Fe/Pt]n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of [Fe/Pt] n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed [Fe/Pt]n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters

  5. Active interrogation using low-energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula

    2005-09-01

    High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.

  6. Kinetic Studies of Imidazoles in Tropospheric Aqueous-Phase Chemistry: Photochemistry of Imidazole-2-carboxaldehyde and Oxidation Reaction with Hydroxyl Radicals

    NASA Astrophysics Data System (ADS)

    Felber, T.; Otto, T.; Herrmann, H.

    2017-12-01

    The formation of imidazoles via the reaction of dicarbonyls with nitrogen containing compounds in the atmosphere and their potential to act as photosensitizers possibly initiating secondary organic aerosol (SOA) growth is a field of increasing activity. A recent field study quantified and qualified imidazoles in ambient aerosol samples from Europe and China. However, kinetic data and mechanisms of particle-phase reactions involving imidazoles are still scarce. In this study, kinetic measurements were investigated using laser flash photolysis-laser long path absorption (LFP-LLPA). Quenching rate constants for the reactions of the excited triplet state of imidazole-2-carboxaldehyde (IC) with bromide anion (kq = (1.6 ± 0.3) × 107 L mol-1 s-1), oxygen (kq = (2.5 ± 0.07) × 109 L mol-1 s-1), and formic acid (kq = (8.8 ± 0.5) × 109 L mol-1 s-1) are determined. IC is efficiently quenched by oxygen and formic acid. Furthermore, the quenching reaction of IC with isopropanol is investigated and compared to the reaction with formic acid to propose a preliminary mechanism of photosensitized reactions of IC with organic compounds. It is suggested that an electron transfer occurs, as it is the case for inorganics. Furthermore, rate constants of hydroxyl (OH) radical oxidation reactions with different imidazoles were determined. Following rate constants are obtained at a temperature of 298 K: k(imidazole-2-carboxaldehyde) = (3.3 ± 1.3) × 109 L mol-1 s-1, k(1-methylimidazolium hydrogen sulfate) = (2.7 ± 0.2) × 109 L mol-1 s-1, k(2-methylimidazole) = (5.4 ± 0.2) × 109 L mol-1 s-1, k(4(5)-methylimidazole) = (5.1 ± 0.3) × 109 L mol-1 s-1, k(1-ethylimidazole) = (3.0 ± 0.3) × 109 L mol-1 s-1, k(2-ethylimidazole) = (5.0 ± 0.2) × 109 L mol-1 s-1. The OH radical reaction rate constants of imidazoles are in the same range as for non-heteroaromatic compounds. Therefore, imidazoles can be expected to exist just for a limited time in the atmosphere (τ = 16 - 29 hours) after

  7. Ion Trap Collisional Activation of c and z• Ions Formed via Gas-Phase Ion/Ion Electron Transfer Dissociation

    PubMed Central

    Han, Hongling; Xia, Yu; McLuckey, Scott A.

    2008-01-01

    A series of c- and z•-type product ions formed via gas-phase electron transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z• species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-and z-type ions. Most of the fragmentation pathways of z• species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z• species are different from the small losses observed from the charge-reduced peptide molecular species in electron transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues. PMID:17608403

  8. L1 stimulation of human glioma cell motility correlates with FAK activation

    PubMed Central

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A.; Boulos, Magdy I.; Kappes, John C.

    2011-01-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  9. L1 stimulation of human glioma cell motility correlates with FAK activation.

    PubMed

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A; Boulos, Magdy I; Kappes, John C; Galileo, Deni S

    2011-10-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  10. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.

    PubMed

    Mahaki, M; Mi'mar, R; Mahaki, B

    2015-10-01

    Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.

  11. A Sensitive Detection Method for MPLW515L or MPLW515K Mutation in Chronic Myeloproliferative Disorders with Locked Nucleic Acid-Modified Probes and Real-Time Polymerase Chain Reaction

    PubMed Central

    Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M.

    2008-01-01

    Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy. PMID:18669880

  12. A sensitive detection method for MPLW515L or MPLW515K mutation in chronic myeloproliferative disorders with locked nucleic acid-modified probes and real-time polymerase chain reaction.

    PubMed

    Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M

    2008-09-01

    Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy.

  13. Atomic Layer-by-Layer Deposition of Platinum on Palladium Octahedra for Enhanced Catalysts toward the Oxygen Reduction Reaction

    DOE PAGES

    Park, Jinho; Zhang, Lei; Choi, Sang-Il; ...

    2015-02-08

    We systematically evaluated two different approaches to the syntheses of Pd@PtnL (n = 2–5) core–shell octahedra. We initially prepared the core–shell octahedra using a polyol-based route by titrating a Pt(IV) precursor into the growth solution containing Pd octahedral seeds at 200 °C through the use of a syringe pump. The number of Pt atomic layers could be precisely controlled from two to five by increasing the volume of the precursor solution while fixing the amount of seeds. We then demonstrated the synthesis of Pd@Pt nL octahedra using a water-based route at 95 °C through the one-shot injection of a Pt(II)more » precursor. Due to the large difference in reaction temperature, the Pd@Pt nL octahedra obtained via the water-based route showed sharper corners than their counterparts obtained through the polyol-based route. When compared to a commercial Pt/C catalyst based upon 3.2 nm Pt particles, the Pd@Pt nL octahedra prepared using both methods showed similar remarkable enhancement in terms of activity (both specific and mass) and durability toward the oxygen reduction reaction. These calculations based upon periodic, self-consistent density functional theory suggested that the enhancement in specific activity for the Pd@Pt nL octahedra could be attributed to the destabilization of OH on their Pt nL*/Pd(111) surface relative to the {111} and {100} facets exposed on the surface of Pt/C. Finally. the destabilization of OH facilitates its hydrogenation, which was found to be the rate-limiting step of the oxygen reduction reaction on all these surfaces.« less

  14. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    PubMed

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (E a ) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. (100) facets of γ-Al2O3: the active surfaces for alcohol dehydration reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF

    2011-05-01

    Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on γ-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T≤473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ≥ 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of γ-Al2O3 that was predicted at 550 K DFT calculations. Theoreticalmore » DFT simulations of the mechanism of dehydration. on clean and hydroxylated γ-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of γ-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on γ-Al2O3 are the catalytic active surfaces for alcohol dehydration.« less

  16. [Reactions to food].

    PubMed

    Halvorsen, R; Eggesb M; Botten, G

    1995-12-10

    Adverse reactions to food occur in about 1-2% of the population, but are reported more frequently by patients. Most reactions to food are not caused by allergy. IgE-mediated food reactions are well known and of major clinical significance owing to their potentially dangerous, even life-threatening character. Adverse reactions to food can also be caused by immunological mechanisms other than IgE-mediated reactions such as, enzyme deficiencies, active pharmacological substances in food and psychological mechanisms. Double-blind provocation is the only way to diagnose a positive reaction to a food item with some certainty. Regretably no objective measures for food reactions exist.

  17. Dinuclear Zinc-Prophenol-Catalyzed Enantioselective α-Hydroxyacetate Aldol Reaction with Activated Ester Equivalents

    PubMed Central

    Trost, Barry M.; Michaelis, David J.; Truica, Mihai I.

    2013-01-01

    An enantioselective α-hydroxyacetate aldol reaction that employs N-acetyl pyrroles as activated ester equivalents and generates syn 1,2-diols in good yield and diastereoselectivity is reported. This dinuclear zinc Prophenol-catalyzed transformation proceeds with high enantioselectivity with a wide variety of substrates including aryl, alyl, and alkenyl aldehydes. The resulting α,β-dihydroxy activated esters are versatile intermediates for the synthesis of a variety of carboxylic acid derivatives including amides, esters, and unsymmetrical ketones. PMID:23947595

  18. Function of the tryptophan metabolite, L-kynurenine, in human corneal endothelial cells

    PubMed Central

    Lahdou, Imad; Scheuerle, Alexander; Höftberger, Romana; Aboul-Enein, Fahmy

    2009-01-01

    Purpose Penetrating keratoplasty has been the mainstay for the treatment of blindness and is the most common form of tissue transplantation worldwide. Due to significant rates of rejection, treatment of immunological transplant reactions is of wide interest. Recently in a mouse model, the overexpression of indoeleamine 2,3 dioxigenase (IDO) was led to an extension in corneal allograft survival. L-kynurenine is a tryptophan metabolite, which may render activated T-cells apoptotic and therefore might modulate an allogenous transplant reaction. The function of L-kynurenine in the human cornea remains unclear. We analyzed the expression levels of IDO in human corneal endothelial cells (HCECs) and downstream tryptophan/kynurenine mechanisms in cell culture. Methods An immunological activation profile was determined in proliferation assays of monocytes from healthy donors. Reversed-phase high pressure liquid chromatography (HPLC), western blot, real time polymerase chain reaction (PCR), and microarray analyses were used. The expression of IDO and immunological infiltration of rejected human corneal allografts (n=12) were analyzed by immunohistochemistry. Results We found IDO and an associated tryptophan/kynurenine transporter protein exchange mechanism upregulated by inflammatory cytokines in HCECs. The inhibition of T-cell proliferation might depend on rapid delivery of the tryptophan metabolite, L-kynurenine, to the local corneal environment. Microarray analysis gives evidence that the large amino acid transporter 1 (LAT1) transporter protein is responsible for this mechanism. Conclusions Our data support that adequate levels of functional L-kynurenine might contribute to the maintenance of a relative immune privilege in the ocular anterior chamber, thereby contributing to the preservation of corneal allogeneic cells. PMID:19597571

  19. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venommore » LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.« less

  20. Theoretical prediction and experimental verification on enantioselectivity of haloacid dehalogenase L-DEX YL with chloropropionate

    NASA Astrophysics Data System (ADS)

    Kondo, Hirotaka; Fujimoto, Kazuhiro J.; Tanaka, Shigenori; Deki, Hiroyuki; Nakamura, Takashi

    2015-03-01

    L-2-Haloacid dehalogenase (L-DEX YL) is a member of a family of enzymes that decontaminate a variety of environmental pollutants such as L-2-chloropropionate (L-2-CPA). This enzyme specifically catalyzes the hydrolytic dehalogenation of L-2-haloacid to produce D-2-hydroxy acid, and does not catalyze that of D-2-haloacid. Here, using the quantum-mechanical/molecular-mechanical and the fragment molecular orbital calculations, the enzymatic reaction of L-DEX YL to D-2-CPA was compared with that to L-2-CPA. As a result, Tyr12, Leu45 and Phe60 were predicted to affect the enantioselectivity. We then performed the site-directed-mutagenesis experiments and the activity measurement of these mutants, thus finding that the F60Y mutant had the enzymatic activity with D-2-CPA.

  1. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism*

    PubMed Central

    Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N.; Cobb, Melanie H.

    2016-01-01

    The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation. PMID:27587390

  2. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.

    PubMed

    Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael

    2015-03-01

    2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l(-1)) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l(-1)  h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  4. Activity, specificity, and probe design for the smallpox virus protease K7L.

    PubMed

    Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S

    2012-11-16

    The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.

  5. Phytochemical profile and free radical nitric oxide (NO) scavenging activity of Averrhoa bilimbi L. fruit extract.

    PubMed

    Suluvoy, Jagadish Kumar; Berlin Grace, V M

    2017-05-01

    Averrhoa bilimbi L. belongs to family Oxalidaceae. Traditionally, people use this plant (root, bark, leaves and fruits) for treating several illnesses include itches, boils, syphilis, whooping cough, hypertension, fever and inflammation. The aim of the study was to evaluate the nitric oxide (NO) scavenging activity and GC-MS analysis of A. bilimbi L. fruit extract. Averrhoa bilimbi L. fruits were collected for the preliminary phytochemical analysis, antioxidant scavenging activity and biologically important compounds were identified by GC-MS analysis. The preliminary phytochemicals, GC-MS, total phenolic content and NO scavenging activity of the plant were analysed. In the present investigation, the A. bilimbi L. fruit extract has major phytochemicals. Among the 151 compounds identified in GC-MS, 15 compounds are found to have diverse biological activity. We also observed that the A. bilimbi L. fruit extract has high level of total phenolic compounds at a concentration of 209.25 GAE mg/g. Presence of phenolic compound apparently explains the antioxidant activity of the plant. Antioxidant activity of A. bilimbi L. fruit extract is proven from its high level of NO scavenging activity of potent IC50 value of 108.10. From the above study, it is apparent that the A. bilimbi L. fruit extract is a rich source of phytochemicals (natural products) with biological activity. The GC-MS report on this fruit proves that natural products have pharmacologically and biologically active compounds. A high phenolic content is observed in our study. A. bilimbi L. fruit extract is also found to have NO scavenging activity in our study.

  6. Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions.

    PubMed

    Honda, Toshio

    2012-01-01

    Synthesis of biologically active compounds, including natural products and pharmaceutical agents, is an important and interesting research area since the large structural diversity and complexity of bioactive compounds make them an important source of leads and scaffolds in drug discovery and development. Many structurally and also biologically interesting compounds, including marine natural products, have been isolated from nature and have also been prepared on the basis of a computational design for the purpose of developing medicinal chemistry. In order to obtain a wide variety of derivatives of biologically active compounds from the viewpoint of medicinal chemistry, it is essential to establish efficient synthetic procedures for desired targets. Newly developed reactions should also be used for efficient synthesis of desired compounds. Thus, recent progress in the synthesis of biologically active compounds by focusing on the development of new reactions is summarized in this review article.

  7. Electrospray ionization mass spectrometric investigations of [alpha]-dicarbonyl compounds--Probing intermediates formed in the course of the nonenzymatic browning reaction of l-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Schulz, Anke; Trage, Claudia; Schwarz, Helmut; Kroh, Lothar W.

    2007-05-01

    A new method is presented which allows the simultaneous detection of various [alpha]-dicarbonyl compounds generated in the course of the nonenzymatic browning reaction initiated by thermal treatment of l-ascorbic acid, namely: glyoxal, methylglyoxal, diacetyl, 3-deoxy-l-pentosone, and l-threosoneE 3-Deoxy-l-threosone was successfully identified as a new C4-[alpha]-dicarbonyl structure for the first time in the degradation of Vitamin C by application of this non-chromatographic mass spectrometric approach. Moreover, a more detailed elucidation of the mechanistic scenario with respect to the oxidative and nonoxidative pathways is presented by using dehydro-l-ascorbic acid and 2,3-diketo-l-gulonic acid instead of l-ascorbic acid as a starting material. Furthermore, the postulated pathways are corroborated with the aid of 13C-isotopic labeling studies. The investigations were extended to baby food, and the successful detection of [alpha]-dicarbonyl compounds characteristic for Vitamin C degradation proved the matrix tolerance of the introduced method.

  8. Enzymatic activity and partial purification of solanapyrone synthase: first enzyme catalyzing Diels-Alder reaction.

    PubMed

    Katayama, K; Kobayashi, T; Oikawa, H; Honma, M; Ichihara, A

    1998-05-19

    In cell-free extracts of Alternaria solani, an enzymatic activity converting prosolanapyrone II to solanapyrones A and D via oxidation and subsequent Diels-Alder reaction has been found. Chromatography with DEAE-Sepharose provided two active fractions, pools 1 and 2. The former fraction converted prosolanapyrone II to solanapyrones A and D in a ratio of 2.2:1 with optical purities of 99% and 45% ee, respectively. The latter fraction did so in a ratio of 7.6:1 with 99% and nearly 0% ee, respectively. The enzyme partially purified from pool 2 native molecular weight of 40-62 kD and a pl of 4.25. The high reactivity of prosolanapyrone III in aqueous solution and the chromatographic behavior of the enzyme in pool 2 suggest that a single enzyme catalyzes both the oxidation and Diels-Alder reaction.

  9. Composition and Biological Activities of Murraya paniculata (L.) Jack Essential Oil from Nepal

    PubMed Central

    Dosoky, Noura S.; Satyal, Prabodh; Gautam, Tilak P.; Setzer, William N.

    2016-01-01

    Murraya paniculata (L.) Jack, a small tropical evergreen shrub growing in Nepal, has numerous uses in traditional medicine for treatment of abdominal pain, diarrhea, stomach ache, headache, edema, thrombosis, and blood stasis. The present study investigated the chemical composition and bioactivities of the leaf essential oil from M. paniculata from Nepal. The essential oil from leaves was obtained by hydrodistillation and a detailed chemical analysis was conducted by gas chromatography-mass spectrometry (GC-MS). The essential oil was screened for antimicrobial activity using the microbroth dilution test, for nematicidal activity against Caenorhabditis elegans, and for lethality against brine shrimp (Artemia salina). A total of 76 volatile components were identified from the essential oil. The major components were methyl palmitate (11.1%), isospathulenol (9.4%), (E,E)-geranyl linalool (5.3%), benzyl benzoate (4.2%), selin-6-en-4-ol (4.0%), β-caryophyllene (4.0%), germacrene B (3.6%), germacrene D (3.4%), and γ-elemene (3.2%). The essential oil showed no antibacterial activity, marginal antifungal activity against Aspergillus niger (MIC = 313 μg/mL), a moderate activity against A. salina (LC50 = 41 μg/mL), and a good nematicidal activity against C. elegans (LC50 = 37 μg/mL). PMID:28930117

  10. Unusual solvent effect on a SN2 reaction. A quantum-mechanical and kinetic study of the Menshutkin reaction between 2-amino-1-methylbenzimidazole and iodomethane in the gas phase and in acetonitrile.

    PubMed

    Melo, André; Alfaia, António J I; Reis, João Carlos R; Calado, António R T

    2006-02-02

    The quaternization reaction between 2-amino-1-methylbenzimidazole and iodomethane was investigated in the gas phase and in liquid acetonitrile. Both experimental and theoretical techniques were used in this study. In the experimental part of this work, accurate second-order rate constants were obtained for this reaction in acetonitrile from conductivity data in the 293-323 K temperature range and at ambient pressure. From two different empirical equations describing the effect of temperature on reaction rates, thermodynamic functions of activation were calculated. In the theoretical part of this work, the mechanism of this reaction was investigated in the gas phase and in acetonitrile. Two different quantum levels (B3LYP/[6-311++G(3df,3pd)/LanL2DZ]//B3LYP/[6-31G(d)/LanL2DZ] and B3LYP/[6-311++G(3df,3pd)/LanL2DZ]//B3LYP/[6-31+G(d)/LanL2DZ]) were used in the calculations, and the acetonitrile environment was modeled using the polarized continuum model (PCM). In addition, an atoms in molecules (AIM) analysis was made aiming to characterize possible hydrogen bonding. The results obtained by both techniques are in excellent agreement and lead to new insight into the mechanism of the reaction under examination. These include the identification and thermodynamic characterization of the relevant stationary species, the rationalization of the mechanistic role played by the solvent and the amine group adjacent to the nucleophile nitrogen atom, the proposal of alternative paths on the modeled potential energy surfaces, and the origin of the marked non-Arrhenius behavior of the kinetic data in solvent acetonitrile. In particular, the AIM analysis confirmed the operation of intermolecular hydrogen bonds between reactants and between products, both in the gas phase and in solution. It is also concluded that the unusual solvent effect on this Menshutkin reaction stems from the conjunction of a nucleophile possessing a relatively complex chemical structure with a dipolar aprotic

  11. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein.

    PubMed

    Yanai, Mako; Sakai, Madoka; Makino, Akiko; Tomonaga, Keizo

    2017-07-11

    Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.

  12. Mechanistic insight into the hydrazine decomposition on Rh(111): effect of reaction intermediate on catalytic activity.

    PubMed

    Deng, Zhigang; Lu, Xiaoqing; Wen, Zengqiang; Wei, Shuxian; Liu, Yunjie; Fu, Dianling; Zhao, Lianming; Guo, Wenyue

    2013-10-14

    Periodic density functional theory (DFT) calculations have been performed to systematically investigate the effect of reaction intermediate on catalytic activity for hydrazine (N2H4) decomposition on Rh(111). Reaction mechanisms via intramolecular and NH2-assisted N2H4 decompositions are comparatively analyzed, including adsorption configuration, reaction energy and barrier of elementary step, and reaction network. Our results show that the most favorable N2H4 decomposition pathway starts with the initial N-N bond scission to the NH2 intermediate, followed by stepwise H stripping from adsorbed N2Hx (x = 1-4) species, and finally forms the N2 and NH3 products. Comparatively, the stepwise intramolecular dehydrogenation via N2H4→ N2H3→ N2H2→ N2H → N2, and N2H4→ NH2→ NH → N with or without NH2 promotion effect, are unfavorable due to higher energy barriers encountered. Energy barrier analysis, reaction rate constants, and electronic structures are used to identify the crucial competitive route. The promotion effect of the NH2 intermediate is structurally reflected in the weakening of the N-H bond and strengthening of the N-N bond in N2Hx in the coadsorption system; it results intrinsically from the less structural deformation of the adsorbate, and weakening of the interaction between dehydrogenated fragment and departing H in transition state. Our results highlight the crucial effect of reaction intermediate on catalytic activity and provide a theoretical approach to analyze the effect.

  13. A General Method for Selection of α-Acetolactate Decarboxylase-Deficient Lactococcus lactis Mutants To Improve Diacetyl Formation

    PubMed Central

    Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan

    1999-01-01

    The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the α-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

  14. 1-Aminocyclopropane-1-carboxylic acid oxidase reaction mechanism and putative post-translational activities of the ACCO protein

    PubMed Central

    Dilley, David R.; Wang, Zhenyong; Kadirjan-Kalbach, Deena K.; Ververidis, Fillipos; Beaudry, Randolph; Padmanabhan, Kallaithe

    2013-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO) catalyses the final step in ethylene biosynthesis converting ACC to ethylene, cyanide, CO2, dehydroascorbate and water with inputs of Fe(II), ascorbate, bicarbonate (as activators) and oxygen. Cyanide activates ACCO. A ‘nest’ comprising several positively charged amino acid residues from the C-terminal α-helix 11 along with Lys158 and Arg299 are proposed as binding sites for ascorbate and bicarbonate to coordinately activate the ACCO reaction. The binding sites for ACC, bicarbonate and ascorbic acid for Malus domestica ACCO1 include Arg175, Arg244, Ser246, Lys158, Lys292, Arg299 and Phe300. Glutamate 297, Phe300 and Glu301 in α-helix 11 are also important for the ACCO reaction. Our proposed reaction pathway incorporates cyanide as an ACCO/Fe(II) ligand after reaction turnover. The cyanide ligand is likely displaced upon binding of ACC and ascorbate to provide a binding site for oxygen. We propose that ACCO may be involved in the ethylene signal transduction pathway not directly linked to the ACCO reaction. ACC oxidase has significant homology with Lycopersicon esculentum cysteine protease LeCp, which functions as a protease and as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase (Acs2) gene expression. ACC oxidase may play a similar role in signal transduction after post-translational processing. ACC oxidase becomes inactivated by fragmentation and apparently has intrinsic protease and transpeptidase activity. ACC oxidase contains several amino acid sequence motifs for putative protein–protein interactions, phosphokinases and cysteine protease. ACC oxidase is subject to autophosphorylaton in vitro and promotes phosphorylation of some apple fruit proteins in a ripening-dependent manner. PMID:24244837

  15. Estimation of the activation energy in the Belousov-Zhabotinsky reaction by temperature effect on excitable waves.

    PubMed

    Zhang, Jinzhong; Zhou, Luqun; Ouyang, Qi

    2007-02-15

    We report the temperature effect on the propagation of excitable traveling waves in a quasi-two-dimensional Belousov-Zhabotinsky reaction-diffusion system. The onset of excitable waves as a function of the sulfuric acid concentration and temperature is identified, on which the sulfuric acid concentration exhibits an Arrhenius dependence on temperature. On the basis of this experimental data, the activation energy of the self-catalyzed reaction in the Oregonator model is estimated to be 83-113 kJ/mol, which is further supported by our numerical simulations. The estimation proceeds without analyzing detailed reaction steps but rather through observing the global dynamic behaviors in the BZ reaction. For a supplement, the wave propagation velocities are calculated based on our results and compared with the experimental observations.

  16. Apolipoprotein L1 confers pH-switchable ion permeability to phospholipid vesicles.

    PubMed

    Bruno, Jonathan; Pozzi, Nicola; Oliva, Jonathan; Edwards, John C

    2017-11-03

    Apolipoprotein L1 (ApoL1) is a human serum protein conferring resistance to African trypanosomes, and certain ApoL1 variants increase susceptibility to some progressive kidney diseases. ApoL1 has been hypothesized to function like a pore-forming colicin and has been reported to have permeability effects on both intracellular and plasma membranes. Here, to gain insight into how ApoL1 may function in vivo , we used vesicle-based ion permeability, direct membrane association, and intrinsic fluorescence to study the activities of purified recombinant ApoL1. We found that ApoL1 confers chloride-selective permeability to preformed phospholipid vesicles and that this selectivity is strongly pH-sensitive, with maximal activity at pH 5 and little activity above pH 7. When ApoL1 and lipid were allowed to interact at low pH and were then brought to neutral pH, chloride permeability was suppressed, and potassium permeability was activated. Both chloride and potassium permeability linearly correlated with the mass of ApoL1 in the reaction mixture, and both exhibited lipid selectivity, requiring the presence of negatively charged lipids for activity. Potassium, but not chloride, permease activity required the presence of calcium ions in both the association and activation steps. Direct assessment of ApoL1-lipid associations confirmed that ApoL1 stably associates with phospholipid vesicles, requiring low pH and the presence of negatively charged phospholipids for maximal binding. Intrinsic fluorescence of ApoL1 supported the presence of a significant structural transition when ApoL1 is mixed with lipids at low pH. This pH-switchable ion-selective permeability may explain the different effects of ApoL1 reported in intracellular and plasma membrane environments. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. GPR139, an Orphan Receptor Highly Enriched in the Habenula and Septum, Is Activated by the Essential Amino Acids L-Tryptophan and L-Phenylalanine.

    PubMed

    Liu, Changlu; Bonaventure, Pascal; Lee, Grace; Nepomuceno, Diane; Kuei, Chester; Wu, Jiejun; Li, Qingqin; Joseph, Victory; Sutton, Steven W; Eckert, William; Yao, Xiang; Yieh, Lynn; Dvorak, Curt; Carruthers, Nicholas; Coate, Heather; Yun, Sujin; Dugovic, Christine; Harrington, Anthony; Lovenberg, Timothy W

    2015-11-01

    GPR139 is an orphan G-protein-coupled receptor expressed in the central nervous system. To identify its physiologic ligand, we measured GPR139 receptor activity from recombinant cells after treatment with amino acids, orphan ligands, serum, and tissue extracts. GPR139 activity was measured using guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding, calcium mobilization, and extracellular signal-regulated kinases phosphorylation assays. Amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) activated GPR139, with EC50 values in the 30- to 300-μM range, consistent with the physiologic concentrations of L-Trp and L-Phe in tissues. Chromatography of rat brain, rat serum, and human serum extracts revealed two peaks of GPR139 activity, which corresponded to the elution peaks of L-Trp and L-Phe. With the purpose of identifying novel tools to study GPR139 function, a high-throughput screening campaign led to the identification of a selective small-molecule agonist [JNJ-63533054, (S)-3-chloro-N-(2-oxo-2-((1-phenylethyl)amino)ethyl) benzamide]. The tritium-labeled JNJ-63533054 bound to cell membranes expressing GPR139 and could be specifically displaced by L-Trp and L-Phe. Sequence alignment revealed that GPR139 is highly conserved across species, and RNA sequencing studies of rat and human tissues indicated its exclusive expression in the brain and pituitary gland. Immunohistochemical analysis showed specific expression of the receptor in circumventricular regions of the habenula and septum in mice. Together, these findings suggest that L-Trp and L-Phe are candidate physiologic ligands for GPR139, and we hypothesize that this receptor may act as a sensor to detect dynamic changes of L-Trp and L-Phe in the brain. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  18. The Stanford Leisure-Time Activity Categorical Item (L-Cat): A single categorical item sensitive to physical activity changes in overweight/obese women

    PubMed Central

    Kiernan, Michaela; Schoffman, Danielle E.; Lee, Katherine; Brown, Susan D.; Fair, Joan M.; Perri, Michael G.; Haskell, William L.

    2015-01-01

    Background Physical activity is essential for chronic disease prevention, yet <40% of overweight/obese adults meet national activity recommendations. For time-efficient counseling, clinicians need a brief easy-to-use tool that reliably and validly assesses a full range of activity levels, and most importantly, is sensitive to clinically meaningful changes in activity. The Stanford Leisure-Time Activity Categorical Item (L-Cat) is a single item comprised of six descriptive categories ranging from inactive to very active. This novel methodological approach assesses national activity recommendations as well as multiple clinically relevant categories below and above recommendations, and incorporates critical methodological principles that enhance psychometrics (reliability, validity, sensitivity to change). Methods We evaluated the L-Cat’s psychometrics among 267 overweight/obese women asked to meet national activity recommendations in a randomized behavioral weight-loss trial. Results The L-Cat had excellent test-retest reliability (κ=0.64, P<.001) and adequate concurrent criterion validity; each L-Cat category at 6 months was associated with 1059 more daily pedometer steps (95% CI 712–1407, β=0.38, P<.001) and 1.9% greater initial weight loss at 6 months (95% CI −2.4 to −1.3, β=−0.38, P<.001). Of interest, L-Cat categories differentiated from each other in a dose-response gradient for steps and weight loss (Ps<.05) with excellent face validity. The L-Cat was sensitive to change in response to the trial’s activity component. Women increased one L-Cat category at 6 months (M=1.0±1.4, P<.001); 55.8% met recommendations at 6 months whereas 20.6% did at baseline (P<.001). Even among women not meeting recommendations at both baseline and 6 months (n=106), women who moved ≥1 L-Cat categories at 6 months lost more weight than those who did not (M=−4.6%, 95% CI −6.7 to −2.5, P<.001). Conclusions Given strong psychometrics, the L-Cat has timely

  19. The Stanford Leisure-Time Activity Categorical Item (L-Cat): a single categorical item sensitive to physical activity changes in overweight/obese women.

    PubMed

    Kiernan, M; Schoffman, D E; Lee, K; Brown, S D; Fair, J M; Perri, M G; Haskell, W L

    2013-12-01

    Physical activity is essential for chronic disease prevention, yet <40% of overweight/obese adults meet the national activity recommendations. For time-efficient counseling, clinicians need a brief, easy-to-use tool that reliably and validly assesses a full range of activity levels, and, most importantly, is sensitive to clinically meaningful changes in activity. The Stanford Leisure-Time Activity Categorical Item (L-Cat) is a single item comprising six descriptive categories ranging from inactive to very active. This novel methodological approach assesses national activity recommendations as well as multiple clinically relevant categories below and above the recommendations, and incorporates critical methodological principles that enhance psychometrics (reliability, validity and sensitivity to change). We evaluated the L-Cat's psychometrics among 267 overweight/obese women who were asked to meet the national activity recommendations in a randomized behavioral weight-loss trial. The L-Cat had excellent test-retest reliability (κ=0.64, P<0.001) and adequate concurrent criterion validity; each L-Cat category at 6 months was associated with 1059 more daily pedometer steps (95% CI 712-1407, β=0.38, P<0.001) and 1.9% greater initial weight loss at 6 months (95% CI -2.4 to -1.3, β=-0.38, P<0.001). Of interest, L-Cat categories differentiated from each other in a dose-response gradient for steps and weight loss (Ps<0.05) with excellent face validity. The L-Cat was sensitive to change in response to the trial's activity component. Women increased one L-Cat category at 6 months (M=1.0±1.4, P<0.001); 55.8% met the recommendations at 6 months whereas 20.6% did at baseline (P<0.001). Even among women not meeting the recommendations at both baseline and 6 months (n=106), women who moved 1 L-Cat categories at 6 months lost more weight than those who did not (M=-4.6%, 95% CI -6.7 to -2.5, P<0.001). Given strong psychometrics, the L-Cat has timely potential for clinical

  20. Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction.

    PubMed

    Smolinska, Beata; Leszczynska, Joanna

    2017-05-01

    The study was conducted to evaluate metabolic answer of Lepidium sativum L. on Hg, compost, and citric acid during assisted phytoextraction. The chlorophyll a and b contents, total carotenoids, and activity of peroxidase were determined in plants exposed to Hg and soil amendments. Hg accumulation in plant shoots was also investigated. The pot experiments were provided in soil artificially contaminated by Hg and/or supplemented with compost and citric acid. Hg concentration in plant shoots and soil substrates was determined by cold vapor atomic absorption spectroscopy (CV-AAS) method after acid mineralization. The plant photosynthetic pigments and peroxidase activity were measured by standard spectrophotometric methods. The study shows that L. sativum L. accumulated Hg in its aerial tissues. An increase in Hg accumulation was noticed when soil was supplemented with compost and citric acid. Increasing Hg concentration in plant shoots was correlated with enhanced activation of peroxidase activity and changes in total carotenoid concentration. Combined use of compost and citric acid also decreased the chlorophyll a and b contents in plant leaves. Presented study reveals that L. sativum L. is capable of tolerating Hg and its use during phytoextraction assisted by combined use of compost and citric acid lead to decreasing soil contamination by Hg.