Sample records for l-lake monitoring program

  1. L-Lake macroinvertebrate community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of manymore » other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.« less

  2. Response to in-depth safety audit of the L Lake sampling station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladden, J.B.

    1986-10-15

    An in-depth safety audit of several of the facilities and operations supporting the Biological Monitoring Program on L Lake was conducted. Subsequent to the initial audit, the audit team evaluated the handling of samples taken for analysis of Naegleria fowleri at the 704-U laboratory facility.

  3. Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

    1990-10-01

    In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. Themore » monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.« less

  4. Proceedings of the Annual Meeting, Aquatic Plant Control Research Program (18th) Held at Raleigh, North Carolina on 14-17 November 1983.

    DTIC Science & Technology

    1984-06-01

    Aquatic Plant Management Program: Water Quality Monitoring, by John H. Rodgers, Jr., Kevin H. Reinert, and Mark L. Hinman...Rodgers, Jr.,* Kevin H. Reinert,* and Mark L. Hinman* Din INTRODUCTION 0 A water quality monitoring program was conducted on Pat Mayse Lake during...Mississippi. 117 Herbicide Sprayer Plant Bed Translucen- Rof -SupplementalLighting_ Waer Supply _ W i Sampling Stations Figure 1. Flume system set up to

  5. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1more » well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.« less

  6. A comparison of the temporally integrated monitoring of ecosystems and Adirondack Long Term-Monitoring programs in the Adirondack Mountain region of New Yrok

    EPA Science Inventory

    This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...

  7. Lake Ontario Tributaries: 2009-2010 Field Data Report

    EPA Pesticide Factsheets

    In 2002, EPA began a program to regularly monitor U.S. tributaries to Lake Ontario for the critical pollutants. This report provides program results from 2009-2010, and identifies changes in the monitoring program from prior years.

  8. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    USGS Publications Warehouse

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in NO 3- concentrations resulting from the increased productivity. ?? 2007 Springer Science+Business Media, Inc.

  9. Comprehensive Monitoring Program: Final Biota Annual Report for 1989. Volume 2

    DTIC Science & Technology

    1990-06-01

    samples from RMA lakes were highest in largemouth bass, a top predator . Largemouth bass and bluegill exhibited the widest geographic distribution...certification. BCtL = Siss examined with endrin concentrations below lower certified reporting limit of 0.0740 pg/g (MRI) or 0 036 pf (ESE) for aimal tipte and

  10. NCCN Mountain Lakes Monitoring Strategy: Guidelines to Resolution

    USGS Publications Warehouse

    Hoffman, Robert L.; Huff, Mark H.

    2008-01-01

    The North Coast and Cascades Network (NCCN) Inventory and Monitoring Program provides funds to its Network Parks to plan and implement the goals and objectives of the National Park Services? (NPS) Inventory and Monitoring (I&M) Program. The primary purpose of the I&M program is to develop and implement a long-term monitoring program in each network. The purpose of this document is to describe the outcome of a meeting held to find solutions to obstacles inhibiting development of a unified core design and methodology for mountain lake monitoring.

  11. Hydrologic and Suspended-Sediment Data for Reelfoot Lake, Obion and Lake Counties, Northwestern Tennessee, May 1985-September 1986

    DTIC Science & Technology

    1986-01-01

    DATE 1986 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Hydrologic and Suspended-Sediment Data for Reelfoot Lake , Obion and...ANSI Std Z39-18 Ii-nmRO IiO~IC l!!Jm srLISPENDED- SEDIMENT DATA FOR REELFOOT LAKE , OBION AND LAKE COIJNTHES, IWXUWWESTERN TENNESSEE, IMAY...references 4 Hydrologic data 5 1. !Uap showing location of project area, Reelfoot Lake , streamflow monitoring stations. lake -stage monitoring

  12. Characterization and comparison of phytoplankton in selected lakes of five Great Lakes area national parks

    USGS Publications Warehouse

    Nevers, Meredith Becker; Whitman, Richard L.

    2004-01-01

    Phytoplankton species have been widely used as indicators of lake conditions, and they may be useful for detecting changes in overall lake condition. In an attempt to inventory and monitor its natural resources, the National Park Service wants to establish a monitoring program for aquatic resources in the Great Lakes Cluster National Parks. This study sought to establish baseline information on the phytoplankton and water chemistry of selected lakes in five national parks in a preliminary effort toward establishing a long-term monitoring program. Phytoplankton and water chemistry samples were collected from ten lakes in five national parks over a two-year period. A total of 176 taxa were identified during the study. Northern lakes generally had higher Shannon-Wiener diversity and clustered together in similarity. Lakes exhibited a south to north gradient of many water chemistry variables, with northern lakes having lower hardness, sulfate, turbidity, and temperature and higher dissolved oxygen. Chloride and sulfate concentrations were the variables that best explained variation among phytoplankton in the ten lakes. A monitoring plan will have to incorporate the differences among lakes, but by coordinating the effort, comparisons within and among parks and other regions will prove useful for determining environmental change.

  13. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to Landsat satellite imagery for Michigan inland lakes, 2001-2006

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2007-01-01

    The State of Michigan has more than 11,000 inland lakes; approximately 3,500 of these lakes are greater than 25 acres. The USGS, in cooperation with the Michigan Department of Environmental Quality (MDEQ), has been monitoring the quality of inland lakes in Michigan through the Lake Water Quality Assessment monitoring program. Approximately 100 inland lakes will be sampled per year from 2001 to 2015. Volunteers coordinated by MDEQ started sampling lakes in 1974, and continue to sample to date approximately 250 inland lakes each year through the Cooperative Lakes Monitoring Program (CLMP), Michigan’s volunteer lakes monitoring program. Despite this sampling effort, it is still impossible to physically collect the necessary water-quality measurements for all 3,500 Michigan inland lakes. Therefore, a technique was used by USGS, modeled after Olmanson and others (2001), in cooperation with MDEQ that uses satellite remote sensing to predict water quality in unsampled inland lakes greater than 25 acres. Water-quality characteristics that are associated with water clarity can be predicted for Michigan inland lakes by relating sampled measurements of secchi-disk transparency (SDT) and chlorophyll a concentrations (Chl-a), to satellite imagery. The trophic state index (TSI) which is an indicator of the biological productivity can be calculated based on SDT measurements, Chl-a concentrations, and total phosphorus (TP) concentrations measured near the lake’s surface. Through this process, unsampled inland lakes within the fourteen Landsat satellite scenes encompassing Michigan can be translated into estimated TSI from either predicted SDT or Chl-a (fig. 1).

  14. Lake and bulk sampling chemistry, NADP, and IMPROVE air quality data analysis on the Bridger-Teton National Forest (USFS Region 4)

    Treesearch

    Jill Grenon; Terry Svalberg; Ted Porwoll; Mark Story

    2010-01-01

    Air quality monitoring data from several programs in and around the Bridger-Teton (B-T) National Forest - National Atmospheric Deposition Program (NADP), longterm lake monitoring, long-term bulk precipitation monitoring (both snow and rain), and Interagency Monitoring of Protected Visual Environments (IMPROVE) - were analyzed in this report. Trends were analyzed using...

  15. Biological Effects–Based Tools for Monitoring Impacted Surface Waters in the Great Lakes: A Multiagency Program in Support of the Great Lakes Restoration Initiative

    EPA Science Inventory

    There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particul...

  16. Sampling design for early detection of aquatic invasive species in Great Lakes ports

    EPA Science Inventory

    We evaluated a pilot adaptive monitoring program for aquatic invasive species (AIS) early detection in Lake Superior. The monitoring program is designed to detect newly-introduced fishes, and encompasses the lake’s three major ports (Duluth-Superior, Sault Ste. Marie, Thund...

  17. Statistical analysis of the water-quality monitoring program, Upper Klamath Lake, Oregon, and optimization of the program for 2013 and beyond

    USGS Publications Warehouse

    Eldridge, Sara L. Caldwell; Wherry, Susan A.; Wood, Tamara M.

    2014-01-01

    Upper Klamath Lake in south-central Oregon has become increasingly eutrophic over the past century and now experiences seasonal cyanobacteria-dominated and potentially toxic phytoplankton blooms. Growth and decline of these blooms create poor water-quality conditions that can be detrimental to fish, including two resident endangered sucker species. Upper Klamath Lake is the primary water supply to agricultural areas within the upper Klamath Basin. Water from the lake is also used to generate power and to enhance and sustain downstream flows in the Klamath River. Water quality in Upper Klamath Lake has been monitored by the Klamath Tribes since the early 1990s and by the U.S. Geological Survey (USGS) since 2002. Management agencies and other stakeholders have determined that a re-evaluation of the goals for water-quality monitoring is warranted to assess whether current data-collection activities will continue to adequately provide data for researchers to address questions of interest and to facilitate future natural resource management decisions. The purpose of this study was to (1) compile an updated list of the goals and objectives for long-term water-quality monitoring in Upper Klamath Lake with input from upper Klamath Basin stakeholders, (2) assess the current water-quality monitoring programs in Upper Klamath Lake to determine whether existing data-collection strategies can fulfill the updated goals and objectives for monitoring, and (3) identify potential modifications to future monitoring plans in accordance with the updated monitoring objectives and improve stakeholder cooperation and data-collection efficiency. Data collected by the Klamath Tribes and the USGS were evaluated to determine whether consistent long-term trends in water-quality variables can be described by the dataset and whether the number and distribution of currently monitored sites captures the full range of environmental conditions and the multi-scale variability of water-quality parameters in the lake. Also, current monitoring strategies were scrutinized for unnecessary redundancy within the overall network.

  18. A Citizen Science Program for Monitoring Lake Stages in Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Kretschmann, A.; Drum, A.; Rubsam, J.; Watras, C. J.; Cellar-Rossler, A.

    2011-12-01

    Historical data indicate that surface water levels in northern Wisconsin are fluctuating more now than they did in the recent past. In the northern highland lake district of Vilas County, Wisconsin, concern about record low lake levels in 2008 spurred local citizens and lake associations to form a lake level monitoring network comprising citizen scientists. The network is administered by the North Lakeland Discovery Center (NLDC, a local NGO) and is supported by a grant from the Citizen Science Monitoring Program of the Wisconsin Department of Natural Resources (WDNR). With technical guidance from limnologists at neighboring UW-Madison Trout Lake Research Station, citizen scientists have installed geographic benchmarks and staff gauges on 26 area lakes. The project engages citizen and student science participants including homeowners, non-profit organization member-participants, and local schools. Each spring, staff gauges are installed and referenced to fixed benchmarks after ice off by NLDC and dedicated volunteers. Volunteers read and record staff gauges on a weekly basis during the ice-free season; and maintain log books recording lake levels to the nearest 0.5 cm. At the end of the season, before ice on, gauges are removed and log books are collected by the NLDC coordinator. Data is compiled and submitted to a database management system, coordinated within the Wisconsin Surface Water Integrated Monitoring System (SWIMS), a statewide information system managed by the WDNR in Madison. Furthermore, NLDC is collaborating with the SWIMS database manager to develop data entry screens based on records collected by citizen scientists. This program is the first of its kind in Wisconsin to utilize citizen scientists to collect lake level data. The retention rate for volunteers has been 100% over the three years since inception, and the program has expanded from four lakes in 2008 to twenty-six lakes in 2011. NLDC stresses the importance of long-term monitoring and the commitment that such monitoring takes. The volunteers recognize this importance and have fulfilled their monitoring commitments on an annual basis. All participating volunteers receive a summary report at the end of the year, and, if requested, a graph that is updated monthly. Recruitment has been through lake associations, town boards, word of mouth, newspaper articles, community events, and the NLDC citizen science webpage. Local interest and participation are high, perhaps due to the value that citizens place on lakes and the concern that they have about declining water levels.

  19. Approaches to Integrated Assessment of Large Lakes involving New Survey Designs and Synoptic, in situ Technologies

    EPA Science Inventory

    The Laurentian Great Lakes have had, for decades, regular water quality monitoring programs to track conditions in their offshore waters, as dictated by a binational Great Lakes Water Quality Agreement between the US and Canada. Unfortunately, resources have limited monitoring t...

  20. Use of wetlands for water quality improvement under the USEPA Region V Clean Lakes Program

    NASA Astrophysics Data System (ADS)

    Landers, Judith C.; Knuth, Barbara A.

    1991-03-01

    The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.

  1. Regional Monitoring of Acidic Lakes and Streams

    EPA Pesticide Factsheets

    This asset provides data on the acid-base status of lakes and streams. Key chemical indicators measured include: sulfate, nitrate, ammonium, chloride, Acid Neutralizing Capacity (ANC), pH, base cations, dissolved organic carbon (DOC), total aluminum. TIME and LTM are part of EPA's Environmental Monitoring and Assessment Program (EMAP). Long-term monitoring of the acid-base status (pH, ANC, SO4, NO3, NH4, DOC, base cations, Al) in lakes and streams. Monitoring is conducted in acid sensitive regions of the Eastern U.S.

  2. Effects of winter temperatures on gypsy moth egg masses in the Great Lakes region of the United States.

    Treesearch

    J.A. Andresen; D.G. McCullough; B.E. Potter; C.N. Koller; L.S. Bauer; C. W. Ramm

    2001-01-01

    Accurate prediction of winter survival of gypsy moth (Lymantria dispar L.) eggs and phenology of egg hatch in spring are strongly dependent on temperature and are critical aspects of gypsy moth management programs. We monitored internal temperatures of egg masses at three heights aboveground level and at the four cardinal aspects on oak tree stems at two different...

  3. 2016 RFA for Great Lakes Long-Term Biology Monitoring Program: Phytoplankton Component

    EPA Pesticide Factsheets

    This Request for Applications solicits applications from eligible entities for a cooperative agreement to be awarded for a project to continue the long-term monitoring of phytoplankton in the open waters of the Great Lakes.

  4. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, Mitch

    2002-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe formmore » the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2001 fishing season has been especially successful with great fishing for both rainbow and kokanee throughout Lake Roosevelt. The results of the Two Rivers Fishing Derby identified 100 percent of the rainbow and 47 percent of the kokanee caught were of hatchery origin.« less

  5. Pesticides in surface water, bed sediment, and ground water adjacent to commercial cranberry bogs, Lac du Flambeau Reservation, Vilas County, Wisconsin

    USGS Publications Warehouse

    Saad, David A.

    2005-01-01

    In samples from the Trout River, which is used as a source of water to maintain lake levels in the Corn Lakes, the only pesticides detected were the non-targeted compounds atrazine and deethyl atrazine, indicating it was not a source of targeted compounds detected in the Corn Lakes. Only two pesticides (chlorpyrifos and metolachlor) were detected in bed-sediment samples collected from the lakes; chlorpyrifos from Little Trout Lake and metolachlor from the Corn Lakes. Four pesticides (the targeted compounds napropamide and norflurazon and the non-targeted compounds atrazine and deethyl atrazine) were detected in ground-water samples from two of four sampled monitor wells. The highest ground-water concentrations (up to 0.14 ?g/L napropamide and 0.56 ?g/L norflurazon) were measured in samples from the monitoring well located directly downgradient from the Corn Lakes and commercial cranberry operations. No pesticides were detected in samples from the reference well located upgradient from the Corn Lakes and cranberry operations. Further study is needed to identify additional pesticides as well as chronic effects on aquatic organisms to determine whether cranberry-related pesticides affect the lake ecosystems of the Lac du Flambeau Reservation.

  6. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  7. Modern limnology of two lakes in the Tibetan Plateau - evidence from in-situ monitoring

    NASA Astrophysics Data System (ADS)

    Wang, M.; Li, X.; Lei, L.; He, Y.; Hou, J.

    2013-12-01

    The mechanisms of climate change in the Tibetan Plateau, known as the Third Pole, receive more and more attention due to its unique geographic location and the influence of multiple climate systems. Among the paleoclimate archives, widespread lakes provide abundant information on past climate changes and have been investigated for decades. Though many high-quality paleolimnological records have been reported in the Tibetan Plateau, little is known about the modern limnological processes in most Tibetan lakes as most lakes are difficult to access and not ready for long-term monitoring. We have installed a series of temperature data logger at different water levels in two Tibetan lakes, Bangong Co and Dagze Co in July 2012 to monitor hourly variability of temperature profile. Bangong Co (33.5°N, 79.8°E, 4245 m asl) is a freshwater lake (salinity ~0.5 g/L) in the westernmost Tibetan Plateau, receiving melt water from mountain glaciers in the basin. Dagze Co (31.9°N, 87.5°E, 4470 m asl) is saline lake (salinity ~15 g/L) in the central Tibetan Plateau, mostly fed by precipitation. In combination with the climate data in the nearby weather stations, we wish to understand the modern limnological processes in the two lakes and their potential effect on the lake biology, sedimentation, and sedimentary biomarkers. Based on the data collected for the first calendar year (Jul 2012 ~ Aug 2013), we anticipate to understand: 1) the influence of climate on the hydrological processes in high elevation lakes; 2) the difference in the metalimnion in meltwater-fed lake (Bangong Co) and precipitation-fed lake (Dagze Co) and their potential effect on the lake biology; 3) the difference in the spring turnover and fall turnover and the effect of meltwater and salinity.

  8. Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, John; Spotts, Jim; Underwood, Keith

    2002-11-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examinationmore » of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth of 1.5 m (5 ft) when compared with a 4.6 m (15 ft) depth, and during the shorter incubation periods (two and four weeks). Mean zooplankton densities were greatest for Copepoda (88 %), then Daphnia spp. (10%) and other Cladocera (2.1%), while the zooplankton biomass assessment indicated Daphnia spp. had the greatest biomass (53.6%), then Copepoda (44.0%) and other Cladocera (2.5%). Mean overall zooplankton densities were the lowest observed since 1991. The cause was unclear, but may have been an artifact of human error. It seems unlikely that hydro-operations played a significant part in the reduction of zooplankton in light of the relatively friendly water year of 1998.« less

  9. Early Detection Monitoring for Vulnerable Great Lakes Coastal Ecosystems

    EPA Science Inventory

    Great Lakes harbors/embayments are vulnerable to introduction of aquatic invasive species. Monitoring is needed to inform on new introductions, as well as to track success of prevention programs intended to limit spread. We have completed a pilot field case study in the Duluth-...

  10. Report to the congress on ocean pollution, monitoring and research October 1980 through September 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-07-01

    This report summarizes the results of FY 1981 National Oceanic and Atmospheric Administration (NOAA) monitoring and research efforts under Title II of the Marine Protection, Research, and Sanctuaries Act of 1972 (P.L. 92-532). Section 201 of Title II assigns responsibility to the Department of Commerce for a comprehensive and continuing program of monitoring and research regarding the effects of dumping material into ocean waters, coastal waters, and the Great Lakes. Section 202 of Title II directs the Secretary of Commerce, in consultation with other appropriate parts of the U.S. Government, to 'initiate a comprehensive and continuing program of research withmore » respect to the possible long-range effects of pollution, overfishing, and man-induced changes of ocean ecosystems.' The legislation also directs the Secretary of Commerce to report the findings from the monitoring and research programs to the Congress at least once a year. There are intrinsic difficulties, however, in distinguishing 'long-range' effects from the 'acute' effects of ocean dumping, or more generally of marine pollution. In response to these considerations and to the responsibilities assigned to NOAA under the National Ocean Pollution Planning Act (P.L. 95-273), NOAA has consolidated and coordinated its research efforts in these areas to make the overall program more cost-effective and productive.« less

  11. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom

    NASA Astrophysics Data System (ADS)

    Page, Benjamin P.; Kumar, Abhishek; Mishra, Deepak R.

    2018-04-01

    As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more common in recreational lakes and water supply reservoirs, demand for rapid detection and temporal monitoring will be imminent for effective management. The goal of this study was to demonstrate a novel and potentially operational cross-satellite based protocol for synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) detection model for the Landsat-8 OLI sensor from the relationship between the normalized difference chlorophyll index and the floating algal index derived from Sentinel-2A on a coinciding overpass date during the summer CyanoHAB bloom in Utah Lake. This aided in the construction of a time-series phenology of the Utah Lake CyanoHAB event. Spatio-temporal cyanobacterial density maps from both Sentinel-2A and Landsat-8 sensors revealed that the bloom started in the first week of July 2016 (July 3rd, mean cell count: 9163 cells/mL), reached peak in mid-July (July 15th, mean cell count: 108176 cells/mL), and reduced in August (August 24th, mean cell count: 9145 cells/mL). Analysis of physical and meteorological factors suggested a complex interaction between landscape processes (high surface runoff), climatic conditions (high temperature, high rainfall followed by negligible rainfall, stable wind), and water quality (low water level, high Chl-a) which created a supportive environment for triggering these blooms in Utah Lake. This cross satellite-based monitoring methods can be a great tool for regular monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large lakes.

  12. Snake River Sockeye Salmon Habitat and Limnological Research; 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Robert G.; Taki, Doug; Lewis, Bert

    2001-01-15

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  13. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  14. Snake River Sockeye Salmon Habitat and Limnological Research; 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2002-12-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2000 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  15. Water Quality Conditions Monitored at the Corps’ Big Bend Project in South Dakota during the 3-Year Period 2008 through 2010

    DTIC Science & Technology

    2011-11-01

    cyanotoxin microcystin above 1 ug/l were measured. The zooplankton community in Lake Sharpe was dominated by Cladocerans and Copepods. Water...reservoir. The phytoplankton community of Lake Sharpe was dominated by diatoms and no concentrations of the cyanotoxin microcystin above 1 ug/l

  16. U.S. Forest Service Region 1 Lake Chemistry, NADP, and IMPROVE air quality data analysis

    Treesearch

    Jill Grenon; Mark Story

    2009-01-01

    This report was developed to address the need for comprehensive analysis of U.S. Forest Service (USFS) Region 1 air quality monitoring data. The monitoring data includes Phase 3 (long-term data) lakes, National Atmospheric Deposition Program (NADP), and Interagency Monitoring of Protected Visual Environments (IMPROVE). Annual and seasonal data for the periods of record...

  17. Temporal variations of water quality and the taxonomic structures of phytoplankton and zooplankton assemblages in mountain lakes, Mount Rainier National Park, Washington USA

    USGS Publications Warehouse

    Larson, Gary L.; McIntire, C.D.; Jacobs, Ruth W.; Truitt, R.

    1999-01-01

    A synoptic inventory of physical and chemical properties and plankton assemblages of 27 mountain lakes was conducted at Mount Rainier National Park in 1988. From 1990–1993, die opportunity was presented to resurvey six of these lakes to determine inter-annual change within die set of characteristics surveyed in 1988. If changes were evident, a second objective was to provide guidance to park management about the value of a long-term lake monitoring program.Secchi-disk clarity, water temperature, and pH of the lakes in 1988 were within the range of values obtained between 1990 and 1993. Conductivities and concentration of nutrients in some lakes were not consistent in 1990–1993 with the values recorded in 1988. Although the dominant phytoplankton taxa in die lakes varied among years, die taxa in individual lakes were in consistent among years, with die exception of two lakes. Rotifer assemblages were consistent among years, but most of die lakes exhibited dramatic changes in some years, as did crustacean zooplankton assemblages. Suggestions were made about die need for a long-term monitoring program to evaluate die status and trends of park lakes.

  18. Changing perspectives on the importance of urban phosphorus inputs as the cause of nutrient enrichment in Lough Neagh.

    PubMed

    Foy, R H; Lennox, S D; Gibson, C E

    2003-07-01

    The scale and chronology of the phosphorus (P) enrichment of Lough Neagh, a large hypertrophic lake, was assessed using, as enrichment proxies, published palaeocological studies on diatoms and chironomid head capsules preserved in the lake sediments and, from 1974, monitoring data from the lake and its inflowing rivers. Enrichment commenced in 1880, and the scale and chronology of the diatom and chironomid records were similar up to 1960, but in the 1960s, chironomid accumulation rates increased dramatically, whereas diatom rates remained unchanged. From subsequent lake monitoring, the absence of a diatom response after 1960 was attributed to silica limitation so that P could be considered as the driver of increased diatom production only up to 1960. Using a coefficient for the demand for P by diatoms of 4 microg P mg SiO(2)(-1), it was calculated that the increased diatom production between 1881 and 1961 required an increase in lake P of 26 microg P l(-1). This value is close to the predicted increase of 22.5 microg P l(-1) in the lake caused by inputs of P from sewage treatment works and septic tanks. There was no evidence that diffuse source P contributed to enrichment over this period. Enrichment up to 1960 appears modest in comparison to subsequent years. From 1961 to 1974, lake P was estimated to have increased by 62 microg P l(-1), but only 25 microg P l(-1) of this increase was attributable to greater loadings of P from urban and septic tank sources. The enrichment response of chironomids at this time was also much greater than expected from a regression-derived relationship between urban P inputs and chironomid accumulation rates suggesting additional sources of P. The larger than expected increase in lake P was attributed to the onset of a significant internal loading of P and the commencement of an increase in diffuse source loadings of P. River monitoring has shown that diffuse P has increased steadily since 1974, more than counterbalancing a 40% reduction in urban P loadings that has taken place since 1980. By the end of the 20th century urban sources contributed only 19.7% of inflow P to Lough Neagh but lake P was 145 microg P l(-1) compared to an estimated concentration of 20 microg P l(-1) in 1881. Failure to control diffuse P sources has therefore been instrumental in the continued increase of lake P in Lough Neagh.

  19. Multidate Landsat lake quality monitoring program

    NASA Technical Reports Server (NTRS)

    Fisher, L. T.; Scarpace, F. L.; Thomsen, R. G.

    1979-01-01

    A unified package of files and programs has been developed to automate the multidate Landsat-derived analyses of water quality for about 3000 inland lakes throughout Wisconsin. A master lakes file which stores geographic information on the lakes, a file giving the latitudes and longitudes of control points for scene navigation, and a program to estimate control point locations and produce microfiche character maps for scene navigation are among the files and programs of the system. The use of ground coordinate systems to isolate irregular shaped areas which can be accessed at will appears to provide an economical means of restricting the size of the data set.

  20. Patterns in Benthic Biodiversity Link Lake Trophic Status to Structure and Potential Function of Three Large, Deep Lakes

    PubMed Central

    Hayford, Barbara L.; Caires, Andrea M.; Chandra, Sudeep; Girdner, Scott F.

    2015-01-01

    Relative to their scarcity, large, deep lakes support a large proportion of the world’s freshwater species. This biodiversity is threatened by human development and is in need of conservation. Direct comparison of biodiversity is the basis of biological monitoring for conservation but is difficult to conduct between large, insular ecosystems. The objective of our study was to conduct such a comparison of benthic biodiversity between three of the world’s largest lakes: Lake Tahoe, USA; Lake Hövsgöl, Mongolia; and Crater Lake, USA. We examined biodiversity of common benthic organism, the non-biting midges (Chironomidae) and determined lake trophic status using chironomid-based lake typology, tested whether community structure was similar between the three lakes despite geographic distance; and tested whether chironomid diversity would show significant variation within and between lakes. Typology analysis indicated that Lake Hövsgöl was ultra-oligotrophic, Crater Lake was oligotrophic, and Lake Tahoe was borderline oligotrophic/mesotrophic. These results were similar to traditional pelagic measures of lake trophic status for Lake Hövsgöl and Crater Lake but differed for Lake Tahoe, which has been designated as ultra-oligotrophic by traditional pelagic measures such as transparency found in the literature. Analysis of similarity showed that Lake Tahoe and Lake Hövsgöl chironomid communities were more similar to each other than either was to Crater Lake communities. Diversity varied between the three lakes and spatially within each lake. This research shows that chironomid communities from these large lakes were sensitive to trophic conditions. Chironomid communities were similar between the deep environments of Lake Hövsgöl and Lake Tahoe, indicating that chironomid communities from these lakes may be useful in comparing trophic state changes in large lakes. Spatial variation in Lake Tahoe’s diversity is indicative of differential response of chironomid communities to nutrient enrichment which may be an indication of changes in trophic state within and across habitats. PMID:25594516

  1. Early Monitoring Approaches Developed from a Case Study on a Vulnerable Great Lakes Embayment

    EPA Science Inventory

    Great Lakes harbors/embayments are at high risk of introduction of invasive species. Monitoring is needed to inform on new introductions, and to track success of programs to limit invasion or spread. A field case study was conducted in the Duluth-Superior Harbor/St. Louis River, ...

  2. Ecological monitoring for assessing the state of the nearshore and open waters of the Great Lakes

    USGS Publications Warehouse

    Neilson, Melanie A.; Painter, D. Scott; Warren, Glenn; Hites, Ronald A.; Basu, Ilora; Weseloh, D.V. Chip; Whittle, D. Michael; Christie, Gavin; Barbiero, Richard; Tuchman, Marc; Johannsson, Ora E.; Nalepa, Thomas F.; Edsall, Thomas A.; Fleischer, Guy; Bronte, Charles; Smith, Stephen B.; Baumann, Paul C.

    2003-01-01

    The Great Lakes Water Quality Agreement stipulates that the Governments of Canada and the United States are responsible for restoring and maintaining the chemical, physical and biological integrity of the waters of the Great Lakes Basin Ecosystem. Due to varying mandates and areas of expertise, monitoring to assess progress towards this objective is conducted by a multitude of Canadian and U.S. federal and provincial/state agencies, in cooperation with academia and regional authorities. This paper highlights selected long-term monitoring programs and discusses a number of documented ecological changes that indicate the present state of the open and nearshore waters of the Great Lakes.

  3. Temporal and spatial changes of water quality and management strategies of Dianchi Lake in southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Zeng, W. H.; Wang, S. R.; Ni, Z. K.

    2014-04-01

    Temporal and spatial changes to the water quality of Dianchi Lake in southwest China were investigated using monthly monitoring data from 2005 to 2012. Dianchi Lake is divided into two parts, Caohai Lake and Waihai Lake, by a man-made dike. Caohai Lake lies at the north of Dianchi Lake, while Waihai Lake is the main water body of Dianchi Lake and accounts for 96.7% of the whole area of the lake. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19-1.46 mg L-1, 6.11-16.79 mg L-1, 0.06-0.14 mg L-1, respectively. In addition, the annual concentrations of TP, TN and Chl a in Waihai Lake ranged between 0.13 and 0.20 mg L-1, 1.82 and 3.01 mg L-1, and 0.04 and 0.09 mg L-1, respectively. Cluster analysis (CA) classified the 10 monitoring sites into two clusters (cluster A and cluster B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005-2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous pollution control strategies were still present in the lake management strategy. To solve these problems, suitable control measures are needed, especially considering the current old-age status of Dianchi Lake. The fundamental improvement of the water quality within Caohai Lake was dependent on the measures taken in the upper reaches of the Caohai Watershed, including further recovery of submerged plants, resource utilization by floating plants and the reinforcement of sediment disposal. Management strategies for endogenous pollution in Waihai Lake were mainly dependent on restocking algae-eating fish and the ecological restoration of macrophytes. In this way, the swamping trend and the ageing process that is occurring in Dianchi Lake can be stunted. And the management strategies would be a contribution to the management of water conflicts between mankind and ecosystems in similar lakes.

  4. Permafrost investigations at the Lake Hövsgöl, northern Mongolia, using DC resistivity tomography and DEM-analyses

    NASA Astrophysics Data System (ADS)

    Etzelmuller, B.; Heggem, E. S. F.; Frauenfelder, R.; Romanovsky, V.; Sharkhuu, N.; Jambaljav, Y.; Tumensetseg, S.; Kääb, A.; Goulden, C.

    2003-04-01

    The region of Lake Hövsgöl, northern Mongolia, lies at the southern edge of Siberia and forms the southern-most fringe of the Siberian continuous permafrost zone. Analysis of long-term temperature data from the area indicates that annual temperatures have warmed by about 1.5^oC over the last 40 years. Being at the southern fringe of permafrost existence, temperature changes are supposed to have a major impact on permafrost degradation and thus on the environment, in interaction with human activities like nomadic pasture use. The objective of this study is to define the distribution of permafrost and the depth of the active zones in detail, and to begin a monitoring program of soil and permafrost temperatures in the study area. During these studies (a) field measurements of ground temperature, (b) analyses of geophysical parameters (mainly ground resistivities), and (c) the generation and analyses of digital elevation models and satellite imagery were carried out. The field measurements provided the basis for the later development of statistical/empirical and physical models of the permafrost distribution in the Hövsgöl area. This presentation will focus on the DC-resistivity tomography mapping of permafrost and digital elevation model analyses. The study showed that DC resistivity tomography was useful to distinguish the active layer and permafrost thickness under different types of surface cover. The project is funded by a five-year grant from the Global Environment Facility to the Mongolian Academy of Sciences (MAS), implemented by the World Bank and a foundation of the Mongolian Long Term Ecological Research Program at Lake Hövsgöl.

  5. POST-DREISSENID INCREASES IN TRANSPARENCY DURING SUMMER STRATIFICATION IN THE OFFSHORE WATERS OF LAKE ONTARIO: IS A REDUCTION IN WHITING EVENTS THE CAUSE?

    EPA Science Inventory

    This recent publication uses data from EPA's long-term Great Lakes monitoring programs and data from Environment Canada to investigate Dreissenid impacts on calcium concentrations and summer water clarity in Lake Ontario. Since the dreissenid invasion of the lower Great Lakes, c...

  6. Impacts of aircraft deicer and anti-icer runoff on receiving waters from Dallas/Fort Worth International Airport, Texas, U.S.A.

    PubMed

    Corsi, Steven R; Harwell, Glenn R; Geis, Steven W; Bergman, Daniel

    2006-11-01

    From October 2002 to April 2004, data were collected from Dallas/Fort Worth (DFW) International Airport (TX, U.S.A.) outfalls and receiving waters (Trigg Lake and Big Bear Creek) to document the magnitude and potential effects of aircraft deicer and anti-icer fluid (ADAF) runoff on water quality. Glycol concentrations at outfalls ranged from less than 18 to 23,800 mg/L, whereas concentrations in Big Bear Creek were less because of dilution, dispersion, and degradation, ranging from less than 18 to 230 mg/L. Annual loading results indicate that 10 and 35% of what was applied to aircraft was discharged to Big Bear Creek in 2003 and 2004, respectively. Glycol that entered Trigg Lake was diluted and degraded before reaching the lake outlet. Dissolved oxygen (DO) concentrations at airport outfalls sometimes were low (<2.0 mg/L) but typical of what was measured in an urban reference stream. In comparison, the DO concentration at Trigg Lake monitoring sites was consistently greater than 5.5 mg/L during the monitoring period, probably because of the installation of aerators in the lake by DFW personnel. The DO concentration in Big Bear Creek was very similar at sites upstream and downstream of airport influence (>5.0 mg/L). Results of toxicity tests indicate that effects on Ceriodaphnia dubia, Pimephales promelas, and Selanastrum capricornutum are influenced by type IV ADAF (anti-icer), not just type I ADAF (deicer) as is more commonly assumed.

  7. Long-term limnological research and monitoring at Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Collier, R.; Buktenica, M.

    2007-01-01

    Crater Lake is located in the caldera of Mount Mazama in Crater Lake National Park, Oregon. The lake has a surface area of about 53 km2at an elevation of 1882 m and a maximum depth of 594 m. Limited studies of this ultraoligotrophic lake conducted between 1896 and 1981, lead to a 10-year limnological study to evaluate any potential degradation of water quality. No long-term variations in water quality were observed that could be attributed to anthropogenic activity. Building on the success of this study, a permanent limnological program has been established with a long-term monitoring program to insure a reliable data base for use in the future. Of equal importance, this program serves as a research platform to develop and communicate to the public a better understanding of the coupled biological, physical, and geochemical processes in the lake and its surrounding environment. This special volume represents our current state of knowledge of the status of this pristine ecosystem including its special optical properties, algal nutrient limitations, pelagic bacteria, and models of the inter-relationships of thermal properties, nutrients, phytoplankton, deep-water mixing, and water budgets. ?? 2007 Springer Science+Business Media B.V.

  8. WORKSHOP ON THE CHARACTERIZATION, MODELING, REMEDIATION AND MONITORING OF MINING-IMPACTED PIT LAKES, SANDS RGENCY CASINO HOTEL, DOWNTOWN RENO, NV. APRIL 4-6, 2000 (PROGRAM FLYER)

    EPA Science Inventory

    The purpose of this workshop is to provide a forum for the exchange of scientific infomation on current approaches for assessing the characterization, monitoring, treatment and/or remediation of impacts on aquatic ecosystems including pit lakes from mining-related contamination i...

  9. THE MEASUREMENT OF PM2.5, INCLUDING SEMI-VOLATILE COMPONENTS, IN THE EMPACT PROGRAM: RESULTS FROM THE SALT LAKE CITY STUDY. (R827993)

    EPA Science Inventory

    The Salt Lake City EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) project, initiated in October 1999, is designed to evaluate the usefulness of a newly developed real-time continuous monitor (RAMS) for total (non-volatile plus semi-volatile) PM<...

  10. A WHOLE-LAKE WATER QUALITY SURVEY OF LAKE OAHE BASED ON A SPATIALLY-BALANCED PROBABILISTIC DESIGN

    EPA Science Inventory

    Assessing conditions on large bodies of water presets multiple statistical and logistical challenges. As part of the Upper Missouri River Program of the Environmental Monitoring and Assessment Project (EMAP) we surveyed water quality of Lake Oahe in July-August, 2002 using a spat...

  11. Michigan lakes: An assessment of water quality

    USGS Publications Warehouse

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  12. Principles in sampling design, lessons, and recommendations from a multi-year, multi-port surveillance program in Lake Superior

    EPA Science Inventory

    We evaluated a pilot aquatic invasive species (AIS) early detection monitoring program in Lake Superior that was designed to detect newly-introduced fishes. We established survey protocols for three major ports (Duluth-Superior, Sault Ste. Marie, Thunder Bay), and designed an ada...

  13. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect physical lake characteristics and watershed conditions.

  14. Policies and practices of beach monitoring in the Great Lakes, USA: a critical review

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2010-01-01

    Beaches throughout the Great Lakes are monitored for fecal indicator bacteria (typically Escherichia coli) in order to protect the public from potential sewage contamination. Currently, there is no universal standard for sample collection and analysis or results interpretation. Monitoring policies are developed by individual beach management jurisdictions, and applications are highly variable across and within lakes, states, and provinces. Extensive research has demonstrated that sampling decisions for time, depth, number of replicates, frequency of sampling, and laboratory analysis all influence the results outcome, as well as calculations of the mean and interpretation of the results in policy decisions. Additional shortcomings to current monitoring approaches include appropriateness and reliability of currently used indicator bacteria and the overall goal of these monitoring programs. Current research is attempting to circumvent these complex issues by developing new tools and methods for beach monitoring. In this review, we highlight the variety of sampling routines used across the Great Lakes and the extensive body of research that challenges comparisons among beaches. We also assess the future of Great Lakes monitoring and the advantages and disadvantages of establishing standards that are evenly applied across all beaches.

  15. Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia

    NASA Astrophysics Data System (ADS)

    Kaba, Essayas; Philpot, William; Steenhuis, Tammo

    2014-02-01

    Government and NGO funded conservation programs are being implemented in developing countries with the potential benefit of reduced sediment inflow into fresh water lakes. However, these claims are difficult to verify due to limited historical sediment concentration data in lakes and rivers. Remote sensing can potentially aid in monitoring sediment concentration. With almost daily availability over the past ten years and consistent atmospheric correction applied to the images, Moderate Resolution Imaging Spectroradiometer (MODIS) 250 meter images are potential resources capable of monitoring future concentrations and reconstructing historical sediment concentration records. In this paper, site-specific relationships are developed between reflectance in near-infrared (NIR) images and three factors: total suspended solids (TSS), turbidity and Secchi depth for Lake Tana near the mouth of the Gumara River. The first two sampling campaigns on November 27, 2010 and May 13, 2011 are used in calibration. Reflectance in the NIR varies linearly with turbidity (R2 = 0.89) and TSS (R2 = 0.95). Secchi depth fit best to an exponential relation with R2 of 0.74. The relationships are validated using a third sample set collected on November 7, 2011 with RMSE of 11 Nephelometric Turbidity Units (NTU) for Turbidity, 16.5 mg l-1 for TSS and 0.12 meters for Secchi depth. The MAE was 10% for TSS, 14% for turbidity and 0.1% for Secchi depth. Using the relationship for TSS, a 10-year time series of sediment concentration in Lake Tana near the Gumara River was plotted. It was found that after the severe drought of 2002 and 2003 the concentration in the lake increased significantly. The results showed that MODIS images are potential cost effective tools to monitor suspended sediment concentration and obtain a past history of concentration for evaluating the effect of best management practices.

  16. Assessing Climate Change Within Lake Champlain

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Pierce, W.; Mihuc, T.; Myers, L.

    2016-12-01

    Lake Champlain is experiencing environmental stresses that have caused statistically significant biological, chemical, and physical trends. Such trends have already impacted management strategies within the Lake Champlain basin, which lies within the states of New York and Vermont and province of Quebec. A long-term monitoring program initiated in 1992 has revealed warming of upwards of 0.7°C per decade within certain regions of the lake; much faster than observed local atmospheric warming. Here we analyze the observed lake warming in the context of atmospheric variability and assess its uncertainty given monitoring frequency (biweekly to monthly), variable seasonal and hourly observation timing, and synoptic variability of lake dynamics. To address these issues, we use observations from a June-October 2016 deployment of a data buoy on Lake Champlain containing a 1-meter spaced thermistor chain and surface weather station. These new observations, and reanalysis of intensive monitoring during a campaign in 1993, indicate that synoptic variability of lake thermal structure lowers confidence in trends derived from infrequent observations. However, principal component analysis of lake thermal structure reveals two primary modes of variability that are predictable from atmospheric conditions, presenting an opportunity to improve interpretation of existing and future observations.

  17. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to satellite imagery for Michigan Inland Lakes, August 2002

    USGS Publications Warehouse

    Fuller, L.M.; Aichele, Stephen S.; Minnerick, R.J.

    2004-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Environmental Quality have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Through this program, approximately 730 of Michigan's 11,000 inland lakes will be monitored once during this 15-year study. Targeted lakes will be sampled during spring turnover and again in late summer to characterize water quality. Because more extensive and more frequent sampling is not economically feasible in the Lake Water Quality Assessment program, the U.S. Geological Survey and Michigan Department of Environmental Quality investigate the use of satellite imagery as a means of estimating water quality in unsampled lakes. Satellite imagery has been successfully used in Minnesota, Wisconsin, and elsewhere to compute the trophic state of inland lakes from predicted secchi-disk measurements. Previous attempts of this kind in Michigan resulted in a poorer fit between observed and predicted data than was found for Minnesota or Wisconsin. This study tested whether estimates could be improved by using atmospherically corrected satellite imagery, whether a more appropriate regression model could be obtained for Michigan, and whether chlorophyll a concentrations could be reliably predicted from satellite imagery in order to compute trophic state of inland lakes. Although the atmospheric-correction did not significantly improve estimates of lake-water quality, a new regression equation was identified that consistently yielded better results than an equation obtained from the literature. A stepwise regression was used to determine an equation that accurately predicts chlorophyll a concentrations in northern Lower Michigan.

  18. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from Redfish Lake in 2007. The hatchery origin component originated from a 2006 fall presmolt direct-release. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 19 to May 23, 2007 and April 18 to May 29, 2007, respectively. The SBT estimated 1,749 natural origin and 4,695 hatchery origin sockeye salmon smolts out-migrated from Pettit Lake and estimated 8,994 natural origin and 6,897 hatchery origin sockeye salmon smolts out-migrated from Alturas Lake in 2007. The hatchery origin component of sockeye salmon out-migrants originated from fall presmolt direct-releases made to Pettit and Alturas lakes in 2006. In 2007, the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC) chose to have all Snake River sockeye salmon juveniles (tagged and untagged) transported due to potential enhanced survival. Therefore, mainstem survival evaluations were only conducted to Lower Granite Dam. Unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to Lower Granite Dam were utilized to estimate survival rates for out-migrating sockeye salmon smolts. Survival rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Alturas Lake hatchery origin smolts tagged at the out-migrant trap recorded the highest survival rate of 78.0%. In 2007, 494 hatchery origin adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 195 areas of excavation in the lake from spawning events. This was the highest number of redds observed in Redfish Lake since the program was initiated. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. To monitor the predator population found within the lakes, we monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake; and in Alpine Creek, a tributary to Alturas Lake. This represented the tenth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (41 adults) and redd counts (22 redds) in Fishhook Creek increased compared to counts conducted since monitoring began in 1998. Beginning in 2007, we also surveyed an additional trend site in Fishhook Creek resulting in observing 43 adult bull trout and 30 additional redds. Bull trout numbers (13 adults) and the number of redds observed (18 redds) have gradually increased in Alpine Creek compared to counts from initial monitoring.« less

  19. A REGIONAL ANALYSIS OF LAKE ACIDIFICATION TRENDS FOR THE NORTHEASTEN U.S., 1982-1994

    EPA Science Inventory

    Acidic deposition is a regional phenomenon, but its effects have traditionally been studied using site-specific, intensive monitoring. We present trends information for 36 lakes of high-to-moderate acid sensitivity (defined as acid neutralizing capacity [ANC] < 100 eq L-1),and 1...

  20. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project ismore » two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  1. Preliminary Assessment of Cyanobacteria Diversity and Toxic Potential in Ten Freshwater Lakes in Selangor, Malaysia.

    PubMed

    Sinang, Som Cit; Poh, Keong Bun; Shamsudin, Syakirah; Sinden, Ann

    2015-10-01

    Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.

  2. G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management.

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Ricko, M.; Beckley, B. D.; Yang, X.; Tetrault, R. L.

    2017-12-01

    G-REALM is a NASA/USDA funded operational program offering water-level products for lakes and reservoirs and these are currently derived from the NASA/CNES Topex/Jason series of satellite radar altimeters. The main stakeholder is the USDA/Foreign Agricultural Service (FAS) though many other end-users utilize the products for a variety of interdisciplinary science and operational programs. The FAS utilize the products within their CropExplorer Decision Support System (DSS) to help assess irrigation potential, and to monitor both short-term (agricultural) and longer-term (hydrological) drought conditions. There is increasing demand for a more global monitoring service that in particular, captures the variations in the smallest (1 to 100km2) reservoirs and water holdings in arid and semi-arid regions. Here, water resources are critical to both agriculture and regional security. A recent G-REALM 10-day resolution product upgrade and expansion has allowed for more accurate lake level products to be released and for a greater number of water bodies to be monitored. The next program phase focuses on the exploration of the enhanced radar altimeter data sets from the Cryosat-2 and Sentinel-3 missions with their improved spatial resolution, and the expansion of the system to the monitoring of 1,000 water bodies across the globe. In addition, a new element, the monitoring of surface water levels in wetland zones, is also being introduced. This aims to satisfy research and stakeholder requirements with respect to programs examining the links between inland fisheries catch potential and declining water levels, and to those monitoring the delicate balance between water resources, agriculture, and fisheries management in arid basins.

  3. Great Lakes Nearshore Assessment: What Would Goldilocks Do?

    EPA Science Inventory

    Concerns with the nearshore water quality of the Great Lakes, such as excessive eutrophication and harmful algal blooms, called for establishing a nearshore monitoring program to gain a better understanding of the watershed-nearshore link. This is challenging, as sporadic runoff ...

  4. ENVIRONMENTAL INFLUENCES ON BENTHIC COMMUNITY STRUCTURE IN A GREAT LAKES EMBAYMENT

    EPA Science Inventory

    An Intensified Environmental Monitoring and Assessment Program (EMAP) sampling grid in the St. Louis River estuary of western Lake Superior was used toassess the relationship between surficial sediment characteristics and benthic community structure. Ninety sites within two habit...

  5. Estimated flood flows in the Lake Tahoe basin, California and Nevada

    USGS Publications Warehouse

    Crompton, E. James; Hess, Glen W.; Williams, Rhea P.

    2002-01-01

    Lake Tahoe, the largest alpine lake in North America, covers about 192 square miles (mi2) of the 506-mi2 Lake Tahoe Basin, which straddles the border between California and Nevada (Fig. 1). In cooperation with the Nevada Department of Transportation (NDOT), the U.S. Geological Survey (USGS) estimates the flood frequencies of the streams that enter the lake. Information about potential flooding of these streams is used by NDOT in the design and construction of roads and highways in the Nevada portion of the basin. The stream-monitoring network in the Lake Tahoe Basin is part of the Lake Tahoe Interagency Monitoring Program (LTIMP), which combines the monitoring and research efforts of various Federal, State, and regional agencies, including both USGS and NDOT. The altitude in the basin varies from 6,223 feet (ft) at the lake's natural rim to over 10,000 ft along the basin's crest. Precipitation ranges from 40 inches per year (in/yr) on the eastern side to 90 in/yr on the western side (Crippen and Pavelka, 1970). Most of the precipitation comes during the winter months as snow. Precipitation that falls from June through September accounts for less than 20 percent of the annual total.

  6. PAH distributions in sediments in the oil sands monitoring area and western Lake Athabasca: Concentration, composition and diagnostic ratios.

    PubMed

    Evans, Marlene; Davies, Martin; Janzen, Kim; Muir, Derek; Hazewinkel, Rod; Kirk, Jane; de Boer, Dirk

    2016-06-01

    Oil sands activities north of Fort McMurray, Alberta, have intensified in recent years with a concomitant debate as to their environmental impacts. The Regional Aquatics Monitoring Program and its successor, the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring (JOSM), are the primary aquatic programs monitoring this industry. Here we examine sediment data (collected by Ekman grabs) to investigate trends and sources of polycyclic aromatic hydrocarbons (PAHs), supplementing these data with sediment core studies. Total PAH (ΣPAH) concentrations were highest at Shipyard Lake (6038 ± 2679 ng/g) in the development center and lower at Isadore's Lake (1660 ± 777 ng/g) to the north; both lakes are in the Athabasca River Valley and lie below the developments. ΣPAH concentrations were lower (622-930 ng/g) in upland lakes (Kearl, McClelland) located further away from the developments. ΣPAH concentrations increased at Shipyard Lake (2001-2014) and the Ells River mouth (1998-2014) but decreased in nearshore areas at Kearl Lake (2001-2014) and a Muskeg River (2000-2014) site. Over the longer term, ΣPAH concentrations increased in Kearl (1934-2012) and Sharkbite (1928-2010) Lakes. Further (200 km) downstream in the Athabasca River delta, ΣPAH concentrations (1029 ± 671 ng/g) increased (1999-2014) when %sands were included in the regression model; however, 50 km to the east, concentrations declined (1926-2009) in Lake Athabasca. Ten diagnostic ratios based on anthracene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, indeno[123-cd]pyrene, dibenz[a,h]anthracene, dibenzothiophene and retene were examined to infer spatial and temporal trends in PAH sources (e.g., combustion versus petrogenic) and weathering. There was some evidence of increasing contributions of unprocessed oil sands and bitumen dust to Shipyard, Sharkbite, and Isadore's Lakes and increased combustion sources in the Athabasca River delta. Some CCME interim sediment quality guidelines were exceeded, primarily in Shipyard Lake and near presumed natural bitumen sources. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. THE MEASUREMENT OF PM2.5, INCLUDING SEMI-VOLATILE COMPONENTS, IN THE EMPACT PROGRAM: RESULTS FROM THE SALT LAKE CITY STUDY AND IMPLICATIONS FOR PUBLIC AWARENESS, HEALTH EFFECTS, AND CONTROL STRATEGIES (R827993)

    EPA Science Inventory

    The Salt Lake City EPA Environmental

    Monitoring for Public Access and Community Tracking (EMPACT) project,

    initiated in October 1999, is designed to evaluate the usefulness of a

    newly developed real-time continuous monitor (RAMS) for total

    (non-volatil...

  8. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China.

    PubMed

    Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  9. On-line monitoring of Escherichia coli in raw water at Oset drinking water treatment plant, Oslo (Norway).

    PubMed

    Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie

    2015-02-04

    The fully automated Colifast ALARM™ has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.

  10. Water-quality characteristics of Michigan's inland lakes, 2001-10

    USGS Publications Warehouse

    Fuller, L.M.; Taricska, C.K.

    2012-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium, sulfate, and chloride concentrations fairly well, with a pattern of lower values in northern ecoregions trending toward higher values in southern ecoregions; lower and higher concentrations of magnesium, hardness, calcium, and alkalinity were well separated, but middle-range concentrations in central Michigan ecoregions were mixed. The highest concentrations of chloride and sodium were in the southeastern area of the Lower Peninsula. Lakes with multiple basins showed few statistically significant differences in constituent concentrations at the 95-percent confidence level among combinations of depths between basins. The most statistically significant differences were found for water temperature, with significant differences in somewhat less than half the combinations in the spring and just a few combinations in the summer. The lack of significant differences between major basins of multibasin lakes indicates that monitoring of trophic characteristics in all major basins might not be necessary for the majority of constituents in future sampling programs. Trophic characteristics based on the 2001–10 dataset were compared to trophic characteristics resulting from other Michigan sampling programs, including the volunteer Cooperative Lakes Monitoring Program coordinated by the MDEQ (measurements on 250 lakes in 2011), trophic-state predictions produced by relating existing measurements to remotely sensed data (measurements for about 3,000 lakes), and the National Lakes Assessment (NLA) statistically valid, probability-designed lakes program (measurements for 50 lakes in Michigan and about 1,100 lakes nationally). A higher percentage of oligotrophic lakes resulted when using SDT from the volunteer data and the 2001–10 dataset than when using the predicted measurements from remotely sensed data or the NLA. Comparing trophic characteristics from differently designed programs provides multiple interpretations of lake water-quality status in Michigan lakes. No directional statistically significant difference was found at the 95-percent confidence level among historical nutrients and trophic characteristics when comparing 445 lakes with historical data for 1974–84 with the 2001–10 dataset, though SDT did show statistically significant differences at the 95-percent confidence level. Depending on the primary indicator, 50–66 percent of lakes did not change trophic-status class, 13–23 percent moved towards the oligotrophic end of the TSI scale, and 20–25 percent moved a class towards the eutrophic end of the TSI scale. Increasing percentages of urban-dominant land cover in the drainage areas of lakes had a more positive correlation with chloride concentration than did increased percentages of other land-cover classes; there was also a slight correlation of urban-dominant land cover and calcium concentration. Removing data for lakes in southeastern Lower Michigan, known from previous reports to be higher in chloride, still resulted in a positive relation even though the coefficient of determination (R2 value) decreased from 0.55 to 0.39. Dominant land-cover drainage areas were not strongly related to nutrients with respect to a linear relation, nor were lake drainage-area sizes.

  11. Using normal ranges for interpreting results of monitoring and tiering to guide future work: A case study of increasing polycyclic aromatic compounds in lake sediments from the Cold Lake oil sands (Alberta, Canada) described in Korosi et al. (2016).

    PubMed

    Munkittrick, Kelly R; Arciszewski, Tim J

    2017-12-01

    Since the publishing of the Kelly et al. papers (2009, 2010) describing elevated contaminants in snow near the Alberta oil sands, there has been a significant expansion of monitoring efforts, enhanced by $50M a year contributed by industry to a regional Joint Oil Sands Monitoring (JOSM) program. In parallel to the intensification of research and monitoring efforts, including expansion of measured indicators, techniques for chemical analysis have also become more sensitive. Both factors contribute to the increased sensitivity and power, and improve our capacity to detect any change. The increase in capability requires a counterbalance to account for trivial change. This can be done using an interpretative approach that requires contextualization of differences to meaningfully inform environmental monitoring programs and provide focus for action. Experience obtained through 25 years of involvement with Canada's Environmental Effects Monitoring (EEM) program has shown that a tiered program informed by triggers can provide the context to make decisions about monitoring priorities. Here we provide a potential interpretation framework using a case study around the Korosi et al. (2016) study which found recent increases in alkylated polycyclic aromatic compounds (aPACs) in the Cold Lake in situ oil sands area. Public contaminant profiles from the JOSM studies in the oil sands region are used to evaluate the changes using an interpretation framework based on estimated normal ranges using existing data for site-specific, local and regional (distant) levels that was modelled after the tiered Canadian EEM design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Streamflow and water-quality data for selected watersheds in the Lake Tahoe basin, California and Nevada, through September 1998

    USGS Publications Warehouse

    Rowe, T.G.; Saleh, D.K.; Watkins, S.A.; Kratzer, C.R.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency, and the University of California, Davis-Tahoe Research Group, has monitored tributaries in the Lake Tahoe Basin since 1988. This monitoring has characterized streamflow and has determined concentrations of nutrients and suspended sediment, which may have contributed to loss of clarity in Lake Tahoe. The Lake Tahoe Interagency Monitoring Program was developed to collect water-quality data in the basin. In 1998, the tributary-monitoring program included 41 water-quality stations in 14 of the 63 watersheds totaling half the area tributary to Lake Tahoe. The monitored watershed areas range from 1.08 square miles for First Creek to 56.5 square miles for the Upper Truckee River.Annual and unit runoff for 20 primary and secondary streamflow gaging stations in 10 selected watersheds are described. Water years 1988-98 were used to compare runoff data. The Upper Truckee River at South Lake Tahoe, Calif., had the highest annual runoff and Logan House Creek near Glenbrook, Nev., had the lowest. Blackwood Creek near Tahoe City, Calif., had the highest unit runoff and Logan House Creek had the lowest. The highest instantaneous peak flow was recorded at Upper Truckee River at South Lake Tahoe during the January 2, 1997, flood event.Certain water-quality measurements were made in the field. Ranges and median values of those measurements are described for 41 stations. Water temperature ranged from 0 to 23?C. Specific conductance ranged from 13 to 900 microsiemens per centimeter at 25?C. pH ranged from 6.7 to 10.6. Dissolved-oxygen concentrations ranged from 5.2 to 12.6 mg/L and from 70 to 157 percent of saturation.Loads, yields, and trends of nutrients and suspended sediment during water years 1988-98 at the streamflow gaging stations also are described. The Upper Truckee River at South Lake Tahoe had the largest median monthly load for five of the six measured nutrients and of suspended sediment, while Trout Creek at South Lake Tahoe had the largest median monthly load for the remaining nutrient. Logan House Creek near Glenbrook had the smallest median monthly loads for all nutrients and suspended sediment. Seasonal load summaries at selected stations showed nutrient and suspended-sediment loads were greatest in the spring months of April, May and June and least in the summer months of July, August, and September. Monthly load comparisons also were described for five watersheds with multiple stations.Incline Creek had the highest combined rank for all nutrients and sediment. Incline Creek had the largest monthly yields for dissolved nitrite plus nitrate nitrogen and soluble reactive phosphorus. Third Creek had the second highest combined rank and had the largest monthly yields for total nitrogen, total phosphorus, biologically reactive iron, and suspended sediment. Edgewood Creek had the largest monthly yield for dissolved ammonia nitrogen. Logan House Creek had the lowest combined rank and the smallest monthly yields for all nutrients and sediment.Trends in concentrations are either decreasing or not significant for all nutrients in all sampled watersheds, with the exception of biologically reactive iron. Biologically reactive iron and suspended sediment show an increasing trend in three watersheds and decreasing or no significant trend in the other seven watersheds.

  13. Adventures in Citizen Science: Lessons learned engaging volunteer water quality monitors for over 30 years.

    NASA Astrophysics Data System (ADS)

    Schloss, J. A.

    2012-12-01

    The New Hampshire Lakes Lay Monitoring Program was originally designed by faculty at the University of New Hampshire in 1979 to provide the capacity to better monitor for long-term lake water quality changes and trends. As participants became educated, empowered and engaged the program soon evolved to also become a participatory research enterprise. This resulted in not only providing useful information for informed local stewardship and protection at the local level but also for state and region-wide decision-making, state and federal assessments/reporting and advancing our understanding of lake and watershed science. Our successes and failures have been more dependent on understanding the particular human dimensions that influence our volunteers and less to do with the typical project management, quality assurance, and communication concerns we typically deal with in professional based research efforts. Our participants are extremely diverse in terms of their life experiences, interests and motivations so the key to long-term commitment and high quality participation is understanding the difference between a citizen monitor and your archetypical research technician or student. This presentation will highlight some important lessons learned on how to involve various types of volunteers from school groups to retirees, as well as particular approaches and concerns regarding program management, retention, quality control and communications.

  14. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock(®)).

    PubMed

    Spears, Bryan M; Mackay, Eleanor B; Yasseri, Said; Gunn, Iain D M; Waters, Kate E; Andrews, Christopher; Cole, Stephanie; De Ville, Mitzi; Kelly, Andrea; Meis, Sebastian; Moore, Alanna L; Nürnberg, Gertrud K; van Oosterhout, Frank; Pitt, Jo-Anne; Madgwick, Genevieve; Woods, Helen J; Lürling, Miquel

    2016-06-15

    Lanthanum (La) modified bentonite is being increasingly used as a geo-engineering tool for the control of phosphorus (P) release from lake bed sediments to overlying waters. However, little is known about its effectiveness in controlling P across a wide range of lake conditions or of its potential to promote rapid ecological recovery. We combined data from 18 treated lakes to examine the lake population responses in the 24 months following La-bentonite application (range of La-bentonite loads: 1.4-6.7 tonnes ha(-1)) in concentrations of surface water total phosphorus (TP; data available from 15 lakes), soluble reactive phosphorus (SRP; 14 lakes), and chlorophyll a (15 lakes), and in Secchi disk depths (15 lakes), aquatic macrophyte species numbers (6 lakes) and aquatic macrophyte maximum colonisation depths (4 lakes) across the treated lakes. Data availability varied across the lakes and variables, and in general monitoring was more frequent closer to the application dates. Median annual TP concentrations decreased significantly across the lakes, following the La-bentonite applications (from 0.08 mg L(-1) in the 24 months pre-application to 0.03 mg L(-1) in the 24 months post-application), particularly in autumn (0.08 mg L(-1) to 0.03 mg L(-1)) and winter (0.08 mg L(-1) to 0.02 mg L(-1)). Significant decreases in SRP concentrations over annual (0.019 mg L(-1) to 0.005 mg L(-1)), summer (0.018 mg L(-1) to 0.004 mg L(-1)), autumn (0.019 mg L(-1) to 0.005 mg L(-1)) and winter (0.033 mg L(-1) to 0.005 mg L(-1)) periods were also reported. P concentrations following La-bentonite application varied across the lakes and were correlated positively with dissolved organic carbon concentrations. Relatively weak, but significant responses were reported for summer chlorophyll a concentrations and Secchi disk depths following La-bentonite applications, the 75th percentile values decreasing from 119 μg L(-1) to 74 μg L(-1) and increasing from 398 cm to 506 cm, respectively. Aquatic macrophyte species numbers and maximum colonisation depths increased following La-bentonite application from a median of 5.5 species to 7.0 species and a median of 1.8 m to 2.5 m, respectively. The aquatic macrophyte responses varied significantly between lakes. La-bentonite application resulted in a general improvement in water quality leading to an improvement in the aquatic macrophyte community within 24 months. However, because, the responses were highly site-specific, we stress the need for comprehensive pre- and post-application assessments of processes driving ecological structure and function in candidate lakes to inform future use of this and similar products. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Effect of a Recently Completed Habitat Rehabilitation and Enhancement Project on Fish Abundance in La Grange Pool of the Illinois River Using Long Term Resource Monitoring Program Data

    DTIC Science & Technology

    2008-03-01

    access from the Illinois River to Lake Chautauqua is provided by flood events that top the levee and water -control structure. Therefore, the south...cell of Lake Chautauqua may be considered a semi-natural backwater lake that mimics the hydrologic regime of the Illinois River during some years and...minimum water -level management, but the lake generally was connected to the Illinois River (Irons et. al. 1997). Lake Chautauqua is between RMs 124 and

  16. S190 interpretation techniques development and application to New York State water resources. [Lake Ontario and Conesus Lake

    NASA Technical Reports Server (NTRS)

    Piech, K. R. (Principal Investigator); Schott, J. R.; Stewart, K. M.

    1975-01-01

    The author has identified the following significant results. The program has demonstrated that Skylab imagery can be utilized to regularly monitor eutrophication indices of lakes, such as chlorophyll concentration and photic zone depth. The relationship between the blue to green reflectance ratio and chlorophyll concentration was shown, along with changes in lake properties caused by chlorophyll, lignin, and humic acid using reflectance ratios and changes. A data processing technique was developed for detecting atmospheric fluctuations occurring over a large lake.

  17. Bathymetric map and area/capacity table for Castle Lake, Washington

    USGS Publications Warehouse

    Mosbrucker, Adam R.; Spicer, Kurt R.

    2017-11-14

    The May 18, 1980, eruption of Mount St. Helens produced a 2.5-cubic-kilometer debris avalanche that dammed South Fork Castle Creek, causing Castle Lake to form behind a 20-meter-tall blockage. Risk of a catastrophic breach of the newly impounded lake led to outlet channel stabilization work, aggressive monitoring programs, mapping efforts, and blockage stability studies. Despite relatively large uncertainty, early mapping efforts adequately supported several lake breakout models, but have limited applicability to current lake monitoring and hazard assessment. Here, we present the results of a bathymetric survey conducted in August 2012 with the purpose of (1) verifying previous volume estimates, (2) computing an area/capacity table, and (3) producing a bathymetric map. Our survey found seasonal lake volume ranges between 21.0 and 22.6 million cubic meters with a fundamental vertical accuracy representing 0.88 million cubic meters. Lake surface area ranges between 1.13 and 1.16 square kilometers. Relationships developed by our results allow the computation of lake volume from near real-time lake elevation measurements or from remotely sensed imagery.

  18. INDICATORS OF ECOLOGICAL STRESS AND THEIR EXTENT IN THE POPULATION OF NORTHEASTERN LAKES

    EPA Science Inventory

    The Environmental Monitoring and Assessment Program (EMAP) surveyed 345 northeastern lakes, during 1991-1996, in the first regional-scale survey to use a probability-based sampling design to collect biological assemblage data along with a broad range of physical and chemical indi...

  19. Sampling design for aquatic invasive species early detection in Great Lakes ports

    EPA Science Inventory

    From 2006-2012, we evaluated a pilot aquatic invasive species (AIS) early detection monitoring program in Lake Superior that was designed to detect newly introduced fishes. We established survey protocols for three major ports (Duluth-Superior, Sault Ste. Marie, Thunder Bay) and ...

  20. Concentrations of elements in fish fillets, fish muscle plugs, and crayfish from the 2011 Missouri Department of Conservation general contaminant monitoring program

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.

    2013-01-01

    This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillet samples of yellow bullhead (Ameiurus natalis), golden redhorse (Moxostoma erythrurum), longear sunfish (Lepomis megalotis), and channel catfish (Ictalurus punctatus) were collected from six sites as part of the Missouri Department of Conservation’s Fish Contaminant Monitoring Program. Fish dorsal muscle plugs were collected from largemouth bass (Micropterus salmoides) at eight of the sites, and crayfish from two sites. Following preparation and analysis of the samples, highlights of the data were as follows: cadmium and lead residues were most elevated in crayfish tissue samples from the Big River at Cherokee Landing, with 1 to 8 micrograms per gram dry weight and 22 to 45 micrograms per gram dry weight, respectively. Some dorsal muscle plugs from largemouth bass collected from Clearwater Lake, Lake St. Louis, Noblett Lake, Hazel Creek Lake, and Harrison County Lake contained mercury residues (1.7 to 4.7 micrograms per gram dry weight) that exceeded the U.S. Environmental Protection Agency Water Quality Criterion of 1.5 micrograms per gram dry weight of fish tissue (equivalent to 0.30 micrograms per gram wet weight).

  1. Temporal and spatial changes in nutrients and chlorophyll-a in a shallow lake, Lake Chaohu, China: an 11-year investigation.

    PubMed

    Yang, Libiao; Lei, Kun; Meng, Wei; Fu, Guo; Yan, Weijin

    2013-06-01

    Temporal and spatial changes of total nitrogen (TN), total phosphorus (TP) and chlorophyll-a (Chl-a) in a shallow lake, Lake Chaohu, China, were investigated using monthly monitoring data from 2001 through 2011. The results showed that the annual mean concentration ranges of TN, TP, and Chl-a were 0.08-14.60 mg/L, 0.02-1.08 mg/L, and 0.10-465.90 microg/L, respectively. Our data showed that Lake Chaohu was highly eutrophic and that water quality showed no substantial improvement during 2001 through 2011. The mean concentrations of TP, TN and Chl-a in the western lake were significantly higher than in the eastern lake, which indicates a spatial distribution of the three water parameters. The annual mean ratio of TN:TP by weight ranged from 10 to 20, indicating that phosphorus was the limiting nutrient in this lake. A similar seasonality variation for TP and Chl-a was observed. Riverine TP and NH4+ loading from eight major tributaries were in the range of 1.56 x 10(4)-5.47 x 10(4) and 0.19 x 10(4)-0.51 x 10(4) tons/yr over 2002-2011, respectively, and exceeded the water environmental capability of the two nutrients in the lake by a factor of 3-6. Thus reduction of nutrient loading in the sub-watershed and tributaries would be essential for the restoration of Lake Chaohu.

  2. SEASONAL AND LONG-TERM TEMPORAL PATTERNS IN THE CHEMISTRY OF ADIRONDACK LAKES

    EPA Science Inventory

    There is considerable interest in the recovery of surface waters from acidification by acidic deposition. he Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. he objectives of this paper are to: 1) ...

  3. Workshop established the Northeastern Soil Monitoring Cooperative

    Treesearch

    Gregory B. Lawrence; Scott W. Bailey

    2007-01-01

    Environmental monitoring is an essential tool for identifying changes in the biosphere. The need for environmental data has led to national programs to monitor atmospheric deposition, the composition and growth of forests, and the chemistry of lakes and streams in regions affected by acidic deposition. However, there has been no organized effort to monitor changes in...

  4. What do we know about Indonesian tropical lakes? Insights from high frequency measurement

    NASA Astrophysics Data System (ADS)

    Budi Santoso, Arianto; Triwisesa, Endra; Fakhrudin, Muh.; Harsono, Eko; Agita Rustini, Hadiid

    2018-02-01

    When measuring ecological variables in lakes, sampling frequency is critical in capturing an environmental pattern. Discrete sampling of traditional monitoring programs is likely to result in vital knowledge gaps in understanding any processes particularly those with fine temporal scale characteristics. The development of high frequency measurements offer a sophisticated range of information in recording any events in lakes at a finer time scale. We present physical indices of a tropical deep Lake Maninjau arrayed from OnLine Monitoring System (OLM). It is revealed that Lake Maninjau mostly has a diurnal thermal stratification pattern. The calculated lake stability (Schmidt stability), however, follows a seasonal pattern; low in December-January and around August, and high in May and September. Using a 3D numerical model simulation (ELCOM), we infer how wind and solar radiation intensity control lake’s temperature profiles. In this review, we highlight the needs of high frequency measurement establishment in Indonesian tropical lakes to better understand the unique processes and to support the authorities’ decision making in maximizing the provision of ecosystem services supplied by lakes and reservoirs.

  5. Invasive species research to meet the needs of resource management and planning.

    PubMed

    Papeş, M; Sällström, M; Asplund, T R; Vander Zanden, M J

    2011-10-01

    As zebra mussels (Dreissena polymorpha) continue to spread among inland lakes of the United States and Canada, there is growing interest from professionals, citizens, and other stakeholders to know which lakes are likely to be colonized by zebra mussels. Thus, we developed a classification of lake suitability for zebra mussels on the basis of measured or estimated concentrations of dissolved calcium in lake water and applied the classification to >11,500 lakes in Wisconsin and the Upper Peninsula of Michigan. The majority of lakes (58%) were classified as unsuitable (<10 mg/L Ca) for survival and reproduction of zebra mussels, 27% were identified as suitable (≥21 mg/L Ca), and 15% were classified as borderline suitable (≥10 and <21 mg/L Ca). Of the 77 inland lakes with confirmed zebra mussel records for which data on dissolved calcium were available, our method classified 74 as suitable and 3 as borderline suitable. To communicate this lake-specific suitability information and to help prioritize regional efforts to monitor and prevent the expansion of zebra mussels and other invasive species, we developed a web-based interface (available from http://www.aissmartprevention.wisc.edu/). Although we are still uncertain of how access to suitability information ultimately affects decision making, we believe this is a useful case study of building communication channels among researchers, practitioners, and the public. ©2011 Society for Conservation Biology.

  6. On-Line Monitoring of Escherichia coli in Raw Water at Oset Drinking Water Treatment Plant, Oslo (Norway)

    PubMed Central

    Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie

    2015-01-01

    The fully automated Colifast ALARMTM has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources. PMID:25658685

  7. Quality and sources of shallow ground water in areas of recent residential development in Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    Residential and commercial development of about 80 square miles that primarily replaced undeveloped and agricultural areas occurred in Salt Lake Valley, Utah, from 1963 to 1994. This study evaluates the occurrence and distribution of natural and anthropogenic compounds in shallow ground water underlying recently developed (post 1963) residential and commercial areas. Monitoring wells from 23 to 153 feet deep were installed at 30 sites. Water-quality data for the monitoring wells consist of analyses of field parameters, major ions, trace elements, nutrients, dissolved organic carbon, pesticides, and volatile organic compounds.Dissolved-solids concentration ranged from 134 to 2,910 milligrams per liter (mg/L) in water from the 30 monitoring wells. Dissolved arsenic concentration in water from 12 wells exceeded the drinking-water maximum contaminant level of 10 micrograms per liter. Water from monitoring wells in the northwestern part of the valley generally contained higher arsenic concentrations than did water from other areas. Nitrate concentration in water sampled from 26 of the 30 monitoring wells (86.7 percent) was higher than a background level of 2 mg/L, indicating a possible human influence. Nitrate concentrations ranged from less than 0.05 to 13.3 mg/L.Fifteen of the 104 pesticides and pesticide degradation products analyzed for were detected in 1 or more water samples from the monitoring wells. No pesticides were detected at concentrations that exceeded U.S. Environmental Protection Agency drinking-water standards or guidelines for 2002. The high detection frequency of atrazine, a restricted-use pesticide, in residential areas on the west side of Salt Lake Valley may be the result of application in agricultural or industrial areas that have been converted to residential uses or application in areas upgradient from the residential areas that was then transported by ground water.Fifteen of the 86 volatile organic compounds analyzed for were detected in 1 or more water samples from the monitoring wells. The most frequently detected volatile organic compounds were chloroform (90 percent), bromodichloromethane (56.7 percent), tetrachloroethylene (53.3 percent), and 1,1,1-trichloroethane (50 percent). The widespread occurrence of chloroform and bromodichloromethane in shallow ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley. Tetrachloroethylene (PCE), primarily used as a dry cleaning agent and solvent, was detected in water from 16 wells.

  8. Kokanee Stocking and Monitoring, Flathead Lake, 1993-1994 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deleray, Mark; Fredenberg, Wade; Hansen, Barry

    1995-07-01

    One mitigation goal of the Hungry Horse Dam fisheries mitigation program, funded by the Bonneville Power Administration, is to replace lost production of 100,000 adult kokanee in Flathead Lake. The mitigation program calls for a five-year test to determine if kokanee can be reestablished in Flathead Lake. The test consists. of annual stocking of one million hatchery-raised yearling kokanee. There are three benchmarks for judging the success of the kokanee reintroduction effort: (1) Post-stocking survival of 30 percent of planted kokanee one year after stocking; (2) Yearling to adult survival of 10 percent (100,000 adult salmon); (3) Annual kokanee harvestmore » of 50,000 or more fish per year by 1998, with an average length of 11 inches or longer for harvested fish, and fishing pressure of 100,000 angler hours or more. Kokanee were the primary sport fish species in the Flathead Lake fishery in the early 1900s, and up until the late 1980s when the population rapidly declined in numbers and then disappeared. Factors identified which influenced the decline of kokanee are the introduction of opossum shrimp (Mysis relicta), hydroelectric operations, overharvest through angling, and competition and/or predation by lake trout (Salvelinus namaycush) and lake whitefish (Coregonur clupeaformis). The purpose of this report was to summarize the stocking program and present monitoring results from the 1993 and 1994 field seasons. In June 1993, roughly 210,000 yearling kokanee were stocked into two bays on the east shore of Flathead Lake. Following stocking, we observed a high incidence of stocked kokanee in stomach samples from lake trout captured in areas adjacent to the stocking sites and a high percentage of captured lake trout containing kokanee. Subsequent monitoring concluded that excessive lake trout predation precluded significant survival of kokanee stocked in 1993. In June 1994, over 802,000 kokanee were stocked into Big Arm Bay. The combination of near optimum water temperatures, an upsurge in the abundance of Duphniu rhorum, and saturation planting in an area believed to have lower lake trout densities was expected to maximize short-term survival of stocked kokanee. A net-pen experiment demonstrated that yearling hatchery kokanee, in the absence of predation, adjusted to conditions in Flathead Lake and utilized available zooplankton during June and July without substantial poststocking mortality. Kokanee captured after several months in the lake exhibited good growth and condition. We concluded that the food supply in Big Arm Bay was not limiting survival of stocked kokanee. The 1994 monitoring objective was to quantify lake trout predation of kokanee in Big Arm Bay in the first eight weeks following stocking. There were three components needed to quantify predation; estimated number of lake trout in Big Arm Bay, average number of kokanee consumed by lake trout, and estimated time required for lake trout to digest kokanee. As in the previous year, the monitoring results from the 1994 kokanee plant demonstrated that lake trout predation is the primary factor reducing survival of stocked kokanee. We estimated that lake trout consumed a minimum of 232,000 kokanee in Big Arm Bay during the first eight weeks following stocking. This represents 29 percent of kokanee planted. The consumption estimate was based on a hydroacoustic estimate for lake trout abundance (7,850 fish over 300 mm in total length), an incidence of kokanee per lake trout stomach sample which ranged from 2.99 to 0.22 fish, and a gastric evacuation rate of 47 hours for lake trout to digest consumed kokanee. Due to hydroacoustic limitations in identifying bottom-oriented lake trout, we underestimated the true abundance of lake trout, which led to an underestimate of kokanee mortality. By fall of 1994, we estimated that an additional 12.7 percent of surviving kokanee matured, based on observations of similar-sized fish in the hatchery. Thus, up to 72,000 additional fish were removed from the population due to early maturation. Adding the loss due to predation in the first eight weeks (232,000) to the loss due to early maturation (72,000), we accounted for mortality of at least 304,000 (38 percent) of the original 802,000 fish planted. These estimates did not account for additional losses, including predation outside Big Arm Bay, predation in the months following July, and predation from species other than lake trout, such as bull trout and northern squawfish. We documented lake trout predation of kokanee from June through October, and predation by fish species other than lake trout. One of the program goals is to achieve post-stocking survival of 30 percent one year after planting. Based on observations of the 1994 program, it is unlikely we will achieve this level of survival from the 1994 plant.« less

  9. The NASA/USDA Reservoir and Lake Monitor: Present and Future Capabilities and Water Resources Applications

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.; Brakenridge, G. R.; Ricko, M.

    2013-12-01

    The USDA/NASA Global Reservoir and Lake Monitor (GRLM) provides satellite-based surface water level products for large reservoirs and lakes around the world. It utilizes a suite of NASA/CNES and ESA radar altimetry data sets and outputs near real time and archival products via a web interface. Several stakeholders utilize the products for applications that focus on water resources management and natural hazards mitigation, particularly in arid and semi-arid regions. The satellite data sets prove particularly useful in un-gauged or poorly gauged basins where in situ data is sparse. Here, we present water-level product examples based on data from the NASA/CNES Jason-2/OSTM mission, and the new ISRO/CNES SARAL mission. We also demonstrate product application from the viewpoint of various end users who have interests ranging from crop production and fisheries, to regional security and climate change. In the current phase of the program the team is also looking to the potential of additional lake/reservoir products such as areal extent (NASA/MODIS), lake volume variations (combined altimetry/imagery), and model-derived water levels, that will enhance the GRLM via improved observation and prediction, and provide a more global lake basin monitoring capability. Surface water level variations for Lake Nasser.

  10. Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, Holly; Lee, Chuck; Scofield, Ben

    1999-08-01

    The Grand Coulee Dam was constructed in 1939 without a fish ladder, which eliminated steelhead (Onchorhynchus mykiss), chinook salmon (O. twshwastica), coho salmon (O. kisutch) and sockeye salmon (O. nerka) from returning to approximately 1,835 km (1,140 miles) of natal streams and tributaries found in the upper Columbia River Drainage in the United States and Canada. The Pacific Northwest Electric Power Planning and Conservation Act of 1980 gave the Bonneville Power Administration (BPA), the authority and responsibility to use its legal and financial resources, 'to protect, mitigate, and enhance fish and wildlife to the extent affected by the development andmore » operation of any hydroelectric project of the Columbia River and its tributaries. This is to be done in a manner consistent with the program adopted by the Northwest Power Planning Council (NWPPC), and the purposes of the Act' (NWPPC, 1987). With the phrase 'protect, mitigate and enhance', Congress signaled its intent that the NWPPC's fish and wildlife program should do more than avoid future hydroelectric damage to the basin's fish and wildlife. The program must also counter past damage, work toward rebuilding those fish and wildlife populations that have been harmed by the hydropower system, protect the Columbia Basin's fish and wildlife resources, and mitigate for harm caused by decades of hydroelectric development and operations. By law, this program is limited to measures that deal with impacts created by the development, operation and management of hydroelectric facilities on the Columbia River and its tributaries. However, off-site enhancement projects are used to address the effects of the hydropower system on fish and wildlife (NWPPC 1987). Resident game fish populations have been established in Franklin D. Roosevelt Lake, the reservoir behind Grand Coulee Dam, since the extirpation of anadromous fish species. The resident game fish populations are now responsible for attracting a large percentage of the recreational visits to the region. An increase in popularity has placed Lake Roosevelt fifth amongst the most visited State and Federal parks in Washington. Increased use of the reservoir prompted amplified efforts to enhance the Native American subsistence fishery and the resident sport fishery in 1984 with hatchery supplementation of rainbow trout (O. mykiss) and kokanee salmon (O. nerka). This was followed by the formation of the Spokane Tribal Lake Roosevelt Monitoring Project (LRMP) in 1988 and later by formation of the Lake Roosevelt Data Collection Project in 1991. The Lake Roosevelt Data Collection Project began in July 1991 as part of the BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers System Operation Review process. This process sought to develop an operational scenario for the federal Columbia River hydropower system to maximize the in-reservoir fisheries with minimal impacts to all other stakeholders in the management of the Columbia River. The Lake Roosevelt Monitoring/Data Collection Program (LRMP) is the result of a merger between the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 forming the Lake Roosevelt Monitoring Program (LRMP), which continues the work historically completed under the separate projects. The LRMP has two main goals. The first is to develop a biological model for Lake Roosevelt that will predict in-reservoir biological responses to a range of water management operational scenarios, and to develop fisheries and reservoir management strategies accordingly. The model will allow identification of lake operations that minimize impacts on lake biota while addressing the needs of other interests (e.g. flood control, hydropower generation, irrigation, and downstream resident and anadromous fisheries). Major components of the model will include: (1) quantification of entrainment and other impacts to phytoplankton, zooplankton and fish caused by reservoir drawdowns and low water retention times; (2) quantification of seasonal distributions, standing crop, and habitat use of fish food organisms; (3) examination of variations in fish growth and abundance in relation to reservoir operations, prey abundance and predator/prey relationships; and (4) quantification of habitat alterations due to hydrooperations. The second goal of the LRMP is to evaluate the impacts of hatchery kokanee salmon and rainbow trout on the ecosystem and to determine stocking strategies that maximize angler harvest and return of adult kokanee salmon to egg collection facilities. Major tasks of the hatchery evaluation portion of the project include conducting a year round reservoir wide creel survey, sampling the fishery during spring, summer and fall via electro-fishing and gillnet surveys, and collecting information on diet, growth, and age composition of various fish species in Lake Roosevelt.« less

  11. Can natural variability trigger effects on fish and fish habitat as defined in environment Canada's metal mining environmental effects monitoring program?

    PubMed

    Mackey, Robin; Rees, Cassandra; Wells, Kelly; Pham, Samantha; England, Kent

    2013-01-01

    The Metal Mining Effluent Regulations (MMER) took effect in 2002 and require most metal mining operations in Canada to complete environmental effects monitoring (EEM) programs. An "effect" under the MMER EEM program is considered any positive or negative statistically significant difference in fish population, fish usability, or benthic invertebrate community EEM-defined endpoints. Two consecutive studies with the same statistically significant differences trigger more intensive monitoring, including the characterization of extent and magnitude and investigation of cause. Standard EEM study designs do not require multiple reference areas or preexposure sampling, thus results and conclusions about mine effects are highly contingent on the selection of a near perfect reference area and are at risk of falsely labeling natural variation as mine related "effects." A case study was completed to characterize the natural variability in EEM-defined endpoints during preexposure or baseline conditions. This involved completing a typical EEM study in future reference and exposure lakes surrounding a proposed uranium (U) mine in northern Saskatchewan, Canada. Moon Lake was sampled as the future exposure area as it is currently proposed to receive effluent from the U mine. Two reference areas were used: Slush Lake for both the fish population and benthic invertebrate community surveys and Lake C as a second reference area for the benthic invertebrate community survey. Moon Lake, Slush Lake, and Lake C are located in the same drainage basin in close proximity to one another. All 3 lakes contained similar water quality, fish communities, aquatic habitat, and a sediment composition largely comprised of fine-textured particles. The fish population survey consisted of a nonlethal northern pike (Esox lucius) and a lethal yellow perch (Perca flavescens) survey. A comparison of the 5 benthic invertebrate community effect endpoints, 4 nonlethal northern pike population effect endpoints, and 10 lethal yellow perch effect endpoints resulted in the observation of several statistically significant differences at the future exposure area relative to the reference area and/or areas. When the data from 2 reference areas assessed for the benthic invertebrate community survey were pooled, no significant differences in effect endpoints were observed. These results demonstrate weaknesses in the definition of an "effect" used by the MMER EEM program and in the use of a single reference area. Determination of the ecological significance of statistical differences identified as part of EEM programs conducted during the operational period should consider preexisting (background) natural variability between reference and exposure areas. Copyright © 2012 SETAC.

  12. National Dam Safety Program. Lake Ocquittunk Dam (NJ00260), Delaware River Basin, Big Flat Brook, Sussex County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1981-07-01

    A102 671 NEJESYEPOFEVONETLPOETO TRNO FI133 NATIONAL DAM SAFETY PROGRAM. LAKE OCQUITTUNK DAM (NJO0260), OEL--ETC(U) JUL 81 A PERERA DACW61඗- C -0011...NISED3 I D: C YN .I!’ A SIGrNIFICANT NXt ’BEi OF PAG-W W9IGHl DO t RIPR ODUCE LEGIBLY. DEPARTMENT OF THE ARMOTIC Philadelphia District E LECTE9...l1()iora~ble IT; ndan "! yrn& Dirztrjbutijo.l r TF . Governor oi New JersEy AvDTiI biA, tic aton, Nuw Jerstx’ Olb21 77 L D i,-,t Spe( C i.󈧏A Uear

  13. Thirty Years of Participatory Watershed Research: Engaging Citizen Scientists Through the NH Lakes Lay Monitoring Program (Invited)

    NASA Astrophysics Data System (ADS)

    Schloss, J. A.

    2009-12-01

    While it began as a citizen water quality monitoring program to document long-term trends and find problem areas impacting lake watersheds the New Hampshire Lakes Lay Monitoring Program soon evolved into a model effort for engaging the participants to help investigate a wide range of scientific questions primarily derived through their concerns. As a true participatory effort, community members were involved in the design as well as the implementation of the research and also in the interpretation of the results. The research outcomes have provided benefits to both the local and scientific communities. In many cases productive partnerships between the research community and participants were initiated that continue to last to this day. In addition, participants have been empowered through their experience and have become local experts and community leaders. Collaborative research projects to date have explored fish condition, recreational impacts, nutrient loadings from watershed land use, morphometric determinants of lake productivity, ground truth for remote sensing of water quality, biological controls for invasive aquatic plants, in-lake resource co-occurrences, and cyanobacteria bloom toxin ecology. Participants were also instrumental in confirming a more accurate method for water clarity measurement. Results have not only provided the community with the information they require for the informed local stewardship of their resources but also have been useful to state agencies and decision-makers. Our success can be attributed to the development of quality assured methods acceptable to regional and state agencies, the cost efficiencies of using volunteer scientists, support from the University and Cooperative Extension, capturing the "local expertise" of our participants, providing timely feedback and support, and making sure the study results are reported back to the local community through the participants involved.

  14. Using 2H and 18O in assessing evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water and organic material can be very useful in monitoring programs because stable isotopes integrate information about ecological processes and record this information. Most ecological processes of interest for water quality (i.e. denitrification) require si...

  15. Novel effects-based monitoring approaches to evaluate chemicals of emerging concern in Great Lakes areas of concern

    EPA Science Inventory

    As part of an on-going program of research in support of the Great Lakes Restoration Initiative, we have been developing effects-based biomonitoring tools to evaluate the occurrence and potential hazards associated with Chemicals of Emerging Concern (CECs). Over three field seaso...

  16. INDICATORS OF ECOLOGICAL STRESS AND THEIR EXTENT IN THE POPULATION OF NORTHEASTERN LAKES: A REGIONAL-SCALE ASSESSMENT

    EPA Science Inventory

    One of the Environmental Monitoring and Assessment Program's first projects was a survey of 345 lakes in the eight states of the Northeast, during summers of 1991-1996. This survey was the first regional-scale attempt to use a probability-based sampling design to collect biolog...

  17. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment.

    PubMed

    Papadakis, Emmaluel N; Vryzas, Zisis; Kotopoulou, Athena; Kintzikoglou, Katerina; Makris, Konstantinos C; Papadopoulou-Mourkidou, Euphemia

    2015-06-01

    A pesticide monitoring study covering the main rivers and lakes of Northern Greece (Macedonia, Thrace and Thessaly) was undertaken. A total of 416 samples were collected over a 1.5-year sampling period (September 1999- February 2001) from six rivers and ten lakes. The water samples were analyzed with an off-line solid phase extraction technique coupled with a gas chromatography ion trap mass spectrometer using an analytical method for 147 pesticides and their metabolites, including organochlorines, organophosphates, triazines, chloroacetanilides, pyrethroids, carbamates, phthalimides and other pesticides (herbicides, insecticides and fungicides). Based on the pesticide survey results, a human health carcinogenic and non-carcinogenic risk assessment was conducted for adults and children. Ecotoxicological risk assessment was also conducted using default endpoint values and the risk quotient method. Results showed that the herbicides metolachlor, prometryn, alachlor and molinate, were the most frequently detected pesticides (29%, 12.5%, 12.5% and 10%, respectively). They also exhibited the highest concentration values, often exceeding 1 μg/L. Chlorpyrifos ethyl was the most frequently detected insecticide (7%). Seasonal variations in measured pesticide concentrations were observed in all rivers and lakes. The highest concentrations were recorded during May-June period, right after pesticide application. Concentrations of six pesticides were above the maximum allowable limit of 0.1 μg/L set for drinking water. Alachlor, atrazine and a-HCH showed unacceptable carcinogenic risk estimates (4.5E-06, 4.6E-06 and 1.3E-04, respectively). Annual average concentrations of chlorpyriphos ethyl (0.031 μg L), dicofol (0.01 μg/L), dieldrin (0.02 μg/L) and endosulfan a (0.065 μg/L) exceeded the EU environmental quality standards. The risk quotient estimates for the insecticides chorpyrifos ethyl, diazinon and parathion methyl and herbicide prometryn were above acceptable risk values. The coupling of monitoring data to probabilistic human and ecotoxicological risk estimates could find use by Greek regulatory authorities, proposing effective pollution management schemes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Evaluation of cyanobacteria cell count detection derived from ...

    EPA Pesticide Factsheets

    Inland waters across the United States (US) are at potential risk for increased outbreaks of toxic cyanobacteria (Cyano) harmful algal bloom (HAB) events resulting from elevated water temperatures and extreme hydrologic events attributable to climate change and increased nutrient loadings associated with intensive agricultural practices. Current monitoring efforts are limited in scope due to resource limitations, analytical complexity, and data integration efforts. The goals of this study were to validate a new ocean color algorithm for satellite imagery that could potentially be used to monitor CyanoHAB events in near real-time to provide a compressive monitoring capability for freshwater lakes (>100 ha). The algorithm incorporated narrow spectral bands specific to the European Space Agency’s (ESA’s) MEdium Resolution Imaging Spectrometer (MERIS) instrument that were optimally oriented at phytoplankton pigment absorption features including phycocyanin at 620 nm. A validation of derived Cyano cell counts was performed using available in situ data assembled from existing monitoring programs across eight states in the eastern US over a 39-month period (2009–2012). Results indicated that MERIS provided robust estimates for Low (10,000–109,000 cells/mL) and Very High (>1,000,000 cells/mL) cell enumeration ranges (approximately 90% and 83%, respectively). However, the results for two intermediate ranges (110,000–299,000 and 300,000–1,000,000 cells/mL)

  19. The response of zooplankton communities to the 2016 extreme hydrological cycle in floodplain lakes connected to the Yangtze River in China.

    PubMed

    Zhang, Kun; Xu, Mei; Wu, Qili; Lin, Zhi; Jiang, Fangyuan; Chen, Huan; Zhou, Zhongze

    2018-06-04

    The Huayanghe Lakes play an important role in the Yangtze floodplain in China and had extremely high water levels during the summer of 2016. Monitoring data was collected in an effort to understand the impact of this change on the crustacean zooplankton composition and abundance and the biomass variation in the Huayanghe Lakes between a regular hydrological cycle (RHC) and an extreme hydrological cycle (EHC). The crustacean zooplankton community composition, abundance, and biomass in the floodplain lakes were markedly affected by the water-level disturbance. The number of species was lower in the RHC, but the mean density and biomass decreased from 93.84 ± 13.29 ind./L and 6.11 ± 0.89 mg/L, respectively, in the RHC to 66.62 ± 10.88 ind./L and 1.22 ± 0.26 mg/L, respectively, in the EHC. Pearson correlations and redundancy analyses revealed the environmental factors with the most significant impact on the crustacean zooplankton community differed between the RHC and EHC cycles. Little previous information exists on the zooplankton in these lakes, and the present study provides data on the zooplankton composition, abundance, and biomass, both at baseline and in response to hydrological changes.

  20. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    USGS Publications Warehouse

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  1. Occurrence and Distribution of Microcystins in Lake Taihu, China

    PubMed Central

    Sakai, Hiroshi; Hao, Aimin; Iseri, Yasushi; Wang, Song; Kuba, Takahiro; Zhang, Zhenjia; Katayama, Hiroyuki

    2013-01-01

    The occurrence and distribution of microcystins were investigated in Lake Taihu, the third largest lake in China. An extensive survey, larger and broader in scale than previous studies, was conducted in summer 2010. The highest microcystin concentration was found at southern part of Taihu, which was newly included in this survey. In northern coastal areas, total cellular concentrations of 20 to 44 μg/L were observed. In northern offshore waters, levels were up to 4.8 μg/L. Microcystin occurrence was highly correlated with chemical oxygen demand, turbidity, and chlorophyll-a. Extracellular/total cellular microcystin (E/T) ratios were calculated and compared to other water quality parameters. A higher correlation was found using E/T ratios than original microcystin values. These results show that algal blooms are having a severe impact on Lake Taihu, and further and extensive monitoring and research are required to suppress blooms effectively. PMID:23853542

  2. Water Quality and Occurrence of Methyl Tert-Butyl Ether (MTBE) and Other Fuel-Related Compounds in Lakes and Ground Water at Lakeside Communities in Sussex and Morris Counties, New Jersey, 1998-1999

    USGS Publications Warehouse

    Baehr, Arthur L.; Reilly, Timothy J.

    2001-01-01

    Densely populated communities surround many of the larger lakes in northwestern New Jersey. These communities derive most of their water supply from wells. The lakes can be navigated by gasoline-powered watercraft, can be in various stages of eutrophication, may contain pathogens associated with bathing and waterfowl, and are periodically subjected to chemical applications to control aquatic plant growth. Another feature that contributes to water-quality concerns in lakeside communities is the widespread use of septic tanks. Concentrations of methyl tert-butyl ether (MTBE), a gasoline oxygenate, in samples from Cranberry Lake and Lake Lackawanna ranged from 20 to 30 ug/L (micrograms per liter) and 5 to 14 ug/L during the summers of 1998 and 1999, respectively. These levels were persistent throughout the depth of the lakes when mixing conditions were present. MTBE concentrations in samples from the top 20 feet of Lake Hopatcong during summer 1999 were about 10 ug/L and about 2 to 3 ug/L in samples below 20 feet. The source of the MTBE in the lakes was determined to be gasoline-powered watercraft. Other constituents of gasoline--tertiary amyl methyl ether (TAME) and benzene, toluene, ethylbenzene, and xylenes (BTEX)--were detected in the lakes but at much lower concentrations than MTBE. Ambient ground-water quality at Cranberry Lake and Lake Lackawanna appears to be affected by the use of gasoline-powered watercraft. MTBE was detected in water samples from 13 of the 14 wells sampled at Cranberry Lake in fall 1998 and summer 1999. The wells were selected to monitor ambient ground-water quality and had no history of contamination. In ground-water samples collected during fall 1998, MTBE concentrations ranged from 0.12 to 19.8 ug/L, and the median concentration was 0.43 ug/L. In samples from summer 1999, MTBE concentrations ranged from 0.14 to 13.2 ug/L, and the median concentration was 0.38 ug/L. MTBE was detected in samples from four of the five wells at Lake Lackawanna in summer 1999;concentrations ranged from 0.05 to 0.19 ug/L. Lake/ground water interaction is a feasible explanation for the nearly ubiquitous presence of MTBE in ground water. The movement of water from lakes to wells is feasible because many static water levels and essentially all pumped water levels in the wells were below lake levels. Furthermore, diatom fragments were present in samples from the wells. Ambient ground water at Cranberry Lake also may be affected by septic-tank effluent, as indicated by the relation among concentrations of nitrate, boron, and chloroform. This result indicates potential vulnerability of the water supply to contamination by other chemicals and pathogens. Radon in ambient ground water is a concern throughout northern New Jersey. In particular, the median radon concentrations in ground-water samples collected from 14 wells at Cranberry Lake in 1998 and 1999 were 1,282 and 1,046 pCi/L, respectively. The median radon concentration in five ground-water samples collected at Lake Lackawanna in 1999 was 340 pCi/L. Although these values exceed regulatory levels, they are not high relative to radon concentrations measured in northwestern New Jersey. Eight wells in a neighborhood of Cranberry Lake with known MTBE contamination were sampled by the U.S. Geological Survey in summer 1998. MTBE was detected at concentrations greater than or equal to 40 ug/L in five of the wells. Concentrations of TAME, another gasoline oxygenate, were highly correlated with concentrations of MTBE; MTBE concentrations were about 10 times the TAME concentrations. In all samples, however, the concentrations of the BTEX compounds were less than 0.05 ug/L, and the sample from the most highly contaminated well, where the MTBE concentration was 900 ug/L, had no detectable BTEX.

  3. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  4. Documenting 35 years of land cover change: Lago Cachet Dos drainage, Chile

    USGS Publications Warehouse

    Friesen, Beverly A.; Nimick, David A.; Mcgrath, Daniel; Cole, Christopher J.; Wilson, Earl M.; Noble, Suzanne M.; Fahey, Mark J.; Leidich, Jonathan; O'Kuinghttons Villena, Jorge I.

    2015-01-01

    The U.S. Geological Survey (USGS) Special Applications Science Center is monitoring temporal changes at the Colonia Glacier and Lago Cachet Dos, Northern Patagonia Icefield of southern Chile. This location is one of the newest international sites in the USGS Global Fiducial Program (GFP)—a program which provides systematic monitoring of dynamic and environmentally critical areas with high-resolution imagery (http://gfp.usgs.gov/). In 2008, Lago Cachet Dos began experiencing glacial lake outburst floods (GLOFs) during which the entire pool of water (about 200 million cubic meters) rapidly drains from the lake and flows south-southeast through the Colonia Glacier. These catastrophic events cause massive erosion of valley-fill deposits and consequent upstream expansion of Lago Cachet Dos towards Lago Cachet Uno.  Panchromatic and multispectral images for 1979, 2007, and 2014 highlight the dramatic changes that have occurred at this site over a 35-year period. The lake was smallest in 1979, when the Colonia Glacier was at its maximum extent during the study period. Between 1979 and 2007, the glacier shrank causing an increase in the surface area of the lake. The size of the lake increased substantially, from 2.98 square kilometers (km2) in 1979 to 4.41 km2 in 2014, primarily due to erosion of valley-fill deposits upstream of its northern edge by the 15 GLOFs that occurred between April 2008 and February 2014. Ongoing studies of the Colonia Glacier and Lago Cachet Dos are focused on providing real-time monitoring of Lago Cachet Dos lake levels, understanding the history of advances and retreats of the Colonia Glacier, and determining the physical mechanisms and hazards associated with the GLOFs that come from Lago Cachet Dos.

  5. Cooperative science to inform Lake Ontario management: Research from the 2013 Lake Ontario CSMI program

    USGS Publications Warehouse

    Watkins, James M.; Weidel, Brian C.; Fisk, Aaron T.; Rudstam, Lars G.

    2017-01-01

    Since the mid-1970s, successful Lake Ontario management actions including nutrient load and pollution reductions, habitat restoration, and fish stocking have improved Lake Ontario. However, several new obstacles to maintenance and restoration have emerged. This special issue presents management-relevant research from multiple agency surveys in 2011 and 2012 and the 2013 Cooperative Science and Monitoring Initiative (CSMI), that span diverse lake habitats, species, and trophic levels. This research focused on themes of nutrient loading and fate; vertical dynamics of primary and secondary production; fish abundance and behavior; and food web structure. Together these papers identify the status of many of the key drivers of the Lake Ontario ecosystem and contribute to addressing lake-scale questions and management information needs in Lake Ontario and the other Great Lakes and connecting water bodies.

  6. Algal Populations and Water Quality in Florida Lakes: Sedimentary Evidence of Anthropogenic Impact

    NASA Astrophysics Data System (ADS)

    Whitmore, M. R.; Whitmore, T. J.; Brenner, M.; Smoak, J.; Curtis, J.

    2004-05-01

    Cyanobacteria and other algae dominate many highly productive Florida (U.S.A.) lakes. Algal proliferation is often attributed to eutrophication during the last century, but it is poorly documented because Florida's water-quality monitoring programs became common only after 1980. We examined sediment cores from 14 hypereutrophic Florida lakes. Study lakes have been subjected to urbanization, agriculture, and to inputs of municipal sewage effluent and food-processing wastes. Major algal-pigment groups were analyzed in sediments using pigment-extraction and spectrophotometric techniques. We compared myxoxanthophyll, oscillaxanthin, total carotenoid, and total chlorophyll pigment profiles with WACALIB-derived limnetic total-P and chlorophyll a inferences based on fossil diatoms, sediment chemistry, and stable isotope (δ 13C & δ 15N) signatures of organic matter. Sedimentary evidence showed that cyanobacterial and algal proliferation appeared during recent decades in 10 study lakes in response to eutrophication. Cyanobacterial increase was very recent and abrupt in 7 lakes. Six lakes showed recovery following nutrient-mitigation programs that reduced sewage and other point-source effluent inputs. Four lakes showed long-term presence of cyanobacterial populations because edaphic nutrient supply causes these lakes to be naturally productive. Three of these naturally eutrophic lakes remained unchanged, but one demonstrated eutrophication followed by subsequent recovery. Correlations were particularly strong among sedimented pigment profiles and diatom-inferred limnetic water-quality profiles. Paleolimnological methods provide informative assessment of anthropogenic influence on lakes when long-term water-quality data are lacking. Historic studies also are useful for evaluating the feasibility of improving water quality through lake-management programs, and for defining appropriate lake restoration goals.

  7. The Heritage of the Operational Usda/nasa Global Reservoir and Lake Monitor

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.

    2012-12-01

    Satellite radar altimetry has the ability to monitor variations in surface water height for large lakes and reservoirs. A clear advantage is the provision of data where in situ data are lacking or where there is restricted access to ground-based measurements. A USDA/NASA funded program is performing altimetric monitoring of the largest lakes and reservoirs around the world. The near-real time height measurements are currently derived from NASA/CNES Jason-2/OSTM mission data. Archived data are also utilized from the NASA/CNES Topex/Poseidon and Jason-1 missions, the NRL GFO mission, and the ESA ENVISAT mission. Lake level products are output within 1-2 weeks after satellite overpass, a time delay which will improve to a few days as the project moves into its next phase. The USDA/FAS utilize the products for assessing irrigation potential (and thus crop production estimates), and for general observation of high-water status and short-term drought. Other end-users explore the products to study climate trends, observe anthropogenic effects, and to consider water management and regional security issues. This presentation explores the heritage of the Global Reservoir and Lake Monitor (GRLM) which has its origins in the field of ocean surface topography and the exploration of radar altimetry techniques over non-ocean surfaces. The current system closely follows the software design of the historical NASA Ocean Pathfinder Project and utilizes a global lakes catalogue that was created for climate change/aridity studies. The output of lake level products, imagery and information also echoes an earlier trial (UNDP-funded) lakes database which first offered altimetric products via the world wide web and which enabled world-wide interest to be both assessed and highlighted.;

  8. National Dam Safety Program. Upper Mohawk Lake Dam (NJ00292), Delaware River Basin, Tributary to Paulins Kill River, Sussex County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1981-07-01

    AD-AI03 500 NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON --ETC F/G 13/13 NATIONAL DAM SAFETY PROGRA . UPPER MOHAWK LAKE DAM (NJOO292) D0-TC...NATIONAL DAM SAFETY PROGRAM DTIC UG 3 1981 PRO F, SA G DISTl-%iL ~ Lj,,. U L TED. DEPARTMENT OF THE ARMY Philadelphie District Corps oF Engineers...GOVT ACCESSION Ni. 3. RECIPLLT*S CATALOG NUMBER ib EN/NAP-�/NJO0292-81/07 0, u)-, c J . () 4. TITLE (and Subtl) S. TYPE OF REPORT a PERIOD

  9. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    PubMed

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas. Published by Elsevier Ltd.

  10. Ford Hatchery; Washington Department of Fish and Wildlife Fish Program, Hatcheries Division, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovrak, Jon; Ward, Glen

    2004-01-01

    Bonneville Power Administration's participation with the Washington Department of Fish and Wildlife, Ford Hatchery, provides the opportunity for enhancing the recreational and subsistence kokanee fisheries in Banks Lake. The artificial production and fisheries evaluation is done cooperatively through the Spokane Hatchery, Sherman Creek Hatchery (WDFW), Banks Lake Volunteer Net Pen Project, and the Lake Roosevelt Fisheries Evaluation Program. Ford Hatchery's production, together with the Sherman Creek and the Spokane Tribal Hatchery, will contribute to an annual goal of one million kokanee yearlings for Lake Roosevelt and 1.4 million kokanee fingerlings and fry for Banks Lake. The purpose of this multi-agencymore » program is to restore and enhance kokanee salmon and rainbow trout populations in Lake Roosevelt and Banks Lake due to Grand Coulee Dam impoundments. The Ford Hatchery will produce 9,533 lbs. (572,000) kokanee annually for release as fingerlings into Banks Lake in October. An additional 2,133 lbs. (128,000) kokanee will be transferred to net pens on Banks Lake at Electric City in October. The net pen raised kokanee will be reared through the fall, winter, and early spring to a total of 8,533 lbs and released in May. While the origin of kokanee comes from Lake Whatcom, current objectives will be to increase the use of native (or, indigenous) stocks for propagation in Banks Lake and the Upper Columbia River. Additional stocks planned for future use in Banks Lake include Lake Roosevelt kokanee and Meadow Creek kokanee. The Ford Hatchery continues to produce resident trout (80,584 lb. per year) to promote the sport fisheries in trout fishing lakes in eastern Washington (WDFW Management, Region 1). Operation and maintenance funding for the increased kokanee program was implemented in FY 2001 and scheduled to continue through FY 2010. Funds from BPA allow for an additional employee at the Ford Hatchery to assist in the operations and maintenance associated with kokanee production. Fish food, materials, and other supplies associated with this program are also funded by BPA. Other funds from BPA will also improve water quality and supply at the Ford Hatchery, enabling the increased fall kokanee fingerling program. Monitoring and evaluation of the Ford stocking programs will include existing WDFW creel and lake survey programs to assess resident trout releases in trout managed waters. BPA is also funding a creel survey to assess the harvest of hatchery kokanee in Banks Lake.« less

  11. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to May 29, 2003. We estimated that 4,637 wild/natural and 12,226 hatchery-produced sockeye salmon smolts out-migrated from Redfish Lake in 2003. The hatchery-produced component included an estimated 5,352 out-migrants produced from a summer direct-release made to Redfish Lake in 2002 and 6,874 out-migrants produced from a fall direct-release made in 2002. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 23 to June 5, 2003 and April 25 to June 4, 2003, respectively. The SBT enumerated 28 wild/natural and 13,329 hatchery-produced sockeye salmon smolts that outmigrated from Pettit Lake and estimated 286 wild/natural and 553 hatchery-produced sockeye salmon smolts out-migrated from Alturas Lake in 2003. The hatchery-produced component of sockeye salmon out-migrants originated from presmolt releases made directly to Pettit and Alturas lakes in 2002. Median travel times for passive integrated transponder (PIT) tagged smolts from the Redfish Lake Creek trap site to Lower Granite Dam were estimated for wild/natural smolts and hatchery-produced smolts. Median travel times for smolts originating from the Redfish Lake Creek trap were 10.6 d for wild/natural smolts, 6.2 d for summer direct-released smolts, and 7.1 d for fall direct-released smolts. Median travel times for PIT-tagged smolts from the Pettit Lake Creek trap site to Lower Granite Dam were estimated for hatchery-produced smolts. Median travel times for smolts originating from the Pettit Lake Creek trap were 14.1 d for fall direct released smolts and 13.6 d for fall direct released smolts. Cumulative unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to mainstem Snake and Columbia river dams were utilized to estimate detection rates for out-migrating sockeye salmon smolts. Detection rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Pettit Lake fall direct released smolts recorded the highest detection rate of 37.14%. In 2003, 312 hatchery-produced adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 42 areas of excavation in the lake from spawning events. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. We monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake, and in Alpine Creek, a tributary to Alturas Lake. This represented the sixth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (40 adults) and redd counts (17 redds) in Fishhook Creek were similar to counts conducted since monitoring began in 1998. Bull trout numbers (27 adults) and the number of redds observed (14 redds) have gradually increased in Alpine Creek compared to counts from initial monitoring.« less

  12. Levels and patterns of persistent organic pollutants (POPs) in tilapia (Oreochromis sp.) from four different lakes in Tanzania: geographical differences and implications for human health.

    PubMed

    Polder, A; Müller, M B; Lyche, J L; Mdegela, R H; Nonga, H E; Mabiki, F P; Mbise, T J; Skaare, J U; Sandvik, M; Skjerve, E; Lie, E

    2014-08-01

    In Tanzania fish is one of the most important protein sources for the rapidly increasing population. Wild fish is threatened by overfishing and pollution from agriculture, industries, mining, household effluents and vector control. To monitor possible implications for public health, the geographical differences of the occurrence and levels of persistent organic pollutants (POPs) in tilapia fish (Oreochromis sp.) from four different Tanzanian lakes were investigated in 2011. Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyls (PBDEs) and hexabromocyclododecane (HBCDD) were determined in pooled samples of tilapia muscle from Lake (L) Victoria, L. Tanganyika, L. Nyasa (also called L. Malawi) and L. Babati in Tanzania in 2011. Levels of Σ-DDTs (274 ng/g lipid weight (lw)) and sum of 7 indicator PCBs (Σ-7PCBs) (17 ng/g lw) were significantly higher in tilapia from L. Tanganyika compared to the other lakes. The highest levels of Σ-endosulfan (94 ng/g lw) were detected in tilapia from L. Victoria. Toxaphenes were detected in low levels in fish from L. Tanganyika and L. Babati. Results revealed a geographic difference in the use of DDT and endosulfan between L. Victoria and L. Tanganyika. Low ratios of DDE/DDT in tilapia from L. Tanganyika indicated an on-going use of DDT in the area. Median levels of ΣBDEs, including BDE-209, were highest in L. Victoria (19.4 ng/g lw) and BDE-209 was present in 68% of the samples from this lake. The presence of BDE-209 indicates increasing influence of imported products from heavy industrialized countries. The measured POP levels in the studied tilapia were all below MRLs of EU or were lower than recommended levels, and thus the fish is considered as safe for human consumption. They may, however, pose a risk to the fish species and threaten biodiversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Temporal and spatial changes of water quality and management strategies of Dianchi Lake in southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Zeng, W. H.; Wang, S. R.; Ni, Z. K.

    2013-12-01

    Temporal and spatial changes to the water quality of Dianchi Lake in Southwest China were investigated using monthly monitoring data from 2005 to 2012. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19-1.46, 6.11-16.79, 0.06-0.14 mg L-1, respectively. In addition, the annual concentrations of TP, TN and Chl a in Waihai Lake ranged between 0.13-0.20, 1.82-3.01, 0.04-0.09 mg L-1, respectively. Cluster Analysis (CA) classified the 10 monitoring sites into two groups (group A and group B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005-2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous pollution control strategies were still present in the lake management strategy. To solve these problems, suitable control measures are needed, especially considering the current old-age status of Dianchi Lake. The fundamental improvement of the water quality within Caohai Lake was dependent on the measures taken in the upper reaches of the Caohai Watershed, including further recovery of submerged plants, resource utilization by floating plants and the reinforcement of sediment disposal. Management strategies for endogenous pollution in Waihai Lake were mainly dependent on restocking algae-eating fish and the ecological restoration of macrophytes. In this way, the swamping trend and the ageing process that is occurring in Dianchi Lake can be stunted.

  14. Uranium activity ratio in water and fish from pit lakes in Kurday, Kazakhstan and Taboshar, Tajikistan.

    PubMed

    Strømman, G; Rosseland, B O; Skipperud, L; Burkitbaev, L M; Uralbekov, B; Heier, L S; Salbu, B

    2013-09-01

    Kurday in Kazhakstan and Taboshar in Tajikistan were U mining sites operated during the 1950s and 1960s as part of the USSR nuclear weapon program. Today, they represent sources of potential U contamination of the environment. Within both mining sites, open pits from which U ore was extracted have been filled with water due to ground water inflow and precipitation. These artificial pit lakes contain fish consumed occasionally by the local people, and wild and domestic animals are using the water for drinking purposes. To assess the potential impact from U in these pit lakes, field work was performed in 2006 in Kurday and 2006 and 2008 in Taboshar. Results show that the U concentration in the lake waters were relatively high, about 1 mg/L in Kurday Pit Lake and about 3 mg/L in Taboshar Pit Lake. The influence of U-bearing materials on the lakes and downstream waters were investigated by measuring the U concentration and the (234)U/(238)U activity ratios. In both Kurday and Taboshar, the ratios increased distinctively from about 1 at the pit lakes to >1.5 far downstream the lakes. The concentrations of (238)U in gill, liver, muscle and bones in fish from the pit lakes were much higher than in the reference fish. Peak concentration of U was seen in bones (13 mg/kg w.w.), kidney (9.1 mg/kg w.w.) and gills (8.9 mg/kg w.w.) from Cyprinus auratus caught in the Taboshar Pit Lake. Bioconcentration factors (BCF) calculated for organs from fish caught in the Taboshar Pit Lake, with the same tendency seen in the Kurday Pit Lake, showed that U accumulates most in bone (BCF = 4.8 L/kg w.w.), gills (BCF = 3.6 L/kg w.w.), kidney (BCF = 3.6 L/kg w.w.), and liver (BCF = 2.5 L/kg w.w.), while least was accumulated in the muscle (BCF = 0.12 L/kg w.w.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Using bald eagles to track spatial (1999-2008) and temporal (1987-1992, 1999-2003, and 2004-2008) trends of contaminants in Michigan's aquatic ecosystems.

    PubMed

    Wierda, Michael R; Leith, Katherine F; Roe, Amy S; Grubb, Teryl G; Sikarskie, James G; Best, David A; Pittman, H Tyler; Fuentes, Latice; Simon, Kendall L; Bowerman, William

    2016-08-01

    The bald eagle (Haliaeetus leucocephalus) is an extensively researched tertiary predator. Studies have delineated information about its life history and the influences of various stressors on its reproduction. Due to the bald eagle's position at the top of the food web, it is susceptible to biomagnification of xenobiotics. The Michigan Department of Environmental Quality implemented a program in 1999 to monitor persistent chemicals including polychlorinated biphenols (PCBs) and dichlorodiphenyltrichloroethane (DDE). The objectives of the present study were to evaluate spatial and temporal trends of PCBs and organochlorine pesticides in nestling bald eagles of Michigan. The authors' study found that concentrations of PCBs and DDE were higher in Great Lakes areas with Lakes Michigan and Lake Huron having the highest concentrations of DDE and Lake Erie having the highest concentrations of PCBs. Temporally (1987-1992, 1999-2003, and 2004-2008) the present study found declines in PCB and DDE concentrations with a few exceptions. Continued monitoring of Michigan bald eagle populations is suggested for a couple of reasons. First, nestling blood contaminant levels are an appropriate method to monitor ecosystem contaminant levels. Second, from 1999 to 2008 PCB and DDE concentrations for 30% and 40%, respectively, of the nestling eagles sampled were above the no observable adverse effect level (NOAEL) for bald eagles. Lastly, with the continued development and deployment of new chemistries a continuous long term monitoring program is an invaluable resource. Environ Toxicol Chem 2016;35:1995-2002. © 2016 SETAC. © 2016 SETAC.

  16. Inventory of montane-nesting birds in Katmai and Lake Clark national parks and preserves

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Tibbitts, Lee; Gill, Robert E.; Handel, Colleen M.

    2007-01-01

    As part of the National Park Service’s Inventory and Monitoring Program, biologists from the U. S. Geological Survey’s Alaska Science Center conducted an inventory of birds in montane regions of Katmai and Lake Clark National Parks and Preserves during 2004–2006. We used a stratified random survey design to allocate samples by ecological subsection. To survey for birds, we conducted counts at 468 points across 29, 10-km x 10-km (6.2-mi x 6.2-mi) sample plots in Katmai and 417 points across 25, 10-km x 10-km sample plots in Lake Clark. We detected 92 and 104 species in Katmai and Lake Clark, respectively, including 40 species of conservation concern. We detected three species not previously recorded in Katmai (Ring-necked Duck [Aythya collaris], Lesser Scaup [Aythya affinis], and White-tailed Ptarmigan [Lagopus leucurus]) and two species not previously recorded in Lake Clark (Northern Flicker [Colaptes auratus ] and Olive-sided Flycatcher [Contopus cooperi]). The most commonly detected species in both parks was Golden-crowned Sparrow (Zonotrichia atricapilla); Fox Sparrow (Passerella iliaca) and American Pipit (Anthus rubescens) were abundant and widely-distributed as well. We defined sites as low (100–350 m), middle (351–600 m), or high (601–1,620 m) elevation based on the distribution of vegetation cover, and similarly categorized the 34 most-commonly detected species based on the mean elevation of sample points at which they were detected. High elevation (i.e., alpine) sites were characterized by high percent cover of dwarf shrub and bare ground habitat and supported species like Rock Ptarmigan (L. mutus), American Golden-Plover (Pluvialis dominica), Wandering Tattler (Tringa incana), Surfbird (Aphriza virgata), and Snow Bunting (Plectrophenax nivalis), all species of conservation concern. This inventory represents the first systematic survey of birds nesting in montane regions of both parks. Results from this inventory can form the foundation of subsequent monitoring efforts

  17. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source.

    PubMed

    Duan, Hongtao; Tao, Min; Loiselle, Steven Arthur; Zhao, Wei; Cao, Zhigang; Ma, Ronghua; Tang, Xiaoxian

    2017-10-01

    The occurrence and related risks from cyanobacterial blooms have increased world-wide over the past 40 years. Information on the abundance and distribution of cyanobacteria is fundamental to support risk assessment and management activities. In the present study, an approach based on Empirical Orthogonal Function (EOF) analysis was used to estimate the concentrations of chlorophyll a (Chla) and the cyanobacterial biomarker pigment phycocyanin (PC) using data from the MODerate resolution Imaging Spectroradiometer (MODIS) in Lake Chaohu (China's fifth largest freshwater lake). The approach was developed and tested using fourteen years (2000-2014) of MODIS images, which showed significant spatial and temporal variability of the PC:Chla ratio, an indicator of cyanobacterial dominance. The results had unbiased RMS uncertainties of <60% for Chla ranging between 10 and 300 μg/L, and unbiased RMS uncertainties of <65% for PC between 10 and 500 μg/L. Further analysis showed the importance of nutrient and climate conditions for this dominance. Low TN:TP ratios (<29:1) and elevated temperatures were found to influence the seasonal shift of phytoplankton community. The resultant MODIS Chla and PC products were then used for cyanobacterial risk mapping with a decision tree classification model. The resulting Water Quality Decision Matrix (WQDM) was designed to assist authorities in the identification of possible intake areas, as well as specific months when higher frequency monitoring and more intense water treatment would be required if the location of the present intake area remained the same. Remote sensing cyanobacterial risk mapping provides a new tool for reservoir and lake management programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lewis Research Center earth resources program

    NASA Technical Reports Server (NTRS)

    Mark, H.

    1972-01-01

    The Lewis Research Center earth resources program efforts are in the areas of: (1) monitoring and rapid evaluation of water quality; (2) determining ice-type and ice coverage distribution to aid operations in a possible extension of the Great Lakes ice navigation and shipping season; (3) monitoring spread of crop viruses; and (4) extent of damage to strip mined areas as well as success of efforts to rehabilitate such areas for agriculture.

  19. Perfluorooctane sulfonate (PFOS) contamination of fish in urban lakes: a prioritization methodology for lake management.

    PubMed

    Xiao, Feng; Gulliver, John S; Simcik, Matt F

    2013-12-15

    The contamination of urban lakes by anthropogenic pollutants such as perfluorooctane sulfonate (PFOS) is a worldwide environmental problem. Large-scale, long-term monitoring of urban lakes requires careful prioritization of available resources, focusing efforts on potentially impaired lakes. Herein, a database of PFOS concentrations in 304 fish caught from 28 urban lakes was used for development of an urban-lake prioritization framework by means of exploratory data analysis (EDA) with the aid of a geographical information system. The prioritization scheme consists of three main tiers: preliminary classification, carried out by hierarchical cluster analysis; predictor screening, fulfilled by a regression tree method; and model development by means of a neural network. The predictive performance of the newly developed model was assessed using a training/validation splitting method and determined by an external validation set. The application of the model in the U.S. state of Minnesota identified 40 urban lakes that may contain elevated levels of PFOS; these lakes were not previously considered in PFOS monitoring programs. The model results also highlight ongoing industrial/commercial activities as a principal determinant of PFOS pollution in urban lakes, and suggest vehicular traffic as an important source and surface runoff as a primary pollution carrier. In addition, the EDA approach was further compared to a spatial interpolation method (kriging), and their advantages and disadvantages were discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    NASA Astrophysics Data System (ADS)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic calcite precipitation in May leading to the monthly maximum in calcite deposition of 1.18 [g/m2d] (66.31

  1. Manganese biogeochemistry in a small Adirondack forested lake watershed

    USGS Publications Warehouse

    Shanley, James B.

    1986-01-01

    In September and October 1981, manganese (Mn) concentrations and pH were intensively monitored in a small forested lake watershed in the west-central Adirondack Mountains, New York, during two large acidic storms (each ∼5 cm rainfall, pH 4.61 and 4.15). The data were evaluated to identify biogeochemical pathways of Mn and to assess how these pathways are altered by acidic atmospheric inputs. Concentrations of Mn averaged 1.1 μg/L in precipitation and increased to 107 μg/L in canopy throughfall, the enrichment reflecting active biological cycling of Mn. Rain pH and throughfall Mn were negatively correlated, suggesting that foliar leaching of Mn was enhanced by rainfall acidity. The pulselike input of Mn to the forest floor in the high initial concentrations in throughfall (∼1000 μg/L) did not affect Mn concentrations in soil water (< 20 μg/L) or groundwater (usually < 40 μg/L), which varied little with time. In the inlet stream, Mn concentrations remained constant at 48 μg/L as discharge varied from 1.1 to 96 L/s. Manganese was retained in the vegetative cycle and regulated in the stream by adsorption in the soil organic horizon. The higher Mn levels in the stream may be linked to its high acidity (pH 4.2–4.3). Mixing of Mn-rich stream water with neutral lake water (pH 7.0) caused precipitation of Mn and deposition in lake sediment.

  2. Occurrence of pharmaceuticals in municipal wastewater, in the recipient water, and sedimented particles of northern Lake Päijänne.

    PubMed

    Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S; Herve, Sirpa H

    2015-11-01

    The presence of five different pharmaceuticals, consisting of four anti-inflammatory and one antiepileptic drug, was determined in influent and effluent of a municipal wastewater treatment plant (WWTP) near the city of Jyväskylä, Finland, and in the receiving water, northern Lake Päijänne. In addition, samples of sedimented particles were collected among water samples from five locations near the discharge point of the treated wastewater. The solid phase extracts (SPEs) of water samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The studied pharmaceuticals were detected from influent, effluent, and lake water but also in the sedimented particles. The concentrations of carbamazepine, diclofenac, ibuprofen, ketoprofen, and naproxen in Lake Päijänne ranged from 1 to 21 ng L(-1), 4 to 209 ng L(-1), 5 to 836 ng L(-1), 9 to 952 ng L(-1), and 2 to 129 ng L(-1), respectively. The concentrations of ketoprofen in sedimented particles ranged from 79 to 135 μg g(-1) while only trace amounts of other selected pharmaceuticals were detected. The results indicate that the concentrations of pharmaceuticals are affected by the biological and chemical reactions occurring in the wastewater treatment processes but also by the UV light in the photic layer of Lake Päijänne. It can be concluded that considerable amount of selected pharmaceuticals are present in the influent and effluent of municipal WWTP but also in the water phase and sedimented particles of northern Lake Päijänne.

  3. Ostracod-inferred conductivity transfer function and its utility in palaeo-conductivity reconstruction in Tibetan Lakes

    NASA Astrophysics Data System (ADS)

    Peng, P.; Zhu, L.; Guo, Y.; Wang, J.; Fürstenberg, S.; Ju, J.; Wang, Y.; Frenzel, P.

    2016-12-01

    Ostracod, was used as a sensitive monitor in palaeo-environmental change research. Ostracod transfer function was developing as a quantitate indicator in palaeo-limnology research. Plenty of lakes scattered on the Tibetan Plateau supplied sediments for analyzing indexes of environment in past climate change research. This application was research on samples of sub-fossil ostracod and its habitat condition, including water sample and water parameters, to produce a database for a forward transfer function based on gradient analyses. This transfer function was used for environment reconstruction of Tibetan lakes to preview past climate changes. In our research, twelve species belonging to ten genus were documented from 114 studied samples in 34 lakes. This research illustrated a specific conductivity gradient gradually increased by L.sinensis-L.dorsotuberosa-C.xizangensis, L.dorsotuberosa-L.inopinata and L.inopinata to indicate fresh-lightly brackish, brackish, brine water condition, respectively. Gradient analysis revealed that specific conductivity was the most important variable drove the distribution of sub-fossil Ostracods. A specific conductivity transfer function using a weighted averaging partial least squares (WA-PLS) model was set up to reconstruct palaeo-specific conductivity. The model presented a good correlation of measured and estimated specific conductivity (R2=0.67), a relative low root mean squared error of prediction (RMSEP=0.47). Multi-proxies, including ostracod assemblages, ostracod-inferred lake level and specific conductivity, mean grain size, total organic carbon and total inorganic carbon of sediment from core of Tibetan Lakes, inferred the palaeo-climate change history of the research area. The environmental change probably was an adaption to the weakening activities of India monsoon since mid-Holocene inferred from the comparable climatic change records from the Tibetan Plateau and relative monsoonal areas.

  4. Does a trend in declining stem density of Lepidium latifolium indicate a phosphorus limitation? A case study

    USDA-ARS?s Scientific Manuscript database

    Lepidium latifolium L. (perennial pepperweed) is a weedy alien crucifer that has invaded wetlands throughout the western United States. We monitored L. latifolium invasion of an Elytrigia elongata (tall wheatgrass) community at the Honey Lake Wildlife Refuge in northeastern CA. In 1993, a 40 m2 plot...

  5. DELIVERING TIMELY WATER QUALITY INFORMATION TO YOUR COMMUNITY. THE LAKE ACCESS-MINNEAPOLIS PROJECT

    EPA Science Inventory

    This report is a summary of the near-real-time water quality-monitoring project conducted by a consortium of interested parties in the greater Minneapolis area. It was funded by an EPA program known as EMPACT (Environmental Monitoring, Public Access, and Community Tracking). In 1...

  6. ELEMENTAL FISH TISSUE CONTAMINATION IN NORTHEASTERN U.S. LAKES: EVALUATION OF AN APPROACH TO REGIONAL ASSESSMENT

    EPA Science Inventory

    The approach of the Environmental Monitoring and Assessment Program (EMAP) to monitoring of fish tissue contaminants is shown to have utility for regional assessment,and for discrimination of regional from local contamination.The survey sampling design employed by EMAP can be use...

  7. ELEMENTAL FISH TISSUE CONTAMINATION IN NORTHEASTERN U.S. LAKES: EVALUATION OF AN APPROACH TO REGIONAL ASSESSMENT

    EPA Science Inventory

    The approach of the Environmental Monitoring and Assessment Program (EMAP) to monitoring of fish tissue contaminants is shown to have utility for regional assessment, and for discrimination of regional from local contamination. The survey sampling design employed EMAP can be used...

  8. Statewide water-quality network for Massachusetts

    USGS Publications Warehouse

    Desimone, Leslie A.; Steeves, Peter A.; Zimmerman, Marc James

    2001-01-01

    A water-quality monitoring program is proposed that would provide data to meet multiple information needs of Massachusetts agencies and other users concerned with the condition of the State's water resources. The program was designed by the U.S. Geological Survey and the Massachusetts Department of Environmental Protection, Division of Watershed Management, with input from many organizations involved in water-quality monitoring in the State, and focuses on inland surface waters (streams and lakes). The proposed monitoring program consists of several components, or tiers, which are defined in terms of specific monitoring objectives, and is intended to complement the Massachusetts Watershed Initiative (MWI) basin assessments. Several components were developed using the Neponset River Basin in eastern Massachusetts as a pilot area, or otherwise make use of data from and sampling approaches used in that basin as part of a MWI pilot assessment in 1994. To guide development of the monitoring program, reviews were conducted of general principles of network design, including monitoring objectives and approaches, and of ongoing monitoring activities of Massachusetts State agencies.Network tiers described in this report are primarily (1) a statewide, basin-based assessment of existing surface-water-quality conditions, and (2) a fixed-station network for determining contaminant loads carried by major rivers. Other components, including (3) targeted programs for hot-spot monitoring and other objectives, and (4) compliance monitoring, also are discussed. Monitoring programs for the development of Total Maximum Daily Loads for specific water bodies, which would constitute another tier of the network, are being developed separately and are not described in this report. The basin-based assessment of existing conditions is designed to provide information on the status of surface waters with respect to State water-quality standards and designated uses in accordance with the reporting requirements [Section 305(b)] of the Clean Water Act (CWA). Geographic Information System (GIS)-based procedures were developed to inventory streams and lakes in a basin for these purposes. Several monitoring approaches for this tier and their associated resource requirements were investigated. Analysis of the Neponset Basin for this purpose demonstrated that the large number of sites needed in order for all the small streams in a basin to be sampled (about half of stream miles in the basin were headwater or first-order streams) pose substantial resource-based problems for a comprehensive assessment of existing conditions. The many lakes pose similar problems. Thus, a design is presented in which probabilistic monitoring of small streams is combined with deterministic or targeted monitoring of large streams and lakes to meet CWA requirements and to provide data for other information needs of Massachusetts regulatory agencies and MWI teams.The fixed-station network is designed to permit the determination of contaminant loads carried by the State's major rivers to sensitive inland and coastal receiving waters and across State boundaries. Sampling at 19 proposed sites in 17 of the 27 major basins in Massachusetts would provide information on contaminant loads from 67 percent of the total land area of the State; unsampled areas are primarily coastal areas drained by many small streams that would be impossible to sample within realistic resource limitations. Strategies for hot-spot monitoring, a targeted monitoring program focused on identifying contaminant sources, are described with reference to an analysis of the bacteria sampling program of the 1994 Neponset Basin assessment. Finally, major discharge sites permitted under the National Pollutant Discharge Elimination System (NPDES) were evaluated as a basis for ambient water-quality monitoring. The discharge sites are well distributed geographically among basins, but are primarily on large rivers (two-thirds or more

  9. Liquid chromatographic method for determining the concentration of bisazir in water

    USGS Publications Warehouse

    Scholefield, Ronald J.; Slaght, Karen S.; Allen, John L.

    1997-01-01

    Barrier dams, traps, and lampricides are the techniques currently used by the Great Lakes Fishery Commission to control sea lampreys (Petromyzon marinus) in the Great Lakes. To augment these control techniques, a sterile-male-release research program was initiated at the Lake Huron Biological Station. Male sea lampreys were sterilized by intraperitoneal injection of the chemical sterilant P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir). An analytical method was needed to quantitate the concentration of bisazir in water and to routinely verify that bisazir (>25 μg/L) does not persist in the treated effluent discharged from the sterilization facility to Lake Huron. A rapid, accurate, and sensitive liquid chromatographic (LC) method was developed for determining bisazir in water. Bisazir was dissolved in Lake Huron water; extracted and concentrated on a C18 solid-phase extraction column; eluted with methanol; and quantitated by reversed-phase LC using a C18 column, a mobile phase of 70% water and 30% methanol (v/v), and UV detection (205 nm). Bisazir retention time was 7-8 min; total run time was about 20 min. Method detection limit for bisazir dissolved in Lake Huron water was about 15 μg/L. Recovery from Lake Huron water fortified with bisazir at 100 μg/L was 94% (95% confidence interval, 90.2-98.2%).

  10. Water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the lower White River and the Puyallup River estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The lower limit allowed by the water-quality standard is 8 mg/L. Concentrations of dissolved oxygen measured in a cross section of the Puyallup River estuary at high tide on September 12, 2002, ranged from 9.9 to 10.2 mg/L in fresh water at the surface and from 8.1 to 8.4 mg/L in salt water near the riverbed. These values were within limits set by Washington State water-quality standards for dissolved oxygen of 8 mg/L in fresh water and 6 mg/L in marine water.

  11. A sampling design and model for estimating abundance of Nile crocodiles while accounting for heterogeneity of detectability of multiple observers

    USGS Publications Warehouse

    Shirley, Matthew H.; Dorazio, Robert M.; Abassery, Ekramy; Elhady, Amr A.; Mekki, Mohammed S.; Asran, Hosni H.

    2012-01-01

    As part of the development of a management program for Nile crocodiles in Lake Nasser, Egypt, we used a dependent double-observer sampling protocol with multiple observers to compute estimates of population size. To analyze the data, we developed a hierarchical model that allowed us to assess variation in detection probabilities among observers and survey dates, as well as account for variation in crocodile abundance among sites and habitats. We conducted surveys from July 2008-June 2009 in 15 areas of Lake Nasser that were representative of 3 main habitat categories. During these surveys, we sampled 1,086 km of lake shore wherein we detected 386 crocodiles. Analysis of the data revealed significant variability in both inter- and intra-observer detection probabilities. Our raw encounter rate was 0.355 crocodiles/km. When we accounted for observer effects and habitat, we estimated a surface population abundance of 2,581 (2,239-2,987, 95% credible intervals) crocodiles in Lake Nasser. Our results underscore the importance of well-trained, experienced monitoring personnel in order to decrease heterogeneity in intra-observer detection probability and to better detect changes in the population based on survey indices. This study will assist the Egyptian government establish a monitoring program as an integral part of future crocodile harvest activities in Lake Nasser

  12. Evaluation of Koontz Lake (North Indiana) Ecological Restoration Options - Comparison of Dredging and Aeration - and Broad Application to USACE Projects

    DTIC Science & Technology

    2018-01-01

    Restoration Options – Comparison of Dredging and Aeration – and Broad Application to USACE Projects En vi ro nm en ta l L ab or at or y Victor F. Medina... Projects Victor F. Medina, Kaytee Pokrzywinski, and Edith Martinez-Guerra Environmental Laboratory U.S. Army Engineer Research and Development...Operations Technical Support Program 3909 Halls Ferry Road Vicksburg, MS 39180 Under Project No. TA2017-002, “Evaluation of Koontz Lake (Indiana

  13. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    EPA Science Inventory

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  14. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    NASA Astrophysics Data System (ADS)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are removed through addition of Alum to the influent stream to the STPs whereas Nitrates reduction is achieved by sending the treated wastewater from the STP through a wetland before entering the lake. STP Capacity ranging from 2-10 MLD have been recommended depending on lake water budget of individual lake and considering surrounding urbanization. Sediment nutrient data has helped for deciding the need for dredging of lake bed for removal of phosphates. Key Words: Lake water budget, Eutrophication, Trophic Status Index, Urban Lakes Restoration

  15. A Great Lakes atmospheric mercury monitoring network: evaluation and design

    USGS Publications Warehouse

    Risch, Martin R.; Kenski, Donna M.; ,; David, A.

    2014-01-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg emissions and areas with high average weekly Hg wet deposition. In a statistical analysis, relatively strong, positive correlations in the wet deposition of Hg and sulfate were shown for co-located NADP Hg-monitoring and acid-rain monitoring sites in the Region. This finding indicated that efficiency in regional Hg monitoring can be improved by adding new Hg monitoring to existing NADP acid-rain monitoring sites. Implementation of the GLAMM network design will require Hg-wet-deposition monitoring to be: (a) continued at 12 MDN sites active in 2013 and (b) restarted or added at 9 NADP sites where it is absent in 2013. Ongoing discussions between the states in the Great Lakes Region, the Lake Michigan Air Directors Consortium (a regional planning entity), the NADP, the U.S. Environmental Protection Agency, and the U.S. Geological Survey are needed for coordinating the GLAMM network.

  16. Biological effects-based tools for monitoring impacted surface waters in the Great Lakes: a multiagency program in support of the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    Ekman, Drew R.; Ankley, Gerald T.; Blazer, Vicki; Collette, Timothy W.; Garcia-Reyero, Natàlia; Iwanowicz, Luke R.; Jorgensen, Zachary G.; Lee, Kathy E.; Mazik, Pat M.; Miller, David H.; Perkins, Edward J.; Smith, Edwin T.; Tietge, Joseph E.; Villeneuve, Daniel L.

    2013-01-01

    There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particularly with regard to monitoring potentially toxic chemicals and assessing Areas of Concern (AOCs), as envisioned by the Great Lakes Restoration Initiative (GLRI). Our strategy includes use of both targeted and open-ended/discovery techniques, as appropriate to the amount of information available, to guide a priori end point and/or assay selection. Specifically, a combination of in vivo and in vitro tools is employed by using both wild and caged fish (in vivo), and a variety of receptor- and cell-based assays (in vitro). We employ a work flow that progressively emphasizes in vitro tools for long-term or high-intensity monitoring because of their greater practicality (e.g., lower cost, labor) and relying on in vivo assays for initial surveillance and verification. Our strategy takes advantage of the strengths of a diversity of tools, balancing the depth, breadth, and specificity of information they provide against their costs, transferability, and practicality. Finally, a series of illustrative scenarios is examined that align EBMS options with management goals to illustrate the adaptability and scaling of EBMS approaches and how they can be used in management decisions.

  17. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York

    NASA Astrophysics Data System (ADS)

    Fakhraei, Habibollah; Driscoll, Charles T.; Selvendiran, Pranesh; DePinto, Joseph V.; Bloomfield, Jay; Quinn, Scott; Rowell, H. Chandler

    2014-10-01

    Acidic deposition has impaired acid-sensitive surface waters in the Adirondack region of New York by decreasing pH and acid neutralizing capacity (ANC). In spite of air quality programs over past decades, 128 lakes in the Adirondacks were classified as “impaired” under Section 303(d) of the Clean Water Act in 2010 due to elevated acidity. The biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric sulfur (S) and nitrogen (N) deposition to changes in lake water chemistry. The model was calibrated and confirmed using observed soil and lake water chemistry data and then was applied to calculate the maximum atmospheric deposition that the impaired lakes can receive while still achieving ANC targets. Two targets of ANC were used to characterize the recovery of acid-impaired lakes: 11 and 20 μeq L-1. Of the 128 acid-impaired lakes, 97 currently have ANC values below the target value of 20 μeq L-1 and 83 are below 11 μeq L-1. This study indicates that a moderate control scenario (i.e., 60% decrease from the current atmospheric S load) is projected to recover the ANC of lakes at a mean rate of 0.18 and 0.05 μeq L-1 yr-1 during the periods 2022-2050 and 2050-2200, respectively. The total maximum daily load (TMDL) of acidity corresponding to this moderate control scenario was estimated to be 7.9 meq S m-2 yr-1 which includes a 10% margin of safety.

  18. Water quality, hydrology, and simulated response to changes in phosphorus loading of Mercer Lake, Iron County, Wisconsin, with special emphasis on the effects of wastewater discharges

    USGS Publications Warehouse

    Robertson, Dale M.; Garn, Herbert S.; Rose, William J.; Juckem, Paul F.; Reneau, Paul C.

    2012-01-01

    Mercer Lake is a relatively shallow drainage lake in north-central Wisconsin. The area near the lake has gone through many changes over the past century, including urbanization and industrial development. To try to improve the water quality of the lake, actions have been taken, such as removal of the lumber mill and diversion of all effluent from the sewage treatment plant away from the lake; however, it is uncertain how these actions have affected water quality. Mercer Lake area residents and authorities would like to continue to try to improve the water quality of the lake; however, they would like to place their efforts in the actions that will have the most beneficial effects. To provide a better understanding of the factors affecting the water quality of Mercer Lake, a detailed study of the lake and its watershed was conducted by the U.S. Geological Survey in collaboration with the Mercer Lake Association. The purposes of the study were to describe the water quality of the lake and the composition of its sediments; quantify the sources of water and phosphorus loading to the lake, including sources associated with wastewater discharges; and evaluate the effects of past and future changes in phosphorus inputs on the water quality of the lake using eutrophication models (models that simulate changes in phosphorus and algae concentrations and water clarity in the lake). Based on analyses of sediment cores and monitoring data collected from the lake, the water quality of Mercer Lake appears to have degraded as a result of the activities in its watershed over the past 100 years. The water quality appears to have improved, however, since a sewage treatment plant was constructed in 1965 and its effluent was routed away from the lake in 1995. Since 2000, when a more consistent monitoring program began, the water quality of the lake appears to have changed very little. During the two monitoring years (MY) 2008-09, the average summer near-surface concentration of total phosphorus was 0.023 mg/L, indicating the lake is borderline mesotrophic-eutrophic, or has moderate to high concentrations of phosphorus, whereas the average summer chlorophyll a concentration was 3.3 mg/L and water clarity, as measured with a Secchi depth, was 10.4 ft, both indicating mesotrophic conditions or that the lake has a moderate amount of algae and water clarity. Although actions have been taken to eliminate the wastewater discharges, the bottom sediment still has slightly elevated concentrations of several pollutants from wastewater discharges, lumber operations, and roadway drainage, and a few naturally occurring metals (such as iron). None of the concentrations, however, were high enough above the defined thresholds to be of concern. Based on nitrogen to phosphorus ratios, the productivity (algal growth) in Mercer Lake should typically be limited by phosphorus; therefore, understanding the phosphorus input to the lake is important when management efforts to improve or prevent degradation of the lake water quality are considered. Total inputs of phosphorus to Mercer Lake were directly estimated for MY 2008-09 at about 340 lb/yr and for a recent year with more typical hydrology at about 475 lb/yr. During these years, the largest sources of phosphorus were from Little Turtle Inlet, which contributed about 45 percent, and the drainage area near the lake containing the adjacent urban and residential developments, which contributed about 24 percent. Prior to 1965, when there was no sewage treatment plant and septic systems and other untreated systems contributed nutrients to the watershed, phosphorus loadings were estimated to be about 71 percent higher than during around 2009. In 1965, a sewage treatment plant was built, but its effluent was released in the downstream end of the lake. Depending on various assumptions on how much effluent was retained in the lake, phosphorus inputs from wastewater may have ranged from 0 to 342 lb. Future highway and stormwater improvements have been identified in the Mercer Infrastructure Improvement Project, and if they are done with the proposed best management practices, then phosphorus inputs to the lake may decrease by about 40 lb. Eutrophication models [Canfield and Bachman model (1981) and Carlson Trophic State Index equations (1977)] were used to predict how the water quality of Mercer Lake should respond to changes in phosphorus loading. A relatively linear response was found between phosphorus loading and phosphorus and chlorophyll a concentrations in the lake, with changes in phosphorus concentrations being slightly less (about 80 percent) and changes in chlorophyll a concentrations being slightly more (about 120 percent) than the changes in phosphorus loadings to the lake. Water clarity, indicated by Secchi depths, responded more to decreases in phosphorus loading than to increases in loading. Results from the eutrophication models indicated that the lake should have been negatively affected by the wastewater discharges. Prior to 1965, when there was no sewage treatment plant effluent and inputs from the septic systems and other untreated systems were thought to be high, the lake should have been eutrophic; near the surface, average phosphorus concentrations were almost 0.035 mg/L, chlorophyll a concentrations were about 7 μg/L, and Secchi depths were about 6 ft, which agreed with the shallower Secchi depths during this time estimated from the sediment-core analysis. The models indicated that between 1965 and 1995, when the lake retained some of the effluent from the new sewage treatment plant, water quality should have been between the conditions estimated prior to 1965 and what was expected during typical hydrologic conditions around MY 2008-09. The models also indicated that if the future Mercer Infrastructure Improvement Project is conducted with the best management practices as proposed, the water quality in the lake could improve slightly from that measured during 2006-10. Because of the small amount of phosphorus that is presently input into Mercer Lake any additional phosphorus added to the lake could degrade water quality; therefore, management actions can usefully focus on minimizing future phosphorus inputs. Phosphorus released from the sediments of a degraded lake often delays its response to decreases in external phosphorus loading, especially in shallow, frequently mixed systems. Mercer Lake, however, remains stratified throughout most of the summer, and phosphorus released from the sediments represents only about 6 percent, or a small fraction, of the total phosphorus load to the lake. Therefore, the phosphorus trapped in the sediments should minimally affect the long-term water quality of the lake and should not delay the response in its productivity to future changes in nutrient loading from its watershed.

  19. Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water - Tamil Nadu, India.

    PubMed

    Sunantha, Ganesan; Vasudevan, Namasivayam

    2016-08-15

    As an emerging class of environmentally persistent organic pollutants, perfluorinated compounds (PFCs), particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); have been universally found in the environment. Wastewater and untreated effluents are likely the major causes for the accumulation of PFCs in surface water. There are very few reports on the contamination of PFCs in the developing countries, particularly in India. This study reports the quantitative analysis of PFOA and PFOS in Noyyal, Cauvery, and also lakes in and around Chennai, using Ultra-Fast liquid chromatograph. The concentration of PFOA and PFOS ranged from 4 to 93ng/L and 3 to 29ng/L, respectively. The concentration of PFOS was below detectable limit in Cauvery River. A reliable concentration of PFOA was recorded at all sites of River Cauvery (5ng/L). The present study could be useful for the assessment of future monitoring programs of PFOA and PFOS in the surface water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Water quality (2000-08) and historical phosphorus concentrations from paleolimnological studies of Swamp and Speckled Trout Lakes, Grand Portage Reservation, northeastern Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Jones, Perry M.; Edlund, Mark B.; Ramstack, Joy M.

    2010-01-01

    A paleolimnological approach was taken to aid the Grand Portage Reservation, in northeastern Minnesota, in determining reference conditions for lakes on the reservation. The U.S. Geological Survey, in cooperation with the Grand Portage Band of Chippewa Indians and the Science Museum of Minnesota, conducted a study to describe water quality (2000-08) and historical total phosphorus concentrations (approximately 1781-2006) for Swamp and Speckled Trout Lakes. Results from this study may be used as a guide in establishing nutrient criteria in these and other lakes on the Grand Portage Reservation. Historical phosphorus concentrations were inferred through paleolimnological reconstruction methods involving diatom analysis and lead-210 dating of lake-sediment cores. Historical diatom-inferred total phosphorus concentrations in Swamp Lake ranged from 0.017 to 0.025 milligrams per liter (mg/L) based on diatom assemblages in sediment samples dated 1781-2005. Historical diatom-inferred total phosphorus concentrations in Speckled Trout Lake ranged from 0.008 to 0.014 mg/L based on diatom assemblages in sediment samples dated 1825-2006. In both lakes, historical changes in diatom-inferred total phosphorus concentrations did not exceed model error estimates, indicating that there has been minimal change in total phosphorus concentrations in the two lakes over about two centuries. Nutrient concentrations in monthly water samples collected May through October during 2000, 2002, 2004, 2006, and 2008 were compared to the diatom-inferred total phosphorus concentrations. Total phosphorus concentrations from water samples collected from Swamp Lake during 2000-08 ranged from less than 0.002 to 0.160 mg/L (median= 0.023 mg/L) compared to diatom-inferred total phosphorus concentrations of 0.018 to 0.020 mg/L for 2002 to 2005. Total phosphorus concentrations in water samples collected from Speckled Trout Lake during 2000-08 were similar to those of Swamp Lake, ranging from less than 0.002 to 0.147 mg/L (median=0.012 mg/L), whereas the diatom-inferred total phosphorus concentrations were smaller, ranging from 0.009 to 0.010 mg/L for 2003 to 2006. Differences in total phosphorus concentrations between the two lakes may be because of differences in watershed characteristics, particularly the number of wetlands in the two watersheds. Similarities between recent total phosphorus concentrations in water-quality samples and diatom-inferred total phosphorus indicate that diatom-inferred phosphorus reconstructions might be used to help establish reference conditions. Nutrient criteria for Grand Portage Reservation lakes may be established when a sampling program is designed to ensure representative phosphorus concentrations in water samples are comparable to diatom-inferred concentrations.

  1. Paper birch (Wiigwaas) of the Lake States, 1980-2010

    Treesearch

    W. Keith Moser; Mark H. Hansen; Dale Gormanson; Jonathan Gilbert; Alexandra Wrobel; Marla R. Emery; Michael J. Dockry

    2015-01-01

    Data on paper birch (Betula papyrifera L.; wiigwaas in the Ojibwe language), collected by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service on forested lands in the Great Lakes region (Michigan, Minnesota, and Wisconsin) from 1980 through 2010, are reported. Also presented are results and analysis of a supplemental inventory...

  2. Using Caffeine as a Water Quality Indicator in the Ambient Monitoring Program for Third Fork Creek Watershed, Durham, North Carolina

    PubMed Central

    Spence, Porché L

    2015-01-01

    Caffeine has been suggested as a chemical indicator for domestic wastewater in freshwater systems, although it is not included in water quality monitoring programs. The Third Fork Creek watershed in Durham, NC, is highly urbanized, with a history of receiving untreated wastewater from leaking and overflowing sanitary sewers. The poor water quality originating in the Third Fork Creek watershed threatens its intended uses and jeopardizes drinking water, aquatic life, and recreational activities provided by Jordan Lake. Organic waste contaminants have been detected in both Third Fork Creek watershed and Jordan Lake; however, the sampling periods were temporary, resulting in a few samples collected during nonstorm periods. It is recommended that (1) the concentration of caffeine and other organic waste contaminants are determined during storm and nonstorm periods and (2) caffeine is monitored regularly with traditional water quality indicators to evaluate the health of Third Fork Creek watershed. PMID:26157335

  3. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water quality in the reservoir due to inflows, point and diffuse inputs, and reservoir hydromorphology. Moreover, hot spots were determined based on kriging and standard error maps. Locations of minimum number of sampling points that represent the actual spatial structure of DO distribution in the Porsuk Dam Reservoir

  4. Mapping the information landscape: Discerning peaks and valleys for ecological monitoring

    USGS Publications Warehouse

    Moniz, L.J.; Nichols, J.D.; Nichols, J.M.

    2007-01-01

    We investigate previously unreported phenomena that have a potentially significant impact on the design of surveillance monitoring programs for ecological systems. Ecological monitoring practitioners have long recognized that different species are differentially informative of a system?s dynamics, as codified in the well-known concepts of indicator or keystone species. Using a novel combination of analysis techniques from nonlinear dynamics, we describe marked variation among spatial sites in information content with respect to system dynamics in the entire region. We first observed these phenomena in a spatially extended predator?prey model, but we observed strikingly similar features in verified water-level data from a NOAA/NOS Great Lakes monitoring program. We suggest that these features may be widespread and the design of surveillance monitoring programs should reflect knowledge of their existence.

  5. Remote sensing inputs to National Model Implementation Program for water resources quality improvement

    NASA Technical Reports Server (NTRS)

    Eidenshink, J. C.; Schmer, F. A.

    1979-01-01

    The Lake Herman watershed in southeastern South Dakota has been selected as one of seven water resources systems in the United States for involvement in the National Model Implementation Program (MIP). MIP is a pilot program initiated to illustrate the effectiveness of existing water resources quality improvement programs. The Remote Sensing Institute (RSI) at South Dakota State University has produced a computerized geographic information system for the Lake Herman watershed. All components necessary for the monitoring and evaluation process were included in the data base. The computerized data were used to produce thematic maps and tabular data for the land cover and soil classes within the watershed. These data are being utilized operationally by SCS resource personnel for planning and management purposes.

  6. National Dam Safety Program. Bray Lake Dam (MO 30098), Osage - Gasconade Basin, Phelps County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-12-01

    Geologist Applied Engineering & Urban Geology Missouri Geological Survey May 6, 1974 Sheet 6, Appendix B For file Only DEAN LAKE SITE (Formerly Bray...time to point out these problems that you have been discussing. ,J. Hadley Williams Geologist and Chief Applied Engineering & Urban Geology Missouri...Geologist Applied Engineering & Urban Geology Missouri Geological Survey June 27, 1974 Sheet 9, Appendix B FOR FILE ONLY L • BRAYS LAKE RECONNAISSANCE PHELPS

  7. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovrak, Jon; Combs, Mitch

    2004-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operation and evaluation. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribes formmore » the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery. The LRHCT also serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. Since 1994 the kokanee fingerling program has changed to yearling releases. By utilizing both the hatcheries and additional net pens, up to 1,000,000 kokanee yearlings can be reared and released. The construction and operation of twenty net pens in 2001 enabled the increased production. Another significant change has been to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native tributary stocks where available for propagation into Upper Columbia River Basin waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The investigations on the lake also suggest that the hatchery and net pen programs have enhanced the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2003 Fourth Annual Two Rivers Trout Derby was again a great success. The harvest and data collection were the highest level to date with 1,668 rainbow trout and 416 kokanee salmon caught. The fishermen continue to praise the volunteer net pen program and the hatchery efforts as 90% of the rainbows and 93% of the kokanee caught were of hatchery origin (Lee, 2003).« less

  8. Sampling protocol for monitoring abiotic and biotic characteristics of mountain ponds and lakes

    USGS Publications Warehouse

    Hoffman, Robert L.; Tyler, Torrey J.; Larson, Gary L.; Adams, Michael J.; Wente, Wendy; Galvan, Stephanie

    2005-01-01

    This document describes field techniques and procedures used for sampling mountain ponds and lakes. These techniques and procedures will be used primarily to monitor, as part of long-term programs in National Parks and other protected areas, the abiotic and biotic characteristics of naturally occurring permanent montane lentic systems up to 75 ha in surface area. However, the techniques and procedures described herein also can be used to sample temporary or ephemeral montane lentic sites. Each Standard Operating Procedure (SOP) section addresses a specific component of the limnological investigation, and describes in detail field sampling methods pertaining to parameters to be measured for each component.

  9. Distribution and diversity of diatom assemblages in surficial sediments of shallow lakes in Wapusk National Park (Manitoba, Canada) region of the Hudson Bay Lowlands.

    PubMed

    Jacques, Olivier; Bouchard, Frédéric; MacDonald, Lauren A; Hall, Roland I; Wolfe, Brent B; Pienitz, Reinhard

    2016-07-01

    The hydrology of shallow lakes (and ponds) located in the western Hudson Bay Lowlands (HBL) is sensitive to climate warming and associated permafrost thaw. However, their biological characteristics are poorly known, which hampers effective aquatic ecosystem monitoring. Located in northern Manitoba along the southwestern coast of Hudson Bay, Wapusk National Park (WNP) encompasses numerous shallow lakes representative of the subarctic zone. We analyzed the distribution and diversity of diatom (microscopic algae; class Bacillariophyceae) assemblages in surficial sediments of 33 lakes located in three different ecozones spanning a vegetation gradient, from NE to SW: the Coastal Fen (CF), the Interior Peat Plateau (IPP), and the Boreal Spruce Forest (BSF). We found significant differences (P < 0.05) in diatom community composition between CF and IPP lakes, and CF and BSF lakes, but not between IPP and BSF lakes. These results are consistent with water chemistry measurements, which indicated distinct limnological conditions for CF lakes. Diatom communities in CF lakes were generally dominated by alkaliphilous taxa typical of waters with medium to high conductivity, such as Nitzschia denticula. In contrast, several IPP and BSF lakes were dominated by acidophilous and circumneutral diatom taxa with preference for low conductivity (e.g., Tabellaria flocculosa, Eunotia mucophila, E. necompacta var. vixcompacta). This exploratory survey provides a first detailed inventory of the diatom assemblages in the WNP region needed for monitoring programs to detect changes in shallow lake ecosystems and ecozonal shifts in response to climate variations.

  10. Evaluation of water-quality data and monitoring program for Lake Travis, near Austin, Texas

    USGS Publications Warehouse

    Rast, Walter; Slade, Raymond M.

    1998-01-01

    The multiple-comparison tests indicate that, for some constituents, a single sampling site for a constituent or property might adequately characterize the water quality of Lake Travis for that constituent or property. However, multiple sampling sites are required to provide information of sufficient temporal and spatial resolution to accurately evaluate other water-quality constituents for the reservoir. For example, the water-quality data from surface samples and from bottom samples indicate that nutrients (nitrogen, phosphorus) might require additional sampling sites for a more accurate characterization of their in-lake dynamics.

  11. 40 CFR 141.706 - Reporting source water monitoring results.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... separation. (2) Systems must report the following data elements for each E. coli analysis: Data element. 1.... Source type (flowing stream, lake/reservoir, GWUDI). 7. E. coli/100 mL. 8. Turbidity. 1 1 Systems serving... to report turbidity with their E. coli results. ...

  12. 40 CFR 141.706 - Reporting source water monitoring results.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... separation. (2) Systems must report the following data elements for each E. coli analysis: Data element. 1.... Source type (flowing stream, lake/reservoir, GWUDI). 7. E. coli/100 mL. 8. Turbidity. 1 1 Systems serving... to report turbidity with their E. coli results. ...

  13. Alpine glacier-fed turbid lakes are discontinuous cold polymictic rather than dimictic

    PubMed Central

    Peter, Hannes; Sommaruga, Ruben

    2017-01-01

    Abstract Glacier retreat as a consequence of climate change influences freshwater ecosystems in manifold ways, yet the physical and chemical bases of these effects are poorly studied. Here, we characterize how water temperature differs between alpine lakes with and without direct glacier influence on seasonal and diurnal timescales. Using high temporal resolution monitoring of temperature in 4 lakes located in a catchment influenced by glacier retreat, we reported unexpectedly high surface temperatures, even in proglacial lakes located 2600 m a.s.l. Cold glacier meltwater and low nighttime air temperatures caused a distinct diurnal pattern of water temperature in the water column of glacier-influenced lakes. Precipitation onto glacier surfaces apparently leads to rapid cooling of the glacier-fed lakes and disrupts the thermal stratification with several mixing events during the summer. Taken together, these mechanisms contribute to the unique seasonal and diurnal dynamics of glacier-influenced lakes that contrast with the typical dimictic pattern of clear alpine lakes and represent an example of discontinuous cold polymictic lake type. This work contributes to the basic description of how climate and meteorology affect the physical properties of an increasingly common lake type. PMID:28690780

  14. Methane emissions from western Canadian peatland lakes: assessing interactive effects of groundwater connectivity and permafrost thaw

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Riechert, C.; Estop Aragones, C.; Broder, T.; Bastviken, D.; Knorr, K. H.; Olefeldt, D.

    2017-12-01

    Rising temperatures and the submergence of recently thawed permafrost into lakes has been identified as a major driver of methane (CH4) emissions in northern regions. Lakes on the vast Taiga Plains in western Canada represent a vital unknown with respect to CH4 fluxes and their sensitivity to permafrost thaw. The Taiga Plains has several characteristics that could influence magnitude and controls on lake CH4 emissions in comparison to other regions, including high soil organic carbon stores, distinct permafrost history, and complex groundwater interactions that influence availability of terminal electron acceptor concentrations among lakes. The goal of this research is to describe the similarities and differences in processes governing lake CH4 emissions between western Canada and other northern regions. We carried out biweekly diffusive and ebullition flux measurements and monitored sediment redox profiles from two lakes near the border between Alberta and the Northwest Territories. The two lakes differ in contributions of surface water and groundwater inputs, respectively. Floating chamber-based fluxes were measured leading from the edges to the centers of the lakes from ice-out in early May until ice-cover in the fall. Preliminary redox profile analyses suggest the groundwater-fed lake has extremely high concentrations of sulfides (>200 µmol L-1) down to a depth of 30 cm, while the surface water lake has little to no sulfide, but high concentrations of reduced iron (>200 µmol L-1 ). Despite high sulfide concentrations in the sediments, the groundwater-fed lake had generally higher diffusive fluxes compared to the surface water lake, but there were no differences between the center and along the actively collapsing thermokarst edges. However, ebullition fluxes were highest from a recently thawed lake edge compared to the center of the lake and stable, non-thaw influenced edges. The results of this project will help improve current regional CH4 models by including ground-based methane flux measurements from the vast and previously unstudied region of western Canada.

  15. Hydrology, water quality, and phosphorus loading of Kirby Lake, Barron County, Wisconsin

    USGS Publications Warehouse

    Rose, William J.; Robertson, Dale M.

    1998-01-01

    In 1992, residents near Kirby Lake, located about five miles northwest of Cumberland, in Barron County, Wisconsin, formed the Kirby Lake Management District. The Lake District immediately began to gather information needed for the preparation of a comprehensive lake-management plan that would be used to protect the natural and recreational assets of the lake. The Lake District completed a land-use inventory of the watershed and an evaluation of available lake water-quality data. The land-use data were used to assess the potential contribution of nutrients to the lake from the watershed. The evaluation of lake water-quality data, which were collected as part of the Wisconsin Department of Natural Resources (WDNR) Self-Help Monitoring Program, indicated the lake has relatively good water quality. Before a comprehensive lake-management plan could be prepared, however, a better understanding of several aspects of the lake and its surroundings was needed. To address those aspects including the definition of the lake's hydrology and the principal sources of nutrients, and the relation of the lake's water quality to nutrient loading the U.S. Geological Survey, in cooperation with the Lake District and the WDNR (through a Lake Management Planning Grant), conducted a study of Kirby Lake and its watershed. This Fact Sheet presents the results of that study.

  16. Laser-induced fluorescence emission (L.I.F.E.): in situ nondestructive detection of microbial life in the ice covers of Antarctic lakes.

    PubMed

    Storrie-Lombardi, Michael C; Sattler, Birgit

    2009-09-01

    Laser-induced fluorescence emission (L.I.F.E.) images were obtained in situ following 532 nm excitation of cryoconite assemblages in the ice covers of annual and perennially frozen Antarctic lakes during the 2008 Tawani International Expedition to Schirmacher Oasis and Lake Untersee in Dronning Maud Land, Antarctica. Laser targeting of a single millimeter-scale cryoconite results in multiple neighboring excitation events secondary to ice/air interface reflection and refraction in the bubbles surrounding the primary target. Laser excitation at 532 nm of cyanobacteria-dominated assemblages produced red and infrared autofluorescence activity attributed to the presence of phycoerythrin photosynthetic pigments. The method avoids destruction of individual target organisms and does not require the disruption of either the structure of the microbial community or the surrounding ice matrix. L.I.F.E. survey strategies described may be of interest for orbital monitoring of photosynthetic primary productivity in polar and alpine glaciers, ice sheets, snow, and lake ice of Earth's cryosphere. The findings open up the possibility of searching from either a rover or from orbit for signs of life in the polar regions of Mars and the frozen regions of exoplanets in neighboring star systems.

  17. Long-term monitoring of growth in the Eastern Elliptio, Elliptio complanata (Bivalvia: Unionidae), in Rhode Island: A transplant experiment

    USGS Publications Warehouse

    Kesler, D.H.; Newton, T.J.; Green, L.

    2007-01-01

    The lengths of marked specimens of the freshwater mussel, Eastern Elliptio (Elliptio complanata [Lightfoot 1786]), were monitored annually in 3 lakes in Rhode Island, USA, from 1991 to 2005. Mussels growing in Worden Pond showed a change in mean shell length of only 4.3 mm over 14 y, whereas mussel growth in 2 nearby lakes was 3 to 8x greater than growth in Worden Pond over the same time period. L???, the length at which shell growth stops, was significantly different (p < 0.001) among lakes and ranged from 60.5 to 87.4 mm. Transplant experiments revealed that mussels moved to Worden Pond stopped growing, whereas mussels moved from Worden Pond to the 2 other lakes grew at rates similar to the rates observed for resident mussels in the 2 lakes. Standard water-quality measures did not explain the observed growth cessation and lower condition indices of mussels in Worden Pond. Our growth data are consistent with food limitation. The consistent slow growth of E. complanata in Worden Pond, without high mortality, and its ability to increase growth when placed in environments more favorable than Worden Pond, suggests both growth plasticity and longevity in these animals. ?? 2007 by The North American Benthological Society.

  18. Annual glacier dammed lake drainage in Zackenberg, Northeast Greenland

    NASA Astrophysics Data System (ADS)

    Lane, Timothy; Adamson, Kathryn; Matthews, Tom

    2016-04-01

    A.P. Olsen is a 295 km2 ice cap in the Zackenberg region of Northeast Greenland (74.6° N, 21.5° W), 35 km from the ZERO Zackenberg Research Station. The ice cap lies on a gneissic plateau, covering an elevation of 200 to 1450 m a.s.l. A.P. Olsen mass balance has been monitored since 2008 and reconstructed for the period 1995-2007. Meltwater from this ice cap drains into the Zackenberg River, and into Young Sund via the Zackenberg Delta. One outlet dams a c. 0.8 km2 lake fed by the northern part of the ice cap. Observational data suggests this lake drains annually, flooding subglacially into the Zackenberg River. But the impacts of these flood events on the hydrology, sediment transfer, and geomorphology of the proglacial zone downstream have not been examined in detail. Understanding the impacts of glacial lake outburst flood events is important in the sensitive Arctic environment, where glacial change is rapid. We use Landsat scenes to reconstruct lake extent from 1999-2015. This is compared to Zackenberg River discharge measurements, available from the ZERO Zackenberg monitoring programme. These datasets are used to examine the nature and timing of flood events, and assess the impacts on the Zackenberg river downstream.

  19. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and nearshore runoff and 22 percent from atmospheric deposition. Because Silver Lake is hydraulically mounded above the local groundwater system, little or no input of phosphorus to the lake is from groundwater and septic systems. Silver Lake had previously been incorrectly described as a groundwater flowthrough lake. Phosphorus budgets were constructed for a series of dry years (low water levels) and a series of wet years (high water levels). About 6 times more phosphorus was input to the lake during wet years with high water levels than during the dry years. Phosphorus from erosion represented 13-20 percent of the phosphorus input during years with very high water levels. Results from the Canfield and Bachman eutrophication model and Carlson trophic state index equations demonstrated that water quality in Silver Lake directly responds to changes in external phosphorus input, with the percent change in chlorophyll a being about 80 percent of the percent change in total phosphorus input and the change in Secchi depth and total phosphorus concentrations being about 40 and 50 percent of the percent change in input, respectively. Therefore, changes in phosphorus input should impact water quality. Specific scenarios were simulated with the models to describe the effects of natural (climate-driven) and anthropogenic (human-induced) changes. Results of these scenarios demonstrated that several years of above-normal precipitation cause sustained high water levels and a degradation in water quality, part of which is due to erosion of the shoreline. Results also demonstrated that 1) changes in tributary and nearshore runoff have a dramatic effect on lake-water quality, 2) diverting water into the lake to increase the water level is expected to degrade the water quality, and 3) removal of water to decrease the water level of the lake is expected to have little effect on water quality. Fluctuations in water levels since 1967, when records began for the lake, are representative

  20. Regional breeding bird monitoring in Western Great Lakes National Forests

    Treesearch

    JoAnn Hanowski; Jim Lind; Nick Danz; Gerald Niemi; Tim Jones

    2005-01-01

    We established breeding bird monitoring programs in three National Forests in northern Minnesota (Superior and Chippewa in 1991) and northern Wisconsin (Chequamegon in 1992). A total of 134, 169, and 132 stands (1,272 survey points) have been surveyed annually in these forests through 2002. We examined trends in relative abundance for 53 species in the Chequamegon, 51...

  1. Impacts of climate-induced changes on the distribution of pesticides residues in water and sediment of Lake Naivasha, Kenya.

    PubMed

    Otieno, Peter O; Owuor, P Okinda; Lalah, Joseph O; Pfister, Gerd; Schramm, Karl-Werner

    2013-03-01

    This study reports evidence of increased chlorpyrifos contamination in sediment and water in Lake Naivasha following its intensive application in the horticultural farms in the catchment area. Analytical results show that levels of chlorpyrifos residues were influenced by climate-induced rainfall pattern with higher levels reported during period of heavy precipitation with significant decrease during low rainfall. On average, the levels ranged between 14.8 and 32.8 ng g(-1) in sediment during rainy season compared to a range of 8.5-16.6 ng g(-1) in the dry season. Additionally, the mean concentration of chlorpyrifos in water ranged between 8.61 and 22.4 μg L(-1) during rainy season and below detection limit (bdl) -13.6 μg L(-1) in dry season as quantified by enzyme-linked immunosorbent assay. Meanwhile, independent t test analysis indicated that there was significant difference in concentration at p ≤ 0.05 between the seasons with respect to sediment and water samples. This demonstrated that climate-induced variations had considerable influence on contamination. While diazinon and carbofuran were equally applied intensively, their levels were below the detection limit in the all the samples analyzed. ELISA results were validated by the capillary-HPLC photodiode-array detector instrument analysis, and statistical comparison showed no significant difference between them. It was evident that chlorpyrifos residues determination in water and sediment by ELISA can be a useful strategy in environmental management and monitoring program, and a complimentary analytical tool to high performance liquid chromatography. Levels of chlorpyrifos detected in sediment and water were found to exceed recommended criteria for protection of aquatic life and preservation of water quality and may be hazardous if not regularly monitored.

  2. National Dam Safety Program. Foxs Lake Dam (NJ00342), Passaic River Basin, Foxs Brook, Morris County, New Jersey. Phase 1 Inspection Report.

    DTIC Science & Technology

    1980-01-01

    c.6E RECEIVED :r. Robert L. Hardman , Chieff Fureau of Water Control N. J Dept. of Conservation & Economic Development Division of Water Policy...Supply Trenton, N. J. 08625 Dear mr. Hardman : re: Rockaway Park Lake Dam Application No. 93 With regard to your communications of April 26th and July 3rd...1968, please be advised that the Borough of Rockaway acquired Rockaway Park Lakes, the subject dam and surrounding shore area by Tax Foreclosure on

  3. KA-111, Phase C, M-1 Propellant Tests: Deflagration in Partial Confinement.

    DTIC Science & Technology

    1991-07-01

    DNA Test Director and Mr. R. !. Flory, Washington Research Center, was Program Coordinator. The DDESB, NDCS , and SSO Technical Monitors for Phase C...to simulate the chamber and access tunnel proportions of the Shallow Underground Tunnel /Chamber Explosion Test conducted at China Lake, CA, in 1988...The chamber and access tunnel at China Lake had the following dimensions (volume, cross-sectional area and length): Chamber: V. - 331.2 m 3 Tunnel : Vt

  4. Temporal and spatial trends in nutrient and sediment loading to Lake Tahoe, California-Nevada, USA

    USGS Publications Warehouse

    Coats, Robert; Lewis, Jack; Alvarez, Nancy L.; Arneson, Patricia

    2016-01-01

    Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.

  5. National Program for Inspection of Non-Federal Dams. Lost Wilderness Lake Southern Dam (Twining Pond Dam) (MA 00321), Farmington River Basin, Tolland, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1979-12-01

    11j11_1.25 1111.4 ~lL MICROCOPY RESOLUTION TEST CHAR’ N-’ fIFA N A I ANI Fl 0 Lf) FARMINGTON RIVER BASIN L TOLLAND, MASSACHUSETTS It LOST WILDERNESS LAKE...of *• Non-Federal Dams; use cover date for date of report. I. K EY WORDS (Contonue on reverse side I# noco..iny md idon ll y by block RiMI0ber) DAMS...It necessary and ~en1Y & y block mnmbovj The dam is an earthen embankment 440 ft. long and 27 ft. high with a drop inlet 7-: principal spillway

  6. Monitoring of adult Lost River and shortnose suckers in Clear Lake Reservoir, California, 2008–2010

    USGS Publications Warehouse

    Hewitt, David A.; Hayes, Brian S.

    2013-01-01

    Problems with inferring status and population dynamics from size composition data can be overcome by a robust capture-recapture program that follows the histories of PIT-tagged individuals. Inferences from such a program are currently hindered by poor detection rates during spawning seasons with low flows in Willow Creek, which indicate that a key assumption of capture-recapture models is violated. We suggest that the most straightforward solution to this issue would be to collect detection data during the spawning season using remote PIT tag antennas in the strait between the west and east lobes of the lake.

  7. SWOT Hydrology in the classroom

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. M.; Destaerke, D.; Butler, D. M.; Pavelsky, T.

    2014-12-01

    The Surface Water and Ocean Topography (SWOT) Mission Education Program will participate in the multinational, multiagency program, Global Learning and Observations to Benefit the Environment (GLOBE). GLOBE is a worldwide hands-on, primary and secondary school-based science and education community of over 24,000 schools in more than 100 countries. Over 1.5 million students have contributed more than 23 million measurements to the GLOBE database for use in inquiry-based science projects. The objectives of the program are to promote the teaching and learning of science; enhance environmental awareness, literacy and stewardship; and contribute to science research and environmental monitoring.SWOT will measure sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. This new SWOT-GLOBE partnership will focus on the limnology aspects of SWOT. These measurements will be useful in monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment.GLOBE's cadre of teachers are trained in five core areas of Earth system science, including hydrology. The SWOT Education teams at NASA and CNES are working with the GLOBE Program implementers to develop and promote a new protocol under the Hydrology topic area for students to measure attributes of surface water bodies that will support mission science objectives. This protocol will outline and describe a methodology to measure width and height of rivers and lakes.This new GLOBE protocol will be included in training to provide teachers with expertise and confidence in engaging students in this new scientific investigation. Performing this additional measurement will enhance GLOBE students experience in scientific investigation, and will provide useful measurements to SWOT researchers that can support the SWOT mission research goals.SWOT public engagement will involve communicating the value of its river and lake height measurements, lake water storage, and river discharge. This is also important to the GLOBE Program as curriculum integration of its hydrology measurements can be enhanced by strengthened ties to the concepts of watersheds and the hydrologic cycle. Understanding can also be increased of the relation of lake and river levels to drought and water supply.

  8. Monitoring change in Great Salt Lake

    USGS Publications Warehouse

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  9. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    Dileanis, Peter D.; Schwarzbach, S.E.; Bennett, Jewel

    1996-01-01

    The effect of irrigation drainage on the water quality and wildlife of the Klamath Basin in California and Oregon was evaluated during 1990-92 as part of the National Irrigation Water Quality Program of the U.S. Department of the Interior. The study focused on land serviced by the Bureau of Reclamation Klamath Project, which supplies irrigation water to agricultural land in the Klamath Basin and the Lost River Basin. The Tule Lake and Lower Klamath National Wildlife Refuges, managed by the U.S. Fish and Wildlife Service, are in the study area. These refuges provide critical resting and breeding habitat for waterfowl on the Pacific flyway and are dependent on irrigation drainwater from upstream agriculture for most of their water supply. Water-quality characteristics throughout the study area were typical of highly eutrophic systems during the summer months of 1991 and 1992. Dissolved-oxygen concentrations and pH tended to fluctuate each day in response to diurnal patterns of photosynthesis, and frequently exceeded criteria for protection of aquatic organisms. Nitrogen and phosphorus concentrations were generally at or above threshold levels characteristic of eutrophic lakes and streams. At most sites the bulk of dissolved nitrogen was organically bound. Elevated ammonia concentrations were common in the study area, especially down- stream of drain inputs. High pH of water increased the toxicity of ammonia, and concentrations exceeded criteria at sites upstream and downstream of irrigated land. Concentrations of ammonia in samples from small drains on the Tule Lake refuge leaseland were higher than those measured in the larger, integrating drains at primary monitoring sites. The mean ammonia concentration in leaseland drains [1.21 milligrams per liter (mg/L)] was significantly higher than the mean concentration in canals delivering water to the leaseland fields (0.065 mg/L) and higher than concentrations reported to be lethal to Daphnia magna (median lethal concentration of 0.66 mg/L). Dissolved- oxygen concentrations also were lower, and Daphnia survivability measured during in situ bioassays was correspondingly lower in the leaseland drains than in water delivery canals. In static laboratory bioassays, water samples collected at the primary monitoring sites caused toxicity in up to 78 percent of Lemna minor tests, in up to 49 percent of Xenopus laevis tests, in 17 percent and 8 percent of Hyalella azteca and Pimephales promelas tests, respectively, and 0 percent in Daphnia magna tests. In situ exposure at the sites caused mortality in more than 83 percent of Pimephales tests and in more than 41 percent of Daphnia and Hyalella tests. Much of the observed toxicity appears to have been caused by low dissolved oxygen, high pH, and ammonia. Although water in the study area was toxic to a variety of organisms, no statistically significant differences in the degree of toxicity between sites were observed above or below irrigated agricultural land in any of the bioassays. Pesticides were frequently detected in water samples collected at the monitoring sites during the 1991 and 1992 irrigation seasons. Among the most frequently detected compounds were the herbicides simazine, metribuzin, EPTC, and metolachlor and the insecticide terbufos. All the insecticides detected were at concentrations substantially below acute toxicity values reported for aquatic organisms. The herbicide acrolein has been used extensively in the basin to manage aquatic plant growth in irrigation canals and drains. The concentration of acrolein was monitored in a canal near Tule Lake after an application in order to evaluate the potential for the pesticide to be transported to refuge waters. Although acrolein concentrations were toxic to fish in the channels adjacent to Tule Lake, very little of the canal water entered the refuge during the monitoring period. Organochlorine pesticide concentrations in 25 surficial sediment samples collected in 1990 were below bas

  10. USGS Zebra Mussel Monitoring Program for north Texas

    USGS Publications Warehouse

    Churchill, Christopher J.; Baldys, Stanley

    2012-01-01

    The U.S. Geological Survey (USGS) Zebra Mussel Monitoring Program for north Texas provides early detection and monitoring of zebra mussels (Dreissena polymorpha) by using a holistic suite of detection methods. The program is designed to assess zebra mussel occurrence, distribution, and densities in north Texas waters by using four approaches: (1) SCUBA diving, (2) water-sample collection with plankton tow nets (followed by laboratory analyses), (3) artificial substrates, and (4) water-quality sampling. Data collected during this type of monitoring can assist rapid response efforts and can be used to quantify the economic and ecological effects of zebra mussels in the north Texas area. Monitoring under this program began in April 2010. The presence of large zebra mussel populations often causes undesirable economic and ecological effects, including damage to water-processing infrastructure and hydroelectric powerplants (with an estimated 10-year cost of $3.1 billion), displacement of native mussels, increases in concentrations of certain species of cyanobacteria, and increases in concentrations of geosmin (an organic compound that results in taste and odor issues in water). Since no large-scale, environmentally safe eradication method has been developed for zebra mussels, it is difficult to remove established populations. Broad physicochemical adaptability, prolific reproductive capacity, and rapid dispersal methods have enabled zebra mussels, within a period of about 20 years, to establish populations under differing environmental conditions across much of the eastern part of the United States. In Texas, the presence of zebra mussels was first confirmed in April 2009 in Lake Texoma in the Red River Basin along the Texas-Oklahoma border. They were most likely introduced into Lake Texoma through overland transport from an infested water body. Since then, the presence of zebra mussels has been reported in both the Red River and Washita River arms of Lake Texoma, in Sister Grove Creek, and in Ray Roberts Lake. Water managers tasked with supplying the 6.6 million residents of the Dallas-Fort Worth metropolitan area must ensure that the area receives a continuous supply of water that meets both the needs of the current (2012) and the projected (doubling in number by 2050) populations. This metropolitan area depends on surface water captured in area reservoirs, including those in the Trinity River Basin, for the primary source of drinking water. The presence of an established zebra mussel population in a reservoir in the Trinity River Basin could result in increased operations and maintenance costs for water resource managers and could potentially serve as a source population leading to further expansion of this aquatic nuisance species.

  11. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms

    PubMed Central

    Torbick, Nathan; Corbiere, Megan

    2015-01-01

    Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI), Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophyll-a and phycocyanin concentrations; all sensors performed well with R2 and root-mean-square error (RMSE) ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 µg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost. PMID:26389930

  12. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-07-19

    ISS013-E-54243 (19 July 2006) --- Crater Lake, Oregon is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. Crater Lake is formed from the caldera (collapsed magma chamber) of a former volcano known as Mount Mazama. Part of the Cascades volcanic chain, Mount Mazama is situated between the Three Sisters volcanoes to the north and Mount Shasta to the south. While considered a dormant volcano, Crater Lake is part of the United States Geological Survey Cascades Volcano Observatory seismic monitoring network. The dark blue water coloration is typical of the 592 meter (1943 feet) deep Crater Lake; light blue-green areas to the southeast of Wizard Island (along the southern crater rim) most probably correspond to particulates either on or just below the water surface. A light dusting of snow fills the summit cone of Wizard Island. Some of the older lava flows in the area are associated with Mount Scott to the east-southeast of the Lake. Water is lost only by evaporation and seepage, and is only replenished by rainwater and snowmelt from the surrounding crater walls. These processes help maintain minimal sediment input into the lake and exceptional water clarity. The Crater Lake ecosystem is of particular interest to ecologists because of its isolation from the regional landscape, and its overall pristine quality is important to recreational users of Crater Lake National Park (447,240 visitors in 2005). The United States National Park Service maintains programs to monitor changes (both natural and human impacts) to Crater Lake.

  13. Comparison of three methods for long-term monitoring of boreal lake area using Landsat TM and ETM+ imagery

    USGS Publications Warehouse

    Roach, Jennifer K.; Griffith, Brad; Verbyla, David

    2012-01-01

    Programs to monitor lake area change are becoming increasingly important in high latitude regions, and their development often requires evaluating tradeoffs among different approaches in terms of accuracy of measurement, consistency across multiple users over long time periods, and efficiency. We compared three supervised methods for lake classification from Landsat imagery (density slicing, classification trees, and feature extraction). The accuracy of lake area and number estimates was evaluated relative to high-resolution aerial photography acquired within two days of satellite overpasses. The shortwave infrared band 5 was better at separating surface water from nonwater when used alone than when combined with other spectral bands. The simplest of the three methods, density slicing, performed best overall. The classification tree method resulted in the most omission errors (approx. 2x), feature extraction resulted in the most commission errors (approx. 4x), and density slicing had the least directional bias (approx. half of the lakes with overestimated area and half of the lakes with underestimated area). Feature extraction was the least consistent across training sets (i.e., large standard error among different training sets). Density slicing was the best of the three at classifying small lakes as evidenced by its lower optimal minimum lake size criterion of 5850 m2 compared with the other methods (8550 m2). Contrary to conventional wisdom, the use of additional spectral bands and a more sophisticated method not only required additional processing effort but also had a cost in terms of the accuracy and consistency of lake classifications.

  14. Effect of aquatic macrophyte growth on landscape water quality improvement.

    PubMed

    Zhang, Hengfeng; Zhao, Yixi; Yin, Hang; Wang, Yuanyuan; Li, Huixian; Wang, Zhanshen; Geng, Yongbo; Liang, Wenyan; Wang, Hongjie

    2018-06-07

    The water of urban landscape park is often confronted with microalgal blooms due to its stagnancy. Bioremediation using the combined emergent and submerged plants to control the microalgae growth was investigated in the present study. Two water bodies (Bei and Xin) of Yuyuantan Park in Beijing were selected for the field experiments, and the other lakes with different vegetation of macrophytes were selected as the comparison. The concentrations of chlorophyll a (chl a), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP), and water temperature and transparency were monitored before and after bioremediation from 2015 to 2017. Results showed that the effects of microalgal inhibition were more significant 2 years after bioremediation. Specifically, the chl a of Dong Lake without any vegetation of macrophytes was up to 65.1 μg/L in summer of 2017, while the Bei and Xin Lakes was only 6.2 and 11.3 μg/L, respectively. In addition, the water quality and transparency also improved, with water bodies being crystal clear. Submerged plants played major roles in microalgal control and water quality improvement, compared to the lakes with only emergent plants. The intensity of humic acid-like substances in three-dimensional fluorescent spectra was stronger for the lakes with submerged plants.

  15. Genetic Variation in the ND1 Gene and D-loop in Protected and Commercially Exploited European Cisco (Coregonus albula L.) Populations.

    PubMed

    Kirczuk, Lucyna; Rymaszewska, Anna; Pilecka-Rapacz, Malgorzata; Domagala, Jozef

    The European cisco (Coregonus albula L.) is a species with high environmental requirements. The deterioration of environmental conditions in recent decades has decreased its distribution. Currently the species is conserved by stocking, and the few existing natural populations are at risk of extinction. Therefore, contemporary studies involve not only reporting phenotypic parameters, but also determining the genetic structure of the population. This is an important aspect monitored in the C. albula population, which provides information valuable for proper fishing economy. This study included valuable populations from lakes located in Drawa National Park (DNP) and Wigry National Park (WNP), as well as lakes used for commercial fishing. In order to molecularly characterize the European cisco, the control region and NDl gene were sequenced from 48 individuals from 9 populations from lakes throughout northern Poland. Analysis revealed that populations from two park lakes (Marta, Ostrowieckie) are unique. This was also the case for some sequences originating from Lake Wigry. The mean value of genetic diversity was 0.2% within each region and 0.1-0.3% between the investigated regions. The obtained results demonstrated the necessity to strengthen and protect natural populations of the European cisco, which constitute a valuable element of the European ichthyofauna.

  16. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability.

  17. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming - A synthesis and critical assessment of published results

    USGS Publications Warehouse

    Burns, Douglas A.

    2002-01-01

    The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7 kilograms per hectare per year ((kg/ha)/yr) of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. The Rocky Mountain National Park, in its role of protecting air-quality related values under provisions of the Clean Air Act Amendments of 1977, has provided support for this synthesis and critical assessment of published literature on the effects of atmospheric N deposition. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but no region-wide increase during the past 2 decades, although the rate of atmospheric N deposition has increased at three sites east of the Continental Divide in the Front Range region since the mid-1980s. Much of the increase in atmospheric N deposition at all three sites has resulted from an increase in the ammonium concentrations of wet deposition; this suggests an increase in contributions from agricultural areas or from vehicle traffic east of the Rocky Mountains. Lakes at two study sites in the Front Range (Loch Vale and Green Lakes Valley) had NO3- concentrations of 30 to 40 micromoles per liter (µmol/L) during early spring snowmelt and remained at 5 to 10 µmol/L during summer. Retention of N in atmospheric wet deposition in some sub-catchments of these lakes was less than 50 percent, which reflects an advanced stage of N saturation. Nitrate concentrations in surface waters west of the Continental Divide were lower—often less than 10 µmol/L during snowmelt and less than 2 µmol/L during summer -- than surface waters east of the Divide, except in areas such as the Mt. Zirkel Wilderness that receive elevated amounts of atmospheric N deposition of 4 to 5 (kg/ha)/yr. Atmospheric N deposition in the Front Range east of the Divide may have altered the composition of alpine tundra-plant communities and lake diatoms, but additional studies would be needed to definitively demonstrate the hypothesized cause-and-effect relations. Rates of N-mineralization and nitrification in soils of the Front Range have increased in response to increased atmospheric N deposition. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. The likelihood of future increased N emissions along the Front Range warrants a continuation of existing long-term precipitation and surface-water chemistry monitoring programs, and an expansion of the networks into areas that receive large amounts of atmospheric N deposition, but currently lack adequate monitoring. Long-term study and expanded sampling are needed to address uncertainties about the effects of atmospheric N deposition on terrestrial plant communities, nutrient limitation in lake plankton, shifts of dominant species within diatom communities, and on amphibian response to episodic surface-water acidification.

  18. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of Upper Klamath Lake revealed few differences in water quality dynamics. Median daily temperatures were higher in nearshore areas, and dissolved oxygen concentrations were periodically higher as well during periods of high AFA bloom. Differences between the two areas in water quality conditions potentially harmful to fish were not statistically significant (p < 0.05). Chlorophyll a concentrations varied temporally and spatially throughout Upper Klamath Lake. Chlorophyll a concentrations indicated an algal bloom in late June and early July that was followed by an algae bloom decline in late July and early August and a subsequent recovery in mid-August. Sites in the deepest part of the lake, where some of the highest chlorophyll a concentrations were observed, were the same sites where the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations were recorded during the bloom decline, indicating cell senescence. Total phosphorus concentrations limited the initial algal bloom in late June and early July. The rate of net dissolved oxygen production (that is, production in excess of community respiration) and consumption (due to community respiration) in the lake water column as measured in light and dark bottles, respectively, ranged from 2.79 to -2.14 milligrams of oxygen per liter per hour. Net production rate generally correlated positively with chlorophyll a concentration, except episodically at a few sites where high chlorophyll a concentrations resulted in self-shading that inhibited photosynthesis. The depth of photic zone was inversely correlated with chlorophyll a concentration. Calculations of a 24-hour change in dissolved oxygen concentration indicated that oxygen-consuming processes predominated at the deep trench sites and oxygen-producing processes predominated at the shallow sites. In addition, calculations of the 24-hour change in dissolved oxygen indicate that oxygen-consuming processes in the water column di

  19. Mercury loading and methylmercury production and cycling in high-altitude lakes from the Western United States

    USGS Publications Warehouse

    Krabbenhoft, David P.; Olson, Mark L.; DeWild, John F.; Clow, David W.; Striegl, Robert G.; Dornblaser, Mark M.; Van Metre, Peter C.

    2002-01-01

    Studies worldwide have shown that mercury (Hg) is a ubiquitous contaminant, reaching even the most remote environments such as high-altitude lakes via atmospheric pathways. However, very few studies have been conducted to assess Hg contamination levels of these systems. We sampled 90 mid-latitude, high-altitude lakes from seven national parks in the western United States during a four-week period in September 1999. In addition to the synoptic survey, routine monitoring and experimental studies were conducted at one of the lakes (Mills Lake) to quantify MeHg fluxrates and important process rates such as photo-demethylation. Results show that overall, high-altitude lakes have low total mercury (HgT) and methylmercury (MeHg) levels (1.07 and 0.05 ng L-1, respectively), but a very good correlation of Hg to MeHg (r2= 0.82) suggests inorganic Hg(II) loading is a primary controlling factor of MeHg levels in dilute mountain lakes. Positive correlations were also observed for dissolved organic carbon (DOC) and both Hg and MeHg, although to a much lesser degree. Levels of MeHg were similar among the seven national parks, with the exception of Glacier National Park where lowerconcentrations were observed (0.02 ng L-1), and appear to be related to naturally elevated pH values there. Measured rates ofMeHg photo-degradation at Mills Lake were quite fast, and this process was of equal importance to sedimentation and stream flow for removing MeHg. Enhanced rates of photo-demethylation are likely an important reason why high-altitude lakes, with typically high water clarity and sunlight exposure, are low in MeHg.

  20. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  1. Developing palaeolimnological records of organic content (DOC and POC) using the UK Acid Water Monitoring Network sites

    NASA Astrophysics Data System (ADS)

    Russell, Fiona; Chiverrell, Richard; Boyle, John

    2016-04-01

    Monitoring programmes have shown increases in concentrations of dissolved organic matter (DOM) in the surface waters of northern and central Europe (Monteith et al. 2007), and negative impacts of the browning of river waters have been reported for fish populations (Jonsson et al. 2012; Ranaker et al. 2012) and for ecosystem services such as water treatment (Tuvendal and Elmqvist 2011). Still the exact causes of the recent browning remain uncertain, the main contenders being climate change (Evans et al. 2005) and reduced ionic strength in surface water resulting from declines in anthropogenic sulphur and sea salt deposition (Monteith et al. 2007). There is a need to better understand the pattern, drivers and trajectory of these increases in DOC and POC in both recent and longer-term (Holocene) contexts to improve the understanding of carbon cycling within lakes and their catchments. In Britain there are some ideal sites for testing whether these trends are preserved and developing methods for reconstructing organic fluxes from lake sedimentary archives. There is a suite of lakes distributed across the country, the UK Acid Waters Monitoring Network (UKAWMN) sites, which have been monitored monthly for dissolved organic carbon and other aqueous species since 1988. These 12 lakes have well studied recent and in some case whole Holocene sediment records. Here four of those lakes (Grannoch, Chon, Scoat Tarn and Cwm Mynach) are revisited, with sampling focused on the sediment-water interface and very recent sediments (approx.150 years). At Scoat Tarn (approx. 1000 years) and Llyn Mynach (11.5k years) longer records have been obtained to assess equivalent patterns through the Holocene. Analyses of the gravity cores have focused on measuring and characterising the organic content for comparison with recorded surface water DOC measurements (UKAWMN). Data from pyrolysis measurements (TGA/DSC) in an N atmosphere show that the mass loss between 330-415°C correlates well with observed trends in DOC of surface waters. Analysis of these cores and various calibration materials (e.g. peat) suggests plant tissue undergoes pyrolysis at lower temperatures, and though humic substances can be generated in the lake this thermal phase may be a proxy record for catchment derived DOC. NIR and FTIR spectrometry data further characterise this organic phase, identify spectral structures that also correlate with monitored DOC. Together the pyrolysis, NIR, FTIR and XRF geochemistry (e.g. Fe/Mn, Si/Al ratios) data show also information on lake productivity, biogenic silica and mass accumulation rates. To explore the longer timescale equivalent proxy records have been trialled at Llyn Cwm Mynach and show possible phases of elevated DOC fluxes from catchment soils during the Holocene. References Evans C.D., Monteith D.T. and Cooper D.M. 2005. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut. 137: 55-71. Jonsson M., Ranaker L., Nilsson P.A. and Bronmark C. 2012. Prey-type-dependent foraging of young-of-the-year fish in turbid and humic environments. Ecol. Freshw. Fish 21: 461-468. Monteith D.T., Stoddard J.L., Evans C.D., de Wit H.A., Forsius M., Hogasen T., Wilander A., Skjelkvale B.L., Jeffries D.S., Vuorenmaa J., Keller B., Kopacek J. and Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537-U539. Ranaker L., Jonsson M., Nilsson P.A. and Bronmark C. 2012. Effects of brown and turbid water on piscivore-prey fish interactions along a visibility gradient. Freshwater Biol. 57: 1761-1768. Tuvendal M. and Elmqvist T. 2011. Ecosystem Services Linking Social and Ecological Systems: River Brownification and the Response of Downstream Stakeholders. Ecol. Soc. 16

  2. A voluntary program to curtail boat disturbance to waterfowl during migration

    USGS Publications Warehouse

    Kenow, Kevin P.; Korschgen, Carl E.; Nissen, James M.; Elfessi, Abdulaziz; Steinbach, Richard

    2003-01-01

    A voluntary waterfowl avoidance area (VWAA) was established on Lake Onalaska in Navigation Pool 7 of the Upper Mississippi River, Wisconsin, USA, in 1986, to reduce boating disturbance to migratory waterfowl. We monitored boater compliance with the VWAA program in 1993 and 1997. Of 1,664 "boating events" observed on Lake Onalaska, boats intruded into the VWAA on 127 occasions. Boating events have increased from 1.82 boating events/h in 1986-88 to 1.97 in 1993 and 2.58 in 1997. Despite a 60% increase in boating traffic, the lake-wide disturbance rates in 1997 were comparable to that in 1981. We attribute this to a significant reduction in the proportion of lake-wide boating events that resulted in disturbance, a direct consequence of the VWAA program. Rate of intrusion into the VWAA was 0.11 per boating event in 1997 compared to 0.18 per boating event in 1986-88. Boating disturbances to waterfowl within the VWAA occurred at about half the rate (0.24 to 0.28 disturbances∙hr-1) observed prior to establishment of the program (0.48 disturbances∙hr-1). We also identified access points used by boaters and boating activities that were most likely to result in intrusion into the VWAA and associated disturbance to waterfowl. Results of these analyses have provided useful information to resource managers for targeting public education efforts. The VWAA program has contributed to the value of Lake Onalaska as a waterfowl refuge and demonstrates an effective collaboration among government agencies and non-governmental organizations.

  3. A voluntary program to curtail boat disturbance to waterfowl during migration

    USGS Publications Warehouse

    Kenow, K.P.; Korschgen, C.E.; Nissen, J.M.; Elfessi, A.; Steinbach, R.

    2003-01-01

    A voluntary waterfowl avoidance area (VWAA) was established on Lake Onalaska in Navigation Pool 7 of the Upper Mississippi River, Wisconsin, USA, in 1986, to reduce boating disturbance to migratory waterfowl. We monitored boater compliance with the VWAA program in 1993 and 1997. Of 1,664 "boating events" observed on Lake Onalaska, boats intruded into the VWAA on 127 occasions. Boating events have increased from 1.82 boating events/h in 1986-88 to 1.97 in 1993 and 2.58 in 1997. Despite a 60% increase in boating traffic, the lake-wide disturbance rates in 1997 were comparable to that in 1981. We attribute this to a significant reduction in the proportion of lake-wide boating events that resulted in disturbance, a direct consequence of the VWAA program. Rate of intrusion into the VWAA was 0.11 per boating event in 1997 compared to 0.18 per boating event in 1986-88. Boating disturbances to waterfowl within the VWAA occurred at about half the rate (0.24 to 0.28 disturbances ?? hr1) observed prior to establishment of the program (0.48 disturbances ?? hr1 . We also identified access points used by boaters and boating activities that were most likely to result in intrusion into the VWAA and associated disturbance to waterfowl. Results of these analyses have provided useful information to resource managers for targeting public education efforts. The VWAA program has contributed to the value of Lake Onalaska as a waterfowl refuge and demonstrates an effective collaboration among government agencies and non-governmental organizations.

  4. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacksmore » and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by anglers. The immediate project goal is to maintain this unique sockeye salmon population through captive broodstock technology and avoid species extinction. The project objectives are: (1) Develop captive broodstocks from Redfish Lake anadromous sockeye salmon. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program supplementation efforts. (4) Refine our ability to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, providing written activity reports and participation in essential program management and planning activities.« less

  5. Beach science in the Great Lakes

    USGS Publications Warehouse

    Nevers, Meredith B.; Byappanahalli, Murulee N.; Edge, Thomas A.; Whitman, Richard L.

    2014-01-01

    Monitoring beach waters for human health has led to an increase and evolution of science in the Great Lakes, which includes microbiology, limnology, hydrology, meteorology, epidemiology, and metagenomics, among others. In recent years, concerns over the accuracy of water quality standards at protecting human health have led to a significant interest in understanding the risk associated with water contact in both freshwater and marine environments. Historically, surface waters have been monitored for fecal indicator bacteria (fecal coliforms, Escherichia coli, enterococci), but shortcomings of the analytical test (lengthy assay) have resulted in a re-focusing of scientific efforts to improve public health protection. Research has led to the discovery of widespread populations of fecal indicator bacteria present in natural habitats such as soils, beach sand, and stranded algae. Microbial source tracking has been used to identify the source of these bacteria and subsequently assess their impact on human health. As a result of many findings, attempts have been made to improve monitoring efficiency and efficacy with the use of empirical predictive models and molecular rapid tests. All along, beach managers have actively incorporated new findings into their monitoring programs. With the abundance of research conducted and information gained over the last 25 years, “Beach Science” has emerged, and the Great Lakes have been a focal point for much of the ground-breaking work. Here, we review the accumulated research on microbiological water quality of Great Lakes beaches and provide a historic context to the collaborative efforts that have advanced this emerging science.

  6. Tilt networks of Mount Shasta and Lassen Peak, California

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Murray, T.L.; Myers, Barbara

    1982-01-01

    In response to recent eruptions at Mount St. Helens and with support from the USGS Volcanic Hazards Program, the Cascades Volcano Observatory (CVO) has initiated a program to monitor all potentially-active volcanoes of the Cascade Range. As part of that effort, we installed tilt networks and obtained baseline measurements at Mount Shasta and Lassen Peak, California during July 1981. At the same time, baseline electronic distance measurements (EDM) were made and fumarole surveys were conducted by other crews from CVO. Annual surveys are planned initially, with subsequent visits as conditions warrant. These geodetic and geochemical measurements supplement a program of continuous seismic monitoring of Cascade volcanoes by the USGS Office of Earthquake Studies in cooperation with local universities. Other tilt networks were established at Mount Baker in 1975 and at Mount St. Helens in 1981. EDM networks were established at Mount Baker in 1975, Mount St. Helens in 1980, and Crater Lake in 1981. Additional tilt and/or EDM networks are planned for Mount Rainier, Mount Hood, Glacier Peak, Three Sisters, and Crater Lake as funds permit.

  7. Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: Strategies to prevent dangerous human exposures to cyanotoxins.

    PubMed

    Manganelli, Maura; Stefanelli, Mara; Vichi, Susanna; Andreani, Paolo; Nascetti, Giuseppe; Scialanca, Fabrizio; Scardala, Simona; Testai, Emanuela; Funari, Enzo

    2016-06-01

    Vico Lake, a volcanic meso-eutrophic lake in Central Italy, whose water is used for drinking and recreational activities, experienced the presence of the microcystins (MC) producing cyanobacterium Planktothrix rubescens. In order to assess the human health risks and to provide the local health authorities with a scientific basis for planning tailored monitoring activities, we studied P. rubescens ecology and toxicity for two years. P. rubescens generally dominated the phytoplankton community, alternating with Limnothrix redekei, potentially toxic. P. rubescens was distributed throughout the water column during winter; in summer it produced intense blooms where drinking water is collected (-20 m); here MC were detected all year round (0.5-5 μg/L), with implications for drinking water quality. In surface waters, MC posed no risk for recreational activities in summer, while in winter surface blooms and foams (containing up to 56 μg MC/L) can represent a risk for people and children practicing water sports and for animals consuming raw water. Total phosphorus, phosphate and inorganic nitrogen were not relevant to predict densities nor toxicity; however, a strong correlation between P. rubescens density and aminopeptidase ectoenzymatic activity, an enzyme involved in protein degradation, suggested a role of organic nitrogen for this species. The fraction of potentially toxic population, determined both as mcyB(+)/16SrDNA (10-100%) and as the MC/mcyB(+) cells (0.03-0.79 pg MC/cell), was much more variable than usually observed for P. rubescens. Differently from other Italian and European lakes, the correlation between cell density or the mcyB(+) cells and MC explained only ∼50 and 30% of MC variability, respectively: for Vico Lake, monitoring only cell or the mcyB(+) cell density is not sufficient to predict MC concentrations, and consequently to protect population health. Finally, during a winter bloom one site has been sampled weekly, showing that monthly sampling during such a phase could greatly underestimate the 'hazard'. Our results highlight the need to adopt a stepwise monitoring activity, considering the lake and the cyanobacteria specific features. This activity should be complemented with communication to the public and involvement of stakeholders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Browning of Adirondack, NY Lakes: Rates and Effects

    NASA Astrophysics Data System (ADS)

    Driscoll, C. T.; Mota, Y.; Fakhraei, H.; Todorova, S.; Leach, T.; Rose, K. C.; O'Donnell, S.

    2017-12-01

    Browning, or increases in the concentrations of dissolved organic matter (DOM), is an intriguing recent phenomenon occurring in northern freshwaters. It is hypothesized that browning is a watershed response to decreases in acid deposition, although changing in climate may also contribute. The Adirondack region of NY is experiencing marked increases in lake concentrations of dissolved organic carbon (DOC), with 29 out of 48 lakes in the Adirondack Long-Term Monitoring (ALTM) program showing significant increases and two exhibiting decreases since 1992. Increases in DOC is altering the acid base status of Adirondack lakes largely due increases in DOM with strongly acidic functional groups. DOM mobilization limits increases in acid neutralizing capacity that can be achieved in recovery of surface waters from acid deposition. A subset of ALTM lakes also appear to be experiencing changes in their physical characteristics during the summer stratification period, consistent with increases in DOM and browning. Of 28 lakes monitored for water column profiles since 1994: 8 are showing declines in thermocline depth (5 significant, p<0.05); all are exhibiting increases in epilimnetic temperature (9 significant); 26 are experiencing increases in the difference between epilimnetic and hypolimnetic temperatures (6 significant); and 17 are experiencing decreases in hypolimnetic dissolved oxygen concentrations (6 significant decreases, 1 increase). These changes may be a manifestation of increases in the attenuation of light associated with increases in DOM, increasing the intensity and duration of thermal stratification.

  9. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    NASA Technical Reports Server (NTRS)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  10. VARIANCE ESTIMATION FOR SPATIALLY BALANCED SAMPLES OF ENVIRONMENTAL RESOURCES

    EPA Science Inventory

    The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. We review a unified strategy for designing probability samples of discrete, finite resource populations, such as lakes within som...

  11. The structure and toxicity of winter cyanobacterial bloom in a eutrophic lake of the temperate zone.

    PubMed

    Wejnerowski, Łukasz; Rzymski, Piotr; Kokociński, Mikołaj; Meriluoto, Jussi

    2018-06-22

    Winter cyanobacterial blooms have become increasingly common in eutrophic lakes advocating a need for their monitoring and risk assessment. The present study evaluated the toxicity of a winter cyanobacterial bloom in a eutrophicated freshwater lake located in Western Poland. The bloom was dominated by potentially toxic species: Planktothrix agardhii, Limnothrix redekei, and Aphanizomenon gracile. The toxin analysis revealed the presence of demethylated forms of microcystin-RR and microcystin-LR in ranges of 24.6-28.7 and 6.6-7.6 µg/L, respectively. The toxicity of sampled water was further evaluated in platelet-rich plasma isolated from healthy human subjects using lipid peroxidation and lactate dehydrogenase assays. No significant adverse effects were observed. The present study demonstrates that toxicity of some winter cyanobacterial blooms in the temperate zone, like that in Lubosińskie Lake, may not exhibit significant health risks despite microcystin production.

  12. Temporal trends of young-of-year fishes in Lake Erie and comparison of diel sampling periods

    USGS Publications Warehouse

    Stapanian, M.A.; Bur, M.T.; Adams, J.V.

    2007-01-01

    We explored temporal trends of young-of-year (YOY) fishes caught in bottom trawl hauls at an established offshore monitoring site in Lake Erie in fall during 1961–2001. Sampling was conducted during morning, afternoon, and night in each year. Catches per hour (CPH) of alewife (Alosa pseudoharengus) YOY were relatively low and exhibited no temporal trend. This result was consistent with the species’ intolerance to Lake Erie’s adverse winter water temperatures. Gizzard shad (Dorosoma cepedianum) YOY decreased sharply after 1991, which was consistent with recent oligotrophication of the lake. Following the establishment in 1979 and rapid increase of white perch (Morone americana) YOY, white bass (Morone chrysops) and freshwater drum (Aplodinotus grunniens) YOY decreased. Trout-perch (Percopsis omiscomaycus) YOY decreased during 1986–1991, but recovered to previous levels during 1991–2001. The recovery coincided with the resurgence of mayflies (Ephemoptera) in the lake. CPH of spottail shiner (Notropis hudsonius) and emerald shiner (N. atherinoides) YOY exhibited no temporal trend between 1961 and the late 1970s to early 1980s. CPH of yellow perch (Perca flavescens) YOY decreased during 1961–1988, and walleye (Sander vitreum) YOY increased overall during the time series. These observations were consistent with published studies of adults in the region. CPH of 4 of the 10 species of YOY considered were greatest during night. CPH for walleye YOY was higher in the morning than in the afternoon, but there was no significant difference between night and morning abundances. The results suggest that (1) CPH of YOY fishes may be a useful monitoring tool for Lake Erie, and (2) offshore monitoring programs that do not include night sampling periods may underestimate recruitment for several common species.

  13. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication.

    PubMed

    Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Qin, Boqiang; Yao, Xiaolong; Zhang, Yibo

    2017-12-26

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance in aquatic environments and plays a key role in light attenuation and in the carbon, nitrogen and phosphorus biogeochemical cycles. Although the optical properties, abundance, sources, cycles, compositions and remote sensing estimations of CDOM have been widely reported in different aquatic environments, little is known about the optical properties and composition changes in CDOM along trophic gradients. Therefore, we collected 821 samples from 22 lakes along a trophic gradient (oligotrophic to eutrophic) in China from 2004 to 2015 and determined the CDOM spectral absorption and nutrient concentrations. The total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla) concentrations and the Secchi disk depth (SDD) ranged from 0.02 to 24.75 mg/L, 0.002-3.471 mg/L, 0.03-882.66 μg/L, and 0.05-17.30 m, respectively. The trophic state index (TSI) ranged from 1.55 to 98.91 and covered different trophic states, from oligotrophic to hyper-eutrophic. The CDOM absorption coefficient at 254 nm (a(254)) ranged from 1.68 to 92.65 m -1 . Additionally, the CDOM sources and composition parameters, including the spectral slope and relative molecular size value, exhibited a substantial variability from the oligotrophic level to other trophic levels. The natural logarithm value of the CDOM absorption, lna(254), is highly linearly correlated with the TSI (r 2  = 0.92, p < .001, n = 821). Oligotrophic lakes are distinguished by a(254)<4 m -1 , and mesotrophic and eutrophic lakes are classified as 4 ≤ a(254)≤10 and a(254)>10 m -1 , respectively. The results suggested that the CDOM absorption coefficient a(254) might be a more sensitive single indicator of the trophic state than TN, TP, Chla and SDD. Therefore, we proposed a CDOM absorption coefficient and determined the threshold for defining the trophic state of a lake. Several advantages of measuring and estimating CDOM, including rapid experimental measurements, potential in situ optical sensor measurements and large-spatial-scale remote sensing estimations, make it superior to traditional TSI techniques for the rapid monitoring and assessment of lake trophic states. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nutrients, phytoplankton, zooplankton, and macrobenthos

    USGS Publications Warehouse

    Rudstam, Lars G.; Holeck, Kristen T.; Watkins, James M.; Hotaling, Christopher; Lantry, Jana R.; Bowen, Kelly L.; Munawar, Mohi; Weidel, Brian C.; Barbiero, Richard; Luckey, Frederick J.; Dove, Alice; Johnson, Timothy B.; Biesinger, Zy

    2017-01-01

    Lower trophic levels support the prey fish on which most sport fish depend. Therefore, understanding the production potential of lower trophic levels is integral to the management of Lake Ontario’s fishery resources. Lower trophic-level productivity differs among offshore and nearshore waters. In the offshore, there is concern about the ability of the lake to support Alewife (Table 1) production due to a perceived decline in productivity of phytoplankton and zooplankton whereas, in the nearshore, there is a concern about excessive attached algal production (e.g., Cladophora) associated with higher nutrient concentrations—the oligotrophication of the offshore and the eutrophication of the nearshore (Mills et al. 2003; Holeck et al. 2008; Dove 2009; Koops et al. 2015; Stewart et al. 2016). Even though the collapse of the Alewife population in Lake Huron in 2003 (and the associated decline in the Chinook Salmon fishery) may have been precipitated by a cold winter (Dunlop and Riley 2013), Alewife had not returned to high abundances in Lake Huron as of 2014 (Roseman et al. 2015). Failure of the Alewife population to recover from collapse has been attributed to declines in lower trophic-level production (Barbiero et al. 2011; Bunnell et al. 2014; but see He et al. 2015). In Lake Michigan, concerns of a similar Alewife collapse led to a decrease in the number of Chinook Salmon stocked. If lower trophic-level production declines in Lake Ontario, a similar management action could be considered. On the other hand, in Lake Erie, which supplies most of the water in Lake Ontario, eutrophication is increasing and so are harmful algal blooms. Thus, there is also a concern that nutrient levels and algal blooms could increase in Lake Ontario, especially in the nearshore. Solutions to the two processes of concern—eutrophication in the nearshore and oligotrophication in the offshore—may be mutually exclusive. In either circumstance, fisheries management needs information on the productivity of lower trophic levels in Lake Ontario. In this chapter, we review the status of lower trophic levels in Lake Ontario with special attention to the current (2008-2013) and previous (2003-2007) reporting periods. During the two reporting periods, three whole-lake surveys of lower trophic levels were conducted: the Lower Trophic Level Assessment (LOLA) in 2003 and 2008 (Makarewicz and Howell 2012; Munawar et al. 2015b) and the Cooperative Science and Management Initiative (CSMI) in 2013. Analyses of the CSMI data are ongoing. In addition to the three one-year sources of information on lower trophic levels, several multi-year sources of information are available, including data from the surveillance program conducted since 1965 by Environment Canada (EC) (Dove 2009), monitoring conducted since 1980 by the U.S. Environmental Protection Agency’s (EPA) Great Lakes National Program Office (GLNPO) (Barbiero et al. 2014; Reavie et al. 2014), sampling for a Bioindex Program at two stations, one offshore and one in the Eastern Basin, assessments of Mysis diluviana (formerly Mysis relicta) conducted since 1980 by Fisheries and Oceans Canada (Johannsson et al. 1998, 2011) and the Ontario Ministry of Natural Resources and Forestry (OMNRF), and monitoring conducted since 1995 by the Biomonitoring Program (BMP) on the New York side of the lake (Holeck et al. 2015b). The BMP is a collaboration of the New York State Department of Environmental Conservation (DEC), U.S. Fish and Wildlife Service, U.S. Geological Survey (USGS), and Cornell University.

  15. Evaluating the efficiency of environmental monitoring programs

    USGS Publications Warehouse

    Levine, Carrie R.; Yanai, Ruth D.; Lampman, Gregory G.; Burns, Douglas A.; Driscoll, Charles T.; Lawrence, Gregory B.; Lynch, Jason; Schoch, Nina

    2014-01-01

    Statistical uncertainty analyses can be used to improve the efficiency of environmental monitoring, allowing sampling designs to maximize information gained relative to resources required for data collection and analysis. In this paper, we illustrate four methods of data analysis appropriate to four types of environmental monitoring designs. To analyze a long-term record from a single site, we applied a general linear model to weekly stream chemistry data at Biscuit Brook, NY, to simulate the effects of reducing sampling effort and to evaluate statistical confidence in the detection of change over time. To illustrate a detectable difference analysis, we analyzed a one-time survey of mercury concentrations in loon tissues in lakes in the Adirondack Park, NY, demonstrating the effects of sampling intensity on statistical power and the selection of a resampling interval. To illustrate a bootstrapping method, we analyzed the plot-level sampling intensity of forest inventory at the Hubbard Brook Experimental Forest, NH, to quantify the sampling regime needed to achieve a desired confidence interval. Finally, to analyze time-series data from multiple sites, we assessed the number of lakes and the number of samples per year needed to monitor change over time in Adirondack lake chemistry using a repeated-measures mixed-effects model. Evaluations of time series and synoptic long-term monitoring data can help determine whether sampling should be re-allocated in space or time to optimize the use of financial and human resources.

  16. Estimation of a Trophic State Index for selected inland lakes in Michigan, 1999–2013

    USGS Publications Warehouse

    Fuller, Lori M.; Jodoin, Richard S.

    2016-03-11

    A 15-year estimated Trophic State Index (eTSI) for Michigan inland lakes is available, and it spans seven datasets, each representing 1 to 3 years of data from 1999 to 2013. On average, 3,000 inland lake eTSI values are represented in each of the datasets by a process that relates field-measured Secchi-disk transparency (SDT) to Landsat satellite imagery to provide eTSI values for unsampled inland lakes. The correlation between eTSI values and field-measured Trophic State Index (TSI) values from SDT was strong as shown by R2 values from 0.71 to 0.83. Mean eTSI values ranged from 42.7 to 46.8 units, which when converted to estimated SDT (eSDT) ranged from 8.9 to 12.5 feet for the datasets. Most eTSI values for Michigan inland lakes are in the mesotrophic TSI class. The Environmental Protection Agency (EPA) Level III Ecoregions were used to illustrate and compare the spatial distribution of eTSI classes for Michigan inland lakes. Lakes in the Northern Lakes and Forests, North Central Hardwood Forests, and Southern Michigan/Northern Indiana Drift Plains ecoregions are predominantly in the mesotrophic TSI class. The Huron/Erie Lake Plains and Eastern Corn Belt Plains ecoregions, had predominantly eutrophic class lakes and also the highest percent of hypereutrophic lakes than other ecoregions in the State. Data from multiple sampling programs—including data collected by volunteers with the Cooperative Lakes Monitoring Program (CLMP) through the Michigan Department of Environmental Quality (MDEQ), and the 2007 National Lakes Assessment (NLA)—were compiled to compare the distribution of lake TSI classes between each program. The seven eTSI datasets are available for viewing and download with eSDT from the Michigan Lake Water Clarity Interactive Map Viewer at http://mi.water.usgs.gov/projects/RemoteSensing/index.html.

  17. National Dam Inspection Program. Keen Lake Dam (NDI Number PA-00092, Der Number 64-13), Delaware River Basin. Phase I Inspection Report.

    DTIC Science & Technology

    1980-01-01

    Lake bal; 1.fs iv 𔃻. 2 EVAI 17,,6 !1 ’,!L1i c valu t (it 1t -l t WIh lit S is fair .* ii I ’ t.it t lbankmitt ,hiouild r,-move,i .ini -- ’ co ’rIt e...note that f a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to...structures appear to be in fair condition. In accordance with the Corps of Engineer’s evaluation guidelines, the size classification of this dam is

  18. The occurrence of the longjaw cisco, Leucichthys alpenae, in Lake Erie

    USGS Publications Warehouse

    Scott, W.B.; Smith, Stanford H.

    1962-01-01

    The longjaw cisco, Leucichthys alpenae, is shown to be a species new to the Lake Erie fauna. The taxonomic work on Lake Erie ciscoes is reviewed. Thirty three specimens of L. alpenae taken in 1946, 1947 and 1957 are compared morphometrically with Leucichthys artedi of Lake Erie, the only other cisco species in the lake. L. alpenae has a longer and deeper head, longer maxillary and fewer gill rakers. L. alpenae is more distinct from L. artedi in Lake Huron than in Lake Erie. The rate of growth of L. alpenae in Lake Erie compares favourably with that in Lake Michigan.

  19. Collecting winter data on U.S. Coast Guard icebreakers

    NASA Astrophysics Data System (ADS)

    Oyserman, Ben O.; Woityra, William C.; Bullerjahn, George S.; Beall, Benjamin F. N.; McKay, Robert Michael L.

    2012-03-01

    Winter research and monitoring of icebound rivers, lakes, and coastal seas to date has usually involved seagoing civilian scientists leading survey efforts. However, because of poor weather conditions and a lack of safe research platforms, scientists collecting data during winter face some difficult and often insurmountable problems. To solve these problems and to further research and environmental monitoring goals, new partnerships can be formed through integrating efforts of the U.S. Coast Guard (USCG) with citizen science initiatives. USCG and a research group at Ohio's Bowling Green State University are entering the third year of such a partnership, in which icebreaking operations in Lake Erie using USCG Cutter Neah Bay support volunteer data collection. With two additional USCG vessels joining the program this winter season, the partnership serves as a timely and useful model for worldwide environmental research and monitoring through citizen science and government collaboration.

  20. Water Quality, Hydrology, and Response to Changes in Phosphorus Loading of Nagawicka Lake, a Calcareous Lake in Waukesha County, Wisconsin

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.

    2006-01-01

    Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from controllable sources relative to the base years 2003-04, and two scenarios corresponding to specific management actions. Because of the lake's calcareous character, the average simulated summer concentration of total phosphorus for Nagawicka Lake was about 2 times that measured in the lake. The models likely over-predict because they do not account for coprecipitation of phosphorus and dissolved organic matter with calcite, negligible release of phosphorus from the deep sediments, and external phosphorus loading with abnormally high amounts of nonavailable phosphorus. After adjusting the simulated results for the overestimation of the models, a 50-percent reduction in phosphorus loading resulted in an average predicted phosphorus concentration of 0.008 milligrams per liter (mg/L) (a decrease of 46 percent). With a 50-percent increase in phosphorus loading, the average predicted concentration was 0.020 mg/L (an increase of 45 percent). With the changes in land use under the assumed future full development conditions, the average summer total phosphorus concentration should remain similar to that measured in MY 2003-04 (approximately 0.014 mg/L). However, if stormwater and nonpoint controls are added to achieve a 50-percent reduction in loading from the urbanized near-lake drainage area, the average summer total phosphorus concentration should decrease from the present conditions (MY 2003-04) to 0.011 mg/L. Slightly more than a 25-percent reduction in phosphorus loading from that measured in MY 2003-04 would be required for the lake to be classified as oligotrophic.

  1. The eutrophication history of a naturally eutrophic watercourse

    NASA Astrophysics Data System (ADS)

    Tammelin, Mira; Kauppila, Tommi

    2015-04-01

    For efficient inland water protection, it is essential to know the natural states of lakes or, at least, the reference conditions before intensive human impact. The estimation of the natural state is particularly difficult for geologically anomalous areas, where naturally eutrophic lakes are located within nutrient-poorer regions. This is because of the lack of monitoring data and pristine reference lakes and the poor functioning of regional paleoecological nutrient models in such anomalous areas. A paleoecological model that is specifically targeted to the anomalously eutrophic area, however, could be used to interpret the eutrophication histories and natural states of the naturally eutrophic lakes in that area. We applied a targeted paleoecological diatom-total phosphorus transfer function to examine the natural eutrophy and eutrophication history of a central basin and two upstream lakes of the anomalously nutrient-rich Iisalmi watercourse in Eastern Finland. In addition to the nutrient reconstruction based on stratigraphic diatom samples, we studied chrysophyte cyst to diatom ratio, taxonomic diversity and the magnetic susceptibility of the sediment core to find further evidence for possible changes in the lakes and their catchments. The results show that the three lakes are naturally eutrophic with average background total phosphorus levels between 40 μg/l - 60 μg/l. However, human-induced eutrophication has also affected the lakes, which can be seen as rapid changes in the diatom assemblages and magnetic susceptibility between the sediment depths of 40 cm and 90 cm. The modeled lake water total phosphorus concentration has increased less abruptly, approximately 20 μg/l altogether, and the reconstructions of the top sediments mainly correspond well with the water quality observations of the last few decades. The results of this study indicate that a targeted paleoecological nutrient model can be used to interpret the natural state and the eutrophication history of a locality that has anomalous water quality characteristics compared to its surroundings and where regional models perform poorly. Despite their exceptional natural conditions, these localities may often be very important economically, recreationally or historically, which is why we need to be able to focus water protection measures rationally and efficiently to them as well.

  2. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus)

    USGS Publications Warehouse

    Nevers, Meredith; Byappanahalli, Muruleedhara; Morris, Charles C.; Shively, Dawn; Przybyla-Kelly, Katarzyna; Spoljaric, Ashley M.; Dickey, Joshua; Roseman, Edward

    2018-01-01

    Environmental DNA (eDNA) is revolutionizing biodiversity monitoring, occupancy estimates, and real-time detections of invasive species. In the Great Lakes, the round goby (Neogobius melanostomus), an invasive benthic fish from the Black Sea, has spread to encompass all five lakes and many tributaries, outcompeting or consuming native species; however, estimates of round goby abundance are confounded by behavior and habitat preference, which impact reliable methods for estimating their population. By integrating eDNA into round goby monitoring, improved estimates of biomass may be obtainable. We conducted mesocosm experiments to estimate rates of goby DNA shedding and decay. Further, we compared eDNA with several methods of traditional field sampling to compare its use as an alternative/complementary monitoring method. Environmental DNA decay was comparable to other fish species, and first-order decay was lower at 12°C (k = 0.043) than at 19°C (k = 0.058). Round goby eDNA was routinely detected in known invaded sites of Lake Michigan and its tributaries (range log10 4.8–6.2 CN/L), but not upstream of an artificial fish barrier. Traditional techniques (mark-recapture, seining, trapping) in Lakes Michigan and Huron resulted in fewer, more variable detections than eDNA, but trapping and eDNA were correlated (Pearson R = 0.87). Additional field testing will help correlate round goby abundance with eDNA, providing insight on its role as a prey fish and its impact on food webs.

  3. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus)

    PubMed Central

    Byappanahalli, Murulee N.; Morris, Charles C.; Shively, Dawn; Przybyla-Kelly, Kasia; Spoljaric, Ashley M.; Dickey, Joshua; Roseman, Edward F.

    2018-01-01

    Environmental DNA (eDNA) is revolutionizing biodiversity monitoring, occupancy estimates, and real-time detections of invasive species. In the Great Lakes, the round goby (Neogobius melanostomus), an invasive benthic fish from the Black Sea, has spread to encompass all five lakes and many tributaries, outcompeting or consuming native species; however, estimates of round goby abundance are confounded by behavior and habitat preference, which impact reliable methods for estimating their population. By integrating eDNA into round goby monitoring, improved estimates of biomass may be obtainable. We conducted mesocosm experiments to estimate rates of goby DNA shedding and decay. Further, we compared eDNA with several methods of traditional field sampling to compare its use as an alternative/complementary monitoring method. Environmental DNA decay was comparable to other fish species, and first-order decay was lower at 12°C (k = 0.043) than at 19°C (k = 0.058). Round goby eDNA was routinely detected in known invaded sites of Lake Michigan and its tributaries (range log10 4.8–6.2 CN/L), but not upstream of an artificial fish barrier. Traditional techniques (mark-recapture, seining, trapping) in Lakes Michigan and Huron resulted in fewer, more variable detections than eDNA, but trapping and eDNA were correlated (Pearson R = 0.87). Additional field testing will help correlate round goby abundance with eDNA, providing insight on its role as a prey fish and its impact on food webs. PMID:29357382

  4. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus).

    PubMed

    Nevers, Meredith B; Byappanahalli, Murulee N; Morris, Charles C; Shively, Dawn; Przybyla-Kelly, Kasia; Spoljaric, Ashley M; Dickey, Joshua; Roseman, Edward F

    2018-01-01

    Environmental DNA (eDNA) is revolutionizing biodiversity monitoring, occupancy estimates, and real-time detections of invasive species. In the Great Lakes, the round goby (Neogobius melanostomus), an invasive benthic fish from the Black Sea, has spread to encompass all five lakes and many tributaries, outcompeting or consuming native species; however, estimates of round goby abundance are confounded by behavior and habitat preference, which impact reliable methods for estimating their population. By integrating eDNA into round goby monitoring, improved estimates of biomass may be obtainable. We conducted mesocosm experiments to estimate rates of goby DNA shedding and decay. Further, we compared eDNA with several methods of traditional field sampling to compare its use as an alternative/complementary monitoring method. Environmental DNA decay was comparable to other fish species, and first-order decay was lower at 12°C (k = 0.043) than at 19°C (k = 0.058). Round goby eDNA was routinely detected in known invaded sites of Lake Michigan and its tributaries (range log10 4.8-6.2 CN/L), but not upstream of an artificial fish barrier. Traditional techniques (mark-recapture, seining, trapping) in Lakes Michigan and Huron resulted in fewer, more variable detections than eDNA, but trapping and eDNA were correlated (Pearson R = 0.87). Additional field testing will help correlate round goby abundance with eDNA, providing insight on its role as a prey fish and its impact on food webs.

  5. Concentrations and Loads of Nutrients and Suspended Sediments in Englesby Brook and Little Otter Creek, Lake Champlain Basin, Vermont, 2000-2005

    USGS Publications Warehouse

    Medalie, Laura

    2007-01-01

    The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.

  6. Using Critical Loads to Look at Improvements in Acidic Surface Water Conditions since the 1990 Amendments to the Clear Air Act: Case Study Adirondack, NY

    NASA Astrophysics Data System (ADS)

    Lynch, J. A.; Kolian, M. J.; Haeuber, R.

    2008-12-01

    Acid deposition has affected hundreds of lakes and thousands of miles of headwater streams in the Adirondack region of New York State. The diversity of life in these acidic waters has been greatly reduced. The poor buffering capacity of the thin, acidic soils in the Adirondack Mountains makes the lakes and ponds particularly susceptible to acidification. Since the mid-1990's, lakes in the Adirondack region are finally showing signs of recovery. The good news is that emissions of sulfur dioxide and nitrogen oxides have been reduced and as a result acidic deposition of sulfate and nitrate has decreased in surface waters approximately 26 and 13%, respectively. This has led to improvement in the acid neutralizing capacity (ANC) of these water bodies. Although improvement in water quality is a good sign, it does not tell us if a particular lake or a group of lakes have recovered from decades of acidic deposition. However, the critical loads approach does allow for evaluation of whether a water body has reached recovery for acidic deposition. Critical loads and exceedances for lake surface water and acidity were calculated for 187 lakes in the Adirondack region. The Steady-State Water Chemistry (SSWC) model was used to calculate the critical load, relying on water chemistry data from the TIME/LTM network. An ANC threshold of 50 μeq/L was selected for this case study. Exceedances were calculated from deposition for the period before implementation of the Acid Rain program (ARP) (1989-1991) and for the period of 2004-2006 to judge improvements as a result of the ARP. On average, the critical load for lakes in the Adirondack region is 164 meq/m2/yr, while it is 48 meq/m2/yr for the most sensitive lakes (i.e. ANC less than 100 μeq/L). For the period from 2004 to 2006, 65% of the lakes within the TIME/LTM network continued to receive levels of acid deposition that exceeded the lake's critical load down from 72% of lakes before implementation of the Acid Rain Program. Despite improvement in water quality that has occurred over the past decades in the Adirondack region additional reduction in acidic deposition is needed in order for greater recovery of these sensitive aquatic systems.

  7. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    NASA Astrophysics Data System (ADS)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing to detect equipment failure and identify defective products at the assembly line. The research work in this thesis combines machine vision and image processing technology to build a digital imaging and processing system for monitoring and measuring lake ice thickness in real time. An ultra-compact USB camera is programmed to acquire and transmit high resolution imagery for processing with MATLAB Image Processing toolbox. The image acquisition and transmission process is fully automated; image analysis is semi-automated and requires limited user input. Potential design changes to the prototype and ideas on fully automating the imaging and processing procedure are presented to conclude this research work.

  8. Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon

    USGS Publications Warehouse

    Schneider, Tiffany Rae; McFarland, William D.

    1995-01-01

    Information from field visits was used to develop a monitoring plan. The plan would include monitoring Borax Lake by measuring discharge, stage, evaporation, temperature, and specific conductance; water-quality sampling and analysis; and monitoring shallow ground-water levels near Borax Lake using shallow piezometers. Minimally, one hot spring in North Borax Lake Spring Group 1 would be monitored for temperature and specific conductance and sampled for water-quality analysis. In addition, two flowing wells would be monitored for water levels, temperature, specific conductance, and discharge and sampled for water-quality analysis. The construction characteristics of these wells must be verified before long-term data collection begins. In the future, it may be helpful to monitor shallow and (or) deep observation wells drilled into the thermal aquifer to understand the possible effects of geothermal development on Borax Lake and nearby springs.

  9. National Dam Safety Program. Cedar Hill Lake Number 2 and Number 3 Dams (MO 30005) and (MO 31020), Mississippi - Kaskaskia - St. Louis Basin, Jefferson County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-01-01

    ST. LOUIS I3ASIN ’ADA l1047 82 -3 CEDAR HILL LAKE NO. 2 AND NO. 5 DAMS 5JEFFERSON COUNTY, MISSOURI SMO 30005 AND MO 31020% SPHASE I INSPECTION REPORT...and Number 3 17. DISTRIBUTION STATEMENT (of the abstraect Un ((NO 30005 and MO 31020),, Mississippi - Kaskaskia - St. Louis i ,-_Basin, Jefferson County...results of field inspection and evaluation of Cedar Hill No. 2 and No. 3 Dams (Mo. 30005 and 31020). It was prepared under the National Program of

  10. Mercury in Precipitation in Indiana, January 2004-December 2005

    USGS Publications Warehouse

    Risch, Martin R.; Fowler, Kathleen K.

    2008-01-01

    Mercury in precipitation was monitored during 2004-2005 at five locations in Indiana as part of the National Atmospheric Deposition Program-Mercury Deposition Network (NADP-MDN). Monitoring stations were operated at Roush Lake near Huntington, Clifty Falls State Park near Madison, Fort Harrison State Park near Indianapolis, Monroe County Regional Airport near Bloomington, and Indiana Dunes National Lakeshore near Porter. At these monitoring stations, precipitation amounts were measured continuously and weekly samples were collected for analysis of mercury by methods achieving detection limits as low as 0.05 ng/L (nanograms per liter). Wet deposition was computed as the product of mercury concentration and precipitation. The data were analyzed for seasonal patterns, temporal trends, and geographic differences. In the 2 years, 520 weekly samples were collected at the 5 monitoring stations and 448 of these samples had sufficient precipitation to compute mercury wet deposition. The 2-year mean mercury concentration at the five monitoring stations (normalized to the sample volume) was 10.6 ng/L. As a reference for comparison, the total mercury concentration in 41 percent of the samples analyzed was greater than the statewide Indiana water-quality standard for mercury (12 ng/L, protecting aquatic life) and 99 percent of the concentrations exceeded the most conservative Indiana water-quality criterion (1.3 ng/L, protecting wild mammals and birds). The normalized annual mercury concentration at Clifty Falls in 2004 was the fourth highest in the NADP-MDN in eastern North America that year. In 2005, the mercury concentrations at Clifty Falls and Indiana Dunes were the ninth highest in the NADP-MDN in eastern North America. At the five monitoring stations during the study period, the mean weekly total mercury deposition was 0.208 ug/m2 (micrograms per square meter) and mean annual total mercury deposition was 10.8 ug/m2. The annual mercury deposition at Clifty Falls in 2004 and 2005 was in the top 25 percent of the NADP-MDN stations in eastern North America. Mercury concentrations and deposition varied at the five monitoring stations during 2004-2005. Mercury concentrations in wet-deposition samples ranged from 1.2 to 116.6 ng/L and weekly mercury deposition ranged from 0.002 to 1.74 ug/m2. Data from weekly samples exhibited seasonal patterns. During April through September, total mercury concentrations and deposition were higher than the median for all samples. Annual precipitation at four of the five monitoring stations was within 10 percent of normal both years, with the exception of Indiana Dunes, where precipitation was 23 percent below normal in 2005. Episodes of high mercury deposition, which were the top 10 percent of weekly mercury deposition at the five monitoring stations, contributed 39 percent of all mercury deposition during 2004-2005. Mercury deposition more than 1.04 ug/m2 (5 times the mean weekly deposition) was recorded for 12 samples. These episodes of highest mercury deposition were recorded at all five monitoring stations, but the most (7 of 12) were at Clifty Falls and contributed 34.4 percent of the total deposition at that station during 2004-2005. Weekly samples with high mercury deposition may help to explain the differences in annual mercury deposition among the five monitoring stations in Indiana. A statistical evaluation of the monitoring data for 2001-2005 indicated several statistically significant temporal trends. A statewide (5-station) decrease (p = 0.007) in mercury deposition and a statewide decrease (p = 0.059) in mercury concentration were shown. Decreases in mercury deposition (p = 0.061 and p = 0.083) were observed at Roush Lake and Bloomington. A statistically significant trend was not observed for precipitation at the five monitoring stations during this 5-year period. A potential explanation for part of the statewide decrease in mercury concentration and mercury deposition was a 2

  11. Estimation of selenium loads entering the south arm of Great Salt Lake, Utah, from May 2006 through March 2008

    USGS Publications Warehouse

    Naftz, David L.; Johnson, William P.; Freeman, Michael L.; Beisner, Kimberly; Diaz, Ximena; Cross, VeeAnn A.

    2009-01-01

    Discharge and water-quality data collected from six streamflow-gaging stations were used in combination with the LOADEST software to provide an estimate of total (dissolved + particulate) selenium (Se) load to the south arm of Great Salt Lake (GSL) from May 2006 through March 2008. Total estimated Se load to GSL during this time period was 2,370 kilograms (kg). The 12-month estimated Se load to GSL for May 1, 2006, to April 30, 2007, was 1,560 kg. During the 23-month monitoring period, inflows from the Kennecott Utah Copper Corporation (KUCC) Drain and Bear River outflow contributed equally to the largest proportion of total Se load to GSL, accounting for 49 percent of the total Se load. Five instantaneous discharge measurements at three sites along the railroad causeway indicate a consistent net loss of Se mass from the south arm to the north arm of GSL (mean = 2.4 kg/day, n = 5). Application of the average daily loss rate equates to annual Se loss rate to the north arm of 880 kg (56 percent of the annual Se input to the south arm). The majority of Se in water entering GSL is in the dissolved (less than 0.45 micron) state and ranges in concentration from 0.06 to 35.7 micrograms per liter (ug/L). Particulate Se concentration ranged from less than 0.05 to 2.5 ug/L. Except for the KUCC Drain streamflow-gaging station, dissolved (less than 0.45 um) inflow samples contain an average of 21 percent selenite (SeO32-) during two sampling events (May 2006 and 2007). Selenium concentration in water samples collected from four monitoring sites within GSL during May 2006 through August 2007 were used to understand how the cumulative Se load was being processed by various biogeochemical processes within the lake. On the basis of the Mann-Kendall test results, changes in dissolved Se concentration at the four monitoring sites indicate a statistically significant (90-percent confidence interval) upward trend in Se concentration over the 16-month monitoring period. Furthermore, the upward trend at three of the four GSL sites also was significant at the 95-percent confidence interval. Given the large amount of Se removal from GSL of greater than 1,900 kg/year by gaseous flux and permanent sedimentation, the observed increase in both dissolved (less than 0.45 micron) and total (dissolved + particulate) Se in the open-water monitoring sites indicates additional, unquantified source(s) of Se are contributing substantial masses of Se load to the south arm of GSL. Potential source(s) of this unmeasured Se load could include (1) Se loads entering GSL from unmeasured surface inflows; (2) ground-water discharge to GSL; (3) wind-blown dust that is deposited directly on the lake surface; (4) wet and dry atmospheric deposition falling directly on the lake surface; and (5) lake sediment pore-water diffusion into the overlying water column. Electrical resistivity surveys in the south part of GSL indicate areas of potential ground-water discharge to the open water of GSL and elevated (exceeding 10,000 ug/L) Se concentrations have been previously measured in ground water within 1.6 kilometers of the south shore of GSL.

  12. State and regional water-quality characteristics and trophic conditions of Michigan's inland lakes, 2001-2005

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2008-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality are jointly monitoring selected water-quality constituents of inland lakes through 2015 as part of Michigan’s Lake Water Quality Assessment program. During 2001–2005, 433 lake basins from 364 inland lakes were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of those monitored lake basins throughout the State. Regional variation of water quality in lake basins was examined by grouping on the basis of the five Omernik level III ecoregions within Michigan. Concentrations of most constituents measured were significantly different between ecoregions. Less regional variation of phosphorus concentrations was noted between Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions during summer possibly because water samples were collected when lake productivity was high; hence the utilization of the limited amount of phosphorus by algae and macrophytes may have resulted in the more uniform concentrations between these two ecoregions. Concentrations of common ions (calcium, magnesium, potassium, sodium, chloride, and sulfate) measured in the spring typically were higher in the Michigan southern Lower Peninsula in the Eastern Corn Belt Plains (55), Southern Michigan/Northern Indiana Drift Plains (56), and Huron/Erie Lake Plains (57) ecoregions. Most ions whose concentrations were less than the minimum reporting levels or were nondetectable were from lakes in the Michigan northern Lower Peninsula and the Upper Peninsula in the Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions. Chlorophyll a concentrations followed a similar distribution pattern. Measured properties such as pH and specific conductance (indicative of dissolved solids) also showed a regional relation. The lakes with the lowest pH and specific conductance were generally in the western Upper Peninsula (Northern Lakes and Forests (50) ecoregion). The Michigan Department of Environmental Quality classifies Michigan lakes on the basis of their primary biological productivity or trophic characteristics using the Carlson Trophic State Index. Trophic evaluations based on data collected from 2001 through 2005 indicate 17 percent of the lakes are oligotrophic, 53 percent are mesotrophic, 22 percent are eutrophic, 4 percent are hypereutrophic, and less than 5 percent are classified into transition classes between each major class. Although the distribution of lakes throughout Michigan or between Omernik level III ecoregions is not uniform, about 85 percent of the lakes classified as oligotrophic are in the Northern Lakes and Forests (50) or North Central Hardwoods (51) ecoregions. Nearly 28 percent of all the lakes in each of these two ecoregions were classified as oligotrophic. Historical trophic-state classes were compared to the current (2001 through 2005) trophic-state classes. Approximately 72 percent of lakes remained in the same trophic-state class, 11 percent moved up a partial or full class (indicating a decrease in water clarity) and 18 percent moved down a partial or full class (indicating an increase in water clarity).

  13. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  14. Groundwater quality surrounding Lake Texoma during short-term drought conditions

    USGS Publications Warehouse

    Kampbell, D.H.; An, Y.-J.; Jewell, K.P.; Masoner, J.R.

    2003-01-01

    Water quality data from 55 monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. During the drought month of October, water table levels were three feet (0.9 m) lower compared with several months earlier under predrought climate conditions. Detection frequencies of nitrate (> 0.1 mg/l), orthophosphates (> 0.1 mg/l), chlorides (> MCL), and sulfates (> MCL) all increased during drought. Orthophosphate level was higher during drought. Largest increases in concentration were nitrate under both agriculture lands and in septic tank areas. An increase in ammonium-nitrogen was only detected in the septic tank area. The study showed that stressors such as nitrate and total salts could potentially become a health or environmental problem during drought.

  15. Microbial communities of Hyper saline Lake Salda and Acigol, SW Turkey and Their effects on Biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Balci, N.; Karaguler, N. G.; Ece, I.; Romanek, C.

    2009-12-01

    The modern lakes Acigol and Salda, located in the “Lake District” of SW of Turkey, are known for the precipitation of sodium, magnesium, and potassium salts, and Mg-rich carbonate, respectively. As an analogue to extraterrestrial environments, these lakes provide opportunities to study microbe-mineral interactions in extreme environments, and in turn to better understand biogeochemical conditions in such environments. Lake Salda is an evaporatic alkaline lake (pH: 9) that covers an area of about 45 km2 in a partially serpentinized ophiolitic rocks. Water samples collected from the surface contain c. 295 mg/L Mg and c. 190 mg/L Na at a pH of 9.1, while the stream entering the lake (pH range 7-9.5) had values of 55 mg/L and 3 mg/L, respectively, indicating significant Na enrichment relative to Mg in the lake. Microbiological analyses of sediment samples from the stream and the lake indicate a diverse microbial community. Lake Acigol is a perennial lake with a maximum salinity of about 200 g/L and covers an area of 55-60 km2 . Water samples were taken from the lake and ponds around the lake in addition to sediment samples. The water chemistry revealed relatively high Na and SO4 concentrations both in the lake (30 gr/L, 33.36 gr/L), and the ponds (100 mg/L, 123 mg/L). The mineralogical analyses of sediments showed gypsum, halite, carbonate (aragonite, huntite) precipitation in the lake and ponds. The geochemical and microbiological data from both lakes suggest that the metabolic activity of microorganisms (cyanobacteria, sulfate reducing bacteria) significantly affect the surrounding microenvironment, overcoming the common kinetic inhibitors to carbonate mineral precipitation by raising the pH and Mg- and HCO3-ion concentration, and by reducing sulfate ion concentration of the waters. We are currently undertaking laboratory experiments to elucidate biological influences on the precipitation of carbonate minerals under field conditions.

  16. Limnological Monitoring on the Upper Mississippi River System, 1993-1996: Lake City Field Station

    DTIC Science & Technology

    1999-10-01

    Reports of this type provide a synopsis of the collected data and collection methods, as well as a preliminary report of remarkable or unusual conditions ... conditions . To meet this need, Congress authorized a Long Term Resource Monitoring Program (LTRMP) for the Upper Mississippi River System (UMRS). The LTRMP...primarily for human consumption or regulatory purposes (e.g., chemical oxygen demand, biochemical oxygen demand, total coliform bacteria , fecal coliform

  17. Effects of Simulated Land-Use Changes on Water Quality of Lake Maumelle, Arkansas

    USGS Publications Warehouse

    Hart, Rheannon M.; Westerman, Drew A.; Petersen, James C.; Green, W. Reed; De Lanois, Jeanne L.

    2011-01-01

    Lake Maumelle is one of two principal drinking-water supplies for the Little Rock and North Little Rock metropolitan areas. Lake Maumelle and the Maumelle River (its primary tributary) are more pristine than most other reservoirs and streams in the region. However, as the Lake Maumelle watershed becomes increasingly more urbanized and timber harvesting becomes more frequent, concerns about the sustainability of the quality of the water supply also have increased. Two models were developed to partially address these concerns. A Hydrological Simulation Program-FORTRAN model was developed using input data collected from October 2004 through 2008. A CE-QUAL-W2 model was developed to simulate reservoir hydrodynamics and selected water quality using the simulated output from the Hydrological Simulation Program-FORTRAN model from January 2005 through 2008. The Hydrological Simulation Program-FORTRAN watershed model was calibrated to five streamflow-gaging stations, and in general, these stations characterize a range of subwatershed areas with varying land-use types. Continuous streamflow data, discrete sediment concentration data, and other discrete water-quality data were used to calibrate the Lake Maumelle Hydrological Simulation Program-FORTRAN model. The CE-QUAL-W2 reservoir model was calibrated to water-quality data and reservoir pool altitude collected during January 2005 through December 2008 at three lake stations. In general, the overall simulation for the Hydrological Simulation Program-FORTRAN and CE-UAL-W2 models matched reasonably well to the measured data. In general, simulated and measured suspended-sediment concentrations during periods of base flow (streamflows not substantially influenced by runoff) agree reasonably well for Williams Junction (with differences-simulated minus measured value-generally ranging from -14 to 19 mg/L, and percent difference-relative to the measured value-ranging from -87 to 642 percent) and Wye (differences generally ranging from -2 to 14 mg/L, -62 to 251 percent); however, the Hydrological Simulation Program-FORTRAN model generally does not match the suspended-sediment concentrations for all stations during periods of stormflow (streamflow substantially influenced by runoff). Generally, this is also the case for fecal coliform bacteria numbers and total organic carbon and nutrient concentrations. In general, water temperature and dissolved-oxygen concentration simulations followed measured seasonal trends for all stations with the largest differences occurring during periods of lowest water temperatures (for temperature) or during the periods of lowest measured dissolved-oxygen concentrations (for dissolved oxygen). For the CE-QUAL-W2 model, simulated vertical distributions of temperatures and dissolved-oxygen concentrations agreed with measured distributions even for complex temperature profiles. Considering the oligotrophic-mesotrophic (low to intermediate primary productivity and associated low nutrient concentrations) condition of Lake Maumelle, simulated algae, phosphorus, and ammonia concentrations compared well with generally low measured values.

  18. Pharmaceutical Residues Affecting the UNESCO Biosphere Reserve Kristianstads Vattenrike Wetlands: Sources and Sinks.

    PubMed

    Björklund, Erland; Svahn, Ola; Bak, Søren; Bekoe, Samuel Oppong; Hansen, Martin

    2016-10-01

    This study is the first to investigate the pharmaceutical burden from point sources affecting the UNESCO Biosphere Reserve Kristianstads Vattenrike, Sweden. The investigated Biosphere Reserve is a >1000 km(2) wetland system with inflows from lakes, rivers, leachate from landfill, and wastewater-treatment plants (WWTPs). We analysed influent and treated wastewater, leachate water, lake, river, and wetland water alongside sediment for six model pharmaceuticals. The two WWTPs investigated released pharmaceutical residues at levels close to those previously observed in Swedish monitoring exercises. Compound-dependent WWTP removal efficiencies ranging from 12 to 100 % for bendroflumethiazide, oxazepam, atenolol, carbamazepine, and diclofenac were observed. Surface-water concentrations in the most affected lake were ≥100 ng/L for the various pharmaceuticals with atenolol showing the highest levels (>300 ng/L). A small risk assessment showed that adverse single-substance toxicity on aquatic organisms within the UNESCO Biosphere Reserve is unlikely. However, the effects of combinations of a large number of known and unknown pharmaceuticals, metals, and nutrients are still unknown.

  19. Water-quality trend analysis and sampling design for the Devils Lake Basin, North Dakota, January 1965 through September 2003

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.

    2006-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, the Devils Lake Basin Joint Water Resource Board, and the Red River Joint Water Resource District, to analyze historical water-quality trends in three dissolved major ions, three nutrients, and one dissolved trace element for eight stations in the Devils Lake Basin in North Dakota and to develop an efficient sampling design to monitor the future trends. A multiple-regression model was used to detect and remove streamflow-related variability in constituent concentrations. To separate the natural variability in concentration as a result of variability in streamflow from the variability in concentration as a result of other factors, the base-10 logarithm of daily streamflow was divided into four components-a 5-year streamflow anomaly, an annual streamflow anomaly, a seasonal streamflow anomaly, and a daily streamflow anomaly. The constituent concentrations then were adjusted for streamflow-related variability by removing the 5-year, annual, seasonal, and daily variability. Constituents used for the water-quality trend analysis were evaluated for a step trend to examine the effect of Channel A on water quality in the basin and a linear trend to detect gradual changes with time from January 1980 through September 2003. The fitted upward linear trends for dissolved calcium concentrations during 1980-2003 for two stations were significant. The fitted step trends for dissolved sulfate concentrations for three stations were positive and similar in magnitude. Of the three upward trends, one was significant. The fitted step trends for dissolved chloride concentrations were positive but insignificant. The fitted linear trends for the upstream stations were small and insignificant, but three of the downward trends that occurred during 1980-2003 for the remaining stations were significant. The fitted upward linear trends for dissolved nitrite plus nitrate as nitrogen concentrations during 1987-2003 for two stations were significant. However, concentrations during recent years appear to be lower than those for the 1970s and early 1980s but higher than those for the late 1980s and early 1990s. The fitted downward linear trend for dissolved ammonia concentrations for one station was significant. The fitted linear trends for total phosphorus concentrations for two stations were significant. Upward trends for total phosphorus concentrations occurred from the late 1980s to 2003 for most stations, but a small and insignificant downward trend occurred for one station. Continued monitoring will be needed to determine if the recent trend toward higher dissolved nitrite plus nitrate as nitrogen and total phosphorus concentrations continues in the future. For continued monitoring of water-quality trends in the upper Devils Lake Basin, an efficient sampling design consists of five major-ion, nutrient, and trace-element samples per year at three existing stream stations and at three existing lake stations. This sampling design requires the collection of 15 stream samples and 15 lake samples per year rather than 16 stream samples and 20 lake samples per year as in the 1992-2003 program. Thus, the design would result in a program that is less costly and more efficient than the 1992-2003 program but that still would provide the data needed to monitor water-quality trends in the Devils Lake Basin.

  20. Caged Fish Studies to Detect and Monitor Contaminants of Emerging Concern in the Great Lakes

    EPA Science Inventory

    Effects-based monitoring studies were conducted in the St. Louis Harbor, Lake Superior, in support of the Great Lakes Restoration Initiative (GLRI). The overall goal of the research was to develop and validate methods using caged fish exposures to detect and monitor contaminants...

  1. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, andmore » (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.« less

  2. Authigenic carbonate precipitation in Lake Acigöl, a hypersaline lake in southwestern Turkey

    NASA Astrophysics Data System (ADS)

    Balci, Nurgul; Menekse, Meryem; Gül Karagüler, Nevin; Seref Sönmez, M.; Meister, Patrick

    2014-05-01

    Lake Acigöl (Bitter Lake) is a hypersaline lake in southwestern Turkey at an elevation of 836 m above sea level showing authigenic precipitation of several different carbonate mineral phases. It is a perennial lake and closed drainage basin where a semiarid continental climate dominates. Due to the extreme water chemistry (salinity 8-200 mg/l; SO4 112-15232 mg/l; Cl 290-35320 mg/l; Mg, 82-3425 mg/l; Ca 102-745 mg/l) unique microorganisms flourish in the lake. We studied microbial diversity from enrichment cultures and performed precipitation experiments using similar water chemistry and adding bacterial enrichment cultures from lake sediments in order to elucidate whether the mineral assemblages found in the lake can be reproduced. Experiments using moderately halophilic bacteria obtained from the lake sediments demonstrate the formation of various calcium-/magnesium-carbonates: hydromagnesite, dypingite, huntite, monohydrocalcite and aragonite. The relative amounts of different mineral phases, particularly monohydrocalcite, hydromagnesite and dypingite, could be controlled by varying the sulphate concentration in the media from 0 to 56 mM. The similar mineral assemblages identified in the sediments of Lake Acigöl and in the experiments point to similar thermodynamic conditions and kinetics of crystal growth. In particular, the similar spherical morphology points to a rapid crystal growth under strong kinetic inhibition, possibly by organic polymers that are commonly produced by microbial communities. Our results demonstrate that the authigenic carbonate paragenesis of hypersaline lakes as Lake Acigöl can be reproduced in halophilic bacterial cultures. The exact thermodynamic conditions and precipitation kinetics under seasonally changing water chemistry or in batch experiment, however, still have to be constrained in order to establish a microbial model for carbonate precipitation in such environments.

  3. Hydrologic data and description of a hydrologic monitoring plan for Medicine Lake Volcano, California

    USGS Publications Warehouse

    Schneider, Tiffany Rae; McFarland, W.D.

    1996-01-01

    A hydrologic reconnaissance of the Medicine Lake Volcano area was done to collect data needed for the design of a hydrologic monitoring plan. The reconnaissance was completed during two field trips made in June and September 1992, during which geothermal and hydrologic features of public interest in the Medicine Lake area were identified. Selected wells, springs, and geothermal features were located and documented, and initial water-level, discharge, temperature, and specific-conductance measurements were made. Lakes in the study area also were surveyed during the September field trip. Temperature, specific- conductance, dissolved oxygen, and pH data were collected by using a multiparameter probe. The proposed monitoring plan includes measurement of water levels in wells, discharge from springs, and lake stage, as well as analysis of well-,spring-, and lake-water quality. In determining lake-water quality, data for both stratified and unstratified conditions would be considered. (Data for stratified conditions were collected during the reconnaissance phase of this project, but data for unstratified conditions were not.) In addition, lake stage also would be monitored. A geothermal feature near Medicine Lake is a "hot spot" from which hot gases discharge from two distinct vents. Gas chemistry and temperature would be monitored in one of these vents.

  4. 75 FR 22832 - Lake Wales Ridge National Wildlife Refuge, Highlands and Polk Counties, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... would continue to focus on maintaining existing habitats for rare, threatened, and endangered species... Island NWR Complex provides fire program staff); (2) rare, threatened, and endangered species monitoring... actions that include managing habitats for rare, threatened, and endangered species. Both Federal- and...

  5. National Aquatic Resource Surveys & Statistics: Role of statistics in the development of a national monitoring program

    EPA Science Inventory

    The National Aquatic Resource Surveys (NARS) are a series of four statistical surveys conducted by the U.S. Environmental Protection Agency working in collaboration with states, tribal nations and other federal agencies. The surveys are conducted for lakes and reservoirs, streams...

  6. Cyanobacteria: State Monitoring Programs, Beach Closures, and Potential Human Health Risks

    EPA Science Inventory

    New England is rich in freshwater lakes and ponds, many of which are subject to cyanobacteria (blue-green algae) blooms that can limit recreational use and cause health problems. This study was conducted to better understand the health risks to human and animal populations that a...

  7. What can one sample tell us? Stable isotopes can assess complex processes in national assessments of lakes, rivers and streams.

    EPA Science Inventory

    Stable isotopes can be very useful in large-scale monitoring programs because samples for isotopic analysis are easy to collect, and isotopes integrate information about complex processes such as evaporation from water isotopes and denitrification from nitrogen isotopes. Traditi...

  8. WATER QUALITY IN THE GARRISON REACH OF THE MISSOURI RIVER, ND: PRELIMINARY EMAP FINDINGS

    EPA Science Inventory

    In 2001 and 2002, summer water quality (WQ) sampling was conducted on open waters (flowing waters of the river channel) and backwaters of the Missouri River between Garrison Dam and Lake Oahe as part of the EPA's Environmental Monitoring and Assessment Program Upper Missouri Rive...

  9. In-flight validation and recovery of water surface temperature with Landsat-5 thermal infrared data using an automated high-altitude lake validation site at Lake Tahoe

    USGS Publications Warehouse

    Hook, S.J.; Chander, G.; Barsi, J.A.; Alley, R.E.; Abtahi, A.; Palluconi, Frank Don; Markham, B.L.; Richards, R.C.; Schladow, S.G.; Helder, D.L.

    2004-01-01

    The absolute radiometric accuracy of the thermal infrared band (B6) of the Thematic Mapper (TM) instrument on the Landsat-5 (L5) satellite was assessed over a period of approximately four years using data from the Lake Tahoe automated validation site (California-Nevada). The Lake Tahoe site was established in July 1999, and measurements of the skin and bulk temperature have been made approximately every 2 min from four permanently moored buoys since mid-1999. Assessment involved using a radiative transfer model to propagate surface skin temperature measurements made at the time of the L5 overpass to predict the at-sensor radiance. The predicted radiance was then convolved with the L5B6 system response function to obtain the predicted L5B6 radiance, which was then compared with the radiance measured by L5B6. Twenty-four cloud-free scenes acquired between 1999 and 2003 were used in the analysis with scene temperatures ranging between 4/spl deg/C and 22/spl deg/C. The results indicate L5B6 had a radiance bias of 2.5% (1.6/spl deg/C) in late 1999, which gradually decreased to 0.8% (0.5/spl deg/C) in mid-2002. Since that time, the bias has remained positive (predicted minus measured) and between 0.3% (0.2/spl deg/C) and 1.4% (0.9/spl deg/C). The cause for the cold bias (L5 radiances are lower than expected) is unresolved, but likely related to changes in instrument temperature associated with changes in instrument usage. The in situ data were then used to develop algorithms to recover the skin and bulk temperature of the water by regressing the L5B6 radiance and the National Center for Environmental Prediction (NCEP) total column water data to either the skin or bulk temperature. Use of the NCEP data provides an alternative approach to the split-window approach used with instruments that have two thermal infrared bands. The results indicate the surface skin and bulk temperature can be recovered with a standard error of 0.6/spl deg/C. This error is larger than errors obtained with other instruments due, in part, to the calibration bias. L5 provides the only long-duration high spatial resolution thermal infrared measurements of the land surface. If these data are to be used effectively in studies designed to monitor change, it is essential to continue to monitor instrument performance in-flight and develop quantitative algorithms for recovering surface temperature.

  10. Hungry Horse Mitigation; Flathead Lake, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry

    2003-06-09

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Councilmore » in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the interconnected Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of potential mitigation strategies. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-6.« less

  11. National Dam Safety Program. Rock Island Lake Dam (NJ 00819) Wallkill River Basin, Rock Island Lake, Sussex County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1981-08-01

    8 Y4 Z] 4 .TTL ad util)r.~!E or... 4 wone~fl idwk., p- 4 , r nmburgd I ~~~’~~ Alet~ arytoJ 0- I ~ embers rns d CALEt IN MAILES FDATE: ,JtJ I" I H ey Lae arREGw APPENDIX 1 CHECK LIST...7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 IN. SCALE I 3 4 ~ a, 4 l4CjAcL-J C 5 -6 -I--.r r \\ -I ,,) 7 8 lp,:/ __.!o____._.

  12. [Spatiotemporal characteristics of nitrogen and phosphorus in a mountainous urban lake].

    PubMed

    Bao, Jing-Yue; Bao, Jian-Guo; Li, Li-Qing

    2014-10-01

    Longjing Lake in Chongqing Expo Garden is a typical representative of mountainous urban lake. Based on water quality monitoring of Longjing Lake, spatiotemporal characteristics of nitrogen and phosphorus and their relations were analyzed, combined with natural and human factors considered. The results indicated that annual average concentrations of TN and TP in overall lake were (1.42 ± 0.46) mg · L(-1) and (0.09 ± 0.03) mg · L(-1), nitrogen and phosphorus concentrations fluctuated seasonally which were lower during the flooding season than those during the dry season. Nitrogen and phosphorus concentration in main water area, open water areas and bay areas of Longjing Lake were distributed with temporal and spatial heterogeneity by different regional influencing factors. The seasonal variation of the main water area was basically consistent with overall lake. Two open water areas respectively connected the main water area with the upstream region, bay areas. TN and TP concentrations were gradually reduced along the flow direction. Upstream water quality and surrounding park functional layout impacted nitrogen and phosphorus nutrient concentrations of open water areas. Nutrient concentrations of typical bay areas were higher than those of main water area and open water areas. The mean mass fraction of PN/TN and PP/TP accounted for a large proportion (51.7% and 72.8%) during the flooding season, while NO(3-)-N/TN and SRP/TP accounted for more (42.0% and 59.4%) during the dry season. The mass fraction of ammonia nitrogen and dissolved organic nitrogen in total nitrogen were relatively stable. The annual mean of N/P ratio was 18.429 ± 7.883; the period of nitrogen limitation was 5.3% while was 21.2% for phosphorus limitation.

  13. Global Scale Remote Sensing Monitoring of Endorheic Lake Systems

    NASA Astrophysics Data System (ADS)

    Scuderi, L. A.

    2010-12-01

    Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.

  14. Seismic Wave Attenuation and Yield Determination at Regional Distances

    DTIC Science & Technology

    1989-05-25

    estimation, Bull. Seism. Soc. Am. 75, 379-390. Ervin, C. P. and L. D. McGinnis (1975). Reelfoot rift: Reactivated precursor to the Mis- sissippi...spectra in Friuli. Peng et al. (1987) where rl ranges between 1.06 and 1.33 in the Mammoth Lakes -Bishop area, van Eck (1988) where Q0 = 65 and q7 = 1.05...Bob Smith Department of Geophysics University of Utah 1400 East 2nd South Salt Lake City, UT 84112 Dr. S. W. Smith Geophysics Program University of

  15. Seasonal Daphnia biomass in winterkill and nonwinterkill glacial lakes of South Dakota

    USGS Publications Warehouse

    Isermann, D.A.; Chipps, S.R.; Brown, M.L.

    2004-01-01

    We compared the seasonal biomass (??g dry weight/L) and body size of Daphnia pulex populations between South Dakota lakes that experienced nearly complete winterkill (n = 2) and those that did not experience fish winterkill the previous winter (n = 2). In spring (March-May), D. pulex biomass was substantially lower in winterkill lakes (0.4-1.9 ??g/L) than in nonwinterkill lakes (13.8-129.4 ??g/L). In summer months (June-July), D. pulex biomass increased in all lakes but was generally higher in winterkill lakes (332.1-469. 3 ??g/L) than in nonwinterkill lakes (88.6-204.2 ??g/L). By September, D. pulex biomass was substantially higher in winterkill lakes (243.8 ??g/L) than in nonwinterkill lakes (1.0 ??g/L). The mean size of D. pulex increased significantly from March to August in winterkill lakes but not in nonwinterkill lakes. The seasonal differences in D. pulex biomass and size may have been related to size-selective predation by planktivorous fishes because the ratio of spine length to body length in D. pulex was significantly lower in winterkill lakes (mean, 0.34) than in nonwinterkill lakes (mean, 0.43). Moreover, seasonal patterns in chlorophyll-a biomass were inversely related to D. pulex biomass. The production and subsequent hatching of resting eggs may be important for recolonization of Daphnia populations after severe winter conditions. The survival and growth of zooplanktivorous fish that are stocked to repopulate winterkill lakes may be increased by delaying stocking until Daphnia populations recover from severe winterkill.

  16. Linking hydro-climate to the sediment archive: a combined monitoring and calibration study from a varved lake in central Turkey

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Allcock, Samantha L.; Leng, Melanie J.; Metcalfe, Sarah E.; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Hydro-climatic reconstructions from lake sediment proxies require an understanding of modern formation processes and calibration over multiple years. Here we use Nar Gölü, a non-outlet, monomictic maar lake in central Turkey, as a field site for such a natural experiment. Fieldwork since 1997 has included observations and measurements of lake water and sediment trap samples, and automated data logging (Jones et al., 2005; Woodbridge and Roberts, 2010; Dean et al., 2015). We compare these data to isotopic, chemical and biotic proxies preserved in the lake's annually-varved sediments. Nar Gölü underwent a 3 m lake-level fall between 2000 and 2010, and δ18O in both water and carbonates is correlated with this lake-level fall, responding to the change in water balance. Over the same period, sedimentary diatom assemblages responded via changes in habitat availability and mixing regime, while conductivity inferred from diatoms showed a rise in inferred salinity, although with a non-linear response to hydro-climatic forcing. There were also non-linear shifts in carbonate mineralogy and elemental chemistry. Building on the relationship between lake water balance and the sediment isotope record, we calibrated sedimentary δ18O against local meteorological records to derive a P/E drought index for central Anatolia. Application to of this to the longer sediment core isotope record from Nar Gölü (Jones et al. 2006) highlights major drought events over the last 600 years (Yiǧitbaşıoǧlu et al., 2015). Although this lacustrine record offers an archive of annually-dated, decadally-averaged hydro-climatic change, there were also times of non-linear lake response to climate. Robust reconstruction therefore requires understanding of physical processes as well as application of statistical correlations. Dean, J.R., Eastwood, W.J., Roberts, N., Jones, M.D., Yiǧitbaşıoǧlu, H., Allcock, S.L., Woodbridge, J., Metcalfe, S.E. and Leng, M.J. (2015) Tracking the hydro-climatic signal from lake to sediment: a field study from central Turkey, J. Hydrol. 529, 608-621. Jones, MD, Leng, MJ, Roberts, CN, Turkes, M, Moyeed, R (2005) A coupled calibration and modelling approach to the understanding of dry-land lake oxygen isotope records. J Paleolimnol 34: 391-411 Jones, M.D., Roberts, N., Leng, M.J. and Türkeş, M. (2006) A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34 (5), 361-364. Woodbridge, J, & Roberts, N (2010) Linking neo- and palaeolimnology: a case study using crater lake diatoms from central Turkey. J Paleolimnol 44: 855-871 Yiǧitbaşıoǧlu, H., Dean, J.R., Eastwood, W.J., Roberts, N., Jones, M.D. and Leng, M.J. (2015) A 600 year-long drought index for central Anatolia. Journal of Black Sea/Mediterranean Environment, Special Issue: 84-88

  17. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  18. Eutrophication dynamics in lake Baikal from remote sensing data

    NASA Astrophysics Data System (ADS)

    Pitarch, Jaime; Silow, Eugene; Krashchuk, Lyudmila S.; Pislegina, Elena V.; Shimaraeva, Svetlana V.; Izmestyeva, Lyubov R.; Santoleri, Rosalia; Moore, Marianne V.

    2017-04-01

    Lake Baikal, one of the oldest lakes on earth, the deepest (1642 m), and the largest in volume (23,615 cubic km) of all of Earth's freshwater bodies, is located nearly in the very center of Asia, 456 m above sea level. Baikal stretches for 636 km from the southwest to the northeast between 51°28' and 55°47' N, and 103°43' and 109°58' E. The area of Baikal's watershed is over 550,000 square km. Baikal is also unique in that its waters are rich in oxygen all the way to the bottom of the lake. A large number of the species living in Lake Baikal are endemic. In 1996, Lake Baikal was named a UNESCO Heritage Site, with Russia pledging to protect it. A number of recent studies have reported degradation of the benthic littoral zone such as proliferation of benthic algae, death of snails and endemic sponges, large coastal wash-ups of dead benthic algae and macrophytes, blooms of toxin-producing benthic cyanobacteria, and inputs of industrial contaminants. In the open, pelagic basins, changes in the eutrophication and water transparency have also been noticed. Such studies were based on in-situ collected data, at different spatial and temporal frequencies. Remote sensing (RS) offers a comprehensive monitoring of all littoral and open areas of the lake at a high and regular time frequency. The amount of ecological information retrieved by RS is much lower than that provided by in-situ data, but RS can determine the representativeness of the chosen in-situ stations and detect un-sampled zones that need monitoring. Additionally, RS provides a harmonized methodology in space and time, which is crucial if statistical information is going to be derived. On its turn, in-situ data is required as a ground truth to transform the RS signal into relevant ecological indicators. In this work, we provide the first results of a new international project aimed to re-analize archived RS data to study ecological changes in Lake Baikal and incorporate near-real time RS data to monitoring programs.

  19. CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY CEMETERY LOCATER), SALT LAKE CITY, UT. VIEW LOOKING NORTHEAST AT CHINESE PLAT MARKER AND BURNER. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  20. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.« less

  1. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry; Evarts, Les

    2008-12-22

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.« less

  2. Hungry Horse Mitigation; Flathead Lake, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry; Evarts, Les

    2006-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.« less

  3. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry; Evarts, Les

    2009-08-06

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.« less

  4. A classification of freshwater Louisiana lakes based on water quality and user perception data.

    PubMed

    Burden, D G; Malone, R F

    1987-09-01

    An index system developed for Louisiana lakes was based on correlations between measurable water quality parameters and perceived lake quality. Support data was provided by an extensive monitoring program of 30 lakes coordinated with opinion surveys undertaken during summer 1984. Lakes included in the survey ranged from 4 to 735 km(2) in surface area with mean depths ranging from 0.5 to 8.0 m. Water quality data indicated most of these lakes are eutrophic, although many have productive fisheries and are considered recreational assets. Perception ratings of fishing quality and its associated water quality were obtained by distributing approximately 1200 surveys to Louisiana Bass Club Associaton members. The ability of Secchi disc transparency, total organic carbon, total Kjeldahl nitrogen, total phosphorus, and chlorophyll a to discriminate between perception classes was examined using probability distributions and multivariate analyses. Secchi disc and total organic carbon best reflected perceived lake conditions; however, these parameters did not provide the discrimination necessary for developing a quantitative risk assessment of lake trophic state. Consequently, an interim lakes index system was developed based on total organic carbon and perceived lake conditions. The developed index system will aid State officials in interpretating and evaluating regularly collected lake quality data, recognizing potential problem areas, and identifying proper management policies for protecting fisheries usage within the State.

  5. CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY CEMETERY LOCATER), SALT LAKE CITY, UT. VIEW LOOKING NORTHEAST AT CHINESE PLAT MARKER, BURNER & CHINESE GRAVES. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  6. [A correlative study on heterotrophic bacteria and the main pollutant in city lakes' water].

    PubMed

    Huang, Li-Jing; Yun, Luo-Jia; Wang, Lin; Zhang, Xiao-He

    2005-01-01

    To provide scientific basis for bioremediation of city lake, the distribution of heterotrophic bacteria and its correlation with major pollutions condition were studied. Puping Lake and Moshui Lake of Wu Han City were choosen as the objects of our study. COD(cr) TOC, TP and TN were determined in sampled freshwater and sediment via the standard methods. At the same time the bacteria was cultivated. The average value of COD(cr), TOC, TP and TN were 8. 934 mg/L, 5.125 mg/L, 0.089 mg/L, 4.739 mg/L in Puping Lake and 86.296 mg/L,13.255 mg/ L, 1.796 mg/L, 7.325 mg/L in Moshui Lake. Ten strains of heterotrophic bacteria were isolated from the sample and they are Pseudomonas, Bacillus, Enterobateriaceae, Aeromonas and Coccus. The dominant strain in water was Pseudomonas. The proportion of Bacillus in sediment was relatively higher. In the two lakes, the average bacteria counts were 1.90 x 10(3) CFU and 5.53 x 10(4) CFU per mL in water, 3.12 x 10(5) CFU and 5.06 x 10(5) CFU per g in sediment. Puping Lake and Moshui Lake were polluted seriously according to the standard; Gram negative rods were the main types in water, and the dominant type was Pseudomonas, the Gram positive bacteria was Bacillus; The type and quantity of bacteria in Moshui Lake were higher than those in Puping Lake, and there were correlations between the quantity of bacteria and the pollutants.

  7. Assessment of Sediment Measurements in Lake Michigan as a Case Study: Implications for Monitoring and Modeling

    EPA Science Inventory

    Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment within a case study. Field data collected at 116 sediment sampling sites throughout the lake in an intensive monitoring effort were utilized for assessment ...

  8. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  9. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    USGS Publications Warehouse

    Mast, M.A.; Turk, J.T.; Clow, D.W.; Campbell, D.H.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 ??eq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 ??eq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93??C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering. ?? 2010 US Government.

  10. The bird species of Kumasir lake (Kahramanmaras-Turkey) and a view of environmental ethics on sustainable wetland management.

    PubMed

    Inac, S; Gorucu, O; Pinar, A H

    2008-05-01

    Kumasir lake is located next to towns of Donuklu and Fatih, nine km west of Kahramanmaras city center the region of east Mediterranean, Turkey This lake is of crucial importance from the point of native and immigrant birds. We located 17 birdspecies in this area during our observations carried out in the spring and autumn of 2005-2006. These were Ciconia ciconia L., Anas platyrhynchos L., Accipiter nisus L., Accipiter brevipes L., Fulica atra L., Columba palumbus L., Merops apiaster L., Upupa epops L., Alauda arvensis L., Motacilla flava L., Turdus merula L., Acrocephalus scirpaceus L., Regulus regulus L., Garrulus glandarius L., Corvus corax L., Fringilla coelebs L., Hirundo rustica L.. Among observed 17 species; 6 of them were immigrant and remaining 11 of them were native birds. Kumasir lake is surrounded by wetland of Amik and Gavur lake. Since it was greatly dried, it was transformed to farmland. Consequently the birds lost most of theirnests and settlements. However not taken in the care of environmental ethic values, the wastewaters of the villages drain to lake reservoir; herbicides and insecticides used for agriculture are polluting the water reeds have been burned, the lake's reeds are getting dry by the irrigation for the farmland. So, the wetland ecosystem is being affected negatively by these factors. On the other hand, the birds are exposed to illegal and unlawful hunting. For this reasons, this lake must be taken into a management regime of sustainable wetland (protection profiting balance) and used techniques of participation planning via the process of sustainable natural resources and planning.

  11. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    USGS Publications Warehouse

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the different units, with medians that range from about 2.4 to 4.0 mg/L. Median whole-water phosphorus concentrations for the different Lake Andes units range from 0.2 to 0.5 mg/L, and decrease downstream through Lake Andes. Median selenium concentrations are substantially lower for Andes Creek (3 ?g/L (micrograms per liter)) than for the other tributary stations (34, 18, and 7 ?g/L). Median selenium concentrations for the lake stations (ranging from less than 1 to 2 ?g/L) are substantially lower than tributary stations. The pesticides 2,4-D and atrazine were the most commonly detected pesticides in Lake Andes. Median concentrations for 2,4-D for Lake Andes range from 0.07 to 0.11 ?g/L; the median concentration for Owens Bay is 0.04 ?g/L. Median concentrations for atrazine for Lake Andes range from 0.2 to 0.4 ?g/L; the median concentration for Owens Bay is less than 0.1 ?g/L. Concentrations of both 2,4-D and atrazine are largest for the most upstream part of Lake Andes that is most influenced by tributary inflow. Median suspended-sediment concentrations for Lake Andes tributaries range from 22 to 56 mg/L. Most of the suspended sediment transported in the Lake Andes tributaries consists of particles less than 63 ?m (micrometers) in diameter. Concentrations of most constituents in bottom sediments generally had similar ranges and medians for the Lake Andes tributaries. However, Andes Creek generally had lower concentrations of several metals. For Lake Andes, medians and ranges for most constituents generally were similar among the different units. However, selenium concentrations tended to be higher in the upstream part of the lake, and generally decreased downstream. Results of vertical sediment cores collected from a single site in the South Unit of Lake Andes in October 2000 indicate that selenium loading to Lake Andes increased during the period 1952 through 2000. Choteau Creek has a drainage area of 619 mi2. In the upstream part of the basin, Chotea

  12. Estimating mercury exposure of piscivorous birds and sport fish using prey fish monitoring

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Eagles-Smith, Collin A.; Herzog, Mark P.; Davis, Jay; Ichikawa, Gary; Bonnema, Autumn

    2015-01-01

    Methylmercury is a global pollutant of aquatic ecosystems, and monitoring programs need tools to predict mercury exposure of wildlife. We developed equations to estimate methylmercury exposure of piscivorous birds and sport fish using mercury concentrations in prey fish. We collected original data on western grebes (Aechmophorus occidentalis) and Clark’s grebes (Aechmophorus clarkii) and summarized the published literature to generate predictive equations specific to grebes and a general equation for piscivorous birds. We measured mercury concentrations in 354 grebes (blood averaged 1.06 ± 0.08 μg/g ww), 101 grebe eggs, 230 sport fish (predominantly largemouth bass and rainbow trout), and 505 prey fish (14 species) at 25 lakes throughout California. Mercury concentrations in grebe blood, grebe eggs, and sport fish were strongly related to mercury concentrations in prey fish among lakes. Each 1.0 μg/g dw (∼0.24 μg/g ww) increase in prey fish resulted in an increase in mercury concentrations of 103% in grebe blood, 92% in grebe eggs, and 116% in sport fish. We also found strong correlations between mercury concentrations in grebes and sport fish among lakes. Our results indicate that prey fish monitoring can be used to estimate mercury exposure of piscivorous birds and sport fish when wildlife cannot be directly sampled.

  13. Long term (1987-2012) trends in water chemistry of acid sensitive Swedish lakes

    NASA Astrophysics Data System (ADS)

    Futter, Martyn; Valinia, Salar; Fölster, Jens

    2014-05-01

    Acidification of surface waters is a serious concern in Sweden. During the 1970s and 1980s, many surface waters in Sweden were acidified by long-range pollution. Legislated emissions reductions have led to the recovery of many water bodies but today, there are concerns about the possibility of re-acidification. Sweden is committed to a goal of natural acidification only (i.e. no anthropogenic acidification). Here, we present long term (1987-2012) trends in strong acid anion, base cation, organic carbon and alkalinity measurements. Lakes are defined as acidified in Sweden if pH is more than 0.4 units less than a reference (1860) pH estimated using MAGIC, a widely used process-based model of acidification. Using this criteria, many acid sensitive Swedish lakes are still acidified. A changing climate and more intensive forest harvesting may further delay the recovery from acidification. Average measured alkalinity in the 38 lakes presented here was <= 0.02 mekv/l between 2000-2012. Strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many of these lakes. Base cations concentrations have declined less rapidly, leading to an increase in charge balance ANC. This increase in charge balance ANC has not been matched by an increase in measured alkalinity. Total organic carbon concentrations have increased significantly in many of these lakes, to the point where modeled organic acidity is now approximately equal to inorganic acidity. While the results presented here conform to acidification theory, they illustrate the value of long-term monitoring for assessing the effects of pollutant reduction measures, identifying new threats to water quality and corroborating model results. Most importantly, the long-term monitoring results presented here can be an important tool for informing environmental policy.

  14. Monitoring of Noxious Protozoa for Management of Natural Water Resources.

    PubMed

    Bahk, Young Yil; Cho, Pyo Yun; Ahn, Sung Kyu; Park, Sangjung; Jheong, Won Hwa; Park, Yun-Kyu; Shin, Ho-Joon; Lee, Sang-Seob; Rhee, Okjae; Kim, Tong-Soo

    2018-04-01

    Waterborne parasitic protozoa, particularly Giardia lamblia and Cryptosporidium spp., are common causes of diarrhea and gastroenteritis worldwide. The most frequently identified source of infestation is water, and exposure involves either drinking water or recreation in swimming pools or natural bodies of water. In practice, studies on Cryptosporidium oocysts and Giardia cysts in surface water are challenging owing to the low concentrations of these microorganisms because of dilution. In this study, a 3-year monitoring of Cryptosporidium parvum, Giardia lamblia , and Naegleria fowleri was conducted from August 2014 to June 2016 at 5 surface water sites including 2 lakes, 1 river, and 2 water intake plants. A total of 50 water samples of 40 L were examined. Cryptosporidium oocysts were detected in 22% of samples and Giardia cysts in 32%. Water at the 5 sampling sites was all contaminated with Cryptosporidium oocysts (0-36/L), Giardia cysts (0-39/L), or both. The geometric mean concentrations of Cryptosporidium and Giardia were 1.14 oocysts/L and 4.62 cysts/L, respectively. Thus, effective monitoring plans must take into account the spatial and temporal parameters of contamination because they affect the prevalence and distribution of these protozoan cysts in local water resources.

  15. Novel effects-based monitoring approaches to evaluate chemicals of emerging concern in the St. Louis River estuary

    EPA Science Inventory

    As part of an on-going program of research in support of the Great Lakes Restoration Initiative, the US EPA MED laboratory has been developing effects-based biomonitoring tools to evaluate the occurrence and potential hazards associated with Chemicals of Emerging Concern (CECs). ...

  16. The Ontario Benthos Biomonitoring Network

    Treesearch

    Chris Jones; Brian Craig; Nicole Dmytrow

    2006-01-01

    Canada’s Ontario Ministry of the Environment and Environment Canada (Ecological Monitoring and Assessment Network) are developing an aquatic macroinvertebrate biomonitoring network for Ontario’s lakes, streams, and wetlands. We are building the program, called the Ontario Benthos Biomonitoring Network (OBBN), on the principles of partnership, free data sharing, and...

  17. IBIS FOR FISH AND MACROINVERTEBRATES DEVELOPED FOR GREAT LAKES COASTAL WETLANDS: AN EPA REGIONAL ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (REMAP) PROJECT

    EPA Science Inventory

    The research from this REMAP project produced results that demonstrate various stages of an assessment strategy and produced tools including an inventory classification, field methods and multimetric biotic indices that are now available for use by environmental resource managers...

  18. Spokane Tribal Hatchery, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peone, Tim L.

    2006-03-01

    Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Projectmore » are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to rainbow trout catch and harvest rates while the impact on the kokanee fishery was minimal. Success of the Lake Roosevelt kokanee artificial production program appears to be limited primarily owing to predation, precocity and high entrainment rates through Grand Coulee Dam. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue kokanee fry and post-smolt releases, 100% triploid hatchery stock rainbow trout used and adipose fin clip hatchery stock rainbow trout prior to release. The Spokane Tribal Hatchery is funded by the Bonneville Power Administration under directives by the Northwest Power Conservation Council Columbia River Basin Fish & Wildlife Program, Resident Fish Substitution Measures, 1987 to current (Subbasin Plan), as partial mitigation for anadromous and resident fish losses in the blocked areas above Chief Joseph and Grand Coulee Dams.« less

  19. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  20. Predicting lake trophic state by relating Secchi-disk transparency measurements to Landsat-satellite imagery for Michigan inland lakes, 2003-05 and 2007-08

    USGS Publications Warehouse

    Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J.

    2011-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Natural Resources and Environment have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Sampling for this program began in 2001; by 2010, 730 of Michigan’s 11,000 inland lakes are expected to have been sampled once. Volunteers coordinated by the Michigan Department of Natural Resources and Environment began sampling lakes in 1974 and continue to sample (in 2010) approximately 250 inland lakes each year through the Michigan Cooperative Lakes Monitoring Program. Despite these sampling efforts, it still is impossible to physically collect measurements for all Michigan inland lakes; however, Landsat-satellite imagery has been used successfully in Minnesota, Wisconsin, Michigan, and elsewhere to predict the trophic state of unsampled inland lakes greater than 20 acres by producing regression equations relating in-place Secchi-disk measurements to Landsat bands. This study tested three alternatives to methods previously used in Michigan to improve results for predicted statewide Trophic State Index (TSI) computed from Secchi-disk transparency (TSI (SDT)). The alternative methods were used on 14 Landsat-satellite scenes with statewide TSI (SDT) for two time periods (2003– 05 and 2007–08). Specifically, the methods were (1) satellitedata processing techniques to remove areas affected by clouds, cloud shadows, haze, shoreline, and dense vegetation for inland lakes greater than 20 acres in Michigan; (2) comparison of the previous method for producing a single open-water predicted TSI (SDT) value (which was based on an area of interest (AOI) and lake-average approach) to an alternative Gethist method for identifying open-water areas in inland lakes (which follows the initial satellite-data processing and targets the darkest pixels, representing the deepest water, before regression equations are created); and (3) checking to see whether the predicted TSI (SDT) values compared well between two regression equations, one previously used in Michigan and an alternative equation from the hydrologic literature. The combination of improved satellite-data processing techniques and the Gethist method to identify open-water areas in inland lakes during 2003–05 and 2007–08 provided a stronger relation and statistical significance between predicted TSI (SDT) and measured TSI than did the AOI lake-average method; differences in results for the two methods were significant at the 99-percent confidence level. With regard to the comparison of the regression equations, there were no statistically significant differences at the 95-percent confidence level between results from the two equations. The previously used equation, in combination with the Gethist method, yielded coefficient of determination (R2) values of 0.71 and 0.77 for the periods 2003–05 and 2007–08, respectively. The alternative equation, in combination with the Gethist method, yielded R2 values of 0.74 and 0.75 for 2003–05 and 2007–08, respectively. Predicted TSI (SDT) and measured TSI (SDT) values for lakes used in the regression equations compared well, with R2 values of 0.95 and 0.96 for predicted TSI (SDT) for 2003–05 and 2007–08, respectively. The R2 values for statewide predicted TSI (SDT) for all inland lakes with available open-water areas for 2003–05 and 2007–08 were 0.91 and 0.93, respectively. Although the two equations predicted similar trophic-state classes, the alternative equation is planned to be used for future prediction of TSI (SDT) values for Michigan inland lakes, to promote consistency in comparing predicted values between States and for potential use in trend analysis.

  1. Continuous water-quality monitoring to improve lake management at Lake Mattamuskeet National Wildlife Refuge

    Treesearch

    Michelle Moorman; Tom Augspurger

    2016-01-01

    The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.

  2. Monitoring mountain lakes in a changing Alpine cryosphere: the Lago Nero project (Ticino, Switzerland)

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Bruder, Andreas; Domenici, Mattia; Lepori, Fabio; Pera, Sebastian; Pozzoni, Maurizio; Rioggi, Stefano; Colombo, Luca

    2017-04-01

    Mountain lakes and their catchments of the Alpine cryosphere are facing global pressures including climate warming and deposition of atmospheric pollutants. Due to their remoteness, often low buffer capacities and sensitive biotic communities, alpine lake catchments are particularly well suited as sentinels of environmental change. Lago Nero is the object of an intensive survey, aimed at developing predictive models of catchment-wide ecosystem responses to environmental change (Bruder et al. 2016). Lago Nero is located at the head of Val Bavona (Canton Ticino, southern Switzerland), in a southwest-facing catchment, with altitude ranging from 2385 to 2842 m asl. The substrate is dominated by gneissic bedrock with patches of grassy vegetation and shallow soils. The catchment is snow-covered approximately from November to May. For a similar period, the lake is ice-covered. Lago Nero is an oligotrophic, soft-water lake with a surface of approximatively 13 ha and a maximal depth of 73 m. According to the regional model of potential permafrost distribution in the southern Swiss Alps (Scapozza & Mari 2010), the presence of discontinuous permafrost is probable in almost the entire surface of the catchment covered by loose debris. A direct evidence of permafrost occurrence is the presence of a small active/inactive rock glacier in the south-eastern part of the catchment (front altitude: 2560 m asl). Monitoring of the site began in summer 2014, with an initial phase aimed at developing and testing methodologies and at evaluating the suitability of the catchment and the feasibility of the monitoring program. The intensive survey at Lago Nero measures a wide array of ecosystem responses, including runoff quantity and chemistry, catchment soil temperature (also on the rock glacier) and composition of terrestrial vegetation. Sampling frequency depends on the parameter measured, varying from nearly continuous (e.g. runoff and temperature) to five-year intervals (e.g. soil and vegetation). First results suggest that Lago Nero is particularly sensitive to changes in the cryosphere, particularly concerning thickness of snow cover, snowmelt date and duration, and length of ice-free period of the lake surface. Probable storage of ground ice during the 1966-1985 period (deduced from the nearby Basòdino Glacier) and its significant melting in the last decades may explain the high amounts of sulphur measured in the outflow of the rock glacier. High levels of sulphur are likely to have ecological effects on the sensitive biota of the Lago Nero catchment, for instance by retarding the recovery from past acidification. REFERENCES Bruder A., Lepori F., Pozzoni M., Pera S., Scapozza C., Rioggi S., Domenici M. & Colombo L. (2016). Lago Nero - a new site to assess the effects of environmental change on high-alpine lakes and their catchments. In: S. Kleemola & M. Forsius (eds.), 25th Annual Report 2016. Convention on Long-range transboundary air pollution. Reports of the Finnish Environments Institute 29: 52-56. Scapozza C. & Mari S. (2010). Catasto, caratteristiche e dinamica dei rock glacier delle Alpi Ticinesi. Bollettino della Società ticinese di Scienze naturali 98: 15-29. [http://repository.supsi.ch/2152/

  3. Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-Locked Lakes of Schirmacher Oasis and the Perennially Ice-Covered Lake Untersee in East Antarctica

    NASA Technical Reports Server (NTRS)

    Huang, Jonathan; Hoover, Richard B.; Swain, Ashit; Murdock, Chris; Bej, Asim K.

    2010-01-01

    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions.

  4. Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellman, Jake; Perugini, Carol

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance Project (DV Fisheries) is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the federal hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View (MVR), Lake Billy Shaw (LBS), and Sheep Creek Reservoirs (SCR), the program is also designed to: maintain healthy aquatic conditions for fish growth and survival,more » provide superior facilities with wilderness qualities to attract non-Tribal angler use, and offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period fall into three categories: operations and maintenance, monitoring and evaluation, and public outreach. Operation and maintenance of the three reservoirs include maintaining fences, roads, dams and all reservoir structures, feeder canals, water troughs, stock ponds, educational signs, vehicles, equipment, and restroom facilities. Monitoring and evaluation activities include creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, and control of encroaching exotic vegetation. Public outreach activities include providing environmental education to school children, providing fishing reports to local newspapers and vendors, updating the website, hosting community environmental events, and fielding numerous phone calls from anglers. The reservoir monitoring program focuses on water quality and fishery success. Sheep Creek Reservoir and Lake Billy Shaw had less than productive trout growth due to water quality issues including dissolved oxygen and/or turbidity. Regardless, angler fishing experience was the highest at Lake Billy Shaw. Trout in Mountain View Reservoir were in the best condition of the three reservoirs and anglers reported very good fishing there. Water quality (specifically dissolved oxygen and temperature) remain the main limiting factors in the fisheries, particularly in late August to early September.« less

  5. Cooperative water-resources monitoring in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Rheaume, Stephen J.; Neff, Brian P.; Blumer, Stephen P.

    2007-01-01

    As part of the Lake St. Clair Regional Monitoring Project, this report describes numerous cooperative water-resources monitoring efforts conducted in the St. Clair River/Lake St. Clair Basin over the last 100 years. Cooperative monitoring is a tool used to observe and record changes in water quantity and quality over time. This report describes cooperative efforts for monitoring streamflows and flood magnitudes, past and present water-quality conditions, significant human-health threats, and flow-regime changes that are the result of changing land use. Water-resources monitoring is a long-term effort that can be made cost-effective by leveraging funds, sharing data, and avoiding duplication of effort. Without long-term cooperative monitoring, future water-resources managers and planners may find it difficult to establish and maintain public supply, recreational, ecological, and esthetic water-quality goals for the St. Clair River/Lake St. Clair Basin.

  6. Planetary Lake Lander - A Robotic Sentinel to Monitor a Remote Lake

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Smith, Trey; Lee, Susan; Cabrol, Nathalie; Rose, Kevin

    2012-01-01

    The Planetary Lake Lander Project is studying the impact of rapid deglaciation at a high altitude alpine lake in the Andes, where disrupted environmental, physical, chemical, and biological cycles result in newly emerging natural patterns. The solar powered Lake Lander robot is designed to monitor the lake system and characterize both baseline characteristics and impacts of disturbance events such as storms and landslides. Lake Lander must use an onboard adaptive science-on-the-fly approach to return relevant data about these events to mission control without exceeding limited energy and bandwidth resources. Lake Lander carries weather sensors, cameras and a sonde that is winched up and down the water column to monitor temperature, dissolved oxygen, turbidity and other water quality parameters. Data from Lake Lander is returned via satellite and distributed to an international team of scientists via web-based ground data systems. Here, we describe the Lake Lander Project scientific goals, hardware design, ground data systems, and preliminary data from 2011. The adaptive science-on-the-fly system will be described in future papers.

  7. Nonnative Fishes in the Upper Mississippi River System

    USGS Publications Warehouse

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for nonnative species expansion between the Mississippi River and the Great Lakes Basin. This report presents a synthesis of data on nonnative fish species observed during Long Term Resource Monitoring Program monitoring activities.

  8. Concentrations of elements in fish fillets, fish muscle plugs, and crayfish from the 2007 Missouri Department of Conservation General Contaminant Monitoring Program

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.

    2009-01-01

    This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillets of channel catfish (Ictalurus punctatus), bass (Micropterus salmoides, Micropterus dolomieu, Morone chrysops), walleye (Sander vitreus), common carp (Cyprinus carpio), lake sturgeon (Acipenser fulvescens), northern hog sucker (Hypentelium nigricans), and rainbow trout (Oncorhynchus mykiss) were collected from 21 sites as part of the Department's Fish Contaminant Monitoring Program. Long-pincered crayfish (Orconectes longidigitus) were collected from one site to assess trophic transfer of metals to fish. Fish muscle plugs were collected from smallmouth bass (Micropterus dolomieu) at two different locations from one site.

  9. The San Niccolo' experimental area for studying the hydrology of coastal Mediterranean peatlands

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy; Barbagli, Alessio; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2015-04-01

    Starting from 1930, a large part of the Massaciuccoli Lake coastal area (Tuscany, Italy) has been drained for agricultural purposes by a complex network of artificial drains and pumping stations. In the drained areas, peat soils, with values of organic matter up to 50% in some cases, are largely present (Pistocchi et al., 2012). As a consequence of the human impact, environmental problems arose in the last 50 years: i. the eutrophication status of the Massaciuccoli lake caused by nutrient enrichment (N, P) in surface- and ground-water (Rossetto et al., 2010a); ii. the subsidence (2-3 m in 70 years) of the lake bordering areas due to soil compaction and mineralization (Rossetto et al., 2010b). As a potential solution to improve water quality and to decrease soil organic matter mineralization, a rewetted pilot experimental area of 15 ha with phyto-treatment functionalities has been set up. This pilot, adequately instrumented, now constitutes an open field lab to conduct research on the hydrology of coastal Mediterranean peatlands. Site investigation was performed and data on stratigraphy (from top on average: 1/2 m thick peat layer, 1/3 m organic matter-rich silt, 1/3 m stiff blue-gray clay, up to 30 m thick sand layer) and water (ground- and surface-water) quantity and quality were gathered and related to both local and regional groundwater flows. The inferred hydrological conceptual model revealed the pilot is set in a regional discharge area and the ground-water dependent nature of the agro-ecosystem, with mixing of waters with different origins. The site has been divided in three different phyto-treatment systems: a constructed wetland system, internally and externally banked in order to force water flow to a convoluted pattern where Phragmites australis L. and Thypha angustifolia L. constitute the sparse natural vegetation; a vegetation filter system based on the plantation of seven different no-food crops managed according to a periodic cutting and biomass harvesting (eg: Populus spp., Salix spp., Arundo donax L., Miscanthus x giganteus ). The system is crossed by a dense network of ditches supplying water to the crops through lateral infiltration and partial submersion; a wetland system consisting in a flooded area where the re-colonization of spontaneous vegetation takes place. The designed monitoring system includes sensors in surface- and ground-water. The ground-water monitoring system consists of a set of 15 piezometer clusters. At each cluster three piezometers (3 inch diameter, screened in the last 30 cm) are set at about 3 m, 2 m and 1 m depth to allow multilevel monitoring and sampling so to investigate a large part of the aquifer and the relationships between the surface-water and ground-water systems. An unsaturated pilot monitoring station has been designed and it will be set in operation to gain information on infiltration and/or exfiltration processes and evapotranspiration. Ten sensors for continuously monitoring groundwater head, temperature and electrical conductivity are in operation. Surface water are monitored by means of six gauging stations where sensors are recording at least head, temperature and electrical conductivity. At four of them continuous sampling takes place with a composite daily sample made up of four samples, each gathered every six hours. A complete hydrological monitoring protocol has been set in place starting by meteorological data aquisition. As well as continuous monitoring with in-situ sensors and composite sampling with automatic samplers, discrete monitoring on monthly basis takes place. Main physico/chemical parameters (temperature, pH, dissolved oxygen, electrical conductivity and redox potential) are routinely monitored. The experimental area is in operation since December 2013. Acknowledgements The authors wish to thank the Consorzio 1 - Toscana Nord for technical support. References Pistocchi C., Silvestri N., Rossetto R., Sabbatini T., Guidi M., Baneschi I., Bonari E. & Trevisan D. (2012) - A simple model to assess nitrogen and phosphorus contamination in ungauged surface drainage networks: application to the Massaciuccoli Lake Catchment, Italy. Journal of Environmental Quality 41, 544-53. Rossetto,R., Basile, P., Cavallaro, E., Menichetti,S., Pistocchi, C., Sabbatini, T., Silvestri, N. & Bonari, E. (2010a) - Phosphorous presence in groundwater from peat oxidation: preliminary results from the Lake Massaciuccoli area (Italy). International Groundwater Symposium I.A.H.R. Valencia (Spain). Rossetto R., Basile P., Cannavò S., Pistocchi C., Sabbatini T., Silvestri N. & Bonari E. (2010b) - Surface water and groundwater monitoring and numerical modeling of the southern sector of the Massaciuccoli Lake basin (Italy). Rendiconti Online Società Geologica Italiana 11, 189-190.

  10. Health risk evaluation associated to Planktothrix rubescens: An integrated approach to design tailored monitoring programs for human exposure to cyanotoxins.

    PubMed

    Manganelli, Maura; Scardala, Simona; Stefanelli, Mara; Vichi, Susanna; Mattei, Daniela; Bogialli, Sara; Ceccarelli, Piegiorgio; Corradetti, Ernesto; Petrucci, Ines; Gemma, Simonetta; Testai, Emanuela; Funari, Enzo

    2010-03-01

    Increasing concern for human health related to cyanotoxin exposure imposes the identification of pattern and level of exposure; however, current monitoring programs, based on cyanobacteria cell counts, could be inadequate. An integrated approach has been applied to a small lake in Italy, affected by Planktothrix rubescens blooms, to provide a scientific basis for appropriate monitoring program design. The cyanobacterium dynamic, the lake physicochemical and trophic status, expressed as nutrients concentration and recycling rates due to bacterial activity, the identification/quantification of toxic genotype and cyanotoxin concentration have been studied. Our results indicate that low levels of nutrients are not a marker for low risk of P. rubescens proliferation and confirm that cyanobacterial density solely is not a reliable parameter to assess human exposure. The ratio between toxic/non-toxic cells, and toxin concentrations, which can be better explained by toxic population dynamic, are much more diagnostic, although varying with time and environmental conditions. The toxic fraction within P. rubescens population is generally high (30-100%) and increases with water depth. The ratio toxic/non-toxic cells is lowest during the bloom, suggesting a competitive advantage for non-toxic cells. Therefore, when P. rubescens is the dominant species, it is important to analyze samples below the thermocline, and quantitatively estimate toxic genotype abundance. In addition, the identification of cyanotoxin content and congeners profile, with different toxic potential, are crucial for risk assessment. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Sensitivity of alpine and subalpine lakes to acidification from atmospheric deposition in Grand Teton National Park and Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Nanus, Leora; Campbell, Donald H.; Williams, Mark W.

    2005-01-01

    The sensitivity of 400 lakes in Grand Teton and Yellowstone National Parks to acidification from atmospheric deposition of nitrogen and sulfur was estimated based on statistical relations between acid-neutralizing capacity concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. Acid-neutralizing capacity concentrations that were measured at 52 lakes in Grand Teton and 23 lakes in Yellowstone during synoptic surveys were used to calibrate the statistical models. Three acid-neutralizing capacity concentration bins (bins) were selected that are within the U.S. Environmental Protection Agency criteria of sensitive to acidification; less than 50 microequivalents per liter (?eq/L) (0-50), less than 100 ?eq/L (0-100), and less than 200 ?eq/L (0-200). The development of discrete bins enables resource managers to have the ability to change criteria based on the focus of their study. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare in Grand Teton (n = 106) and Yellowstone (n = 294). A higher percentage of lakes in Grand Teton than in Yellowstone were predicted to be sensitive to atmospheric deposition in all three bins. For Grand Teton, 7 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-50 bin, 36 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-100 bin, and 59 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-200 bin. The elevation of the lake outlet and the area of the basin with northeast aspects were determined to be statistically significant and were used as the explanatory variables in the multivariate logistic regression model for the 0-100 bin. For Yellowstone, results indicated that 13 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-100 bin, and 27 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-200 bin. Only the elevation of the lake outlet was determined to be statistically significant and was used as the explanatory variable for the 0-100 bin. The lakes that exceeded 60-percent probability of having an acid-neutralizing capacity concentration in the 0-100 bin, and therefore had the greatest sensitivity to acidification from atmospheric deposition, are located at elevations greater than 2,790 meters in Grand Teton, and greater than 2,590 meters in Yellowstone.

  12. Seasonal dynamics of freshwater pathogens as measured by microarray at Lake Sapanca, a drinking water source in the north-eastern part of Turkey.

    PubMed

    Akçaalan, Reyhan; Albay, Meric; Koker, Latife; Baudart, Julia; Guillebault, Delphine; Fischer, Sabine; Weigel, Wilfried; Medlin, Linda K

    2017-12-22

    Monitoring drinking water quality is an important public health issue. Two objectives from the 4 years, six nations, EU Project μAqua were to develop hierarchically specific probes to detect and quantify pathogens in drinking water using a PCR-free microarray platform and to design a standardised water sampling program from different sources in Europe to obtain sufficient material for downstream analysis. Our phylochip contains barcodes (probes) that specifically identify freshwater pathogens that are human health risks in a taxonomic hierarchical fashion such that if species is present, the entire taxonomic hierarchy (genus, family, order, phylum, kingdom) leading to it must also be present, which avoids false positives. Molecular tools are more rapid, accurate and reliable than traditional methods, which means faster mitigation strategies with less harm to humans and the community. We present microarray results for the presence of freshwater pathogens from a Turkish lake used drinking water and inferred cyanobacterial cell equivalents from samples concentrated from 40 into 1 L in 45 min using hollow fibre filters. In two companion studies from the same samples, cyanobacterial toxins were analysed using chemical methods and those dates with highest toxin values also had highest cell equivalents as inferred from this microarray study.

  13. Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida

    USGS Publications Warehouse

    Choquette, Anne F.; Kroening, Sharon E.

    2009-01-01

    Water chemistry, including major inorganic constituents, nutrients, and pesticide compounds, was compared between seven lakes surrounded by citrus agriculture and an undeveloped lake on the Lake Wales Ridge (herein referred to as the Ridge) in central Florida. The region has been recognized for its vulnerability to the leaching of agricultural chemicals into the subsurface due to factors including soils, climate, and land use. About 40 percent of Florida's citrus cultivation occurs in 'ridge citrus' areas characterized by sandy well drained soils, with the remainder in 'flatwoods citrus' characterized by high water tables and poorly drained soils. The lakes on the Ridge are typically flow-through lakes that exchange water with adjacent and underlying aquifer systems. This study is the first to evaluate the occurrence of pesticides in lakes on the Ridge, and also represents one of the first monitoring efforts nationally to focus on regional-scale assessment of current-use pesticides in small- to moderate-sized lakes (5 to 393 acres). The samples were collected between December 2003 and September 2005. The lakes in citrus areas contained elevated concentrations of major inorganic constituents (including alkalinity, total dissolved solids, calcium, magnesium, sodium, potassium, chloride, and sulfate), total nitrogen, pH, and pesticides compared to the undeveloped lake. Nitrate (as N) and total nitrogen concentrations were typically elevated in the citrus lakes, with maximum values of 4.70 and 5.19 mg/L (milligrams per liter), respectively. Elevated concentrations of potassium, nitrate, and other inorganic constituents in the citrus lakes likely reflect inputs from the surficial ground-water system that originated predominantly from agricultural fertilizers, soil amendments, and inorganic pesticides. A total of 20 pesticide compounds were detected in the lakes, of which 12 compounds exceeded the standardized reporting level of 0.06 ug/L (microgram per liter). Those most frequently detected above the 0.06-ug/L level were aldicarb sulfoxide, diuron, simazine degradates hydroxysimazine and didealkylatrazine (DDA), bromacil, norflurazon, and demethyl norflurazon which occurred at detection rates ranging from 25 to 86 percent of samples, respectively. Typically, pesticide concentrations in the lake samples were less than 1 microgram per liter. The number of targeted pesticide compounds detected per lake in the citrus areas ranged from 9 to 14 compared to 3 compounds detected at trace levels in the undeveloped lake. Consistent detections of parents and degradates in quarterly samples indicated the presence of pesticide compounds in the lakes many months or years (for example, bromacil) after their application, signaling the persistence of some pesticide compounds in the lakes and/or ground-water systems. Pesticide degradate concentrations frequently exceeded parent concentrations in the lakes. This study was the first in the Ridge citrus region to analyze for glyphosate - widely used in citrus - and its degradate aminomethylphosphonic acid (AMPA), neither of which were detected, as well as a number of triazine degradates, including hydroxysimazine, which were detected. The lake pesticide concentrations did not exceed current Federal aquatic-life benchmarks, available for 10 of the 20 detected pesticide compounds. Limited occurrences of bromacil, diuron, or norflurazon concentrations were within about 10 to 90 percent of benchmark guidelines for acute effects on nonvascular aquatic plants in one or two of the lakes. The lake pesticide concentrations for several targeted pesticides were relatively high compared to corresponding national stream-water percentiles, which is consistent with this region's vulnerability for pesticide leaching into water resources. Several factors were evaluated to gain insight into the processes controlling pesticide transport and fate, and to assess their utility for estimating th

  14. Assessing the Effectiveness of Landsat 8 Chlorophyll-a Retrieval Algorithms for Regional Freshwater Management

    NASA Astrophysics Data System (ADS)

    Boucher, J. M.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Saberi, S. J.

    2016-12-01

    Predicting algal blooms has become a priority for municipalities, businesses, and citizens. Remote sensing (RS) offers solutions to the spatial and temporal challenges facing existing lake monitoring programs that rely primarily on high-investment in situ measurements. Techniques to remotely measure chlorophyll-a (chl-a) as a proxy for algal biomass have been limited to large water bodies in particular seasons and chl-a ranges. This study explores the relationship between in-lake measured chl-a data in Maine and New Hampshire and chl-a retrieval algorithms. Landsat 8 images were obtained and required atmospheric and radiometric corrections. Six indices including the NDVI and KIVU algorithms were tested to validate their applicability on a regional scale on ten scenes from 2013-2015 covering 169 lakes. In addition, more robust novel models were also explored. For late-summer scenes, existing algorithms accounted for nearly 90% of the variation in in-situ measurements, however, we found a significant effect of time of year on each index. A sensitivity analysis revealed that rainfall in the region as well as a longer time difference between in situ measurements and the satellite image increased noise in the models. The quantification of these confounding influences points to potential solutions such as incorporating remotely sensed water temperature into models as a proxy of seasonal effects. Novel models built to fit particular scenes reduced this variability, but they required more satellite band inputs that do not yet have a clear ecological relevance. These results suggest that RS could be an effective and accessible tool for monitoring programs at the regional scale. Although they are subject to some of the limitations of traditional monitoring imposed by the weather, high-resolution satellites like Landsat 8 provide a promising opportunity for protecting freshwater resources.

  15. Beach monitoring criteria: reading the fine print

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2011-01-01

    Beach monitoring programs aim to decrease swimming-related illnesses resulting from exposure to harmful microbes in recreational waters, while providing maximum beach access. Managers are advised by the U.S. EPA to estimate microbiological water quality based on a 5-day geometric mean of fecal indicator bacteria (FIB) concentrations or on a jurisdiction-specific single-sample maximum; however, most opt instead to apply a default single-sample maximum to ease application. We examined whether re-evaluation of the U.S. EPA ambient water quality criteria (AWQC) and the epidemiological studies on which they are based could increase public beach access without affecting presumed health risk. Single-sample maxima were calculated using historic monitoring data for 50 beaches along coastal Lake Michigan on various temporal and spatial groupings to assess flexibility in the application of the AWQC. No calculation on either scale was as low as the default maximum (235 CFU/100 mL) that managers typically use, indicating that current applications may be more conservative than the outlined AWQC. It was notable that beaches subject to point source FIB contamination had lower variation, highlighting the bias in the standards for these beaches. Until new water quality standards are promulgated, more site-specific application of the AWQC may benefit beach managers by allowing swimmers greater access to beaches. This issue will be an important consideration in addressing the forthcoming beach monitoring standards.

  16. Water Quality, Hydrology, and Simulated Response to Changes in Phosphorus Loading of Butternut Lake, Price and Ashland Counties, Wisconsin, with Special Emphasis on the Effects of Internal Phosphorus Loading in a Polymictic Lake

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2008-01-01

    Butternut Lake is a 393-hectare, eutrophic to hypereutrophic lake in northcentral Wisconsin. After only minor improvements in water quality were observed following several actions taken to reduce the nutrient inputs to the lake, a detailed study was conducted from 2002 to 2007 by the U.S. Geological Survey to better understand how the lake functions. The goals of this study were to describe the water quality and hydrology of the lake, quantify external and internal sources of phosphorus, and determine the effects of past and future changes in phosphorus inputs on the water quality of the lake. Since the early 1970s, the water quality of Butternut Lake has changed little in response to nutrient reductions from the watershed. The largest changes were in near-surface total phosphorus concentrations: August concentrations decreased from about 0.09 milligrams per liter (mg/L) to about 0.05 mg/L, but average summer concentrations decreased only from about 0.055-0.060 mg/L to about 0.045 mg/L. Since the early 1970s, only small changes were observed in chlorophyll a concentrations and water clarity (Secchi depths). All major water and phosphorus sources, including the internal release of phosphorus from the sediments (internal loading), were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake during monitoring years (MY) 2003 and 2004. During these years, Butternut Creek, Spiller Creek, direct precipitation, small tributaries and near-lake drainage area, and ground water contributed about 62, 20, 8, 7, and 3 percent of the inflow, respectively. The average annual load of phosphorus to the lake was 2,540 kilograms (kg), of which 1,590 kg came from external sources (63 percent) and 945 kg came from the sediments in the lake (37 percent). Of the total external sources, Butternut Creek, Spiller Creek, small tributaries and near-lake drainage area, septic systems, precipitation, and ground water contributed about 63, 23, 9, 3, 1, and 1 percent, respectively. Because of the high internal phosphorus loading, the eutrophication models used in this study were unable to simulate the observed water-quality characteristics in the lake without incorporating this source of phosphorus. However, when internal loading of phosphorus was added to the BATHTUB model, it accurately simulated the average water-quality characteristics measured in MY 2003 and 2004. Model simulations demonstrated a relatively linear response between in-lake total phosphorus concentrations and external phosphorus loading; however, the changes in concentrations were smaller than the changes in external phosphorus loadings (about 25-40 percent of the change in phosphorus loading). Changes in chlorophyll a concentrations, the percentage of days with algal blooms, and Secchi depths were nonlinear and had a greater response to reductions in phosphorus loading than to increases in phosphorus loading. A 50-percent reduction in external phosphorus loading caused an 18-percent decrease in chlorophyll a concentrations, a 41-percent decrease in the percentage of days with algal blooms, and a 12-percent increase in Secchi depth. When the additional internal phosphorus loading was removed from model simulations, all of these constituents showed a much greater response to changes in external phosphorus loading. Because of Butternut Lake's morphometry, it is polymictic, which means it mixes frequently and does not develop stable thermal stratification throughout the summer. This characteristic makes it more vulnerable than dimictic lakes, which mix in spring and fall and develop stable thermal stratification during summer, to the high internal phosphorus loading that has resulted from historically high, nonnatural, external phosphorus loading. In polymictic lakes, the phosphorus released from the sediments is mixed into the upper part of the lake throughout summer. Once Butternut Lake became hypereutrophic (very p

  17. The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant.

    PubMed

    Brozinski, Jenny-Maria; Lahti, Marja; Meierjohann, Axel; Oikari, Aimo; Kronberg, Leif

    2013-01-02

    Pharmaceutical residues are ubiquitous in rivers, lakes, and at coastal waters affected by discharges from municipal wastewater treatment plants. In this study, the presence of 17 different pharmaceuticals and six different phase I metabolites was determined in the bile of two wild fish species, bream (Abramis brama) and roach (Rutilus rutilus). The fish were caught from a lake that receives treated municipal wastewater via a small river. Prior to analyses, the bile content was enzymatically hydrolyzed to convert the glucuronide metabolites into the original pharmaceuticals or phase I metabolites. The solid phase extracts of hydrolyzates were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The anti-inflammatory drug naproxen could be detected in all the six bream and roach bile samples. Diclofenac was found in five of the bream and roach samples, while ibuprofen was detected in three bream and two roach samples. The observed bile concentrations of diclofenac, naproxen, and ibuprofen in bream ranged from 6 to 95 ng mL(-1), 6 to 32 ng mL(-1), and 16 to 34 ng mL(-1), respectively. The corresponding values in roach samples ranged from 44 to 148 ng mL(-1), 11 to 103 ng mL(-1) and 15 to 26 ng mL(-1), respectively. None of the other studied compounds could be detected. The study shows that pharmaceuticals originating from wastewater treatment plant effluents can be traced to the bile of wild bream and roach living in a lake where diclofenac, naproxen, and ibuprofen are present as pollutants.

  18. Variance components estimation for continuous and discrete data, with emphasis on cross-classified sampling designs

    USGS Publications Warehouse

    Gray, Brian R.; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    Variance components may play multiple roles (cf. Cox and Solomon 2003). First, magnitudes and relative magnitudes of the variances of random factors may have important scientific and management value in their own right. For example, variation in levels of invasive vegetation among and within lakes may suggest causal agents that operate at both spatial scales – a finding that may be important for scientific and management reasons. Second, variance components may also be of interest when they affect precision of means and covariate coefficients. For example, variation in the effect of water depth on the probability of aquatic plant presence in a study of multiple lakes may vary by lake. This variation will affect the precision of the average depth-presence association. Third, variance component estimates may be used when designing studies, including monitoring programs. For example, to estimate the numbers of years and of samples per year required to meet long-term monitoring goals, investigators need estimates of within and among-year variances. Other chapters in this volume (Chapters 7, 8, and 10) as well as extensive external literature outline a framework for applying estimates of variance components to the design of monitoring efforts. For example, a series of papers with an ecological monitoring theme examined the relative importance of multiple sources of variation, including variation in means among sites, years, and site-years, for the purposes of temporal trend detection and estimation (Larsen et al. 2004, and references therein).

  19. Monitoring direct and indirect climate effects on whitebark pine ecosystems at Crater Lake National park

    USGS Publications Warehouse

    Smith, S.B.; Odion, D.C.; Sarr, D.A.; Irvine, K.M.

    2011-01-01

    Whitebark pine (Pinus albicaulis) is the distinctive, often stunted, and picturesque tree line species in the American West. As a result of climate change, mountain pine beetles (Dendroctonus ponderosae) have moved up in elevation, adding to nonnative blister rust (Cronartium ribicola) disease as a major cause of mortality in whitebark pine. At Crater Lake National Park, Oregon, whitebark pine is declining at the rate of 1% per year. The Klamath Network, National Park Service, has elected to monitor whitebark pine and associated high-elevation vegetation. This program is designed to sample whitebark pine throughout the park to look for geographic patterns in its exposure to and mortality from disease and beetles. First-year monitoring has uncovered interesting patterns in blister rust distribution. Incidence of rust disease was higher on the west side of the park, where conditions are wetter and more humid than on the east side. However, correlating climate alone with rust disease is not straightforward. On the east side of the park, the odds of blister rust infection were much greater in plots having Ribes spp., shrubs that act as the alternate host for a portion of the rust's life cycle. However, on the park's west side, there was not a statistically significant increase in blister rust in plots with Ribes. This suggests that different species of Ribes associated with whitebark pine can increase pine exposure to blister rust disease. There is also convincing evidence of an association between total tree density and the incidence of blister rust. Warmer temperatures and possibly increased precipitation will affect both whitebark pine and Ribes physiology as well as tree density and mountain pine beetle numbers, all of which may interact with blister rust to cause future changes in tree line communities at Crater Lake. The Klamath Network monitoring program plans to document and study these ongoing changes.

  20. Determining atmospheric deposition in Wyoming with IMPROVE and other national programs

    Treesearch

    Karl Zeller; Debra Youngblood Harrington; Richard Fisher; Evgeny Donev

    2000-01-01

    Atmospheric deposition is the result of air pollution gases and aerosols leaving the atmosphere as "dry" or "wet" deposition. Little is known about just how much pollution is deposited onto soils, lakes and streams. To determine the extent and trends of forest exposure to air pollution, various types of monitoring have been conducted. In this study...

  1. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China.

    PubMed

    Wu, Chenxi; Huang, Xiaolong; Witter, Jason D; Spongberg, Alison L; Wang, Kexiong; Wang, Ding; Liu, Jiantong

    2014-08-01

    Pharmaceutical and personal care products (PPCPs) residues are being highlighted around the world as of emerging concern in surface waters. Here the occurrence of PPCPs in the central and lower Yangtze River, along with four large freshwater lakes within the river basin (Dongting, Poyang, Tai, and Chao) was reported. Fifteen out of twenty selected PPCPs were detected in the collected surface water samples. Caffeine, paraxanthine, sulfamethazine, and clindamycin were detected with 100 percent frequency in the Yangtze River. In the river, the highest average concentration was observed for erythromycin (296 ng L(-1)), followed by caffeine (142 ng L(-1)) and paraxanthine (41 ng L(-1)). In the four lakes, total PPCP concentrations were much higher in the Chao (1547 ng L(-1)) and Tai (1087 ng L(-1)) lakes compared to the Poyang (108 ng L(-1)) and Dongting (137 ng L(-1)) lakes. Lincomycin and clindamycin were most abundant in the lakes, especially in the Tai Lake. Environmental risk assessment for the worst case scenario was assessed using calculated risk quotients, and indicates a high environmental risk of erythromycin and clarithromycin in the Yangtze River, clarithromycin in the Chao Lake, and clindamycin in the Tai Lake. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Tracking human footprints in Antarctica through passive sampling of polycyclic aromatic hydrocarbons in inland lakes.

    PubMed

    Yao, Yao; Meng, Xiang-Zhou; Wu, Chen-Chou; Bao, Lian-Jun; Wang, Feng; Wu, Feng-Chang; Zeng, Eddy Y

    2016-06-01

    Freely dissolved polycyclic aromatic hydrocarbons (PAHs) were monitored in seven inland lakes of Antarctica by a polyethylene (PE)-based passive sampling technique, with the objective of tracking human footprints. The measured concentrations of PAHs were in the range of 14-360 ng L(-1) with the highest values concentrated around the Russian Progress II Station, indicating the significance of human activities to the loading of PAHs in Antarctica. The concentrations of PAHs in the inland lakes were in the upper part of the PAHs levels in aquatic environments from remote and background regions across the globe. The composition profiles of PAHs indicated that PAHs in the inland lakes were derived mainly from local oil spills, which was corroborated by a large number of fuel spillage reports from ship and plane crash incidents in Antarctica during recent years. Clearly, local human activities, rather than long-range transport, are the dominant sources of PAH contamination to the inland lakes. Finally, the present study demonstrates the efficacy of PE-based passive samplers for investigating PAHs in the aquatic environment of Antarctica under complex field conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-05-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged frommore » 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600.« less

  4. Hydrology, water quality, and response to changes in phosphorus loading of Minocqua and Kawaguesaga Lakes, Oneida County, Wisconsin, with special emphasis on effects of urbanization

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Saad, David A.

    2010-01-01

    Minocqua and Kawaguesaga Lakes are 1,318- and 690-acre interconnected lakes in the popular recreation area of north-central Wisconsin. The lakes are the lower end of a complex chain of lakes in Oneida and Vilas Counties, Wis. There is concern that increased stormwater runoff from rapidly growing residential/commercial developments and impervious surfaces from the urbanized areas of the Town of Minocqua and Woodruff, as well as increased effluent from septic systems around their heavily developed shoreline has increased nutrient loading to the lakes. Maintaining the quality of the lakes to sustain the tourist-based economy of the towns and the area was a concern raised by the Minocqua/Kawaguesaga Lakes Protection Association. Following several small studies, a detailed study during 2006 and 2007 was done by the U.S. Geological Survey, in cooperation with the Minocqua/Kawaguesaga Lakes Protection Association through the Town of Minocqua to describe the hydrology and water quality of the lakes, quantify the sources of phosphorus including those associated with urban development and to better understand the present and future effects of phosphorus loading on the water quality of the lakes. The water quality of Minocqua and Kawaguesaga Lakes appears to have improved since 1963, when a new sewage-treatment plant was constructed and its discharge was bypassed around the lakes, resulting in a decrease in phosphorus loading to the lakes. Since the mid-1980s, the water quality of the lakes has changed little in response to fluctuations in phosphorus loading from the watershed. From 1986 to 2009, summer average concentrations of near-surface total phosphorus in the main East Basin of Minocqua Lake fluctuated from 0.009 mg/L to 0.027 mg/L but generally remained less than 0.022 mg/L, indicating that the lake is mesotrophic. Phosphorus concentrations from 1988 through 1996, however, were lower than the long-term average, possibly the result of an extended drought in the area. Water-quality data for Kawaguesaga Lake had a similar pattern to that of Minocqua Lake. Summer average chlorophyll a concentrations and Secchi depths also indicate that the lakes generally are mesotrophic but occasionally borderline eutrophic, with no long-term trends. During the study, major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lakes for monitoring years (MY) 2006 and 2007. During these years, the Minocqua Thoroughfare contributed about 38 percent of the total inflow to the lakes, and Tomahawk Thoroughfare contributed 34 percent; near-lake inflow, precipitation, and groundwater contributed about 1, 16, and 11 percent of the total inflow, respectively. Water leaves the lakes primarily through the Tomahawk River outlet (83 percent) or by evaporation (14 percent), with minor outflow to groundwater. Total input of phosphorus to both lakes was about 3,440 pounds in MY 2006 and 2,200 pounds in MY 2007. The largest sources of phosphorus entering the lakes were the Minocqua and Tomahawk Thoroughfares, which delivered about 39 and 26 percent of the total, respectively. The near-lake drainage area, containing most of the urban and residential developments, disproportionately accounted for about 12 percent of the total phosphorus input but only about 1 percent of the total water input (estimated with WinSLAMM). The next largest contributions were from septic systems and precipitation, each contributing about 10 percent, whereas groundwater delivered about 4 percent of the total phosphorus input. Empirical lake water-quality models within BATHTUB were used to simulate the response of Minocqua and Kawaguesaga Lakes to 19 phosphorus-loading scenarios. These scenarios included the current base years (2006?07) for which lake water quality and loading were known, nine general increases or decreases in phosphorus loading from controllable external sources (inputs from the tributa

  5. Analytical Challenge in Postmortem Toxicology Applied to a Human Body Found into a Lake after Three Years Immersion.

    PubMed

    Morini, Luca; Vignali, Claudia; Tricomi, Paolo; Groppi, Angelo

    2015-09-01

    The body of a 30-year-old woman was found in Como lake at a depth of about 120 meters in her own car after 3 years of immersion. The aim of this study was to evaluate psychoactive drugs as well as alcohol biomarkers in biological matrices. The following analyses were initially performed: GC-MS systematic toxicological analysis on biological fluids and tissues; GC-MS analysis of drugs of abuse on pubic hair; direct ethanol metabolite determination in pubic hair by LC-MS/MS. After 7 years, the samples, that had been stored at -20°C, were re-analyzed and submitted to an LC-MS/MS targeted screening method, using multiple reaction monitoring mode. These analyses detected citalopram (150-3000 ng/mL), desmethylcitalopram (50-2300 ng/mL), clotiapine (20-65 ng/mL), and ethyl glucuronide (97 pg/mg). The methods showed an acceptable reproducibility, and the concentrations of citalopram and desmethylcitalopram calculated through the two analytical techniques did not significantly differ in biological fluids. © 2015 American Academy of Forensic Sciences.

  6. Perfluorinated alkyl substances in water, sediment, plankton and fish from Korean rivers and lakes: a nationwide survey.

    PubMed

    Lam, Nguyen-Hoang; Cho, Chon-Rae; Lee, Jung-Sick; Soh, Ho-Young; Lee, Byoung-Cheun; Lee, Jae-An; Tatarozako, Norihisa; Sasaki, Kazuaki; Saito, Norimitsu; Iwabuchi, Katsumi; Kannan, Kurunthachalam; Cho, Hyeon-Seo

    2014-09-01

    Water, sediment, plankton, and blood and liver tissues of crucian carp (Carassius auratus) and mandarin fish (Siniperca scherzeri) were collected from six major rivers and lakes in South Korea (including Namhan River, Bukhan River, Nakdong River, Nam River, Yeongsan River and Sangsa Lake) and analyzed for perfluorinated alkyl substances (PFASs). Perfluorooctane sulfonate (PFOS) was consistently detected at the greatest concentrations in all media surveyed with the maximum concentration in water of 15 ng L(-1) and in biota of 234 ng mL(-1) (fish blood). A general ascending order of PFAS concentration of water0.80, p<0.001) were observed between PFOS concentration in blood and liver tissues of both crucian carp and mandarin fish. This result suggests that blood can be used for nonlethal monitoring of PFOS in fish. Overall, the rank order of mean bioconcentration factors (BCFs) of PFOS in biota was; phytoplankton (196 L/kg)

  7. Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, U.S.A.

    PubMed

    Tucci, Nicholas J; Gammons, Christopher H

    2015-04-07

    The Berkeley Pit lake in Butte, Montana, formed by flooding of an open-pit copper mine, is one of the world's largest accumulations of acidic, metal-rich water. Between 2003 and 2012, approximately 2 × 10(11) L of pit water, representing 1.3 lake volumes, were pumped from the bottom of the lake to a copper recovery plant, where dissolved Cu(2+) was precipitated on scrap iron, releasing Fe(2+) back to solution and thence back to the pit. Artificial mixing caused by this continuous pumping changed the lake from a meromictic to holomictic state, induced oxidation of dissolved Fe(2+), and caused subsequent precipitation of more than 2 × 10(8) kg of secondary ferric compounds, mainly schwertmannite and jarosite, which settled to the bottom of the lake. A large mass of As, P, and sulfate was also lost from solution. These unforeseen changes in chemistry resulted in a roughly 25-30% reduction in the lake's calculated and measured total acidity, which represents a significant potential savings in the cost of lime treatment, which is not expected to commence until 2023. Future monitoring is needed to verify that schwertmannite and jarosite in the pit sediment do not convert to goethite, a process which would release stored acidity back to the water column.

  8. [Optimization of Cryptosporidium and Giardia detection in water environment using automatic elution station Filta-Max xpress].

    PubMed

    Matuszewska, Renata; Szczotko, Maciej; Krogulska, Bozena

    2012-01-01

    The presence of parasitic protozoa in drinking water is mostly a result of improperly maintened the water treatment process. Currently, in Poland the testing of Cryptosporidium and Giardia in water as a part of routine monitoring of water is not perform. The aim of this study was the optimization of the method of Cryptosporidium and Giardia detection in water according to the main principles of standard ISO 15553:2006 and using Filta-Max xpress automatic elution station. Preliminary tests were performed on the samples contaminated with oocysts and cysts of reference strains of both parasitic protozoa. Further studies were carried out on environmental samples of surface water sampled directly from the intakes of water (21 samples from Vistula River and 8 samples from Zegrzynski Lake). Filtration process and samples volume reducing were performed using an automatic elution system Filta-Max xpress. Next, samples were purified during immunomagnetic separation process (IMS). Isolated cysts and oocysts were stained with FITC and DAPI and than the microscopic observation using an epifluorescence microscope was carried out. Recovery of parasite protozoa in all contaminated water samples after 9-cycles elution process applied was mean 60.6% for Cryptosporidium oocysts and 36.1% for Giardia cysts. Studies on the environmental surface water samples showed the presence of both parasitic protozoa. Number of detected Giardia cysts ranged from 1.0/10 L up to 4.5/10 L in samples from Zegrzynski Lake and from 1.0/10 L up to 38.9/10 L in samples from Vistula River. Cryptosporidium oocysts were present in 50% of samples from the Zegrzynski Lake and in 47.6% of samples from the Vistula River, and their number in both cases was similar and ranged from 0.5 up to 2.5 oocyst/10 L. The results show that applied procedure is appropriate for detection the presence of parasitic protosoan in water, but when water contains much amount of inorganic matter and suspended solids test method have to be modified like subsamples preparation and filtration process speed reduction. The applied method with the modification using Filta-Max xpress system can be useful for the routine monitoring of water. Detection of Cryptosporidium and Giardia in all samples of water taken from the intakes of surface water shows the possibility oftransfering of the protozoan cysts into the water intended for the consumption, therefore the testing of Cryptosporidium and Giardia should be included into the monitoring of water.

  9. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography–tandem mass spectrometry

    USGS Publications Warehouse

    Li, Ke; Buchinger, Tyler J.; Bussy, Ugo; Fissette, Skye D.; Johnson, Nicholas; Li, Weiming

    2015-01-01

    Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC–MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile–water (containing 7.5 mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25 mL/min for 12 min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00–5,000 ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2 ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2 ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.

  10. Perfluorinated compounds in fish and blood of anglers at Lake Möhne, Sauerland area, Germany.

    PubMed

    Hölzer, Jürgen; Göen, Thomas; Just, Paul; Reupert, Rolf; Rauchfuss, Knut; Kraft, Martin; Müller, Johannes; Wilhelm, Michael

    2011-10-01

    Perfluorinated compounds (PFCs) were measured in fish samples and blood plasma of anglers in a cross-sectional study at Lake Möhne, Sauerland area, Germany. Human plasma and drinking water samples were analyzed by solid phase extraction, high-performance liquid chromatography (HPLC), and tandem mass spectrometry (MS/MS). PFCs in fish fillet were measured by ion pair extraction followed by HPLC and MS/MS. PFOS concentrations in 44 fish samples of Lake Möhne ranged between 4.5 and 150 ng/g. The highest median PFOS concentrations have been observed in perches (median: 96 ng/g) and eels (77 ng/g), followed by pikes (37 ng/g), whitefish (34 ng/g), and roaches (6.1 ng/g). In contrast, in a food surveillance program only 11% of fishes at retail sale contained PFOS at detectable concentrations. One hundred five anglers (99 men, 6 women; 14-88 years old; median 50.6 years) participated in the human biomonitoring study. PFOS concentrations in blood plasma ranged from 1.1 to 650 μg/L (PFOA: 2.1-170 μg/L; PFHxS: 0.4-17 μg/L; LOD: 0.1 μg/L). A distinct dose-dependent relationship between fish consumption and internal exposure to PFOS was observed. PFOS concentrations in blood plasma of anglers consuming fish 2-3 times per month were 7 times higher compared to those without any fish consumption from Lake Möhne. The study results strongly suggest that human internal exposure to PFC is distinctly increased by consumption of fish from PFC-contaminated sites.

  11. Monitoring infiltration and recharge of playa lakes in the Texas Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Preliminary results from playa lakes monitored by the Texas Water Development Board (TWDB) suggest that a small volume of deep infiltration and recharge to the Ogallala aquifer occurs along the margins of the lake beds, while the majority of infiltration associated with a typical inundation remains ...

  12. Artificial reefs and reef restoration in the Laurentian Great Lakes

    USGS Publications Warehouse

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  13. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.

    PubMed

    Boucher, Jonah; Weathers, Kathleen C; Norouzi, Hamid; Steele, Bethel

    2018-06-01

    Predicting algal blooms has become a priority for scientists, municipalities, businesses, and citizens. Remote sensing offers solutions to the spatial and temporal challenges facing existing lake research and monitoring programs that rely primarily on high-investment, in situ measurements. Techniques to remotely measure chlorophyll a (chl a) as a proxy for algal biomass have been limited to specific large water bodies in particular seasons and narrow chl a ranges. Thus, a first step toward prediction of algal blooms is generating regionally robust algorithms using in situ and remote sensing data. This study explores the relationship between in-lake measured chl a data from Maine and New Hampshire, USA lakes and remotely sensed chl a retrieval algorithm outputs. Landsat 8 images were obtained and then processed after required atmospheric and radiometric corrections. Six previously developed algorithms were tested on a regional scale on 11 scenes from 2013 to 2015 covering 192 lakes. The best performing algorithm across data from both states had a 0.16 correlation coefficient (R 2 ) and P ≤ 0.05 when Landsat 8 images within 5 d, and improved to R 2 of 0.25 when data from Maine only were used. The strength of the correlation varied with the specificity of the time window in relation to the in-situ sampling date, explaining up to 27% of the variation in the data across several scenes. Two previously published algorithms using Landsat 8's Bands 1-4 were best correlated with chl a, and for particular late-summer scenes, they accounted for up to 69% of the variation in in-situ measurements. A sensitivity analysis revealed that a longer time difference between in situ measurements and the satellite image increased uncertainty in the models, and an effect of the time of year on several indices was demonstrated. A regional model based on the best performing remote sensing algorithm was developed and was validated using independent in situ measurements and satellite images. These results suggest that, despite challenges including seasonal effects and low chl a thresholds, remote sensing could be an effective and accessible regional-scale tool for chl a monitoring programs in lakes. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  14. 75 FR 8989 - Meeting Announcements: North American Wetlands Conservation Council; Neotropical Migratory Bird...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Wildlife Service, on the strategic direction and management of the NMBCA program. Proposal due dates... Avenue L'Auberge, Lake Charles, LA 70601. FOR FURTHER INFORMATION CONTACT: Michael J. Johnson, Council... management projects for recommendation to, and final funding approval by, the Commission. Project proposal...

  15. Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery

    USGS Publications Warehouse

    Ian M. McCullough,; Loftin, Cynthia S.; Steven A. Sader,

    2013-01-01

    We evaluated use of MODIS 250 m imagery for remote lake monitoring in Maine. Despite limited spectral resolution (visible red and near infrared bands), the twice daily image capture has a potential advantage over conventionally used, often cloudy Landsat imagery (16 day interval) when short time windows are of interest. We analyzed 364 eligible (≥100 ha) Maine lakes during late summer (Aug–early Sep) 2000–2011. The red band was strongly correlated with natural log-transformed Secchi depth (SD), and the addition of ancillary lake and watershed variables explained some variability in ln(SD) (R2= 0.68–0.85; 9 models). Weak spectral resolution and variable lake conditions limited accurate lake monitoring to relatively productive periods in late summer, as indicated by inconsistent, sometimes weak regressions during June and July when lakes were clearer and less stable (R2 = 0.19–0.74; 8 models). Additionally, SD estimates derived from 2 sets of concurrent MODIS and Landsat imagery generally did not agree unless Landsat imagery (30 m) was resampled to 250 m, likely owing to various factors related to scale. Average MODIS estimates exceeded those of Landsat by 0.35 and 0.49 m on the 2 dates. Overall, MODIS 250 m imagery are potentially useful for remote lake monitoring during productive periods when Landsat data are unavailable; however, analyses must occur when algal communities are stable and well-developed, are biased toward large lakes, may overestimate SD, and accuracy may be unreliable without non-spectral lake predictors.

  16. Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery

    USGS Publications Warehouse

    Loftin, Cyndy; Ian M. McCullough,; Steven A. Sader,

    2013-01-01

    We evaluated use of MODIS 250 m imagery for remote lake monitoring in Maine. Despite limited spectral resolution (visible red and near infrared bands), the twice daily image capture has a potential advantage over conventionally used, often cloudy Landsat imagery (16 day interval) when short time windows are of interest. We analyzed 364 eligible (≥100 ha) Maine lakes during late summer (Aug–early Sep) 2000–2011. The red band was strongly correlated with natural log-transformed Secchi depth (SD), and the addition of ancillary lake and watershed variables explained some variability in ln(SD) (R2 = 0.68–0.85; 9 models). Weak spectral resolution and variable lake conditions limited accurate lake monitoring to relatively productive periods in late summer, as indicated by inconsistent, sometimes weak regressions during June and July when lakes were clearer and less stable (R2 = 0.19–0.74; 8 models). Additionally, SD estimates derived from 2 sets of concurrent MODIS and Landsat imagery generally did not agree unless Landsat imagery (30 m) was resampled to 250 m, likely owing to various factors related to scale. Average MODIS estimates exceeded those of Landsat by 0.35 and 0.49 m on the 2 dates. Overall, MODIS 250 m imagery are potentially useful for remote lake monitoring during productive periods when Landsat data are unavailable; however, analyses must occur when algal communities are stable and well-developed, are biased toward large lakes, may overestimate SD, and accuracy may be unreliable without non-spectral lake predictors.

  17. Effect of phosphorous concentrations on sedimentary distributions and isotopic composition of algal lipid biomarkers in lakes from central Switzerland

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Dubois, N.; Schubert, C. J.

    2015-12-01

    Lakes in the Swiss central plateau experienced increasing anthropogenic phosphorous loading throughout much of the 20th century. Since the 1980s concerted remediation efforts on the part of the Swiss government have significantly reduced P concentrations in most lakes and reversed previous eutrophication. However, P concentrations remain elevated above their preindustrial levels in many sites. High quality monitoring of lake nutrient levels since the 1950s, along with several lakes of wide-ranging P concentrations in close proximity, make central Switzerland an ideal location for studying the ways in which nutrient loading affects the organic composition of lacustrine sediments. Results of such studies can be used to develop proxies of eutrophication in sites where fewer historical data exist, and to reconstruct historical P concentrations in local lakes from the time before record keeping began. We analyzed the distributions of algal lipid biomarkers from surface sediment and sediment traps collected in the spring of 2015 from ten lakes with variable P concentrations in central Switzerland. Sedimentary lipid distributions from these lakes confirm that biomarkers associated with algal and cyanobacterial sources are more abundant in the sediment of lakes with greater P loading. The dry sedimentary concentrations of biomarkers such as brassicasterol (primarily diatom source) and diplopterol (cyanobacteria source), as well as the less source specific short-chain n-alkanols, linearly increase from 0.3 - 1.9 μg/g as total phosphorous in the upper water column increases by 1 μg/L over a range of 7 - 50 μg/L. We also present preliminary hydrogen isotope data from these biomarkers. Hydrogen isotopes of algal lipids primarily reflect the source water in which the algae grew, and this relationship has been developed as a paleohydrologic proxy. However, laboratory cultures of marine algae demonstrate that they discriminate more against 2H under nutrient replete conditions. We present the first field assessment of how nutrient availability influences 2H fractionation in freshwater algae, and demonstrate how such measurements can be used to infer past information about anthropogenic nutrient loading.

  18. Great Lakes restoration success through science: U.S. Geological Survey accomplishments 2010 through 2013

    USGS Publications Warehouse

    ,

    2014-01-01

    Tracking progress and working with partners. As of August 2013, the GLRI had funded more than 1,500 projects and programs of the highest priority to meet immediate cleanup, restoration, and protection needs. These projects use scientific analyses as the basis for identifying the restoration needs and priorities for the GLRI. Results from the science, monitoring, and other on-the-ground actions by the U.S. Geological Survey (USGS) provide the scientific information needed to help guide the Great Lakes restoration efforts. This document highlights a selection of USGS projects for each of the five focus areas through 2013, demonstrating the importance of science for restoration success. Additional information for these and other USGS projects that are important for Great Lakes restoration is available at http://cida.usgs.gov/glri/glri-catalog/.

  19. Chemical and biological survey of lakes and streams located in the Emerald Lake watershed, Sequoia National Park. Final report, July 1984-July 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melack, J.M.; Cooper, S.D.; Holmes, R.W.

    1987-02-18

    To investigate the effects or potential effects of acidification on Sierran aquatic habitats, the authors are conducting research on Emerald Lake and its inlet and outlet streams, in Sequoia National Park, California. Emerald Lake was chosen as the focus of the authors studies because it is representative of subalpine and alpine waters in the Sierra Nevada, and is located in the southwestern Sierra where acidic inputs are likely to be greater than in other areas of the Sierra Nevada. The investigations consist of two approaches: (1) A chemical and biological monitoring program and sediment analyses to provide the time seriesmore » needed to distinguish the effects of anthropogenic disturbance from natural variation; and (2) experimental investigations to examine the sensitivity of aquatic communities to acidic inputs and to predict the responses of aquatic communities to increased acidification. The research reported here began in June 1984 and continued through July 1986.« less

  20. Prediction of Water Quality Parameters Using Statistical Methods: A Case Study in a Specially Protected Area, Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Alp, E.; Yücel, Ö.; Özcan, Z.

    2014-12-01

    Turkey has been making many legal arrangements for sustainable water management during the harmonization process with the European Union. In order to make cost effective and efficient decisions, monitoring network in Turkey has been expanding. However, due to time and budget constraints, desired number of monitoring campaigns can not be carried. Hence, in this study, independent parameters that can be measured easily and quickly are used to estimate water quality parameters in Lake Mogan and Eymir using linear regression. Nonpoint sources are one of the major pollutant components in Eymir and Mogan lakes. In this paper, a correlation between easily measurable parameters, DO, temperature, electrical conductivity, pH, precipitation and dependent variables, TN, TP, COD, Chl-a, TSS, Total Coliform is investigated. Simple regression analysis is performed for each season in Eymir and Mogan lakes by using SPSS Statistical program using the water quality data collected between 2006-2012. Regression analysis demonstrated significant linear relationship between measured and simulated concentrations for TN (R2=0.86), TP (R2=0.85), TSS (R2=0.91), Chl-a (R2=0.94), COD (R2=0.99), T. Coliform (R2=0.97) which are the best results in each season for Eymir and Mogan Lakes. The overall results of this study shows that by using easily measurable parameters even in ungauged situation the water quality of lakes can be predicted. Moreover, the outputs obtained from the regression equations can be used as an input for water quality models such as phosphorus budget model which is used to calculate the required reduction in the external phosphorus load to Lake Mogan to meet the water quality standards.

  1. 40 CFR 35.1620-5 - State work programs and lake priority lists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lakes according to trophic condition (§ 35.1630) and to set priorities for implementing clean lakes... 40 Protection of Environment 1 2010-07-01 2010-07-01 false State work programs and lake priority... Publicly Owned Freshwater Lakes § 35.1620-5 State work programs and lake priority lists. (a)(1) A State...

  2. Assessing heat fluxes and water quality trends in subalpine lakes from EO

    NASA Astrophysics Data System (ADS)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Elli, Chiara; Valerio, Giulia; Pilotti, Marco

    2017-04-01

    Lakes play a fundamental role in providing ecosystem services such as water supplying, hydrological regulation, climate change mitigation, touristic recreation (Schallenberg et al., 2013). Preserving and improving of quality of lakes waters, which is a function of either both natural and human influences, is therefore an important action to be considered. Remote Sensing techniques are spreading as useful instrument for lakes, by integrating classical in situ limnological measurements to frequent and synoptic monitoring capabilities. Within this study, Earth Observation data are exploited for understanding the temporal changes of water quality parameters over a decade, as well as for measuring the surface energy fluxes in recent years in deep clear lakes in the European subalpine ecoregion. According to Pareth et al. (2016), subalpine lakes are showing a clear response to climate change with an increase of 0.017 °C /year of lake surface temperature, whilst the human activities contribute to produce a large impact (agriculture, recreation, industry, fishing and drinking) on these lakes. The investigation is focused on Lake Iseo, which has shown a significant deterioration of water quality conditions since the seventies, and on Lake Garda, the largest Italian lake where EO data have been widely used for many purposes and applications (Giardino et al., 2014). Available ENVISAT-MERIS (2002-2012) and Landsat-8-OLI (2013-on going) imagery has been exploited to produce chlorophyll-a (chl-a) concentration maps, while Landsat-8-TIRS imagery has been used for estimating lake surface temperatures. MERIS images were processed through a neural network (namely the C2R processor, Doerffer et al., 2007), to correct the atmospheric effects and to retrieve water constituents concentration in optically complex deep waters. With regard to L8's images, some atmospheric correctors (e.g. ACOLITE and 6SV) were tested and validated to indentify, for each of the two lakes, the more accurate ones. The atmospherically corrected L8 data were then processed through a site-specific parameterised bio-optical model for water constituents' concentration retrieval. The EO products thus obtained were then analysed as follows. 1) Statistical analyses of water reflectance, a new Essential Climate Variables within the ESA CCI+ initiative, and chl-a concentration, a proxy of trophic status, were performed. Both water reflectance and chl-a concentration were obtained from the MERIS 10-years time series and were analyzed to identify spatial patterns, temporal trends and the onset of phytoplankton growth. 2) Combination of field shortwave and longwave radiation data with the one estimated from L8 OLI and TIRS atmospherically corrected imagery, was exploited to assess the heat fluxes and evaporation rates. In both cases, the analysis was supported by field data to highlight the accuracy of measurements obtained from EO technology. A comparative analysis among the lakes is finally presented. In addition, future work aimed at extending the MERIS time series to the new Sentinel-3-OLCI time series (2016-on going) is discussed, in expectation that EO technology will augment information for lake management and geosciences (lake's ecology and climate, in particular).

  3. REGIONAL ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM

    EPA Science Inventory

    The U.S. EPA Environmental Monitoring and Assessment Program (EMAP) supports the development and utilization of ecological monitoring as a critical component of environmental management and protection. Its authorization is provided under the Clean Water Act, as amended, Public L...

  4. Cryptosporidium Contamination and Attributed Risks in Yunlong Lake in Xuzhou, China

    PubMed Central

    Kong, Yadong; Yuan, Tao; Niu, Jinghui; Li, Zhaoji; Yang, Baisong

    2017-01-01

    Swimming in surface water bodies (e.g., lakes, rivers) can expose the human body to substantial risk of infection by Cryptosporidium. These findings are from a one-year investigation on the occurrence and distribution of the protozoan parasite Cryptosporidium in Yunlong Lake, Xuzhou, China. Cryptosporidium oocysts were detected by immunofluorescence microscopy. From January to November of 2015, 180 samples (120 water samples and 60 sediment samples) were collected and analyzed. Among them, 42 (35%) water samples and 28 (47%) sediment samples tested positive for Cryptosporidium. The concentration of Cryptosporidium oocysts in the water samples was 0–8/10 L and 0–260/g in sediment samples. Results revealed that July was the highest risk period for both swimming and diving with an estimated probability of infection from swimming of greater than 18 per 10,000 swim sessions. It was concluded that swimming or diving in Yunlong Lake has a higher risk of Cryptosporidium infection than the acceptable risk level set by the United States Environmental Protection Agency. Thus, regular monitoring of water quality in recreation water bodies is strongly recommended. PMID:28386287

  5. Four years of continuous monitoring of the Meirama end-pit lake and its impact in the definition of future uses.

    PubMed

    Delgado-Martin, J; Juncosa-Rivera, R; Falcón-Suárez, I; Canal-Vila, J

    2013-11-01

    Following the technical closure of the brown lignite Meirama mine (NW Spain) in April 2008, the reclamation of the mined area is being accomplished with the controlled flooding of its large pit. During the first 7 months of flooding, the sequential arrest of the ground water dewatering system led to the growth of an acidic water body of about 2 hm3. Since October 2008, the surface waters from some local streams have been diverted towards the pit so that these have become the major water input in the flooding process. Surface water has promoted a major change in the chemical composition of the lake water so that, at present, its surface has a circum neutral pH, net alkalinity, and low conductivity. At present, the lake has slightly more than one half of its final volume, and it is expected the overflow in 3 to 3.5 years. The lake is meromictic, with a sharp chemocline separating the acidic monimolimnion (pH≈3.2, acidity≈150 mg CaCO3/L, κ 25≈2.4 mS/cm) from the main water body (pH≈6.5, alkalinity≈15 mg CaCO3/L, κ 25≈0.3 mS/cm). Oxygen is being depleted at the bottom of the lake so that the monimolimnion became anoxic in January 2011. Above the chemocline, the composition of the lake is similar, but not identical, to that of the flooding stream waters. Close to the surface, some constituents (pH, metals) show strong seasonal variations in coincidence with the phytoplankton growing periods. Those parameters whose limits are legally prescribed comply with the corresponding water quality standards, and they are also consistent with the forecasting results obtained in early modeling. At present, a project considering the construction of an uptake tunnel to exploit the lake is being developed for the emergency water supply of the metropolitan area of A Coruña.

  6. Role of the Lakes in Groundwater Recharge and Discharge in the Young Glacial Area, Northern Poland.

    PubMed

    Jaworska-Szulc, Beata

    2016-07-01

    The aim of this research was to delineate characteristic hydrogeological lake types in the Young Glacial Area (YGA). The YGA is in the central and east part of the Kashubian Lake District (KLD) in Northern Poland, an area covered by deposits of Quaternary glaciation. All the bigger lakes were investigated in the area of about 1500 km(2) (39 lakes). The role of lakes in groundwater recharge and discharge was determined from total dissolved solids (TDS) in lake waters and also from groundwater flow simulation. The general trend was that gaining lakes, as determined by flow modeling, had higher values of TDS than losing lakes. In addition to typical gaining lakes (with TDS > 250 mg/l), there were losing lakes perched on glacial till deposits with very low TDS (<100 mg/l). Two groups of losing lakes were delineated: ones with very low TDS and another group with slightly higher TDS (due to local contact with groundwater). Flow-through lakes with TDS of 170-200 mg/l were also delineated. © 2015, National Ground Water Association.

  7. Toward integrated opisthorchiasis control in Northeast Thailand: The Lawa Project

    PubMed Central

    Sripa, Banchob; Tangkawattana, Sirikachorn; Laha, Thewarach; Kaewkes, Sasithorn; Mallory, Frank F.; Smith, John F.; Wilcox, Bruce A.

    2015-01-01

    Human liver fluke, Opisthorchis viverrini, a food-borne trematode is a significant public health problem in Southeast Asia, particularly in Thailand. Despite a long history of control programs in Thailand and a nationwide reduction, O. viverrini infection prevalence remains high in the Northeastern Provinces. Therefore, a new strategy for controlling the liver fluke infection using the EcoHealth/One Health approach was introduced into the Lawa Lake area in Khon Kaen province where the liver fluke is endemic. A program has been carried using anthelminthic treatment, novel intensive health education methods both in the communities and in schools, ecosystem monitoring and active community participation. As a result, the infection rate in the more than 10 villages surrounding the Lake has declined to approximate one third of the average of 50% as estimated by a baseline survey. Strikingly, the Cyprinoid fish species in the Lake, which are the intermediate host, now showed less than 1% prevalence compared to a maximum of 70% at baseline. This liver fluke control program, named “Lawa model,” is now recognized nationally and internationally, and being expanding to other parts of Thailand and neighboring Mekong countries. Challenges to O. viverrini disease control, and lessons learned in developing an integrative control program using a community-based, ecosystem approach, and scaling-up regionally based on Lawa as a model are described. PMID:25102053

  8. Evaluating organochlorine pesticide residues in the aquatic environment of the Lake Naivasha River basin using passive sampling techniques.

    PubMed

    Abbasi, Yasser; Mannaerts, Chris M

    2018-05-18

    Passive sampling techniques can improve the discovery of low concentrations by continuous collecting the contaminants, which usually go undetected with classic and once-off time-point grab sampling. The aim of this study was to evaluate organochlorine pesticide (OCP) residues in the aquatic environment of the Lake Naivasha river basin (Kenya) using passive sampling techniques. Silicone rubber sheet and Speedisk samplers were used to detect residues of α-HCH, β-HCH, γ-HCH, δ-HCH, heptachlor, aldrin, heptachlor epoxide, pp-DDE, endrin, dieldrin, α-endosulfan, β-endosulfan, pp-DDD, endrin aldehyde, pp-DDT, endosulfan sulfate, and methoxychlor in the Malewa River and Lake Naivasha. After solvent extraction from the sampling media, the residues were analyzed using gas chromatography electron capture detection (GC-ECD) for the OCPs and gas chromatography-mass spectrometry (GC-MS) for the PCB reference compounds. Measuring the OCP residues using the silicone rubber samplers revealed the highest concentration of residues (∑OCPs of 81 (± 18.9 SD) μg/L) to be at the Lake site, being the ultimate accumulation environment for surficial hydrological, chemical, and sediment transport through the river basin. The total OCP residue sums changed to 71.5 (± 11.3 SD) μg/L for the Middle Malewa and 59 (± 12.5 SD) μg/L for the Upper Malewa River sampling sites. The concentration sums of OCPs detected using the Speedisk samplers at the Upper Malewa, Middle Malewa, and the Lake Naivasha sites were 28.2 (± 4.2 SD), 31.3 (± 1.8 SD), and 34.2 (± 6.4 SD) μg/L, respectively. An evaluation of the different pesticide compound variations identified at the three sites revealed that endosulfan sulfate, α-HCH, methoxychlor, and endrin aldehyde residues were still found at all sampling sites. However, the statistical analysis of one-way ANOVA for testing the differences of ∑OCPs between the sampling sites for both the silicone rubber sheet and Speedisk samplers showed that there was no significant difference from the Upper Malewa to the Lake site (P < 0.05). Finally, the finding of this study indicated that continued monitoring of pesticides residues in the catchment remains highly recommended.

  9. Basic limnology of fifty-one lakes in Costa Rica.

    PubMed

    Haberyan, Kurt A; Horn, Sally P; Umaña, Gerardo

    2003-03-01

    We visited 51 lakes in Costa Rica as part of a broad-based survey to document their physical and chemical characteristics and how these relate to the mode of formation and geographical distribution of the lakes. The four oxbow lakes were low in elevation and tended to be turbid, high in conductivity and CO2, but low in dissolved O2; one of these, L. Gandoca, had a hypolimnion essentially composed of sea water. These were similar to the four wetland lakes, but the latter instead had low conductivities and pH, and turbidity was often due to tannins rather than suspended sediments. The thirteen artificial lakes formed a very heterogenous group, whose features varied depending on local factors. The thirteen lakes dammed by landslides, lava flows, or lahars occurred in areas with steep slopes, and were more likely to be stratified than most other types of lakes. The eight lakes that occupy volcanic craters tended to be deep, stratified, clear, and cool; two of these, L. Hule and L. Río Cuarto, appeared to be oligomictic (tending toward meromictic). The nine glacial lakes, all located above 3440 m elevation near Cerro Chirripó, were clear, cold, dilute, and are probably polymictic. Cluster analysis resulted in three significant groups of lakes. Cluster 1 included four calcium-rich lakes (average 48 mg l-1), Cluster 2 included fourteen lakes with more Si than Ca+2 and higher Cl- than the other clusters, and Cluster 3 included the remaining thirty-three lakes that were generally less concentrated. Each cluster included lakes of various origins located in different geographical regions; these data indicate that, apart from the high-altitude glacial lakes and lakes in the Miravalles area, similarity in lake chemistry is independent of lake distribution.

  10. Isotopic Survey of Lake Davis and the Local Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, M N; Moran, J E; Singleton, M J

    2007-08-21

    In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek andmore » rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.« less

  11. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Wigmore, Oliver; Mark, Bryan

    2017-11-01

    The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs) a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000-6000 m a. s. l. ) operation, we completed repeat aerial surveys (2014 and 2015) of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm) and digital elevation models (DEMs) (10 cm) were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity.

  12. Lake Billy Shaw Operations and Maintenance, Final Annual Report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, Guy; Pero, Vincent

    Lake Billy Shaw is a newly constructed earthen dam reservoir with a surface area of 430 acres. Construction on the dam and structures was complete in November of 1998. The fish screen structures were complete in December of 1998, with initial filling in May 1999. Upon initial filling, dam structures, monitoring wells, fish screen structures, and lake level were monitored daily, with recordings being taken three times/week. During June 1999 the water to the lake was turned off in order to complete additional construction work on the lake. This work included installation of culverts around the perimeter road, installation ofmore » boat launches, finish work on the spillway structure, pumphouse and well protection and planting 4 trees along the entrance to the boat launch area. The water was turned on again in late September 1999 with all structures having been checked, fish screens greased and maintained and well levels being monitored. In 2000 the Operations and Maintenance portion of the project began with monitoring of piezometers, water levels, biological monitoring, riparian plantings, protection of shorelines, and maintenance of structures and appurtances.« less

  13. Spatio-temporal patterns of mass fluxes of micropollutants in Swiss rivers of catchments with different land use

    NASA Astrophysics Data System (ADS)

    Stamm, Christian; van der Voet, Jürgen; Singer, Heinz

    2010-05-01

    It is known from many studies that a large number of micropollutants like pesticides, household products or pharmaceuticals can be found in water bodies. However, there is a general lack of systematic monitoring data that allow for distinguishing between possible sources, detecting temporal trends, or evaluating effects of possible mitigation measures. Including micropollutants in existing monitoring programs is not a trivial task for several reasons (e.g., sorption to sampling equipment, hydrolysis, detection limits etc.). Here, we present systematic concentration and load data for 12 substances (7 pesticides and/or biocides, 3 pharmaceuticals, and 2 anti-corrosives) obtained from a one-year sampling campaign within the "National Long-term Surveillance of Swiss Rivers" (NADUF) programme. Six (partially) nested sampling stations were selected to monitor these compounds in weekly or bi-weekly, flow-proportional samples over one year. Due to the high sensitivity of the LC-MSMS method all compounds could be quantified in almost all samples. Only at the reference site without any effluent from waste water treatment plants and hardly any arable farming, the concentrations were always below the limits of detection of a few ng/L. At all other sites, concentrations generally ranged between 10 and 200 ng/L. Only, the anticorrosive agent benzotriazole often exceeded 1000 ng/L. According to the use of the compounds, different temporal load patterns can be expected. In general, the data confirmed these patterns with almost constant loads of pharmaceuticals at most sites, increased herbicides loads during the periods of agricultural use and positive correlations with discharge year round for biocides used in material protection. However, at some sites the expectations were not met for all compounds. The pain-killer diclofenac for example showed strongly declining loads during the summer months at sites influenced by lake water. This compound is not stable in the epilimnion of lakes, where it has a residence time of several weeks, while it flows through the river system within a few days. This example illustrates how compound properties, season and spatial location may interact and control the occurrence of micropollutants in a stream. The spatial nesting of study catchments made it possible to check the data for plausibility and consistency: we present data on cumulative mass balances downstream and test whether the load development along the river network corresponds to the spatial distribution of possible compound sources (e.g., acreage of arable fields, number of inhabitants etc.). Overall, the data show that monitoring of micropollutants may be achieved even without changing an existing monitoring programme. However, given the generally low concentrations in the composite samples of the NADUF programme compounds with lower use and/or lower stability may fall below the limit of reliable quantification or even detection. A proper interpretation of the data relies on additional (spatio-temporal) information like land use data or precipitation patterns.

  14. Perchlorate in Lake Water from an Operating Diamond Mine.

    PubMed

    Smith, Lianna J D; Ptacek, Carol J; Blowes, David W; Groza, Laura G; Moncur, Michael C

    2015-07-07

    Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 μg L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 μg L(-1) (n = 114) in open water and 0.24 μg L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 μg L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.

  15. Behavior of the polycyclic musks HHCB and AHTN in lakes, two potential anthropogenic markers for domestic wastewater in surface waters.

    PubMed

    Buerge, Ignaz J; Buser, Hans-Rudolf; Müller, Markus D; Poiger, Thomas

    2003-12-15

    The synthetic polycyclic musks HHCB and AHTN are potential chemical markers for domestic wastewater contamination of surface waters. Understanding their environmental behavior is important to evaluate their suitability as markers. This study focuses on the quantification of the processes that lead to an elimination in lakes. Rate constants for all relevant processes were estimated based on laboratory studies and models previously described. In lake Zurich, during winter time, both compounds are eliminated primarily by outflowing water and due to losses to the atmosphere. In summer, direct photolysis represents the predominant elimination process for AHTN in the epilimnion of lake Zurich (quantum yield, 0.12), whereas for HHCB, photochemical degradation is still negligible. HHCB and AHTN were then measured in effluents of Swiss wastewater treatment plants (WWTPs), in remote and anthropogenically influenced Swiss surface waters, and in Mediterranean seawater using an analytical procedure based on SPE and GC-MS-SIM with D6-HHCB as internal standard (LODs for natural waters, 2 and 1 ng/L, respectively). In winter, concentrations of HHCB and AHTN in lakes (<2-47 and <1-18 ng/L, respectively) correlated with the anthropogenic burden by domestic wastewater (ratio population per water throughflow), demonstrating the suitability of these compounds as quantitative, source-specific markers. In summer, however, no such correlations were observed. Vertical concentration profiles in lake Zurich indicated significant losses in the epilimnion during summer, mainly for AHTN, and could be rationalized with a lake modeling program (MASASlight), considering measured, average loads from WWTP effluents (0.80 +/- 0.22 and 0.32 +/- 0.11 mg person(-1) d(-1) for HHCB and AHTN, respectively) and the estimated rate constants for elimination processes.

  16. Estimating spatial and temporal components of variation in count data using negative binomial mixed models

    USGS Publications Warehouse

    Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.

    2013-01-01

    Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.

  17. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in evaporative degassing plumes can be useful as monitoring tool on the short-term, but only if the underlying process of gas flushing through acidic lakes is better understood, and linked with the lake water chemistry; (2) The second method forgets about chemical kinetics, degassing models and dynamics of phreatic eruptions, and sticks to the classical principle in geology of "the past is the key for the future". How did lake chemistry parameters vary during the various stages of unrest and eruption, on a purely mathematical basis? Can we recognise patterns in the numerical values related to the changes in volcanic activity? Water chemistry only as a monitoring tool for extremely dynamic and erupting crater lake systems, is inefficient in revealing short-term precursors for single phreatic eruptions, within the current perspective of the residence time dependent monitoring time window. The monitoring rules established since decades based only on water chemistry have thus somehow become obsolete and need revision.

  18. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short-pulse radar measurements of ice thickness. The radar data was relayed by a NOAA satellite to a ground station where NOAA analyzed it and created picture maps, such as the one shown at lower left, showing where icebreakers can cut paths easily or where shipping can move through thin ice without the aid of icebreakers. The ice charts were then relayed directly to the wheelhouses of ships operating on the Lakes. Following up the success of the Great Lakes program, the icewarn team applied its system in another demonstration, this one a similarly successful application designed to aid Arctic coast shipping along the Alaskan North Slope. Further improvement of the ice-monitoring system is planned. Although aircraft-mounted radar is effective, satellites could provide more frequent data. After the launch this year of Seasat, an ocean-monitoring satellite, NASA will conduct tests to determine the ice-mapping capability and accuracy of satellite radar images.

  19. National Dam Safety Program. Willow Brook Dam (Inventory Number NY 35). Lower Hudson River Basin, Orange County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-14

    ia danger of l~>ee of huaar. . i f e fro« .arge flowa downatrea« of the daa Therefore Willow Brook De« is considered to be in the "high" hazard...and Surveyor (the application la included in Appendix G) 2 * Of WAT IOW RECORDS The «lids gats controlling dischargea ia opened approxi...lake ahors Once the lake lsvsl dropa to apillway lsvsl. the gsts ia cloaed The owner haa no procedures ’or regular dam inspectiona or regular

  20. Sensitivity of Alpine and Subalpine Lakes to Atmospheric Deposition in Grand Teton National Park and Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Campbell, D. H.; Williams, M. W.

    2004-12-01

    Acidification of high-elevation lakes in the Western United States is of concern because of the storage and release of pollutants in snowmelt runoff combined with steep topography, granitic bedrock, and limited soils and biota. Land use managers have limited resources for sampling and thus need direction on how best to design monitoring programs. We evaluated the sensitivity of 400 lakes in Grand Teton (GRTE) and Yellowstone (YELL) National Parks to acidification from atmospheric deposition of nitrogen and sulfur based on statistical relations between acid-neutralizing capacity (ANC) concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. ANC concentrations that were measured at 52 lakes in GRTE and 23 lakes in YELL during synoptic surveys were used to calibrate the statistical models. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen (N) deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare (ha) in GRTE (n=106) and YELL (n=294). For GRTE, 36 percent of lakes had a greater than 60-percent probability of having ANC concentrations less than 100 microequivalents per liter, and 14 percent of lakes had a greater than 80-percent probability of having ANC concentrations less than 100 microequivalents per liter. The elevation of the lake outlet and the area of the basin with northeast aspects were determined to be statistically significant and were used as the explanatory variables in the multivariate logistic regression model. For YELL, results indicated that 13 percent of lakes had a greater than 60-percent probability of having ANC concentrations less than 100 microequivalents per liter, and 9 percent of lakes had a greater than 80-percent probability of having ANC concentrations less than 100 microequivalents per liter. Only the elevation of the lake outlet was determined to be statistically significant and was used as the explanatory variable in the multivariate logistic regression model. The lakes that exceeded 80-percent probability of having an ANC concentration less than 100 microequivalents per liter, and therefore had the greatest sensitivity to acidification from atmospheric deposition, are located at elevations greater than 2,810 meters (m) in GRTE, and greater than 2,655 m in YELL.

  1. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  2. Monitoring Land Cover Change in the Lake Superior Basin

    EPA Science Inventory

    Lake Superior is the largest freshwater lake in the world by area and the third largest by volume. It is also the most pristine of the Great Lakes (Lake Superior Lakewide Management Plan 2006). Even still, Lake Superior is not without its threats ranging from chemical contamina...

  3. Late Quaternary palaeoenvironmental reconstruction from Lake Ohrid using stable isotopes

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Vogel, Hendrik; Zanchetta, Giovanni; Wagner, Bernd

    2016-04-01

    Lake Ohrid is a large, deep lake located on the Balkan Peninsula at the border between Macedonia and Albania, and is considered the oldest extant lake in Europe. An International Continental scientific Drilling Program (ICDP) deep drilling campaign was carried out in 2013 as part of the interdisciplinary Scientific Collaboration On Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Over 1500 m of sediment were recovered from six coring locations at the main target site in the central basin, where the maximum drill depth reached 569 m below the lake floor. Initial results indicate continuous lacustrine conditions over the past >1.2 Ma (Wagner et al., 2014). Here, we present oxygen and carbon isotope data (δ18O and δ13C) from carbonate from the upper 248 m of the SCOPSCO succession, which covers the last 640 ka, spanning marine isotope stages 15-1, according to an age model based on tephra and orbital tuning (Francke et al., 2015). Modern monitoring data show Lake Ohrid to be an evaporative system, where variations in δ18O of endogenic carbonate are primarily a function of changes in water balance, and δ13C largely reflects fluctuations in the amount of soil-derived CO2 and organic matter recycling. Our results indicate a trend from wetter to drier conditions through the Holocene, which is consistent with regional and hemispheric processes related to changes in insolation and progressive aridification. Over the last 640 ka, relatively stable climate conditions are inferred before ca. 450 ka, a transition to a wetter climate between ca. 400-250 ka, and a trend to drier climate after ca. 250 ka. Higher frequency, multi-millennial-scale oscillations observed during warm stages are most likely associated with regional climate change as a function of orbital forcing. This record is one of the most extensive and highly-resolved continental isotope records available, and emphasises the potential of Lake Ohrid as a valuable archive of long-term palaeoclimate and palaeoenvironmental change in the northern Mediterranean region. Francke, A., Wagner, B., Just, J., Leicher, N., Gromig, R., Baumgarten, H., Vogel, H., Lacey, J. H., Sadori, L., Wonik, T., Leng, M. J., Zanchetta, G., Sulpizio, R., and Giaccio, B. (2015). Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 640 ka and present day. Biogeosciences Discussions 12, 15111-15156. Wagner, B., Wilke, T., Krastel, S., Zanchetta, G., Sulpizio, R., Reicherter, K., Leng, M. J., Grazhdani, A., Trajanovski, S., Francke, A., Lindhorst, K., Levkov, Z., Cvetkoska, A., Reed, J. M., Zhang, X., Lacey, J. H., Wonik, T., Baumgarten, H., and Vogel, H. (2014). The SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid. Scientific Drilling 17, 19-29.

  4. Small System Use of a Solid Arsenic Oxidizing Media in Place of Chemical Oxidation to Enhance Arsenic Removals

    EPA Science Inventory

    As part of the USEPA Arsenic Demonstration Program, an arsenic removal adsorptive media treatment system (10 gpm) was installed at Head Start School in Buckeye Lake, Ohio on June 28, 2006. The source water (ground water) contained around 20 µg/L of arsenic, existing predominatel...

  5. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, B. L.; Roelke, Daniel; Brooks, Bryan

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife andmore » Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.« less

  6. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  7. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  8. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  9. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  10. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  11. Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed.

    PubMed

    Lizotte, Richard E; Yasarer, Lindsey M W; Locke, Martin A; Bingner, Ronald L; Knight, Scott S

    2017-03-01

    Watershed-scale management efforts to reduce nutrient loads and improve the conservation of lakes in agricultural watersheds require effective integration of a variety of agricultural conservation best management practices (BMPs). This paper documents watershed-scale assessments of the influence of multiple integrated BMPs on oxbow lake nutrient concentrations in a 625-ha watershed of intensive row-crop agricultural activity during a 14-yr monitoring period (1996-2009). A suite of BMPs within fields and at field edges throughout the watershed and enrollment of 87 ha into the Conservation Reserve Program (CRP) were implemented from 1995 to 2006. Total phosphorus (TP), soluble reactive phosphorus (SRP), ammonium, and nitrate were measured approximately biweekly from 1996 to 2009, and total nitrogen (TN) was measured from 2001 to 2009. Decreases in several lake nutrient concentrations occurred after BMP implementation. Reductions in TP lake concentrations were associated with vegetative buffers and rainfall. No consistent patterns of changes in TN or SRP lake concentrations were observed. Reductions in ammonium lake concentrations were associated with conservation tillage and CRP. Reductions in nitrate lake concentrations were associated with vegetative buffers. Watershed simulations conducted with the AnnAGNPS (Annualized Agricultural Non-Point Source) model with and without BMPs also show a clear reduction in TN and TP loads to the lake after the implementation of BMPs. These results provide direct evidence of how watershed-wide BMPs assist in reducing nutrient loading in aquatic ecosystems and promote a more viable and sustainable lake ecosystem. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Spatiotemporal Dynamics of Microcystin Variants and Relationships with Environmental Parameters in Lake Taihu, China

    PubMed Central

    Su, Xiaomei; Xue, Qingju; Steinman, Alan D.; Zhao, Yanyan; Xie, Liqiang

    2015-01-01

    Excessive anthropogenically-caused nutrient loading from both external and internal sources has promoted the growth of cyanobacteria in Lake Taihu from 2005 to 2014, suggesting increased production and release of cyanotoxins. In order to explain the spatial distribution and temporal variation of microcystins (MCs), the intracellular concentrations of MCs (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine) were monitored monthly from July 2013 to June 2014. Three MC variants are present simultaneously in Lake Taihu; the MC-LR and -RR variants were dominant (accounting for 40% and 39% of the total), followed by MC-YR (21%). However, MC-YR accounted for a higher proportion in colder months, especially in March. The highest concentrations of intracellular MCs were found in July and October when cyanobacteria cell density also reached the maximum. The average concentrations of MC-LR, -RR and -YR in July were 4.69, 4.23 and 2.01 μg/L, respectively. In terms of the entire lake, toxin concentrations in northern parts were significantly higher than the eastern part in summer, when MC concentrations were several times higher than the guideline value by WHO throughout much of Lake Taihu. Results from correlation and redundancy analysis (RDA) showed that total MCs, including all variants, were strongly and positively correlated with cyanobacteria cell density, water temperature, total phosphorus (TP) and pH, whereas each variant had different correlation coefficients with each of the considered environmental variables. MC-RR showed a stronger relationship with temperature, in contrast to MC-YR and -LR. Dissolved inorganic carbon (DIC) showed a negative relationship with each variant, suggesting that rising DIC concentrations may inhibit cyanobacterial growth and thereby reduce MC production in the future. PMID:26295260

  13. Spatiotemporal Dynamics of Microcystin Variants and Relationships with Environmental Parameters in Lake Taihu, China.

    PubMed

    Su, Xiaomei; Xue, Qingju; Steinman, Alan D; Zhao, Yanyan; Xie, Liqiang

    2015-08-18

    Excessive anthropogenically-caused nutrient loading from both external and internal sources has promoted the growth of cyanobacteria in Lake Taihu from 2005 to 2014, suggesting increased production and release of cyanotoxins. In order to explain the spatial distribution and temporal variation of microcystins (MCs), the intracellular concentrations of MCs (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine) were monitored monthly from July 2013 to June 2014. Three MC variants are present simultaneously in Lake Taihu; the MC-LR and -RR variants were dominant (accounting for 40% and 39% of the total), followed by MC-YR (21%). However, MC-YR accounted for a higher proportion in colder months, especially in March. The highest concentrations of intracellular MCs were found in July and October when cyanobacteria cell density also reached the maximum. The average concentrations of MC-LR, -RR and -YR in July were 4.69, 4.23 and 2.01 μg/L, respectively. In terms of the entire lake, toxin concentrations in northern parts were significantly higher than the eastern part in summer, when MC concentrations were several times higher than the guideline value by WHO throughout much of Lake Taihu. Results from correlation and redundancy analysis (RDA) showed that total MCs, including all variants, were strongly and positively correlated with cyanobacteria cell density, water temperature, total phosphorus (TP) and pH, whereas each variant had different correlation coefficients with each of the considered environmental variables. MC-RR showed a stronger relationship with temperature, in contrast to MC-YR and -LR. Dissolved inorganic carbon (DIC) showed a negative relationship with each variant, suggesting that rising DIC concentrations may inhibit cyanobacterial growth and thereby reduce MC production in the future.

  14. Chlorophyll a and inorganic suspended solids in backwaters of the upper Mississippi River system: Backwater lake effects and their associations with selected environmental predictors

    USGS Publications Warehouse

    Rogala, James T.; Gray, Brian R.

    2006-01-01

    The Long Term Resource Monitoring Program (LTRMP) uses a stratified random sampling design to obtain water quality statistics within selected study reaches of the Upper Mississippi River System (UMRS). LTRMP sampling strata are based on aquatic area types generally found in large rivers (e.g., main channel, side channel, backwater, and impounded areas). For hydrologically well-mixed strata (i.e., main channel), variance associated with spatial scales smaller than the strata scale is a relatively minor issue for many water quality parameters. However, analysis of LTRMP water quality data has shown that within-strata variability at the strata scale is high in off-channel areas (i.e., backwaters). A portion of that variability may be associated with differences among individual backwater lakes (i.e., small and large backwater regions separated by channels) that cumulatively make up the backwater stratum. The objective of the statistical modeling presented here is to determine if differences among backwater lakes account for a large portion of the variance observed in the backwater stratum for selected parameters. If variance associated with backwater lakes is high, then inclusion of backwater lake effects within statistical models is warranted. Further, lakes themselves may represent natural experimental units where associations of interest to management may be estimated.

  15. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage volume changes. Ground-based data can, in some cases, test the remote sensing accuracy and precision. Data accuracy requirements vary for different applications: reservoir management for flood control, agriculture, or power generation may need more accurate and timely information than (for example) regional assessments of water and food security issues. Thus, the long-term goal for the hydrological sciences community should be to efficiently mesh both types of information and with as extensive geographic coverage as possible.

  16. Water-Quality Data from Upper Klamath and Agency Lakes, Oregon, 2007-08

    USGS Publications Warehouse

    Kannarr, Kristofor E.; Tanner, Dwight Q.; Lindenberg, Mary K.; Wood, Tamara M.

    2010-01-01

    Significant Findings The U.S. Geological Survey Upper Klamath Lake water-quality monitoring program collected data from multiparameter continuous water-quality monitors, weekly water-quality samples, and meteorological stations during May-November 2007 and 2008. The results of these measurements and sample analyses are presented in this report for 29 stations on Upper Klamath Lake and 2 stations on Agency Lake, as well as quality-assurance data for the water-quality samples. Some of the significant findings from 2007 and 2008 are listed below. In 2007-08, ammonia concentrations were at or near the detection limit at all stations during the second week in June, after which they began to increase, with peak concentrations occurring from July through November. The concentration of un-ionized ammonia, which can be toxic to aquatic life, first began to increase in mid-June and peaked in July or August at most sites. Concentrations of un-ionized ammonia measured in the Upper Klamath Lake in 2007-08 did not reach concentrations that would have been potentially lethal to suckers. Samples collected for the analysis of dissolved organic carbon (DOC) late in the 2007 season showed no evidence of an increase in DOC subsequent to the breaching of the Williamson River Delta levees on October 30. In 2007-08, the lakewide daily median of dissolved oxygen concentration began to increase in early June, and peaked in mid- to late June. The lakewide daily median pH began to increase from early June and peaked in late June (2007) or early July (2008). Lakewide daily median pH slowly decreased during the rest of both seasons. The 2007 lakewide daily median specific conductance values first peaked on July 1, coincident with a peak in dissolved oxygen concentration and pH, followed by a decrease through mid-July. Specific conductance then remained relatively stable until mid-October when a sharp increase began that continued until the end of the season. Lakewide specific conductance values for 2008 steadily increased through the season to a maximum in late September. Lakewide daily median temperatures in both years began to increase during the beginning of June and peaked in July. These temperatures persisted until late August to early September when a gradual decrease occurred. In 2007-08, water-quality conditions monitored at the Agency Lake northern and southern stations were similar to those in Klamath Lake.

  17. Water quality of Fremont Lake and New Fork Lakes, western Wyoming; a progress report

    USGS Publications Warehouse

    Peterson, D.A.; Averett, R.C.; Mora, K.L.

    1987-01-01

    Fremont Lake and New Fork Lakes in the New Fork River drainage of western Wyoming were selected for a comprehensive study of hydrologic processes affecting mountain lakes in the Rocky Mountains. Information is needed about lakes in this area to assess their response to existing and planned development. The concerns include regional issues such as acid precipitation from gas-sweetening plants, coal-fired powerplants, and smelters, as well as local issues, such as shoreline development and raising outlet control structures. Onsite measurements indicated strong thermal stratification in the lakes during the summer. Isothermal conditions occurred during December 1983 and May 1984. Mean phytoplankton concentrations were less than 5,000 cells/ml, and chlorophyll a concentrations were weakly correlated with phytoplankton concentrations. Zooplankton concentrations were small, less than 6 organisms/L. The numbers of benthic invertebrates/unit area in Fremont Lake were extremely small. The lake waters and inflow and outflow streams were chemically dilute solutions. Mean dissolved-solids concentrations were 13 mg/L in Fremont Lake and 24 mg/L in New Fork Lakes. Calcium and bicarbonate were the predominant ions. Concentrations of phosphorus and nitrogen usually were less than detection limits. Trace-metals concentrations in the lakes were similar to those in precipitation and generally were small. Dissolved organic-carbon concentrations were about 1 mg/L. Concentrations of fulvic and humic acids were relatively large in the inlet of Fremont Lake during the spring. Pine Creek has deposited 800 metric tons of sediment, on an annual average, to the delta of Fremont Lake. Most sediment is deposited during spring runoff. (USGS)

  18. Satellite Monitoring of Cyanobacterial Harmful Algal Bloom Frequency in Recreational Waters and Drinking Water Sources

    NASA Technical Reports Server (NTRS)

    Clark, John M.; Schaeffer, Blake A.; Darling, John A.; Urquhart, Erin A.; Johnston, John M.; Ignatius, Amber R.; Myer, Mark H.; Loftin, Keith A.; Werdell, P. Jeremy; Stumpf, Richard P.

    2017-01-01

    Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and sh kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking water sources because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection. In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentinel-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs greater than 1 ha in area. Results from this study show that 5.6% of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7% of waterbodies were resolvable when a three by three pixel (3 x 3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3 x 3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organizations (WHO) high threshold for risk of 100,000 cells m/L. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1%) and Grand Lake St. Marys, OH (83%) had the highest observed bloom frequencies per region. The method presented here may indicate locations with high exposure to cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational and drinking water sources.

  19. 40 CFR 35.1620-5 - State work programs and lake priority lists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false State work programs and lake priority... Publicly Owned Freshwater Lakes § 35.1620-5 State work programs and lake priority lists. (a)(1) A State shall submit to the Regional Administrator as part of its annual work program (§ 35.1513 of this...

  20. A rare Uroglena bloom in Beaver Lake, Arkansas, spring 2015

    USGS Publications Warehouse

    Green, William R.; Hufhines, Brad

    2017-01-01

    A combination of factors triggered a Uroglena volvox bloom and taste and odor event in Beaver Lake, a water-supply reservoir in northwest Arkansas, in late April 2015. Factors contributing to the bloom included increased rainfall and runoff containing increased concentrations of dissolved organic carbon, followed by a stable pool, low nutrient concentrations, and an expansion of lake surface area and littoral zone. This was the first time U. volvox was identified in Beaver Lake and the first time it was recognized as a source of taste and odor. Routine water quality samples happened to be collected by the US Geological Survey and the Beaver Water District throughout the reservoir during the bloom—. Higher than normal rainfall in March 2015 increased the pool elevation in Beaver Lake by 2.3 m (by early April), increased the surface area by 10%, and increased the littoral zone by 1214 ha; these conditions persisted for 38 days, resulting from flood water being retained behind the dam. Monitoring programs that cover a wide range of reservoir features, including dissolved organic carbon, zooplankton, and phytoplankton, are valuable in explaining unusual events such as this Uroglena bloom.

  1. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    USGS Publications Warehouse

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic nitrogen plus ammonia ranged from 1.27 to 2.96 mg/L at the 16 tributaries during 2004–2008. Mean concentrations were highest at Fisheating Creek at Lake Placid (a non-priority site), and lowest at Wolff Creek, Taylor Creek near Grassy Island, and Otter Creek (three priority basin sites), and at Arbuckle Creek (a non-priority basin site). Mean concentrations of nitrite plus nitrate ranged from 0.01 to 0.55 mg/L at the 16 tributaries during 2004–2008. Mean concentrations measured in priority basins were significantly higher than those measured in non-priority basins. Nutrient concentrations were substantially lower in the non-priority basins; however, total loads were substantially higher due to discharge that was 5 to 6 times greater than from the priority basins. Total phosphorus, organic nitrogen plus ammonia, and nitrite plus nitrate loads from the non-priority basins were 1.5, 4.5, and 3.5 times greater, respectively, than were loads from the priority basins. In the non-priority basins, total phosphorus loads ranged from 35 metric tons (MT) in 2007 to 247 MT in 2005. In the priority basins, the loads ranged from 18 MT in 2007 to 136 MT in 2005. In the non-priority basins, organic nitrogen plus ammonia loads ranged from 337 MT in 2007 to 2,817 MT in 2005. In the priority basins, organic nitrogen plus ammonia loads ranged from 85 MT in 2007 to 503 MT in 2005. In the non-priority basins, nitrite plus nitrate loads ranged from 34 MT in 2007 to 143 MT in 2005. In the priority basins, nitrite plus nitrate loads ranged from 4 MT in 2007 to 27 MT in 2005.

  2. Snake River Sockeye Salmon Habitat and Limnological Research; 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, David; Taki, Doug

    1996-05-01

    This report contains studies which are part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Attention is focused on population monitoring studies in the Sawtooth Valley Lakes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Monitoring: a vital component of science at USGS WEBB sites

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Peters, N. E.; Campbell, D. H.; Clow, D. W.; Walker, J. F.; Hunt, R. J.

    2007-12-01

    The U.S. Geological Survey launched its Water, Energy, and Biogeochemical Budgets (WEBB) program in 1991 with the establishment of five long-term research watersheds. Monitoring of climate, hydrology, and chemistry is the cornerstone of WEBB scientific investigations. At Loch Vale, CO, long-term streamflow and climate monitoring indicated an increase rather than the expected decrease in the runoff:precipitation ratio during a drought in the early 2000s, indicating the melting of subsurface and glacial ice in the basin. At Luquillo Experimental Forest in Puerto Rico, monitoring of mercury in precipitation revealed the highest recorded mercury wet deposition rates in the USA, an unexpected finding given the lack of point sources. At Panola Mountain, GA, long-term monitoring of soil- and groundwater revealed step shifts in chemical compositions in response to wet and drought cycles, causing a corresponding shift in stream chemistry. At Sleepers River, VT, WEBB funding has extended a long- term (since 1960) weekly snow water equivalent dataset which is a valuable integrating signal of regional climate trends. At Trout Lake, WI, long-term monitoring of lakes, ground-water levels, streamflow and subsurface water chemistry has generated a rich dataset for calibrating a watershed model, and allowed for efficient design of an automated procedure for sampling mercury during runoff events. The 17-plus years of monitoring at the WEBB watersheds provides a foundation for generating new scientific hypotheses, a basis for trend detection, and context for anomalous observations that often drive new research.

  4. Monitoring Ground-Water Quality in Coastal Ecosystems

    USGS Publications Warehouse

    Colman, John A.; Masterson, John P.

    2007-01-01

    INTRODUCTION The Cape Cod National Seashore (CACO) extends along more than 70 km of Atlantic Ocean open-beach coastline and includes three large saltwater bays - Wellfleet Harbor, Nauset Marsh, and Pleasant Bay (fig. 1). CACO encompasses about 18,000 ha of uplands, lakes, wetlands, and tidal lands (Godfrey and others, 1999) including most habitats typical of the sandy coast in National seashores and parks extending southward from Massachusetts to Florida. In 1995, CACO was selected by the National Park Service (NPS) as a prototype park typifying the Atlantic and Gulf Coast biogeographic region for long-term coastal ecosystem monitoring. The U.S. Geological Survey (USGS) is currently (2007) assisting the NPS in the development of protocols for a Long-Term Coastal Ecosystem Monitoring Program at the CACO in Massachusetts. The overall purpose of the monitoring program is to characterize both natural and human-induced change in the biological resources of the CACO, over a time scale of decades, in the context of a changing global ecosystem.

  5. Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy.

    PubMed

    Loos, Robert; Wollgast, Jan; Huber, Tania; Hanke, Georg

    2007-02-01

    A survey of contamination of surface and drinking waters around Lake Maggiore in Northern Italy with polar anthropogenic environmental pollutants has been conducted. The target analytes were polar herbicides, pharmaceuticals (including antibiotics), steroid estrogens, perfluorooctanesulfonate (PFOS), perfluoroalkyl carboxylates (including perfluorooctanoate PFOA), nonylphenol and its carboxylates and ethoxylates (NPEO surfactants), and triclosan, a bactericide used in personal-care products. Analysis of water samples was performed by solid-phase extraction (SPE) then liquid chromatography-triple-quadrupole (tandem) mass spectrometry (LC-MS-MS). By extraction of 1-L water samples and concentration of the extract to 100 microL, method detection limits (MDLs) as low as 0.05-0.1 ng L(-1) were achieved for most compounds. Lake-water samples from seven different locations in the Southern part of Lake Maggiore and eleven samples from different tributary rivers and creeks were investigated. Rain water was also analyzed to investigate atmospheric input of the contaminants. Compounds regularly detected at very low concentrations in the lake water included: caffeine (max. concentration 124 ng L(-1)), the herbicides terbutylazine (7 ng L(-1)), atrazine (5 ng L(-1)), simazine (16 ng L(-1)), diuron (11 ng L(-1)), and atrazine-desethyl (11 ng L(-1)), the pharmaceuticals carbamazepine (9 ng L(-1)), sulfamethoxazole (10 ng L(-1)), gemfibrozil (1.7 ng L(-1)), and benzafibrate (1.2 ng L(-1)), the surfactant metabolite nonylphenol (15 ng L(-1)), its carboxylates (NPE(1)C 120 ng L(-1), NPE(2)C 7 ng L(-1), NPE(3)C 15 ng L(-1)) and ethoxylates (NPE( n )Os, n = 3-17; 300 ng L(-1)), perfluorinated surfactants (PFOS 9 ng L(-1), PFOA 3 ng L(-1)), and estrone (0.4 ng L(-1)). Levels of these compounds in drinking water produced from Lake Maggiore were almost identical with those found in the lake itself, revealing the poor performance of sand filtration and chlorination applied by the local waterworks.

  6. Hungry Horse Dam Fisheries Mitigation; Kokanee Stocking and Monitoring in Flathead Lake, 1996 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carty, Daniel; Knoetek, W. Ladd

    1997-06-01

    Kokanee salmon Oncorhynchus nerka were introduced into Flathead Lake in 1916. The kokanee population declined in the 1960s and 1970s, and kokanee disappeared from Flathead Lake in the late 1980s. Their disappearance has been attributed to the long-term effects of the construction and operation of Hungry Horse and Kerr dams, excessive harvest by anglers, and changes in the lake food web induced by the introduction of opossum shrimp Mysis relicta. Attempts to reestablish kokanee in the Flathead Lake ecosystem between 1988 and 1991 were unsuccessful. In 1991, Montana Fish, Wildlife and Parks (MFWP) and the Confederated Salish and Kootenai Tribesmore » (CSKT) wrote a mitigation plan to restore kokanee to Flathead Lake. In 1993, MFWP, CSKT, and the U.S. Fish and Wildlife Service wrote a mitigation implementation plan that initiated a 5-year test program to use hatchery-reared fish to reintroduce kokanee to the lake. Stocking hatchery-reared kokanee into Flathead Lake began in 1993; the 5-year {open_quotes}kokanee test{close_quotes} started in 1994 and is scheduled to continue through 1998. The annual stocking objective is 1 million yearling kokanee (6-8 in long). Criteria used to evaluate the success of the 5-year test are (1) 30% survival of kokanee 1 year after stocking, (2) yearling-to-adult survival of 10%, and (3) annual harvest of 50,000 kokanee ({ge} 11 in) and fishing effort {ge} 100,000 angler hours.« less

  7. The Ecological History of Lake Ontario According to Phytoplankton

    NASA Astrophysics Data System (ADS)

    Allinger, L. E.; Reavie, E. D.

    2014-12-01

    Lake Ontario's water quality has fluctuated since European settlement and our understanding of the cause-and-effect linkages between observed ecosystem shifts and stressors are evolving and improving. Changes in the physical and chemical environment of the lake due to non-indigenous species, pollution, sedimentation, turbidity and climate change altered the pelagic primary producers, so algal assessments have been valuable for tracking long-term conditions. We present a chronological account of pelagic algal assessments and some nearshore areas to summarize past and present environmental conditions in Lake Ontario. This review particularly focuses on diatom-based assessments as their fossils in sediments have revealed the combined effects of environmental insults and recovery. This review recaps the long-term trends according to three unique regions: Hamilton Harbor, the main lake basin and the Bay of Quinte. We summarize pre-European settlement, eutrophication throughout most of the 20th century, subsequent water quality improvement due to nutrient reductions and filter-feeding dreissenid colonization and contemporary pelagic, shoreline and embayment impairments. Recent pelagic phytoplankton data suggest that although phytoplankton biovolume remains stable, species composition has shifted to an increase in spring eutrophic diatoms and summer blue-green algae. Continued monitoring and evaluation of historical data will assist in understanding and responding to the natural and anthropogenic drivers of Lake Ontario's environmental conditions. As such we have initiated a new paleolimnological investigation, supported by the Environmental Protection Agency-Great Lakes National Program Office, to reconstruct the long-term environmental history of Lake Ontario and will present preliminary results.

  8. Field Verification Program (Aquatic Disposal): Comparison of Field and Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material

    DTIC Science & Technology

    1988-05-01

    include poly- chlorinated biphenyls (PCBs) and related chlorinated pesticides of similar polarity in addition to the petroleum hydrocarbons . The...Ui It tILL (JV: FIELD VERIFICATION PROGRAM (AQUATIC DISPOSAL).’Wh TECHNICAL REPORT D-87-6 COMPARISON OF FIELD AND LABORATORY BIOACCUMULATION OF...Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material 12 PERSONAL AUTHOR(S) Lake, James L.; Galloway

  9. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data

    NASA Astrophysics Data System (ADS)

    Yang, Kehan; Yao, Fangfang; Wang, Jida; Luo, Jiancheng; Shen, Zhanfeng; Wang, Chao; Song, Chunqiao

    2017-09-01

    Monitoring of the alpine lakes on the endorheic Changtang Plateau is vitally important in understanding climate impacts on hydrological cycle. Existing studies have revealed an accelerated lake expansion on the Changtang Plateau during the 2000s compared with prior decades. However, the partial hiatus of recent Landsat archive affected the continuation of understanding the lake changes in the recent decade. Here we synergistically used imagery from Landsat and Huanjing satellites to enable a detailed monitoring of lake area dynamics on the Changtang Plateau. Our results present that lakes on the Changtang Plateau continued to expand at a rapid rate of 340.79 km2 yr-1 (1.06% yr-1, p < 0.05) from 2009 to 2014. Changes in endorheic (terminal) lakes contribute to 98% of the net expansion, suggesting that monitoring endorheic lake dynamics is of critical importance for understanding climate changes. Meanwhile, changes in saline lakes, which are mostly endorheic, account for 96% of the net expansion, implying that the proportion of freshwater storage on the Changtang Plateau is likely in decline. Rapid expansion occurred in both glacier-fed and non-glacier-fed lakes, with a rate of 224.94 km2 yr-1 (0.92% yr-1, p < 0.05) and 115.85 km2 yr-1 (1.47% yr-1, p = 0.08), respectively, indicating that glacier retreat alone may not fully explain the recent lake expansion. Intra-annual variations of the selected 24 large lakes fluctuated within 0.22-2.46% (in coefficient of variation) for glacier-fed lakes and 0.17-2.36% for non-glacier-fed lakes. Most of these lakes expanded during the unfrozen period (from May/June to October) and reached to their maximum extents in September or October. By spatially associating our revealed lake changes with climate variables, we observed that the recent lake expansion is more related to precipitation than to temperature, although future efforts are needed for a more comprehensive picture of the lake changing mechanisms.

  10. RECENT DEVELOPMENTS IN HYDROWEB DATABASE Water level time series on lakes and reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Cretaux, J.; Arsen, A.; Calmant, S.

    2013-12-01

    We present the current state of the Hydroweb database as well as developments in progress. It provides offline water level time series on rivers, reservoirs and lakes based on altimetry data from several satellites (Topex/Poseidon, ERS, Jason-1&2, GFO and ENVISAT). The major developments in Hydroweb concerns the development of an operational data centre with automatic acquisition and processing of IGDR data for updating time series in near real time (both for lakes & rivers) and also use of additional remote sensing data, like satellite imagery allowing the calculation of lake's surfaces. A lake data centre is under development at the Legos in coordination with Hydrolare Project leaded by SHI (State Hydrological Institute of the Russian Academy of Science). It will provide the level-surface-volume variations of about 230 lakes and reservoirs, calculated through combination of various satellite images (Modis, Asar, Landsat, Cbers) and radar altimetry (Topex / Poseidon, Jason-1 & 2, GFO, Envisat, ERS2, AltiKa). The final objective is to propose a data centre fully based on remote sensing technique and controlled by in situ infrastructure for the Global Terrestrial Network for Lakes (GTN-L) under the supervision of WMO and GCOS. In a longer perspective, the Hydroweb database will integrate data from future missions (Jason-3, Jason-CS, Sentinel-3A/B) and finally will serve for the design of the SWOT mission. The products of hydroweb will be used as input data for simulation of the SWOT products (water height and surface variations of lakes and rivers). In the future, the SWOT mission will allow to monitor on a sub-monthly basis the worldwide lakes and reservoirs bigger than 250 * 250 m and Hydroweb will host water level and extent products from this

  11. Extreme drought causes distinct water acidification and eutrophication in the Lower Lakes (Lakes Alexandrina and Albert), Australia

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Bush, Richard T.; Mao, Rong; Xiong, Lihua; Ye, Chen

    2017-01-01

    Droughts are set to increase in frequency and magnitude with climate change and water extraction, and understanding their influence on ecosystems is urgent in the Holocene. Low rainfall across the Murray-Darling Basin (MDB) of Australia resulted in an unprecedented water level decline in the Lower Lakes (Lakes Alexandrina and Albert) at the downstream end of the river system. A comprehensive data covering pre-drought (2004-2006), drought (2007-2010) and post-drought (2010-2013) was firstly used to unravel drought effects on water quality in the contrasting main parts and margins of the two Lakes, particularly following water acidification resulting from acid sulfate soil oxidation. Salinity, nutrients and Chl-a significantly increased during the drought in the Lake main waterbody, while pH remained stable or showed minor shifts. In contrast to the Lake Alexandrina, total dissolved solid (TDS) and electrical conductivity (EC) during the post-drought more than doubled the pre-drought period in the Lake Albert as being a terminal lake system with narrow and shallow entrance. Rewetting of the exposed pyrite-containing sediment resulted in very low pH (below 3) in Lake margins, which positively contributed to salinity increases via SO42- release and limestone dissolution. Very acidic water (pH 2-3) was neutralised naturally by lake refill, but aerial limestone dosing was required for neutralisation of water acidity during the drought period. The Lower Lakes are characterized as hypereutrophic with much higher salinity, nutrient and algae concentrations than guideline levels for aquatic ecosystem. These results suggest that, in the Lower Lakes, drought could cause water quality deterioration through water acidification and increased nutrient and Chl-a concentrations, more effective water management in the lake catchment is thus crucial to prevent the similar water quality deterioration since the projected intensification of droughts. A comparative assessment on lake resilience and recovering processes should be undertaken with a post-drought monitoring program.

  12. ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...

  13. Scientific Understanding from Long Term Observations: Insights from the Long Term Ecological Research (LTER) Program

    NASA Astrophysics Data System (ADS)

    Gosz, J.

    2001-12-01

    The network dedicated to Long Term Ecological Research (LTER) in the United States has grown to 24 sites since it was formed in 1980. Long-term research and monitoring are performed on parameters thatare basic to all ecosystems and are required to understand patterns, processes, and relationship to change. Collectively, the sites in the LTER Network provide opportunities to contrast marine, coastal, and continental regions, the full range of climatic gradients existing in North America, and aquatic and terrestrial habitats in a range of ecosystem types. The combination of common core areas and long-term research and monitoring in many habitats have allowed unprecedented abilities to understand and compare complex temporal and spatial dynamics associated with issues like climate change, effects of pollution, biodiversity and landuse. For example, McMurdo Dry Valley in the Antarctic has demonstrated an increase in glacier mass since 1993 which coincides with a period of cooler than normal summers and more than average snowfall. In contrast, the Bonanza Creek and Toolik Lake sites in Alaska have recorded a warming period unprecedented in the past 200 years. Nitrogen deposition effects have been identified through long-term watershed studies on biogeochemical cycles, especially at Coweeta Hydrological Lab, Harvard Forest, and the Hubbard Brook Experimental Forest. In aquatic systems, such as the Northern Temperate Lakes site, long-term data revealed time lags in effects of invaders and disturbance on lake communities. Biological recovery from an effect such as lake acidification was shown to lag behind chemical recovery. The long-term changes documented over 2 decades have been instrumental in influencing management practices in many of the LTER areas. In Puerto Rico, the Luquillo LTER demonstrated that dams obstruct migrations of fish and freshwater shrimp and water abstraction at low flows can completely obliterate downstream migration of juveniles and damage estuaries below by removing all incoming freshwater. At Toolik Lake, long-term experiments of removing top predators from the good web of lakes showed dramatic alterations of lake populations of small fish and zooplankton. In New Mexico, LTER research on small mammal populations is successfully predicting rodent increases and the potential for increased zoonotic diseases such as Hantavirus and bubonic plague. This ability to forecast based on El Nino prediction is being used to increase scientific awareness and public health awareness through media based communication with the public. In Oregon, the Andrews Forest LTER program has had long, strong links with natural resource policy and management. Basic understanding of forest-stream interactions, characteristics of old-growth forests, roles of woody debris in temperate forest ecosystems, invertebrate biodiversity and ecosystem function have been incorporated in management guidelines, plans and regulations for public and private lands throughout the Pacific Northwest. Other examples of the values of long-term research and monitoring will be presented.

  14. Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2001-01-01

    The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that would represent all gaged and ungaged tributaries to Sebago Lake. Outside the PWD tributary-monitoring program, the largest ungaged tributary to Sebago Lake contains 1.5 percent of the area draining to the lake. In the absence of unique point or nonpoint sources of phosphorus, ungaged tributaries are unlikely to have total phosphorus concentrations that differ significantly from those in the small tributaries that have concentration data. The regression method, also known as the rating-curve method, was used to estimate the annual total phosphorus load for Crooked River, Northwest River, and Rich Mill Pond Outlet for water years 1996-98. The MOVE.1 method was used to estimate daily streamflows for the regression method at Northwest River and Rich Mill Pond Outlet, where streamflows were not continuously monitored. An averaging method also was used to compute annual loads at the three sites. The difference between the regression estimate and the averaging estimate for each of the three tributaries was consistent with what was expected from previous studies.

  15. ERTS program of the US Army Corps of Engineers. [water resources

    NASA Technical Reports Server (NTRS)

    Jarman, J. W.

    1974-01-01

    The Army Corps of Engineers research and development efforts associated with the ERTS Program are confined to applications of investigation, design, construction, operation, and maintenance of water resource projects. Problems investigated covered: (1) resource inventory; (2) environmental impact; (3) pollution monitoring; (4) water circulation; (5) sediment transport; (6) data collection systems; (7) engineering; and (8) model verification. These problem areas were investigated in relation to bays, reservoirs, lakes, rivers, coasts, and regions. ERTS-1 imagery has been extremely valuable in developing techniques and is now being used in everyday applications.

  16. Characterization and statistical modeling of bacterial (Escherichia coli) outflows from watersheds that discharge into Southern Lake Michigan

    USGS Publications Warehouse

    Olyphant, G.A.; Thomas, Joan; Whitman, R.L.; Harper, D.

    2003-01-01

    Two watersheds in northwestern Indiana were selected for detailed monitoring of bacterially contaminated discharges (Escherichia coli) into Lake Michigan. A large watershed that drains an urbanized area with treatment plants that release raw sewage during storms discharges into Lake Michigan at the outlet of Burns Ditch. A small watershed drains part of the Great Marsh, a wetland complex that has been disrupted by ditching and limited residential development, at the outlet of Derby Ditch. Monitoring at the outlet of Burns Ditch in 1999 and 2000 indicated that E. coli concentrations vary over two orders of magnitude during storms. During one storm, sewage overflows caused concentrations to increase to more than 10,000 cfu/100 mL for several hours. Monitoring at Derby Ditch from 1997 to 2000 also indicated that E. coli concentrations increase during storms with the highest concentrations generally occurring during rising streamflow. Multiple regression analysis indicated that 60% of the variability in measured outflows of E. coli from Derby Ditch (n = 88) could be accounted for by a model that utilizes continuously measured rainfall, stream discharge, soil temperature and depth to water table in the Great Marsh. A similar analysis indicated that 90% of the variability in measured E. coli concentrations at the outlet of Burns Ditch (n = 43) during storms could be accounted for by a combination of continuously measured water-quality variables including nitrate and ammonium. These models, which utilize data that can be collected on a real-time basis, could form part of an Early Warning System for predicting beach closures.

  17. Installation restoration program. Phase II - confirmation/quantification. Stage 1 for American Lake Garden Tract, Washington. Final report, March-July 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greilling, R.W.; Peshkin, R.L.

    1985-12-20

    An IRP Phase II (Stage 1) Confirmation/Quantification Investigation was performed in the American Lake Garden Tract residential community as a consequence of previously confirmed groundwater contamination by like compounds both in the Garden Tract and on McChord AFB. A similar type of groundwater problem was believed to exist at the opposite end of the residential area, and may possibly be related to Army operations on Fort Lewis. The field study was designed to identify the type, quantity, and extent of groundwater contamination by expanding the study area to include all of the Garden tract, the entire west half of McChordmore » AFB, and the northern one-third of the Fort Lewis Logistics Center. Field investigations consisted of 58,000 lineal feet of self-potential and 24,000 lineal feet of seismic refraction surveys. Forty electrical resistance stations were established. Twenty-six two-inch-diameter monitoring wells were constructed. More than 225 water samples from more than 60 EPA, Army, and Air Force monitoring wells, plus domestic water-supply wells were characterized for volatile organic chemicals. All wells were sounded at least weekly for static water levels, and in-situ hydrochemical properties were monitored. Study results confirm independent sources of chlorinated hydrocarbon contamination exist on each military facility, and that these contaminants are migrating into different parts of the American Lake Garden Tract.« less

  18. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya

    USGS Publications Warehouse

    Wessels, R.L.; Kargel, J.S.; Kieffer, H.H.

    2002-01-01

    We demonstrate an application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to detect and monitor supraglacial lakes on glaciers in the Mount Everest region in Tibet (Xizang) and Nepal. ASTER offers powerful capabilities to monitor supraglacial lakes in terms of (1) surface area, growth and disappearance (spatial resolution = 15 m), (2) turbidity (15 m resolution), and (3) temperature (90 m resolution). Preliminary results show an overall similarity of supraglacial lakes on three glaciers. Lakes have widely varying turbidity as indicated by color in visible/near-infrared bands 1-3, the largest lakes being bright blue (highly turbid), cold (near 0??C) and hydrautically connected with other lakes and supraglacial streams, while small lakes are mostly dark blue (relatively clear water), warmer (>4??C), and appear hydrautically isolated. High levels of turbidity in supraglacial lakes indicate high rates of meltwater input from streams or erosion of ice cliffs, and thus are an indirect measure relating to the activity and hydraulic integration of the lake with respect to other lakes and streams in the glacier.

  19. Development of Hyperspectral Remote Sensing Capability For the Early Detection and Monitoring of Harmful Algal Blooms (HABs) in the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lekki, John; Anderson, Robert; Nguyen, Quang-Viet; Demers, James; Leshkevich, George; Flatico, Joseph; Kojima, Jun

    2013-01-01

    Hyperspectral imagers have significant capability for detecting and classifying waterborne constituents. One particularly appropriate application of such instruments in the Great Lakes is to detect and monitor the development of potentially Harmful Algal Blooms (HABs). Two generations of small hyperspectral imagers have been built and tested for aircraft based monitoring of harmful algal blooms. In this paper a discussion of the two instruments as well as field studies conducted using these instruments will be presented. During the second field study, in situ reflectance data was obtained from the Research Vessel Lake Guardian in conjunction with reflectance data obtained with the hyperspectral imager from overflights of the same locations. A comparison of these two data sets shows that the airborne hyperspectral imager closely matches measurements obtained from instruments on the lake surface and thus positively supports its utilization for detecting and monitoring HABs.

  20. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  1. Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager

    USGS Publications Warehouse

    Keith, Darryl; Rover, Jennifer; Green, Jason; Zalewsky, Brian; Charpentier, Mike; Hursby, Glen; Bishop, Joseph

    2018-01-01

    In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allows ecosystem observations at spatial and temporal scales that allow the environmental community and water managers another means to monitor changes in water quality not feasible with field-based monitoring. Using the provisional Land Surface Reflectance product and field-collected chlorophyll-a (chl-a) concentrations from drinking water monitoring programs in North Carolina and Rhode Island, we compared five established approaches for estimating chl-aconcentrations using spectral data. We found that using the three band reflectance approach with a combination of OLI spectral bands 1, 3, and 5 produced the most promising results for accurately estimating chl-a concentrations in lakes (R2 value of 0.66; root mean square error value of 8.9 µg l−1). Using this model, we forecast the spatial and temporal variability of chl-a for Jordan Lake, a recreational and drinking water source in piedmont North Carolina and several small ponds that supply drinking water in southeastern Rhode Island.

  2. WaveNet: A Web-Based Metocean Data Access, Processing and Analysis Tool; Part 5 - WW3 Database

    DTIC Science & Technology

    2015-02-01

    Program ( CDIP ); and Part 4 for the Great Lakes Observing System/Coastal Forecasting System (GLOS/GLCFS). Using step-by-step instructions, this Part 5...Demirbilek, Z., L. Lin, and D. Wilson. 2014a. WaveNet: A web-based metocean data access, processing, and analysis tool; part 3– CDIP database

  3. Supplementary Environmental Baseline Studies and Evaluation of the St. Mary’s River 1980. Great Lakes-St. Lawrence Seaway Navigation Season Extension Program

    DTIC Science & Technology

    1981-07-01

    Crossman, 1973) or because water temperatures are more favorable ( Crawshaw , 1975). Peaks in the length frequency distribution of brown bullhead at 50...269. Crawshaw , L. I. 1975. Attainment of final thermal preferendum in brown bullheads acclimated to different temperatures. Comp. Biochem. Physiol

  4. Discerning spatial and temporal LAI and clear-sky FAPAR variability during summer at the Toolik Lake vegetation monitoring grid (North Slope, Alaska)

    NASA Astrophysics Data System (ADS)

    Heim, B.; Beamish, A. L.; Walker, D. A.; Epstein, H. E.; Sachs, T.; Chabrillat, S.; Buchhorn, M.; Prakash, A.

    2016-12-01

    Ground data for the validation of satellite-derived terrestrial Essential Climate Variables (ECVs) at high latitudes are sparse. Also for regional model evaluation (e.g. climate models, land surface models, permafrost models), we lack accurate ranges of terrestrial ground data and face the problem of a large mismatch in scale. Within the German research programs `Regional Climate Change' (REKLIM) and the Environmental Mapping and Analysis Program (EnMAP), we conducted a study on ground data representativeness for vegetation-related variables within a monitoring grid at the Toolik Lake Long-Term Ecological Research station; the Toolik Lake station lies in the Kuparuk River watershed on the North Slope of the Brooks Mountain Range in Alaska. The Toolik Lake grid covers an area of 1 km2 containing Eight five grid points spaced 100 meters apart. Moist acidic tussock tundra is the most dominant vegetation type within the grid. Eight five permanent 1 m2 plots were also established to be representative of the individual gridpoints. Researchers from the University of Alaska Fairbanks have undertaken assessments at these plots, including Leaf Area Index (LAI) and field spectrometry to derive the Normalized Difference Vegetation Index (NDVI). During summer 2016, we conducted field spectrometry and LAI measurements at selected plots during early, peak and late summer. We experimentally measured LAI on more spatially extensive Elementary Sampling Units (ESUs) to investigate the spatial representativeness of the permanent 1 m2 plots and to map ESUs for various tundra types. LAI measurements are potentially influenced by landscape-inherent microtopography, sparse vascular plant cover, and dead woody matter. From field spectrometer measurements, we derived a clear-sky mid-day Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). We will present the first data analyses comparing FAPAR and LAI, and maps of biophysically-focused ESUs for evaluation of the use of remote sensing data to estimate these ecosystem properties.

  5. Laser Induced Fluorescence Emission (L.I.F.E.): In Situ Non-Destructive Detection of Microbial Life on Supraglacial Environments

    NASA Astrophysics Data System (ADS)

    Sattler, B.; Tilg, M.; Storrie-Lombardi, M.; Remias, D.; Psenner, R.

    2012-04-01

    Laser-induced fluorescence emission (L.I.F.E.) is an in situ laser scanning technique to detect photoautotrophic pigments such as phycoerythrin of an ice ecosystem such as supraglacial environments without contamination. The sensitivity of many psychrophiles to even moderate changes in temperature, and the logistical difficulties associated with either in situ analysis or sampling makes it difficult to study microbial metabolism in ice ecosystems in a high resolution. Surface communities of cold ecosystems are highly autotrophic and therefor ideal systems for L.I.F.E examinations. 532nm green lasers excite photopigments in cyanobacteria and produce multiple fluorescence signatures between 550nm and 750nm including carotenoids, phycobiliproteins which would enable a non-invasive in-situ measurement. The sensitivity of many psychrophiles to even moderate changes in temperature, and the logistical difficulties associated with either in situ analysis or sampling makes it difficult to study these cryosphere ecosystems. In general, the ice habitat has to be disrupted using techniques that usually include coring, sawing, and melting. Samples are also often chosen blindly, with little indication of probable biomass. The need for an in situ non-invasive, non-destructive technique to detect, localize, and sample cryosphere biomass in the field is therefore of considerable importance. L.I.F.E has already been tested in remote ecosystems like Antarctica (Lake Untersee, Lake Fryxell), supraglacial environments in the Kongsfjord region in the High Arctic and High Alpine glaciers but until now no calibration was set to convert the L.I.F.E. signal into pigment concentration. Here we describe the standardization for detection of Phycobiliproteins (Phycoerythrine) which are found in red algae, cyanobacteria, and cryptomonads. Similar methods are already used for detection of phytoplankton in liquid systems like oceans and lakes by NASÁs Airborne Oceanographic LIDAR since 1979. The possibility to use L.I.F.E. in ice though is a novelty and provides a promising tool to monitor vanishing ice systems like retreating glaciers.

  6. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J. M.; Adams, S. M.; Blaylock, B. G.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4)more » instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.« less

  7. The rare earth element geochemistry on surface sediments, shallow cores and lithological units of Lake Acıgöl basin, Denizli, Turkey

    NASA Astrophysics Data System (ADS)

    Budakoglu, Murat; Abdelnasser, Amr; Karaman, Muhittin; Kumral, Mustafa

    2015-11-01

    The sediments in Lake Acıgöl, located in SW Anatolia, Turkey, were formed under tectono-sedimentary events. REE geochemical investigations of the Lake Acıgöl sediments, from surface and shallow core sediments at different depths (0-10 cm, 10-20 cm and 20-30 cm) are presented to clarify the characteristics of REE and the nature of source rocks in the lake sediments' and to deduce their paleoenvironmental proxies. The chondrite-normalized REE patterns of these sediments are shown as light enrichment in LREE and flat HREE with a negative Eu anomaly that is close to the continental collision basin (CCB) in its profile; this is not comparable with PAAS and UCC. Inorganic detrital materials control the REE characteristics of the Lake Acıgöl sediments and these sediments were accumulated in oxic and dysoxic depositional conditions and/or at passive margins derived from oceanic island arc rocks. They were affected by low chemical weathering, either at the original source or during transport, before deposition under arid or subtropical humid climatic conditions. In addition, we used GIS techniques (such as Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR)) to investigate the spatial interpolation and spatial correlation of the REEs from the lake surface sediments in Lake Acıgöl and its surrounding lithological units. GIS techniques showed that the lithological units (e.g., Hayrettin Formation) north of Lake Acıgöl have high REE contents; however, Eu/Eu∗ values were higher in some lake surface sediments than in lithological units, and that refers to a negative Eu-anomaly. Therefore, Lake Acıgöl sediments are derived from the weathered products, mainly from local, highly basic bedrock around the lake from the Archean crust. The chronology of Lake Acıgöl sediment was conducted using the Constant Rate of Supply (CRS) model. Using the CRS methods for the calculation of sedimentation rate, we obtained a 0.012 g/cm2/year value which is an average value for the first 20 cm depth of this lake. The core activity profiles of 210Pb and 137Cs were measured to estimate the age of the sediments; we observed activities of 8.08 ± 5.5 Bq/kg for 210Pb and 0.86 ± 0.6 Bq/kg for 137Cs.

  8. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    PubMed

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-08-11

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  9. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  10. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    NASA Astrophysics Data System (ADS)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  11. Evaluating elevated levels of crown dieback among northern white-cedar (Thuja occidentalis L.) trees in Maine and Michigan: a summary of evaluation monitoring

    Treesearch

    KaDonna Randolph; William A. Bechtold; Randall S. Morin; Stanley J. Zarnoch

    2012-01-01

    Analysis of crown condition data for the 2006 national technical report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, exposed clusters of phase 3 plots (by the Forest Inventory and Analysis [FIA] Program of the Forest Service) with northern white-cedar (Thuja occidentalis L.) crown dieback...

  12. New radiocarbon ages from cirques in Colorado Front Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, P.T.; Birkeland, P.W.; Caine, N.

    The authors recovered sediment cores 3.1 m long from Blue Lake ([approximately]37m water depth, [approximately]3,445m a.s.l., 40[degree]5 minutes 20 seconds N, 105[degree]37 minutes 08 seconds W) and 2.7m long from Lake Dorothy ([approximately]35m water depth, [approximately]3,675m a.s.l., 40[degree]00 minutes 46 seconds N, 105[degree]41 minutes 11 seconds W). A light-weight percussion coring system suspended from perlon ropes was used because of sediment thicknesses, water depths, and ski-backpacking requirements. Lake ice provided a stable coring platform. One purpose of the project is provision of a high-resolution record of environmental change in the subalpine/alpine ecotone during the Holocene, under the auspices of themore » Niwot Ridge Long-Term Ecological Research program. The sediment cores also provide minimum-limiting radiocarbon ages for deglaciation of cirques and the deposits that impound their tarns. Here the authors report on this second purpose. The Blue Lake core bottomed in sandy, gray, inorganic sediment, presumably glacial diamict. A bulk sample from 2.8--2.9m depth yielded a conventional radiocarbon age of 12,275[+-]345 yrs BP. Thus, ice retreated from the site by 12 ka. Since 12 ka both glacial and rock-glacial sediments have been deposited upvalley; some of these events may be recognized in the core. In contrast, the Lake Dorothy core did not penetrate gray inorganic diamict and is entirely organic-rich. A bulk sample from 2.65--2.7m depth yielded a conventional radiocarbon age of 10,910 [+-] 320 yrs BP. Thus, the moraines impounding the lake are 2--3 times older than suggested by a combination of relative-age methods and one radiocarbon age from surface sediments.« less

  13. Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Roy, Rudy A.

    2005-01-01

    Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.

  14. Paleolimnological assessment of the effects of lake acidification on Chironomidae (Diptera) assemblages in the Adirondack region of New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uutala, A.J.

    1987-01-01

    The stratigraphies of larval chironomid and Chaoborus (Diptera: Chironomidae and Chaoboridae) remains were determined for cores from five Adirondack lakes. Big Moose Lake, Deep Lake, Brook trout Lake and Upper Wallface Pond are currently acidic, while Windfall Pond is near neutral. Altered chironomid assemblages were evident in the four acidic lakes, and acid deposition was the most likely cause for the inferred changes. Declining pH was indicated beginning after 1950 in Big Moose L., after 1930 in Deep L. and Upper Wallface P., and after 1920 in Brook trout L. No recent pH change was inferred for Windfall P. Shiftsmore » in the chironomid assemblages were concordant with indications of declining pH inferred from analyses of cladocera, chrysophyte and diatom remains. The best indicators among the chironomid taxa were Heterotrissocladius changi, Micropsectra and Zavreliina, which tended to decline, and Salutschia cf. briani, Psectrocladius (Psectrocladius) and Tanytarsus, which tended to increase in abundance in response to increased acidity. Long-term presence of Chaoborus americanus in Deep L. and Upper Wallface P. indicated that fishes were probably never abundant in these lakes. Increases in the accumulation rates of C. americanus remains in Deep L. and Upper Wallface P. reflected the poor success and eventual halt of fish stocking in these lakes.« less

  15. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring andmore » adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.« less

  16. Water Quality and Hydrology of Whitefish (Bardon) Lake, Douglas County, Wisconsin, With Special Emphasis on Responses of an Oligotrophic Seepage Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Juckem, Paul F.

    2009-01-01

    Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The average annual load of phosphorus to the lake was 232 pounds: 56 percent from precipitation, 27 percent from groundwater, and 16 percent from septic systems. During a series of dry years (low water levels) and wet years (high water levels), the inputs of water and phosphorus ranged by only 10-13 percent. Results from the Canfield and Bachmann eutrophication model and Carlson trophic-state-index equations demonstrated that the lake directly responds to changes in external phosphorus loading, with percent change in chlorophyll a being similar to the percent change in loading and the change in total phosphorus and Secchi depth being slightly smaller. Therefore, changes in phosphorus loading should affect the water quality of the lake. Specific scenarios that simulated the effects of anthropogenic (human-induced) and climatic (water level) changes demonstrated that: surface-water inflow (runoff) based on current development has little effect on pelagic water quality, changes in the inputs from septic systems and development in the watershed could have a large effect on water quality, and decreases in water and phosphorus loading during periods of low water level had little effect on water quality. Sustained high water levels, resulting from several wet years with relatively high water and phosphorus input, however, could cause a small degradation in water quality. Although high water levels may be associated with a degradation in water quality, it appears that anthropogenic changes in the watershed may be more important in affecting the future water quality of the lake. Fluctuations in water levels since 1998 are representative of what has occurred since 1900, with fluctuations of about 3 feet occurring about every 15 years. Based on total phosphorus concentrations inferred from sediment core analysis, there has been little long-term change in water quality and there has been a slight deterioration in water quality following most periods of high water levels. There

  17. RadNet Air Data From Navajo Lake, NM

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Navajo Lake, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. Relationship between mercury accumulation in young-of-the-year yellow perch and water-level fluctuations

    USGS Publications Warehouse

    Sorensen, J.A.; Kallemeyn, L.W.; Sydor, M.

    2005-01-01

    A three-year (2001−2003) monitoring effort of 14 northeastern Minnesota lakes was conducted to document relationships between water-level fluctuations and mercury bioaccumulation in young-of-the-year (YOY) yellow perch (Perca flavescens) collected in the fall of each year at fixed locations. Six of those lakes are located within or adjacent to Voyageurs National Park and are influenced by dams on the outlets of Rainy and Namakan lakes. One site on Sand Point Lake coincides with a location that has nine years of previous monitoring suitable for addressing the same issue over a longer time frame. Mean mercury concentrations in YOY yellow perch at each sampling location varied significantly from year to year. For the 12-year monitoring site on Sand Point Lake, values ranged from 38 ng gww-1 in 1998 to 200 ng gww-1 in 2001. For the 14-lake study, annual mean concentrations ranged by nearly a factor of 2, on average, for each lake over the three years of record. One likely factor responsible for these wide variations is that annual water-level fluctuations are strongly correlated with mercury levels in YOY perch for both data sets.

  19. Characteristics of petroleum contaminants and their distribution in Lake Taihu, China.

    PubMed

    Guo, Jixiang; Fang, Jia; Cao, Jingjing

    2012-08-31

    Taihu Lake is a typical plain eutrophic shallow lake. With rapidly economic development of the lake area, the petroleum products and oil wastewater produced in various processes have been inevitably discharged into Taihu Lake. As the major fresh water resource in the economically developed region of Yangtze River Delta, the water quality and environmental condition of Taihu Lake have the direct bearing on the natural environment and sustainable development of economy in this region. For this reason we carried out the study to explore the composition, distribution characteristics and sources of petroleum contaminants in Taihu Lake. The aim of this study was to provide the basis for standard management and pollution control of the Taihu Lake environment. The result showed that water samples from near industrial locations were of relatively higher petroleum contaminants concentrations. The oil pollutants concentrations in different areas of Lake Taihu ranged from 0.106 mg/L to 1.168 mg/L, and the sequence of total contents distribution characteristics of petroleum pollutants from high to low in different regions of Taihu Lake was: "Dapu", "Xiaomeikou", "Zhushan Bay", "Lake center", "Qidu". The results showed that total concentrations of n-alkanes and PAHs ranged from 0.045 to 0.281 mg/L and from 0.011 to 0.034 mg/L respectively. In the same region, the concentrations of hydrocarbon pollutants in the surface and bottom of the lake were higher than that in the middle. This paper reached a conclusion that the petroleum contaminants in Taihu Lake mainly derived from petroleum pollution caused by human activities as indicated by OEP, bimodal distribution, CPI, Pr/Ph ratio, the LMW/HMW ratio and other evaluation indices for sources of n-alkanes and polycyclic aromatic hydrocarbons (PAHs).

  20. Establishing monitoring programs for travel time reliability.

    DOT National Transportation Integrated Search

    2014-01-01

    Within the second Strategic Highway Research Program (SHRP 2), Project L02 focused on creating a suite of methods by which transportation agencies could monitor and evaluate travel time reliability. Creation of the methods also produced an improved u...

  1. Determining ecoregional numeric nutrient criteria by stressor-response models in Yungui ecoregion lakes, China.

    PubMed

    Huo, Shouliang; Ma, Chunzi; Xi, Beidou; Tong, Zhonghua; He, Zhuoshi; Su, Jing; Wu, Fengchang

    2014-01-01

    The importance of developing numeric nutrient criteria has been recognized to protect the designated uses of water bodies from nutrient enrichment that is associated with broadly occurring levels of nitrogen/phosphorus pollution. The identification and estimation of stressor-response models in aquatic ecosystems has been shown to be useful in the determination of nutrient criteria. In this study, three methods based on stressor-response relationships were applied to determine nutrient criteria for Yungui ecoregion lakes with respect to total phosphorus (TP), total nitrogen (TN), and planktonic chlorophyll a (Chl a). Simple linear regression (SLR) models were established to provide an estimate of the relationship between a response variable and a stressor. Multiple linear regressions were used to simultaneously estimate the effect of TP and TN on Chl a. A morphoedaphic index (MEI) was applied to derive nutrient criteria using data from Yungui ecoregion lakes, which were considered as areas with less anthropogenic influences. Nutrient criteria, as determined by these three methods, showed broad agreement for all parameters. The ranges of numeric nutrient criteria for Yungui ecoregion lakes were determined as follows: TP 0.008-0.010 mg/L and TN 0.140-0.178 mg/L. The stressor-response analysis described will be of benefit to support countries in their numeric criteria development programs and to further the goal of reducing nitrogen/phosphorus pollution in China.

  2. RadNet Air Data From Salt Lake City, UT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Salt Lake City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. Nutrient dynamics in shallow lakes of Northern Greece.

    PubMed

    Petaloti, Christina; Voutsa, Dimitra; Samara, Constantini; Sofoniou, Mihalis; Stratis, Ioannis; Kouimtzis, Themistocles

    2004-01-01

    GOAL, SCOPE, BACKGROUND: Shallow lakes display a number of features that set them apart from the more frequently studied deeper systems. The majority of lakes in Northern Greece are small to moderate in size with a relatively low depth and are considered as sites of high value of the wetland habitat. However, the water quality of these lakes has only been evaluated segmentally and occasionally. The objectives of this study were to thoroughly investigate nitrogen and phosphorus speciation in lakes of a high ecological significance located in N. Greece, in order to evaluate their eutrophication status and possible nutrient limitation factors, and to investigate the main factors/sources that affect the water quality of these systems. An extensive survey was carried out during the period from 1998-1999. Water samples were collected on a monthly basis from lakes Koronia, Volvi, Doirani, Mikri Prespa and Megali Prespa located in N. Greece. Water quality parameters (temperature, dissolved oxygen, pH and conductivity), organic indices (COD, BOD5), and N- and P-species (NO3(-), NO2(-), NH4(+), and PO4(3-), Kieldahl nitrogen and acid-hydrolysable phosphorus) were determined according to standard methods for surface water. Statistical treatment of the data was employed. The physicochemical parameters determined in the lakes studied revealed a high temporal variation. The trophic state of the lakes ranged from meso- to hypertrophic. The nutrient limiting factor varied among lakes suggesting either P-limitation conditions or mixed conditions changing from P- to N-limitation throughout the year. Urban/industrial activities and agricultural runoff are the major factors affecting all lakes, although with a varying contribution. This lake-specific research offers valuable information about water quality and nutrient dynamics in lakes of significant ecological value located in N. Greece that can be useful for an effective pollution control/management of these systems. Due to the large intra-annual variability of certain physicochemical parameters, a properly designed monitoring program of lake water is recommended.

  4. Floc Size and Settling Velocity Observations From Three Contrastingly Different Natural Environments in the USA

    NASA Astrophysics Data System (ADS)

    Manning, Andrew; Schoellhamer, David; Mehta, Ashish; Nover, Daniel; Schladow, Geoffrey

    2010-05-01

    Environmentally, monitoring the movement of suspended cohesive sediments is highly desirable in both estuaries and lakes. When modelling cohesive sediment transport and mass settling fluxes, the settling speed of the suspended matter is a key parameter. In contrast to purely non-cohesive sandy sediments, mud can flocculate and this poses a serious complication to the modelling of sediment pathways. As flocs grow in size they become more porous and significantly less dense, but their settling speeds continue to rise due to a Stokes' Law relationship. Much research has been conducted on the flocculation characteristics of suspended muddy sediments in saline/brackish tidal conditions, where electrostatic particle bonding can occur. However very little is known about freshwater floc dynamics. This is primarily due to flocs being extremely delicate entities and are thus very difficult to observe in situ. This paper primarily describes a recently developed, portable, low intrusive instrument INSSEV_LF, which permits the direct, in situ measurement of both floc size (D) and settling velocity (Ws), simultaneously. Examples of floc spectra observed from three different environments within the USA are presented and compared. The first site was the turbidity maximum zone in San Francisco Bay, where the suspended solids concentration (SSC) was 170 mg.l-1 and many low density macroflocs up to 400 μm in diameter, settling at speeds of 4-8 mm.s-1 were observed. The second location was the shallow (1.7 m mean depth), freshwater environment of Lake Apopka in Florida. It is highly eutrophic, and demonstrates a turbid SSC of 750 mg.l-1 within a benthic suspension layer. These conditions resulted in D from 45 μm up to 1,875 μm; 80% of the floc were > 160 μm (i.e. macroflocs). Present theories for the settling of flocs rely on fractal theory of self-similarity, but this does not appear to be applicable to the Lake Apopka flocs because they do not possess any basic geometric unit that is the building block of higher order fractal structures. Bioflocculation is deemed extremely important in freshwater environments such as lakes. The Lake Apopka macroflocs (D > 160 μm) encompassed 92% of the floc mass, and demonstrating a Wsmacro of 1.7 mm.s-1 (twice as fast as the Wsmicro), this translated into the macroflocs contributing 96.4% of the total mass settling flux (1.5 g.m-2s-1). Lake Tahoe, which crosses California and Nevada, was the final study location. With a maximum depth of 501 m, it is the second deepest freshwater lake in the USA. However it significantly less turbid than Lake Apopka, with SSC rarely exceeding 10 mg.l-1 during the floc surveys. At depths of both 5 m and 450 m, the SSC was 9.6 and 3 mg.l-1, respectively. Flocs at both depths exhibited Ws of 2-5 mm.s-1. Whereas at a depth of 35 m (Fig. 3c), the SCC was 6.8 mg.l-1 and the flocs fell comparatively slowly (Ws of 0.03-2.4 mm s-1) which suggest that the floc population at 35 m will have a long residence time in the water column, thus impairing long term light penetration. Interestingly, the MSF at 450 m was 10.8 mg.m-2s-1, which was double the flux measured at 35 m, even though the deep water was only half as turbid. This comparison indicates that the size and settling velocity of individual flocs can be measured simultaneously with the video INSSEV_LF instrument within SSC of several g.l-1. This floc data is of great importance for accurate numerical sediment transport model calibration in estuaries (e.g. San Francisco Bay), whilst also equally valuable for addressing environmental problems (e.g. water quality issues) in freshwater environments such as Lake Tahoe and Lake Apopka.

  5. Status and trends of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) sucker populations in Upper Klamath Lake, Oregon, 2014

    USGS Publications Warehouse

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2015-10-02

    Despite relatively high survival in most years, we conclude that both species have experienced substantial decreases in the abundance of spawning adults because losses from mortality have not been balanced by recruitment of new individuals. Although capture-recapture data indicate substantial recruitment of new individuals into the spawning populations for SNS and river spawning LRS in some years, size data do not corroborate these estimates. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains worrisome, especially for shortnose suckers. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.

  6. Unusual Nonterrestrial L-proteinogenic Amino Acid excesses in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Hilts, Robert W.; Herd, D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approximately 43-59%) of the alpha-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha hydrogen protein amino acid, was found to be nearly racemic (D much approximately L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and 1)- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of non terrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.

  7. Space Radar Image of Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  8. Space Radar Image of Salt Lake City, Utah

    NASA Image and Video Library

    1999-04-15

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program. http://photojournal.jpl.nasa.gov/catalog/PIA01798

  9. Streamflow and water-quality properties in the West Fork San Jacinto River Basin and regression models to estimate real-time suspended-sediment and total suspended-solids concentrations and loads in the West Fork San Jacinto River in the vicinity of Conroe, Texas, July 2008-August 2009

    USGS Publications Warehouse

    Bodkin, Lee J.; Oden, Jeannette H.

    2010-01-01

    To better understand the hydrology (streamflow and water quality) of the West Fork San Jacinto River Basin downstream from Lake Conroe near Conroe, Texas, including spatial and temporal variation in suspended-sediment (SS) and total suspended-solids (TSS) concentrations and loads, the U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, measured streamflow and collected continuous and discrete water-quality data during July 2008-August 2009 in the West Fork San Jacinto River Basin downstream from Lake Conroe. During July 2008-August 2009, discrete samples were collected and streamflow measurements were made over the range of flow conditions at two streamflow-gaging stations on the West Fork San Jacinto River: West Fork San Jacinto River below Lake Conroe near Conroe, Texas (station 08067650) and West Fork San Jacinto River near Conroe, Texas (station 08068000). In addition to samples collected at these two main monitoring sites, discrete sediment samples were also collected at five additional monitoring sites to help characterize water quality in the West Fork San Jacinto River Basin. Discrete samples were collected semimonthly, regardless of flow conditions, and during periods of high flow resulting from storms or releases from Lake Conroe. Because the period of data collection was relatively short (14 months) and low flow was prevalent during much of the study, relatively few samples collected were representative of the middle and upper ranges of historical daily mean streamflows. The largest streamflows tended to occur in response to large rainfall events and generally were associated with the largest SS and TSS concentrations. The maximum SS and TSS concentrations at station 08067650 (180 and 133 milligrams per liter [mg/L], respectively) were on April 19, 2009, when the instantaneous streamflow was the third largest associated with a discrete sample at the station. SS concentrations were 25 mg/L or less in 26 of 29 environmental samples and TSS concentrations were 25 mg/L or less in 25 of 28 environmental samples. Median SS and TSS concentrations were 7.0 and 7.6 mg/L, respectively. At station 08068000, the maximum SS concentration (1,270 mg/L) was on April 19, 2009, and the maximum TSS concentration (268 mg/L) was on September 18, 2008. SS concentrations were 25 mg/L or less in 16 of 27 of environmental samples and TSS concentrations were 25 mg/L or less in 18 of 26 environmental samples at the station. Median SS and TSS concentrations were 18.0 and 14.0 mg/L, respectively. The maximum SS and TSS concentrations for all five additional monitoring sites were 3,110 and 390 mg/L, respectively, and the minimum SS and TSS concentrations were 5.0 and 1.0 mg/L, respectively. Median concentrations ranged from 14.0 to 54.0 mg/L for SS and from 11.0 to 14.0 mg/L for TSS. Continuous measurements of streamflow and selected water-quality properties at stations 08067650 and 08068000 were evaluated as possible variables in regression equations developed to estimate SS and TSS concentrations and loads. Surrogate regression equations were developed to estimate SS and TSS loads by using real-time turbidity and streamflow data; turbidity and streamflow resulted in the best regression models for estimating near real-time SS and TSS concentrations for stations 08097650 and 08068000. Relatively large errors are associated with the regression-computed SS and TSS concentrations; the 90-percent prediction intervals for SS and TSS concentrations were (+/-)48.9 and (+/-)43.2 percent, respectively, for station 08067650 and (+/-)47.7 and (+/-)43.2 percent, respectively, for station 08068000. Regression-computed SS and TSS concentrations were corrected for bias before being used to compute SS and TSS loads. The total estimated SS and TSS loads during July 2008-August 2009 were about 3,540 and 1,900 tons, respectively, at station 08067650 and about 156,000 an

  10. Salt budget for West Pond, Utah, April 1987 to June 1989

    USGS Publications Warehouse

    Wold, S.R.; Waddell, K.M.

    1994-01-01

    During operation of the West Desert pumping project, April 10. 1987, to June 30, 1989, data were collected as part of a monitoring program to evaluate the effects of pumping brine from Great Salt Lake into West Pond in northern Utah. The removal of brine from Great Sail was part of an effort to lower the level of Great Salt Lake when the water level was at a high in 1986. These data were used to prepare a salt budget that indicates about 695 million tons of salt or about 14.2 percent of salt contained in Great Salt Lake was pumped into West Pond. Of the 695 million tons of salt pumped into West Pond, 315 million tons (45 percent) were dissolved in West Pond, 71 million tons (10.2 percent) formed a salt crust at the bottom of the pond, 10 million tons (1.4 percent) infiltrated the subsurface areas inundated by storage in the pond, 88 million tons (12.7 percent) were withdrawn by American Magnesium Corporation, and 123 million tons (17.7 percent) discharged from the pond through the Newfoundland weir. About 88 million tons (13 percent) of the salt pumped from the lake could not be accounted for in the salt budget. About 94 million tons of salt (1.9 percent of the total salt in Great Salt Lake) flowed back to Great Salt Lake.

  11. Conceptual framework for a Danish human biomonitoring program

    PubMed Central

    Thomsen, Marianne; Knudsen, Lisbeth E; Vorkamp, Katrin; Frederiksen, Marie; Bach, Hanne; Bonefeld-Jorgensen, Eva Cecilie; Rastogi, Suresch; Fauser, Patrik; Krongaard, Teddy; Sorensen, Peter Borgen

    2008-01-01

    The aim of this paper is to present the conceptual framework for a Danish human biomonitoring (HBM) program. The EU and national science-policy interface, that is fundamental for a realization of the national and European environment and human health strategies, is discussed, including the need for a structured and integrated environmental and human health surveillance program at national level. In Denmark, the initiative to implement such activities has been taken. The proposed framework of the Danish monitoring program constitutes four scientific expert groups, i.e. i. Prioritization of the strategy for the monitoring program, ii. Collection of human samples, iii. Analysis and data management and iv. Dissemination of results produced within the program. This paper presents the overall framework for data requirements and information flow in the integrated environment and health surveillance program. The added value of an HBM program, and in this respect the objectives of national and European HBM programs supporting environmental health integrated policy-decisions and human health targeted policies, are discussed. In Denmark environmental monitoring has been prioritized by extensive surveillance systems of pollution in oceans, lakes and soil as well as ground and drinking water. Human biomonitoring has only taken place in research programs and few incidences of e.g. lead contamination. However an arctic program for HBM has been in force for decades and from the preparations of the EU-pilot project on HBM increasing political interest in a Danish program has developed. PMID:18541069

  12. Management plan for White Oak Dam. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S.B.

    1997-03-01

    The purpose is to provide operation and maintenance, periodic inspection, and emergency action plans for White Oak Dam in general accordance with the Federal Emergency Management Agency (FEMA) guidelines for dam safety. It must be understood that operations at the site are primarily for purposes of environmental monitoring, environmental protection and waste management operations control. Effluent is generally allowed to flow from the lake at its natural rate by rising above the broad crested weir notch elevation of 744 feet m.s.l.

  13. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitor: (1) Channel 11 (156.55 mhz) between Lake Huron Cut Lighted Buoy 11 and Lake St. Clair Light; and (2) Channel 12 (156.60 mhz) between Lake St. Clair Light and Detroit River Light. (b) Radiotelephone... Cut Light “7” Lake Huron Cut Lighted Buoy “1” Report. Report St. Clair/Black River Junction Light...

  14. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellman, Jake; Dykstra, Tim

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this projectmore » as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.« less

  15. Recent increases in the large glacial-relict calanoid Limnocalanus macrurus in Lake Michigan

    USGS Publications Warehouse

    Barbiero, R.P.; Bunnell, D.B.; Rockwell, D.C.; Tuchman, M.L.

    2009-01-01

    Since 2004, population density of the large hypolimnetic calanoid Limnocalanus macrurus Sars. has increased dramatically in Lake Michigan. The average summer biomass of this species between 2004 and 2006 was roughly three times that of the period 1984–2003, and at levels unprecedented in our 22-year dataset, making L. macrurus the dominant zooplankter in the lake in terms of biomass. These increases have been accentuated by coincident population declines of the main daphnid, Daphnia mendotae, in the lake with the result that in 2006, L. macrurus accounted for 75% and 50% of the large (> 0.9 mm) crustacean biomass in the northern and southern basins of Lake Michigan, respectively. The increases in L. macrurus populations have closely coincided with equally dramatic increases in summer water clarity. Recent extinction coefficients are among the lowest recorded for the lake, and deepening light penetration has permitted increases in the size of the deep chlorophyll layer. In addition, planktivorous fish populations have declined coincidently with the increases in L. macrurus. It seems likely that an increase in sub-epilimnetic production has resulted in increased food resources for the deep-living L. macrurus, while low planktivore abundances have reduced predation loss, permitting L. macrurus to respond to these increases in sub-epilimnetic production.

  16. Monitoring the effects of highway construction in the Sedgefield Lakes watershed.

    DOT National Transportation Integrated Search

    2007-09-04

    This report summarizes the results of a water quality monitoring project to document the effects of the : construction of the I40 bypass around Greensboro on the water quality of residential lakes in the Sedgefield and : Kings Mill communities. Th...

  17. Water on the Web: Integrating Real-Time Data into Educational Curricula over the Internet. Guide Book.

    ERIC Educational Resources Information Center

    Minnesota Univ., Duluth. Minnesota Sea Grant Program.

    Water on the Web (WOW) curriculum materials help students understand data taken from several water sampling robots called Remote Underwater Sampling Station (RUSS) units located in Ice Lake, Lake Independence, Lake Minnetonka, and Grindstone Lake in Minnesota. WOW allows high school and college students to monitor Minnesota lakes over the…

  18. Comparison of bioimpedance analysis scan, hemoglobin and urea reduction ratio in hemodialysis patients following and not following monitoring program for improving quality of life

    NASA Astrophysics Data System (ADS)

    Muzasti, R. A.; Lubis, H. R.

    2018-03-01

    Hemodialysis (HD) is the renal replacement therapy in end-stage renal disease (ESRD), at least 2-3 times a week, impacting substantial changes in daily life. Therefore a monitoring program is needed to improve the quality of life (QoL) of HD patients. Indicators in monitoring QoL include phase angle (PhA), muscle and fat mass, and body fluid composition through Bio Scan impedance analysis (BIA) Scan, hemoglobin level, and urea reduction ratio (URR). An analytic study with the cross-sectional design was performed in 168 patients at Klinik Spesialis Ginjal Hipertensi (KSGH) Rasyida, Medan to compare BIA Scan profiles, hemoglobin levels, and URR in HD patients who follow and do not follow the monitoring program for improving QoL {Program Pemantauan Peningkatan Kualitas Hidup (P3KH)}. Each variable was analyzed by independent T-test, it is significant if p <0.05. This study showed that there were differences in BMI (p = 0.006), fat mass (p = 0.010), extracellular water / intracellular water (ECW / ICW) (p = 0.046), and haemoglobin p = 0.001). Although it was better in the program group, statistically there was no difference of PhA (p = 0.136), muscle mass (p = 0.842), and URR (p = 0.232).

  19. Impacts of changes in groundwater recharge on the isotopic composition and geochemistry of seasonally ice-covered lakes: insights for sustainable management

    NASA Astrophysics Data System (ADS)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth; Gibson, John; Noret, Aurélie

    2017-11-01

    Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load) and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs) 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions), lake catchment size (which impacts the intensity of the flux change), lake volume (which impacts the range of variation), and lake G index (i.e., the percentage of groundwater that makes up total lake inflows), the latter being the dominant control on water balance conditions, as revealed by the sensitivity of lake isotopic composition. Based on these model simulations, stable isotopes appear to be especially useful for detecting changes in recharge to lakes with a G index of between 50 and 80 %, but response is non-linear. Simulated monthly trends reveal that evolution of annual lake isotopic composition can be dampened by opposing monthly recharge fluctuations. It is also shown that changes in water quality in groundwater-connected lakes depend significantly on lake location and on the intensity of recharge change.

  20. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  1. Nationally consistent and easily-implemented approach to evaluate littoral-riparian habitat quality in lakes and reservoirs

    EPA Science Inventory

    The National Lakes Assessment (NLA) and other lake survey and monitoring efforts increasingly rely upon biological assemblage data to define lake condition. Information concerning the multiple dimensions of physical and chemical habitat is necessary to interpret this biological ...

  2. Study of the Microbial Diversity of a Newly Discovered East Antarctic Freshwater Lake, L27C, and of a Perennially Ice-Covered Lake Untersee

    NASA Technical Reports Server (NTRS)

    Huang, Jonathan P.; Hoover, Richard B.; Andersen, Dale; Bej, Asim K.

    2010-01-01

    The microbial communities that reside within freshwater lakes of Schirmacher and Untersee Oases in East Antarctica must cope with extreme conditions that may include cold temperature, annual freeze-thaw cycles, exposure to UV radiation, especially during the austral summer months, low light beneath thick ice-cover, followed by seasonal darkness. The objective of this study was to assess the microbial biodiversity and distribution from samples taken from two freshwater lakes (L27C and Lake Untersee) that were collected during the Tawani 2008 International Antarctic Expedition that conducted research in this region of Antarctica. L27C is a small, previously unreported lake residing 2 km WNW of Maitri Station at Schirmacher Oasis. Biodiversity and distribution of microorganisms within the lake were studied using both culture-independent and culture-dependent methodologies based upon the analysis of eubacterial 16S rRNA gene sequences. Lake Untersee, a perennially ice-covered, ultra-oligotrophic, lake in the Otto-von-Gruber-Gebirge (Gruber Mountains) of central Dronning Maud Land was also sampled and the microbial diversity was analyzed by eubacterial 16S rRNA gene sequences derived from pure cultures. Direct culturing of water samples from each lake on separate R2A growth medium exhibited a variety of microorganisms including: Janthinobacterium, Hymenobacter, Sphingamonas, Subtercola, Deinococcus, Arthrobacter, Flavobacterium, Polaromonas, Rhodoferax and Duganella. The evaluation of samples from L27C through culture-independent methodology identified a rich microbial diversity consisting of six different phyla of bacteria. The culture-independent analysis also displayed the majority of bacteria (56%) belonged to the Class gamma-proteobacteria within the phylum Proteobacteria. Within the Class gamma-proteobacteria, Acinetobacter dominated (48%) the total microbial load. Overall, L27C exhibited 7 different phyla of bacteria and 20 different genera. Statistical analysis (Shannon-Weaver Diversity Index and Simpson Diversity Index) of the biodiversity of L27C displayed a moderately rich and diverse community. Investigations of the biodiversity and distribution of microorganisms in these lakes will help further our understanding of how the physical environment impact the structure and function within these microbially dominated ecosystems.

  3. Monitoring and assessment of anthropogenic activities in mountain lakes: a case of the Fifth Triglav Lake in the Julian Alps.

    PubMed

    Ravnikar, Tina; Bohanec, Marko; Muri, Gregor

    2016-04-01

    The Fifth Triglav Lake is a remote mountain lake in the Julian Alps. The area of the Julian Alps where the lake is situated is protected by law and lies within the Triglav National Park. Mountain lakes in Slovenia were considered for a long time as pristine, unpolluted lakes, but analyses in the last decade revealed considerable human impact even in such remote places. Eutrophication or excessive accumulation of nutrients is the main problem of most lakes in the temperate climatic zone, also in Slovenia. Since the introduction of fish in 1991, the lake is going through a series of changes for which we do not know exactly where they lead, so the monitoring and assessment of anthropogenic activities are of great importance. For this purpose, a qualitative multiattribute decision model was developed with DEX method to assess ecological effects on the lake. The extent of the ecological effects on the lake is assessed using four main parameters: the trophic state, lake characteristics, environmental parameters, and anthropogenic stressors. Dependence of environmental impact on various external factors beyond human control, such as temperature, precipitation, retention time, and factors on which we have influence, such as the amount of wastewater and the presence of fish in the lake, were also evaluated. The following data were measured: chlorophyll a, nutrients, TP, oxygen, C/N ratio, nutrients in sediment, temperature, precipitation, retention time, and volume. We made assumptions about fish and wastewater, which we could not measure. The main contributions of this work are the designed model and the obtained findings for the Fifth Triglav Lake that can help not only scientists in understanding the complexity of lake-watershed systems and interactions among system components but also local authorities to manage and monitor the lake aquatic environment in an effective and efficient way. The model is flexible and can be also used for other lakes, assuming that the used parameters are measured and anthropogenic stressors are adjusted to a specific situation. The results of assessment are of particular interest for decision makers in protected areas, providing a new approach to the management of the quality of the water environment.

  4. Short-term expansion of glacial lakes in the Himalayas

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Tadono, T.

    2017-12-01

    A glacial lake outburst flood (GLOF) is a serious mountainous hazard that is related to glacial shrinkage. Despite technical developments in satellite-based lake expansion monitoring, small glacial lakes were collapsed in Bhutan in June 2015 and in Nepal in May 2017. Relatively heavy rainfall was reported downstream just before the floods. Does a large amount of short-term precipitation have a possibility of triggering a GLOF? To answer this question, the temporal change in the glacial lake area is assessed by means of satellite-based synthetic aperture radar, coupled with satellite-derived spatial and temporal distribution of precipitation to evaluate the contribution of rainfall in glacial lake expansion. The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) observed the Mande Chu river basin in central Bhutan on Aug 11, 2016. Glacial lakes were manually delineated from the orthorectified backscatter amplitude image. They were compared with those delineated from the old satellite images of ALOS ( 2011), PALSAR-2 (2014-2016), and Landsat-8 (2016). The temporal and spatial distributions of precipitation (2010-2016) are obtained from the Global Satellite Mapping of Precipitation (GSMaP) data (10-km spatial / 60-min. temporal resolutions), calibrated by in situ rain gauges (GSMap_RNL/MVL). The outlines of 11 glacial lakes in the study site were successfully traced from 2011 to 2016; rapid expansion was recorded especially in the period between March and July 2016. In this period, exceeding 500 mm of the total amount of precipitation is recorded by GSMaP, whereas the mean precipitation amount is 300-400 mm in the previous years. This implies that relatively larger precipitation occurred in 2016, which is related to the short-term expansion of the glacial lakes. The rapid expansion of smaller lakes can be explained by their relatively shallow depths, which is sensitive to the increase in inflow water volume. This study highlights the importance of high-resolution, frequent observation of small glacial lakes that can expand, possibly corresponding to heavy rainfall, whereas most previous studies focused on large glacial lakes expanding at annual scales. Extreme precipitation should be considered as one of the factors responsible for glacial lake expansion as well as glacier melt.

  5. Lake Harsha: Three Years of HABs Monitoring

    EPA Science Inventory

    USEPA’s Office of Research and Development has partnered with the Clermont County, OH Water Resources Department in an on-going study to assess HAB trends and develop monitoring tools and approaches. Lake Harsha, a multi-use reservoir and primary drinking water source in southwes...

  6. Trends in lead concentrations in major US rivers and their relation to historical changes in gasoline-lead consumption, by Richard B. Alexander and Richard A. Smith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flegal, A.R.; Coale, K.H.

    1989-12-01

    The sequential development of trace metal clean techniques has resulted in a systematic decrease in reported lead concentrations in the ocean. Similar decreases have been observed in reports of lead concentrations in fresh water. This was illustrated by the changes in reported baseline concentrations of lead in Lake Huron. However, even the latest (1980) of those concentrations (19 ng/L) appears to be erroneously high based on recent measurements of lead concentrations in the Great Lakes. Lead concentrations in surface waters in the center of Lake Ontario are < 2 ng/L or one order of magnitude lower than the reported baselinemore » concentration of Lake Huron in 1980. Corresponding concentrations of lead in surface waters of Lake Huron should be equal to or less than those in Lake Ontario. Anthropogenic lead fluxes to Lake Huron (621 metric tons per year) and Lake Ontario (592 metric tons per year) are comparable, while the assimilative capacity of Lake Huron is two-fold greater than that of Lake Ontario. Moreover, the atmospheric flux of industrial lead aerosols to surface waters in Lake Huron is approximately one half of the flux in Lake Ontario. Therefore, if removal rates are similar in these two lakes, the authors expect the baseline concentration of lead in Lake Huron to be {le} 2 ng/L or one order of magnitude lower than the 1980 baseline concentration. Concentrations in remote fresh water systems in North America, where inputs of industrial lead aerosols are orders of magnitude lower should also be < 2 ng/L. The preceding measurements and projected concentrations of lead in fresh water systems in North America are of note in light of some recent reports on the decrease of lead in natural waters within the US. Those reports are questionable, in spite of other reports of decreasing lead concentrations in the Mississippi River and North Atlantic.« less

  7. Cure Monitoring Techniques for Adhesive Bonding Techniques.

    DTIC Science & Technology

    1980-11-01

    l TABLE OF CONTIW Section Pase I INTRODUCTION 1. Program Overviev 1 2. Smary 2 II MONITORING SYSTEM IMPROVEMENTS 3 1. Development of a...encountered in the electronics/signal/ computer interfaces, although solvable, have slowed progress and starting a bondline monitoring program to do a...AIWAL/MLBC) as Project Engineer. The program manager is Mr. C. A. May. The principal investigator is Dr. A. Wereta, Jr., assisted by Mass. W. G. Caple, J

  8. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    PubMed

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were <0.001 mg L(-1) in all lakes prior to the application of Phoslock(®). The effects of Phoslock(®) application were evident in the post-application maximum TLa and FLa concentrations reported for surface waters between 0.026 mg L(-1)-2.30 mg L(-1) and 0.002 mg L(-1) to 0.14 mg L(-1), respectively. Results of generalised additive modelling indicated that recovery trajectories for TLa and FLa in surface and bottom waters in lakes were represented by 2nd order decay relationships, with time, and that recovery reached an end-point between 3 and 12 months post-application. Recovery in bottom water was slower (11-12 months) than surface waters (3-8 months), most probably as a result of variation in physicochemical conditions of the receiving waters and associated effects on product settling rates and processes relating to the disturbance of bed sediments. CHEAQS PRO modelling was also undertaken on 11 of the treated lakes in order to predict concentrations of La(3+) ions and the potential for negative ecological impacts. This modelling indicated that the concentrations of La(3+) ions will be very low (<0.0004 mg L(-1)) in lakes of moderately low to high alkalinity (>0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following Phoslock(®) applications in lakes of very low alkalinity requires further evaluation. The implications for the use of Phoslock(®) in eutrophication management are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cultural Resources Reconnaissance of Item Nos. 2 and 3 Above Lake No. 9, Reelfoot Lake, Fulton County, Kentucky

    DTIC Science & Technology

    1983-04-01

    ASSOCIATES REPORTS 83-3 APRIL 1983 Cultural Resources Reconnaissance of Item Nos. 2 and 3 Above Lake No. 9, Reelfoot Lake , Fulton County, Kentucky by Timothy C...0524 ABSTRACT The "L!vI st g:c Sns d01 scrib c.d in t11 s 1o t I t L ,&’ reconnaissa•ice lc.vci survey of Itemn -0s. 2 iid ’ - No. 0 , Reelfoot Lake ...FIGURES Figure 1. General Location of the Reelfoot Lake area Figure 2. Project Corridor as outlined by the Menmphis District Figure 3. Fulton County

  10. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency Agreements. EPA has provided GLRI funding for a diverse suite of climate change-related projects including Great Lakes climate change research and modeling; adaptation plan development and implementation; ecosystem vulnerability assessments; outreach and education programs; habitat restoration and protection projects that will increase ecosystem resilience; and other projects that address climate change impacts. This presentation will discuss how the GLRI is helping to improve the climate change science needed to support the Action Plan. It will further describe how the GLRI is helping coordinate climate change efforts among Great Lakes states, tribes, Federal agencies, and other stakeholders. Finally, it will discuss how the GLRI is facilitating adaptation planning by our Great Lakes partners. The draft Lake Superior Ecosystem Climate Change Adaptation Plan serves as a case study for an integrated, collaborative, and coordinated climate change effort.

  11. Ion chromatographic determination of lithium at trace level concentrations. Application to a tracer experiment in a high-mountain lake.

    PubMed

    Nickus, U; Thies, H

    2001-06-22

    The water residence time of a high-mountain seepage lake in the Austrian Alps was derived from the flushing rate of a tracer substance. A diluted lithium chloride solution was injected into the lake during holomictic conditions in order to favour the homogeneous distribution of the tracer. The exponential decline of the mass of lithium in the lake revealed a water residence time of 1.5 to 3 months for summer and almost no lake water exchange during winter. Lithium concentrations ranged from background values of 0.06 microg l(-1) to about 3 microg l(-1) immediately after the tracer injection. Lake water samples were analyzed with ion-exchange chromatography using a Dionex device with a CS 12A separation column. The method detection limit determined according to the definition of the US Envirinmental Protection Agency amounted to 0.009 microg l(-1).

  12. Dramatic water-level fluctuations in lakes under intense human impact: modelling the effect of vegetation, climate and hydrogeology

    NASA Astrophysics Data System (ADS)

    Vainu, M.

    2012-04-01

    Lakes form a highly important ecosystem in the glacial terrain of northern Europe and America, but their hydrology remains understudied. When the water-level of a lake drops significantly and rises again in a time span of half a century and the widespread explanation of the fluctuations seems insufficient, then it raises a question: how do different anthropogenic and natural processes actually affect the formation of a lakes' water body. The abovementioned scenario applies to three small closed-basin Estonian lakes (L. Ahnejärv, L. Kuradijärv and L. Martiska) analysed in the current study. These lakes suffered a major water-level drop (up to 3.8 m) between 1946 and 1987 and a major rise between 1987 and 2010, from 1 m (L. Ahnejärv) to 2.5 m (L. Kuradijärv). Decreasing and increasing groundwater abstraction near the lakes has been widely considered to be the only reason for the fluctuations. It is true that the most severe drop in the lake levels did occur after 1972 when groundwater abstraction for drinking water started in the vicinity of the lakes. However, the lake levels started to fall before the groundwater abstraction began and for the time being the lake levels have risen to a higher level than in the 1970s when the quantity of annually abstracted groundwater was similar to nowadays. Therefore the processes affecting the formation of the lakes' water body prove to be more complex than purely the hydrogeological change caused by groundwater abstraction. A new deterministic water balance model (where the evaporation from the lake surface was calculated by Penman equation and the catchment runoff by Thornthwaite-Mather soil-moisture model), compiled for the study, coupled with LiDAR-based GIS-modelling of the catchments was used to identify the different factors influencing the lakes' water level. The modelling results reveal that the moderate drop in lake water levels before the beginning of groundwater abstraction was probably caused by the growth of a coniferous forest on the lake catchments, due to which evapotranspiration and subsequently runoff from the catchment decreased. The forest had been destroyed by wildfires during World War II. The water-level rise that the lakes have gone through in the last 20 years has in the case of L. Ahnejärv been caused by changing meteorological conditions (precipitation, air temperature and wind speed). In the case of Lakes Kuradijärv and Martiska the change has been caused by both the raise of groundwater level (caused by the decreasing groundwater abstraction) and the change of meteorological conditions. Therefore the vegetation change on the catchment and changes in meteorological conditions have played as important or, at times, even more important role in the water-level fluctuations than changes in the hydrogeological conditions. Although concentrating on three specific lakes in a specific region, the result of the study indicate the complexity of factors influencing the amount of water stored in a lake at a certain moment. Therefore it manifests a need for improved models in order to improve lake management around the world.

  13. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil exploration and development makes lakes in this region an increasingly valuable resource and knowledge of their storage essential. Estimating regional and lake-by-lake water volume will facilitate better management of expanding development activities and serve as a baseline by which to evaluate future responses to ongoing climate change in the Arctic.

  14. National Dam Safety Program. English Road Detention Facility Dam (Inventory Number NY 996), Lake Ontario Basin, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-06-30

    ASSOCIATES S1466TIDO CKD DATE SUJECT SUS-SWGGT NO. OWNER PROJECT N"M 4 4 c L~c j~a~ L,1L l ~~ti .4 J 3𔄀’A A’~ O,, Vrf ~ 7%& /4 -MI 4 P <L- ,4e/ P" 0’vc 3...sand. 13’O" 7 VeryI derse brown wet lite i to .ine sand, traceI5 22 g2 4 Z 𔃻 1 18-𔃺"-1610" of silt.’ 18 h.8 6 , ,-81 S" 9 6𔃺"-8𔃺" t 7 17,6 1 20 12

  15. The Lake Tahoe Basin Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson

    2011-01-01

    This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.

  16. Remote sensing applications to resource problems in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator)

    1981-01-01

    The procedures used as well as the results obtained and conclusions derived are described for the following applications of remote sensing in South Dakota: (1) sage grouse management; (2) censusing Canada geese; (3) monitoring grasshopper infestation in rangeland; (4) detecting Dutch elm disease in an urban environment; (5) determining water usage from the Belle Fourche River; (6) resource management of the Lower James River; and (7) the National Model Implantation Program: Lake Herman watershed.

  17. National Dam Safety Program. Lock C-12 Dam, Inventory Number NY-796. Lake Champlain Basin, Washington County, NY. Phase I Inspection Report,

    DTIC Science & Technology

    1980-06-27

    Inspection Personnel R. WAPA0* DEk W. L’C c. Persons Contacted (Including Address & Phone No.) N S-DeT - £pI 1 W. CL&LLIGM ( CAMAL SEgT. OPF1M:SFII ST) 747...kI/_A, c. Unusual Conditions Which Affect Dam $I.E AM Q&ALOA CAMAL k 1 /P4 fb~t S4.OFE SLOQtH~im if FbpL 0=29- EflLQ FLE𔃾 IIQ 6) Area Downstream of

  18. Lake Ladora and Lake Mary Phase 2 Data Addendum Site 2-17 Task No. 20 - Lower Lakes Version 3.1.

    DTIC Science & Technology

    1988-10-01

    4 E4 1>E 0 0 m 41 a l 0 0 1. 1-0 0. A 0a L I 0a c0 C4 LI C S .-4 ItI * M 1 0 0C41 C4 0 .4 .1 L E- .0 C 5 L I4 I10L d 0 0 0 000 0 ii 0 0 8 000 0d 0kI 4...L N L S 0L 4)4N L? 4C 0) 0C 0 P) 4?10-0 0 L E- n’ 4 0 O W L IL 0 0 3, 0 CJ -i J- tD >.nx i I 009H t98 )-)I- , 00 *I080000 *000- 00 888 0 00088 00000

  19. Analysis of Dynamic Changeof Hong Jiannao Lake Based on Scaled Soil Moisture Monitoring Index

    NASA Astrophysics Data System (ADS)

    Yue, H.; Liu, Y.

    2018-04-01

    to climate change and human activities, Hong Jiannao Lake located in the arid and semi-arid area of China, it played a very important role in the regulation of the local climate, the balance of water resources and the maintenance of biological diversity. Hongjiannao Lake area in recent years continues to shrink, it was urgent to get the Hongjiannao Lake area change trend. This article take Hongjiannao Lake as study object using MODIS image of NIR and Red wavelength reflectivity data, selected April to October of 2000-2014,consturcted scale of SMMI (S-SMMI) based on soil moisture monitoring index (SMMI). The result indicated that lake area reduced from 46.9 km2 in 2000 to 27.8 km2 in 2014, average decay rate is 1.3 km2/a. The lake's annual change showed a trend of periodic change. In general, the lake area began to increase slowly each year in April, and the area of the lake area reached the maximum, and then decreased gradually in June to July. Finally, we analysed the main driving factors included natural, man-made, and underground mining which lead to the lake area shrink.

  20. Environmental monitoring in the 21st century: a story of WWTPs, CECs, and Great Lakes AOCs

    EPA Science Inventory

    Throughout much of the 20th century, environmental monitoring of contaminants in fresh water ecosystems, like the Great Lakes, focused on measuring concentrations of persistent, bioaccumulative, and toxic chemicals whose biological hazards were well established. However, in recen...

  1. Estimated Nutrient Concentrations and Continuous Water-Quality Monitoring in the Eucha-Spavinaw Basin, Northwestern Arkansas and Northeastern Oklahoma, 2004-2007

    USGS Publications Warehouse

    Christensen, Victoria G.; Esralew, Rachel A.; Allen, Monica L.

    2008-01-01

    The Eucha-Spavinaw basin is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the City of Tulsa. The City of Tulsa has received complaints of taste and odor in the finished drinking water because of deteriorating water quality. The deterioration is largely because of algal growth from the input of nutrients from the Eucha-Spavinaw basin. The U.S. Geological Survey, in cooperation with the City of Tulsa, implemented a continuous, real-time water-quality monitoring program in the Eucha-Spavinaw basin to better understand the source of the nutrient loading. This program included the manual collection of samples analyzed for nutrients and the collection of continuous, in-stream data from water-quality monitors. Continuous water-quality monitors were installed at two existing continuous streamflow-gaging stations - Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma, from October 2004 through September 2007. Total nitrogen concentrations for manually collected water samples ranged from 2.08 to 9.66 milligrams per liter for the water samples collected from Spavinaw Creek near Colcord, Oklahoma, and from 0.67 to 5.12 milligrams per liter for manually collected water samples from Beaty Creek near Jay, Oklahoma. Total phosphorus concentrations ranged from 0.04 to 1.5 milligrams per liter for the water samples collected from Spavinaw Creek near Colcord and from 0.028 to 1.0 milligram per liter for the water samples collected from Beaty Creek near Jay. Data from water samples and in-stream monitors at Spavinaw and Beaty Creeks (specific conductance and turbidity) were used to develop linear regression equations relating in-stream water properties to total nitrogen and total phosphorus concentrations. The equations developed for the Spavinaw and Beaty sites are site specific and only valid for the concentration ranges of the explanatory variables used in the analysis. The range in estimated and measured phosphorus is not representative for the range of historic streamflow at the Beaty site and that regression equation would benefit from more high flow and high turbidity samples. In addition, all three study years had below average annual precipitation for the area, and streamflow was especially low in Water Year 2006. Average nutrient concentrations from October 2004 through September 2007, which were drier than others, may not be a good indication of conditions in future wetter years. The equations for the Spavinaw and Beaty sites may be used to estimate instantaneous nutrient concentrations, which can be used to compute loads and yields in real time in order to better characterize the effect of land-management practices in these watersheds on the transport of nutrients to Lake Eucha and Spavinaw Lake. The methods used in this study show promise for monitoring future effectiveness of implemented best management practices, development and monitoring of total maximum daily loads, early detection of taste-and-odor occurrences, and to anticipate treatment needs for water suppliers.

  2. Water quality of selected lakes in Mount Rainier National Park, Washington with respect to lake acidification

    USGS Publications Warehouse

    Turney, G.L.; Dion, N.P.; Sumioka, S.S.

    1986-01-01

    Thirteen lakes in Mount Rainier National Park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent , Crystal, Eleanor, Fan, one of the Golden group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. Specific conductance values were generally 21 microsiemens/cm at 25 C or less, and dissolved solids concentrations were generally 20 mg/L or less. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. In the deeper lakes, temperature decreased with depth and dissolved-oxygen concentrations increased to about 20 feet, remained constant to 80 ft, then decreased with increasing depth. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golden group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the lakes in this study appeared to be presently acidified. (Lantz-PTT)

  3. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christel, L.M.

    1997-10-01

    L Lake was developed as a cooling water reservoir for the L Reactor at the Savannah River Site. The construction of the lake, which began in the fall of 1984, altered the structure and function of Steel Creek. Completed in the fall of 1985, L Lake has a capacity of 31 million cubic meters and a normal pool of 58 meters. When L Reactor operations ceased in 1988, the water level in the lake still had to be maintained. Site managers are currently trying to determine the feasibility of draining or drawing down the lake in order to save taxmore » dollars. In order to understand the full repercussions of such an undertaking, it was necessary to compile a comprehensive inventory of what the lake bottom looked like prior to filling. Aerial photographs, acquired nine days before the filling of the lake began, were scanned and used for softcopy photogrammetry processing. A one-meter digital elevation model was generated and a digital orthophoto mosaic was created as the base map for the project. Seven categories of features, including the large waste units used to contain the contaminated soil removed from the dam site, were screen digitized and used to generate accurate maps. Other map features include vegetation waste piles, where contaminated vegetation from the flood plain was contained, and ash piles, which are sites where vegetation debris was burned and then covered with clean soil. For all seven categories, the area of disturbance totaled just over 63 hectares. When the screen digitizing was completed, the elevation at the centroid of each disturbance was determined. When the information is used in the Savannah River Site Geographical Information System, it can be used to visualize the various L Lake draw-down scenarios suggested by site managers and hopefully, to support evaluations of the cost effectiveness for each proposed activity.« less

  4. Gas exchange on Mono Lake and Crowley Lake, California

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik; Ledwell, James R.; Broecker, Wallace S.

    1987-01-01

    Gas exchange coefficients (k) have been determined for freshwater Crowley Lake and saline Mono Lake through the use of a man-made purposefully injected gas, SF6. The concentration decreased from an initial value of 40 to 4 pmol/L for Mono Lake and from 20 to 1 pmol/L for Crowley lake over a period of 6 wks. Wind-speed (u) records from anemometers on the shore of each lake made it possible to determine the relationship between k and u. The average u and k values for the experiment were identical for the two lakes, despite the large chemical differences. It is estimated that, for the u values observed over Mono Lake from July to December 1984, the exchange of CO2 occurred 2.5 times faster than without chemical enhancement. This is a factor of 4 lower than needed to explain the high invasion rate of C-14 produced by nuclear bomb tests.

  5. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  6. Progress towards an AIS early detection monitoring network for the Great Lakes

    EPA Science Inventory

    As an invasion prone location, the lower St. Louis River system (SLR) has been a case study for ongoing research to develop the framework for a practical Great Lakes monitoring network for early detection of aquatic invasive species (AIS). Early detection, however, necessitates f...

  7. Linking Landscapes to Ecosystem Services: Landscape Structure as an Indicator and Predictor of Water Clarity in New England Lakes

    EPA Science Inventory

    Lakes provide ecosystem services such as recreation, clean water, aesthetics, wildlife habitat, and nutrient attenuation. While numerous methods exist to monitor these services (e.g. visitor counts, opinion surveys, water quality monitoring, etc.) they are labor intensive to col...

  8. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Tony; van Nieuwstadt, Lin; De Roo, Roger

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that hasmore » been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.« less

  9. Nest success of snowy plovers (Charadrius nivosus) in the Southern high plains of Texas

    USGS Publications Warehouse

    Saalfeld, S.T.; Conway, Warren C.; Haukos, D.A.; Johnson, W.P.

    2011-01-01

    Snowy Plovers (Charadrius nivosus) nesting on edges of saline lakes within the Southern High Plains (SHP) of Texas are threatened by habitat degradation due to reduced artesian spring flow, making many saline lakes unsuitable for nesting and migrating shorebirds. Factors influencing nest success were evaluated, current nest success estimates in the SHP of Texas were compared to estimates obtained ten years prior, and causes and timing of nest failures determined. Overall, 215 nests were monitored from three saline lakes in 20082009, with nest success estimates from Program MARK ranging from 7-33% ( x??= 22%). The leading causes of nest failures were attributed to predation (40%) and weather (36%). Nest success was negatively influenced by number of plants within 707-cm 2 plot, positively influenced by percent surface water availability, and at one saline lake, negatively influenced by day during the nesting season (i.e., nest success declined later in the nesting season). When compared to estimates ten years prior (19981999), mean nest success has declined by 31%. If nesting Snowy Plovers continue to experience increased predation rates, decreased hydrological integrity, and habitat alterations, populations will continue to decline throughout this region.

  10. 77 FR 68763 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Intent To Prepare an Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Pipeline Company, L.L.C.; Notice of Intent To Prepare an Environmental Assessment for the Proposed Rose... the environmental impacts of the Rose Lake Expansion Project involving the modification of compression... in northeastern Pennsylvania. The proposed Rose Lake Expansion Project includes the following...

  11. National Dam Safety Program. Water Works Lake Dam (MO 10006), Grand - Chariton River Basin, Randolph County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-11-01

    Engineering Consultants, Inc. Hydraulics & Hydrology Kevin Blume Consoer, Townsend & Assoc., Ltd. Civil and Structural Oran Patrick City of Moberly, Missouri...structure. Photo 13. - View of the diesel powered pump. Photo 14. - View of the electric driven pump. -4 .... Waer 4ork- I’ n Photo lPhotn Wot cr w-.’)rks

  12. Installation Restoration Program. Phase II - Confirmation/Quantification. Stage 1 for American Lake Garden Tract, Washington.

    DTIC Science & Technology

    1985-12-20

    Kalles . 1976. Evaporation rates of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachoroethylene, and other chlorinated...State University (1969) M.S., Geology, University of Washington ( 1971 ) . . Ph.D., University of Washington (1979) " EXPERIENCE 1984 to Date Senior...ducted environmental assessments for Pacific Northwest construc- tion projects. L- 1971 Project Geologist, SEREM of Alaska (BRGM-France). Responsibil

  13. Colorado River fish monitoring in Grand Canyon, Arizona; 2000 to 2009 summary

    USGS Publications Warehouse

    Makinster, Andrew S.; Persons, William R.; Avery, Luke A.; Bunch, Aaron J.

    2010-01-01

    Long-term fish monitoring in the Colorado River below Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program (GCDAMP). The GCDAMP is a federally authorized initiative to ensure that the primary mandate of the Grand Canyon Protection Act of 1992 to protect resources downstream from Glen Canyon Dam is met. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center is responsible for the program's long-term fish monitoring, which is implemented in cooperation with the Arizona Game and Fish Department, U.S. Fish and Wildlife Service, SWCA Environmental Consultants, and others. Electrofishing and tagging protocols have been developed and implemented for standardized annual monitoring of Colorado River fishes since 2000. In 2009, sampling occurred throughout the river between Lees Ferry and Lake Mead for 38 nights over two trips. During the two trips, scientists captured 6,826 fish representing 11 species. Based on catch-per-unit-effort, salmonids (for example, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta)) increased eightfold between 2006 and 2009. Flannelmouth sucker (Catostomus latipinnis) catch rates were twice as high in 2009 as in 2006. Humpback chub (Gila cypha) catches were low throughout the 10-year sampling period.

  14. Mountain lakes of Russian subarctic as markers of air pollution: Acidification, metals and paleoecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseenko, T.I.; Dauvalter, V.A.; Kagan, L.Y.

    1996-12-31

    The Kola Peninsula mountain lakes reflect a real situation not only of the local air pollution but also polluted transborder emissions from Europe to Arctic and they are of interest for early detection and monitoring for acidification and pollution by heavy metals. Two monitoring mountain lakes had a discrepancy by their resistance to acidification: the Chuna lake is vulnerable and the Chibiny one is not, respectively. Despite the Chuna and Chibiny lakes are close tone of the main heavy metal pollution sources of the Kola Peninsula - smelters of the Severonickel Company, local emissions very slightly affect the mountain lakes,more » because heavily polluted air masses do not rise in altitude. Sulfur deposition on the Chuna lake catchment is 0.4 gSm{sup -2}, Chibiny lake is 0.6 gSm{sup -2}. In comparison with area at the foot of the mountain (less than 200 m above the sea level) sulfur deposition is 1.0-1.5 gSm{sup -2}. Water quality, sediment chemistry, and diatoms in sediment cores were studied.« less

  15. Internal loading of phosphorus in western Lake Erie

    USGS Publications Warehouse

    Matisoff, Gerald; Kaltenberg, Eliza M.; Steely, Rebecca L.; Hummel, Stephanie K.; Seo, Jinyu; Gibbons, Kenneth J.; Bridgeman, Thomas B.; Seo, Youngwoo; Behbahani, Mohsen; James, William F.; Johnson, Laura; Doan, Phuong; Dittrich, Maria; Evans, Mary Anne; Chaffin, Justin D.

    2016-01-01

    This study applied eight techniques to obtain estimates of the diffusive flux of phosphorus (P) from bottom sediments throughout the western basin of Lake Erie. The flux was quantified from both aerobic and anaerobic incubations of whole cores; by monitoring the water encapsulated in bottom chambers; from pore water concentration profiles measured with a phosphate microelectrode, a diffusive equilibrium in thin films (DET) hydrogel, and expressed pore waters; and from mass balance and biogeochemical diagenetic models. Fluxes under aerobic conditions at summertime temperatures averaged 1.35 mg P/m2/day and displayed spatial variability on scales as small as a centimeter. Using two different temperature correction factors, the flux was adjusted to mean annual temperature yielding average annual fluxes of 0.43–0.91 mg P/m2/day and a western basin-wide total of 378–808 Mg P/year as the diffusive flux from sediments. This is 3–7% of the 11,000 Mg P/year International Joint Commission (IJC) target load for phosphorus delivery to Lake Erie from external sources. Using these average aerobic fluxes, the sediment contributes 3.0–6.3 μg P/L as a background internal contribution that represents 20–42% of the IJC Target Concentration of 15 μg P/L for the western basin. The implication is that this internal diffusive recycling of P is unlikely to trigger cyanobacterial blooms by itself but is sufficiently large to cause blooms when combined with external loads. This background flux may be also responsible for delayed response of the lake to any decrease in the external loading.

  16. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels.

    PubMed

    Konstantinou, Ioannis K; Hela, Dimitra G; Albanis, Triantafyllos A

    2006-06-01

    This review evaluates and summarizes the results of long-term research projects, monitoring programs and published papers concerning the pollution of surface waters (rivers and lakes) of Greece by pesticides. Pesticide classes mostly detected involve herbicides used extensively in corn, cotton and rice production, organophosphorus insecticides as well as the banned organochlorines insecticides due to their persistence in the aquatic environment. The compounds most frequently detected were atrazine, simazine, alachlor, metolachlor and trifluralin of the herbicides, diazinon, parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlorine pesticides. Rivers were found to be more polluted than lakes. The detected concentrations of most pesticides follow a seasonal variation, with maximum values occurring during the late spring and summer period followed by a decrease during winter. Nationwide, in many cases the reported concentrations ranged in low ppb levels. However, elevated concentrations were recorded in areas of high pesticide use and intense agricultural practices. Generally, similar trends and levels of pesticides were found in Greek rivers compared to pesticide contamination in other European rivers. Monitoring of the Greek water resources for pesticide residues must continue, especially in agricultural regions, because the nationwide patterns of pesticide use are constantly changing. Moreover, emphasis should be placed on degradation products not sufficiently studied so far.

  17. Superfund Record of Decision (EPA Region 7): Lake City Army Ammunition Plant (NW Lagoon), Independence, MO, September 29, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1999-03-01

    This decision document describes the selected Interim Remedial Action (IRA) for the Northeast Corner Operable Unit (NECOU), Lake City Army Ammunition Plant (LCAAP). The major components of the selected IRA for the NECOU include: Installation of a subsurface permeable reactive wall (PRW) to treat contaminated ground water in place (in-situ); A monitoring program to evaluate the effectiveness of The PRW in treating the contaminated ground water and to determine the replacement period of the reactive media; and Installation of a soil cover over the Area 17 Oil and Solvent Pits (a principal threat waste) located adjacent to the current sanitarymore » landfill in the NECOU to minimize infiltration of water through the pits and subsequently into ground water.« less

  18. Natural regeneration and growth of Taxodium distichum (L.) rich. In Lake Chicot, Louisiana after 44 years of flooding

    USGS Publications Warehouse

    Keeland, B.D.; Conner, W.H.

    1999-01-01

    Lake Chicot, in south central Louisiana, USA, was created in 1943 by the impoundment of Chicot Bayou. Extensive establishment of woody seedling occurred in the lake during a 1.5 year period, including the growing seasons of both 1986 and 1987, when the reservoir was drained for repair work on the dam. Study plots were established in September 1986 to document woody vegetation establishment and to provide a baseline by which to monitor survival and growth after flooding resumed. Taxodium distichum seedlings were the dominant species after one growing season, with a maximum density of 50 seedlings/m2, an average of about 2/m2, and an average height of 75 cm. The lake was reflooded at the end of 1987, bringing water depths at the study plots up to about 1.4 m. Temporary drawdowns were again conducted during the fall of 1992 and 1996. In December 1992, the site was revisited, new plots established, and saplings counted and measured. There was an average of 2.1 T. distichum stems/m2, and the average height was 315 cm. After the 1996 growing season, there was still an average of about 1.9 stems/m2, and the average height had increased to 476 cm. Preservation of T. distichum forests in relatively shallow but continuously flooded areas such as Lake Chicot may be a simple matter of draining the lake after a good seed crop and maintaining the drawdown long enough for the seedlings to grow taller than the typical growing season water level. In the case of Lake Chicot, this period was two growing seasons. This action will mimic natural, drought-related drawdowns of the lake and will allow the seedlings to establish themselves and grow tall enough to survive normal lake water levels.

  19. Bioacoustic monitoring of nocturnal songbird migration in a southern great lakes ecosystem

    NASA Astrophysics Data System (ADS)

    Sanders, Claire Elizabeth

    Many species of birds produce short vocalizations during nocturnal migration. My thesis uses bioacoustic monitoring of these night flight calls to study bird migration through a southern Great Lakes ecosystem. I deployed recording devices around western Lake Erie during spring and fall migrations. Analysis of thousands of hours of recordings revealed that night flight calls accurately predicted both the magnitude of migration, as well as the timing of migrant passage, as assessed by banding. The first arrival dates for 48 species of migratory birds were significantly earlier on Pelee Island than on mainland Ontario in the spring. More flight calls were detected over Pelee Island than over mainland comparison sites. These results suggest that many birds cross Lake Erie in spring and fall, and that islands are important for migratory birds. This research provides insight into the use of acoustics for monitoring birds in active migration.

  20. Body burdens of heavy metals in Lake Michigan wetland turtles.

    PubMed

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  1. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  2. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition.

    PubMed

    Rosfjord, Catherine H; Webster, Katherine E; Kahl, Jeffrey S; Norton, Stephen A; Fernandez, Ivan J; Herlihy, Alan T

    2007-11-15

    Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act.

  3. Occurrence and distribution of antibiotics in surface water impacted by crab culturing: a case study of Lake Guchenghu, China.

    PubMed

    Wang, Wenxia; Zhou, Lijun; Gu, Xiaohong; Chen, Huihui; Zeng, Qingfei; Mao, Zhigang

    2018-05-30

    The objective of this study was to evaluate the occurrence, distribution, potential sources, and ecological risk of antibiotics in aqueous phase of Lake Guchenghu, China. Target antibiotics in surface water of Lake Guchenghu, adjacent streams, and crab ponds were detected seasonally. The results showed that erythromycin-H 2 O (1.60-2450 ng/L), sulfadiazine (ND-654 ng/L), and florfenicol (ND-919 ng/L) were the predominant antibiotics in Lake Guchenghu. The concentrations of antibiotics in Lake Guchenghu Basin showed obvious seasonal variation, with the highest concentration in summer. In general, the concentrations of antibiotics in crab ponds and streams were higher than those in the lake and spatial distributions of antibiotics were affected by pollution sources. The types and origins of antibiotics indicated that wastewater from ponds was the main source of antibiotics in the lake. Risk assessment suggested that as individual compound, erythromycin-H 2 O and clarithromycin posed a high risk to algae while other compounds might pose low or no risk. The mixture of antibiotics may pose a high risk to aquatic organisms in Lake Guchenghu. Overall, our study revealed the occurrence and spatiotemporal variation of antibiotics in Lake Guchenghu, which was related with crab culturing.

  4. Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Smith, V. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Significant findings are: (1) one-acre lakes and one-acre islands are detectable; (2)removal of atmospheric parameters derived from RPMI measurements show test lakes to have reflectances of 3.1 to 5.5% in band 4 and 0.3 to 2.3% in band 5; (3) failure to remove reflectance caused by atmosphere results in errors up to 500% in computing lake reflectance from ERTS-1 data; (4) in band 4, up to seven reflectance levels were observed in test lakes; (5) reflectance patterns have been displayed on a color-coded TV monitor and on computer-generated gray scales; (6) deep and shallow water can be separated by a trained photointerpreter and automatic machine processing, with estimates of water depth possible in some cases; (7) RPMI provides direct spectral signature measurements of lakes and lake features such as algal scums and floating plants; (8) a method is reported for obtaining lake color, as estimated by Forel-Ule standards, from ERTS-1 data; (9) a strong correlation between browner water color, diminishing water transparency; and (10) classifying lake eutrophication by observation of surface scums or macrophytes in shallow water seems straightforward.

  5. Nitrate Contamination in the groundwater of the Lake Acıgöl Basin, SW Turkey

    NASA Astrophysics Data System (ADS)

    Karaman, Muhittin; Budakoǧlu, Murat; Taşdelen, Suat

    2017-04-01

    The lacustrine Acıgöl basin, formed as an extensional half-graben, hosts various bodies of water, such as cold-hot springs, lakes, streams, and wells. The hydrologically closed basin contains a hypersaline lake (Lake Acıgöl) located in the southern part of the basin. The brackish springs and deep waters discharged along the Acıgöl fault zone in the southern part of the basin feed the hypersaline lake. Groundwater is used as drinking, irrigation, and domestic water in the closed Acıgöl Basin. Groundwater flows into the hypersaline lake from the highland. The Acıgöl basin hosts large plains (Hambat, Başmakçı, and Evciler). Waters in agricultural areas contain high amounts of nitrate; groundwater samples in agricultural areas contain nitrate levels higher than 10 mg/L. Nitrate concentrations in the groundwater samples varied from 0 to 487 mg/L (n=165); 25.4 % of the groundwater samples from the basin had nitrate concentrations above 10 mg/L (the WHO drinking guideline) and 52.2% of the groundwater samples from the basin had nitrate concentrations above 3.0 mg/L, and these high values were regarded as the result of human activity. The highest nitrate values were measured in the Hambat plain (480 and 100 mg/L) and Yirce Pinari spring (447 mg/L), which discharges along the Acıgöl fault zone in the southern part of the basin. The average multi-temporal nitrate concentration of the Yirce Pınarı spring was 3.3 mg/L. Extreme nitrate values were measured in the Yirce Pınarı spring during periods when sheep wool was washed (human activity). The lowest nitrate concentrations were observed in some springs that discharged along the Acıgöl fault zone in the southern part of the basin. Nitrate was not detected in deep groundwater discharged along the Acıgöl fault zone. Nitrate concentrations in deep groundwater and some springs discharged along the Acıgöl fault zone and those feeding the hypersaline lake were significantly affected by redox conditions. Nitrate in these reducing waters was transformed into ammonium. Nitrate concentrations in the Acıgöl Basin were enriched in groundwater beneath agricultural areas and this affected redox conditions. The main source of nitrate contamination was agricultural fertilizers. Elevated nitrate concentrations in groundwater, especially in agricultural areas of the Acigol Basin, can cause public health problems and environmental pollution.

  6. Long-term ecosystem monitoring and assessment of the Detroit River and Western Lake Erie.

    PubMed

    Hartig, J H; Zarull, M A; Ciborowski, J J H; Gannon, J E; Wilke, E; Norwood, G; Vincent, A N

    2009-11-01

    Over 35 years of US and Canadian pollution prevention and control efforts have led to substantial improvements in environmental quality of the Detroit River and western Lake Erie. However, the available information also shows that much remains to be done. Improvements in environmental quality have resulted in significant ecological recovery, including increasing populations of bald eagles (Haliaeetus leucocephalus), peregrine falcons (Falco columbarius), lake sturgeon (Acipenser fulvescens), lake whitefish (Coregonus clupeaformis), walleye (Sander vitreus), and burrowing mayflies (Hexagenia spp.). Although this recovery is remarkable, many challenges remain, including population growth, transportation expansion, and land use changes; nonpoint source pollution; toxic substances contamination; habitat loss and degradation; introduction of exotic species; and greenhouse gases and global warming. Research/monitoring must be sustained for effective management. Priority research and monitoring needs include: demonstrating and quantifying cause-effect relationships; establishing quantitative endpoints and desired future states; determining cumulative impacts and how indicators relate; improving modeling and prediction; prioritizing geographic areas for protection and restoration; and fostering long-term monitoring for adaptive management. Key management agencies, universities, and environmental and conservation organizations should pool resources and undertake comprehensive and integrative assessments of the health of the Detroit River and western Lake Erie at least every 5 years to practice adaptive management for long-term sustainability.

  7. Application of Classification Algorithm of Machine Learning and Buffer Analysis in Torism Regional Planning

    NASA Astrophysics Data System (ADS)

    Zhang, T. H.; Ji, H. W.; Hu, Y.; Ye, Q.; Lin, Y.

    2018-04-01

    Remote Sensing (RS) and Geography Information System (GIS) technologies are widely used in ecological analysis and regional planning. With the advantages of large scale monitoring, combination of point and area, multiple time-phases and repeated observation, they are suitable for monitoring and analysis of environmental information in a large range. In this study, support vector machine (SVM) classification algorithm is used to monitor the land use and land cover change (LUCC), and then to perform the ecological evaluation for Chaohu lake tourism area quantitatively. The automatic classification and the quantitative spatial-temporal analysis for the Chaohu Lake basin are realized by the analysis of multi-temporal and multispectral satellite images, DEM data and slope information data. Furthermore, the ecological buffer zone analysis is also studied to set up the buffer width for each catchment area surrounding Chaohu Lake. The results of LUCC monitoring from 1992 to 2015 has shown obvious affections by human activities. Since the construction of the Chaohu Lake basin is in the crucial stage of the rapid development of urbanization, the application of RS and GIS technique can effectively provide scientific basis for land use planning, ecological management, environmental protection and tourism resources development in the Chaohu Lake Basin.

  8. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    USGS Publications Warehouse

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  9. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2017-01-01

    We used monitoring data from Lake Lugano (Switzerland and Italy) to assess key ecosystem responses to three decades of nutrient management (1983–2014). We investigated whether reductions in external phosphorus loadings (Lext) caused declines in lake phosphorus concentrations (P) and phytoplankton biomass (Chl a), as assumed by the predictive models that underpinned the management plan. Additionally, we examined the hypothesis that deep lakes respond quickly to Lext reductions. During the study period, nutrient management reduced Lext by approximately a half. However, the effects of such reduction on P and Chl a were complex. Far from the scenarios predicted by classic nutrient-management approaches, the responses of P and Chl a did not only reflect changes in Lext, but also variation in internal P loadings (Lint) and food-web structure. In turn, Lint varied depending on basin morphometry and climatic effects, whereas food-web structure varied due to apparently stochastic events of colonization and near-extinction of key species. Our results highlight the complexity of the trajectory of deep-lake ecosystems undergoing nutrient management. From an applied standpoint, they also suggest that [i] the recovery of warm monomictic lakes may be slower than expected due to the development of Lint, and that [ii] classic P and Chl a models based on Lext may be useful in nutrient management programs only if their predictions are used as starting points within adaptive frameworks.

  10. Biochemistry and metabolism of lake trout: laboratory and field studies on the effects of contaminants

    USGS Publications Warehouse

    Passino, Dora R. May

    1981-01-01

    To evaluate the effects of ambient and higher concentrations of PCB's (Aroclor 1254) and DDE in food and water on fry of lake trout (Salvelinus namaycush) from Lake Michigan, I measured several biochemical indicators of stress in exposed and unexposed (control) fry. No differences between treatments were observed in oxygen consumption rates or lactate concentrations of unexercised fry, but apparent differences in specific swimming speed and lactate response in fry that swam to exhaustion suggested that exposed fry had lower stamina. Observed differences between biochemical profiles of 1-day-old sac fry reared from eggs originating from lake trout collected off Saugatuck and those originating from eggs of brood stock at the Marquette (Michigan) hatchery may have been caused by organochlorine contamination or by genetic and dietary differences between the parental stocks. Activity of the enzyme allantoinase was measured in juvenile and adult lake trout as an indicator of sublethal effects of Great Lakes contaminants. The 50% inhibition of allantoinase in vitro occurred at 6.0 mg/L Cu++, 6.7 mg/L Cd++, 34 mg/L Hg++, and 52 mg/L Pb++. Allantoinase was not affected by in vitro exposure to PCB's up to 7 μg/g, or DDE or DDT up to 10 μg/g; however, in vivo exposure resulting in 2.6 μg/g PCB's in the whole fish activated allantoinase slightly (10% significance level). Allantoinase activity was negatively correlated with total length for fish from Lake Michigan but not for fish from Lake Superior or from laboratory stocks. Mercury, PCB's, and DDT, possibly acting in combination with each other and with additional contaminants, may be the cause of the negative correlation of allantoinase activity with size in Lake Michigan lake trout.

  11. Metropolitan Spokane Region Water Resources Study. Appendix H. Volume 1. Plan Formulation and Evaluation

    DTIC Science & Technology

    1976-01-01

    Trickling Filter Fairchild A.F.B. Trickling Filter Town of Medical Lake Lagoon Town of Fairfield Lagoon Town of Millwood Activated Sludge (Extended Aeration...sewer system is subject to high levels of in- filtration. The treatment plant has ice problems in winter, trickling filter spreading arm clogging...lagoons. There is need of a routine effluent quan- tity/quality monitoring program. Tekoa. The trickling filter plant is poorly maintained to the point

  12. Comprehensive Monitoring Program: Final Biota Annual Report for 1989. Volume 1

    DTIC Science & Technology

    1990-06-01

    between April and July. Snows usually occur from September to May. with the heaviest snowfall in March and possible accumulation as late as June...intermittent wet areas (such as Upper )erby Lake) on RMA. The northern leopard frog (Rana Divens) and the bullfrog (R. catesbeiana) were also observed...For species, the acronym was based on the first two letters of the genus and species scientific names, unless the "species" was really a higher

  13. Long term (1997-2014) spatial and temporal variations in nitrogen in Dongting Lake, China

    PubMed Central

    Tian, Zebin; Zheng, Binghui; Wang, Lijing; Li, Liqiang; Wang, Xing; Li, Hong; Norra, Stefan

    2017-01-01

    In order to protect the water quality of Dongting Lake, it is significant to find out its nitrogen pollution characteristics. Using long-term monthly to seasonally data (1997–2014), we investigated the spatial and temporal variations in nitrogen in Dongting Lake, the second largest freshwater lake in China. The average concentrations of total nitrogen (TN) in the eastern, southern, and western parts of the lake were 1.77, 1.56, and 1.35 mg/L, respectively, in 2014. TN pollution was generally worse in the southern area than in the western area. Concentrations showed temporal variation, and were significantly higher during the dry season than during the wet season. Based on the concentration and growth rate of TN, three different stages were identified in the long term lake data, from 1997 to 2002, from 2003 to 2008, and from 2009 to 2014, during which the concentrations and the growth rate ranged from 1.09–1.51 mg/L and 22.09%-40.03%, 1.05–1.57 mg/L and -9.05%-7.74%, and 1.68–2.02 mg/L and 57.99%-60.41%, respectively. The main controls on the lake water TN concentrations were the quality and quantity of the lake inflows, spatial and temporal variations in hydrodynamic conditions within the lake (flow velocity, flow direction), and point and nonpoint inputs from human activities. Diffuse nutrient losses from agricultural land are a significant contributor. As a priority, the local government should aim to control the pollutant inputs from upstream and non-point nutrient losses from land. PMID:28166245

  14. Seasonal Variation of Arsenic Concentration in Natural Water of the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Yu, C.; Wen, L.; Yu, Z.

    2017-12-01

    Seasonal variation in the arsenic (As) concentration of natural water has been studied the first time in the source area of the Yellow River (SAYR) in Tibet, China. Samples were collected in the lake, river and spring across the whole area in April (spring) and July (summer), 2014. In April the average values of arsenic concentration in SAYR from high to low were: lake (38.1μg/L, n=47, range 8.6-131.0μg/L) > river (24.3μg/L, n=83, range 4.3-77.1μg/L) > spring (19.1μg/L, n=12, range 12.0-29.4μg/L). In July the same order of the average values of arsenic concentration in SAYR was found: lake (14.1μg/L, n=57, range 5.8-68.5μg/L) > river (7.3μg/L, n=106, range 3.6-22.9μg/L)> spring (6.7μg/L, n=9, range 4.8-8.2μg/L).The average arsenic concentrations in April were almost three times higher than those in July. In both season, the higher concentrations of arsenic were distributed in the upper reaches above the two biggest lakes of Gyaring and Ngoring Lakes in SAYR. The two big lakes buffered the naturally generated arsenic concentration in surface water, suggesting the important ecological role of the lakes. Generally, the lower concentrations in July probably were due to 1. the dilution effect of the precipitation; 2 the change of water sources. In April when the permafrost and mountain snow started to thaw and melt, ground water with high arsenic concentration was the main water source with high concentration of arsenic; but in July, with the increase of the temperature, mountain snow, permafrost would contribute more than in April, in addition, the main arsenic contributor groundwater was diluted by the precipitation recharge. Since in spring, lake and river water arsenic concentration decreased with almost the same magnitude., assuming the dilution effect dominant. The exported arsenic from SAYR in April (903.4Kg) were twice more than it in July (449.1Kg), because the flowrates were similar in the two months, the water source of the runoff components was grandly different in April and July. The seasonal variation of arsenic is obvious and further investigation is needed.

  15. Evaluating physical habitat condition in the National Lakes Assessment (NLA)

    EPA Science Inventory

    The NLA and other lake survey and monitoring efforts increasingly rely upon biological assemblage data to define lake condition. Information concerning the multiple dimensions of physical and chemical habitat is necessary to interpret this biological information and meaningfully...

  16. The Experimental Lakes Area: Over 45 Years of Whole Ecosystem Monitoring and Manipulation Experiments and a Focus on the Future

    NASA Astrophysics Data System (ADS)

    Emmerton, C. A.

    2015-12-01

    The IISD Experimental Lakes Area is a unique facility which has existed since 1968 and consists of 58 lakes and their watersheds set aside for research purposes. The IISD-ELA also boasts an on-site water chemistry lab, accommodations and facilities for up to 60 personnel. Since its inception in 1968 over 50 whole ecosystem experiments have been conducted at the ELA including eutrophication, acidification of lakes, environmental mercury fates, hydro-electric reservoir impacts and much more. The recent partnership between IISD and ELA has allowed ELA to refocus on freshwater research and policy development in a time where the preservation of the earth's most precious resource is of the utmost concern. In addition to water quality monitoring, the ELA is also focused on autotrophic ecology, zooplankton community structures, fish population and behaviour and food-web interactions. Monitoring all of these disciplines and their inter-relationships gives the research facility a unique perspective and along with the long term dataset stretching back to 1968 the ELA can look at historical records to monitor long term changes in the environment.

  17. Water Level Monitoring on Tibetan Lakes Based on Icesat and Envisat Data Series

    NASA Astrophysics Data System (ADS)

    Li, H. W.; Qiao, G.; Wu, Y. J.; Cao, Y. J.; Mi, H.

    2017-09-01

    Satellite altimetry technique is an effective method to monitor the water level of lakes in a wide range, especially in sparsely populated areas, such as the Tibet Plateau (TP). To provide high quality data for time-series change detection of lake water level, an automatic and efficient algorithm for lake water footprint (LWF) detection in a wide range is used. Based on ICESat GLA14 Release634 data and ENVISat GDR 1Hz data, water level of 167 lakes were obtained from ICESat data series, and water level of 120 lakes were obtained from ENVISat data series. Among them, 67 lakes contained two data series. Mean standard deviation of all lakes is 0.088 meters (ICESat), 0.339 meters (ENVISat). Combination of multi-source altimetry data is helpful for us to get longer and more dense periods cover water level, study the lake level changes, manage water resources and understand the impacts of climate change better. In addition, the standard deviation of LWF elevation used to calculate the water level were analyzed by month. Based on lake data set for the TP from the 1960s, 2005, and 2014 in Scientific Data, it is found that the water level changes in the TP have a strong spatial correlation with the area changes.

  18. Monitoring the dynamics of an invasive emergent macrophyte community using operational remote sensing data

    USGS Publications Warehouse

    Albright, Thomas P.; Ode, D.J.

    2011-01-01

    Potamogeton crispus L. (curly pondweed) is a cosmopolitan aquatic macrophyte considered invasive in North America and elsewhere. Its range is expanding and, on individual water bodies, its coverage can be dynamic both within and among years. In this study, we evaluate the use of free and low-cost satellite remote sensing data to monitor a problematic emergent macrophyte community dominated by P. crispus. Between 2000 and 2006, we acquired eight satellite images of 24,000-ha Lake Sharpe, South Dakota (USA). During one of the dates for which satellite imagery was acquired, we sampled the lake for P. crispus and other emergent macrophytes using GPS and photography for documentation. We used cluster analysis to assist in classification of the satellite imagery and independently validated results using the field data. Resulting estimates of emergent macrophyte coverage ranged from less than 20 ha in 2002 to 245 ha in 2004. Accuracy assessment indicated 82% of image pixels were correctly classified, with errors being primarily due to failure to identify emergent macrophytes. These results emphasize the dynamic nature of P. crispus-dominated macrophyte communities and show how they can be effectively monitored over large areas using low-cost remote sensing imagery. While results may vary in other systems depending on water quality and local flora, such an approach could be applied elsewhere and for a variety of macrophyte communities.

  19. Contrasted effects of climate change on temperate large lakes oxygen-depletion (Lakes Geneva, Bourget, Annecy)

    NASA Astrophysics Data System (ADS)

    Jenny, Jean-Philippe; Arnaud, Fabien; Dorioz, Jean-Marcel; Alric, Benjamin; Sabatier, Pierre; Perga, Marie-Elodie

    2013-04-01

    Among manifestations of the entry in a new geological era -The Anthropocene- marked by the fingerprinting of human activities in global ecology, the development of persistent zones of oxygen-depletion particularly threatens aquatic ecosystems. This results in a loss of fisheries, a loss of biodiversity, an alteration of food-webs and even, in extreme cases, mass mortality of fauna1. Whereas hypoxia -defined as dissolved oxygen ≤2 mg/l- has long been considered as a consequence of the sole eutrophication, recent studies showed it also depends on climate change. Despite basic processes of oxygen-depletion are well-known, till now no study evaluated the contrasted effects of climate changes on a long-term perspective. Here we show that climate change paced fluctuation of hypoxia in 3 large lakes (Lake Geneva, Lake Bourget and Lake Annecy) that were previously disturbed by unprecedented nutrient input. Our approach couples century-scale paleo-reconstruction of 1) hypoxia, 2) flood regime and 3) nutrient level, thanks to an exceptional 80 sediment core data collection taken in three large lakes (Geneva, Bourget, Annecy), and monitoring data. Our results show that volume of hypoxia can be annually estimated according to varve records through large lakes. Quantitative additive models were then used to identify and hierarchy environmental forcings on hypoxia. Flood regime and air temperatures hence appeared as significant forcing factors of hypolimnetic hypoxia. Noticeably, their effects are highly contrasted between lakes, depending on specific lake morphology and local hydrological regime. We hence show that greater is the lake specific river discharge the more is the control of winter mixing and the lower is the control of thermal stratification on oxygen depletion. Our study confirms that the perturbation of food web due to nutrient input led to a higher vulnerability of aquatic ecosystems to climate change. We further show specific hydrological regime play a crucial role in oxygen-depletion processes. This implies a careful attention must be paid to changes in hydrological patterns while assessing the effect of climate change on large water bodies.

  20. Pleistocene lake level changes in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The lake is 75 km long and 31 km wide. Its mean depth is 47 m, with the deepest point reaching 80 m, and its total water volume is 66,034 km3 and drainage basin 115,500 km2. The only water flowing into it is Galbiyn Hooloi. Hara-Us Nur Lake is a fresh-water (mineralization ca 107-348 mg/l, pH -7.8) basin situated in the Mongolian Great Lakes Depression [2]. Hara-Us Nur is fed by the Kobdo and Buyant rivers, which start in the Mongolian Altay, and outflows via the Chano-Hairkhan River into Hara-Us Nur Lake. Hara-Us Nur is divided by the Ak-Bashi Island into two subbasins. It has a water area of 1857 km2 with a length of 72.2 km and a maximum width of 27 km [4]. The maximum depth is 4 m and the average depth is ca 2 m [5,6]. The terraced lake shores are covered by steppe and desert vegetation. Pharagmites is abundant in the river deltas and close to the shore-line and the shallow-water littoral is covered by rich aquatic vegetation, including Myriophyllum verticulatum, Zannichelia pedunculata, Utricularia vulgaris [3]. Hara-Nur Lake is situated in the desert steppe subzone of the Mongolian Great Lakes Depression. The fresh-water Hara-Nur Lake receives inflow from Hara-Us Nur Lake via the Chano-Hairkhan River. There are two outflows from the lake one outflow is via a 10 km-long channel which flows to the Dzabhan River, which in turn flows into the closed Hyargas Lake. The other outflow is a small semi-permanent stream with flows southward into the closed brackish-water Dorgon Lake. Hara-Nur has a water area of 57,500 ha, with a length of 37 km and a maximum width of ca 24 km. The maximum depth is 7 m and the average depth is ca 4 m. The mean water mineralization is 260 mg/l and the pH is 8.0 [5]. The catchment area is ca 7,200,000 ha. Lake Ureg located in the Mongolian Altay at an altitude of 1425 m.a.s.1., this lake has an area 237.6 km2 and maximum depth of 48 m. Secchi disk transparency is to 8 m. Macrophyte beds cover up to 20 per cent of the lake area, with the common cane sedges and horsetails dominant. The benthic fauna is poor, and only single pecimens of molluscs and amphipods are met. The ichtyofauna is represented by Oreoleuciscus Pewzowi. Previous and modern investigations of these lakes, their morphologies and deposits, allow to specify periods of extension of the lakes and palaeogeographical conditions. Two clear extension periods can be determined in the Mongolian Great Lakes Basin, corresponding to Mid-and Late Pleistocene transgressions. During the Mid-Pleistocene transgression the current Lakes Har-Us Nur, Dorgon Nur, Hara Nur, Airag Nur and Hyargas were integrated to a united lake, with a maximal level at 1265 m. and total water area about 23 158 km2 . The maximal thickness of Mid-Pleistocene lake deposits is 70 m. Late Pleistocene lake sediments are investigated in sections near Dzabhan River and Hyargas Nuur shorelines. They consist of laminated sand, clay and gravel with cryogenic structures at the base and upper part of sections. The mean thickness of Late Pleistocene lake deposits is 20-35 m. The main characteristics of Late Pleistocene lake features are represented by a very bright "lake relief" — obvious steps of shorelines, gravel bands, bars and spits. The specific structure of Late Pleistocene lake cross-sections allows to separate two transgressions within this period. In the first half of the Holocene a minor regression of several meters occurred. Elements of the modern time aeolian relief were still inundated on the north shore of Lake Har-Us Nur. Researches funded by RFBR (Grant 08-05-00037-a) References 1. Geomorfologiya Mongol'skoi Narodnoi Respubliki (Geomorphology of the Mongolian People Republic). M.: Nauka, pp. 135-148. 2. Ozera MNR i ikh mineral'nye resursy (Lakes of MPR and their mineral resources), 1991. Moscow, Nauka, 136 p. 3. Sevastyanov, D.V., Shuvalov, V.F. and Neustrueva, I. Yu. (Eds.), 1994. Limnologiya i paleolimnologiya Mongolii (Limnology and Palaeolimnology of Mongolia). St.Petersburg, Nauka, 304 p. 4. Tarasov, P.E., Harrison, S.P., Saarse, L., Pushenko, M.Ya., Andreev, A.A., Aleshinskaya, Z.V., Davydova, N.N., Dorofeyuk, N.I., Efremov, Yu.V., Khomutova, V.I., Sevastyanov, D.V., Tamosaitis, J., Dorofeyuk, N.I., Efremov, Yu.V., Khomutova, V.I., Sevastyanov, D.V., Tamosaitis, J.,Uspenskaya, O.N., Yakushko, O.F. and Tarasova, I.V., 1994. Lake status records from the Former Soviet Union and Mongolia: Data Base Documentation, World Data Center -A for Paleoclimatology NOAA Paleoclimatology Program, Paleoclimatology Publications Series Report No 2, Boulder, Colorado USA, 274 p. 5. Tserensodnom, Zh., 1971. Mongol orny Nuur. Ulaanbaatar, TUAH, 202 p. 6. Vipper, P., Dorofeyuk, N., Liiva, A., Meteltseva, E., and Sokolovskaya, V., 1981. Palaeogeography of the Central Mongolia during the upper Pleistocene and Holocene. Izv. Akad. Nauk ESSR, Ser. Biol., vol. 30, no. 1, pp. 74-82.

  1. Characterizing the Breadth and Depth of Volunteer Water Monitoring Programs in the United States.

    PubMed

    Stepenuck, Kristine F; Genskow, Kenneth D

    2018-01-01

    A survey of 345 volunteer water monitoring programs in the United States was conducted to document their characteristics, and perceived level of support for data to inform natural resource management or policy decisions. The response rate of 86% provided information from 46 states. Programs represented a range of ages, budgets, objectives, scopes, and level of quality assurance, which influenced data uses and perceived support by sponsoring agency administrators and external decision makers. Most programs focused on rivers, streams, and lakes. Programs had not made substantial progress to develop EPA or state-approved quality assurance plans since 1998, with only 48% reporting such plans. Program coordinators reported feeling slightly more support for data to be used for management as compared to policy decisions. Programs with smaller budgets may be at particular risk of being perceived to lack credibility due to failure to develop quality assurance plans. Over half of programs identified as collaborative, in that volunteers assisted scientists in program design, data analysis and/or dissemination of results. Just under a third were contributory, in which volunteers primarily collected data in a scientist-defined program. Recommendations to improve perceived data credibility, and to augment limited budgets include developing quality assurance plans and gaining agency approval, and developing partnerships with other organizations conducting monitoring in the area to share resources and knowledge. Funding agencies should support development of quality assurance plans to help ensure data credibility. Service providers can aid in plan development by providing training to program staff over time to address high staff turnover rates.

  2. Characterizing the Breadth and Depth of Volunteer Water Monitoring Programs in the United States

    NASA Astrophysics Data System (ADS)

    Stepenuck, Kristine F.; Genskow, Kenneth D.

    2018-01-01

    A survey of 345 volunteer water monitoring programs in the United States was conducted to document their characteristics, and perceived level of support for data to inform natural resource management or policy decisions. The response rate of 86% provided information from 46 states. Programs represented a range of ages, budgets, objectives, scopes, and level of quality assurance, which influenced data uses and perceived support by sponsoring agency administrators and external decision makers. Most programs focused on rivers, streams, and lakes. Programs had not made substantial progress to develop EPA or state-approved quality assurance plans since 1998, with only 48% reporting such plans. Program coordinators reported feeling slightly more support for data to be used for management as compared to policy decisions. Programs with smaller budgets may be at particular risk of being perceived to lack credibility due to failure to develop quality assurance plans. Over half of programs identified as collaborative, in that volunteers assisted scientists in program design, data analysis and/or dissemination of results. Just under a third were contributory, in which volunteers primarily collected data in a scientist-defined program. Recommendations to improve perceived data credibility, and to augment limited budgets include developing quality assurance plans and gaining agency approval, and developing partnerships with other organizations conducting monitoring in the area to share resources and knowledge. Funding agencies should support development of quality assurance plans to help ensure data credibility. Service providers can aid in plan development by providing training to program staff over time to address high staff turnover rates.

  3. Regression-transgression cycles of paleolakes in the Fen River Graben Basin during the mid to late Quaternary and their tectonic implication

    NASA Astrophysics Data System (ADS)

    Chen, Meijun; Hu, Xiaomeng

    2017-12-01

    An investigation into lake terraces and their sedimentary features in the Fen River Graben Basin shows that several paleolake regression-transgression cycles took place during the mid to late Quaternary. The horizontal distribution of the lowest loess/paleosol unit overlying each lake terrace indicates the occurrence of four rapid lake regressions when paleosols S8, S5, S2, and S1 began to develop. The horizontal distribution of the topmost loess/ paleosol unit underlying the lacustrine sediment in each transition zone between two adjacent terraces indicates that following a lake regression, a very slow lake transgression occurred. The durations of three lake transgressions correspond to those of the deposition or development of loess/paleosols L8 to L6, L5 to L3, and L2. It is thereby inferred that regional tectonic movement is likely the primary factor resulting in the cyclical process of paleolake regressions and transgressions. Taking these findings along with published geophysical research results regarding the upper mantle movements underneath the graben basin into account, this paper deduces that a cause and effect relationship may exist between the paleolake regression-transgression cycles and the tectonic activity in the upper mantle. The occurrence of a rapid lake regression implies that the upwelling of the upper mantle underneath the graben basin may be dominant and resulting in a rapid uplifting of the basin floor. The subsequent slow lake transgression implies that the thinning of the crust and cooling of the warm mantle material underneath the graben basin may become dominant causing the basin floor to subside slowly. Four rapid paleolake regressions indicate that four episodic tectonic movements took place in the graben basin during the mid to late Quaternary.

  4. MercNet: A national monitoring network to assess responses to changing mercury emissions in the United States

    USGS Publications Warehouse

    Schmeltz, D.; Evers, D.C.; Driscoll, C.T.; Artz, R.; Cohen, M.; Gay, D.; Haeuber, R.; Krabbenhoft, D.P.; Mason, R.; Morris, K.; Wiener, J.G.

    2011-01-01

    A partnership of federal and state agencies, tribes, industry, and scientists from academic research and environmental organizations is establishing a national, policy-relevant mercury monitoring network, called MercNet, to address key questions concerning changes in anthropogenic mercury emissions and deposition, associated linkages to ecosystem effects, and recovery from mercury contamination. This network would quantify mercury in the atmosphere, land, water, and biota in terrestrial, freshwater, and coastal ecosystems to provide a national scientific capability for evaluating the benefits and effectiveness of emission controls. Program development began with two workshops, convened to establish network goals, to select key indicators for monitoring, to propose a geographic network of monitoring sites, and to design a monitoring plan. MercNet relies strongly on multi-institutional partnerships to secure the capabilities and comprehensive data that are needed to develop, calibrate, and refine predictive mercury models and to guide effective management. Ongoing collaborative efforts include the: (1) development of regional multi-media databases on mercury in the Laurentian Great Lakes, northeastern United States, and eastern Canada; (2) syntheses and reporting of these data for the scientific and policy communities; and (3) evaluation of potential monitoring sites. The MercNet approach could be applied to the development of other monitoring programs, such as emerging efforts to monitor and assess global mercury emission controls. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  5. The impact of participation in the GEMscholar Program: the persistence of Native American undergraduate students in the Geosciences

    NASA Astrophysics Data System (ADS)

    Zurn-Birkhimer, S.; Geier, S.; Filley, T. R.

    2009-12-01

    The GEMscholar (Geology, Environmental Science and Meteorology scholars) program seeks to increase the number of Native American students pursuing graduate degrees in the geosciences. Drawing on research from Native American student education models to address three key themes of mentoring, culturally relevant valuations of geosciences and possible career paths, and connections to community and family the GEMscholar program was designed to provide research opportunities and a support network for the participants. The GEMscholars work on projects that directly link to their local ecosystems and permit them to engage in long term monitoring and cohesive interaction among each successive year’s participants. Over the past 4 years, the research has been focused on the invasion of the European earthworm on the Red Lake Reservation (Red Lake, MN). This research was specifically chosen because of its cultural relevance and its ability to yield locally important findings. In depth interviews with select GEMscholar participants will be used to discover the types of supports that lead to persistence to graduation and the types of obstacles that lead to attrition for these Native American students. Specifically of interest are cultural factors that influence the students’ education and career goals formation and the role of the GEMscholars program in reaching their identified goals.

  6. Water quality of Lake Tuscaloosa and streamflow and water quality of selected tributaries to Lake Tuscaloosa, Alabama, 1982-86

    USGS Publications Warehouse

    Slack, L.J.

    1987-01-01

    Lake Tuscaloosa, created in 1969 by the impoundment of North River, provides the primary water supply for Tuscaloosa, Alabama , and surrounding areas. This report describes the percent contribution of major tributaries to the mean inflow to the lake; water quality; and changes in water quality in the lake and selected tributaries. During base flow, about 60% of the total flow into Lake Tuscaloosa is contributed by Binion and Carroll Creeks, which drain only 22% of the Lake Tuscaloosa basin. Binion and Carroll Creek basins are underlain primarily by sand and gravel deposits of the Coker Formation. Mean inflow to the lake was 1,150 cu ft/sec during 1983, a wet year, and 450 cu ft/sec during 1985, a relatively dry year. More than 80% of the total inflow during both years was contributed by North River and Binion, Cripple, and Carroll Creeks. About 59% was contributed by North River during those years. Except for pH, sulfate, and dissolved and total recoverable iron and manganese, the water quality of the tributaries is generally within drinking water limits and acceptable for most uses. The water quality of Lake Tuscaloosa is generally within drinking water limits and acceptable for most uses. The maximum and median concentrations of sulfate increased every year at the dam from 1979 to 1985 (7.2 to 18 mg/L and 6.2 to 14 mg/L, respectively). The dissolved solids concentrations for water at the dam have varied (1979-86) from 27 to 43 mg/L; the sulfate, 5.2 to 18 mg/L; and the dissolved iron, 10 to 250 micrograms/L--all within the recommended drinking water limits. However, concentrations of dissolved manganese and total recoverable iron and manganese at the dam commonly exceeded the recommended drinking water limits. In November 1985, after the summer warmup and increase in biological activity, the water quality at five depth profiles sites on Lake Tuscaloosa was acceptable for most uses, generally. However, a dissolved oxygen concentration of 1 mg/L or less was observed within 5 to 10 ft of the bottom for several depth profiles. At depths > 35 to 40 ft (out of a total depth of about 50 to 100 ft) the dissolved oxygen concentration was < 5 mg/L at several sites. By mid-January 1986, the temperature and dissolved oxygen depth profiles were virtually constant from top to bottom of the lake at all five sites; this indicated that lake turnover was complete. However, significant variation existed in pH depth profiles. (Author 's abstract)

  7. Nitrogen Deposition Effects on Diatom Communities in Lakes from Three National Parks in Washington State.

    PubMed

    Sheibley, Richard W; Enache, Mihaela; Swarzenski, Peter W; Moran, Patrick W; Foreman, James R

    2014-01-01

    The goal of this study was to document if lakes in National Parks in Washington have exceeded critical levels of nitrogen (N) deposition, as observed in other Western States. We measured atmospheric N deposition, lake water quality, and sediment diatoms at our study lakes. Water chemistry showed that our study lakes were ultra-oligotrophic with ammonia and nitrate concentrations often at or below detection limits with low specific conductance (<100 μS/cm), and acid neutralizing capacities (<400 μeq/L). Rates of summer bulk inorganic N deposition at all our sites ranged from 0.6 to 2.4 kg N ha -1  year -1 and were variable both within and across the parks. Diatom assemblages in a single sediment core from Hoh Lake (Olympic National Park) displayed a shift to increased relative abundances of Asterionella formosa and Fragilaria tenera beginning in the 1969-1975 timeframe, whereas these species were not found at the remaining (nine) sites. These diatom species are known to be indicative of N enrichment and were used to determine an empirical critical load of N deposition, or threshold level, where changes in diatom communities were observed at Hoh Lake. However, N deposition at the remaining nine lakes does not seem to exceed a critical load at this time. At Milk Lake, also in Olympic National Park, there was some evidence that climate change might be altering diatom communities, but more research is needed to confirm this. We used modeled precipitation for Hoh Lake and annual inorganic N concentrations from a nearby National Atmospheric Deposition Program station, to calculate elevation-corrected N deposition for 1980-2009 at Hoh Lake. An exponential fit to this data was hindcasted to the 1969-1975 time period, and we estimate a critical load of 1.0 to 1.2 kg N ha -1  year -1 for wet deposition for this lake.

  8. The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Hidayati, N.; Soeprobowati, T. R.; Helmi, M.

    2018-03-01

    The existence of water hyacinths and other aquatic plants have been a major concern in Rawapening Lake for many years. Nutrient input from water catchment area and fish feed residues suspected to leads eutrophication, a condition that induces uncontrolled growth of aquatic plants. In dry season, aquatic plants cover almost 70% of lake area. This problem should be handled properly due to wide range of lake function such as water resources, fish farming, power plants, flood control, irrigation and many other important things. In 2011, Rawapening Lake was appointed as pilot project of Save Indonesian Lake Movement: the Indonesian movement for lakes ecosystem conservation and rehabilitation. This project consists of 6 super priority programs and 11 priority programs. This paper will evaluate the first super priority program which aims to control water hyacinth bloom. Result show that the three indicators in water hyacinth control program was not achieved. The coverage area of Water hyacinth was not reduced, tend to increase during period 2012 to 2016. We suggesting better coordination should be performed in order to avoid policies misinterpretation and to clarify the authority from each institution. We also give a support to the establishment of lake zonation plan and keep using all the three methods of cleaning water hyacinth with a maximum population remained at 20%.

  9. Pesticides and nitrate in groundwater underlying citrus croplands, Lake Wales Ridge, central Florida, 1999-2005.

    USGS Publications Warehouse

    Choquette, Anne F.

    2014-01-01

    This report summarizes pesticide and nitrate (as nitrogen) results from quarterly sampling of 31 surficial-aquifer wells in the Lake Wales Ridge Monitoring Network during April 1999 through January 2005. The wells, located adjacent to citrus orchards and used for monitoring only, were generally screened (sampled) within 5 to 40 feet of the water table. Of the 44 citrus pesticides and pesticide degradates analyzed, 17 were detected in groundwater samples. Parent pesticides and degradates detected in quarterly groundwater samples, ordered by frequency of detection, included norflurazon, demethyl norflurazon, simazine, diuron, bromacil, aldicarb sulfone, aldicarb sulfoxide, deisopropylatrazine (DIA), imidacloprid, metalaxyl, thiazopyr monoacid, oxamyl, and aldicarb. Reconnaissance sampling of five Network wells yielded detection of four additional pesticide degradates (hydroxysimazine, didealkylatrazine, deisopropylhydroxyatrazine, and hydroxyatrazine). The highest median concentration values per well, based on samples collected during the 1999–2005 period (n=14 to 24 samples per well), included 3.05 µg/L (micrograms per liter) (simazine), 3.90 µg/L (diuron), 6.30 µg/L (aldicarb sulfone), 6.85 µg/L (aldicarb sulfoxide), 22.0 µg/L (demethyl norflurazon), 25.0 µg/ (norflurazon), 89 µg/ (bromacil), and 25.5 mg/L (milligrams per liter) (nitrate). Nitrate concentrations exceeded the 10 mg/L (as nitrogen) drinking water standard in one or more groundwater samples from 28 of the wells, and the median nitrate concentration among these wells was 14 mg/L. Sampled groundwater pesticide concentrations exceeded Florida’s health-guidance benchmarks for aldicarb sulfoxide and aldicarb sulfone (4 wells), the sum of aldicarb and its degradates (6 wells), simazine (2 wells), the sum of simazine and DIA (3 wells), diuron (2 wells), bromacil (1 well), and the sum of norflurazon and demethyl norflurazon (1 well). The magnitude of fluctuations in groundwater pesticide concentrations varied between wells and between pesticide compounds. Of the 10 pesticide compounds detected at sufficient frequency to assess temporal variability in quarterly sampling records, median values of the relative interquartile range (ratio of the interquartile range to the median) among wells typically ranged from about 100 to 150 percent. The relative interquartile range of pesticide concentrations at individual wells could be much higher, sometimes exceeding 200 to 500 percent. No distinct spatial patterns were apparent among median pesticide concentrations in sampled wells; nitrate concentrations tended to be greater in samples from wells in the northern part of the study area.

  10. Associations between degraded benthic communities and contaminated sediments: Sabine Lake, Lake Pontchartrain, and Choctawhatchee Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engle, V.D.; Summers, J.K.; Macauley, J.M.

    1994-12-31

    The Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) in the Gulf of Mexico supplements its base sampling effort each year with localized, intensive spatial sampling in selected large estuarine systems. By selecting random locations within 70 km{sup 2} hexagonal areas, individual estuaries were sampled using EMAP methods but at four times the density as base sampling. In 1992, 19 sites were sampled in Lake Pontchartrain, Louisiana. In 1 993, 18 sites were sampled in Sabine Lake, Texas and 12 sites were sampled in Choctawhatchee Bay, Florida. At all sites, sediment grabs were taken and analyzed for benthic species compositionmore » and abundance, for toxicity to Ampelisca, and for organic and inorganic sediment contaminants. An indicator of biotic integrity, the benthic index, was calculated to represent the status of benthic communities. A series of statistical techniques, such as stepwise regression analysis, were employed to determine whether the variation in the benthic index could be associated with variation in sediment contaminants, sediment toxicity, or levels of dissolved oxygen. Spatial distributions of these parameters were examined to determine the geographical co-occurrence of degraded benthic communities and environmental stressors. In Lake Pontchartrain, for example, 85% of the variation in the benthic index was associated with decreased levels of dissolved oxygen, and increased concentrations of PCBs, alkanes, copper, tin, and zinc in the sediments.« less

  11. NATIONAL LAKE ASSESSMENT MONITORING DESIGN

    EPA Science Inventory

    The USEPA designed the National Lake Assessment in 2005-6 with field sampling being completed in 2007. The objective of the assessment is to estimate the ecological condition of lakes and reservoirs nationally. The objective of this paper is to describe the national survey desi...

  12. Spatio-seasonal variability in dissolved organic matter optical properties and its bioavailability in a subalpine lake

    NASA Astrophysics Data System (ADS)

    Stadler, Masumi; Ejarque, Elisabet; Kainz, Martin J.

    2017-04-01

    Allochthonous and autochothonous dissolved organic matter (DOM) in lakes mainly originate from terrestrial and aquatic primary production, respectively. Due to their differing biochemical composition the degradability of DOM by microorganisms is expected to vary. The carbon use efficiency of bacteria and DOM biodegradability determine whether the consumed DOM is incorporated into microbial biomass or respired to CO2 and ultimately emitted into the atmosphere. Thus, understanding the interaction of biodegradable DOM and its consumers is crucial to increase our knowledge on the role of lakes in the global carbon cycling. However, interactions of specific aquatic DOM signatures and the microbial population still remain widely debated. The aim of this study was to explore how DOM biodegradability changes along a stream-lake continuum at different seasons of the year. We monitored DOM quantity and its optical properties, inorganic nutrients, CO2 and bacterial growth over 20 days in dark bioassays with water from the inflow, outflow and at three layers of an oligotrophic subalpine lake. Preliminary results reveal highest microbial abundance in the metalimnion in winter and summer (0.7 106 and 2.5 106 cells mL-1, respectively) and the inflow in spring and autumn (1 106 and 1.4 106 cells mL-1, respectively) after 20 days. Surprisingly, with the exception of winter samples final inflow bacterial abundance results high, despite its lowest initial natural cell concentration, providing evidence for effective utilisation of terrestrial DOM, even with its high humic signature as indicated by the humification index (HIX). Nonetheless, after a microbial biomass peak with the inflow yielding mostly highest after three days, at the final experimental stage microbial biomass does only marginally differ between all sites with the exception of autumn samples where outflow and metalimnion turn out most productive. Even though the DOM of all lake sites and the lake outflow were characterised by lower molecular weight (indicated by the slope ratio (SR)) and a higher autochthonous signature (BIX) in all seasons, rapid growth of inflow bacteria highlight the potential of terrestrially-derived DOM to support bacterial growth, and challenge previous ideas that autchthonously-produced DOM would be more labile than DOM of terrestrial origin.

  13. Paleogeography and paleoenvironments of southwestern Baffin Island (Nunavut, Canada): post-glacial isostatic uplift and isolation of Nettilling Lake from marine influence

    NASA Astrophysics Data System (ADS)

    Narancic, Biljana; Pienitz, Reinhard; Francus, Pierre; Rolland, Nicolas; Wagner, Anne-Marie

    2013-04-01

    Although signs of recent climate change are more compelling in circumpolar regions, we have limited knowledge of Arctic climates and environments and their past variability. In order to better understand and anticipate the extent and nature of future changes in the Arctic, it is necessary to increase our capacity to model past environmental changes. Instrumental monitoring using high technology in polar regions has been implemented only over recent decades (Pienitz et al., 2004). Hence, to extend in time the climate record, we use a multi-proxy paleolimnological approach to study the sedimentary records preserved in Nettilling Lake located on Baffin Island the largest lake in the Canadian Arctic Archipelago. Nettilling Lake has an area of 5.541 km2 and a maximum depth of 65 m (Oliver, 1964). Its basin has undergone postglacial marine invasion following the last deglaciation due to isostatic subsidence exerted by the Laurentide Ice Sheet. The glacio-isostatic uplift of the region resulted in the establishment of a freshwater lake around 5000 years BP (Jacobs et al., 1997). Nettilling Lake remains a scientific frontier for researchers, mainly due to the inaccessibility of the area and the lack of available data. To date, only one exploratory study by Oliver (1964) has focused on the limnological conditions and bathymetry of the lake, and our research aims at providing deeper insights into the history of paleoenvironmental changes in this remote Arctic region. Biostratigraphical and geochemical analyses were completed on two sediment cores, one from a lagoonal system in the northwestern part of Nettilling Lake and another from the eastern part of the Lake. The sediment cores from the lagoonal system clearly document the marine-lacustrine transition through shifts in paleosalinity inferred from the composition of fossil diatom assemblages. Fossil chironomid larvae first appeared in the record after basin isolation and the establishment of freshwater conditions. Precise radiometric dating of the isolation contacts helps refine regional glacio-isostatic rebound and the duration and extent of the postglacial Tyrrell Sea marine phase. Post-glacial marine regression and the associated changes in paleosalinity are also reflected in the sediment core sedimentology and geochemistry analysed using a Multi Sensor Core Logger and a microfluorescence scanner. Jacobs J. D., Headley A. N., Maus L. A., Mode W. N. et Simms E. L., 1997. Climate and vegetation of the interior lowlands of southern Baffin Island : long-term stability at the low artic limit. Arctic 50 (2) : 167-177. Oliver D. R., 1964. A limnological investigation of a large Arctic lake, Nettilling lake, Baffin island. Papers University of Calgary 17 : 69-83. Pienitz R., Douglas M. S. V. et Smol P. J., 2004 Paleolimnological research in polar regions : An introduction. In : Pienitz R., Douglas M. S. V., Smol P. J. (Eds) Long- term environmental change in Arctic and Antarctic lakes. Springer, Dordrecht, 562 p.

  14. Factors limiting success of inoculation to enhance biodegradation of low concentrations of organic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, B.R.; Murakami, Y.; Alexander, M.

    1988-12-01

    Corynebacterium sp. added to lake water rapidly mineralized 100 ..mu..g and 1.0 mg of p-nitrophenol (PNP)/L but acted very slowly on the substrate present at 26 ..mu..g/L. The rate and extent of mineralization of the lowest PNP concentration in Beebe Lake water varied according to the time the sample was taken and were directly related to rainfall, and presumably runoff, in the watershed. The addition of high concentrations of inorganic P or N to water samples collected after a drought period, during which mineralization by the bacterium was slow, enhanced PNP decomposition. Mineralization in Cayuga Lake water was increased slightlymore » by 10 mg of K/sub 2/HPO/sub 4//L, but the enhancement was marked by 100 mg/L. The stimulation was a response to P and K. Glucose stimulated PNP mineralization in samples from Beebe and Cayuga Lakes, and K/sub 2/HOP/sub 4/ further increased the rate and extent of the transformation. The addition of either of two eucaryotic inhibitors increased the rate of Corynebacterium sp. growth in lake water amended with 26 ..mu..g of PNP/L but decreased the rate of mineralization.« less

  15. Biological and microbiological assessment of the upper Chattahoochee River basin, Georgia

    USGS Publications Warehouse

    Lium, Bruce W.; Stamer, J.K.; Ehlke, T.A.; Faye, R.E.; Cherry, R.N.

    1979-01-01

    Biological and microbiological studies were conducted by the U.S. Geological Survey as a part of the Intensive River-Quality Assessment studies of the upper Chattahoochee River basin, Georgia. Phytoplankton concentrations in cells per milliliter (cells/mL) were generally higher downstream from Atlanta than upstream. The highest concentrations, mostly blue-green algae, occurred in West Point Lake with an average of 90,000 cells/mL for the sampling period. The lowest concentrations, 1,000 cells/mL, occurred upstream of Lake Sidney Lanier. Dissolved orthophosphate and nitrite plus nitrate concentrations were highest in the river reaches and upper reaches of the two lakes and were lowest at the dam pools of both lakes. The high nitrite plus nitrate concentrations downstream from Atlanta were primarily a result of nitrification by Nitrosomonas and Nitrobacter bacteria. Algal growth potential was highest downstream from Atlanta, 25 milligrams per liter (mg/L) at Whitesburg, and was the lowest in the headwaters and at the dam pools of Lake Sidney Lanier and West Point Lake. The rate of nitrification in the Atlanta to Franklin reach of the river was comparatively low, 0.02 mg/L per hour. Nitrification was an important cause of dissolved-oxygen consumption in a 45-mi reach of the river downstream from the Atlanta wastewater treatment facilities. Dissolved-oxygen consumption as a result of nitrification may be greatest during low flow. (Woodard-USGS)

  16. Satellite remote sensing for modeling and monitoring of water quality in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Coffield, S. R.; Crosson, W. L.; Al-Hamdan, M. Z.; Barik, M. G.

    2017-12-01

    Consistent and accurate monitoring of the Great Lakes is critical for protecting the freshwater ecosystems, quantifying the impacts of climate change, understanding harmful algal blooms, and safeguarding public health for the millions who rely on the Lakes for drinking water. While ground-based monitoring is often hampered by limited sampling resolution, satellite data provide surface reflectance measurements at much more complete spatial and temporal scales. In this study, we implemented NASA data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to build robust water quality models. We developed and validated models for chlorophyll-a, nitrogen, phosphorus, and turbidity based on combinations of the six MODIS Ocean Color bands (412, 443, 488, 531, 547, and 667nm) for 2003-2016. Second, we applied these models to quantify trends in water quality through time and in relation to changing land cover, runoff, and climate for six selected coastal areas in Lakes Michigan and Erie. We found strongest models for chlorophyll-a in Lake Huron (R2 = 0.75), nitrogen in Lake Ontario (R2=0.66), phosphorus in Lake Erie (R2=0.60), and turbidity in Lake Erie (R2=0.86). These offer improvements over previous efforts to model chlorophyll-a while adding nitrogen, phosphorus, and turbidity. Mapped water quality parameters showed high spatial variability, with nitrogen concentrated largely in Superior and coastal Michigan and high turbidity, phosphorus, and chlorophyll near urban and agricultural areas of Erie. Temporal analysis also showed concurrence of high runoff or precipitation and nitrogen in Lake Michigan offshore of wetlands, suggesting that water quality in these areas is sensitive to changes in climate.

  17. Ten-Year Summary and Evaluation of Operations and Performance of the Utica Aquifer and North Lake Basin Wetlands Restoration Project, 2004-2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, Lorraine M.

    This document reviews the performance of the groundwater (and wetlands) restoration program implemented by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the first ten years of this initiative (2004-2014). The results of the program for the first five-year period of operation were previously discussed in detail (Argonne 2011). The present report focuses on treatment system operational data and regulatory compliance monitoring results for the site during the second five-year period of operation (2010-2014), together with the results of (1) ongoing monitoring and (2) targeted groundwatermore » sampling for volatile organic compounds (VOCs) analyses conducted at Utica in 2015 (following completion of the tenth year of systems operation), to assess the 10-year progress of the Utica remediation effort.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doug Cathro

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas andmore » Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.« less

  19. Water resources of Sleeping Bear Dunes National Lakeshore, Michigan

    USGS Publications Warehouse

    Handy, A.H.; Stark, J.R.

    1984-01-01

    Sleeping Bear Dunes National Lakeshore in a water-rich area. It borders Lake Michigan and several small streams flow through the park to the lake. Small lakes are numerous within the park and near its boundaries. Ground water is available at most places in the park and wells yield as much as 100 gallons per minute. Water from streams, lakes, wells, and springs is of good quality. Dissolved solids range from 35 to 180 mg/L in lakes, from 145 to 214 mg/L in streams, and from 136 to 468 mg/L in groundwater. Analyses of samples for pesticides and trace metals indicate that no pesticides are present in the water, and that concentrations of trace metals do not exceed recommended drinking-water standards. Surface and ground water are available in sufficient quantity in most areas of the park for the development of water supplies for visitor 's centers, campgrounds, picnic areas, and other park facilities.

  20. A collapsible trap for capturing ruffe

    USGS Publications Warehouse

    Edwards, Andrew J.; Czypinski, Gary D.; Selgeby, James H.

    1998-01-01

    A modified version of the Windermere trap was designed, constructed, and tested for its effectiveness in capturing ruffe Gymnocephalus cernuus. The inexpensive, lightweight, collapsible trap was easily deployed and retrieved from a small boat. Field tests conducted at the St. Louis River estuary in western Lake Superior in spring 1995 and 1996 indicated that the trap was effective in capturing ruffe. Proportions of the ruffe in trap and bottom trawl catches were similar in 1995 and 1996. This trap could be a useful tool in surveillance, monitoring, or control programs for ruffe or similar species, either to augment existing sampling programs or especially in situations where gillnetting or bottom trawling are not feasible.

  1. Remote sensing applications to resource problems in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Best, R. G.; Dalsted, K. J.; Devries, M. E.; Eidenshink, J. C.; Fowler, R.; Heilman, J.; Schmer, F. A.

    1980-01-01

    Cooperative projects between RSI and numerous South Dakota agencies have provided a means of incorporating remote sensing techniques into operational programs. Eight projects discussed in detail are: (1) detection of high moisture zones near interstate 90; (2) thermal infrared census of Canada geese in South Dakota; (3) dutch elm disease detection in urban environment; (4) a feasibility study for monitoring effective precipitation in South Dakota using TIROS-N; (5) open and abandoned dump sites in Spink county; (6) the influence of soil reflectance on LANDSAT signatures of crops; (7) A model implementation program for Lake Herman watershed; and (8) the Six-Mile Creek investigation follow-on.

  2. Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China

    USGS Publications Warehouse

    Di Li,; Erickson, Richard A.; Song Tang,; Xuwen Li,; Niu, Zhichun; Xia Wang,; Hongling Liu,; Hongxia Yu,

    2016-01-01

    Tai Lake (Chinese: Taihu), the third-largest freshwater lake in China, suffers from harmful cyanobacteria blooms that are caused by economic development and population growth near the lake. Several studies have focused on phytoplankton in Tai Lake after a drinking water crisis in 2007; however, these studies primarily focused on microcystin bioaccumulation and toxicity to individual species without examining the effects of microcystin on macrobenthic community diversity. In this study, we conducted a survey of the lake to examine the effects of microcystine and other pollutants on marcobenthic community diversity. A totally of forty-nine species of macroinvertebrates were found in Tai Lake. Limnodrilus hoffmeisteri and Corbicula fluminea were the most abundant species. Cluster-analysis and one-way analysis of similarity (ANOSIM) identified three significantly different macrobenthic communities among the sample sites. More specifically, sites in the eastern bays, where aquatic macrophytes were abundant, had the highest diversity of macrobenthic communities, which were dominated by Bellamya aeruginosa, Bellamya purificata, L. hoffmeisteri, and Alocinma longicornis. Sites in Zhushan Bay contained relatively diverse communities, mainly composed of L. hoffmeisteri, C. fluminea, L. claparederanus, R. sinicus, and Cythura sp. Sites in the western region, Meiliang Bay and Wuli Bay had the lowest diversity, mainly composed ofL. hoffmeisteri, C. fluminea, Branchiura sowerbyi, and Rhyacodrilus sinicus. In addition, the relationships between macrobenthic metrics (Shannon–Wiener, Margalef, and Pielou) and environmental variables showed that community structure and spatial patterns of macrobenthos in Tai Lake were significantly influenced by chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), lead (Pb), and microcystin-LR (L for leucine and R for arginine). Our findings provide critical information that could help managers and policymakers assess and modify ecological restoration practices.

  3. A Multi-Phased Evaluation of the Impact of a Non-School Science Exhibition.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    The impact of "The Great Lake Erie," an outreach program that aimed to improve visitor knowledge and attitudes about Lake Erie, is discussed in this evaluative study. "The Great Lake Erie" was presented as a two-part program consisting of a lecture and demonstration stage presentation and a series of exhibits. The program was…

  4. Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.

    PubMed

    Blukacz-Richards, E Agnes; Visha, Ariola; Graham, Matthew L; McGoldrick, Daryl L; de Solla, Shane R; Moore, David J; Arhonditsis, George B

    2017-04-01

    Total mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations. Lipid content (in both fish and eggs) and length in fish were used as covariates in all models. For the first three decades, mercury levels in gull eggs and fish declined at all stations. In the 2000s, trends for herring gull eggs reversed at two sites in Lake Erie and two sites in Lake Ontario. Similar trend reversals in the 2000s were observed for lake trout in Lake Superior and at a single station in Lake Ontario. Mercury levels in lake trout continued to slowly decline at all of the remaining stations, except for Lake Huron, where the levels remained stable. A post-hoc Bayesian regression analysis suggests strong trophic interactions between herring gulls and rainbow smelt in Lake Superior and Lake Ontario, but also pinpoints the likelihood of a trophic decoupling in Lake Huron and Lake Erie. Continued monitoring of mercury levels in herring gulls and fish is required to consolidate these trophic shifts and further evaluate their broader implications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria

    NASA Astrophysics Data System (ADS)

    Emmer, Adam; Merkl, Sarah; Mergili, Martin

    2015-10-01

    Climate-induced environmental changes are triggering the dynamic evolution of high-mountain lakes worldwide, a phenomenon that has to be monitored in terms of lake outburst hazards. We analyzed the spatial distribution and recent temporal development of high-mountain lakes in a study area of 6139 km2, covering the central European Alps over most of the province of Tyrol and part of the province of Salzburg in western Austria. We identified 1024 natural lakes. While eight lakes are ice-dammed, one-third of all lakes are located in the immediate vicinity of recent glacier tongues, half of them impounded by moraines, half by bedrock. Two-thirds of all lakes are apparently related to LIA or earlier glaciations. One landslide-dammed lake was identified in the study area. The evolution of nine selected (pro)glacial lakes was analyzed in detail, using multitemporal remotely sensed images and field reconnaissance. Considerable glacier retreat led to significant lake growth at four localities, two lakes experienced stagnant or slightly negative areal trends, one lake experienced a more significant negative areal trend, and two lakes drained completely during the investigation period. We further (i) analyzed the susceptibility of selected lakes to glacial lake outburst floods (GLOFs), using two different methods; (ii) identified potential triggers and mechanisms of GLOFs; (iii) calculated possible flood magnitudes for predefined flood scenarios for a subset of the lakes; and (iv) delineated potentially impacted areas. We distinguished three phases of development of bedrock-dammed lakes: (a) a proglacial, (b) a glacier-detached, and (c) a nonglacial phase. The dynamics - and also the susceptibility of a lake to GLOFs - decrease substantially from (a) to (c). Lakes in the stages (a) and (b) are less prominent in our study area, compared to other glacierized high-mountain regions, leading us to the conclusion that (i) the current threat to the population by GLOFs is lower but (ii) the future development of emerging lakes has to be monitored carefully.

  6. Using multi-source satellite data for lake level modelling in ungauged basins: A case study for Lake Turkana, East Africa

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2011-01-01

    Managing limited surface water resources is a great challenge in areas where ground-based data are either limited or unavailable. Direct or indirect measurements of surface water resources through remote sensing offer several advantages of monitoring in ungauged basins. A physical based hydrologic technique to monitor lake water levels in ungauged basins using multi-source satellite data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, a digital elevation model, and other data is presented. This approach is applied to model Lake Turkana water levels from 1998 to 2009. Modelling results showed that the model can reasonably capture all the patterns and seasonal variations of the lake water level fluctuations. A composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data is used for model calibration (1998-2000) and model validation (2001-2009). Validation results showed that model-based lake levels are in good agreement with observed satellite altimetry data. Compared to satellite altimetry data, the Pearson's correlation coefficient was found to be 0.81 during the validation period. The model efficiency estimated using NSCE is found to be 0.93, 0.55 and 0.66 for calibration, validation and combined periods, respectively. Further, the model-based estimates showed a root mean square error of 0.62 m and mean absolute error of 0.46 m with a positive mean bias error of 0.36 m for the validation period (2001-2009). These error estimates were found to be less than 15 % of the natural variability of the lake, thus giving high confidence on the modelled lake level estimates. The approach presented in this paper can be used to (a) simulate patterns of lake water level variations in data scarce regions, (b) operationally monitor lake water levels in ungauged basins, (c) derive historical lake level information using satellite rainfall and evapotranspiration data, and (d) augment the information provided by the satellite altimetry systems on changes in lake water levels. ?? Author(s) 2011.

  7. National Dam Inspection Program. Lake Lattimore Dam (NDI-ID Number PA-00406, DER-ID Number 52-78) Delaware River Basin, Pike County, Pennsylvania. Phase I Inspection Report.

    DTIC Science & Technology

    1980-06-01

    V 5 - 1i/ .; t (cl S . /40 T POo. t t tv / I? I H 4O/- /o 31. C1 A Lot,- PoL e (6I 3 / - - - v ... S . OFCHKD. BY ------ DATE-------. . .. . . . . . R JE T : f6. SUBJECT --------------------------. PROECT-!. II Ii I V 1:2 ,,.,, - ) ) .( y...DATE/,/’ -’ REEGER ASSOCIATES SHEET NO. 7, CNKD. BY DATE PROJECT SUBJECT t AXtI Ic C / PA; 4 ( It o’,’ ’- ,’ S ’ L V / 4 LA d1A ’l, V HYC4P) 4,A 4, I

  8. Wetland vegetation establishment in L-Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeger, S.R.

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  9. Wetland vegetation establishment in L-Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeger, S.R.

    1990-07-01

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  10. National Dam Safety Program. Lake Wanda Dam (NJ00510), Hudson River Basin, Tributary to Wawayanda Creek, Sussex County, New Jersey. Phase 1 Inspection Report.

    DTIC Science & Technology

    1980-03-01

    8217 7rA’Al’A𔄀 /O’ 3 4 5 $-eS 7W# 55 Af1--7;72 6 10 12 - . . . . . ... . . . . . .’ . . .. 13 l 14 15 £ F6 3I f’f . 16 A6 18 19 200 _.._. . . . .. . . . 21’ 22...191, ~ C! . .. .. C.C C C L. C . C W .C . . . .C .C . . . .C .C . . . . .C . C . C C. . C . C 4 4 . . . a CC aa acca a aa aa C C

  11. Management Plan for Experimental Reintroduction of Sockeye into Skaha Lake; Proposed Implementation, Monitoring, and Evaluation, 2004 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Howie; Smith, Howard

    2004-01-01

    Okanagan River sockeye salmon, which spawn near the town of Oliver, B.C., have their farther upstream migration limited by several water control and diversion dams. Stock numbers have been declining for many years and the Okanagan Native Alliance Fisheries Department (ONAFD) has been the principal advocate of a program to restore their numbers and range by reintroducing them into upstream waters where they may once have occurred in substantial numbers Some investigators have warned that without effective intervention Okanagan sockeye are at considerable risk of extinction. Among a host of threats, the quality of water in the single nursery areasmore » in Osoyoos Lake. is deteriorating and a sanctuary such as that afforded in larger lakes higher in the system could be essential. Because the proposed reintroduction upstream has implications for other fish species, (particularly kokanee, the so-called ''landlocked sockeye'' which reside in many Okanagan lakes), the proponents undertook a three-year investigation, with funding from the Bonneville Power Administration and the Confederated Tribes of the Colville Reservation, to identify possible problem areas, and they committed to an interim experimental reintroduction to Skaha Lake where any problems could be worked out before a more ambitious reintroduction, (e.g. to Okanagan Lake) could be formally considered. The three-year investigation was completed in the spring of 2003. It included an assessment of risks from disease or the possible introduction of unwanted exotic species. It also considered the present quality and quantity of sockeye habitat, and opportunities for expanding or improving it. Finally ecological complexity encouraged the development of a life history model to examine interactions of sockeye with other fishes and their food organisms. While some problem areas were exposed in the course of these studies, they appeared to be manageable and the concept of an experimental reintroduction was largely supported but with the proviso that there should be a thorough evaluation and reporting of progress and results. A 2004 start on implementation and monitoring has now been proposed.« less

  12. Seasonal bat activity related to insect emergence at three temperate lakes.

    PubMed

    Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto

    2018-04-01

    Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.

  13. Monitoring for Harmful Algal Blooms in Influent Waters and Through Treatment on Lake Erie in the 2013 and 2014 Bloom Seasons 

    EPA Science Inventory

    Monitoring of Harmful Algal Blooms in Influent and Through Drinking Water Treatment Facilities Located on Lake Erie in the 2013 and 2014 Bloom SeasonsToby Sanan, Nicholas Dugan, Darren Lytle, Heath MashHarmful algal blooms (HABs) and their associated toxins are emerging as signif...

  14. Surface ozone in the Lake Tahoe Basin

    Treesearch

    Joel D. Burley; Sandra Theiss; Andrzej Bytnerowicz; Alan Gertler; Susan Schilling; Barbara Zielinska

    2015-01-01

    Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50–55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of...

  15. Distribution of sediment measurements in Lake Michigan as a case study: Implications for estimating sediment and water interactions in eutrophication and bioaccumulation models

    EPA Science Inventory

    Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment within a case study. Field data collected at 116 sampling sites throughout the lake in an intensive monitoring effort were utilized for evaluation of the di...

  16. Monitoring wetland of Poyang Lake National Nature Reserve zone by remote sensing

    NASA Astrophysics Data System (ADS)

    Le, Xinghua; Fan, Zhewen; Fang, Yu; Yu, Yuping; Zhang, Yun

    2008-10-01

    In order to monitor the wetland of the Poyang Lake national nature reserve zone, we selected three different seasons TM image data which were achieved individually in April 23th in 1988, Nov 2nd in 1994, and Jan 1st in 2000. Based on the band 5, band 4 and band 3of TM image, we divided the land coverage of Poyang Lake national nature reserve zone into three classes--water field, meadow field and the other land use by rule of maximum likelihood. Using the outcome data to make the statistical analysis, combining with the GIS overlay function operation, the land coverage changes of the Poyang Lake national nature reserve zone can be achieved. Clipped by the Poyang Lake national nature reserve zone boundary, the land coverage changes of Poyang Lake national nature reserve zone in three different years can be attained. Compared with the different wetland coverage data in year of 1988, 1994, 2000, the Poyang Lake national nature reserve zone eco-environment can be inferred from it. After analyzing the land coverage changes data, we draw the conclusion that the effort of Poyang Lake national nature reserve administration bureaucracy has worked well in certain sense.

  17. Early detection of invasive fishes in Lake Superior

    EPA Science Inventory

    Invasive species pose a serious threat to the Great Lakes warranting continual monitoring for the arrival of new species. Three locations in Lake Superior were identified as "high risk" for new introductions: St. Louis River near Duluth, MN, Upper St. Marys River near S...

  18. Early detection of non-indigenous fishes in Lake Superior

    EPA Science Inventory

    Invasive species pose a serious threat to the ecological stability of the Great Lakes warranting continual monitoring for the arrival of new species. Three locations in Lake Superior were identified as “high risk” for new introductions: St. Louis River near Duluth, M...

  19. Remote sensing monitoring study of ecological environment change in Qingtu Lake

    NASA Astrophysics Data System (ADS)

    Han, Tao; Wang, Dawei; Jiang, Youyan; Qian, Li; Chen, Lei; Hao, Xiaocui

    2018-03-01

    Based on the Environmental Mitigation Satellite (HJ-1) data, this paper has carried on the remote sensing monitoring to change of the surrounding vegetation and water area of the Qingtu Lake since 2009. The result shows that the average area of water has increased by 3.59 square kilometres annually since the reappearance of the waters with the Qingtu Lake in 2010. The area of Qingtu Lake and surrounding vegetation cover has presented an average increase of 1.09 square kilometres per year. Since 2010, the precipitation of the Qingtu Lake and its surrounding area in Minqin county have a significant increase in the trend, the average increase rate of 6.0 mm/year. Compared to 2010 years ago, the average precipitation increased 36.4 mm. And it shows that the change of the Qingtu Lake underlying surface has a positive feedback effect to local heavy rainfall according to the comparative analysis of the precipitation observation in the surrounding weather station.

  20. Application of satellite remote sensing to North Carolina. Development of a monitoring methodology for trophic states of lakes in North Carolina

    NASA Technical Reports Server (NTRS)

    Welby, C. W.; Holman, R. E.

    1977-01-01

    Conjunctive study of four shallow coastal plain lakes in northeastern North Carolina and their LANDSAT-2 images demonstrates that it is possible to differentiate between the lakes and their respective trophic states on the basis of the multispectral scanner imagery. The year-long investigation established that monitoring of the trophic states of the lakes on a seasonal basis through application of color additive imagery enchancement techniques is possible. Utilizing a standard setting of the color additive viewer, an investigator can normalize the imagery to an internal standard of constant reflectance characteristics. By comparison of the false color renditions with a standard interference color chart combined with brightness measurements made on the viewer screen, one can relate the lake reflectances to their trophic states. Two or more bands of the imagery are required, and the present study established that for the lakes studied, Band 5 and Band 6 form a good combination.

Top