Science.gov

Sample records for l-leucine l-isoleucine l-valine

  1. Influence of L-isoleucine and pantothenate auxotrophy for L-valine formation in Corynebacterium glutamicum revisited by metabolome analyses.

    PubMed

    Bartek, Tobias; Makus, Pia; Klein, Bianca; Lang, Siegmund; Oldiges, Marco

    2008-04-01

    The effect of different amounts of supplemented L-isoleucine and pantothenate has been analysed with the auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB, showing that the final biomass concentration of this preliminary L-valine production strain can be controlled by the amount of added L-isoleucine. One gramme cell dry weight is formed from 48 micromol L-isoleucine. Different amounts of available pantothenate affect the intracellular pyruvate concentration. By limiting pantothenate supplementation from 0.8 to 0.1 microM, a 35-fold increase of cytoplasmic pyruvate up to 14.2 mM can be observed, resulting in the increased formation of L-valine, L-alanine and organic acids in the presence of low pantothenate concentrations. These findings can be used to redirect the carbon flux from glycolysis via pyruvate to the TCA cycle towards the desired product L-valine.

  2. NMR analyses of the conformations of L-isoleucine and L-valine bound to Escherichia coli isoleucyl-tRNA synthetase

    SciTech Connect

    Kohda, D.; Kawai, G.; Yokoyama, S.; Kawakami, M.; Mizushima, S.; Miyazawa, T.

    1987-10-06

    The 400-MHz /sup 1/H NMR spectra of L-isoleucine and L-valine were measured in the presence of Escherichia coli isoleucyl-tRNA synthetase (IleRS). Because of chemical exchange of L-isoleucine or L-valine between the free state and the IleRS-bound state, a transferred nuclear Overhauser effect (TRNOE) was observed among proton resonances of L-isoleucine or L-valine. However, in the presence of isoleucyl adenylate tightly bound to the amino acid activation site of IleRS, no TRNOE for L-isoleucine or L-valine was observed. This indicates that the observed TRNOE is due to the interaction of L-isoleucine or L-valine with the amino acid activation site of IleRS. The conformations of these amino acids in the amino acid activation site of IleRS were determined by the analyses of time dependences of TRNOEs and TRNOE action spectra. The IleRS-bound L-isoleucine takes the gauche/sup +/ form about the C/sub ..cap alpha../-C/sub ..beta../ bond and the trans form about the C/sub ..beta../-C/sub ..gamma../sub 1// bond. The IleRS-bound L-valine takes the guache/sup -/ form about the C/sub ..cap alpha../-C/sub ..beta../ bond. Thus, the conformation of the IleRS-bound L-valine is the same as that of IleRS-bound L-isoleucine except for the delta-methyl group. The side chain of L-isoleucine or L-valine lies in an aliphatic hydrophobic pocket of the active site of IleRS. Such hydrophobic interaction with IleRS is more significant for L-isoleucine than for L-valine. The TRNOE analysis is useful for studying the amino acid discrimination mechanism of aminoacyl-tRNA synthetases.

  3. Beneficial effects of l-leucine and l-valine on arrhythmias, hemodynamics and myocardial morphology in rats.

    PubMed

    Mitręga, Katarzyna; Zorniak, Michał; Varghese, Benoy; Lange, Dariusz; Nożynski, Jerzy; Porc, Maurycy; Białka, Szymon; Krzemiński, Tadeusz F

    2011-09-01

    Branched chain amino acids (BCAA) have been shown to have a general protective effect on the heart in different animal models as well as in humans. However, so far no attempt has been made to specifically elucidate their influence on arrhythmias. Our study was performed to evaluate whether an infusion of either l-leucine or l-valine in a dose of 1mgkg(-1)h(-1) 10min before a 7-min period of left anterior descending artery occlusion followed by 15min of reperfusion, had an effect on arrhythmias measured during the reperfusion phase in the ischemia- and reperfusion-induced arrhythmias model in rats in vivo. The effect of the infusion of these substances on mean arterial blood pressure was monitored throughout the experiment. Both of the tested amino acids exhibited significant antiarrhythmic properties. l-Leucine reduced the duration of ventricular fibrillation (P<0.05) and l-valine decreased the duration of ventricular fibrillation (P<0.001) and ventricular tachycardia (P<0.05). The two amino acids were generally hypotensive. l-Valine lowered blood pressure in all phases of the experiment (P<0.05) while l-leucine lowered this parameter mainly towards the end of occlusion and reperfusion (P<0.05). In addition, 30min infusion of the amino acids in the used dose did not produce any apparent adverse histological changes that were remarkably different from control. In summary, the results of our study suggest that l-leucine and l-valine in the dose that was used attenuates arrhythmias and are hypotensive in their influence. Our findings lend support to the many ongoing investigations into the benefit of the application of l-leucine and l-valine in cardiology like their addition to cardioplegic solutions.

  4. Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC).

    PubMed

    Denina, Ilze; Paegle, Longina; Prouza, Marek; Holátko, Jiri; Pátek, Miroslav; Nesvera, Jan; Ruklisha, Maija

    2010-07-01

    Cell growth limitation is known to be an important condition that enhances L: -valine synthesis in Corynebacterium glutamicum recombinant strains with L: -isoleucine auxotrophy. To identify whether it is the limited availability of L: -isoleucine itself or the L: -isoleucine limitation-induced rel-dependent ppGpp-mediated stringent response that is essential for the enhancement of L: -valine synthesis in growth-limited C. glutamicum cells, we deleted the rel gene, thereby constructing a relaxed (rel (-) ) C. glutamicum DeltailvA DeltapanB Deltarel ilvNM13 (pECKAilvBNC) strain. Variations in enzyme activity and L: -valine synthesis in rel (+) and rel (-) strains under conditions of L: -isoleucine excess and limitation were investigated. A sharp increase in acetohydroxy acid synthase (AHAS) activity, a slight increase in acetohydroxyacid isomeroreductase (AHAIR) activity, and a dramatic increase in L: -valine synthesis were observed in both rel (+) and rel (-) cells exposed to L: -isoleucine limitation. Although the positive effect of induction of the stringent response on AHAS and AHAIR upregulation in cells was not confirmed, we found the stringent response to be beneficial for maintaining increased AHAS, dihydroxyacid dehydratase, and transaminase B activity and L: -valine synthesis in cells during the stationary growth phase.

  5. Purification and catalytic properties of L-valine dehydrogenase from Streptomyces cinnamonensis.

    PubMed Central

    Priestley, N D; Robinson, J A

    1989-01-01

    NAD+-dependent L-valine dehydrogenase was purified 180-fold from Streptomyces cinnamonensis, and to homogeneity, as judged by gel electrophoresis. The enzyme has an Mr of 88,000, and appears to be composed of subunits of Mr 41,200. The enzyme catalyses the oxidative deamination of L-valine, L-leucine, L-2-aminobutyric acid, L-norvaline and L-isoleucine, as well as the reductive amination of their 2-oxo analogues. The enzyme requires NAD+ as the only cofactor, which cannot be replaced by NADP+. The enzyme activity is significantly decreased by thiol-reactive reagents, although purine and pyrimidine bases, and nucleotides, do not affect activity. Initial-velocity and product-inhibition studies show that the reductive amination proceeds through a sequential ordered ternary-binary mechanism; NADH binds to the enzyme first, followed by 2-oxoisovalerate and NH3, and valine is released first, followed by NAD+. The Michaelis constants are as follows; L-valine, 1.3 mM; NAD+, 0.18 mM; NADH, 74 microM; 2-oxoisovalerate, 0.81 mM; and NH3, 55 mM. The pro-S hydrogen at C-4' of NADH is transferred to the substrate; the enzyme is B-stereospecific. It is proposed that the enzyme catalyses the first step of valine catabolism in this organism. Images Fig. 1. PMID:2803248

  6. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.

    PubMed

    Chen, Cheng; Li, Yanyan; Hu, Jinyu; Dong, Xunyan; Wang, Xiaoyuan

    2015-05-01

    In this study, an L-valine-producing strain was developed from Corynebacterium glutamicum ATCC13869 through deletion of the three genes aceE, alaT and ilvA combined with the overexpression of six genes ilvB, ilvN, ilvC, lrp1, brnF and brnE. Overexpression of lrp1 alone increased L-valine production by 16-fold. Deletion of the aceE, alaT and ilvA increased L-valine production by 44-fold. Overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnE and brnF in the triple deletion mutant WCC003 further increased L-valine production. The strain WCC003/pJYW-4-ilvBNC1-lrp1-brnFE produced 243mM L-valine in flask cultivation and 437mM (51g/L) L-valine in fed-batch fermentation and lacked detectable amino-acid byproduct such as l-alanine and l-isoleucine that are usually found in the fermentation of L-valine-producing C. glutamicum.

  7. Characterization of Bacillus thuringiensis l-Isoleucine Dioxygenase for Production of Useful Amino Acids▿†

    PubMed Central

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V.; Sokolov, Pavel M.; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-01-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  8. Characterization of Bacillus thuringiensis L-isoleucine dioxygenase for production of useful amino acids.

    PubMed

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V; Sokolov, Pavel M; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-10-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  9. Reinvestigation of growth of 'L-valine zinc sulphate' crystal.

    PubMed

    Srinivasan, Bikshandarkoil R; Jyai, Rita N

    2014-01-01

    A reinvestigation of the growth of l-valine zinc sulphate crystal is reported. The slow evaporation of an aqueous solution containing l-valine and zinc sulphate heptahydrate results in the fractional crystallization of l-valine and not the organic inorganic hybrid nonlinear optical l-valine zinc sulphate crystal, as reported by Puhal Raj and Ramachandra Raja (2012).

  10. L-leucine 5-hydroxylase of Nostoc punctiforme is a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase that is useful as a biocatalyst.

    PubMed

    Hibi, Makoto; Kawashima, Takashi; Sokolov, Pavel M; Smirnov, Sergey V; Kodera, Tomohiro; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2013-03-01

    L-Leucine 5-hydroxylase (LdoA) previously found in Nostoc punctiforme PCC 73102 is a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase. LdoA catalyzed regio- and stereoselective hydroxylation of L-leucine and L-norleucine into (2S,4S)-5-hydroxyleucine and (2S)-5-hydroxynorleucine, respectively. Moreover, LdoA catalyzed sulfoxidation of L-methionine and L-ethionine in the same manner as previously described L-isoleucine 4-hydroxylase. Therefore LdoA should be a promising biocatalyst for effective production of industrially useful amino acids.

  11. (L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum.

    PubMed

    Hou, Xiaohu; Chen, Xinde; Zhang, Yue; Qian, He; Zhang, Weiguo

    2012-12-01

    Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for L-valine production by over-expressing ilvEBN ( r ) C genes at 31 °C in 72 h fermentation. Different strategies were carried out to reduce the by-products' accumulation in L-valine fermentation and also to increase the availability of precursor for L-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of L-isoleucine. Effect of different relative dissolved oxygen on L-valine production and by-products' formation was recorded, indicating that 15 % saturation may be the most appropriate relative dissolved oxygen for L-valine fermentation with almost no L-lactic acid and L-glutamate formed. To minimize L-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of L-alanine accumulated by alaT inactivated strains harboring ilvEBN ( r ) C genes, L-alanine concentration was reduced to 0.18 g/L by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, and 0.22 g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. Meanwhile, L-valine production and conversion efficiency were enhanced to 31.15 g/L and 0.173 g/g by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, 38.82 g/L and 0.252 g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. This study provides combined strategies to improve L-valine yield by minimization of by-products' production.

  12. Application of uniform design in L-isoleucine fermentation.

    PubMed

    Liu, D; Wang, P; Li, F; Li, J

    1991-01-01

    Uniform design was employed in our experiments for testing the effects of nine different compositions of the culture media for the production of L-isoleucine in Corynebacterium crenatum A11 fermentation. The most favorable medium was found to be composed of glucose 12%, (NH4)2SO4 2%, KH2PO4 0.1%, K2HPO4 0.45%, MgSO4.7H2O 0.055%, biotin 1 microgram, thiamine 20 micrograms, FeSO4.7H2O 2 ppm, MnSO4.4H2O 2 ppm, CaCO3 4% with pH 7.0-7.2. By using such medium, the amount of L-isoleucine produced by A11 was increased up to 15.1 mg/ml. Uniform design, as compared with orthogonal design, has the advantages of higher efficiency and easier analysis of the factors that affect the production. PMID:1823590

  13. Optical Properties of TGS Crystal with L-Valine Admixture

    SciTech Connect

    Stadnyk, V. Yo. Romanyuk, N. A.; Kiryk, Yu. I.

    2010-11-15

    The thermal expansion and temperature and the spectral dependences of the refractive indices and birefringence of triglycine sulphate (TGS) crystals with a 5% L-valine admixture have been investigated. It is established that the introduction of L-valine weakens the temperature dependence of the refractive indices and the birefringence and thermal expansion of TGS crystals. The parameters of the Sellmeier formula, refractions, and electronic polarizabilities are calculated. The changes observed may be related to the increase in hardness of admixture-containing crystals, the decrease in the spontaneous polarization, the replacement of the refraction components of the valine bond, or the spontaneous electro-optic effect.

  14. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.

    PubMed

    Bartek, Tobias; Blombach, Bastian; Zönnchen, Enrico; Makus, Pia; Lang, Siegmund; Eikmanns, Bernhard J; Oldiges, Marco

    2010-01-01

    Cofactor recycling is known to be crucial for amino acid synthesis. Hence, cofactor supply was now analyzed for L-valine to identify new targets for an improvement of production. The central carbon metabolism was analyzed by stoichiometric modeling to estimate the influence of cofactors and to quantify the theoretical yield of L-valine on glucose. Three different optimal routes for L-valine biosynthesis were identified by elementary mode (EM) analysis. The modes differed mainly in the manner of NADPH regeneration, substantiating that the cofactor supply may be crucial for efficient L-valine production. Although the isocitrate dehydrogenase as an NADPH source within the tricarboxylic acid cycle only enables an L-valine yield of Y(Val/Glc) = 0.5 mol L-valine/mol glucose (mol Val/mol Glc), the pentose phosphate pathway seems to be the most promising NADPH source. Based on the theoretical calculation of EMs, the gene encoding phosphoglucoisomerase (PGI) was deleted to achieve this EM with a theoretical yield Y(Val/Glc) = 0.86 mol Val/mol Glc during the production phase. The intracellular NADPH concentration was significantly increased in the PGI-deficient mutant. L-Valine yield increased from 0.49 +/- 0.13 to 0.67 +/- 0.03 mol Val/mol Glc, and, concomitantly, the formation of by-products such as pyruvate was reduced.

  15. L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074(T).

    PubMed

    Zhang, Bing-Huo; Chen, Wei; Li, Han-Quan; Yang, Jian-Yuan; Zha, Dai-Ming; Duan, Yan-Qing; N Hozzein, Wael; Xiao, Min; Gao, Rui; Li, Wen-Jun

    2016-05-01

    An antialgal compound was isolated from the cultured broth of Streptomyces jiujiangensis JXJ 0074(T) by using bioassay methods. Based on the data of (1)H-NMR, (13)C-NMR, ESI-MS, and thin layer chromatography, the active compound was identified as L-valine, which showed antialgal activity mainly against Microcystis. L-valine exhibited greater antialgal activities than both L-lysine and copper sulfate (CuSO4) did on Microcystis aeruginosa lawn. However, M. aeruginosa recovered growth earlier with higher growth rate in L-valine treatment than in L-lysine treatment. L-valine dissipated completely within 2 days, much quicker than L-lysine (6 days), which resulted in the lysing of more than 80 % M. aeruginosa cells and the release of amount of intracellular microcystin-LR (MC-LR) within 2 days. As a resultant, the extracellular MC-LR content was more than twice of the control from day 1 to 5. Exposure to L-valine significantly promoted the synthesis of MC-LR. L-lysine also promoted the release and synthesis of MC-LR with much lesser efficiency than L-valine. L-valine could damage Microcystis severely, causing perforation and collapse of M. aeruginosa cells and decrease of the chlorophyll. The superoxide dismutase (SOD) activity in L-valine-treated cells of M. aeruginosa initially increased with 32.94 ± 3.37 % higher than the control after 36 h and then decreased quickly. However, the increase rate of superoxide anion radical (O2 (-)) was much higher than that of SOD, which resulted in serious lipid peroxidation and accumulation of malondialdehyde (MDA). To our knowledge, this is the first report showing L-valine active against cyanobacteria.

  16. D-valine as an indicator for metabolic changes in L-valine

    SciTech Connect

    Faulhaber, P.; Bartlett, R.; Lathrop, K.A.; Harper, P.V.

    1985-05-01

    Racemic C-11-carboxyl labeled amino acids are easily prepared and have been proven useful as pancreatic imaging agents in humans. The authors are continuing an investigation of the biokinetics and metabolism of one of these, C-11 labeled valine using the D-enantiomer to measure tissue distribution of ''unchanged'' valine and comparing it to L-valine. Mice were injected IV with D-, L-, or D,L-valine, and data collected for various tissues, exhaled CO/sub 2/ and urine at intervals between 1 and 150 min. The % injected activity (IA) per organ for D-valine was multiplied by the ratio of the % retained activity (RA) for L-valine to % RA for D-valine. This value is assumed to represent ''unchanged'' L-valine; it was subtracted from the measured % IA for L-valine to give metabolized C-11. Greatest differences are an increasing excess of --15% for small intestine (SI) and an increasing deficit of --15% for muscle at 120 min. Muscle is apparently an active site for incorporation of C-11 from L-valine into other molecules which are then concentrated in the SI. Some tissues were homogenized in chloroform-methanol (2:1), mixed with a small amount of water, centrifuged, and the 3 resulting layers assayed for C-11. In the liver, for example, at 15 and 45 min there was no activity in the chloroform layer for D-, or L-valine. The aqueous layer contained 18% sample activity (SA) at 15 min and 10% SA at 45 min for L-valine, and --78% SA at both times for D-valine; the tissue layer contained 82% SA and 91% SA, for L-valine, and --22% SA for D-valine at both times. Use of enantiomers in this way gives the possibility of quantitating isolated metabolic processes.

  17. Application of metabolic engineering for the biotechnological production of L-valine.

    PubMed

    Oldiges, Marco; Eikmanns, Bernhard J; Blombach, Bastian

    2014-07-01

    The branched chain amino acid L-valine is an essential nutrient for higher organisms, such as animals and humans. Besides the pharmaceutical application in parenteral nutrition and as synthon for the chemical synthesis of e.g. herbicides or anti-viral drugs, L-valine is now emerging into the feed market, and significant increase of sales and world production is expected. In accordance, well-known microbial production bacteria, such as Escherichia coli and Corynebacterium glutamicum strains, have recently been metabolically engineered for efficient L-valine production under aerobic or anaerobic conditions, and the respective cultivation and production conditions have been optimized. This review summarizes the state of the art in L-valine biosynthesis and its regulation in E. coli and C. glutamicum with respect to optimal metabolic network for microbial L-valine production, genetic strain engineering and bioprocess development for L-valine production, and finally, it will shed light on emerging technologies that have the potential to accelerate strain and bioprocess engineering in the near future.

  18. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.

    PubMed

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2013-02-01

    We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.

  19. Improvement of L-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes.

    PubMed

    Hou, Xiaohu; Ge, Xiangyang; Wu, Di; Qian, He; Zhang, Weiguo

    2012-01-01

    Brevibacterium flavum ATCC14067 was engineered for L: -valine production by overexpression of different ilv genes; the ilvEBN(r)C genes from B. flavum NV128 provided the best candidate for L: -valine production. In traditional fermentation, L: -valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the L: -valine production and conversion efficiency based on the optimum temperatures of L: -valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and L: -valine biosynthesis enzymes activity were obtained at high temperature, and the maximum L: -valine production, conversion efficiency, and specific L: -valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g(-1) h(-1), respectively, at 37°C in 48 h fermentation. The strategy for enhancing L: -valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.

  20. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma.

    PubMed

    Li, Yingying; Kojtari, Arben; Friedman, Gary; Brooks, Ari D; Fridman, Alex; Ji, Hai-Feng

    2014-02-13

    L-Valine solutions in water and phosphate buffer were treated with nonthermal plasma generated by using a dielectric barrier discharge (DBD) device and the products generated after plasma treatments were characterized by (1)H NMR and GC-MS. Our results demonstrate that L-valine is decomposed to acetone, formic acid, acetic acid, threo-methylaspartic acid, erythro-methlyaspartic acid, and pyruvic acid after direct exposure to DBD plasma. The concentrations of these compounds are time-dependent with plasma treatment. The mechanisms of L-valine under the DBD plasma are also proposed in this study. Acetone, pyruvic acid, and organic radicals (•)CHO, CH3COCH2OO(•) (acetonylperoxy), and CH3COC(OH)2OO(•) (1,1-dihydroxypropan-2-one peroxy) may be the determining chemicals in DNA damage.

  1. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions.

    PubMed

    Hasegawa, Satoshi; Uematsu, Kimio; Natsuma, Yumi; Suda, Masako; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2012-02-01

    Production of L-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the L-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall L-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of L-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for L-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD(+) ratio significantly decreased, and glucose consumption and L-valine production drastically improved. Moreover, L-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD(+) ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for L-valine production under oxygen deprivation conditions. The L-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM L-valine after 24 h with a yield of 0.63 mol mol of glucose(-1), and the L-valine productivity reached 1,940 mM after 48 h.

  2. Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis.

    PubMed

    Park, Jin Hwan; Kim, Tae Yong; Lee, Kwang Ho; Lee, Sang Yup

    2011-04-01

    We have previously reported the development of a 100% genetically defined engineered Escherichia coli strain capable of producing L-valine from glucose with a high yield of 0.38 g L-valine per gram glucose (0.58 mol L-valine per mol glucose) by batch culture. Here we report a systems biological strategy of employing flux response analysis in bioprocess development using L-valine production by fed-batch culture as an example. Through the systems-level analysis, the source of ATP was found to be important for efficient L-valine production. There existed a trade-off between L-valine production and biomass formation, which was optimized for the most efficient L-valine production. Furthermore, acetic acid feeding strategy was optimized based on flux response analysis. The final fed-batch cultivation strategy allowed production of 32.3 g/L L-valine, the highest concentration reported for E. coli. This approach of employing systems-level analysis of metabolic fluxes in developing fed-batch cultivation strategy would also be applicable in developing strategies for the efficient production of other bioproducts.

  3. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains.

  4. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. PMID:26453945

  5. Spin-trap-radical chromatography of spin adducts produced from L-valine by. gamma. -irradiation

    SciTech Connect

    Makiino, K.; Suzuki, N.; Moriya, F.; Rokushika, S.; Hatano, H.

    1980-01-01

    Diastereomeric spin adducts produced by reaction of 2-methyl-2-nitrosopropane with the short-lived radicals from L-valine by ..gamma..-irradiation could be separated and identified by means of high performance liquid chromatography and ESR spectroscopy. 6 figures.

  6. Dietary L-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia.

    PubMed

    Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Bryder, David; Flygare, Johan; Karlsson, Stefan

    2012-09-13

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Recently, a case study reported a patient who became transfusion-independent in response to treatment with the amino acid L-leucine. Therefore, we have validated the therapeutic effect of L-leucine using our recently generated mouse model for RPS19-deficient DBA. Administration of L-leucine significantly improved the anemia in Rps19-deficient mice (19% improvement in hemoglobin concentration; 18% increase in the number of erythrocytes), increased the bone marrow cellularity, and alleviated stress hematopoiesis. Furthermore, the therapeutic response to L-leucine appeared specific for Rps19-deficient hematopoiesis and was associated with down-regulation of p53 activity. Our study supports the rationale for clinical trials of L-leucine as a therapeutic agent for DBA.

  7. Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.

    PubMed

    Park, Jin Hwan; Jang, Yu-Sin; Lee, Jeong Wook; Lee, Sang Yup

    2011-05-01

    A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L-valine tolerance, was metabolically engineered for the production of L-valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L-valine, available for enhanced L-valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBN(mut) genes encoding feedback-resistant acetohydroxy acid synthase (AHAS) I and the L-valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid-based overexpression. The global regulator Lrp and L-valine exporter YgaZH were also amplified by plasmid-based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBN(mut) , ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L-valine by fed-batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L-valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K-12, which have so far been the most efficient L-valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli.

  8. Neomycin inhibition of (+)-7-iso-jasmonoyl-L-isoleucine accumulation and signaling.

    PubMed

    Vadassery, Jyothilakshmi; Reichelt, Michael; Jimenez-Aleman, Guillermo H; Boland, Wilhelm; Mithöfer, Axel

    2014-07-01

    The majority of plant defenses against insect herbivores are coordinated by jasmonate (jasmonic acid, JA; (+)-7-iso-jasmonoyl-L-isoleucine, JA-Ile)-dependent signaling cascades. Insect feeding and mimicking herbivory by application of oral secretions (OS) from the insect induced both cytosolic Ca(2+) and jasmonate-phytohormone elevation in plants. Here it is shown that in Arabidopsis thaliana upon treatment with OS from lepidopteran Spodoptera littoralis larvae, the antibiotic neomycin selectively blocked the accumulation of OS-induced Ca(2+) elevation and level of the bioactive JA-Ile, in contrast to JA level. Furthermore, neomycin treatment affected the downstream expression of JA-Ile-responsive genes, VSP2 and LOX2, in Arabidopsis. The neomycin-dependent reduced JA-Ile level is partially due to increased CYP94B3 expression and subsequent JA-Ile turn-over to12-hydroxy-JA-Ile. It is neither due to the inhibition of the enzymatic conjugation process nor to substrate availability. Thus, blocking Ca(2+) elevation specifically controls JA-Ile accumulation and signaling, offering an insight into role of calcium in defense against insect herbivory.

  9. A Co 2O 2 metallacycle exclusively supported by L-valine

    NASA Astrophysics Data System (ADS)

    Galán-Mascarós, J. R.; Martí-Gastaldo, C.; Murcia-Martínez, A.

    2008-12-01

    [Co 2(OH) 2( L-valine) 4]·2.5H 2O has been prepared under hydrothermal conditions and constitutes the first example of a [Co 2O 2] core supported exclusively by aminoacids. This synthetic dimetallic model for redox active metalloenzymes is one of the few binary aminoacid compounds of biologically relevant metal ions that has been structurally characterized, showing the possibilities of this synthetic approach for preparation of models in bioinorganic chemistry.

  10. Partial molar volume of L-Valine in water under high pressure

    NASA Astrophysics Data System (ADS)

    Sawamura, Seiji

    2013-06-01

    Partial molar volume of L-valine in water was estimated up to 400 MPa from pressure coefficient of the solubility of the solute and molar volume of solid valine. The former was measured in a previous paper and the latter was measured in this article using a piston-cylinder typed cell. The partial molar volume increased with pressure and a maximum was observed around 250 MPa. It was compared with other amino acids.

  11. Reductive amination by recombinant Escherichia coli: whole cell biotransformation of 2-keto-3-methylvalerate to L-isoleucine.

    PubMed

    Lorenz, Elisabeth; Klatte, Stephanie; Wendisch, Volker F

    2013-11-01

    A whole cell biotransformation system for reductive amination has been studied in recombinant Escherichia coli cells. Reductive amination of 2-keto-3-methylvalerate to L-isoleucine by a two-enzyme-cascade was achieved by overproduction of endogenous L-alanine dependent transaminase AvtA and heterologous L-alanine dehydrogenase from Bacillus subtilis in recombinant E. coli. Up to 100 mM L-isoleucine were produced from 100 mM 2-keto-3-methylvalerate and 100 mM ammonium sulfate. Regeneration of NADH as cofactor in the whole cell system was driven by glucose catabolism. The effects of defined gene deletions in the central carbon metabolism on biotransformation were tested. Strains lacking the NuoG subunit of NADH:ubiquinone oxidoreductase (complex I) or aceA encoding the glyoxylate cycle enzyme isocitrate lyase exhibited increased biotransformation rates.

  12. Freezing capture of polymorphic aggregates of bolaamphiphilic (L)-valine-based molecular hydrogelators.

    PubMed

    Nebot, Vicent J; Díaz-Oltra, Santiago; Smets, Johan; Fernández Prieto, Susana; Miravet, Juan F; Escuder, Beatriu

    2014-05-01

    Nanostructured xerogels have been prepared by the freeze-drying of hydrogels and aggregates formed by bolaamphiphilic L-valine derivatives after aging under different environmental conditions. A wide variety of shapes and sizes has been achieved by a simple methodology. These nanostructures have been studied by SEM and WAXD and a dramatic influence of structural flexibility on the kinetics of aggregation has been observed. Such flexibility and a modulation of the hydrophobic effect have shown a profound influence in the packing of these compounds and revealed a high degree of polymorphism.

  13. Refractometry of uniaxially compressed triglycine sulphate crystals doped with L-valine

    NASA Astrophysics Data System (ADS)

    Stadnyk, V. Yo.; Kiryk, Yu. I.

    2012-05-01

    The temperature and spectral dependences of the refractive indices n i of triglycine sulphate (TGS) crystals doped with L-valine have been investigated. Doping is found to weaken the temperature dependence of n i of TGS crystals. The electronic polarizabilities α i , refractions R i , and parameters of UV oscillators (λ0 i , B 1 i ) of mechanically distorted doped TGS crystals have been calculated. The temperature coefficients of the shift of the phase-transition point, ∂ T c /∂σ m , are found to be somewhat smaller than those for pure TGS crystals, which is confirmed by the increase in the hardness of TGS crystals after doping.

  14. Local rhamnosoft, ceramides and L-isoleucine in atopic eczema: a randomized, placebo controlled trial

    PubMed Central

    Marseglia, Alessia; Licari, Amelia; Agostinis, Fabio; Barcella, Antonio; Bonamonte, Domenico; Puviani, Mario; Milani, Massimo; Marseglia, GianLuigi

    2014-01-01

    Background A non-steroidal, anti-inflammatory moisturizing cream containing rhamnosoft, ceramides, and L-isoleucine (ILE) (pro-AMP cream) has been recently developed for the specific treatment of atopic eczema (AE) of the face. In this trial, we evaluated the clinical efficacy and tolerability of pro-AMP cream in the treatment of facial AE in children in comparison with an emollient cream. Methods In a randomized, prospective, assessor-blinded, parallel groups (2:1) controlled trial, 107 children (72 allocated to pro-AMP cream and 35 allocated to control group) with mild-to-moderate chronic AE of the face were enrolled. Treatments were applied twice daily for a 6-week period. Facial Eczema Severity Score (ESS) was evaluated at baseline, week 3, and week 6, by an assessor unaware of treatment allocation. Investigator's Global Assessment (IGA) score was assessed at week 3 and at week 6. Tolerability was evaluated at week 3 and at week 6 using a 4-point score (from 0: low tolerability to 3: very good tolerability). Results At baseline ESS, mean (SD) was 6.1 (2.4) in the pro-AMP cream group and 5.3 (3) in the control group. In the pro-AMP group, in comparison with baseline, ESS was significantly reduced to 2.5 (−59%) after 3 wks and to 1.0 (−84%) at week 6 (p = 0.0001). In the control group, ESS was reduced to 3 (−42%) at week 2 and to 2.6 (−50%) at week 6. At week 6, ESS in pro-AMP cream was significantly lower than the control group (1.0 vs. 2.6; p = 0.001). Both products were well tolerated. Conclusion Pro-AMP cream has shown to be effective in the treatment of mild-to-moderate chronic lesion of AE of the face. Clinical efficacy was greater in comparison with an emollient cream. (Clinical trial Registry: NTR4084). PMID:24750568

  15. Effects of dietary L-isoleucine on laying performance and immunomodulation of laying hens.

    PubMed

    Dong, X Y; Azzam, M M M; Zou, X T

    2016-10-01

    Isoleucine may be a limiting amino acid for laying hens fed diets with a lowered protein level. An experiment was conducted to examine laying performance and the immune function of laying hens provided diets varying in digestible isoleucine levels during the peak production period. A total number of 400 Lohmann Brown laying hens, 28 wk of age, were allocated to 5 dietary treatment groups, each of which included 5 replicates of 16 hens per replicate (4 cages / replicate; 80 hens / treatment). L-isoleucine was added to the experimental diet (14% CP) containing synthetic amino (methionine, lysine, threonine, tryptophan, and valine) by zero, 1.0, 2.0, 3.0, and 4.0 g/kg, corresponding to 0.54%, 0.64%, 0.74%, 0.84, and 0.94% digestible isoleucine, respectively. At the end of the experiment (wk 40), dietary isoleucine did not affect laying performance or egg quality. Serum albumin concentration increased quadratically (P < 0.05) in response to digestible dietary isoleucine at 0.74%. Serum free isoleucine and lysine increased (P < 0.05) in response to digestible dietary isoleucine at 0.74%. Digestible dietary isoleucine levels did not affect the serum concentrations of total antioxidative capability (T-AOC), total superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and CuZn-superoxide dismutase (CuZn-SOD). There was no significant (P > 0.05) response of excess digestible isoleucine level on the serum level of IgG, IgA, or IgM. In addition, dietary isoleucine levels did not affect the concentrations of secretory immunoglobulin A (sIgA), tumor necrosis factor alpha (TNFα), or interleukin (IL-2 and IL-6) in the ileum. Also, expressions of ileal MUC2 mRNA, sIgA mRNA, and IL-1β mRNA were not changed (P > 0.05) by excess digestible isoleucine level. Furthermore, excess digestible isoleucine level did not change mRNA expression of ileal tight junction protein (claudin-1 and occludin). No effect occurred when isoleucine was supplemented, suggesting that it is

  16. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol.

    PubMed

    Takagi, Hiroshi; Hashida, Keisuke; Watanabe, Daisuke; Nasuno, Ryo; Ohashi, Masataka; Iha, Tomoya; Nezuo, Maiko; Tsukahara, Masatoshi

    2015-02-01

    Awamori shochu is a traditional distilled alcoholic beverage made from steamed rice in Okinawa, Japan. Although it has a unique aroma that is distinguishable from that of other types of shochu, no studies have been reported on the breeding of awamori yeasts. In yeast, isoamyl alcohol (i-AmOH), known as the key flavor of bread, is mainly produced from α-ketoisocaproate in the pathway of L-leucine biosynthesis, which is regulated by end-product inhibition of α-isopropylmalate synthase (IPMS). Here, we isolated mutants resistant to the L-leucine analog 5,5,5-trifluoro-DL-leucine (TFL) derived from diploid awamori yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular L-leucine, and among them, one mutant overproduced i-AmOH in awamori brewing. This mutant carried an allele of the LEU4 gene encoding the Ser542Phe/Ala551Val variant IPMS, which is less sensitive to feedback inhibition by L-leucine. Interestingly, we found that either of the constituent mutations (LEU4(S542F) and LEU4(A551V)) resulted in the TFL tolerance of yeast cells and desensitization to L-leucine feedback inhibition of IPMS, leading to intracellular L-leucine accumulation. Homology modeling also suggested that L-leucine binding was drastically inhibited in the Ser542Phe, Ala551Val, and Ser542Phe/Ala551Val variants due to steric hindrance in the cavity of IPMS. As we expected, awamori yeast cells expressing LEU4(S542F), LEU4(A551V), and LEU4(S542F/A551V) showed a prominent increase in extracellular i-AmOH production, compared with that of cells carrying the vector only. The approach described here could be a practical method for the breeding of novel awamori yeasts to expand the diversity of awamori taste and flavor. PMID:25060730

  17. Studies on spin-trapped radicals in. gamma. -irradiated aqueous L-valine solutions by high-performance liquid chromatography and ESR spectroscopy

    SciTech Connect

    Makino, K.

    1980-05-01

    Short-lived radicals produced in ..gamma..-irradiated aqueous L-valine solution were investigated by the method of spin trapping and subsequently by means of high-performance liquid chromatography combined with ESR spectroscopy. Four spin adducts due to L-valine could be identified. Among them, even the diastereoisomeric spin adducts due to L-valine could be separated. In addition, the effect of pH on the change in the spectra of the diastereoisomers is discussed.

  18. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals.

    PubMed

    Nirmala, L Ruby; Thomas Joseph Prakash, J

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals.

  19. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals

    NASA Astrophysics Data System (ADS)

    Nirmala, L. Ruby; Prakash, J. Thomas Joseph

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals.

  20. Crystal growth and characterization of L-valine cadmium acetate a semiorganic NLO crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, J.; Ilayabarathi, P.; Maadeswaran, P.

    2012-08-01

    A new semiorganic nonlinear optical material, L-valine cadmium acetate, was grown successfully from aqueous solution by slow evaporation method. The grown crystals characterized by using Powder X-ray diffraction analysis confirms the structure of the grown title compound. The functional groups have been identified using FTIR spectral data. Transmittance compound was analyzed by using UV-vis spectrum. The thermal behavior of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The dielectric constant was studied as a function of frequency for various temperatures. The grown crystal has positive photoconductivity nature. The fluorescence spectrum of the crystal was recorded and its optical band gap is about 3.4479 eV. Second order nonlinear optical property of the grown crystal has been confirmed by modified Kurtz-Perry powder second harmonic generation (SHG) test.

  1. Baicalein reverts L-valine-induced persistent sodium current up-modulation in primary cortical neurons.

    PubMed

    Caioli, Silvia; Candelotti, Elena; Pedersen, Jens Z; Saba, Luana; Antonini, Alessia; Incerpi, Sandra; Zona, Cristina

    2016-04-01

    L-valine is a branched-chain amino acid (BCAA) largely used as dietary integrator by athletes and involved in some inherited rare diseases such as maple syrup urine disease. This pathology is caused by an altered BCAA metabolism with the accumulation of toxic keto acids in tissues and body fluids with consequent severe neurological symptoms. In animal models of BCAA accumulation, increased oxidative stress levels and lipid peroxidation have been reported. The aim of this study was to analyze both whether high BCAA concentrations in neurons induce reactive oxygen species (ROS) production and whether, by performing electrophysiological recordings, the neuronal functional properties are modified. Our results demonstrate that in primary cortical cultures, a high dose of valine increases ROS production and provokes neuronal hyperexcitability because the action potential frequencies and the persistent sodium current amplitudes increase significantly compared to non-treated neurons. Since Baicalein, a flavone obtained from the Scutellaria root, has been shown to act as a strong antioxidant with neuroprotective effects, we evaluated its possible antioxidant activity in primary cortical neurons chronically exposed to L-valine. The preincubation of cortical neurons with Baicalein prevents the ROS production and is able to revert both the neuronal hyperexcitability and the increase of the persistent sodium current, indicating a direct correlation between the ROS production and the altered physiological parameters. In conclusion, our data show that the electrophysiological alterations of cortical neurons elicited by high valine concentration are due to the increase in ROS production, suggesting much caution in the intake of BCAA dietary integrators. PMID:26721313

  2. Baicalein reverts L-valine-induced persistent sodium current up-modulation in primary cortical neurons.

    PubMed

    Caioli, Silvia; Candelotti, Elena; Pedersen, Jens Z; Saba, Luana; Antonini, Alessia; Incerpi, Sandra; Zona, Cristina

    2016-04-01

    L-valine is a branched-chain amino acid (BCAA) largely used as dietary integrator by athletes and involved in some inherited rare diseases such as maple syrup urine disease. This pathology is caused by an altered BCAA metabolism with the accumulation of toxic keto acids in tissues and body fluids with consequent severe neurological symptoms. In animal models of BCAA accumulation, increased oxidative stress levels and lipid peroxidation have been reported. The aim of this study was to analyze both whether high BCAA concentrations in neurons induce reactive oxygen species (ROS) production and whether, by performing electrophysiological recordings, the neuronal functional properties are modified. Our results demonstrate that in primary cortical cultures, a high dose of valine increases ROS production and provokes neuronal hyperexcitability because the action potential frequencies and the persistent sodium current amplitudes increase significantly compared to non-treated neurons. Since Baicalein, a flavone obtained from the Scutellaria root, has been shown to act as a strong antioxidant with neuroprotective effects, we evaluated its possible antioxidant activity in primary cortical neurons chronically exposed to L-valine. The preincubation of cortical neurons with Baicalein prevents the ROS production and is able to revert both the neuronal hyperexcitability and the increase of the persistent sodium current, indicating a direct correlation between the ROS production and the altered physiological parameters. In conclusion, our data show that the electrophysiological alterations of cortical neurons elicited by high valine concentration are due to the increase in ROS production, suggesting much caution in the intake of BCAA dietary integrators.

  3. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.

    PubMed

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-09-01

    L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.

  4. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction.

    PubMed

    Vogt, Michael; Haas, Sabine; Klaffl, Simon; Polen, Tino; Eggeling, Lothar; van Ooyen, Jan; Bott, Michael

    2014-03-01

    Using metabolic engineering, an efficient L-leucine production strain of Corynebacterium glutamicum was developed. In the wild type of C. glutamicum, the leuA-encoded 2-isopropylmalate synthase (IPMS) is inhibited by low L-leucine concentrations with a K(i) of 0.4 mM. We identified a feedback-resistant IMPS variant, which carries two amino acid exchanges (R529H, G532D). The corresponding leuA(fbr) gene devoid of the attenuator region and under control of a strong promoter was integrated in one, two or three copies into the genome and combined with additional genomic modifications aimed at increasing L-leucine production. These modifications involved (i) deletion of the gene encoding the repressor LtbR to increase expression of leuBCD, (ii) deletion of the gene encoding the transcriptional regulator IolR to increase glucose uptake, (iii) reduction of citrate synthase activity to increase precursor supply, and (iv) introduction of a gene encoding a feedback-resistant acetohydroxyacid synthase. The production performance of the resulting strains was characterized in bioreactor cultivations. Under fed-batch conditions, the best producer strain accumulated L-leucine to levels exceeding the solubility limit of about 24 g/l. The molar product yield was 0.30 mol L-leucine per mol glucose and the volumetric productivity was 4.3 mmol l⁻¹ h⁻¹. These values were obtained in a defined minimal medium with a prototrophic and plasmid-free strain, making this process highly interesting for industrial application. PMID:24333966

  5. Etching, micro hardness and laser damage threshold studies of a nonlinear optical material L-valine

    NASA Astrophysics Data System (ADS)

    Anbuchezhiyan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Kanakam, C. C.; Singh, S. P.; Pal, P. K.; Datta, P. K.

    2012-04-01

    A nonlinear optical crystal of L-valine was grown from an aqueous solution containing a small amount of phosphoric acid by the slow evaporation method. The grown crystal was characterized by a single crystal X-ray diffraction to determine the unit cell parameters. The powder X-ray diffraction analysis also confirmed the lattice parameters to be a = 9.6687(7) Å, b = 5.2709(4) Å, c = 12.0371(10) Å and β = 90.805(4)°. The results of the Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES) indicate the presence of a small amount of phosphorus in the grown crystal. The Vickers micro hardness test was performed to study the mechanical strength of the crystals. Chemical etching studies were carried out to analyze the dislocation structure. The laser damaged threshold of the grown crystal was measured to be 11.11 GW/cm2 for 10 ns pulse at 1064 nm, which is higher than that of the standard nonlinear optical crystals like KDP. Second harmonic generation of the grown crystals was also 1.44 times that of KDP.

  6. Study on optical properties of L-valine doped ADP crystal

    NASA Astrophysics Data System (ADS)

    Shaikh, R. N.; Anis, Mohd.; Shirsat, M. D.; Hussaini, S. S.

    2015-02-01

    Single crystal of L-valine doped ammonium dihydrogen phosphate has been grown by slow evaporation method at room temperature. The crystalline nature of the grown crystal was confirmed using powder X-ray diffraction technique. The different functional groups of the grown crystal were identified using Fourier transform infrared analysis. The UV-visible studies were employed to examine the high optical transparency and influential optical constants for tailoring materials suitability for optoelectronics applications. The cutoff wavelength of the title crystal was found to be 280 nm with wide optical band gap of 4.7 eV. The dielectric measurements were carried to determine the dielectric constant and dielectric loss at room temperature. The grown crystal has been characterized by thermogravimetric analysis. The second harmonic generation efficiency of the grown crystal was determined by the classical Kurtz powder technique and it is found to be 1.92 times that of potassium dihydrogen phosphate. The grown crystal was identified as third order nonlinear optical material employing Z-scan technique using He-Ne laser operating at 632.8 nm.

  7. Treatment with L-valine ameliorates liver fibrosis and restores thrombopoiesis in rats exposed to carbon tetrachloride.

    PubMed

    Nakanishi, Chikashi; Doi, Hideyuki; Katsura, Kazunori; Satomi, Susumu

    2010-06-01

    It has been reported that treatment with branched chain amino acids (BCAAs) increases the survival rates in cirrhotic patients. In this study, we investigated the effect of L-valine, one of BCAAs, on liver fibrosis in rat. To induce liver fibrosis, male Wistar rats were injected carbon tetrachloride (CCl(4)) intraperitoneally (2.0 mL/kg) twice a week for 12 weeks. The rats (seven to fifteen rats for each group) were then administered 1.688 g/kg/day of L-valine intravenously for 7 days or 10% amino acid preparation that provided the same amount of nitrogen. Seven days after the last administration, blood platelet counts and bone marrow megakaryocyte counts were significantly higher in the valine group than in the control group (131.2 +/- 38.3 vs. 106.3 +/- 14.5 x 10(4)/microL, p = 0.04; 18.0 +/- 2.1 vs. 13.5 +/- 2.2 per field, p < 0.01, respectively). Importantly, the mRNA level of thrombopoietin, a key regulator of thrombopoiesis, was significantly higher in the liver of the valine group than the control group. Furthermore, hepatic fibrosis was significantly reduced in the valine group, and the mRNA levels of factors associated with liver fibrosis such as procollagen alpha1(III), transforming growth factor-beta1 and connective tissue growth factor were significantly lower in the liver of the valine group 10 days after the last administration. These results indicate that L-valine treatment ameliorates liver fibrosis and restores thrombopoiesis in rats exposed to CCl(4). Therefore, L-valine supplementation may be helpful for patients with liver cirrhosis.

  8. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata).

    PubMed

    Stitz, Michael; Hartl, Markus; Baldwin, Ian T; Gaquerel, Emmanuel

    2014-10-01

    Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-L-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study.

  9. Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions.

    PubMed

    Cambrón, G; Sevilla, J M; Pineda, T; Blázquez, M

    1996-03-01

    The present study reports on the absorption and emission properties of the Schiff bases formed by pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions. Species protonated at the imine and ring nitrogen are the most fluorescent in both Schiff bases with a quantum yield of 0.02, i.e., 20-fold the value found for species in alkaline solutions. In agreement with other studies, species protonated at the imine nitrogen shows an emission around 500 nm upon excitation at 415 nm. In contrast to previous observations on other PLP Schiff bases, emissions at 560 nm (PL-Ile) and 540 nm (PLP-Ile) are observed upon excitation at 365 and 415 nm, respectively. The emission at 470 nm found in PLP-Ile Schiff base upon excitation at 355 nm is ascribed to a multipolar monoprotonated species. An estimation for the pK a of the imine in the excited state ( ≈ 8.5) for both Schiff bases is also reached. Our results suggest that fast protonation reactions on the excited state are responsible for the observed fluorescence. These effects, in which the hydrogen bond and the phosphate group seem to play a role, could be extended to understanding coenzyme environments in proteins. PMID:24226991

  10. Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions.

    PubMed

    Cambrón, G; Sevilla, J M; Pineda, T; Blázquez, M

    1996-03-01

    The present study reports on the absorption and emission properties of the Schiff bases formed by pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions. Species protonated at the imine and ring nitrogen are the most fluorescent in both Schiff bases with a quantum yield of 0.02, i.e., 20-fold the value found for species in alkaline solutions. In agreement with other studies, species protonated at the imine nitrogen shows an emission around 500 nm upon excitation at 415 nm. In contrast to previous observations on other PLP Schiff bases, emissions at 560 nm (PL-Ile) and 540 nm (PLP-Ile) are observed upon excitation at 365 and 415 nm, respectively. The emission at 470 nm found in PLP-Ile Schiff base upon excitation at 355 nm is ascribed to a multipolar monoprotonated species. An estimation for the pK a of the imine in the excited state ( ≈ 8.5) for both Schiff bases is also reached. Our results suggest that fast protonation reactions on the excited state are responsible for the observed fluorescence. These effects, in which the hydrogen bond and the phosphate group seem to play a role, could be extended to understanding coenzyme environments in proteins.

  11. l-Isoleucine in a Choline Chloride/Ethylene Glycol Deep Eutectic Solvent: A Reusable Reaction Kit for the Asymmetric Cross-Aldol Carboligation.

    PubMed

    Fanjul-Mosteirín, Noé; Concellón, Carmen; Del Amo, Vicente

    2016-09-01

    l-Isoleucine is able to catalyze the cross-aldol reaction between cyclohexanone and aromatic aldehydes in a deep eutectic solvent consisting in choline chloride and ethylene glycol, rendering products with high diatereo- and enantioselectivity. This protocol is straightforward and green: the organocatalyst and the reaction medium can be recycled up to five times, allowing the preparation of different substrates with a single load of solvent and catalyst.

  12. l-Isoleucine in a Choline Chloride/Ethylene Glycol Deep Eutectic Solvent: A Reusable Reaction Kit for the Asymmetric Cross-Aldol Carboligation.

    PubMed

    Fanjul-Mosteirín, Noé; Concellón, Carmen; Del Amo, Vicente

    2016-09-01

    l-Isoleucine is able to catalyze the cross-aldol reaction between cyclohexanone and aromatic aldehydes in a deep eutectic solvent consisting in choline chloride and ethylene glycol, rendering products with high diatereo- and enantioselectivity. This protocol is straightforward and green: the organocatalyst and the reaction medium can be recycled up to five times, allowing the preparation of different substrates with a single load of solvent and catalyst. PMID:27526718

  13. Quantitation and Enantiomeric Ratios of Aroma Compounds Formed by an Ehrlich Degradation of l-Isoleucine in Fermented Foods.

    PubMed

    Matheis, Katrin; Granvogl, Michael; Schieberle, Peter

    2016-01-27

    The conversion of parent free amino acids into alcohols by an enzymatic deamination, decarboxylation, and reduction caused by microbial enzymes was first reported more than 100 years ago and is today known as the Ehrlich pathway. Because the chiral center at the carbon bearing the methyl group in l-isoleucine should not be prone to racemization during the reaction steps, the analysis of the enantiomeric distribution in 2-methylbutanal, 2-methylbutanol, and 2-methylbutanoic acid as well as in the compounds formed by secondary reactions, such as ethyl 2-methylbutanoate and 2-methylbutyl acetate, are an appropriate measure to follow the proposed degradation mechanism in the Ehrlich reaction. On the basis of a newly developed method for quantitation and chiral analysis, the enantiomers of the five metabolites were determined in a great number of fermented foods. Whereas 2-methylbutanol occurred as pure (S)-enantiomer in nearly all samples, a ratio of almost 1:1 of (S)- and (R)-2-methylbutanal was found. These data are not in agreement with the literature suggesting the formation of 2-methylbutanol by an enzymatic reduction of 2-methylbutanal. Also, the enantiomeric distribution in 2-methylbutanoic acid was closer to that in 2-methylbutanol than to that found in 2-methylbutanal, suggesting that also the acid is probably not formed by oxidation of the aldehyde as previously proposed. Additional model studies with (S)-2-methylbutanal did not show a racemization under the conditions of food production or during workup of the sample for volatile analysis. Therefore, the results establish that different mechanisms might be responsible for the formation of aldehydes and acids from the parent amino acids in the Ehrlich pathway. PMID:26717969

  14. Quantitation and Enantiomeric Ratios of Aroma Compounds Formed by an Ehrlich Degradation of l-Isoleucine in Fermented Foods.

    PubMed

    Matheis, Katrin; Granvogl, Michael; Schieberle, Peter

    2016-01-27

    The conversion of parent free amino acids into alcohols by an enzymatic deamination, decarboxylation, and reduction caused by microbial enzymes was first reported more than 100 years ago and is today known as the Ehrlich pathway. Because the chiral center at the carbon bearing the methyl group in l-isoleucine should not be prone to racemization during the reaction steps, the analysis of the enantiomeric distribution in 2-methylbutanal, 2-methylbutanol, and 2-methylbutanoic acid as well as in the compounds formed by secondary reactions, such as ethyl 2-methylbutanoate and 2-methylbutyl acetate, are an appropriate measure to follow the proposed degradation mechanism in the Ehrlich reaction. On the basis of a newly developed method for quantitation and chiral analysis, the enantiomers of the five metabolites were determined in a great number of fermented foods. Whereas 2-methylbutanol occurred as pure (S)-enantiomer in nearly all samples, a ratio of almost 1:1 of (S)- and (R)-2-methylbutanal was found. These data are not in agreement with the literature suggesting the formation of 2-methylbutanol by an enzymatic reduction of 2-methylbutanal. Also, the enantiomeric distribution in 2-methylbutanoic acid was closer to that in 2-methylbutanol than to that found in 2-methylbutanal, suggesting that also the acid is probably not formed by oxidation of the aldehyde as previously proposed. Additional model studies with (S)-2-methylbutanal did not show a racemization under the conditions of food production or during workup of the sample for volatile analysis. Therefore, the results establish that different mechanisms might be responsible for the formation of aldehydes and acids from the parent amino acids in the Ehrlich pathway.

  15. Selective Depletion of Microglia from Cerebellar Granule Cell Cultures Using L-leucine Methyl Ester.

    PubMed

    Jebelli, Joseph; Piers, Thomas; Pocock, Jennifer

    2015-01-01

    Microglia, the resident immunocompetent cells of the CNS, play multifaceted roles in modulating and controlling neuronal function, as well as mediating innate immunity. Primary rodent cell culture models have greatly advanced our understanding of neuronal-glial interactions, but only recently have methods to specifically eliminate microglia from mixed cultures been utilized. One such technique - described here - is the use of L-leucine methyl ester, a lysomotropic agent that is internalized by macrophages and microglia, wherein it causes lysosomal disruption and subsequent apoptosis(13,14). Experiments using L-leucine methyl ester have the power to identify the contribution of microglia to the surrounding cellular environment under diverse culture conditions. Using a protocol optimized in our laboratory, we describe how to eliminate microglia from P5 rodent cerebellar granule cell culture. This approach allows one to assess the relative impact of microglia on experimental data, as well as determine whether microglia are playing a neuroprotective or neurotoxic role in culture models of neurological conditions, such as stroke, Alzheimer's or Parkinson's disease.

  16. Studies on an L-leucine hydriodide semiorganic crystal for frequency conversion applications

    NASA Astrophysics Data System (ADS)

    Baskaran, P.; Vimalan, M.; Anandan, P.; Bakiyaraj, G.; Kirubavathi, K.; Praveen, S. G.; Selvaraju, K.

    2016-03-01

    An L-leucine hydriodide semiorganic crystal has been synthesized and grown by a slow evaporation technique. The lattice parameters of the grown crystal have been confirmed using single-crystal x-ray diffractometry. Various functional groups present in the crystal were identified by Fourier transform infrared (FTIR spectral) assessment. The optical transmission percentage of the crystal was ascertained by UV-vis-near-infrared (NIR) studies. The thermal stability of the crystal was determined by thermogravimetric and differential thermal analysis curves. The mechanical behavior of the crystal was studied using the Vicker’s microhardness analysis. The dielectric properties of the crystal have been investigated for varying temperatures. The second-harmonic generation efficiency was measured by the Kurtz and Perry powder technique and the efficiency is comparable to that of potassium dihydrogen orthophosphate.

  17. Mechanism of specific influence of L-Glutamic acid on the shape of L-Valine crystals

    NASA Astrophysics Data System (ADS)

    Yoshiura, Hiromu; Nagano, Hiroshi; Hirasawa, Izumi

    2013-01-01

    The specific interaction between L-valine (L-Val) and L-glutamic acid (L-Glu) in the process of evaporative crystallization from an aqueous solution has been investigated. It was found that only 2.0% (wt/wt) of L-Glu against the total amount of L-Val was required to induce significant agglomeration of L-Val. Interestingly, the agglomeration was only induced under acidic conditions, suggesting that the electrostatic interaction was an effective factor for the agglomeration process. As well as the electrostatic interaction, the length of the amino acid side chain was identified as another important factor. In addition, we confirmed that the incorporation rate of L-Glu into L-Val crystals was different during the nucleation and crystal growth stages. Based on these results, a mechanism has been proposed for the interaction of L-Glu and L-Val during the agglomeration process.

  18. Growth of N-Glycyl-L-Valine (GV) single crystal and its spectral, thermal and optical characterization

    NASA Astrophysics Data System (ADS)

    Janarthanan, S.; Sugaraj Samuel, R.; Rajan, Y. C.; Suresh, P.; Thangaraj, K.

    2013-03-01

    A nonlinear optical crystal of N-Glycyl-L-Valine (GV) single crystals was grown by slow evaporation solution growth technique from an aqueous solution. The unit cell parameters and the crystal structure were determined by single crystal X-ray diffraction study. The Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectral studies were carried out to identify the functional groups of the grown crystals. The ultraviolet visible near infrared (UV-Vis-NIR) spectrum was recorded to study the optical transparency of the grown crystal. The thermogravimetric (TG) and differential thermal (DTA) analyses revealed the thermal stability of the sample. The presence of second harmonic generation (SHG) for the grown crystal was confirmed by Kurtz-Perry powder technique.

  19. Studies on the synthesis, spectral, optical and thermal properties of l-Valine Zinc Sulphate: an organic inorganic hybrid nonlinear optical crystal.

    PubMed

    Puhal Raj, A; Ramachandra Raja, C

    2012-11-01

    Nonlinear optical (NLO) organic inorganic hybrid l-Valine Zinc Sulphate (LVZS) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at 36°C using a constant temperature bath (CTB) with an accuracy of ±0.01°C. This crystal is reported with its characterization by single crystal and powder XRD, FTIR, UV-Vis-NIR, TG/DTA analysis and SHG test. Single crystal XRD study reveals that LVZS crystallizes in monoclinic system with the lattice constants a=9.969(3) Å, b=7.238(3) Å, c=24.334(9) Å and cell volume is 1736.00Å(3). Sharp peaks observed in powder X-ray diffraction studies confirm the high degree of crystallinity of grown crystal. The incorporation of sulphate ion with l-valine is confirmed by FTIR spectrum in LVZS crystal(.) A remarkable increase in optical transparency has been observed in LVZS when compared to l-valine and zinc sulphate heptahydrate Thermal properties of LVZS have been reported by using TG/DTA analysis. Kurtz powder second harmonic generation (SHG) test confirms NLO property of the crystal and SHG efficiency of LVZS was found to be 1.34 times more than pure l-valine.

  20. Studies on the synthesis, spectral, optical and thermal properties of L-Valine Zinc Sulphate: An organic inorganic hybrid nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Puhal Raj, A.; Ramachandra Raja, C.

    2012-11-01

    Nonlinear optical (NLO) organic inorganic hybrid L-Valine Zinc Sulphate (LVZS) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at 36 °C using a constant temperature bath (CTB) with an accuracy of ±0.01 °C. This crystal is reported with its characterization by single crystal and powder XRD, FTIR, UV-Vis-NIR, TG/DTA analysis and SHG test. Single crystal XRD study reveals that LVZS crystallizes in monoclinic system with the lattice constants a = 9.969(3) Å, b = 7.238(3) Å, c = 24.334(9) Å and cell volume is 1736.00 Å3. Sharp peaks observed in powder X-ray diffraction studies confirm the high degree of crystallinity of grown crystal. The incorporation of sulphate ion with L-valine is confirmed by FTIR spectrum in LVZS crystal. A remarkable increase in optical transparency has been observed in LVZS when compared to L-valine and zinc sulphate heptahydrate Thermal properties of LVZS have been reported by using TG/DTA analysis. Kurtz powder second harmonic generation (SHG) test confirms NLO property of the crystal and SHG efficiency of LVZS was found to be 1.34 times more than pure L-valine.

  1. Temperature dependent characteristics of intestinal glycyl-L-leucine dipeptidase in boreal zone fish.

    PubMed

    Gelman, A; Kuz'mina, V; Drabkin, V; Glatman, L

    2003-10-01

    Three kinds of boreal zone fish were investigated for gastrointestinal glycyl-L-leucine (GL) dipeptide cleaving activity as a function of feeding stage and seasonal changes. The enzyme activity tested in the perch (Perca fluviatilis L.) intestine increased steadily during digestion and rapidly disappeared after completion. The temperature characteristics and the seasonal changes in dipeptide cleaving activity in pike perch (Stizostedion lucioperca L.) and bream (Abramis brama L.) were studied. In summer, the maximal activities in the pike perch and the bream were found at temperatures of 40 and 30 degrees C, respectively. In winter, the temperature of maximal activity in pike perch fell to only 30 degrees C, whereas no changes were observed in bream. The activation energies in bream and pike perch were several times lower in winter than in summer. Seasonal changes in the dipeptide cleaving activity at low temperature relative to that at the temperature of maximal activity were found. At high temperatures, the stability of the enzyme decreases in winter and increases in summer, but in the presence of a substrate the thermal stability of the enzyme increases both in winter and in summer. In our experiments, we found that in these fish, GL dipeptidase was unstable at 0 and -10 degrees C.

  2. l-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome

    PubMed Central

    Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E.; Gerton, Jennifer L.

    2015-01-01

    Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS. PMID:25378554

  3. Jasmonoyl-l-isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves.

    PubMed

    Miyamoto, Koji; Enda, Isami; Okada, Toshiki; Sato, Yumiko; Watanabe, Kohei; Sakazawa, Tomoko; Yumoto, Emi; Shibata, Kyomi; Asahina, Masashi; Iino, Moritoshi; Yokota, Takao; Okada, Kazunori; Yamane, Hisakazu

    2016-10-01

    Rice produces low-molecular-weight antimicrobial compounds known as phytoalexins, in response to not only pathogen attack but also abiotic stresses including ultraviolet (UV) irradiation. Rice phytoalexins are composed of diterpenoids and a flavonoid. Recent studies have indicated that endogenous jasmonyl-l-isoleucine (JA-Ile) is not necessarily required for the production of diterpenoid phytoalexins in blast-infected or CuCl2-treated rice leaves. However, JA-Ile is required for the accumulation of the flavonoid phytoalexin, sakuranetin. Here, we investigated the roles of JA-Ile in UV-induced phytoalexin production. We showed that UV-irradiation induces the biosynthesis of JA-Ile and its precursor jasmonic acid. We also showed that rice jasmonate biosynthesis mutants produced diterpenoid phytoalexins but not sakuranetin in response to UV, indicating that JA-Ile is required for the production of sakuranetin but not diterpenoid phytoalexins in UV-irradiated rice leaves. PMID:27240428

  4. The chemical stability of L-isoleucine, L-threonine, and L-serine in aqueous solutions of KCl at 298.15 K

    NASA Astrophysics Data System (ADS)

    Roy, Sanjay; Dolui, Bijoy Krishna

    2016-06-01

    The experimental saturated solubilities of L-isoleucine, L-threonine, and L-serine in aqueous mixtures of a KCl solution at 298.15 K are presented in this article. The solubilities are measured by gravimetric method. In the present study the theoretical calculation of the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy, dipole-dipole interaction effect have been computed. The chemical effects of the transfer Gibbs energies for the present amino acids have been obtained by subtracting the cavity effects and dipole-dipole interaction effects from the Δ G t 0 ( i). The stability of the experimental amino acids in aqueous KCl in terms of thermodynamic parameters is explained.

  5. Jasmonoyl-l-isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves.

    PubMed

    Miyamoto, Koji; Enda, Isami; Okada, Toshiki; Sato, Yumiko; Watanabe, Kohei; Sakazawa, Tomoko; Yumoto, Emi; Shibata, Kyomi; Asahina, Masashi; Iino, Moritoshi; Yokota, Takao; Okada, Kazunori; Yamane, Hisakazu

    2016-10-01

    Rice produces low-molecular-weight antimicrobial compounds known as phytoalexins, in response to not only pathogen attack but also abiotic stresses including ultraviolet (UV) irradiation. Rice phytoalexins are composed of diterpenoids and a flavonoid. Recent studies have indicated that endogenous jasmonyl-l-isoleucine (JA-Ile) is not necessarily required for the production of diterpenoid phytoalexins in blast-infected or CuCl2-treated rice leaves. However, JA-Ile is required for the accumulation of the flavonoid phytoalexin, sakuranetin. Here, we investigated the roles of JA-Ile in UV-induced phytoalexin production. We showed that UV-irradiation induces the biosynthesis of JA-Ile and its precursor jasmonic acid. We also showed that rice jasmonate biosynthesis mutants produced diterpenoid phytoalexins but not sakuranetin in response to UV, indicating that JA-Ile is required for the production of sakuranetin but not diterpenoid phytoalexins in UV-irradiated rice leaves.

  6. L-Valine derived chiral N-sulfinamides as effective organocatalysts for the asymmetric hydrosilylation of N-alkyl and N-aryl protected ketimines.

    PubMed

    Wang, Chao; Wu, Xinjun; Zhou, Li; Sun, Jian

    2015-01-14

    L-Valine derived N-sulfinamides have been developed as efficient enantioselective Lewis basic organocatalysts for the asymmetric reduction of N-aryl and N-alkyl ketimines with trichlorosilane. Catalyst 3c afforded up to 99% yield and 96% ee in the reduction of N-alkyl ketimines and up to 98% yield and 98% ee in the reduction of N-aryl ketimines.

  7. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized. PMID:27576495

  8. Spectroscopic studies of amino acid ionic liquid-supported Schiff bases.

    PubMed

    Ossowicz, Paula; Janus, Ewa; Schroeder, Grzegorz; Rozwadowski, Zbigniew

    2013-04-29

    Amino acid ionic liquid-supported Schiff bases, derivatives of salicylaldehyde and various amino acids (L-threonine, L-valine, L-leucine, L-isoleucine and L-histidine) have been investigated by means of various spectroscopic techniques (NMR, UV-Vis, IR, MS) and deuterium isotope effects on ¹³C-NMR chemical shifts. The results have shown that in all studied amino acid ionic liquid-supported Schiff bases (except the L-histidine derivative) a proton transfer equilibrium exists and the presence of the COO⁻ group stabilizes the proton transferred NH-form.

  9. L-leucine, L-methionine, and L-phenylalanine share a Na(+)/K (+)-dependent amino acid transporter in shrimp hepatopancreas.

    PubMed

    Duka, Ada; Ahearn, Gregory A

    2013-08-01

    Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of (3)H-L-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. (3)H-L-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na(+)- and K(+)-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. (3)H-L-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, L-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM (3)H-L-leucine in both Na(+)- and K(+)-containing incubation media. The residual (3)H-L-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an L-methionine- and cation-independent transport system. (3)H-L-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [L-leucine], following the carrier-mediated Michaelis-Menten equation. In NaCl, (3)H-L-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. L-methionine or L-phenylalanine (7 and 20 mM) were competitive inhibitors of (3)H-L-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in (3)H-L-leucine influx K M, but no significant response in (3)H-L-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with (3)H-L-leucine, significantly (p < 0.01) increasing (3)H-L-leucine influx K M in the presence of sodium, but having negligible effect on (3)H-L-leucine influx J

  10. Activation of the mTOR pathway by the amino acid (L)-leucine in the 5q- syndrome and other ribosomopathies.

    PubMed

    Boultwood, Jacqueline; Yip, Bon Ham; Vuppusetty, Chaitanya; Pellagatti, Andrea; Wainscoat, James S

    2013-01-01

    Patients with the 5q- syndrome and Diamond-Blackfan anemia (DBA) suffer from a severe macrocytic anemia. The 5q- syndrome and DBA are disorders of aberrant ribosome biogenesis (ribosomopathies) and haploinsufficiency of the ribosomal protein genes RPS14 and RPS19, respectively, underlies the anemia found in these disorders. Erythroblasts obtained from patients with the 5q- syndrome and DBA show impaired mRNA translation and this defect in translation may represent a potential therapeutic target in these ribosomopathies. There are some indications that the amino acid l-leucine, a translation enhancer, may have some efficacy in this group of disorders. Recent studies have shown that l-leucine treatment of zebrafish and murine models of the 5q- syndrome and DBA results in a marked improvement in the anemia. l-leucine treatment of RPS14-deficient and RPS19-deficient erythroblasts and erythroblasts from patients with the 5q- syndrome has been shown to result in an increase in cell proliferation, erythroid differentiation and mRNA translation in culture. l-leucine has been shown to improve hemoglobin levels and transfusion independence in a patient with DBA. l-leucine activates the mTOR (mammalian target of rapamycin) signaling pathway that controls cell growth and mRNA translation. There is evidence to suggest that the promotion of translation via the mTOR pathway by l-leucine is the mechanism that underlies the enhanced erythroid progenitor cell growth and differentiation observed in animal and cellular models of the 5q- syndrome and DBA treated with this amino acid. These data support the rationale for clinical trials of l-leucine as a therapeutic agent for the 5q- syndrome and DBA. PMID:23031788

  11. Jasmonoyl-l-Isoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (Nicotiana attenuata)[C][W][OPEN

    PubMed Central

    Stitz, Michael; Hartl, Markus; Baldwin, Ian T.; Gaquerel, Emmanuel

    2014-01-01

    Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-l-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study. PMID:25326292

  12. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate.

    PubMed

    Kitaoka, Naoki; Matsubara, Takuya; Sato, Michio; Takahashi, Kosaku; Wakuta, Shinji; Kawaide, Hiroshi; Matsui, Hirokazu; Nabeta, Kensuke; Matsuura, Hideyuki

    2011-10-01

    The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants. PMID:21849397

  13. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate.

    PubMed

    Kitaoka, Naoki; Matsubara, Takuya; Sato, Michio; Takahashi, Kosaku; Wakuta, Shinji; Kawaide, Hiroshi; Matsui, Hirokazu; Nabeta, Kensuke; Matsuura, Hideyuki

    2011-10-01

    The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants.

  14. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

    PubMed

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J; Blombach, Bastian

    2013-09-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.

  15. Effects of concentration and temperature on molar volumes of L-serine, L-isoleucine, and L-glutamine in aqueous NaCl and NaNO3 solutions

    NASA Astrophysics Data System (ADS)

    Riyazuddeen; Kumar, Dheeraj; Afrin, Sadaf

    2014-01-01

    Densities of L-serine, L-isoleucine, L-glutamine in 1.5 mol kg-1 aqueous NaCl, and NaNO3 solutions have been measured for several molal concentrations of amino acids at temperatures from 298.15 to 323.15 K. The partial molar volumes (ϕ{/v 0}) of L-serine, L-isoleucine, and L-glutamine in 1.5 mol kg-1 aqueous NaCl/NaNO3 solutions have been computed using density data. The transfer partial molar volumes (Δtrϕ{/v 0}) of L-serine, L-isoleucine, and L-glutamine from water to 1.5 mol kg-1 aqueous NaCl/1.5 mol kg-1 aqueous NaNO3 solutions have been determined at 298.15 K. The trends of variation of ϕ{/v 0} and Δtrϕ{/v 0} with change in temperature have been discussed in terms of ion-ion, ion-hydrophilic, and ion-hydrophobic interactions operative in solutions.

  16. Crystal Engineering of l-Alanine with l-Leucine Additive using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    2015-01-01

    In this work, we demonstrated that the change in the morphology of l-alanine crystals can be controlled with the addition of l-leucine using the metal-assisted and microwave accelerated evaporative crystallization (MA-MAEC) technique. Crystallization experiments, where an increasing stoichiometric amount of l-leucine is added to initial l-alanine solutions, were carried out on circular poly(methyl methacrylate) (PMMA) disks modified with a 21-well capacity silicon isolator and silver nanoparticle films using microwave heating (MA-MAEC) and at room temperature (control experiments). The use of the MA-MAEC technique afforded for the growth of l-alanine crystals with different morphologies up to ∼10-fold faster than those grown at room temperature. In addition, the length of l-alanine crystals was systematically increased from ∼380 to ∼2000 μm using the MA-MAEC technique. Optical microscope images revealed that the shape of l-alanine crystals was changed from tetragonal shape (without l-leucine additive) to more elongated and wire-like structures with the addition of the l-leucine additive. Further characterization of l-alanine crystals was undertaken by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy and powder X-ray diffraction (PXRD) measurements. In order to elucidate the growth mechanism of l-alanine crystals, theoretical simulations of l-alanine’s morphology with and without l-leucine additive were carried out using Materials Studio software in conjunction with our experimental data. Theoretical simulations revealed that the growth of l-alanine’s {011} and {120} crystal faces were inhibited due to the incorporation of l-leucine into these crystal faces in selected positions. PMID:24839404

  17. Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity

    NASA Astrophysics Data System (ADS)

    Westwood, Steven; Josephs, Ralf; Choteau, Tiphaine; Daireaux, Adeline; Wielgosz, Robert; Davies, Stephen; Moad, Michael; Chan, Benjamin; Muñoz, Amalia; Conneely, Patrick; Ricci, Marina; Pires do Rego, Eliane Cristina; Garrido, Bruno C.; Violante, Fernando G. M.; Windust, Anthony; Dai, Xinhua; Huang, Ting; Zhang, Wei; Su, Fuhai; Quan, Can; Wang, Haifeng; Lo, Man-fung; Wong, Wai-fun; Gantois, Fanny; Lalerle, Béatrice; Dorgerloh, Ute; Koch, Matthias; Klyk-Seitz, Urszula-Anna; Pfeifer, Dietmar; Philipp, Rosemarie; Piechotta, Christian; Recknagel, Sebastian; Rothe, Robert; Yamazaki, Taichi; Zakaria, Osman Bin; Castro, E.; Balderas, M.; González, N.; Salazar, C.; Regalado, L.; Valle, E.; Rodríguez, L.; Ángel Laguna, L.; Ramírez, P.; Avila, M.; Ibarra, J.; Valle, L.; Pérez, M.; Arce, M.; Mitani, Y.; Konopelko, L.; Krylov, A.; Lopushanskaya, E.; Tang Lin, Teo; Liu, Qinde; Tong Kooi, Lee; Fernandes-Whaley, Maria; Prevoo-Franzsen, Désirée; Nhlapo, Nontete; Visser, Ria; Kim, Byungjoo; Lee, Hwashim; Kankaew, Pornhatai; Pookrod, Preeyaporn; Sudsiri, Nittaya; Shearman, Kittiya; Ceyhan Gören, Ahmet; Bilsel, Gökhan; Yilmaz, Hasibe; Bilsel, Mine; Çergel, Muhiddin; Gonca Çoskun, Fatma; Uysal, Emrah; Gündüz, Simay; Ün, Ilker; Warren, John; Bearden, Daniel W.; Bedner, Mary; Duewer, David L.; Lang, Brian E.; Lippa, Katrice A.; Schantz, Michele M.; Sieber, John R.

    2014-01-01

    Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100-300] and high polarity (pKOW > -2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and α-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques

  18. Kinetics of D-glucose and L-leucine transport into sheep and pig intestinal brush border membrane vesicles.

    PubMed

    Wolffram, S; Eggenberger, E; Scharrer, E

    1986-01-01

    The kinetic parameters (Vmax, Kt) of Na+-dependent D-glucose transport into brush border membrane vesicles (BBMV) from sheep and pig jejunum were determined. Due to the fermentation of ingested carbohydrates in the rumen the small intestine of ruminants (sheep) has to absorb much less glucose than the small intestine of monogastric omnivores (pigs) or herbivores. Kinetic analysis of the concentration dependence of D-glucose transport revealed a ten-fold smaller Vmax value combined with a five times lower Kt value in sheep BBMV compared with pig BBMV. The Vmax value for L-leucine transport did not differ between the two species investigated, whereas the Kt value in the sheep exceeded that in the pig. It is concluded from these results that the mechanism for Na+-dependent D-glucose transport in ruminants is adapted to the small amounts of carbohydrates reaching the small intestine.

  19. Differential effects of L-tryptophan and L-leucine administration on brain resting state functional networks and plasma hormone levels

    PubMed Central

    Zanchi, Davide; Meyer-Gerspach, Anne Christin; Suenderhauf, Claudia; Janach, Katharina; le Roux, Carel W.; Haller, Sven; Drewe, Jürgen; Beglinger, Christoph; Wölnerhanssen, Bettina K.; Borgwardt, Stefan

    2016-01-01

    Depending on their protein content, single meals can rapidly influence the uptake of amino acids into the brain and thereby modify brain functions. The current study investigates the effects of two different amino acids on the human gut-brain system, using a multimodal approach, integrating physiological and neuroimaging data. In a randomized, placebo-controlled trial, L-tryptophan, L-leucine, glucose and water were administered directly into the gut of 20 healthy subjects. Functional MRI (fMRI) in a resting state paradigm (RS), combined with the assessment of insulin and glucose blood concentration, was performed before and after treatment. Independent component analysis with dual regression technique was applied to RS-fMRI data. Results were corrected for multiple comparisons. In comparison to glucose and water, L-tryptophan consistently modifies the connectivity of the cingulate cortex in the default mode network, of the insula in the saliency network and of the sensory cortex in the somatosensory network. L-leucine has lesser effects on these functional networks. L-tryptophan and L-leucine also modified plasma insulin concentration. Finally, significant correlations were found between brain modifications after L-tryptophan administration and insulin plasma levels. This study shows that acute L-tryptophan and L-leucine intake directly influence the brain networks underpinning the food-reward system and appetite regulation. PMID:27760995

  20. L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway.

    PubMed

    Payne, Elspeth M; Virgilio, Maria; Narla, Anupama; Sun, Hong; Levine, Michelle; Paw, Barry H; Berliner, Nancy; Look, A Thomas; Ebert, Benjamin L; Khanna-Gupta, Arati

    2012-09-13

    Haploinsufficiency of ribosomal proteins (RPs) has been proposed to be the common basis for the anemia observed in Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome with loss of chromosome 5q [del(5q) MDS]. We have modeled DBA and del(5q) MDS in zebrafish using antisense morpholinos to rps19 and rps14, respectively, and have demonstrated that, as in humans, haploinsufficient levels of these proteins lead to a profound anemia. To address the hypothesis that RP loss results in impaired mRNA translation, we treated Rps19 and Rps14-deficient embryos with the amino acid L-leucine, a known activator of mRNA translation. This resulted in a striking improvement of the anemia associated with RP loss. We confirmed our findings in primary human CD34⁺ cells, after shRNA knockdown of RPS19 and RPS14. Furthermore, we showed that loss of Rps19 or Rps14 activates the mTOR pathway, and this is accentuated by L-leucine in both Rps19 and Rps14 morphants. This effect could be abrogated by rapamycin suggesting that mTOR signaling may be responsible for the improvement in anemia associated with L-leucine. Our studies support the rationale for ongoing clinical trials of L-leucine as a therapeutic agent for DBA, and potentially for patients with del(5q) MDS.

  1. Endoplasmic Reticulum-associated Inactivation of the Hormone Jasmonoyl-l-Isoleucine by Multiple Members of the Cytochrome P450 94 Family in Arabidopsis*

    PubMed Central

    Koo, Abraham J.; Thireault, Caitlin; Zemelis, Starla; Poudel, Arati N.; Zhang, Tong; Kitaoka, Naoki; Brandizzi, Federica; Matsuura, Hideyuki; Howe, Gregg A.

    2014-01-01

    The plant hormone jasmonate (JA) controls diverse aspects of plant immunity, growth, and development. The amplitude and duration of JA responses are controlled in large part by the intracellular level of jasmonoyl-l-isoleucine (JA-Ile). In contrast to detailed knowledge of the JA-Ile biosynthetic pathway, little is known about enzymes involved in JA-Ile metabolism and turnover. Cytochromes P450 (CYP) 94B3 and 94C1 were recently shown to sequentially oxidize JA-Ile to hydroxy (12OH-JA-Ile) and dicarboxy (12COOH-JA-Ile) derivatives. Here, we report that a third member (CYP94B1) of the CYP94 family also participates in oxidative turnover of JA-Ile in Arabidopsis. In vitro studies showed that recombinant CYP94B1 converts JA-Ile to 12OH-JA-Ile and lesser amounts of 12COOH-JA-Ile. Consistent with this finding, metabolic and physiological characterization of CYP94B1 loss-of-function and overexpressing plants demonstrated that CYP94B1 and CYP94B3 coordinately govern the majority (>95%) of 12-hydroxylation of JA-Ile in wounded leaves. Analysis of CYP94-promoter-GUS reporter lines indicated that CYP94B1 and CYP94B3 serve unique and overlapping spatio-temporal roles in JA-Ile homeostasis. Subcellular localization studies showed that CYP94s involved in conversion of JA-Ile to 12COOH-JA-Ile reside on endoplasmic reticulum (ER). In vitro studies further showed that 12COOH-JA-Ile, unlike JA-Ile, fails to promote assembly of COI1-JAZ co-receptor complexes. The double loss-of-function mutant of CYP94B3 and ILL6, a JA-Ile amidohydrolase, displayed a JA profile consistent with the collaborative action of the oxidative and the hydrolytic pathways in JA-Ile turnover. Collectively, our results provide an integrated view of how multiple ER-localized CYP94 and JA amidohydrolase enzymes attenuate JA signaling during stress responses. PMID:25210037

  2. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.

    PubMed

    Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.

  3. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability.

    PubMed

    Chung, Jacky; Bauer, Daniel E; Ghamari, Alireza; Nizzi, Christopher P; Deck, Kathryn M; Kingsley, Paul D; Yien, Yvette Y; Huston, Nicholas C; Chen, Caiyong; Schultz, Iman J; Dalton, Arthur J; Wittig, Johannes G; Palis, James; Orkin, Stuart H; Lodish, Harvey F; Eisenstein, Richard S; Cantor, Alan B; Paw, Barry H

    2015-01-01

    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. We found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mammalian target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine. PMID:25872869

  4. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability.

    PubMed

    Chung, Jacky; Bauer, Daniel E; Ghamari, Alireza; Nizzi, Christopher P; Deck, Kathryn M; Kingsley, Paul D; Yien, Yvette Y; Huston, Nicholas C; Chen, Caiyong; Schultz, Iman J; Dalton, Arthur J; Wittig, Johannes G; Palis, James; Orkin, Stuart H; Lodish, Harvey F; Eisenstein, Richard S; Cantor, Alan B; Paw, Barry H

    2015-04-14

    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. We found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mammalian target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine.

  5. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery.

    PubMed

    Li, Zhiyuan; Zhang, Liu; Li, Quanshun

    2015-11-01

    Herein, N-acetyl-L-leucine-modified polyethylenimine was successfully constructed through the EDC/NHS-mediated coupling reaction and employed as vectors to accomplish p53 gene delivery using HeLa (p53wt) and PC-3 cells (p53null) as models. Compared with PEI25K, the derivatives exhibited lower cytotoxicity, protein adsorption and hemolytic activity, together with satisfactory pDNA condensation capability and gene transfection efficiency. After p53 transfection, MTT analysis confirmed that the cell proliferation was inhibited. Flow cytometric analysis showed that the derivative-mediated p53 delivery could induce stronger early apoptosis than PEI25K and Lipofectamine(2000). Further, PC-3 cells showed higher sensitivity to the exogenous p53 transfection than HeLa cells. The mechanism for inducing apoptosis was determined to be up-regulation of p53 expression at both mRNA and protein levels using RT-PCR and western blotting analysis. Expression level and activity analysis of caspase-3, -8 and -9, and mitochondrial membrane potential measurement revealed that p53 transfection mediated by these derivatives facilitated early apoptosis of tumor cells via a mitochondria-dependent apoptosis pathway. Thus, the derivatives showed potential as biocompatible carriers for realizing effective tumor gene therapy.

  6. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability

    PubMed Central

    Chung, Jacky; Bauer, Daniel E.; Ghamari, Alireza; Nizzi, Christopher P.; Deck, Kathryn M.; Kingsley, Paul D.; Yien, Yvette Y.; Huston, Nicholas C.; Chen, Caiyong; Schultz, Iman J.; Dalton, Arthur J.; Wittig, Johannes G.; Palis, James; Orkin, Stuart H.; Lodish, Harvey F.; Eisenstein, Richard S.; Cantor, Alan B.; Paw, Barry H.

    2015-01-01

    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. Here, we found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mechanistic target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine. PMID:25872869

  7. Acoustical Studies of L-leucine and L-asparagine in aqueous electrolyte through thermal expansion coefficient

    NASA Astrophysics Data System (ADS)

    Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.

    2012-12-01

    Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.

  8. New poly(ester urea) derived from L-leucine: electrospun scaffolds loaded with antibacterial drugs and enzymes.

    PubMed

    Díaz, Angélica; del Valle, Luis J; Tugushi, David; Katsarava, Ramaz; Puiggalí, Jordi

    2015-01-01

    Electrospun scaffolds from an amino acid containing poly(ester urea) (PEU) were developed as promising materials in the biomedical field and specifically in tissue engineering applications. The selected poly(ester urea) was obtained with a high yield and molecular weight by reaction of phosgene with a bis(α-aminoacyl)-α,ω-diol-diester monomer. The polymer having L-leucine, 1,6-hexanediol and carbonic acid units had a semicrystalline character and relatively high glass transition and melting temperatures. Furthermore it was highly soluble in most organic solvents, an interesting feature that facilitated the electrospinning process and the effective incorporation of drugs with bactericidal activity (e.g. biguanide derivatives such as clorhexidine and polyhexamethylenebiguanide) and enzymes (e.g. α-chymotrypsin) that accelerated the degradation process. Continuous micro/nanofibers were obtained under a wide range of processing conditions, being diameters of electrospun fibers dependent on the drug and solvent used. Poly(ester urea) samples were degradable in media containing lipases and proteinases but the degradation rate was highly dependent on the surface area, being specifically greater for scaffolds with respect to films. The high hydrophobicity of new scaffolds had repercussions on enzymatic degradability since different weight loss rates were found depending on how samples were exposed to the medium (e.g. forced or non-forced immersion). New scaffolds were biocompatible, as demonstrated by adhesion and proliferation assays performed with fibroblast and epithelial cells.

  9. Amino acid uptake by yeasts. IV. Effect of thiol reagents on L-leucine transport in Saccharomyces cerevisiae.

    PubMed

    Ramos, E H; De Bongioanni, L C; Wainer, S R; Stoppani, A O

    1983-06-10

    (1) N-Ethylmaleimide (a penetrating SH- reagent) inactivated L-[14C]leucine entrance (binding and translocation) into Saccharomyces cerevisiae, the extent of inhibition depending on the time of preincubation with N-ethylmaleimide, N-ethylmaleimide concentration, the amino acid external and internal concentration, and the energization state of the yeast cells. With D-glucose-energized yeast, N-ethylmaleimide inhibited L-[14C]leucine entrance in all the assayed experimental conditions, but with starved yeast and low (0.1 mM) amino acid concentration, it did not inhibit L-[14C]leucine binding, except when the cells were preincubated with L-leucine. With the rho- respiratory-deficient mutant (energized cells), N-ethylmaleimide inhibited L-[14C]leucine entrance as with the energized wild-type, though to a lesser extent. (2) Analysis of the N-ethylmaleimide effect as a function of L-[14C]leucine concentration showed a significant decrease of Jmax values of the high- (S1) and low- (S2) affinity amino acid transport systems, but KT values were not significantly modified. (3) When assayed in the presence of D-glucose, N-ethylmaleimide inhibition of D-glucose uptake and respiration contributed significantly to inactivation of L-[14C]leucine entrance. Pretreatment of yeast cells with 2,4-dinitrophenol enhanced the effect of L-[14C]leucine binding and translocation. (4) Bromoacetylsulfanilic acid and bromoacetylaminoisophthalic acid, two non-penetrating SH- reagents, did not inactivate L-[14C]leucine entrance, while p-chloromercuribenzoate, a slowly penetrating SH-reagent, inactivated it to a limited extent. When compared with the effect of N-ethylmaleimide, these negative results indicate that thiol groups of the L-[14C]leucine carrier were not exposed on the outer surface of the yeast cell permeability barrier.

  10. Synthesis, crystal structure and interaction of L-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA.

    PubMed

    Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong

    2013-04-01

    A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val=Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1V1⋯V1AO1A torsion angle 115.22 (28)° and the V1⋯V1A distance 3.455Å. The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05×10(6)M(-1) and the binding site number n was 1.18.

  11. Synthesis, crystal structure and interaction of L-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA

    NASA Astrophysics Data System (ADS)

    Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong

    2013-04-01

    A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val = Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1dbnd V1⋯V1Adbnd O1A torsion angle 115.22 (28)° and the V1⋯V1A distance 3.455 Å. The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05 × 106 M-1 and the binding site number n was 1.18.

  12. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films.

    PubMed

    Ziganshin, Marat A; Gubina, Nadezhda S; Gerasimov, Alexander V; Gorbatchuk, Valery V; Ziganshina, Sufia A; Chuklanov, Anton P; Bukharaev, Anastas A

    2015-08-21

    The strong effect of the amino acid sequence in L-alanyl-L-valine and L-valyl-L-alanine on their sorption properties toward organic compounds and water, and the thermal stability of the inclusion compounds of these dipeptides have been found. Generally, L-valyl-L-alanine has a greater sorption capacity for the studied compounds, but the thermal stability of the L-alanyl-L-valine clathrates is higher. Unusual selectivity of L-valyl-L-alanine for vapors of few chloroalkanes was observed. The correlation between the change in the surface morphology of thin film of dipeptides and stoichiometry of their clathrates with organic compounds was found. This discovery may be used to predict the influence of vapors on the morphology of films of short-chain oligopeptides.

  13. Tuning of Supramolecular Architectures of l-Valine-Containing Dicyanoplatinum(II) 2,2'-Bipyridine Complexes by Metal-Metal, π-π Stacking, and Hydrogen-Bonding Interactions.

    PubMed

    Fu, Heidi Li-Ki; Po, Charlotte; He, Hexiang; Leung, Sammual Yu-Lut; Wong, Kam Sing; Yam, Vivian Wing-Wah

    2016-08-01

    A series of newly synthesized dicyanoplatinum(II) 2,2'-bipyridine complexes exhibits self-assembly properties in solution after the incorporation of the l-valine amino units appended with various hydrophobic motifs. These l-valine-derived substituents were found to have critical control over the aggregation behaviors of the complexes in the solution state. On one hand, one of the complexes was found to exhibit interesting circularly polarized luminescence (CPL) signals at low temperature due to the formation of chiral spherical aggregates in the temperature-dependent studies. On the other hand, systematic transformation from less uniform aggregates to well-defined fibrous and rod-like structures via Pt⋅⋅⋅Pt and π-π stacking interactions has also been observed in the mixed-solvent studies. These changes were monitored by UV/Vis absorption, emission, circular dichroism (CD), and CPL spectroscopies, and morphologies were studied by electron microscopy.

  14. Authentication of pure L-leucine products manufactured in China by discriminating between plant and animal sources using nitrogen stable isotope technique.

    PubMed

    Huang, Jingyu; Nkrumah, Philip N; Appiah-Sefah, Gloria; Tang, Shijiang

    2013-03-01

    L-leucine products among other branched chain amino acid supplements are highly susceptible to economically motivated adulteration. Curbing this menace is critical and timely. Hence, the δ(15) N composition of the L-leucine derived from plants and animals sources was estimated. The trophic enrichment phenomenon of δ(15) N composition was utilized to elucidate the sources. We finally established the distinction between the respective sources. Samples of plant sources (maize and soybean) and that of animal sources (pig fur and duck feather) were analyzed for δ(15) N isotopic signatures. An elemental analyzer which was connected to an isotope ratio mass spectrometer operated in the continuous flow mode was utilized. The raw materials were obtained from China. Statistical analysis was performed using descriptive statistics and one-way analysis of variance. The results indicated lower δ(15) N values of range -0.7344‰ to 2.384‰ and 1.032‰ to 2.064‰ for maize and soybean samples, respectively. Whereas, a range of 3.860‰ to 6.011‰ and 5.875‰ to 6.011‰ was, respectively, detected in pig fur and duck feather samples. The δ(15) N difference in plants and animals samples was significant (F = 165.0; P = 1.675 E-10 for maize and pig fur samples; F = 212.8; P = 0.0001284 for soybean and duck feather samples). It was observed that δ(15) N trophic enrichment is helpful in elucidating the respective sources. The authors can emphatically assert that the range of δ(15) N composition of L-leucine derived from plants sources within the study area is -1.000‰ to 3.000‰ whereas the range in animal sources is 4.000‰ to 9.000‰. Practical Application This study provides a reliable approach in verifying the authenticity of not only L-leucine products but also other branched chain amino acid supplements and thereby would help in fraud detection of any economically motivated adulteration and mislabeling of these products. When coupled with H and O stable

  15. Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils.

    PubMed

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B; Brand, Willi A; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A J; Sauer, Peter E; Sessions, Alex L; Werner, Roland A

    2016-04-19

    An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies. PMID:26974360

  16. X-ray structure and computational study for N-acryloyl-L-valine, a versatile monomer for preparing smart drug delivery carriers

    NASA Astrophysics Data System (ADS)

    Tamasi, Gabriella; Casolaro, Mario; Cini, Renzo

    2012-12-01

    The title compound (NAV) has been synthesized by the acylation reaction of L-valine with acryloyl chloride, in alkaline solution. The X-ray crystal and molecular structure was solved and refined in the P212121 space group and was characterized by an almost coplanar H2Cdbnd CHsbnd C(dbnd O)sbnd N(sbnd H)sbnd C system, Cdbnd Csbnd Csbnd N, Cdbnd Csbnd Cdbnd O and (Cdbnd )Csbnd C(dbnd O)sbnd N(sbnd H)sbnd C torsion angles being +anti periplanar (+ap) (trans, +172(1)°), -syn periplanar (-sp, cys) (-8(1)°), and (-ap, trans) (-175(1)°). The carboxylic group plane is almost perpendicular to the amide plane (dihedral angle: 83(1)°) and the Odbnd Csbnd C(sbnd H)sbnd N(sbnd H) torsion angle is-sp, cys (-28(1)°). The Csbnd O bond distance at amide is 1.240(3) Å, whereas the Csbnd O bond distances at carboxylic group are 1.200(3) and 1.303(3) Å, respectively allowing an easy assignment of protonation site. The molecule has been theoretically analyzed via the methods of density functional theory DFT and semi-empirical quantum mechanics at PM3 level (SEQMPM3) in order to examine the conformational surface at the gas phase and in the presence of solvent molecules. The DFT computations at B3LYP/6-311++G** are the most reliable ones among those performed in this work (SEQMPM3, and B3LYP/6-31G**) as the agreement between computed and XRD bond parameters is excellent. Even the conformations are very reliable and the effect of the solvent was evaluated in a box of water molecules (at SEQMPM3) and through the PCM method at DFT for water, methanol, chloroform and other solvents.

  17. The role of physico-chemical and bulk characteristics of co-spray dried L-leucine and polyvinylpyrrolidone on glidant and binder properties in interactive mixtures.

    PubMed

    Mangal, Sharad; Meiser, Felix; Lakio, Satu; Morton, David; Larson, Ian

    2015-02-20

    In this study, polyvinylpyrrolidone (PVP) was spray dried with l-leucine (PVP-Leu) to create a prototype multifunctional interactive excipient. The physico-chemical and bulk properties such as particle size, surface composition, surface energy and bulk cohesion of PVP-Leu was measured and compared against pure spray dried PVP (PVP-SD). The mixing behaviour of these excipients and their effect on flow and binder activity of paracetamol was assessed. The mean particle sizes of PVP-Leu PVP-SD and PVP were 2.5, 2.1 and 21.9μm, respectively. Surface composition characterization indicated that l-leucine achieved higher concentrations on the surface compared to the bulk of the PVP-Leu particles. The surface energy of PVP-Leu was significantly lower compared to PVP-SD. In addition, PVP-Leu exhibited a significantly lower bulk cohesion compared PVP-SD. The excipients were blended with paracetamol and qualitative characterization indicated that PVP-Leu blended more homogeneously with paracetamol compared to PVP-SD. Both PVP-Leu and PVP-SD then exhibited a significantly improved binder activity compared to PVP. The flow of the paracetamol was markedly improved with PVP-Leu while PVP-SD and PVP had negligible effect on its flow. This study reveals how physico-chemical and bulk properties of such prototype interactive excipients can play a key role in determining multi-factorial excipient performance.

  18. Effect of excess dietary L-valine on laying hen performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activity.

    PubMed

    Azzam, M M M; Dong, X Y; Dai, L; Zou, X T

    2015-01-01

    1. The aim of this study was to evaluate the tolerance of laying hens for an excessive L-valine (L-val) supply on laying performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activities of laying hens. 2. A total of 720 HyLine Brown hens were allocated to 5 dietary treatment groups, each of which included 6 replicates of 24 hens, from 40 to 47 weeks of age. Graded amounts of L-val were added to the basal diet to achieve concentrations of 0 (control), 1, 2, 3 and 4 g/kg, respectively, in the experimental diets. 3. Supplementing the diet with L-val did not affect egg production, egg mass, egg weight, feed conversion ratio (FCR) or egg quality. The average daily feed intake response to supplemental L-val was quadratic and was maximised at 2.0 g L-val/kg diet. No differences were observed for total protein, total amino acids, blood urea nitrogen (BUN), uric acid, lactate dehydrogenase (LDH), alkaline phosphatase (AKP), Ca and P concentrations among the treatments. 4. Serum albumin concentration increased significantly in response to supplemental L-val and was also maximised at 2.0 g/kg. In addition, serum glucose increased quadratically to peak at 2.0 g L-val/kg diet. Serum free valine increased as L-val concentration increased to 2.0 g/kg diet and then decreased linearly. 5. Supplementation of L-val did not affect the serum concentrations of total antioxidative capability (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA). L-val supplementation did not affect the concentrations of immunoglobulins IgG, IgA, IgM and complements (C3 and C4). Serum concentration of triiodothyronine (T3) increased significantly at 2.0 g L-val/kg diet. 6. It is concluded that high concentrations of L-val are tolerated and can be successfully supplemented into diets without detrimental effects on laying performance or immune function of laying hens.

  19. Dietary L-leucine and L-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity.

    PubMed

    Freudenberg, Anne; Petzke, Klaus J; Klaus, Susanne

    2013-02-01

    High-protein diets have been shown to alleviate detrimental effects of high-fat diets and this effect can be partially mimicked by dietary L-leucine supplementation. Here, we aimed to elucidate the early mechanisms and the specificity of leucine effects. We performed a 1-week trial with male C57BL/6 mice fed ad libitum with semisynthetic high-fat diets containing an adequate (10 % w/w, AP) or high (50 % w/w, HP) amount of whey protein, or supplemented with L-leucine corresponding to the leucine content within the HP diet (Leu) or supplemented with equimolar L-alanine (Ala). Food and water intake were monitored continuously using a computer-controlled monitor system and body composition changes were assessed using quantitative NMR. HP completely prevented the AP-induced accumulation of body fat. Leu and Ala resulted in a similar reduction of body fat accumulation which was intermediate between AP and HP. There were no significant effects on plasma glucose or insulin. Triacylglycerol content and gene expression of lipogenesis enzymes in liver as well as plasma cholesterol were reduced by HP compared to AP with Leu and Ala again showing intermediate effects. Body fat gain and liver triacylglycerols were strongly correlated with total energy intake. Water intake was rapidly increased by HP feeding and total water intake correlated strongly with total amino nitrogen intake. We concluded that the positive effects of high-protein diets on metabolic syndrome associated traits are acutely due to effects on satiety possibly linked to amino nitrogen intake and on the subsequent suppression of liver lipogenesis without evidence for a specific leucine effect.

  20. Crystal structure and a twisted beta-sheet conformation of the tripeptide L-leucyl-L-leucyl-L-leucine monohydrate trimethanol solvate: conformation analysis of tripeptides.

    PubMed

    Go, K; Parthasarathy, R

    1995-11-01

    In order to test the helical preference of short oligo-L-leucines, we crystallized the tripeptide L-leucyl-L-leucyl-L-leucine (LLL) and carried out x-ray diffraction studies of it (L-leucyl-L-leucyl-Lleucine)2. 3CH3OH. H2O, (C39H84N6O12), crystallized in the monoclinic system, space group P2(1), cell parameters: a = 12.031(2), b = 15.578(3), c = 14.087(2) A, alpha = 90 degrees, beta = 97.29(1) degrees, gamma = 90 degrees, V = 2618.6 A3, MW = 829.1, Dc = 1.051 g cm-3, R index of 0.057 for 4213 reflections (lambda CuK alpha = 1.5418 A) > 2 sigma. LLL takes up the beta-sheet rather than a helical conformation in the crystalline state. The three methanol molecules and the water molecule that constitute the solvent of crystallization form a network of hydrogen bonds to the LLL molecules and to one another. It is rather remarkable that though A and L have stronger helical preferences than G, neither AAA nor LLL form the crystalline helix but GAL does, indicating that the helical preferences depend on the sequence context. The residue L2 in molecule A and the residues L1 and L3 of molecule B do not show the preferred conformation for forming helices. Further, very remarkably, LLL exhibits a unique supersecondary feature of the protein folding topology, namely the twisted beta-sheet, whereas most short peptides show only the classical beta-sheet conformation.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. [Alterations in the excess synthesis of riboflavin in Pichia guilliermondii under the influence of branched-chain amino acids].

    PubMed

    Shlee, D

    1977-01-01

    The effect of the branched-chain amino acids: L-valine, L-isoleucine and L-leucine on riboflavin overproduction was studied in the Pichia (Candida) guilliermondii (Cast.) Lang. et G. yeast, L-Val, L-Ile and L-Leu were found to inhibit riboflavin overproduction only under iron-deficient growth conditions. Other amino acids used did not show this effect. In crude extracts of P. guilliermondii the specific activity of the alpha-acetolactate forming enzyme, pH 8.0, is inhibited by L-Val. It is revealed that the activity of alpha-acetolactate synthetase in iron-deficient riboflavin-overproduction cells was exceedingly higher than in the valine-inhibited cells. Under iron deficiency alpha-acetolactate synthetase shows maximal activity after 48 h of growth. It was possible to detect diacetyl (and aceton) in the culture fluid. PMID:867527

  2. Microwave irradiation as a versatile tool for increasing reaction rates and yields in synthesis of optically active polyamides containing flexible L-leucine amino acid.

    PubMed

    Mallakpour, Shadpour; Zadehnazari, Amin

    2010-05-01

    In this investigation, a series of thermally stable and optically active polyamides (PA)s containing bulky pendant chiral functionality from polymerization of a diacid monomer containing rigid phthalimide and flexible L-leucine groups, (2S)-5-[4-(4-methyl-2-phthalimidylpentanoylamino)benzoylamino]isophthalic acid with several aromatic and aliphatic diisocyanates such as 4,4'-methylenebis(phenyl isocyanate), toluylene-2,4-diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate under gradual heating method were prepared and compared with microwave-assisted polycondensation method. The polymerization reactions occurred rapidly under microwave irradiation and produced a series of PAs with good yields and moderate inherent viscosities of 0.26-0.68 dL/g. All of the new PAs showed good solubility and were readily dissolved in aprotic organic solvents. The resulting polymers were characterized by FT-IR, (1)H NMR spectroscopy, and elemental analysis technique. Thermal stability and thermal properties of PAs were evaluated by thermogravimetric analysis and differential scanning calorimetry. The interpretation of kinetic parameters (E, Delta H, Delta S, and Delta G) of thermal decomposition stages have been evaluated using Coats-Redfern equations. PMID:19756941

  3. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester

    SciTech Connect

    Charley, M.; Thiele, D.L.; Bennett, M.; Lipsky, P.E.

    1986-11-01

    Graft vs. host disease (GVHD) remains one of the main problems associated with bone marrow transplantation. The current studies were undertaken to determine whether treatment of the donor inoculum with the anticytotoxic cell compound L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) would alter the development of GVHD in a murine model. Irradiated recipient mice transplanted with a mixture of control bone marrow and spleen cells from naive semiallogeneic donors died rapidly from GVHD, whereas the recipients of cells incubated with 250 microM Leu-Leu-OMe all survived. In addition, Leu-Leu-OMe treatment of cells obtained from donors immunized against host alloantigens resulted in significantly prolonged survival. Phenotypic characterization of spleen cells from the various groups of mice that had received Leu-Leu-OMe-treated cells and survived consistently revealed the donor phenotype. Treatment of marrow cells with 250 microM Leu-Leu-OMe appeared to have no adverse effects on stem cell function. Erythropoiesis was undiminished, as assayed by splenic 5-iodo-2'-deoxyuridine-/sup 125/I uptake. Moreover, granulocytic and megakaryocytic regeneration were histologically equivalent in the spleens of recipients of control or Leu-Leu-OMe-treated cells. Treatment of the donor inoculum with Leu-Leu-OMe thus prevents GVHD in this murine strain combination with no apparent stem cell toxicity.

  4. A Study of the Solvation Structure of L-Leucine in Alcohol-Water Binary Solvents through Molecular Dynamics Simulations and FTIR and NMR Spectroscopy.

    PubMed

    Takamuku, Toshiyuki; Hatomoto, Yohei; Tonegawa, Junko; Tsutsumi, Youichi; Umecky, Tatsuya

    2015-10-26

    The solvation structures of l-leucine (Leu) in aliphatic-alcohol-water and fluorinated-alcohol-water solvents are elucidated for various alcohol contents by using molecular dynamics (MD) simulations and IR, and (1) H and (13) C NMR spectroscopy. The aliphatic alcohols included methanol, ethanol, and 2-propanol, whereas the fluorinated alcohols were 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol. The MD results show that the hydrophobic alkyl moiety of Leu is surrounded by the alkyl or fluoroalkyl groups of the alcohol molecules. In particular, TFE and HFIP significantly solvate the alkyl group of Leu. IR spectra reveal that the Leu C-H stretching vibration blueshifts in fluorinated alcohol solutions with increasing alcohol content, whereas the vibration redshifts in aliphatic alcohol solutions. When the C-H stretching vibration blueshifts in the fluorinated alcohol solutions, the hydrogen and carbon atoms of the Leu alkyl group are magnetically shielded. Consequently, TFE and HFIP molecules may solvate the Leu alkyl group through the blue-shifting hydrogen bonds.

  5. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    PubMed

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of

  6. Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Chipot, C.; Pohorille, A.

    1998-01-01

    The undecamer of poly-L-leucine at the water-hexane interface is studied by molecular dynamics simulations. This represents a simple model relevant to folding and insertion of hydrophobic peptides into membranes. The peptide, initially placed in a random coil conformation on the aqueous side of the system, rapidly translocates toward the hexane phase and undergoes interfacial folding into an alpha-helix in the subsequent 36 ns. Folding is nonsequential and highly dynamic. The initially formed helical segment at the N-terminus of the undecamer becomes transiently broken and, subsequently, reforms before the remainder of the peptide folds from the C-terminus. The formation of intramolecular hydrogen bonds during the folding of the peptide is preceded by a dehydration of the participating polar groups, as they become immersed in hexane. Folding proceeds through a short-lived intermediate, a 3(10)-helix, which rapidly interconverts to an alpha-helix. Both helices contribute to the equilibrium ensemble of folded structures. The helical peptide is largely buried in hexane, yet remains adsorbed at the interface. Its preferred orientation is parallel to the interface, although the perpendicular arrangement with the N-terminus immersed in hexane is only slightly less favorable. In contrast, the reversed orientation is highly unfavorable, because it would require dehydration of C-terminus carbonyl groups that do not participate in intramolecular hydrogen bonding. For the same reason, the transfer of the undecamer from the interface to the bulk hexane is also unfavorable. The results suggest that hydrophobic peptides fold in the interfacial region and, simultaneously, translocate into the nonpolar side of the interface. It is further implied that peptide insertion into the membrane is accomplished by rotating from the parallel to the perpendicular orientation, most likely in such a way that the N-terminus penetrates the bilayer.

  7. Affinity of Smectite and Divalent Metal Ions (Mg2+, Ca2+, Cu2+) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg2+, Ca2+ and Cu2+) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu2+- exchanged SMT and minimal affinity for Mg2+- exchanged SMT. The vibrational frequency shifts of —NH3 + and —COO- favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu—M2+ complex, M = Mg2+, Ca2+, Cu2+) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu—M2+ × (H2O)n, ( n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of biomarkers.

  8. One-step biosynthesis of α-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris

    PubMed Central

    Song, Yang; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-01-01

    This work aimed to develop a whole-cell biotransformation process for the production of α-ketoisocaproate from L-leucine. A recombinant Escherichia coli strain was constructed by expressing an L-amino acid deaminase from Proteus vulgaris. To enhance α-ketoisocaproate production, the reaction conditions were optimized as follows: whole-cell biocatalyst 0.8 g/L, leucine concentration 13.1 g/L, temperature 35 °C, pH 7.5, and reaction time 20 h. Under the above conditions, the α-ketoisocaproate titer reached 12.7 g/L with a leucine conversion rate of 97.8%. In addition, different leucine feeding strategies were examined to increase the α-ketoisocaproate titer. When 13.1 g/L leucine was added at 2-h intervals (from 0 to 22 h, 12 addition times), the α-ketoisocaproate titer reached 69.1 g/L, while the leucine conversion rate decreased to 50.3%. We have developed an effective process for the biotechnological production of α-ketoisocaproate that is more environmentally friendly than the traditional petrochemical synthesis approach. PMID:26217895

  9. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    PubMed

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of

  10. Sodium and potassium ion directed self-assembled multinuclear assembly of divalent nickel or copper and L-leucine derived ligand.

    PubMed

    Dubey, Mrigendra; Koner, Rik Rani; Ray, Manabendra

    2009-10-01

    L-leucine derived ligand (H(2)L(L-leu)), KOH, and Ni(II) salt in 2:2:1 ratio self-assembled into a rather large (approximately 13 A) supramolecular assembly with the formula [K{Ni(HL(L-leu))(2)}(3)](+) (1). Structural characterization showed three [Ni(HL(L-leu))(2)] units encapsulated K(+) similar to organic crown ethers/cryptand. Substituting Ni(II) with Cu(II) and K(+) with Na(+) in the above reaction resulted in a set of structurally identical assemblies with the general formula [M'{M(HL(L-leu))(2)}(3)](+), where M' is either K(+) or Na(+) and M is either Cu(II) or Ni(II); [Na{Ni(HL(L-leu))(2)}(3)]ClO(4) (2), Na{Ni(HL(L-leu))(2)}(3)]OTf (3), [K{Cu(HL(L-leu))(2)}(3)]ClO(4) (4), [Na{Cu(HL(L-leu))(2)}(3)]ClO(4) (5), [K{Cu(HL(L-leu))(2)}(3)]NO(3) (6). Electrospray Ionization (ESI)-mass spectra of the assemblies in MeOH showed the retention of assemblies in solution. Visible spectroscopic studies showed retention of assembly 1 in N,N-dimethylformamide (DMF) which is stable even after the addition of 5 equiv of [18]-crown-6. The assemblies in 2-6 show various degrees of dissociation to [M(HL(L-leu))(2)] and M', in stronger H-bonding methanol. The dissociation can be reversed upon addition of excess KNO(3)/NaNO(3) salt. Structural characterization of [Cu(HL(L-leu))(2)(MeCN)] (7) along with its transformation to [K{Cu(HL(L-leu))(2)}(3)](+) in the presence of K(+) salt demonstrated that the assembly formation proceeds through an alkali metal ion induced ligand reorientation within the [Cu(HL(L-leu))(2)] units which is further stabilized by six strong H-bonds holding the assembly. Interestingly, visible spectra of 1 and 2 shows that minor structural changes caused by replacing K(+) with Na(+) is sufficient to shift the d-d transition of Ni(II) by approximately 70 nm, thereby providing an indirect way of distinguishing K(+) and Na(+), none of which have spectroscopic signature in the visible range. PMID:19746901

  11. Interactions in L-phenylalanine/L-leucine/L-glutamic Acid/L-proline + 2 M aqueous NaCl/2 M NaNO3 systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Riyazuddeen, Imran Khan; Afrin, Sadaf

    2012-12-01

    Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.

  12. Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65–75 years

    PubMed Central

    Ispoglou, T; White, H; Preston, T; McElhone, S; McKenna, J; Hind, K

    2016-01-01

    Background/Objectives: Adequate protein intake is essential to retaining muscle and maintaining physical function, especially in the elderly, and L-Leucine has received attention as an essential amino acid (EAA) that enhances protein retention. The study's aim was to compare the efficacy of EAA mixtures on lean tissue mass (LTM) and functional performance (FP) in a healthy elderly population. Subjects/Methods: Thirty-six subjects (65–75 years) volunteered to receive capsules with EAAs (Groups A and B containing 20% and 40% L-Leucine, respectively) or placebo (lactose containing 0% L-Leucine, Group C) for 12 weeks. The daily amount ranged from 11 to 21 g (0.21 g/ kg/day) and was taken in two equal dosages alongside food, morning and evening. Main outcomes measured before and after intervention were LTM and FP (30-s arm-curl test; 30-s chair-stand test (30-CST); 6-min walk test (6-WT); and handgrip strength). Secondary outcomes included dietary intakes and physical activity. Results: Twenty-five subjects (11 male and 14 female) completed the study (Group A, n=8; Group B, n=8; Group C, n=9). Gains associated with medium effect sizes were noted in LTM (Group B, 1.1 ±1.1%, P=0.003) and FP (Group A in 30-CST (11.0±11.5%, P=0.02) and 6-WT (8.8±10.0%, P=0.02); Group B in 6-WT (5.8±6.6%, P=0.03) and a trend in 30-CST (13.2±16.0, P=0.06)). Significant differences between groups were not observed in secondary outcomes. Conclusions: Twice-daily supplementation of EAAs containing 20% or 40% L-Leucine improved aspects of functional status and at the higher level improved LTM. Further work to establish change in a larger sample and palatable supplemental format is now required. PMID:26081485

  13. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    SciTech Connect

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.; Rendell, J.; Opella, S.; Chemical Engineering

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper the authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is

  14. Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways.

    PubMed

    Perez-Benito, Joaquin F

    2011-09-01

    The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.

  15. Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus

    PubMed Central

    Song, Ningning; Nguyen Duc, Trong; van Oeffelen, Liesbeth; Muyldermans, Serge; Peeters, Eveline; Charlier, Daniel

    2013-01-01

    Previously, Lrp-like transcriptional regulator LysM from the hyperthermoacidophilic crenarchaeon Sulfolobus solfataricus was proposed to have a single target, the lysWXJK operon of lysine biosynthesis, and a single effector molecule, l-lysine. Here we identify ∼70 novel binding sites for LysM in the S. solfataricus genome with a LysM-specific nanobody-based chromatin immunoprecipitation assay coupled to microarray hybridization (ChIP-chip) and in silico target site prediction using an energy-based position weight matrix, and validate these findings with in vitro binding. LysM binds to intergenic and coding regions, including promoters of various amino acid biosynthesis and transport genes. We confirm that l-lysine is the most potent effector molecule that reduces, but does not completely abolish, LysM binding, and show that several other amino acids and derivatives, including d-lysine, l-arginine, l-homoarginine, l-glutamine and l-methionine and branched-chain amino acids l-leucine, l-isoleucine and l-valine, significantly affect DNA-binding properties of LysM. Therefore, it appears from this study that LysM is a much more versatile regulator than previously thought, and that it uses a variety of amino acids to sense nutritional quality of the environment and to modulate expression of the metabolic machinery of Sulfolobus accordingly. PMID:23355617

  16. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  17. Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride.

    PubMed

    Krause, Corina; Kirschbaum, Jochen; Jung, Günther; Brückner, Hans

    2006-05-01

    From the culture broth of the mold Trichoderma viride, strain 63 C-I, the polypeptide antibiotic suzukacillin (SZ) was isolated. A peptide mixture named SZ-A was obtained by crystallization from crude SZ. Individual peptides from SZ-A were isolated by semipreparative HPLC and sequences were determined by HPLC-ESI-MS. The data confirm a general sequence of SZ-A published previously and in addition establish the individual sequences of 15 acetylated eicosa peptides with C-terminal alcohols. The major peptide SZ-A4 (21% of all peptides) shows the sequence:Ac-Aib-Ala-Aib-Ala-Aib-Ala(6)-Gln-Aib-Lx(9)-Aib-Gly-Aib(12)-Aib-Pro-Vx(15)-Aib-Vx(17)-Gln-Gln-Fol. Amino acid exchanges of the peptaibol are located in position 6 (Ala/Aib), 9 (Vx/Lx), 12 (Aib/Lx), 17 (Aib/Vx) and possibly at position15 (Val/Iva) (uncommon abbreviations: Aib (alpha-aminoisobutyric acid); Iva (D-isovaline); Lx (L-leucine or L-isoleucine); Vx (L-valine or D-isovaline); Fol (L-phenylalaninol)). PMID:16245259

  18. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy

    PubMed Central

    2014-01-01

    Background The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. Methods After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). Results MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p < 0.001). Leu, HMB and Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p < 0.001) and MyoD by 26% (p < 0.01) compared to DM/CTL myotubes. shRNA experiments confirmed that Mighty mRNA knockdown reduced myotube size, linking MSTN treatment to atrophy independent of MPS. Remarkably, MSTN + Leu and MSTN + HMB myotubes had similar Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited a 36% (p < 0.05) and 86% (p < 0.001) increase in Akirin-1/Mighty mRNA compared to DM/CTL and MSTN-only treated myotubes, respectively. Conclusions Leu, HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect Akirin-1/Mighty expression, and how Akirin-1/Mighty

  19. Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters.

    PubMed

    Babu, Ellappan; Kanai, Yoshikatsu; Chairoungdua, Arthit; Kim, Do Kyung; Iribe, Yuji; Tangtrongsup, Sahatchai; Jutabha, Promsuk; Li, Yuewei; Ahmed, Nesar; Sakamoto, Shinichi; Anzai, Naohiko; Nagamori, Seishi; Endou, Hitoshi

    2003-10-31

    A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters. PMID:12930836

  20. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  1. Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease.

    PubMed

    Scaini, Giselli; Teodorak, Brena P; Jeremias, Isabela C; Morais, Meline O; Mina, Francielle; Dominguini, Diogo; Pescador, Bruna; Comim, Clarissa M; Schuck, Patrícia F; Ferreira, Gustavo C; Quevedo, João; Streck, Emilio L

    2012-05-16

    Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder resulting from deficiency of branched-chain α-keto acid dehydrogenase complex leading to branched chain amino acids (BCAA) leucine, isoleucine, and valine accumulation as well as their corresponding transaminated branched-chain α-keto acids. MSUD patients present neurological dysfunction and cognitive impairment. Here, we investigated whether acute and chronic administration of a BCAA pool causes impairment of acquisition and retention of avoidance memory in young rats. We have used two administration protocols. Acute administration consisted of three subcutaneous administrations of the BCAA pool (15.8 μL/g body weight at 1-h intervals) containing 190 mmol/L leucine, 59 mmol/L isoleucine, and 69 mmol/L valine or saline solution (0.85% NaCl; control group) in 30 days old Wistar rats. Chronic administration consisted of two subcutaneous administrations of BCAA pool for 21 days in 7 days old Wistar rats. N-acetylcysteine (NAC; 20 mg/kg) and deferoxamine (DFX; 20 mg/kg) co administration influence on behavioral parameters after chronic BCAA administration was also investigated. BCAA administration induced long-term memory impairment in the inhibitory avoidance and CMIA (continuous multiple-trials step-down inhibitory avoidance) tasks whereas with no alterations in CMIA retention memory. Inhibitory avoidance alterations were prevented by NAC and DFX. BCAA administration did not impair the neuropsychiatric state, muscle tone and strength, and autonomous function evaluated with the SHIRPA (SmithKline/Harwell/ImperialCollege/RoyalHospital/Phenotype Assessment) protocol. Taken together, our results indicate that alterations of motor activity or emotionality probably did not contribute to memory impairment after BCAA administration and NAC and DFX effects suggest that cognition impairment after BCAA administration may be caused by oxidative brain damage. PMID:22433584

  2. Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions.

    PubMed

    Mukai, Junji; Tokuyama, Emi; Ishizaka, Toshihiko; Okada, Sachie; Uchida, Takahiro

    2007-11-01

    Nutritional products for patients with liver failure available on the Japanese market contain many branched-chain amino acids (BCAAs) such as L-leucine, L-isoleucine, and L-valine, which not only have a bitter taste but also strong, unpleasant odours, leading to low palatability. The palatability of these nutritional products can be significantly improved by the addition of flavoured powders containing various kinds of tastants (sucrose, citric acid, etc.) and odourants (fruit, coffee aromas, etc.). The specific effects of the aroma of flavoured powders have not yet been clearly evaluated. In the present article, the inhibitory effect of aroma on the bitterness of BCAA solutions was examined. The bitterness intensity of a BCAA solution at the same concentration as Aminoleban EN was defined as 3.5 (measured by a previously described gustatory sensation method). The bitterness threshold of a BCAA standard solution without added aroma was estimated to be 1.87, while those of BCAA solutions containing green-tea, coffee, apple, vanilla, or strawberry aromas were 2.02, 1.98, 2.35, 2.40 and 2.87, respectively, when evaluated by the probit method. This shows that the addition of an aroma can elevate the bitterness threshold in human volunteers. The green-tea and coffee aromas predominantly evoked bitterness, while the vanilla aroma predominantly evoked sweetness. Apple and strawberry aromas evoked both sweetness and sourness, with the apple aroma having stronger sourness and the strawberry aroma stronger sweetness. Thus, a 'sweet' aroma suppresses the bitterness of BCAA, with coexisting sourness also participating in the bitterness inhibition.

  3. Synergistic effects of sour taste and low temperature in suppressing the bitterness of Aminoleban® EN.

    PubMed

    Haraguchi, Tamami; Yoshida, Miyako; Hazekawa, Mai; Uchida, Takahiro

    2011-01-01

    Aminoleban® EN, a nutritional product for patients with liver failure, contains three branched-chain amino acids (BCAAs): L-leucine, L-isoleucine, and L-valine. As BCAAs are extremely bitter, Aminoleban® EN has a low palatability, which is a major cause of patient noncompliance. Nutrients for liver failure often need to be taken for long periods, and poor medication compliance can cause serious problems, such as encephalopathy. Therefore it is important to suppress the bitter taste of Aminoleban® EN and thereby improve patient compliance. There are already six different flavoured powders (coffee, green-tea, apple, fruit, plum and pineapple) which can be added to Aminoleban® EN to reduce its unpleasant taste and smell, but it is possible that other factors, such as temperature, may also improve the palatability of Aminoleban® EN. In this study, flavours alone significantly decreased the bitterness intensity of Aminoleban® EN. It was thought that the sweetness and sourness of the flavoured powder would be the main factors involved in decreasing the bitterness. However, low temperature (0-5 °C) decreased the bitterness intensity of Aminoleban® EN, with or without the flavoured powders, compared with normal room temperature (25-30 °C). The sourness intensity of flavoured powders was not decreased at low temperatures, but the sweetness intensity of some flavoured powders did decrease. These results suggest that sourness can be tasted even at low temperatures. As not only the addition of flavoured powders but also low temperatures can reduce the bitterness of Aminioleban® EN, the combination of a sour-flavoured powder and a low temperature will improve the palatability of Aminoleban® EN the most.

  4. The role of JAR1 in Jasmonoyl-L: -isoleucine production during Arabidopsis wound response.

    PubMed

    Suza, Walter P; Staswick, Paul E

    2008-05-01

    The Arabidopsis thaliana (L.) Heynh. JASMONATE RESISTANT 1( JAR1) locus is essential for pathogen defense, but its role in wound response has not been investigated. JAR1 encodes an enzyme that conjugates jasmonic acid (JA) to isoleucine, which was recently shown to function directly in CORONATINE INSENSITIVE 1 (COI1)-mediated signal transduction. Leaf wounding rapidly increased the level of JA-Ile by about 60-fold to a peak of 279 pmole/g FW at 40 min after wounding. Conjugates with Leu, Val and Phe remained near basal level or were not detected. Kinetic analysis showed that JAR1 had a K (m) of 0.03 mM for Ile, which was 60-80-fold lower than for Leu, Val and Phe. JA-Ile accumulated mostly near the wound site with a minor increase in unwounded portions of wounded leaves. JAR1 transcript also increased dramatically in wounded tissue, reaching a maximum after about 1 h. In the jar1-1 mutant JA-Ile was only about 10% of the WT level at 40 min after leaf wounding, and reached a maximum of 47 pmole/g FW at 2 h. However, the reduced accumulation of JA-Ile had little or no effect on several jasmonate-dependent wound-induced genes. Wound induction of the VSP2 transcript was only slightly delayed while transcripts for LOX2, PDF1.2, WRKY33, TAT3 and CORI3 were unaffected. These results suggest that the rapid increase in JA-Ile mediated by the JAR1 enzyme plays only a minor role in transcriptional modulation of genes induced by mechanical wounding.

  5. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16.

    PubMed

    Lu, Jingnan; Brigham, Christopher J; Plassmeier, Jens K; Sinskey, Anthony J

    2015-01-01

    2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by L-valine (IC50=1.2 mM), L-isoleucine (IC50=2.3 mM), and L-leucine (IC50=5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (KM=10.5 μM) and is highly selective towards 2-ketobutyrate (R=140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2-ketoisovalerate for

  6. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16

    SciTech Connect

    Lu, JN; Brigham, CJ; Plassmeier, JK; Sinskey, AJ

    2014-08-01

    2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by l-valine (IC50 = 1.2 mM), l-isoleucine (IC50 = 2.3 mM), and l-leucine (IC50 = 5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (K-M = 10.5 mu M) and is highly selective towards 2-ketobutyrate (R = 140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2

  7. 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled glycine residue by 15N NMR

    NASA Astrophysics Data System (ADS)

    Shoji, Akira; Ozaki, Takuo; Fujito, Teruaki; Deguchi, Kenzo; Ando, Isao; Magoshi, Jun

    1998-01-01

    The correlation between the isotropic 15N chemical shift ( δiso) and 15N chemical shift tensor components ( δ11, δ22 and δ33) and the main-chain conformation such as the polyglycine I (PGI: β-sheet), II (PGII: 3 1-helix), α-helix and β-sheet forms of solid polypeptides [Gly∗,X] n consisting of 15N-labeled glycine (Gly∗) and other amino acids (X: natural abundance of 15N) has been studied by solid-state 15N NMR method. A series of polypeptides [Gly∗,X] n (X = glycine, L-alanine, L-leucine, L-valine, L-isoleucine, β-benzyl L-aspartate, γ-benzyl L-glutamate, ɛ-carbobenzoxy L-lysine, and sarcosine) were synthesized by the α-amino acid N-carboxy anhydride (NCA) method. Conformations of these polypeptides in the solid state were characterized on the basis of conformation-dependent 13C chemical shifts in the 13C cross-polarization-magic angle spinning (CP-MAS) NMR spectra and by the characteristic bands in the IR and far-IR spectra. The δiso, δ11, δ22 and δ33 of the polypetides were determined from the 15N CP-MAS and 15N CP-static (powder pattern) spectra. It was found that the δiso, δ11, δ22 and δ33 in the PGI form (δ 83.5, 185, 40.7 and 25 ppm, resp.) are upfield from those in the PGII form (88.5, 194, 42.1 and 29 ppm, resp.), which were reproduced by the calculated 15N shielding constants using the finite perturbation theory (FPT)-INDO method. It was also found that the δ22 of the Gly∗ of [Gly∗,X] n is closely related to the main-chain conformation and the neighboring amino acid sequence, although the δiso is almost independent of the glycine content and conformation. Consequently, the δ22 value of Gly∗ containing copolypeptides is useful for the structural (main-chain conformation and neighboring amino acid sequence) analysis in the solid state by 15N NMR, if the 15N-labeled copolypeptide or natural protein can be provided. In addition, it is shown that the δiso of the glycine residue is useful for the conformational study of some

  8. Crystal structure of l-leucyl-l-isoleucine 2,2,2-tri­fluoro­ethanol monosolvate

    PubMed Central

    Görbitz, Carl Henrik

    2016-01-01

    Hydro­phobic dipeptides with either l-Leu or l-Phe constitute a rather heterogeneous group of crystal structures. Some form materials with large water-filled channels, but there is also a pronounced tendency to incorporate organic solvent mol­ecules, which then act as acceptors for one of the three H atoms of the charged N-terminal amino group. l-Leu-l-Ile has uniquely been obtained as two distinct hydrates, but has so far failed to co-crystallize with a simple alcohol. The present structure of C12H24N2O3·CF3CH2OH, which crystallizes with two dipeptide and two solvent mol­ecules in the asymmetric unit, demonstrates that when 2,2,2-tri­fluoro­ethanol is used as a solvent, its high capacity as a hydrogen-bond donor leads to formation of an alcohol solvate. PMID:27308007

  9. Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) contributes to a termination of jasmonate signaling in N. attenuata

    PubMed Central

    Woldemariam, Melkamu G; Gális, Ivan; Baldwin, Ian T

    2014-01-01

    The jasmonate signaling pathway is essential for plant development, reproduction, and defense against herbivores and pathogens. When attacked by herbivores, plants elicit defense responses through the rapid accumulation of jasmonates. Although the transduction of the jasmonate burst into downstream responses has been largely resolved in the past decade, how the jasmonate burst is switched off remained unknown. Recently, two mechanisms that involve cytochrome p450-mediated hydroxylation/carboxylation and NaJIH1-mediated hydrolysis of JA-Ile were identified as major termination mechanisms of JA signaling. Due to a lack of hydrolysis, N. attenuata plants silenced in the expression of the JIH1 gene accumulated significantly more JA-Ile than did wild type plants and became more resistant to herbivore attack. Although less likely, additional functions of JIH1, such as contributing to the pool of free Ile and thereby increasing JA-Ile accumulation, remained untested. Here we show that increased isoleucine availability does not explain the observed phenotype in JIH1-deficient N. attenuata plants. PMID:24776843

  10. Crystal structure of l-leucyl-l-isoleucine 2,2,2-tri-fluoro-ethanol monosolvate.

    PubMed

    Görbitz, Carl Henrik

    2016-05-01

    Hydro-phobic dipeptides with either l-Leu or l-Phe constitute a rather heterogeneous group of crystal structures. Some form materials with large water-filled channels, but there is also a pronounced tendency to incorporate organic solvent mol-ecules, which then act as acceptors for one of the three H atoms of the charged N-terminal amino group. l-Leu-l-Ile has uniquely been obtained as two distinct hydrates, but has so far failed to co-crystallize with a simple alcohol. The present structure of C12H24N2O3·CF3CH2OH, which crystallizes with two dipeptide and two solvent mol-ecules in the asymmetric unit, demonstrates that when 2,2,2-tri-fluoro-ethanol is used as a solvent, its high capacity as a hydrogen-bond donor leads to formation of an alcohol solvate. PMID:27308007

  11. N-Methyl-l-leucyl-l-leucine hydro­chloride monohydrate

    PubMed Central

    Lu, Tao; Xu, Mu-Wu; Liao, Xiao-Jian; Xu, Shi-Hai

    2011-01-01

    In the title compound C13H27N2O3 +·Cl−·H2O, obtained by deprotecting the amino and carboxyl groups of an inter­mediate in the synthesis of the cyclic penta­peptide Galaxamide, a number of hydrogen-bonding inter­actions occur including aminium N—H⋯Cl, amide–carboxyl N—H⋯O, water O—H⋯Cl and carbox­yl–water O—H⋯O associations. The aminium N—H⋯Cl⋯H—N bridging extensions give rise to zigzag chains extending along the a axis, the overall two-dimensional structure lying in the (110) plane. PMID:22058991

  12. L-Leucine for gold nanoparticles synthesis and their cytotoxic effects evaluation.

    PubMed

    Berghian-Grosan, Camelia; Olenic, Liliana; Katona, Gabriel; Perde-Schrepler, Maria; Vulcu, Adriana

    2014-11-01

    This work reports the preparation of water-soluble leucine capped gold nanoparticles by two single-step synthesis methods. The first procedure involves a citrate reduction approach where the citrate is used as reducing agent and leucine as capping/stabilizing agent. Different sizes of gold nanoparticles, citrate reduced and stabilized by leucine, Leu-AuNPs-C, with the mean diameters in the range of 21-56 nm, were obtained by varying the macroscopic parameters such as: concentration of the gold precursor solution, Au (III):citrate molar ratio and leucine pH. In the second procedure, leucine acts both as reducing and stabilizing agent, allowing us to obtain spherical gold nanoparticles, Leu-AuNPs, with a majority of 80 % (with the mean diameter of 63 nm). This proves that leucine is an appropriate reductant for the formation of water-soluble and stable gold nanoparticles colloids. The characterization of the leucine coated gold nanoparticles was carried out by TEM, UV-Vis and FT-IR analysis. The cytotoxic effect of Leu-AuNPs-C and Leu-AuNPs was also evaluated. PMID:25092048

  13. Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways.

    PubMed

    Hutson, Susan M; Islam, Mohammad Mainul; Zaganas, Ioannis

    2011-09-01

    Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5'-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5'-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations. PMID:21621574

  14. Probing inclusion complexes of cyclodextrins with amino acids by physicochemical approach.

    PubMed

    Roy, Mahendra Nath; Roy, Aditi; Saha, Subhadeep

    2016-10-20

    Formations of host-guest inclusion complexes of two natural amino acids, viz., l-Leucine and l-Isoleucine as guests with α and β-cyclodextrins have been investigated which include diverse applications in modern science such as controlled delivery in the field of pharmaceuticals, food processing etc. Surface tension and conductivity studies establish the formation of inclusion complexes with 1:1 stoichiometry. The interactions of cyclodextrins with amino acids have been supported by density, viscosity, refractive index, hydration and solvation number measurements indicating higher degree of inclusion in case of α-cyclodextrin. l-Leucine interacts more with the hydrophobic cavity of cyclodextrin than its isomer. With the help of stability constant by NMR titration, hydrophobic effect, H-bonds and structural effects the formations of inclusion complexes have been explained. PMID:27474589

  15. Metabolic changes in rats after intragastric administration of MGCD0103 (Mocetinostat), a HDAC class I inhibitor.

    PubMed

    Zhang, Qingwei; Wu, Haiya; Wen, Congcong; Sun, Fa; Yang, Xuezhi; Hu, Lufeng

    2015-01-01

    MGCD0103, an isotype-selective HDACi, has been clinically evaluated for the treatment of hematologic malignancies and advanced solid tumors, alone and in combination with standard-of-care agents. In this study, we developed a serum metabolomic method based on gas chromatography-mass spectrometry (GC-MS) to evaluate the effect of intragastric administration of MGCD0103 on rats. The MGCD0103 group rats were given 20, 40, 80 mg/kg of MGCD0103 by intragastric administration each day for 7 days. Pattern recognition analysis, including both principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) revealed that intragastric administration of MGCD0103 induced metabolic perturbations. As compared to the control group, the levels of L-alanine, L-isoleucine, and L-leucine of MGCD0103 group decreased. The results indicate that metabolomic methods based on GC-MS may be useful to elucidate side effect of MGCD0103 through the exploration of biomarkers (L-alanine, L-isoleucine, and L-leucine). According to the pathological changes of liver at difference dosage, MGCD0103 is hepatotoxic and its toxity is dose-dependent. PMID:26464683

  16. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.

    PubMed

    Wakuta, Shinji; Suzuki, Erika; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-06-17

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice. PMID:21619871

  17. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.

    PubMed

    Wakuta, Shinji; Suzuki, Erika; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-06-17

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice.

  18. Chiral discrimination by ionic liquids: impact of ionic solutes.

    PubMed

    Brown, Christopher J; Hopkins, Todd A

    2015-04-01

    Chiral ionic liquids hold promise in many asymmetric applications. This study explores the impact of ionic solutes on the chiral discrimination of five amino acid methyl ester-based ionic liquids, including L- and D-alanine methyl ester, L-proline methyl ester, L-leucine methyl ester, and L-valine methyl ester cations combined with bis(trifluoromethanesulfonimide) anion. Circularly polarized luminescence spectroscopy was used to study the chiral discrimination by measuring the racemization equilibrium of a dissymmetric europium complex, Eu(dpa)3(3-) (where dpa = 2,6-pyridinedicarboxylate). The chiral discrimination measured was dependent on the concentration of Eu(dpa)3(3-) and this concentration-dependence was different in each of the ionic liquids. Ionic liquids with L-leucine methyl ester and L-valine methyl ester even switched enantiomeric preference based on the solute concentration. Changing the cation of the Eu(dpa)3(3-) salt from tetrabutylammonium to tetramethylammonium ion also affected the chiral discrimination demonstrated by the ionic liquids.

  19. Reviewing the Effects of l-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis

    PubMed Central

    Pedroso, João A.B.; Zampieri, Thais T.; Donato, Jose

    2015-01-01

    Leucine is a well-known activator of the mammalian target of rapamycin (mTOR). Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss. PMID:26007339

  20. Stereo and regioselectivity in ''Activated'' tritium reactions

    SciTech Connect

    Ehrenkaufer, R.L.E.; Hembree, W.C.; Wolf, A.P.

    1988-01-01

    To investigate the stereo and positional selectivity of the microwave discharge activation (MDA) method, the tritium labeling of several amino acids was undertaken. The labeling of L-valine and the diastereomeric pair L-isoleucine and L-alloisoleucine showed less than statistical labeling at the ..cap alpha..-amino C-H position mostly with retention of configuration. Labeling predominated at the single ..beta.. C-H tertiary (methyne) position. The labeling of L-valine and L-proline with and without positive charge on the ..cap alpha..-amino group resulted in large increases in specific activity (greater than 10-fold) when positive charge was removed by labeling them as their sodium carboxylate salts. Tritium NMR of L-proline labeled both as its zwitterion and sodium salt showed also large differences in the tritium distribution within the molecule. The distribution preferences in each of the charge states are suggestive of labeling by an electrophilic like tritium species(s). 16 refs., 5 tabs.

  1. Intestinal nutrient absorption - A biomarker for deleterious heavy metals in aquatic environments

    SciTech Connect

    Farmanfarmaian, A. )

    1988-09-01

    The deleterious effects of heavy metals on absorptive processes at the membrane surface will be summarized. Among the deleterious heavy metal chlorides (HgCl{sub 2}, CH{sub 3}HgCl, CdCl{sub 2}, CoCl{sub 2}, SrCl{sub 2}) tested HgCl{sub 2}, CH{sub 3}HgCl, and CdCl{sub 2} inhibit the absorption of several amino acids and sugars (L-leucine, L-methionine, L-isoleucine, L-lysine, cyclolencine, D-glucose, and D-galactose). The dose dependent inhibition of L-leucine uptake by HgCl{sub 2} is shown in a number of fish from different collection sites representing nektonic plankton feeders as well as demersal carnivores. The same type of data is shown for both HgCl{sub 2} and HC{sub 3}HgCl in the case of the commercially important summer flounder. Since the overall rate of intestinal absorption of amino acids and sugars involves the three processes of simple diffusion, protein-mediated facilitated diffusions, and protein-mediated sodium dependent active transport, the inhibition of the overall rate may not be sensitive enough as a biomarker. However, the active component, which alone accumulates essential amino acids in the tissue, appears to be very sensitive and can be used as a biomarker. The terminal tissue-to-medium (T/M) ratio of L-leucine concentration shows a 2-3 fold accumulation in the absence of mercury. Since the diffusional components can at best equilibrate L-leucine across the membrane % inhibition of the active component can be calculated after subtracting 1 from the experimental T/M values. The resulting inhibition is very sever ranging from approximately 50-100% for HgCl{sub 2} and 20-70% for CH{sub 3}HgCl over a range of 5-20 ppm of mercury.

  2. Effect of L-valine supplementation to a wheat-based diet with leucine excess on performance, gene expression, and serum concentration of amino acids.

    PubMed

    Morales, A; García, H; Araiza, A; Htoo, J K; Cota, M; Arce, N; Cervantes, M

    2012-12-01

    Excess Leu in the diet reduces the expression of the cationic AA transporter b(0,+), absorption of Lys and Arg, feed intake, and ADG of pigs. Because Val competes with Leu for absorption, surplus Val may correct some of these effects. An experiment was conducted to analyze the effect of surplus Val in a basal wheat (Triticum aestivum) diet fortified with free Lys, Thr, and Met and containing excess Leu and Ile on performance, expression of genes encoding b(0,+), and serum concentrations of AA. Sixteen pigs (30.3 ± 2.1 kg BW) were used. Treatments were wheat based with excess Leu and Ile (T1) and T1 plus 0.44% L-Val (T2). At the end of the 21-d study, 12 pigs were euthanized; jugular blood was collected to analyze serum AA and jejunal mucosa to measure expression of b(0,+). Surplus Val increased (P < 0.05) ADG and G:F and serum Val, Lys, and Arg but did not affect (P > 0.10) b(0,+) expression. Although analyzed Val content in the basal diet was lower than calculated, the increased serum Lys and improved pig performance may suggest that excess Leu limits Val availability and that surplus Val could correct some of the negative effects of excess Leu.

  3. Transfer coefficients for L-valine and the rate of incorporation of L-(1-/sup 14/C) valine into proteins in normal adult rat brain

    SciTech Connect

    Kirikae, M.; Diksic, M.; Yamamoto, Y.L.

    1988-08-01

    An autoradiographic method for the measurement of the rate of valine incorporation into brain proteins is described. The transfer coefficients for valine into and out of the brain and the rate of valine incorporation into normal rat brain proteins are given. The valine incorporation and the transfer constants of valine between different biological compartments are provided for 14 gray matter and 2 white matter structures of an adult rat brain. The rate of valine incorporation varies between 0.52 +/- 0.19 nmol/g/min in white matter and 1.94 +/- 0.47 in inferior colliculus (gray matter). Generally, the rate of valine incorporation is about three to four times higher in the gray matter than in the white matter structures.

  4. Bacterial catabolism of threonine. Threonine degradation initiated by l-threonine hydrolyase (deaminating) in a species of Corynebacterium

    PubMed Central

    Bell, Stephen C.; Turner, John M.

    1977-01-01

    1. Three bacterial isolates capable of growth on l-threonine medium only when supplemented with branched-chain amino acids, and possessing high l-threonine dehydratase activity, were examined to elucidate the catabolic route for the amino acid. 2. Growth, manometric, radiotracer and enzymic experiments indicated that l-threonine was catabolized by initial deamination to 2-oxobutyrate and thence to propionate. No evidence was obtained for the involvement of l-threonine 3-dehydrogenase or l-threonine aldolase in threonine catabolism. 3. l-Threonine dehydratase of Corynebacterium sp. F5 (N.C.I.B. 11102) was partially purified and its kinetic properties were examined. The enzyme exhibited a sigmoid kinetic response to substrate concentration. The concentration of substrate giving half the maximum velocity, [S0.5], was 40mm and the Hill coefficient (h) was 2.0. l-Isoleucine inhibited enzyme activity markedly, causing 50% inhibition at 60μm, but did not affect the Hill constant. At the fixed l-threonine concentration of 10mm, the effect of l-valine was biphasic, progressive activation occurring at concentrations up to 2mm-l-valine, but was abolished by higher concentrations. Substrate-saturation plots for the l-valine-activated enzyme exhibited normal Michaelis–Menten kinetics with a Hill coefficient (h) of 1.0. The kinetic properties of the enzyme were thus similar to those of the `biosynthetic' isoenzyme from Rhodopseudomonas spheroides rather than those of the enteric bacteria. 4. The synthesis of l-threonine dehydratase was constitutive and was not subject to multivalent repression by l-isoleucine or other branched-chain amino acids either singly or in combination. 5. The catabolism of l-threonine, apparently initiated by a `biosynthetic' l-threonine dehydratase in the isolates studied, depended on the concomitant catabolism of branched-chain amino acids. The biochemical basis of this dependence appeared to lie in the further catabolism of 2-oxobutyrate by enzymes

  5. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  6. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.

    PubMed

    Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael

    2015-03-01

    2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l(-1)) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l(-1)  h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol. PMID:25488800

  7. Preliminary study of urine metabolism in type two diabetic patients based on GC-MS

    PubMed Central

    Zhang, Ning; Geng, Fang; Hu, Zhong-Hua; Liu, Bin; Wang, Ye-Qiu; Liu, Jun-Cen; Qi, Yong-Hua; Li, Li-Jing

    2016-01-01

    Objective: Comparative study of type 2 diabetes and healthy controls by metabolomics methods to explore the pathogenesis of Type II diabetes. Methods: Gas chromatography - mass spectrometry (GC-MS) with a variety of multivariate statistical analysis methods to the healthy control group 58 cases, 68 cases of Type II diabetes group were analyzed. Chromatographic conditions: DB-5MS column; the carrier gas He; flow rate of 1 mL·min-1, the injection volume 1 uL; split ratio is 100: 1. MS conditions: electron impact (EI) ion source, an auxiliary temperature of 280°C, the ion source 230°C, quadrupole 150°C; mass scan range 30~600 mAu. Results: Established analytical method based on urine metabolomics GC-MS of Type II diabetes, determine the urine succinic acid, L-leucine, L-isoleucine, tyrosine, slanine, acetoace acid, mannose, L-isoleucine, L-threonine, Phenylalanine, fructose, D-glucose, palmi acid, oleic acid and arachidonic acid were significantly were significantly changed. Conclusion: Based on metabolomics of GC-MS detection and analysis metabolites can be found differences between type 2 diabetes and healthy control group, PCA diagram can effectively distinguish Type II diabetes and healthy control group, with load diagrams and PLS-DA VIP value metabolite screening, the resulting differences in metabolic pathways involved metabolites, including amino acid metabolism, lipid metabolism, glucose metabolism and energy metabolism. PMID:27508010

  8. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria.

    PubMed

    Jensen, R A; d'Amato, T A; Hochstein, L I

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  9. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  10. Lanthanum(III) and praseodymium(III) derivatives with dithiocarbamates derived from α-amino acids

    NASA Astrophysics Data System (ADS)

    Rai, Anita; Sengupta, Soumitra K.; Pandey, Om P.

    2006-06-01

    Lanthanum(III) and praseodymium(III) complexes with dithiocarbamates have been synthesized by the reactions of lanthanum(III) and praseodymium(III) chloride with barium dithiocarbamate and complexes of type [LnCl(L)H 2O] n have been obtained (where Ln = La(III) or Pr(III); L = barium salt of dithiocarbamate derived from glycine, L-leucine, L-valine, DL-alanine). The complexes have been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H NMR spectral studies. The presence of coordinated water molecule is inferred from thermogravimetric analysis which indicates the loss of one water molecule at 150-170 °C. The oscillator strength, Judd-Ofelt intensity parameter, stimulated emission cross-section, etc. have been obtained for different transitions of Pr 3+.

  11. New salts of amino acids with dimeric cations

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2010-10-01

    Among salts of amino acids there are compounds with the composition 2A..HX, which consist of dimeric A...A+ cations with short symmetric or asymmetric hydrogen bonds between zwitter-ionic and protonated moieties. These species are materials liable to undergo phase transitions or possess interesting nonlinear optical properties. Here, we report the preparation of 20 new salts with dimeric cations from aqueous solutions, including compounds of glycine, betaine, β- alanine, L-alanine, L-phenylalanine, L-threonine, L-valine, L-leucine and L-proline, with BF4-, ClO4-, Cl-, Br-, HSeO3-, and HC2O4-; as anions. The prepared salts are characterized by IR and Raman spectroscopy. Some of them are grown in form of good quality single crystals, which allowed the determination of their crystal structure.

  12. Lanthanum(III) and praseodymium(III) derivatives with dithiocarbamates derived from alpha-amino acids.

    PubMed

    Rai, Anita; Sengupta, Soumitra K; Pandey, Om P

    2006-06-01

    Lanthanum(III) and praseodymium(III) complexes with dithiocarbamates have been synthesized by the reactions of lanthanum(III) and praseodymium(III) chloride with barium dithiocarbamate and complexes of type [LnCl(L)H2O]n have been obtained (where Ln=La(III) or Pr(III); L=barium salt of dithiocarbamate derived from glycine, L-leucine, L-valine, DL-alanine). The complexes have been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H NMR spectral studies. The presence of coordinated water molecule is inferred from thermogravimetric analysis which indicates the loss of one water molecule at 150-170 degrees C. The oscillator strength, Judd-Ofelt intensity parameter, stimulated emission cross-section, etc. have been obtained for different transitions of Pr3+.

  13. Protein and Nucleic Acid Metabolism in Fruits: I. Studies of Amino Acid Incorporation During the Climacteric Rise in Respiration of the Avocado 1

    PubMed Central

    Richmond, Amos; Biale, Jacob B.

    1966-01-01

    Incorporation of 14C L-valine and 14C L-leucine into protein of tissue slices of the avocado fruit was relatively high during the early stages of the climacteric rise, declined sharply thereafter, and was virtually absent at the peak. The incorporation of amino acids in the preclimacteric stage was markedly lower than during the early stage of the respiratory rise. By following incorporation in relation to uptake at several concentrations it was established that the results were not a reflection of endogenous dilution. Puromycin was effective as an inhibitor of incorporation but not of oxygen uptake. When respiration was at its maximum there was no protein synthesis. It was concluded, therefore, that the respiratory upsurge characteristic of the climacteric was not related directly to protein synthesis. PMID:5978544

  14. Partitioning of amino acids in the aqueous biphasic system containing the water-miscible ionic liquid 1-butyl-3-methylimidazolium bromide and the water-structuring salt potassium citrate.

    PubMed

    Zafarani-Moattar, Mohammed Taghi; Hamzehzadeh, Sholeh

    2011-07-01

    In biotechnology, extraction by means of aqueous biphasic systems (ABS) is known as a promising tool for the recovery and purification of bio-molecules. Over the past decade, the increasing emphasis on cleaner and environmentally benign extraction procedures has led to enhanced interest in the ABS containing ionic liquids (ILs)-a new class of non-volatile alternative solvents. ABS composed of the hydrophilic IL {1-butyl-3-methylimidazolium bromide ([C4 mim]Br)} and potassium citrate-which is easily degraded-represents a clean media to green separation of bio-molecules. In this regard, here, the extraction capability of this ABS was evaluated through its application to the extraction of some amino acids. To gain an insight into the driving forces of amino acid partitioning in the studied IL-based ABS, the distribution of five model amino acids (L-tryptophan, L-phenylalanine, L-tyrosine, L-leucine, and L-valine) at different aqueous medium pH values and different phase compositions was investigated. The studies indicated that hydrophobic interactions were the main driving force, although electrostatic interactions and salting-out effects were also important for the transfer of the amino acids. Moreover, based on the statistical analysis of the driving forces of amino acid partitioning in the studied IL-based ABS, a model was established to describe the partition coefficient of three model amino acids, L-tryptophan, L-phenylalanine, and L-valine, and employed to predict the partition coefficient of two other model amino acids, L-tyrosine and L-leucine. PMID:21509956

  15. Preparation and characterization of L-Leucine-modified amphiprotic bifunctional mesoporous SBA-15 molecular sieve as a drug carrier for ribavirin

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Ji, Yongsheng; Guan, Min; Huang, Huayu; Zhao, Chuande; Zhang, Haixia

    2010-03-01

    In this study, an amphiphilic bifunctional mesoporous SBA-15 material (AMPBIF-SBA-15) was synthesized through post-synthesis method as a drug carrier. Ribavirin was selected as the model drug and whose release from both unmodified and functionalized SBA-15 was evaluated in four media solutions with different pH or ionic strength. The release process indicated that AMPBIF-SBA-15 was a pH-sensitive drug carrier, which showed a phased low-release effect to ribavirin in the simulated body fluid (PBS, pH 7.4) solution. The materials were further characterized by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption measurements and elemental analysis. This study provided a novel drug carrier for ribavirin to improve curative effect of ribavirin.

  16. Gustatory responsiveness to the 20 proteinogenic amino acids in the spider monkey (Ateles geoffroyi).

    PubMed

    Larsson, Jenny; Maitz, Anna; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2014-03-29

    The gustatory responsiveness of four adult spider monkeys to the 20 proteinogenic amino acids was assessed in two-bottle preference tests of brief duration (1min). We found that Ateles geoffroyi responded with significant preferences for seven amino acids (glycine, l-proline, l-alanine, l-serine, l-glutamic acid, l-aspartic acid, and l-lysine) when presented at a concentration of 100mM and/or 200mM and tested against water. At the same concentrations, the animals significantly rejected five amino acids (l-tryptophan, l-tyrosine, l-valine, l-cysteine, and l-isoleucine) and were indifferent to the remaining tastants. Further, the results show that the spider monkeys discriminated concentrations as low as 0.2mM l-lysine, 2mM l-glutamic acid, 10mM l-proline, 20mM l-valine, 40mM glycine, l-serine, and l-aspartic acid, and 80mM l-alanine from the alternative stimulus, with individual animals even scoring lower threshold values. A comparison between the taste qualities of the proteinogenic amino acids as described by humans and the preferences and aversions observed in the spider monkeys suggests a fairly high degree of agreement in the taste quality perception of these tastants between the two species. A comparison between the taste preference thresholds obtained with the spider monkeys and taste detection thresholds reported in human subjects suggests that the taste sensitivity of A. geoffroyi for the amino acids tested here might match that of Homo sapiens. The results support the assumption that the taste responses of spider monkeys to proteinogenic amino acids might reflect an evolutionary adaptation to their frugivorous and thus protein-poor diet. PMID:24480073

  17. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach

    PubMed Central

    Sun, Jing; Dahan, Arik; Amidon, Gordon L.

    2011-01-01

    A prodrug strategy was applied to guanidino-containing analogs to increase oral absorption via hPEPT1 and hVACVase. L-Valine, L-isoleucine and L-phenylalanine esters of [3-(hydroxymethyl)phenyl]guanidine (3-HPG) were synthesized and evaluated for transport and activation. In HeLa/hPEPT1 cells, Val-3-HPG and Ile-3-HPG exhibited high affinity to hPEPT1 (IC50: 0.65 and 0.63 mM, respectively), and all three L-amino acid esters showed higher uptake (2.6- to 9-fold) than the parent compound 3-HPG. Val-3-HPG and Ile-3-HPG demonstrated remarkable Caco-2 permeability enhancement, and Val-3-HPG exhibited comparable permeability to valacyclovir. In rat perfusion studies, Val-3-HPG and Ile-3-HPG permeabilities were significantly higher than 3-HPG, and exceeded/matched the high-permeability standard metoprolol, respectively. All the L-amino acid 3-HPG esters were effectively activated in HeLa and Caco-2 cell homogenates, and were found to be good substrates of hVACVase (kcat/Km in mM−1·s−1: Val-3-HPG, 3370; Ile-3-HPG, 1580; Phe-3-HPG, 1660). In conclusion, a prodrug strategy is effective at increasing the intestinal permeability of polar guanidino analogs via targeting hPEPT1 for transport and hVACVase for activation. PMID:19957998

  18. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress

    PubMed Central

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-01-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPCc (14:0), glycine and succinic acid and decreased levels of l-valine, PCb (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress. PMID:26236101

  19. Esterification of all four monoribonucleotides with acetyl-D-L-valine proceeds with a preference for the D-isomer but the D/L ratio in the products declines as a function of the hydrophobicity of the nucleotide

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)

    1992-01-01

    We recently reported that esterification of 5'-AMP with N-acetyl amino acids proceeds with a preference for D-amino acids, and the D/L ratio in products declines as the hydrophobicity of the amino acid declines. Using one amino acid, Ac-Val, we now show that esterification of all four nucleotides proceeds with a preference for the D-isomer and the preference declines as the hydrophobicity of the nucleotide declines. So, in both types of experiments, the preferences seem determined by hydrophobic interactions.

  20. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers

    PubMed Central

    2016-01-01

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains. PMID:26252467

  1. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers.

    PubMed

    Zhang, Shengnan; Hinck, Andrew P; Fitzpatrick, Paul F

    2015-08-25

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10-50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains.

  2. Identification of N-[(5-{[(4-Methylphenyl)sulfonyl]amino}-3-(trifluoroacetyl)-1H-indol-1-yl)acetyl]-l-leucine (NTRC-824), a Neurotensin-like Nonpeptide Compound Selective for the Neurotensin Receptor Type 2

    PubMed Central

    2015-01-01

    Compounds acting via the neurotensin receptor type 2 (NTS2) are known to be active in animal models of acute and chronic pain. To identify novel NTS2 selective analgesics, we searched for NTS2 selective nonpeptide compounds using a FLIPR assay and identified the title compound (NTRC-824, 5) that, to our knowledge, is the first nonpeptide that is selective for NTS2 versus NTS1 and behaves like the endogenous ligand neurotensin in the functional assay. PMID:25157640

  3. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  4. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    PubMed

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature.

  5. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  6. Structural analysis of a new cytotoxic demethylated analogue of neo-N-methylsansalvamide with a different peptide sequence produced by Fusarium solani isolated from potato.

    PubMed

    Lee, Hee-Seok; Lee, Chan

    2012-05-01

    A novel cytotoxic cyclic pentadepsipeptide, neosansalvamide, was produced by Fusarium solani KCCM90040 isolated from Fusarium -contaminated potato in Korea. The molecular formula of neosansalvamide was analyzed as C₃₂H₅₀N₄O₆ by electrospray ionization tandem mass spectrometry and combined structural analysis. The one- and two-dimensional nuclear magnetic resonance and absolute configuration of amino acid spectral data allowed for the resolution of cyclic five subunits linked in the following order: (S)-leucic acid, two L-leucine, L-valine, and L-phenylalanine, and this sequence shows a molecular structure as a new demethylated analogue of neo-N-methylsansalvamide but having a different peptide sequence. The cytotoxic effects of neosansalvamide were investigated by sulforhodamine B bioassay on four human cancer cell lines. The IC₅₀ value of neosansalvamide required to inhibit cell growth in vitro by 50% for A549 (lung cancer), SK-OV-3 (ovarian cancer), SK-MEL-2 (skin melanoma), and MES-SA (uterine sarcoma) cell lines were 11.70 ± 0.55, 10.38 ± 0.64, 13.99 ± 1.32, and 11.75 ± 0.13 μM, respectively (mean ± standard error).

  7. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Malik, Nisar Ahmad; Uzair, Sahar; Ali, Maroof

    2014-10-01

    The critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS) in pure water and in the presence of amino acids (0.01, 0.02 and 0.03 mol kg-1), L-valine (Val) and L-leucine (Leu) was determined from conductometric and fluorometric methods using pyrene as luminescence probe. Depression in the CMC at low concentration of amino acids is attributed to the increased hydrophobic-hydrophobic interaction between the non-polar groups of the surfactant, while, at high concentration, amino acids bind strongly with the anion, DS-, head groups of SDS, thereby, delaying the micelle formation, resulting in increased CMC. A pronounced decrease in the CMC, while a marked increase in λ0+, with decrease in the solvated radius (rather than crystal radius) of the counterions is observed. Negative values of ΔG0m and ΔH0m indicate that micellisation of SDS in the presence of amino acids is thermodynamically spontaneous and exothermic. Highest negative value of ΔH0m in 0.01 m Val, with lowest CMC value, shows that 0.01 m aqueous Val is the most suitable medium favouring the micellisation of SDS. Decrease in I1/I3 from Val to Leu confirms the relative hydrophobicity of two amino acids. The observed values of the packing parameter, P, of SDS in water and in aqueous amino acids suggest that micelles formed are spherical in nature.

  8. Origin and incidence of 2-methoxy-3,5-dimethylpyrazine, a compound with a "fungal" and "corky" aroma found in cork stoppers and oak chips in contact with wines.

    PubMed

    Chatonnet, Pascal; Fleury, Antoine; Boutou, Stéphane

    2010-12-01

    This study identifies a previously isolated bacterium as Rhizobium excellensis, a new species of proteobacteria able to form a large quantity of 2-methoxy-3,5-dimethylpyrazine (MDMP). R. excellensis actively synthesizes MDMP from L-alanine and L-leucine and, to a lesser extent, from L-phenylalanine and L-valine. MDMP is a volatile, strong-smelling substance detected in wines with cork stoppers that have an unpleasant "corky", "herbaceous" (potato, green hazelnut), or "dusty" odor that is very different from the typical "fungal" nose of a "corked" wine that is generally due to 2,4,6-trichloroanisole (TCA). The contamination of cork by MDMP is not correlated with the presence of TCA. It appears possible that R. excellensis is the microorganism mainly responsible for the presence of this molecule in cork bark. However, other observations suggest that MDMP might taint wine through other ways. Oak wood can also be contaminated and affect wines with which it comes into contact. Nevertheless, because 93% of the MDMP content in wood is destroyed after 10 min at 220 °C, sufficiently toasted oak barrels or alternatives probably do not represent a major source of MDMP in most of the cases. Due to MDMP's relatively low detection threshold estimated at 2.1 ng/L, its presence in about 40% of the untreated natural cork stoppers sampled at concentrations above 10 ng/cork suggests that this compound, if extracted from the stoppers, may pose a risk for wine producers.

  9. Protein structure by solid-state NMR of oriented systems

    SciTech Connect

    Stewart, P.L.

    1987-01-01

    A method for determining protein backbone structure from angular information obtainable by solid state NMR spectroscopy is presented. Various spin interactions including quadrupole, dipole, and chemical shift interactions and nuclei including /sup 14/N, /sup 15/N, /sup 13/C, and /sup 2/H may be observed. Angularly dependent measurements can be made when the sample has at least one direction of order along the externally applied magnetic field. Several NMR parameters are used to determine the orientation of each peptide plane with respect to the magnetic field vector, B/sub O/, to within a few symmetry related possibilities. The computer program Totlink can then be used to perform the necessary coordinate transformations and to evaluate the possible backbone structures and select for the most chemically reasonable. Experimental /sup 14/N NMR structural studies of the model peptides n-acetyl-d,l-valine, n-acetyl-l-valyl-l-leucine, and l-alanyl-glycyl-glycine and preliminary /sup 14/N NMR results on a large single crystal of orthorhombic lysozyme are presented.

  10. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.

    PubMed

    Kannangara, Rubini; Motawia, Mohammed S; Hansen, Natascha K K; Paquette, Suzanne M; Olsen, Carl E; Møller, Birger L; Jørgensen, Kirsten

    2011-10-01

    Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from l-valine and l-isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside-specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2-hydroxy-2-methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co-occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In situ PCR showed that UGT85K4 and UGT85K5 are co-expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine-tuning nitrogen assimilation in cassava.

  11. Pharmacokinetics of amino acid ester prodrugs of acyclovir after oral administration: interaction with the transporters on Caco-2 cells.

    PubMed

    Katragadda, Suresh; Jain, Ritesh; Kwatra, Deep; Hariharan, Sudharshan; Mitra, Ashim K

    2008-10-01

    In vivo systemic absorption of the amino acid prodrugs of acyclovir (ACV) after oral administration was evaluated in rats. Stability of the prodrugs, L-alanine-ACV (AACV), L-serine-ACV (SACV), L-isoleucine-ACV (IACV), gamma-glutamate-ACV (EACV) and L-valine-ACV (VACV) was evaluated in various tissues. Interaction of these prodrugs with the transporters on Caco-2 cells was studied. In vivo systemic bioavailability of these prodrugs upon oral administration was evaluated in jugular vein cannulated rats. The amino acid ester prodrugs showed affinity towards various amino acid transporters as well as the peptide transporter on the Caco-2 cells. In terms of stability, EACV was most enzymatically stable compared to other prodrugs especially in liver homogenate. In oral absorption studies, ACV and AACV showed high terminal elimination rate constants (lambda(z)). SACV and VACV exhibited approximately five-fold increase in area under the curve (AUC) values relative to ACV (p<0.05). C(max(T)) (maximum concentration) of SACV was observed to be 39+/-22 microM in plasma which is 2 times better than VACV and 15 times better than ACV. C(last(T)) (concentration at the last time point) of SACV was observed to be 0.18+/-0.06 microM in plasma which is two times better than VACV and three times better than ACV. Amino acid ester prodrugs of ACV were absorbed at varying amounts (C(max)) and eliminated at varying rates (lambda(z)) thereby leading to varying extents (AUC). The amino acid ester prodrug SACV owing to its enhanced stability, higher AUC and better concentration at last time point seems to be a promising candidate for the oral treatment of herpes infections.

  12. Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant.

    PubMed

    Bogomolova, Anna; Keller, Sandro; Klingler, Johannes; Sedlak, Marian; Rak, Dmytro; Sturcova, Adriana; Hruby, Martin; Stepanek, Petr; Filippov, Sergey K

    2014-09-30

    The behavior of pH-responsive polymers poly(N-methacryloyl-l-valine) (P1), poly(N-methacryloyl-l-phenylalanine) (P2), and poly(N-methacryloylglycyne-l-leucine) (P3) has been studied in the presence of the nonionic surfactant Brij98. The pure polymers phase-separate in an acidic medium with critical pHtr values of 3.7, 5.5, and 3.4, respectively. The addition of the surfactant prevents phase separation and promotes reorganization of polymer molecules. The nature of the interaction between polymer and surfactant depends on the amino acid structure in the side chain of the polymer. This effect was investigated by dynamic light scattering, isothermal titration calorimetry, electrophoretic measurements, small-angle neutron scattering, and infrared spectroscopy. Thermodynamic analysis revealed an endothermic association reaction in P1/Brij98 mixture, whereas a strong exothermic effect was observed for P2/Brij98 and P3/Brij98. Application of regular solution theory for the analysis of experimental enthalpograms indicated dominant hydrophobic interactions between P1 and Brij98 and specific interactions for the P2/Brij98 system. Electrophoretic and dynamic light scattering measurements support the applicability of the theory to these cases. The specific interactions can be ascribed to hydrogen bonds formed between the carboxylic groups of the polymer and the oligo(ethylene oxide) head groups of the surfactant. Thus, differences in polymer-surfactant interactions between P1 and P2 polymers result in different structures of polymer-surfactant complexes. Specifically, small-angle neutron scattering revealed pearl-necklace complexes and "core-shell" structures for P1/Brij98 and P2/Brij98 systems, respectively. These results may help in the design of new pH-responsive site-specific micellar drug delivery systems or pH-responsive membrane-disrupting agents.

  13. Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen.

    PubMed

    Zhang, Kegui; Song, Lei; Dong, Xiuzhu

    2010-09-01

    Two strictly anaerobic, proteolytic bacterial strains, designated strain D3RC-2(T) and D3RC-3r, were isolated from a cellulose-degrading mixed culture enriched from yak rumen content. The strains were Gram-stain negative and non-spore-forming with cell sizes of 0.5-0.8 x 0.6-2.0 mum. The temperature range for growth was 24-46 degrees C (optimum 38-39 degrees C) and the pH range was between 5.6 and 8.7 (optimum 7.0-7.3). Both strains used soya peptone, tryptone, l-phenylalanine, l-leucine, l-methionine, l-serine, l-valine, l-threonine and l-histidine as carbon and nitrogen sources, but did not use any of the saccharides tested. The major fermentation products from PY medium were acetate, propionate and iso-butyrate. The DNA G+C contents of strains D3RC-2(T) and D3RC-3r were 41.0+/-0.1 mol% and 41.3+/-0.1 mol% (HPLC), respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains represented a new phyletic sublineage within the family Clostridiaceae, with <93.8 % 16S rRNA gene sequence similarity to recognized species. On the basis of the phenotypic, genotypic and physiological evidence, strains D3RC-2(T) and D3RC-3r are proposed as representing a novel species of a new genus, for which the name Proteiniclasticum ruminis gen. nov., sp. nov. is proposed. The type strain of the type species is D3RC-2(T) (=AS 1.5057(T)=JCM 14817(T)).

  14. Crystallization of Amino Acids on a 21-well Circular PMMA Platform using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Alabanza, Anginelle M; Mohammed, Muzaffer; Aslan, Kadir

    2013-01-01

    We describe the design and the use of a circular poly(methyl methacrylate) (PMMA) crystallization platform capable of processing 21 samples in Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC). The PMMA platforms were modified with silver nanoparticle films (SNFs) to generate a microwave-induced temperature gradient between the solvent and the SNFs due to the marked differences in their physical properties. Since amino acids only chemisorb on to silver on the PMMA platform, SNFs served as selective and heterogeneous nucleation sites for amino acids. Theoretical simulations for electric field and temperature distributions inside a microwave cavity equipped with a PMMA platform were carried out to determine the optimum experimental conditions, i.e., temperature variations and placement of the PMMA platform inside a microwave cavity. In addition, the actual temperature profiles of the amino acid solutions were monitored for the duration of the crystallization experiments carried out at room temperature and during microwave heating. The crystallization of five amino acids (L-threonine, L-histidine, L-leucine, L-serine and L-valine HCl) at room temperature (control experiment) and using MA-MAEC were followed by optical microscopy. The induction time and crystal growth rates for all amino acids were determined. Using MA-MAEC, for all amino acids the induction times were significantly reduced (up to ~8-fold) and the crystal growth rates were increased (up to ~50-fold) as compared to room temperature crystallization, respectively. All crystals were characterized by Raman spectroscopy and powder x-ray diffraction, which demonstrated that the crystal structures of all amino acids grown at room temperature and using MA-MAEC were similar.

  15. Polymers from amino acids: development of dual ester-urethane melt condensation approach and mechanistic aspects.

    PubMed

    Anantharaj, S; Jayakannan, M

    2012-08-13

    A new dual ester-urethane melt condensation methodology for biological monomers-amino acids was developed to synthesize new classes of thermoplastic polymers under eco-friendly and solvent-free polymerization approach. Naturally abundant L-amino acids were converted into dual functional ester-urethane monomers by tailor-made synthetic approach. Direct polycondensation of these amino acid monomers with commercial diols under melt condition produced high molecular weight poly(ester-urethane)s. The occurrence of the dual ester-urethane process and the structure of the new poly(ester-urethane)s were confirmed by (1)H and (13)C NMR. The new dual ester-urethane condensation approach was demonstrated for variety of amino acids: glycine, β-alanine, L-alanine, L-leucine, L-valine, and L-phenylalanine. MALDI-TOF-MS end group analysis confirmed that the amino acid monomers were thermally stable under the melt polymerization condition. The mechanism of melt process and the kinetics of the polycondensation were studied by model reactions and it was found that the amino acid monomer was very special in the sense that their ester and urethane functionality could be selectively reacted by polymerization temperature or catalyst. The new polymers were self-organized as β-sheet in aqueous or organic solvents and their thermal properties such as glass transition temperature and crystallinity could be readily varied using different l-amino acid monomers or diols in the feed. Thus, the current investigation opens up new platform of research activates for making thermally stable and renewable engineering thermoplastics from natural resource amino acids. PMID:22713137

  16. Dried bonito dashi: taste qualities evaluated using conditioned taste aversion methods in wild-type and T1R1 knockout mice.

    PubMed

    Delay, Eugene R; Kondoh, Takashi

    2015-02-01

    The primary taste of dried bonito dashi is thought to be umami, elicited by inosine 5'-monphosphate (IMP) and L-amino acids. The present study compared the taste qualities of 25% dashi with 5 basic tastes and amino acids using conditioned taste aversion methods. Although wild-type C57BL/6J mice with compromised olfactory systems generalized an aversion of dashi to all 5 basic tastes, generalization was greater to sucrose (sweet), citric acid (sour), and quinine (bitter) than to NaCl (salty) or monosodium L-glutamate (umami) with amiloride. At neutral pH (6.5-6.9), the aversion generalized to l-histidine, L-alanine, L-proline, glycine, L-aspartic acid, L-serine, and monosodium L-glutamate, all mixed with IMP. Lowering pH of the test solutions to 5.7-5.8 (matching dashi) with HCl decreased generalization to some amino acids. However, adding lactic acid to test solutions with the same pH increased generalization to 5'-inosine monophosphate, L-leucine, L-phenylalanine, L-valine, L-arginine, and taurine but eliminated generalization to L-histidine. T1R1 knockout mice readily learned the aversion to dashi and generalized the aversion to sucrose, citric acid, and quinine but not to NaCl, glutamate, or any amino acid. These results suggest that dashi elicits a complex taste in mice that is more than umami, and deleting T1R1 receptor altered but did not eliminate their ability to taste dashi. In addition, lactic acid may alter or modulate taste transduction or cell-to-cell signaling.

  17. Crystallization of Amino Acids on a 21-well Circular PMMA Platform using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    Alabanza, Anginelle M.; Mohammed, Muzaffer; Aslan, Kadir

    2014-01-01

    We describe the design and the use of a circular poly(methyl methacrylate) (PMMA) crystallization platform capable of processing 21 samples in Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC). The PMMA platforms were modified with silver nanoparticle films (SNFs) to generate a microwave-induced temperature gradient between the solvent and the SNFs due to the marked differences in their physical properties. Since amino acids only chemisorb on to silver on the PMMA platform, SNFs served as selective and heterogeneous nucleation sites for amino acids. Theoretical simulations for electric field and temperature distributions inside a microwave cavity equipped with a PMMA platform were carried out to determine the optimum experimental conditions, i.e., temperature variations and placement of the PMMA platform inside a microwave cavity. In addition, the actual temperature profiles of the amino acid solutions were monitored for the duration of the crystallization experiments carried out at room temperature and during microwave heating. The crystallization of five amino acids (L-threonine, L-histidine, L-leucine, L-serine and L-valine HCl) at room temperature (control experiment) and using MA-MAEC were followed by optical microscopy. The induction time and crystal growth rates for all amino acids were determined. Using MA-MAEC, for all amino acids the induction times were significantly reduced (up to ~8-fold) and the crystal growth rates were increased (up to ~50-fold) as compared to room temperature crystallization, respectively. All crystals were characterized by Raman spectroscopy and powder x-ray diffraction, which demonstrated that the crystal structures of all amino acids grown at room temperature and using MA-MAEC were similar. PMID:24855565

  18. Non-targeted metabolomics identified a common metabolic signature of lethal ventricular tachyarrhythmia (LVTA) in two rat models.

    PubMed

    Wang, Xingxing; Wang, Dian; Yu, Xiaojun; Zhang, Guohong; Wu, Jiayan; Zhu, Guanghui; Su, Ruibing; Lv, Junyao

    2016-06-21

    Lethal ventricular tachyarrhythmia (LVTA) is the predominant underlying mechanism of sudden cardiac death (SCD). The aim of this study is to characterize the metabolic features of myocardia following LVTA, and identify potential biomarkers to diagnose LVTA. We developed two LVTA rat models induced by aconitine injection or coronary artery ligation, which represent cardiac ion channel disease-related and cardiac ischemia-related SCD, respectively. The myocardial metabolic profile was investigated by gas chromatography-mass spectrometry and proton nuclear magnetic resonance-based metabolomics. Twenty-three aconitine-injected and 14 coronary artery ligation-treated rats developed LVTA SCD. A total of 38 differential metabolites of myocardia were identified in aconitine-induced LVTA rats, of which 31 metabolites showed a similar change in coronary artery ligation-related LVTA rats. Fatty acids (stearic, palmitic, linoleic, elaidic, and myristic) and branched-chain amino acids (valine, leucine, and isoleucine) were the most down-regulated metabolites. Furthermore, elevated ADP, phosphate, lactate, glutamate, aspartate, threonine, choline and arginine were also observed. Major pathways regarding these dysregulated metabolites post LVTA are energy excessive consumption and deficit, ionic imbalance, oxidative stress, cardiac cytotoxicity and membrane injury. Valine, stearic acid and leucine collectively enable a precision of 92.9% to distinguish LVTA from its control, and are correlated with several arrhythmia indices. Our results uncovered a common metabolic feature of LVTA in myocardia in two rat models, which represent cardiac ion channel disease and cardiac ischemia, respectively. l-Valine, l-leucine and stearic acid jointly confer good potential for distinguishing LVTA, which might be potential biomarkers of LVTA-related SCD. PMID:27138062

  19. Maintenance valine, isoleucine, and tryptophan requirements for poultry.

    PubMed

    de Lima, M B; Sakomura, N K; Dorigam, J C P; da Silva, E P; Ferreira, N T; Fernandes, J B K

    2016-04-01

    Poultry maintenance requirements for valine, isoleucine, and tryptophan were measured by nitrogen balance using different unit systems. The nitrogen balance trial lasted 5 d with 48 h of fasting (with roosters receiving only water+sucrose) and the last 72 h for feeding and excreta collection. Forty grams of each diet first-limiting in valine, isoleucine, or tryptophan was fed by tube each day (3 d) to give a range of intakes from 0 to 101, 0 to 119, and 0 to 34 mg/kg BW d of valine, isoleucine, and tryptophan, respectively. A nitrogen-free diet containing energy, vitamins, and minerals, meeting the rooster requirements, was offered ad libitum during these three d. To confirm that the amino acids studied were limiting, a treatment was added with a control diet formulated by adding 0.24 g/kg of L-valine, 0.21 g/kg of L-isoleucine, and 0.10 g/kg of L-tryptophan to the diets with lower amino acid level. Excreta were collected during the last 3 d of the balance period and the nitrogen content of the excreta was analyzed. For each amino acid, a linear regression between nitrogen retention (NR) and amino acid intake was performed. The equations from linear regression were: NR=-98.6 (±10.1)+2.4 (±0.2)×Val, NR=-46.9 (±7.1)+2.3 (±0.1)×Ile, NR=-39.5 (±7.7)+7.3 (±0.4)×Trp; where Val, Ile, and Trp are the intakes of valine, isoleucine, and tryptophan in mg/kg body weight per d, respectively. The valine, isoleucine, and tryptophan required to maintain the body at zero NR were calculated to be 41, 20, and 5 mg/kg body weight per d, respectively. For the system unit mg per kg of metabolic weight, the intake of valine, isoleucine, and tryptophan was 59, 32, and 9, respectively. Considering the degree of maturity of the animal and body protein content (BPm (0.73)×u), the amounts of valine, isoleucine, and tryptophan required for maintenance were calculated to be 247, 134, and 37 mg per unit of maintenance protein (BPm (0.73)×u) per d. Maintenance requirement is more

  20. Maintenance valine, isoleucine, and tryptophan requirements for poultry.

    PubMed

    de Lima, M B; Sakomura, N K; Dorigam, J C P; da Silva, E P; Ferreira, N T; Fernandes, J B K

    2016-04-01

    Poultry maintenance requirements for valine, isoleucine, and tryptophan were measured by nitrogen balance using different unit systems. The nitrogen balance trial lasted 5 d with 48 h of fasting (with roosters receiving only water+sucrose) and the last 72 h for feeding and excreta collection. Forty grams of each diet first-limiting in valine, isoleucine, or tryptophan was fed by tube each day (3 d) to give a range of intakes from 0 to 101, 0 to 119, and 0 to 34 mg/kg BW d of valine, isoleucine, and tryptophan, respectively. A nitrogen-free diet containing energy, vitamins, and minerals, meeting the rooster requirements, was offered ad libitum during these three d. To confirm that the amino acids studied were limiting, a treatment was added with a control diet formulated by adding 0.24 g/kg of L-valine, 0.21 g/kg of L-isoleucine, and 0.10 g/kg of L-tryptophan to the diets with lower amino acid level. Excreta were collected during the last 3 d of the balance period and the nitrogen content of the excreta was analyzed. For each amino acid, a linear regression between nitrogen retention (NR) and amino acid intake was performed. The equations from linear regression were: NR=-98.6 (±10.1)+2.4 (±0.2)×Val, NR=-46.9 (±7.1)+2.3 (±0.1)×Ile, NR=-39.5 (±7.7)+7.3 (±0.4)×Trp; where Val, Ile, and Trp are the intakes of valine, isoleucine, and tryptophan in mg/kg body weight per d, respectively. The valine, isoleucine, and tryptophan required to maintain the body at zero NR were calculated to be 41, 20, and 5 mg/kg body weight per d, respectively. For the system unit mg per kg of metabolic weight, the intake of valine, isoleucine, and tryptophan was 59, 32, and 9, respectively. Considering the degree of maturity of the animal and body protein content (BPm (0.73)×u), the amounts of valine, isoleucine, and tryptophan required for maintenance were calculated to be 247, 134, and 37 mg per unit of maintenance protein (BPm (0.73)×u) per d. Maintenance requirement is more

  1. Effects of Dietary Garlic Extracts on Whole Body Amino Acid and Fatty Acid Composition, Muscle Free Amino Acid Profiles and Blood Plasma Changes in Juvenile Sterlet Sturgeon, Acipenser ruthenus

    PubMed Central

    Lee, Dong-Hoon; Lim, Seong-Ryul; Ra, Chang-Six; Kim, Jeong-Dae

    2012-01-01

    A series of studies were carried out to investigate the supplemental effects of dietary garlic extracts (GE) on whole body amino acids, whole body and muscle free amino acids, fatty acid composition and blood plasma changes in 6 month old juvenile sterlet sturgeon (Acipenser ruthenus). In the first experiment, fish with an average body weight of 59.6 g were randomly allotted to each of 10 tanks (two groups of five replicates, 20 fish/tank) and fed diets with (0.5%) or without (control) GE respectively, at the level of 2% of fish body weight per day for 5 wks. Whole body amino acid composition between the GE and control groups were not different (p>0.05). Among free amino acids in muscle, L-glutamic acid, L-alanine, L-valine, L-leucine and L-phenylalanine were significantly (p<0.05) higher in GE than in control. However, total whole body free amino acids were significantly lower in GE than in control (p<0.05). GE group showed higher EPA (C22:6n3) and DHA (C22:5n3) in their whole body than the other group (p<0.05). In the second experiment, the effects of dietary garlic extracts on blood plasma changes were investigated using 6 month old juvenile sterlet sturgeon averaging 56.5 g. Fish were randomly allotted to each of 2 tanks (300 fish/tank) and fed diets with (0.5%) or without (control) GE respectively, at the rate of 2% of body weight per day for 23 d. At the end of the feeding trial, blood was taken from the tail vein (n = 5, per group) at 1, 12, and 24 h after feeding, respectively. Blood plasma glucose, insulin and the other serological characteristics were also measured to assess postprandial status of the fish. Plasma glucose concentrations (mg/dl) between two groups (GE vs control) were significantly (p< 0.05) different at 1 (50.8 vs 62.4) and 24 h (57.6 vs 73.6) after feeding, respectively, while no significant difference (p>0.05) were noticed at 12 h (74.6 vs 73.0). Plasma insulin concentrations (μIU/ml) between the two groups were significantly (p<0

  2. Optimum conditions for prebiotic evolution in extraterrestrial environments

    NASA Astrophysics Data System (ADS)

    Abbas, Ousama H.

    The overall goal of the dissertation was to devise synthetic pathways leading to the production of peptides and amino acids from smaller organic precursors. To this end, eight different zeolites were tested in order to determine their catalytic potential in the conversion of amino acids to peptides. The zeolites tested were either synthetic or naturally occurring. Acidic solutions of amino acids were prepared with or without zeolites and their reactivity was monitored over a four-week time interval. The kinetics and feasibility of peptide synthesis from selected amino acid combinations was investigated via the paper chromatography technique. Nine different amino acids were tested. The nature and extent of product were measured at constant time intervals. It was found that two ZSM-5 synthetic zeolites as well as the Fisher Scientific zeolite mix without alumina salts may have a catalytic potential in the conversion of amino acids to peptides. The conversion was verified by matching the paper chromatogram of the experimental product with that of a known peptide. The experimental results demonstrate that the optimum solvent system for paper chromatographic analysis of the zeolite-catalyzed self-assembly of the amino acids L-aspartic acid, L- asparagine, L-histidine, and L-serine is a 50:50 mixture of 1-butanol and acetone by volume. For the amino acids L-alanine, L-glycine, and L-valine, the optimum solvent was found to be a 30:70 mixture of ammonia and propanol by volume. A mathematical model describing the distance traveled (spot position) versus reaction time was constructed for the zeolite-catalyzed conversion of L- leucine and L-tyrosine and was found to approximately follow the function f(t) = 25 ln t. Two case studies for prebiotic synthesis leading to the production of amino acids or peptides in extraterrestrial environments were discussed: one involving Saturn's moon Titan, and the other involving Jupiter's moon Europa. In the Titan study, it was determined

  3. Methyl 2-(methylthio)benzoate: A sex attractant for the June beetles, Phyllophaga tristis and P. apicata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male antennae of Phyllophaga tristis (Fabricius) (Coleoptera: Scarabaeidae: Melolonthinae) were tested using a coupled gas chromatograph-electroantennogram detector (GC-EAD) system for electrophysiological responses to five sex pheromones identified from other Phyllophaga species including L-valine ...

  4. The Relationship between Dipeptidase Activity Variation and Larval Viability in Drosophila melanogaster

    PubMed Central

    Hiraizumi, Kazuo; Laurie, Cathy C.

    1987-01-01

    The enzyme dipeptidase-A (DIP-A) in Drosophila melanogaster is coded by a second chromosome locus that is polymorphic for three allozymes in natural populations. DIP-A appears to be the only enzyme in D. melanogaster capable of hydrolyzing the dipeptide glycyl-l-isoleucine, since flies homozygous for null alleles at this locus have no detectable glycyl- l-isoleucine-ase activity. DIP-A activity occurs in many tissues and throughout development, but is particularly high in the larval midgut, suggesting an important role in protein digestion. These observations suggested an experimental design for investigating the adaptive significance of genetic variation in DIP-A activity. Fitness components of DIP-A variants could be estimated and compared under two environmental conditions (defined diets under axenic conditions). In the restrictive environment, the essential amino acid l-isoleucine is provided only in the form of glycyl-l-isoleucine, whereas in the permissive environment, l-isoleucine is provided in free form. We predicted that DIP-A activity would be essential in the restrictive, but not in the permissive environment. The results reported here clearly contradict this prediction. Two stocks homozygous for DIP-A null alleles from different geographic locations are each viable on the restrictive diet. Furthermore, relative viability experiments in which null allele larvae compete with larvae having DIP-A activity provide no evidence for even a partial reduction in egg to adult survival on the restrictive diet. Apparently, the null allele larvae have some alternative mechanism for obtaining l-isoleucine from the dipeptide, even though no glycyl-l-isoleucine-ase activity can be detected in vitro. These results, along with the viability of null alleles for many other enzymes, support the idea that eukaryotes have an intricate network of alternative biochemical pathways through which the same necessary function may be achieved. Such "buffering capacity" makes it very

  5. BACTERIOPLANKTON DYNAMICS IN A SUBTROPICAL ESTUARY: EVIDENCE FOR SUBSTRATE LIMITATION

    EPA Science Inventory

    Bacterioplankton abundance and metabolic characteristics were measured along a transect in Pensacola Bay, Florida, USA, to examine the factors that control microbial water column processes in this subtropical estuary. The microbial measures included 3 H-L-leucine incorporation, e...

  6. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Cysteine L-Cystine L-Glutamic acid L-Glutamine Aminoacetic acid (glycine) L-Histidine L-Isoleucine L... following: L-Alanine L-Arginine L-Arginine Monohydrochloride L-Cysteine Monohydrochloride L-Cystine... (including L-asparagine) 7.0 L-Cystine (including L-cysteine) 2.3 L-Glutamic acid (including L-glutamine)...

  7. Inconclusive Evidence for Non-Terrestrial Isoleucine Enantiomeric Excesses in CR Chondrites

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.; Martins, Zita; Bada, Jeffrey L.

    2012-01-01

    Researchers recently described the soluble organic content of eight Antarctic CR carbonaceous chondrites and reported large enantiomeric excesses (ee) of L-isoleucine and Dalloisoleucine. The reported ee values decrease with inferred increases in aqueous alteration. We believe the conclusions presented in the manuscript are not fully justified and the data are potentially flawed.

  8. [Certain properties of "biosynthetic" L-threonine dehydratase from subcellular structures of brewers' yeast Saccharomyces carlsbergensis].

    PubMed

    Kovaleva, S V; Korozhko, A I; Beliaeva, N F; Kagan, Z S

    1981-01-01

    The paper is concerned with kinetic properties of the "biosynthetic" L-threonine dehydratase (EC 4.2.1.16) solubilized from subcellular structures of brewers' yeast Saccharomyces carlsbergensis in the absence and presence of the allosteric inhibitor, L-isoleucine, at three pH-values (pH 6.5, 7.8 and 9.5). The curve of the initial reaction rate versus initial substrate concentration in the absence of L-isoleucine at pH 6.5 was of hyperbolic character (Km = 5.5.10(-2) M), and at pH 7.8 and 9.5 the kinetic curve had a weakly sigmoidal pattern with a sharp going into the saturation plateaux; the values of [S] 0.5 are 1.10(-2) and 8.7.10(-3) M, respectively. An addition of L-isoleucine to the reaction mixture led to the appearance (at pH 6.5) or to an increase (at pH 7.8 and 9.5) of the sigmoidality of these kinetic curves and to a decrease in values of the maximum reaction rate V. The enzyme sensibility to the inhibitory effect of L-isoleucine decreased with an increase in pH values. Low L-isoleucine concentrations at low substrate concentrations activated the enzyme. The pH optimum for L-threonine dehydratase under study was 9.5-10.0. The enzyme molecular weight is about 300 000.

  9. Reduction of the off-flavor volatile generated by the yogurt starter culture including Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in soymilk.

    PubMed

    Kaneko, Daisuke; Igarashi, Toshinori; Aoyama, Kenji

    2014-02-19

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus establish a symbiotic relationship in milk; however, S. thermophilus predominantly grows in soymilk. This study determined that excess diacetyl was notably generated mainly by S. thermophilus in soymilk, and this flavor compound created an unpleasant odor in fermented soymilk. The addition of l-valine to soymilk reduced the amount of diacetyl and increased the levels of acetoin during fermentation by S. thermophilus . In addition, it was found that the expression of the ilvC gene was repressed and that of the als and aldB genes was stimulated in S. thermophilus by l-valine. Sensory evaluations with the triangle difference test and a preference test showed that the soymilk fermented with l-valine was significantly preferred compared with that without l-valine. In this study, we successfully controlled the metabolic flux of S. thermophilus in soymilk and produced more favorable fermented soymilk without the use of genetically modified lactic acid bacteria strains.

  10. Neutron inelastic scattering by amino acids

    SciTech Connect

    Thaper, C.L.; Sinha, S.K.; Dasannacharya, B.A.

    1982-01-01

    Inelastic neutron scattering experiments on normal, N-deuterated glycine, normal and N-deuterated alanine, L-valine, L-tyrosine and, L-phenylalanine at 100 K, are reported. Coupling of the external modes to different hydrogens is discussed.

  11. Effect of D-valine and cytosine arabinoside on (/sup 3/H)thymidine incorporation in rat and rabbit epididymal epithelial cell cultures

    SciTech Connect

    Orgebin-Crist, M.C.; Jonas-Davies, J.; Storey, P.; Olson, G.E.

    1984-01-01

    Epithelial cell enriched primary cultures were established from the rat and the rabbit epididymis. Epithelial cell aggregates, obtained after pronase digestion of minced epididymis, attached to the culture dish and after 72 h in vitro spread out to form discrete patches of cells. These cells have an epithelioid morphology and form a monolayer of closely apposed polygonal cells where DNA synthesis, as judged by (/sup 3/H)thymidine uptake, is very low. In L-valine medium the nonepithelial cell contamination was no more than 10% in rat and rabbit epididymal primary cultures. The labeling index of rat epididymal cells cultured in D-valine medium was significantly lower than that of cells cultured in L-valine medium. In contrast, the labeling index of rabbit epididymal cells cultured in D-valine medium was significantly higher than that of cells cultured in L-valine medium. Cytosine arabinoside decreased the number of labeled cells in both L-valine and D-valine cultures. From these results, it appears that D-valine is a selective agent for rat epididymal epithelial cells, but not for rabbit epithelial cells, and that cytosine arabinoside is a simple and effective means to control the proliferation of fibroblast-like cells in both rat and rabbit epididymal cell cultures.

  12. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.

    PubMed

    Qin, Wu; Li, Xin; Bian, Wen-Wen; Fan, Xiu-Juan; Qi, Jing-Yao

    2010-02-01

    There is increasing attention in the unique biological and medical properties of graphene, and it is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. Despite the importance of biomolecules-graphene interactions, a detailed understanding of the adsorption mechanism and features of biomolecules onto the surfaces of graphene is lacking. To address this, we have performed density functional theory (DFT) and molecular dynamics (MD) methods exploring the adsorption geometries, adsorption energies, electronic band structures, adsorption isotherms, and adsorption dynamics of l-leucine (model biomolecule)/graphene composite system. DFT calculations confirmed the energetic stability of adsorption model and revealed that electronic structure of graphene can be controlled by the adsorption direction of l-leucine. MD simulations further investigate the potential energy and van der Waals energy for the interaction processes of l-leucine/graphene system at different temperatures and pressures. We find that the van der Waals interaction between the l-leucine and the graphene play a dominant role in the adsorption process under a certain range of temperature and pressure, and the l-leucine molecule could be adsorbed onto graphene spontaneously in aqueous solution. PMID:19880174

  13. Biosynthesis of pulcherriminic acid

    PubMed Central

    MacDonald, J. C.

    1965-01-01

    1. Candida pulcherrima was grown on a complex medium to which various compounds had been added to determine their effect on the biosynthesis of pulcherriminic acid. Most of the pulcherriminic acid synthesized by C. pulcherrima PRL2019 was derived from the l-[1-14C]leucine added to the medium. 2. The cyclic dipeptide of l-leucine (cyclo-l-leucyl-l-leucyl) was shown, by trapping experiments involving cycloleucyl-leucyl isomers, to be synthesized by strain PRL2019. Cyclo-l-leucyl-l-leucyl was derived from l-leucine and was converted into pulcherriminic acid. Cyclo-l-leucyl-l-leucyl was a precursor of pulcherriminic acid in strain PRL2007 also. 3. The results supported the hypothesis that pulcherriminic acid is derived from l-leucine and that cyclo-l-leucyl-l-leucyl is an intermediate in the biosynthesis. PMID:5837792

  14. Development of an Amino Acid-Functionalized Fluorescent Nanocarrier to Deliver a Toxin to Kill Insect Pests.

    PubMed

    Zheng, Yang; You, Shusen; Ji, Chendong; Yin, Meizhen; Yang, Wantai; Shen, Jie

    2016-02-17

    Large-scale cultivation of Bacillus thuringiensis Berliner (Bt) crops has led to the rapid development of drug resistance. Herein, a fluorescent star poly(amino acid) is synthesized with l-isoleucine functionalization for the efficient delivery of either positively or negatively charged exogenous proteins into live cells. Poly(amino acid)s (P1)/Cry1Ab complexes greatly increase the cytotoxicity of the Bt toxin, Cry1Ab, and efficiently kill Bt-resistant pests. PMID:26640174

  15. Characterization of three amidinotransferases involved in the biosynthesis of ketomemicins.

    PubMed

    Ogasawara, Yasushi; Fujimori, Michiko; Kawata, Junpei; Dairi, Tohru

    2016-08-01

    We recently reported a novel class of amide bond forming enzymes (peptide ligases) involved in the biosynthesis of pheganomycins, resorcinomycins and ketomemicins. This class of enzymes exclusively utilizes Nα-amidino amino acids as the N-terminal substrate. In this Letter, we characterized three new amidinotransferases involved in the biosynthesis of ketomemicins and showed that l-arginine was the amidino-acceptor of amidinotransferases in both the Micromonospora sp. and Streptomyces mobaraensis clusters, while the Salinispora tropica enzyme recognized l-valine. Unexpectedly, the S. tropica enzyme accepted several different amino acids as amidino acceptors in addition to l-valine. Accordingly, we re-investigated the specific metabolites governed by the gene cluster of S. tropica and identified several minor congeners of ketomemicin C with different N-terminal amidino-amino acids. These results indicate that the amidinotransferase of S. tropica is promiscuous and could be useful to generate new ketomemicin-type natural products.

  16. [Biosynthesis of enniatin by washed cells of Fusarium sambucinum].

    PubMed

    Minasian, A E; Chermenskĭ, D N; Bezborodov, A M

    1979-01-01

    Biosynthesis of the depsipeptide membrane ionophore--enniatin B by the washed mycelium Fusarium sambucinum Fuck 52 377 was studied. Metabolic precursors of enniatin B, alpha-ketovaleric acid, 14C-L-valine, and 14CH3-methionine, were added to the system after starvation. The amino acid content in the metabolic pool increased 1.5 times after addition of alpha-ketovaleric acid, 2.2 times after that of valine, and 2.5 times after addition of methionine. 14C-L-valine and 14CH3-methionine were incorporated into the molecule of enniatin B. Valine methylation in the molecule occurred at the level of synthesized depsipeptide. Amino acids of the metabolic pool performed the regulatory function in the synthesis. PMID:583180

  17. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be examined at the Food.../federal-register/cfr/ibr-locations.html. (1) AOAC INTERNATIONAL, 481 North Frederick Ave., suite 500...-Phenylalanine (17) L-Proline (18) L-Serine (19) L-Threonine (20) L-Tryptophan (21) L-Tyrosine (22) L-Valine...

  18. The effect of impurity on temperature variations in the refractive indices and thickness of TGS crystals

    NASA Astrophysics Data System (ADS)

    Stadnyk, V. Yo.; Andriyevsky, B. V.; Gaba, V. M.; Kogut, Z. A.

    2016-06-01

    Temperature dependences of optical path difference δΔi and the relative changes in thickness δ l i/ l of TGS crystals doped with L-valine are studied. Temperature dependences of the relative changes in refractive indices δ n i/( n-1) are calculated. The anisotropy coefficients of refractive indices An-1(T) and linear expansion Aα(T) are calculated, and a characteristic minimum of these dependences is found near the phase transition temperature.

  19. Phenothiazine-based CaaX competitive inhibitors of human farnesyltransferase bearing a cysteine, methionine, serine or valine moiety as a new family of antitumoral compounds.

    PubMed

    Dumitriu, Gina-Mirabela; Bîcu, Elena; Belei, Dalila; Rigo, Benoît; Dubois, Joëlle; Farce, Amaury; Ghinet, Alina

    2015-10-15

    A new family of CaaX competitive inhibitors of human farnesyltransferase based on phenothiazine and carbazole skeleton bearing a l-cysteine, l-methionine, l-serine or l-valine moiety was designed, synthesized and biologically evaluated. Phenothiazine derivatives proved to be more active than carbazole-based compounds. Phenothiazine 1b with cysteine residue was the most promising inhibitor of human farnesyltransferase in the current study.

  20. Scanning-force-microscopy study of MeV-atomic-ion-induced surface tracks in organic crystals

    SciTech Connect

    Kopniczky, J.; Reimann, C.T.; Hallen, A.; Sundqvist, B.U.R. ); Tengvall, P.; Erlandsson, R. )

    1994-01-01

    We present scanning force microscope images of craterlike defects induced by individual 78.2-MeV [sup 127]I ions incident on organic single-crystal [ital L]-valine surfaces. For grazing incidence ions, the craters are elongated along the ion azimuth of incidence and display a raised tail in the surface above the ion track. This permanent plastic deformation of the surface indicates that a hydrodynamic pressure-pulse phenomenon occurs in response to the electronically deposited energy.

  1. Intestinal perfusion studies in tropical sprue. 1. Amino acid and dipeptide absorption.

    PubMed Central

    Hellier, M D; Radhakrishnan, A N; Ganapathy, V; Mathan, V I; Baker, S J

    1976-01-01

    Intestinal absorption of glycine 20 mmol/1, glycyl-glycine 10 mmol/1 plus L-leucine 10 mmol/1, and glycyl-L-leucine 10 mmol/1 has been studied by intestinal perfusion in 11 patients with tropical sprue and 10 control subjects. The patients with sprue had a significant reduction in the rate of absorption of glycine from a 20 mmol/1 solution, but there were no significant differences in the absorption of the other substances. The failure to demonstrate any difference in the absorption of these substances is probably related to their low concentration relative to the maximum absorptive capacity of the intestine. In both groups of subjects the kinetic advantage of glycyl-glycine absorption as compared with glycine absorption was maintained. When the dipeptides were perfused, free amino acids appeared in the perfusate presumably by "back diffusion" from the mucosal cells. In the case of glycyl-L-leucine considerably more glycine and leucine were found in the perfusate in patients with sprue than in the control subjects. There was no correlation between peptide absorption and the concentration of total glycly-glycine hydrolase and glycyl-L-leucine hydrolase, measured as combined brush border and cytosol enzymes. The concentrations of these enzymes were similar in both groups of subjects. PMID:964683

  2. Oxo-4-methylpentanoic acid directs the metabolism of GABA into the Krebs cycle in rat pancreatic islets.

    PubMed

    Hernández-Fisac, Inés; Fernández-Pascual, Sergio; Ortsäter, Henrik; Pizarro-Delgado, Javier; Martín del Río, Rafael; Bergsten, Peter; Tamarit-Rodriguez, Jorge

    2006-11-15

    OMP (oxo-4-methylpentanoic acid) stimulates by itself a biphasic secretion of insulin whereas L-leucine requires the presence of L-glutamine. L-Glutamine is predominantly converted into GABA (gamma-aminobutyric acid) in rat islets and L-leucine seems to promote its metabolism in the 'GABA shunt' [Fernández-Pascual, Mukala-Nsengu-Tshibangu, Martín del Río and Tamarit-Rodríguez (2004) Biochem. J. 379, 721-729]. In the present study, we have investigated how 10 mM OMP affects L-glutamine metabolism to uncover possible differences with L-leucine that might help to elucidate whether they share a common mechanism of stimulation of insulin secretion. In contrast with L-leucine, OMP alone stimulated a biphasic insulin secretion in rat perifused islets and decreased the islet content of GABA without modifying its extracellular release irrespective of the concentration of L-glutamine in the medium. GABA was transaminated to L-leucine whose intracellular concentration did not change because it was efficiently transported out of the islet cells. The L-[U-14C]-Glutamine (at 0.5 and 10.0 mM) conversion to 14CO2 was enhanced by 10 mM OMP within 30% and 70% respectively. Gabaculine (250 microM), a GABA transaminase inhibitor, suppressed OMP-induced oxygen consumption but not L-leucine- or glucose-stimulated respiration. It also suppressed the OMP-induced decrease in islet GABA content and the OMP-induced increase in insulin release. These results support the view that OMP promotes islet metabolism in the 'GABA shunt' generating 2-oxo-glutarate, in the branched-chain alpha-amino acid transaminase reaction, which would in turn trigger GABA deamination by GABA transaminase. OMP, but not L-leucine, suppressed islet semialdehyde succinic acid reductase activity and this might shift the metabolic flux of the 'GABA shunt' from gamma-hydroxybutyrate to succinic acid production.

  3. Dependence of anxiolytic effects of the dipeptide TSPO ligand GD-23 on neurosteroid biosynthesis.

    PubMed

    Gudasheva, T A; Deeva, O A; Yarkova, M A; Seredenin, S B

    2016-07-01

    The elevated plus maze test showed that GD-23 (N-carbobenzoxy-L-tryptophanyl-L-isoleucine amide), an original dipeptide ligand of TSPO, exerted anxiolytic effect when injected intraperitoneally at a dose of 0.5 mg/kg. This effect was completely blocked by the selective neurosteroid synthesis inhibitors, enzymes trilostane and finasteride. The same inhibitors do not prevent the anxiolytic effects of the benzodiazepine tranquillizer diazepam. The results of the study indicate the selective neurosteroidogenic mechanism of the anxiolytic action of GD-23. PMID:27599516

  4. Isoleucine as a possible bridge between exogenous delivery and terrestrial enhancement of homochirality.

    PubMed

    Li, Feng; Fitz, Daniel; Rode, Bernd M

    2013-02-01

    We report a highly enantioselective oligomerization of isoleucine stereomers in the salt-induced peptide formation reaction under plausibly prebiotic earth conditions. Up to 6.5-fold superiority in reactivity of L-isoleucine was observed, compared to its D-enantiomer, after 14 evaporation cycles in the presence of Cu(2+) and NaCl. Since isoleucine is among the proteinogenic amino acids that were found enantioenriched in meteorites, this present work may further correlate the extraterrestrial delivery and endogenous production of biological homochirality by virtue of a protein constituent rather than the rarely occurring α-methylated amino acids. PMID:22968664

  5. High-Fat Feeding Impairs Nutrient Sensing and Gut Brain Integration in the Caudomedial Nucleus of the Solitary Tract in Mice

    PubMed Central

    Cavanaugh, Althea R.; Schwartz, Gary J.; Blouet, Clémence

    2015-01-01

    Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS), remain poorly understood. In this paper, we assessed the consequences of high-fat (HF) feeding and diet-induced obesity (DIO) on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF) diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1). We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size. PMID:25774780

  6. In-situ study of substrate--catalyst interactions in a Juliá-Colonna epoxidation using quartz crystal microbalance with dissipation.

    PubMed

    Wakeham, Deborah; Crivoi, Dana G; Medina, Francesc; Segarra, Anna M; Rutland, Mark W

    2016-05-01

    Quartz crystal microbalance with dissipation (QCM-D) analysis of the hexa-l-Leucine (PLL)-catalyzed epoxidation of chalcone gives in-situ experimental evidences which demonstrate that the reaction proceeds mainly via the formation of a PLL-bound hydroperoxide complex followed by the reversible addition of chalcone. The observations offer an alternative rationalization for the viability of the preferred catalytic pathway.

  7. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-Leucine L-Lysine DL-Methionine (not for infant foods) L-Methionine L-Phenylalanine L-Proline L-Serine L... Aminoacetic acid (glycine) L-Leucine DL-Methionine L-Methionine L-Tryptophan L-Phenylalanine L-Proline L... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6...

  8. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-Leucine L-Lysine DL-Methionine (not for infant foods) L-Methionine L-Phenylalanine L-Proline L-Serine L... Aminoacetic acid (glycine) L-Leucine DL-Methionine L-Methionine L-Tryptophan L-Phenylalanine L-Proline L... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6...

  9. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-Leucine L-Lysine DL-Methionine (not for infant foods) L-Methionine L-Phenylalanine L-Proline L-Serine L... Aminoacetic acid (glycine) L-Leucine DL-Methionine L-Methionine L-Tryptophan L-Phenylalanine L-Proline L... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6...

  10. Characterization of the Coronatine-Like Phytotoxins Produced by the Common Scab Pathogen Streptomyces scabies.

    PubMed

    Fyans, Joanna K; Altowairish, Mead S; Li, Yuting; Bignell, Dawn R D

    2015-04-01

    Streptomyces scabies is an important causative agent of common scab disease of potato tubers and other root crops. The primary virulence factor produced by this pathogen is a phytotoxic secondary metabolite called thaxtomin A, which is essential for disease development. In addition, the genome of S. scabies harbors a virulence-associated biosynthetic gene cluster called the coronafacic acid (CFA)-like gene cluster, which was previously predicted to produce metabolites that resemble the Pseudomonas syringae coronatine (COR) phytotoxin. COR consists of CFA linked to an ethylcyclopropyl amino acid called coronamic acid, which is derived from L-allo-isoleucine. Using a combination of genetic and chemical analyses, we show that the S. scabies CFA-like gene cluster is responsible for producing CFA-L-isoleucine as the major product as well as other minor COR-like metabolites. Production of the metabolites was shown to require the cfl gene, which is located within the CFA-like gene cluster and encodes an enzyme involved in ligating CFA to its amino acid partner. CFA-L-isoleucine purified from S. scabies cultures was shown to exhibit bioactivity similar to that of COR, though it was found to be less toxic than COR. This is the first report demonstrating the production of coronafacoyl phytotoxins by S. scabies, which is the most prevalent scab-causing pathogen in North America. PMID:25423263

  11. Metabolic annotation of 2-ethylhydracrylic acid.

    PubMed

    Ryan, Robert O

    2015-08-25

    Increased levels of the organic acid, 2-ethylhydracrylic acid (2-EHA) occur in urine of subjects with impaired L(+)-isoleucine metabolism. Chiral intermediates formed during isoleucine degradation are (S) enantiomers. Blockage of (S) pathway flux drives racemization of (2S, 3S) L(+)-isoleucine and its (2S, 3R) stereoisomer, L(+)-alloisoleucine. This non-protein amino acid is metabolized to (R)-2-methylbutyryl CoA via enzymes common to branched chain amino acid degradation. Subsequently, (R) intermediates serve as alternate substrates for three valine metabolic enzymes, generating 2-EHA. Once formed, 2-EHA accumulates because it is poorly recognized by distal valine pathway enzymes. Thus, urinary 2-EHA represents a biomarker of isoleucine pathway defects. 2-EHA levels are also increased in rats exposed to the industrial solvent, ethylene glycol monomethyl ether or the neurotoxin precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In these cases, a block in (S) pathway isoleucine catabolism occurs at the level of (S)-2-methylbutyryl CoA conversion to tiglyl CoA via inhibition of electron transferring flavoprotein/ubiquinone oxidoreductase dependent reactions. Elevated urinary 2-EHA in propionyl CoA carboxylase deficiency and methylmalonic aciduria results from a buildup of distal intermediates in the (S) pathway of isoleucine degradation. In Barth syndrome and dilated cardiomyopathy with ataxia syndrome, 2-EHA is a byproduct of impeded propionyl CoA entry into the Krebs cycle.

  12. Metabolic annotation of 2-ethylhydracrylic acid

    PubMed Central

    Ryan, Robert O.

    2015-01-01

    Summary Increased levels of the organic acid, 2-ethylhydracrylic acid (2-EHA) occur in urine of subjects with impaired L(+)-isoleucine metabolism. Chiral intermediates formed during isoleucine degradation are (S) enantiomers. Blockage of (S) pathway flux drives racemization of (2S, 3S) L(+)-isoleucine and its (2S, 3R) stereoisomer, L(+)-alloisoleucine. This non-protein amino acid is metabolized to (R)-2-methylbutyryl CoA via enzymes common to branched chain amino acid degradation. Subsequently, (R) intermediates serve as alternate substrates for three valine metabolic enzymes, generating 2-EHA. Once formed, 2-EHA accumulates because it is poorly recognized by distal valine pathway enzymes. Thus, urinary 2-EHA represents a biomarker of isoleucine pathway defects. 2-EHA levels are also increased in rats exposed to the industrial solvent, ethylene glycol monomethyl ether or the neurotoxin precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In these cases, a block in (S) pathway isoleucine catabolism occurs at the level of (S)-2-methylbutyryl CoA conversion to tiglyl CoA via inhibition of electron transferring flavoprotein / ubiquinone oxidoreductase dependent reactions. Elevated urinary 2-EHA in propionyl CoA carboxylase deficiency and methylmalonic aciduria results from a buildup of distal intermediates in the (S) pathway of isoleucine degradation. In Barth syndrome and dilated cardiomyopathy with ataxia syndrome, 2-EHA is a byproduct of impeded propionyl CoA entry into the Krebs cycle. PMID:26115894

  13. Experiments on the origin of molecular chirality by parity non-conservation during beta-decay

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1973-01-01

    Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta decay, and their resulting circularly polarized Bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. Experiments involve subjecting a number of racemic and optically active amino acid samples to irradiation in a 61700 Ci90SR-90Y beta radiation source for a period of 1.34 years, then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography. In the cases of D,L-leucine, norleucine, norvaline and proline as solids, of D,L-leucine in solution and of D,L-tyrosine in alkaline solution no optical rotation was observed during CRD measurements in the 250-630 nm spectral region. While slight differences were noted in the percent radiolysis of solid D- (12.7%) and L-leucine (16.2%) as determined by GC, no enrichment of either enantiomer was found.

  14. The Perseus-Exobiology experiment onboard MIR

    NASA Astrophysics Data System (ADS)

    Barbier, B.; Boillot, F.; Chabin, A.; Buré, C.; Venet, M.; Belsky, A.; Jacquet, R.; Bertrand-Urbaniak, M.; Delmas, A.; Brack, A.

    2002-11-01

    Two amino acids, L-leucine and "α-methyl-L-leucine; a cyclic dipeptide, L-leucine-diketopiperazine, and an activated tripeptide L-trileucine thioethylester, were exposed for three months to space conditions onboard the MIR station during the Perseus-Exobiology mission in 1999. These samples were exposed in order to study the exogeneous hypothesis for the origin of some of the important biological building blocks of life. The four compounds were exposed both free and associated with basalt, clay and meteorite powder to simulate the effects of potential meteorite protection. Post-flight analyses did not reveal any racemization or polymerisation of the exposed compounds. Approximately half of the amino acids were photolyzed with decarboxylation apparently the primary cause. Peptides were less sensitive to photolysis which mainly occurred by decarbonylation, but were partly lost by natural degradation or sublimation. The best mineral protection for the samples was ensured by the meteorite powder, which exhibits the highest absorption in VUV, whereas clay, almost transparent in VUV was the least efficient. By varying the thickness of the meteorite layer, it was determined that a 5 μm film was necessary to ensure efficient protection against UV radiation.

  15. Effect of amino acid dopants on the spectral, optical, mechanical and thermal properties of potassium acid phthalate crystals for possible optoelectronic and frequency doubling applications

    NASA Astrophysics Data System (ADS)

    Prakash, J. Thomas Joseph; Gnanaraj, J. Martin Sam; Dhavud, S. Shek; Ekadevasena, S.

    2015-09-01

    Undoped and amino acid (L-Arginine and L-Valine) doped KAP crystals were grown by slow evaporation solution growth technique. The changes in the structural, spectral, optical, mechanical and thermal properties were observed. The sharp prominent peaks in the indexed powder XRD pattern confirms the crystalline nature of the sample. Optical studies reveal that the crystal is transparent in the entire visible light region. Thermal stability was checked by TG/DTA analysis. The mechanical stability was evaluated from Vicker's microhardness test. The SHG efficiency for the title materials was tested with different particle sizes by the Kurtz and Perry powder method, which established the existence of phase matching.

  16. Possible selective adsorption of enantiomers by Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Friebele, E.; Shimoyama, A.; Ponnamperuma, C.

    1981-01-01

    Racemic amino acids including (D,L) alpha-alamine, (D,L) alpha-aminobutyric acid, (D,L) valine, and (D,L) norvaline were incubated with Na-montmorillonite at 100% CEC at three hydrogen ion concentrations, and amino acid adsorption was determined by ion exchange chromatography. Enantiomers were analyzed by gas chromatography. Differences in the quantities of D and L enantiomers in any of the fractions was no larger than a few percent. Although a large difference in the adsorption of the amino acid enantiomers was not observed, the analysis may indicate a small preferential adsorption (0.5-2%) of L-amino acids by Na-montmorillonite.

  17. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

    PubMed Central

    Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel

    2016-01-01

    Summary The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well. PMID:27340453

  18. Method development for the determination of D- and L-isomers of leucine in human plasma by high-performance liquid chromatography tandem mass spectrometry and its application to animal plasma samples.

    PubMed

    Sugimoto, Hiroshi; Kakehi, Masaaki; Jinno, Fumihiro

    2015-10-01

    We developed a highly sensitive and specific high-performance liquid chromatography tandem mass spectrometry method with an electrospray ionization for the determination of D- and L-isomers of leucine in human plasma. Phosphate-buffered saline was used as the surrogate matrix for preparation of calibration curves and quality control samples. The extraction of D- and L-leucine in plasma samples (100 μL) was performed using cationic exchange solid-phase extraction. The enantiomer separation of D- and L-leucine was successfully achieved without derivatization using a CHIRALPAK ZWIX(-) with an isocratic mobile phase comprised of methanol/acetonitrile/1 mol/L ammonium formate/formic acid (500:500:25:2, v/v/v/v) at a flow rate of 0.5 mL/min. In addition, the discrimination of DL-leucine from structural isomers DL-isoleucine and DL-allo-isoleucine was performed using the unique precursor and product ion pair transition of DL-leucine (m/z 132.1 > 43.0) and DL-leucine-d 7 (m/z 139.2 > 93.0) in positive electrospray ionization mode. The standard curves were linear throughout the calibration range from 0.001 to 1 μg/mL for D-leucine and from 1 to 1000 μg/mL for L-leucine, respectively, with acceptable intra- and inter-day precision and accuracy. The stability of D- and L-leucine in human plasma and solvents was confirmed. The endogenous level of D- and L-leucine in human plasma was 0.00197~0.00591 and 9.63~24.7 μg/mL, respectively. This method was also successfully applied to investigate the species difference in the ratios of D-leucine to total leucine from individual plasma concentrations in humans and various animals. The plasma D-leucine concentrations or their ratio to total leucine in rodents was much higher than that in humans. PMID:26345443

  19. Synthesis of analogs of L-valacyclovir and determination of their substrate activity for the oligopeptide transporter in Caco-2 cells.

    PubMed

    Friedrichsen, Gerda Marie; Chen, Weiqing; Begtrup, Mikael; Lee, Chao-Pin; Smith, Philip L; Borchardt, Ronald T

    2002-07-01

    L-Valacyclovir, a prodrug of acyclovir, is a substrate for the peptide transporter (PepT1) in the intestinal mucosa, which accounts for its higher than expected oral bioavailability. The substrate activity of L-valacyclovir for PepT1 is surprising, particularly when one considers that the molecule has the structural features of a nucleoside rather than a peptide. In an attempt to better understand the structure-transport relationships (STR) for the interactions of L-valacyclovir with PepT1, analogs of this molecule with structural changes in the guanine moiety were synthesized and their substrate activity for PepT1 in Caco-2 cell monolayers was determined. The analogs synthesized include those that had the guanine moiety of L-valacyclovir substituted with purine, benzimidazole, and 7-azaindole. All three analogs (purine, benzimidazole, and 7-azaindole) exhibited affinity for PepT1 in binding studies, but only the purine analog (as the L-valine ester) showed PepT1-associated transcellular transport across Caco-2 cell monolayers. The benzimidazole and 7-azaindole analogs (as their L-valine esters) were rapidly metabolized by esterase when applied to the apical surface of Caco-2 cells, which probably explains their low penetration as the intact prodrugs via PepT1.

  20. Exploring Solute-Solvent Interactions of -Amino Acids in Aqueous [] Arrangements by Volumetric, Viscometric, Refractometric, and Acoustic Approach

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Roy, Milan Chandra; Basak, Saptarshi

    2014-05-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate (] have been investigated by thermophysical properties. The apparent molar volume (), viscosity -coefficient, molal refraction (), and adiabatic compressibility ( of glycine, l-alanine, and l-valine have been studied in 0.001 mol , 0.003 mol , and 0.005 mol aqueous 1-ethylpyridinium tetrafluoroborate [] solutions at 298.15 K from the values of densities , viscosities (), refractive index (, and speed of sound , respectively. The extent of interaction, i.e., the solute-solvent interaction is expressed in terms of the limiting apparent molar volume (, viscosity -coefficient, and limiting apparent molar adiabatic compressibility (. The limiting apparent molar volumes (, experimental slopes ( derived from the Masson equation, and viscosity - and -coefficients using the Jones-Dole equation have been interpreted in terms of ion-ion and ion-solvent interactions, respectively. Molal refractions ( have been calculated with the help of the Lorentz-Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  1. Crystal structure of valinomycin-monohydrate cage complexes crystallized from dioxane.

    PubMed

    Langs, D A; Blessing, R H; Duax, W L

    1992-04-01

    Valinomycin, cyclo-[(L-Val-D-Hyv-D-Val-L-Lac)3-], was crystallized from aqueous dioxane solvent as a monohydrate complex in which water molecules were found within the ion-binding cavity of the ionophore: monoclinic P2(1), a = 14.377 (3), b = 41.554 (14), c = 14.080 (3) A, beta = 118.27 (2) degrees, Z = 4. There are two non-equivalent valinomycin-water complexes and three dioxane molecules in the asymmetric unit. The ionophore molecules adopt two similar but non-identical, octahedral, bracelet, cage conformations that are a consequence of two distinct ways in which the complexed water molecules can deform the normal octahedral coordinate geometry of the metal binding site. In the first complex the water molecule forms hydrogen donor bonds to the carbonyl oxygens of two L-valine residues on one facial side of the cavity, while in the second complex the water molecule is trigonal-planar coordinate and binds to two L-valine residues on one entrant face of the cavity plus a third D-valine residue from the opposite side of the cavity.

  2. Self-Assembled Fibers Containing Stable Organic Radical Moieties: Alignment and Magnetic Properties in Liquid Crystals.

    PubMed

    Eimura, Hiroki; Umeta, Yoshikazu; Tokoro, Hiroko; Yoshio, Masafumi; Ohkoshi, Shin-Ichi; Kato, Takashi

    2016-06-20

    Macroscopically oriented stable organic radicals have been obtained by using a liquid-crystalline (LC) gel composed of an l-isoleucine-based low molecular weight gelator containing a 2,2,6,6-tetramethylpiperidine 1-oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super-exchange interaction constant J is estimated as -0.89 cm(-1) . PMID:27219716

  3. Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    King, Zachary A; Feist, Adam M

    2014-07-01

    Maintaining cofactor balance is a critical function in microorganisms, but often the native cofactor balance does not match the needs of an engineered metabolic flux state. Here, an optimization procedure is utilized to identify optimal cofactor-specificity "swaps" for oxidoreductase enzymes utilizing NAD(H) or NADP(H) in the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae. The theoretical yields of all native carbon-containing molecules are considered, as well as theoretical yields of twelve heterologous production pathways in E. coli. Swapping the cofactor specificity of central metabolic enzymes (especially GAPD and ALCD2x) is shown to increase NADPH production and increase theoretical yields for native products in E. coli and yeast--including L-aspartate, L-lysine, L-isoleucine, L-proline, L-serine, and putrescine--and non-native products in E. coli-including 1,3-propanediol, 3-hydroxybutyrate, 3-hydroxypropanoate, 3-hydroxyvalerate, and styrene.

  4. Dating pleistocene archeological sites by protein diagenesis in ostrich eggshell.

    PubMed

    Brooks, A S; Hare, P E; Kokis, J E; Miller, G H; Ernst, R D; Wendorf, F

    1990-04-01

    Eggshells of the African ostrich (Struthio camelus), ubiquitous in archeological sites in Africa, have been shown by laboratory simulation experiments to retain their indigenous organic matrix residues during diagenesis far better than any other calcified tissue yet studied. The rate of L-isoleucine epimerization to D-alloisoleucine follows reversible first-order kinetics and has been calibrated for local temperature effects and used to estimate the age range of stratified archeological sites. Age estimates are consistent with radiocarbon dates from several stratified archeological sites. With adequate calibration, this technique can provide accurate ages to within 10 to 15 percent for strata deposited within the last 200,000 years in the tropics and the last 1,000,000 years in colder regions such as China.

  5. Effect of Selectively Introducing Arginine and D-Amino Acids on the Antimicrobial Activity and Salt Sensitivity in Analogs of Human Beta-Defensins

    PubMed Central

    Olli, Sudar; Rangaraj, Nandini; Nagaraj, Ramakrishnan

    2013-01-01

    We have examined the antimicrobial activity of C-terminal analogs of human β-defensins HBD-1and-3 wherein lysines have been selectively replaced by L- and D-arginines and L-isoleucine substituted with its D-enantiomer. The analogs exhibited antibacterial and antifungal activities. Physiological concentration of NaCl did not attenuate the activity of the peptides against Gram-negative bacteria considerably, while some attenuation of activity was observed against S. aureus. Variable attenuation of activity was observed in the presence of Ca2+ and Mg2+. Introduction of D-amino acids abrogated the need for a disulfide bridge for exhibiting activity. Confocal images of carboxyfluorescein (CF) labeled peptides indicated initial localization on the membrane and subsequent translocation into the cell. Analogs corresponding to cationic rich segments of human defensins substituted with L- and D-arginine, could be attractive candidates for development as future therapeutic drugs. PMID:24086767

  6. The Novel Dipeptide Translocator Protein Ligand, Referred to As GD-23, Exerts Anxiolytic and Nootropic Activities.

    PubMed

    Povarnina, P Yu; Yarkov, S A; Gudasheva, T A; Yarkova, M A; Seredenin, S B

    2015-01-01

    The translocator protein (TSPO) promotes the translocation of cholesterol to the inner mitochondrial membrane and mediates steroid formation. In this study, we first report on a biological evaluation of the dipeptide GD-23 (N-carbobenzoxy-L tryptophanyl-L isoleucine amide), a structural analogue of Alpidem, the principal TSPO ligand. We show that GD-23 in a dose range of 0.05 to 0.5 mg/kg (i.p.) exhibits anxiolytic activity in the elevated plus maze test and nootropic activity in the object recognition test in scopolamine-induced amnesia in rodents. It was shown that GD-23 did not affect spontaneous locomotor activity, holding promise as a nonsedative anxiolytic agent. The anxiolytic and nootropic activities of GD-23 were abrogated by the TSPO specific ligand PK11195, which thus suggests a role for TSPO in mediating the pharmacological activity of GD-23. PMID:26483966

  7. Self-Assembled Fibers Containing Stable Organic Radical Moieties: Alignment and Magnetic Properties in Liquid Crystals.

    PubMed

    Eimura, Hiroki; Umeta, Yoshikazu; Tokoro, Hiroko; Yoshio, Masafumi; Ohkoshi, Shin-Ichi; Kato, Takashi

    2016-06-20

    Macroscopically oriented stable organic radicals have been obtained by using a liquid-crystalline (LC) gel composed of an l-isoleucine-based low molecular weight gelator containing a 2,2,6,6-tetramethylpiperidine 1-oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super-exchange interaction constant J is estimated as -0.89 cm(-1) .

  8. Polymer/organosilica nanocomposites based on polyimide with benzimidazole linkages and reactive organoclay containing isoleucine amino acid: Synthesis, characterization and morphology properties

    SciTech Connect

    Mallakpour, Shadpour; Dinari, Mohammad

    2012-09-15

    Highlights: ► A reactive organoclay was formed using L-isoleucine amino acid as a swelling agent. ► Polyimide was synthesized from benzimidazole diamine and pyromellitic dianhydride. ► Imide and benzimidazole groups assured the thermal stability of the nanocomposites. ► Nanocomposite films were prepared by an in situ polymerization reaction. ► The TEM micrographs of nanocomposites revealed well-exfoliated structures. -- Abstract: Polyimide–silica nanocomposites are attractive hybrid architectures that possess excellent mechanical, thermal and chemical properties. But, the dispersion of inorganic domains in the polymer matrix and the compatibility between the organic and inorganic phases are critical factors in these hybrid systems. In this investigation, a reactive organoclay was prepared via ion exchange reaction between protonated form of difunctional L-isoleucine amino acid as a swelling agent and Cloisite Na{sup +} montmorillonite. Amine functional groups of this swelling agent formed an ionic bond with the negatively charged silicates, whereas the remaining acid functional groups were available for further interaction with polymer chains. Then organo-soluble polyimide (PI) have been successfully synthesized from the reaction of 2-(3,5-diaminophenyl)-benzimidazole and pyromellitic dianhydride in N,N-dimethylacetamide. Finally, PI/organoclay nanocomposite films enclosing 1%, 3%, 5%, 7% and 10% of synthesized organoclay were successfully prepared by an in situ polymerization reaction through thermal imidization. The synthesized hybrid materials were subsequently characterized by Fourier transform infrared spectroscopy, X-ray diffraction, electron microscopy, and thermogravimetric analysis techniques. The PI/organoclay nanocomposite films have good optical transparencies and the mechanical properties were substantially improved by the incorporation of the reactive organoclay.

  9. 1,25-Dihydroxyvitamin D3 Induces LL-37 and HBD-2 Production in Keratinocytes from Diabetic Foot Ulcers Promoting Wound Healing: An In Vitro Model

    PubMed Central

    Gonzalez-Curiel, Irma; Trujillo, Valentin; Montoya-Rosales, Alejandra; Rincon, Kublai; Rivas-Calderon, Bruno; deHaro-Acosta, Jeny; Marin-Luevano, Paulina; Lozano-Lopez, Daniel; Enciso-Moreno, Jose A.; Rivas-Santiago, Bruno

    2014-01-01

    Diabetic foot ulcers (DFU) are one of the most common diabetes-related cause of hospitalization and often lead to severe infections and poor healing. It has been recently reported that patients with DFU have lower levels of antimicrobial peptides (AMPs) at the lesion area, which contributes with the impairment of wound healing. The aim of this study was to determine whether 1,25-dihydroxyvitamin D3 (1,25 (OH)2 D3) and L-isoleucine induced HBD-2 and LL-37 in primary cultures from DFU. We developed primary cell cultures from skin biopsies from 15 patients with DFU and 15 from healthy donors. Cultures were treated with 1,25 (OH)2D3 or L-isoleucine for 18 h. Keratinocytes phenotype was identified by western blot and flow cytometry. Real time qPCR for DEFB4, CAMP and VDR gene expression was performed as well as an ELISA to measure HBD-2 and LL-37 in supernatant. Antimicrobial activity, in vitro, wound healing and proliferation assays were performed with conditioned supernatant. The results show that primary culture from DFU treated with 1,25(OH)2D3, increased DEFB4 and CAMP gene expression and increased the production of HBD-2 and LL-37 in the culture supernatant. These supernatants had antimicrobial activity over E. coli and induced remarkable keratinocyte migration. In conclusion the 1,25(OH)2D3 restored the production of AMPs in primary cell from DFU which were capable to improve the in vitro wound healing assays, suggesting their potential therapeutic use on the treatment of DFU. PMID:25337708

  10. Side-chain interactions in the regulatory domain of human glutamate dehydrogenase determine basal activity and regulation.

    PubMed

    Mastorodemos, Vasileios; Kanavouras, Konstantinos; Sundaram, Shobana; Providaki, Maria; Petraki, Zoe; Kokkinidis, Michael; Zaganas, Ioannis; Logothetis, Diomedes E; Plaitakis, Andreas

    2015-04-01

    Glutamate Dehydrogenase (GDH) is central to the metabolism of glutamate, a major excitatory transmitter in mammalian central nervous system (CNS). hGDH1 is activated by ADP and L-leucine and powerfully inhibited by GTP. Besides this housekeeping hGDH1, duplication led to an hGDH2 isoform that is expressed in the human brain dissociating its function from GTP control. The novel enzyme has reduced basal activity (4-6% of capacity) while remaining remarkably responsive to ADP/L-leucine activation. While the molecular basis of this evolutionary adaptation remains unclear, substitution of Ser for Arg443 in hGDH1 is shown to diminish basal activity (< 2% of capacity) and abrogate L-leucine activation. To explore whether the Arg443Ser mutation disrupts hydrogen bonding between Arg443 and Ser409 of adjacent monomers in the regulatory domain ('antenna'), we replaced Ser409 by Arg or Asp in hGDH1. The Ser409Arg-1 change essentially replicated the Arg443Ser-1 mutation effects. Molecular dynamics simulation predicted that Ser409 and Arg443 of neighboring monomers come in close proximity in the open conformation and that introduction of Ser443-1 or Arg409-1 causes them to separate with the swap mutation (Arg409/Ser443) reinstating their proximity. A swapped Ser409Arg/Arg443Ser-1 mutant protein, obtained in recombinant form, regained most of the wild-type hGDH1 properties. Also, when Ser443 was replaced by Arg443 in hGDH2 (as occurs in hGDH1), the Ser443Arg-2 mutant acquired most of the hGDH1 properties. Hence, side-chain interactions between 409 and 443 positions in the 'antenna' region of hGDHs are crucial for basal catalytic activity, allosteric regulation, and relative resistance to thermal inactivation. PMID:25620628

  11. Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions.

    PubMed

    Hiralal, Lettisha; Olaniran, Ademola O; Pillay, Balakrishna

    2014-01-01

    A broad range of aroma-active esters produced during fermentation are vital for the complex flavour of beer. This study assessed the influence of fermentation temperature, pH, and wort nutritional supplements on the production of yeast-derived ester compounds and the overall fermentation performance. The best fermentation performance was achieved when wort was supplemented with 0.75 g/l l-leucine resulting in highest reducing sugar and FAN (free amino nitrogen) utilization and ethanol production. At optimum fermentation pH of 5, 38.27% reducing sugars and 35.28% FAN was utilized resulting in 4.07% (v/v) ethanol. Wort supplemented with zinc sulphate (0.12 g/l) resulted in 5.01% ethanol (v/v) production and 54.32% reducing sugar utilization. Increase in fermentation temperature from 18°C to room temperature (± 22.5°C) resulted in 17.03% increased ethanol production and 14.42% and 62.82% increase in total acetate ester concentration and total ethyl ester concentration, respectively. Supplementation of worth with 0.12 g/l ZnSO4 resulted in 2.46-fold increase in both isoamyl acetate and ethyl decanoate concentration, while a 7.05-fold and 1.96-fold increase in the concentration of isoamyl acetate and ethyl decanoate, respectively was obtained upon 0.75 g/l l-leucine supplementation. Wort supplemented with l-leucine (0.75 g/l) yielded the highest beer foam head stability with a rating of 2.67, while highest yeast viability was achieved when wort was supplemented with 0.12 g/l zinc sulphate. Results from this study suggest that supplementing wort with essential nutrients required for yeast growth and optimizing the fermentation conditions could be an effective way of improving fermentation performance and controlling aroma-active esters in beer. PMID:23845914

  12. Experimental evidence for a metallohydrolase mechanism in which the nucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus

    PubMed Central

    Kumar, Amit; Periyannan, Gopal Raj; Narayanan, Beena; Kittell, Aaron W.; Kim, Jung-Ja; Bennett, Brian

    2007-01-01

    Metallohydrolases catalyse some of the most important reactions in biology and are targets for numerous chemotherapeutic agents designed to combat bacterial infectivity, antibiotic resistance, HIV infectivity, tumour growth, angiogenesis and immune disorders. Rational design of inhibitors of these enzymes with chemotherapeutic potential relies on detailed knowledge of the catalytic mechanism. The roles of the catalytic transition ions in these enzymes have long been assumed to include the activation and delivery of a nucleophilic hydroxy moiety. In the present study, catalytic intermediates in the hydrolysis of L-leucyl-L-leucyl-L-leucine by Vibrio proteolyticus aminopeptidase were characterized in spectrokinetic and structural studies. Rapid-freeze-quench EPR studies of reaction products of L-leucyl-L-leucyl-L-leucine and Co(II)-substituted aminopeptidase, and comparison of the EPR data with those from structurally characterized complexes of aminopeptidase with inhibitors, indicated the formation of a catalytically competent post-Michaelis pre-transition state intermediate with a structure analogous to that of the inhibited complex with bestatin. The X-ray crystal structure of an aminopeptidase–L-leucyl-L-leucyl-L-leucine complex was also analogous to that of the bestatin complex. In these structures, no water/hydroxy group was observed bound to the essential metal ion. However, a water/hydroxy group was clearly identified that was bound to the metal-ligating oxygen atom of Glu152. This water/hydroxy group is proposed as a candidate for the active nucleophile in a novel metallohydrolase mechanism that shares features of the catalytic mechanisms of aspartic proteases and of B2 metallo-β-lactamases. Preliminary studies on site-directed variants are consistent with the proposal. Other features of the structure suggest roles for the dinuclear centre in geometrically and electrophilically activating the substrate. PMID:17238863

  13. Activation of l-arginine transport by protein kinase C in rabbit, rat and mouse alveolar macrophages

    PubMed Central

    Racké, Kurt; Hey, Claudia; Mössner, Jutta; Hammermann, Rainer; Stichnote, Christina; Wessler, Ignaz

    1998-01-01

    The role of protein kinase C in controlling L-arginine transport in alveolar macrophages was investigated. L-[3H]Arginine uptake in rabbit alveolar macrophages declined by 80 % after 20 h in culture. 4β-Phorbol 12-myristate 13-acetate (PMA), but not 4α-phorbol 12-myristate 13-acetate (α-PMA), present during 20 h culture, enhanced L-[3H]arginine uptake more than 10-fold. Staurosporine and chelerythrine opposed this effect. L-[3H]Arginine uptake was saturable and blockable by L-lysine. After PMA treatment Vmax was increased more than 5-fold and Km was reduced from 0.65 to 0.32 mM. Time course experiments showed that PMA increased L-[3H]arginine uptake almost maximally within 2 h. This short-term effect was not affected by cycloheximide or actinomycin D. L-[3H]Arginine uptake and its stimulation by PMA was also observed in sodium-free medium. L-Leucine (0.1 mM) inhibited L-[3H]arginine uptake by 50 % in sodium-containing medium, but not in sodium-free medium. At 1 mM, L-leucine caused significant inhibition in sodium-free medium also. L-Leucine showed similar effects on PMA-treated cells. N-Ethylmaleimide (200 μm, 10 min) reduced L-[3H]arginine uptake by 70 % in control cells, but had no effect on PMA-treated (20 or 2 h) cells. In alveolar macrophages, multiple transport systems are involved in L-arginine uptake, which is markedly stimulated by protein kinase C, probably by modulation of the activity of already expressed cationic amino acid transporters. PMID:9714862

  14. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers.

    PubMed Central

    Oliver, A E; Deamer, D W

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  15. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    NASA Technical Reports Server (NTRS)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  16. Identification of caerulomycin A gene cluster implicates a tailoring amidohydrolase.

    PubMed

    Zhu, Yiguang; Fu, Peng; Lin, Qinheng; Zhang, Guangtao; Zhang, Haibo; Li, Sumei; Ju, Jianhua; Zhu, Weiming; Zhang, Changsheng

    2012-06-01

    The biosynthetic gene cluster for caerulomycin A (1) was cloned and characterized from the marine actinomycete Actinoalloteichus cyanogriseus WH1-2216-6, which revealed an unusual hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) system. The crmL disruption mutant accumulated caerulomycin L (2) with an extended L-leucine at C-7, implicating an amidohydrolase activity for CrmL. The leucine-removing activity was confirmed for crude CrmL enzymes. Heterologous expression of the 1 gene cluster led to 1 production in Streptomyces coelicolor.

  17. Metabolic fate of the carboxyl-carbon of valine

    SciTech Connect

    Lathrop, K.A.; Bartlett, R.D.; Faulhaber, P.F.; Harper, P.V.

    1984-01-01

    Although several C-11-carboxyl-labeled amino acids show promise for clinical use, few detailed biokinetic studies have been reported. Such information is necessary for the calculation of comprehensive radiation absorbed doses and may reveal additional clinical uses. The authors have collected data in mice at intervals between 1 and 90 m after i.v. injection of D,L-, L-, or D-valine for 22 whole organs or tissue samples and for CO/sub 2/ and urinary excretion. The enantiomers were cleanly separated by HPLC, but studies with the D,L- mixture were also done as additional assurance of purity for the separation (i.e., (D+L)/2=D,L). Elimination of C-11 from L-valine is restricted to the approx. =25% of injected activity (IA) observed as exhaled CO/sub 2/, the production of which appears completed in approx. =15 m, the exhalation in approx. =100m. The remaining 75% IA is available for incorporation directly into proteins or into coenzyme-A after deamination to 2-oxoisovalerate. The approx. =25% IA from D-valine that appears to be retained in the body probably is not converted to L-valine since virtually no CO/sub 2/ is recovered. The pancreatic content of approx. =8% of retained activity (RA) for both L- and D- valine at 90 m suggests similar localization mechanisms for the activity remaining in the body after excretion is ended. A similar correspondence of RA is seen in most other organs, the notable exceptions being the approx. =2 to 3 times higher %RA in blood and muscle for D-valine and in small intestine for L-valine. Studies such as this offer the possibility for quantitation of isolated metabolic processes, in this case production of CO/sub 2/ from 2-oxoisovalerate formed by deamination, and for separating metabolized from non-metabolized localization of C-11 when the D-amino acid can be shown to remain undegraded.

  18. Exploration of interactions between bioactive solutes and vitamin B9 in aqueous medium by physico-chemical contrivances

    NASA Astrophysics Data System (ADS)

    Nath Roy, Mahendra; Chakraborti, Palash; Ekka, Deepak

    2014-09-01

    Molecular interaction prevailing in α-amino acids (glycine, L-alanine, L-valine) and aqueous solution of folic acid (FA) has been reported by physico-chemical properties as density (ρ), viscosity (η), refractive index (nD) and ultrasonic speed (u) at 298.15 K. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume (φ0V), viscosity B-coefficient, molar refraction (RM) and limiting apparent molar adiabatic compressibility (φ0K). The trends in transfer volumes, Δφ0V, have been interpreted in terms of solute-cosolute interactions on the basis of a co-sphere overlap model. The role of the cosolute (FA), and the contribution of solute-solute and solute-solvent interactions to the solution complexes, has also been analysed through the derived properties.

  19. Periplasmic maltose-binding protein confers specificity on the outer membrane maltose pore of Escherichia coli.

    PubMed Central

    Heuzenroeder, M W; Reeves, P

    1980-01-01

    ompB mutants of Escherichia coli K-12 are markedly deficient in porin in their outer membrane. This results in a decreased rate of uptake for many substrates: the maltose pore (lambda receptor) can in some circumstances, in the absence of the periplasmic maltose-binding protein, compensate for the consequent defects in permeability to lactose, mannitol, glycylglycyl-L-valine, and tri-L-ornithine. It is postulated that the maltose-binding protein associates with the maltose pore and confers on it the specificity for maltose, and that the absence of the maltose-binding protein leaves the pore open and results in enhanced transmembrane diffusion of molecules other than maltose. This paper presents evidence to support this hypothesis. PMID:6444941

  20. Use of sacrificial anode technology to mitigate non-enzymic Maillard browning.

    PubMed

    Rizzi, George P

    2017-02-15

    Experiments were performed to examine the effects of Maillard browning induced in the presence of metallic elements. The rate of brown pigment formation was shown to be reduced in model Maillard reactions performed in the presence of electropositive metals. Experiments involved reactions of d-xylose, d-arabinose and d-ribose with glycine, α-l- or β-alanine and l-valine in pH 7.0 phosphate buffer at ca. 100°C. "Browning" measured spectrophotometrically at 420nm was significantly lower (compared with controls) in selected reactions containing elemental Mg, Al, Mn and Sn particles. It was hypothesized that the metals acted in sacrificial anode redox fashion to reduce or eliminate dehydroreductones believed to be key Maillard intermediates ultimately leading to less browning. PMID:27664627

  1. Serum Metabolomics in Rats after Acute Paraquat Poisoning.

    PubMed

    Wang, Zhiyi; Ma, Jianshe; Zhang, Meiling; Wen, Congcong; Huang, Xueli; Sun, Fa; Wang, Shuanghu; Hu, Lufeng; Lin, Guanyang; Wang, Xianqin

    2015-01-01

    Paraquat is one of the most widely used herbicides in the world and is highly toxic to humans and animals. In this study, we developed a serum metabolomic method based on GC/MS to evaluate the effects of acute paraquat poisoning on rats. Pattern recognition analysis, including both principal component analysis and partial least squares-discriminate analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the level of octadecanoic acid, L-serine, L-threonine, L-valine, and glycerol in the acute paraquat poisoning group (36 mg/kg) increased, while the levels of hexadecanoic acid, D-galactose, and decanoic acid decreased. These findings provide an overview of systematic responses to paraquat exposure and metabolomic insight into the toxicological mechanism of paraquat. Our results indicate that metabolomic methods based on GC/MS may be useful to elucidate the mechanism of acute paraquat poisoning through the exploration of biomarkers. PMID:26133715

  2. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    PubMed Central

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  3. Tautomerism in N-(2-hydroxy-1-naphthylidene)amino acids and the search for an answer to the difficult question about where the proton belongs

    NASA Astrophysics Data System (ADS)

    Warncke, Gisela; Fels, Sabine; Brendler, Erica; Böhme, Uwe

    2016-08-01

    N-(2-hydroxy-1-naphthylidene)-L-valine 1, N-(2-hydroxy-1-naphthylidene)-L-phenylalanine 2, and N-(2-hydroxy-1-naphthylidene)-L-threonine 3 were prepared and characterized with spectroscopic methods, elemental analyses, and values of optical rotation. Compound 1 undergoes a solid state order-disorder phase transition at 231 K. The X-ray structures of the high and low temperature phase of 1 have been determined. Single crystal X-ray structures of 2 and 3 have been determined as well. The tautomerism of N-(2-hydroxy-1-naphthylidene)amino acid derivatives is discussed controversial in the literature. A bond lengths statistical analysis shows that all three compounds exist uniformly in the keto-amine form in the solid state. Quantum chemical calculations, NMR, and UV-Vis spectroscopy were used to obtain further insight into the existence of phenol-imine and keto-amine structures in this class of compounds.

  4. Synthesis and inhibitory activity of substrate-analog fructosyl peptide oxidase inhibitors.

    PubMed

    Watanabe, Bunta; Ichiyanagi, Atsushi; Hirokawa, Kozo; Gomi, Keiko; Nakatsu, Toru; Kato, Hiroaki; Kajiyama, Naoki

    2015-09-15

    Fructosyl peptide oxidases (FPOXs) play a crucial role in the diagnosis of diabetes. Their main function is to cleave fructosyl amino acids or fructosyl peptides into glucosone and the corresponding amino acids/dipeptides. In this study, the substrate-analog FPOX inhibitors 1a-c were successfully designed and synthesized. These inhibitors mimic N(α)-fructosyl-L-valine (Fru-Val), [N(α)-fructosyl-L-valyl]-L-histidine (Fru-ValHis), and N(ε)-fructosyl-L-lysine (εFru-Lys), respectively. The secondary nitrogen atom in the natural substrates, linking fructose and amino acid or dipeptide moieties, was substituted in 1a-c with a sulfur atom to avoid enzymatic cleavage. Kinetic studies revealed that 1a-c act as competitive inhibitors against an FPOX obtained from Coniochaeta sp., and Ki values of 11.1, 66.8, and 782 μM were obtained for 1a-c, respectively.

  5. Standard thermodynamic functions of complex formation between Cu2+ and glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2013-05-01

    Heat effects of the interaction of copper(II) solutions with aminoacetic acid (glycine) are measured by the direct calorimetry at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 against a background of potassium nitrate. Standard enthalpy values for reactions of the formation of aminoacetic acid copper complexes in aqueous solutions are obtained using an equation with a single individual parameter by extrapolating it to zero ionic strength. The standard thermodynamic characteristics of complex formation in the Cu2+-glycine system are calculated. It is shown that glycine-like coordination is most likely in Cu(II) complexes with L-asparagine, L-glutamine, and L-valine.

  6. Use of sacrificial anode technology to mitigate non-enzymic Maillard browning.

    PubMed

    Rizzi, George P

    2017-02-15

    Experiments were performed to examine the effects of Maillard browning induced in the presence of metallic elements. The rate of brown pigment formation was shown to be reduced in model Maillard reactions performed in the presence of electropositive metals. Experiments involved reactions of d-xylose, d-arabinose and d-ribose with glycine, α-l- or β-alanine and l-valine in pH 7.0 phosphate buffer at ca. 100°C. "Browning" measured spectrophotometrically at 420nm was significantly lower (compared with controls) in selected reactions containing elemental Mg, Al, Mn and Sn particles. It was hypothesized that the metals acted in sacrificial anode redox fashion to reduce or eliminate dehydroreductones believed to be key Maillard intermediates ultimately leading to less browning.

  7. Growth of L-Valinium Aluminium Chloride single crystal for OLED and super-capacitor applications

    NASA Astrophysics Data System (ADS)

    Kalaivani, D.; Vijayalakshmi, S.; Theras, J. Elberin Mary; Jayaraman, D.; Joseph, V.

    2015-12-01

    L-Valinium Aluminium Chloride (LVAC), a novel semi-organic material, was grown using slow evaporation under isothermal condition. The single crystal data reveal that the grown crystal belongs to monoclinic system. The SEM micrographs give clear picture about the surface morphology. Further, they confirm the inclusion of aluminium chloride into atomic sites of L-Valine. The compositional elements present in the crystal were identified through EDAX analysis. The mass spectral analysis was carried out to determine the molecular weight of the grown crystal. The optical transparency of the grown crystal was investigated by UV-vis-NIR spectrum. FTIR spectral study was used to identify the functional groups present in the grown material. The luminescence characteristics of grown material were analysed to confirm the effect of metal ion on the ligand. This property makes the material suitable for OLED application. The supercapacitive performance of the grown crystal was finally studied using cyclic voltammetry.

  8. Addition of amino acids and dipeptides to fullerene C{sub 60} giving rise to monoadducts

    SciTech Connect

    Romanova, V.S.; Tsyryapkin, V.A.; Vol`pin, M.E.

    1994-12-01

    The authors have developed a general method for the direct addition of amino acids and dipeptides of various structures to fullerene C{sub 60}. In all cases the addition involves the amino group. The reaction proceeds when the solutions of fullerene and an amino acid (or dipeptide) are mixed at 50-100 {degrees}C. The fullerene derivatives of the following amino acids and dipeptides have been obtained: glycine, p-aminobenzoic acid, {omega}-aminocaproic acid, L-proline, L-alanine, L-alanyl-Lalanine, D,L-alanyl-D,L-alanine, glycyl-L-valine. The adduct of methyl L-ananinate with C{sub 60} was also prepared.

  9. Nocardiamides A and B, two cyclohexapeptides from the marine-derived actinomycete Nocardiopsis sp. CNX037.

    PubMed

    Wu, Zheng-Chao; Li, Sumei; Nam, Sang-Jip; Liu, Zhong; Zhang, Changsheng

    2013-04-26

    Two new cyclic hexapeptides, nocardiamides A (1) and B (2), were isolated from the culture broth of marine-derived actinomycete CNX037 strain that was identified as a Nocardiopsis species. The planar structures of nocardiamides A (1) and B (2) were assigned on the basis of 1D and 2D NMR and HRESIMS spectroscopic analyses. Their absolute configurations were deduced by the advanced Marfey's method and chiral-phase HPLC analysis. The challenge of locating two d- and one l-valine residue in 1 and 2 was accomplished by total synthesis using solid-phase peptide synthetic methods. Both 1 and 2 showed negligible antimicrobial activities against seven indicator strains and exhibited no cytotoxicity against HCT-116.

  10. Transport of. cap alpha. -aminoisobutyric acid by Streptococcus pyogenes and its derived L-form

    SciTech Connect

    Reizer, J.; Panos, C.

    1982-01-01

    We studied the uptake of ..cap alpha..-aminoisobutyric acid (AIB) in Streptococcus pyogenes and its physiologically isotonic L-form. S. pyogenes cells starved for glucose or treated with carbonyl cyanide-m-chlorophenyl hydrazone accumulated limited amounts of AIB. A high apparent K/sub m/ value characterized the glucose-independent transport of AIB. The rate and extent of AIB accumulation significantly increased in the presence of glucose. Two saturable transport components with distinct apparent K/sub m/values characterized glycolysis-coupled transport of AIB. A biphasic Lineweaver-Burk plot was also obtained for L-alanine transport by glycolyzing S. pyogenes cells. AIB seems to share a common transport system(s) with glycine, L- and D-anine, L-serine, and L-valine. This was shown by the competitive exchange efflux of accumulated AIB. About 30% of the AIB uptake was not inhibited by a saturating amount of L-valine, indicating the existence of more than one system for AIB transport, p-Chloromercuribenzoate markedly inhibited the accumulation of AIB by both glycolyzing and glucose-starved cells. In contrast, carbonyl cyanide-m-chlorophenyl hydrazone affected only metabolism-dependent uptake of AIB, which was also sensitive to dinitrophenol, N-ethylmaleimide, iodoacetate, fluoride (NaF), arsenate, and N,N'-dicyclohexylcarbodiimide. These results are interpreted according to the chemiosmotic theory of Mitchell, whereby a proton motive force constitutes the driving force for AIB accumulation. AIB was not accumulated by the L-form. However, a temporary accumulation of AIB by a counterflow mechanism and a saturable system with a low apparent affinity were demonstrated for AIB transport by this organism. We suggest that a deficiency in the coupling of energy to AIB transport is responsible for the apparent lack of active AIB accumulation by the L-form.

  11. Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase.

    PubMed

    Haese, A; Pieper, R; von Ostrowski, T; Zocher, R

    1994-10-14

    Enniatin synthetase catalyzes the biosynthesis of N-methylated cyclohexadepsipeptides. The 347 kDa enzyme is encoded by the esyn1 gene of Fusarium scirpi and contains two domains (EA and EB) homologous to each other and to regions of other microbial peptide synthetases. Parts of the esyn1 gene were subcloned in frame to a small lacZ gene portion of Escherichia coli expression vectors. Overproduced recombinant proteins showed a high tendency towards inclusion body formation and could be only partially dissolved in 8 M urea or 6 M guanidine hydrochloride. After renaturation, a 121 kDa recombinant protein representing the N-terminal conserved domain EA of enniatin synthetase was shown to activate D-hydroxyisolvaleric acid via adenylation. Similarly, a 158 kDa recombinant protein comprising the C-terminal conserved domain EB catalyzed the activation of the substrate amino acid (e.g. L-valine). Moreover, this protein could be photolabeled with S-[methyl-14C]adenosyl-L-methionine, (AdoMet) indicating the presence of the methyltransferase. Both functions, L-valine activation and AdoMet binding, could be assigned to a 108 kDa recombinant protein encompassing the A and the M segment of domain EB. The fact that a 65 kDa recombinant protein representing the M portion could be photolabeled, indicated the localization of the methyltransferase in this region. Three deletion mutants of the 65 kDa protein were shown to be inactive with respect to UV-induced AdoMet labeling. PMID:7932733

  12. Static solid-state (14)N NMR and computational studies of nitrogen EFG tensors in some crystalline amino acids.

    PubMed

    O'Dell, Luke A; Schurko, Robert W

    2009-08-28

    The recently reported direct enhancement of integer spin magnetization (DEISM) methodology for signal enhancement in solid-state NMR of integer spins has been used to obtain static (14)N powder patterns from alpha-glycine, L-leucine and L-proline in relatively short experimental times at 9.4 T, allowing accurate determination of the quadrupolar parameters. Proton decoupling and deuteration of the nitrogen sites were used to reduce the (1)H-(14)N dipolar contribution to the transverse relaxation time allowing more echoes to be acquired per scan. In addition, ab initio calculations using molecular clusters (Gaussian 03) and the full crystal lattice (CASTEP) have been employed to confirm these results, to obtain the orientation of the electric field gradient (EFG) tensors in the molecular frame, and also to correctly assign the two sets of parameters for L-leucine. The (14)N EFG tensor is shown to be highly sensitive to the surrounding environment, particularly to nearby hydrogen bonding.

  13. Effect of food preservatives on the hydration properties and taste behavior of amino acids: a volumetric and viscometric approach.

    PubMed

    Banipal, Tarlok S; Kaur, Navalpreet; Kaur, Amanpreet; Gupta, Mehak; Banipal, Parampaul K

    2015-08-15

    Thermodynamic and transport properties of aqueous solutions are very useful in the elucidation of solute-solvent and solute-solute interactions, which help to understand the hydration and taste behavior of solutes. The densities and viscosities of L-glycine, β-alanine and L-leucine have been determined in water and in aqueous solutions of sodium propionate (NaP) and calcium propionate (CaP) at temperatures 298.15 and 308.15K. From these data, apparent molar volumes (V2,ϕ), viscosity B-coefficients and corresponding transfer parameters (ΔtrV2,ϕo and ΔtrB) have been calculated. The dB/dT values suggest that L-glycine and β-alanine act as structure-breaker, while L-leucine acts as structure-maker both in water and in aqueous solutions of NaP and CaP. The decrease in hydration number and change in taste behavior have also been observed with increasing concentration of the cosolute.

  14. A sensitive, versatile microfluidic assay for bacterial chemotaxis

    PubMed Central

    Mao, Hanbin; Cremer, Paul S.; Manson, Michael D.

    2003-01-01

    We have developed a microfluidic assay for bacterial chemotaxis in which a gradient of chemoeffectors is established inside a microchannel via diffusion between parallel streams of liquid in laminar flow. The random motility and chemotactic responses to l-aspartate, l-serine, l-leucine, and Ni2+ of WT and chemotactic-mutant strains of Escherichia coli were measured. Migration of the cells was quantified by counting the cells accumulating in each of 22 outlet ports. The sensitivity of the assay is attested to by the significant response of WT cells to 3.2 nM l-aspartate, a concentration three orders of magnitude lower than the detection limit in the standard capillary assay. The response to repellents was as robust and easily recorded as the attractant response. A surprising discovery was that l-leucine is sensed by Tar as an attractant at low concentrations and by Tsr as a repellent at higher concentrations. This assay offers superior performance and convenience relative to the existing assays to measure bacterial tactic responses, and it is flexible enough to be used in a wide range of different applications. PMID:12704234

  15. The radiolysis and radioracemization of amino acids on clays

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hall, H.; Chow, G.; Yi, L.; Lemmon, R. M.

    1985-01-01

    The effects of the surfaces of kaolinite and bentonite clays on the radiolysis and radioracemization of L-leucine and its hydrochloride salt have been investigated experimentally. L-leucine and its hydrochloride salt were deposited on the clays and the amino acid/clay preparations were irradiated by a Co-60 gamma-ray source which induced 2-89 percent radiolysis. The efficiency of radiolysis and radioracemization were measured using gas chromatography. Results were obtained for leucine in 0.1 M aqueous solution for comparison with the clay-deposted leucine and leucine hydrochloride. It is found that radiolysis and radioracemization in the samples occurred according to a pseudo-first-order rate law. Comparison of the specific rate constants showed that leucine and its hydrochloride salt were the most resistant to both radiolysis and radioracemization, followed by leucine and its hydrochloride salt on kaolin. Leucine and its HCl salt on bentonite, and leucine in aqueous solution were found to be the least resistant to radiolysis and radioracemization. The experimental results are intepreted with respect to the Vester-Ulbricht mechanism for the origin of optical activity.

  16. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  17. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders.

    PubMed

    Qu, Li; Zhou, Qi Tony; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Morton, David A V

    2015-10-12

    This study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material. Powder flow behaviours characterised by the Freeman FT4 system indicated coatings of MgSt, L-leucine and silica-R972 produced a notable surface modification and substantially improved flow compared to the unprocessed and SSF-mechanofused powders. ToF-SIMS provided a qualitative measure of coating extent, and indicated a near-complete layer on the drug particle surface after dry coating with MgSt or silica-R972. Of particular note, the dissolution rates of all mechanofused powders were enhanced even with a coating of a highly hydrophobic material such as magnesium stearate. This surprising increase in dissolution rate of the mechanofused powders was attributed to the lower cohesion and the reduced agglomeration after mechanical coating.

  18. [Formation Mechanism of the Disinfection By-product 1, 1-Dichloroacetone in Drinking Water].

    PubMed

    Ding, Chun-sheng; Meng, Zhuang; Xu, Yang-yang; Miao, Jia

    2015-05-01

    A novel method using methyl tertiary butyl ether (MTBE) as extractant and 1,2-dibromopropane as internal standard for the determination of the disinfection by-producs 1,1-dichloroacetone (DCAce) by gas chromatography mass spectrometry (GC-MS) was described. The formation process of DCAce and its influencing factors were discussed with L-leucine as the precursor during the chloramination process. The results indicated that the DCAce production increased with the increase of chloramine dosage when the chloramine addition was in the range of 5-30 mg · L(-1). The DCAce amount produced under alkaline condition was higher than those produced under the neutral and acidic conditions, and the DCAce amount reduced with the increase of pH value. Temperature was another important factor that affected the DCAce formation from methylamine especially in the range of 15-35°C , and the higher the temperature, the more the DCAce produced. The formation process of DCAce from L-leucine by chloramine consisted of a series of complicated reactions, including substitution, oxidation, bond breaking, amino diazotization, reduction and so on, and eventually DCAce was formed.

  19. Proteases and Peptidases of Castor Bean Endosperm

    PubMed Central

    Tully, Raymond E.; Beevers, Harry

    1978-01-01

    The endosperm of castor bean seeds (Ricinus communis L.) contains two —SH-dependent aminopeptidases, one hydrolyzing l-leucine-β-naphthylamide optimally at pH 7.0, and the other hydrolyzing l-proline-β-naphthylamide optimally at pH 7.5. After germination the endosperm contains in addition an —SH-dependent hemoglobin protease, a serine-dependent carboxypeptidase, and at least two —SH-dependent enzymes hydrolyzing the model substrate α-N-benzoyl-dl-arginine-β-naphthylamide (BANA). The carboxypeptidase is active on a variety of N-carbobenzoxy dipeptides, especially N-carbobenzoxy-L-phenylalanine-l-alanine and N-carbobenzoxy-l-tyrosine-l-leucine. The pH optima for the protease, carboxypeptidase, and BANAase acivities are 3.5 to 4.0, 5.0 to 5.5, and 6 to 8, respectively. The two aminopeptidases increased about 4-fold in activity during the first 4 days of growth, concurrent with the period of rapid depletion of storage protein. Activities then declined as the endosperm senesced, but were still evident after 6 days. Senescence was complete by day 7 to 8. Hemoglobin protease, carboxypeptidase, and BANAase activities appeared in the endosperm at day 2 to 3, and reached peak activity at day 5 to 6. The data indicate that the aminopeptidases are involved in the early mobilization of endosperm storage protein, whereas protease, carboxypeptidase, and BANAase may take part in later turnover and/or senescence. PMID:16660598

  20. /sup 3/H-cyclosporine internalization and secretion by human fetal pancreatic islets

    SciTech Connect

    Formby, B.; Walker, L.; Peterson, C.M.

    1988-10-01

    Human fetal pancreatic islets were isolated from 16- to 20-week-old fetuses by a collagenase technique and cultured 48 hr in RPMI 1640 containing 10% human adult serum and unlabeled 0 to 5 micrograms cyclosporine A (CsA)/ml. Insulin secretory capacity of human fetal islets was expressed as a fractional stimulatory ratio FSR = F2/F1 of the fractional secretion rates during two successive 1 hr static incubations first with 2 mM glucose (F1) to stabilize secretion followed by maximal stimulus, i.e., 25 mM glucose plus 10 mM L-leucine and 10 mM L-arginine (F2). Unlabeled CsA at the above concentrations had no significant effects on the insulin secretory capacity expressed by FSR-values. Studies of net uptake of 3H-CsA by islets cultured for varying periods up to 40 hr and expressed as picomole 3H-CsA per picomole islet insulin content demonstrated that uptake rate was slow and did not reach isotopic equilibrium over the 40 hr of culture. When isolated fetal islets were cultured for 48 hr in the presence of 3H-CsA and varying concentrations of unlabeled CsA it was found during two successive 1 hr static incubations that fetal islets secrete insulin concomitantly with 3H-CsA following maximal stimulus for secretion. An optimal secretory molar ratio of 3H-CsA to insulin of 4.0 +/- 1.3 (n = 7) was found after islets were cultured 48 hr in the presence of a saturating 2.128 micrograms 3H-CsA per milliliter culture medium. In three successive 30-min static incubations of 3H-CsA loaded islets, first with low glucose, followed by high glucose plus L-arginine and L-leucine, and finally with high glucose plus L-arginine and L-leucine and 10 mM theophylline, the proportional fractional secretion rates of insulin and 3H-CsA were of the same magnitude.

  1. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein.

    PubMed

    Okuhira, Keiichiro; Ohoka, Nobumichi; Sai, Kimie; Nishimaki-Mogami, Tomoko; Itoh, Yukihiro; Ishikawa, Minoru; Hashimoto, Yuichi; Naito, Mikihiko

    2011-04-20

    Manipulation of protein stability with small molecules is a challenge in the field of drug discovery. Here we show that cellular retinoic acid binding protein-II (CRABP-II) can be specifically degraded by a novel compound, SNIPER-4, consisting of (--)-N-[(2S,3R)-3-amino-2-hydroxy-4-phenyl-butyryl]-L-leucine methyl ester and all-trans retinoic acid that are ligands for cellular inhibitor of apoptosis protein 1 (cIAP1) and CRABP-II, respectively. Mechanistic analysis revealed that SNIPER-4 induces cIAP1-mediated ubiquitylation of CRABP-II, resulting in the proteasomal degradation. The protein knockdown strategy employing the structure of SNIPER-4 could be applicable to other target proteins.

  2. Isolation of whole mononuclear cells from peripheral blood and cord blood.

    PubMed

    Fuss, Ivan J; Kanof, Marjorie E; Smith, Phillip D; Zola, Heddy

    2009-04-01

    Peripheral blood is the primary source of lymphoid cells for investigation of the human immune system. Its use is facilitated by Ficoll-Hypaque density gradient centrifugation-a simple and rapid method of purifying peripheral blood mononuclear cells (PBMC) that takes advantage of the density differences between mononuclear cells and other elements found in the blood sample. Thus, cells are distributed in the solution in layers based on the differences in their density/size. Additional purification methods can be employed as the mononuclear cell sample can be purified from monocytes by adherence or by exposure to L-leucine methyl ester; these methods are described for both procedures. Cord blood and peripheral blood from infants contain immature cells, including nucleated red cells, which can result in significant contamination of the mononuclear cell layer, and removal of these cells requires additional steps that are described. The isolation procedures presented here can also be applied to cell populations derived from tissues.

  3. Protein properties of mackerel viscera extracted by supercritical carbon dioxide.

    PubMed

    Park, Ji Yeon; Back, Sung Sin; Chun, Byung Soo

    2008-07-01

    The extraction of mackerel viscera using supercritical carbon dioxide (SCO2) was performed under the conditions of temperature range from 35 to 45 degrees C, and constant pressure 25 MPa. The digestive enzyme activities were determined in comparison of untreated and treated SCO2 and solvent treatment. Activities were maintained with high level compared to that of solvent extraction. Also from result of SDS-PAGE, the protein denaturation was minimized when using SCO2 extraction. The major amino acids in the mackerel viscera were determined as glutamic acid, aspartic acid, glycine, leucine, lysine and the free amino acids were taurine, L-alanine, L-leucine, 1-methyl-L-histamine, 3-methyl-L-histidine.

  4. Descending pathways to the cutaneus trunci muscle motoneuronal cell group in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.

    1989-01-01

    Pathways involved in the cutaneous trunci muscle (CTM) reflex in the cat were investigated. Experimental animals were injected with tritium-labeled L-leucine into their spinal cord, brain stem, or diencephalon and, after six weeks, perfused with 10-percent formalin. The brains and spinal cords were postfixed in formalin and were cut into transverse 25-micron-thick frozen sections for autoradiography. Results based on injections in the C1, C2, C6, and C8 segments suggest that propriospinal pathways to the CTM motor nucleus originating in the cervical cord do no exist, although these propriospinal projections are very strong to all other motoneuronal cell groups surrounding the CTM motor nucleus. The results also demonstrate presence of specific supraspinal projections to the CTM motor nucleus, originating in the contralateral nucleus retroambiguous and the ipsilateral dorsolateral pontine tegmentum.

  5. Biochemical Studies on Development of Mitochondria in Pea Cotyledons during the Early Stage of Germination

    PubMed Central

    Nawa, Yoshihiko; Asahi, Tadashi

    1973-01-01

    l-Leucine-U-14C was incorporated into mitochondrial protein in pea (Pisum sativum var. Alaska) cotyledons during the imbibing stages. Incorporation was almost completely inhibited by cycloheximide but not by chloramphenicol. Both antibiotics did not affect increases in mitochondrial activities and components of the cotyledons during imbibition. Therefore, mitochondrial development seems to be achieved by a transfer of protein pre-existing in the cytoplasm into the mitochondria rather than by de novo synthesis of mitochondrial protein. Cycloheximide stimulated an increase in bile saltsoluble protein of mitochondria in imbibing pea cotyledons. The recovery of cytochrome oxidase activity after sucrose density gradient centrifugation was enhanced, and the morphological properties of mitochondria were altered by cycloheximide. Images PMID:16658422

  6. Solid-state NMR heteronuclear coherence transfer using phase and amplitude modulated rf irradiation at the Hartmann Hahn sideband conditions

    NASA Astrophysics Data System (ADS)

    Bjerring, Morten; Nielsen, Niels Chr.

    2003-12-01

    An improved variant of the popular double cross-polarization (DCP) experiment for heteronuclear dipolar recoupling in solid-state NMR spectroscopy under magic-angle-spinning is introduced. By simple phase and amplitude modulation of the rf irradiation at the Hartman-Hahn sideband conditions, the new pulse sequence, dubbed iDCP, enables broadband excitation with the high efficiency of γ-encoded coherence transfer. The efficiency and robustness of iDCP toward isotropic chemical shift variations and chemical shift anisotropies, in the order typically applying for the backbone atoms in uniformly 13C, 15N-labeled proteins, is demonstrated numerically and experimentally by 15N to 13C coherence transfer for 15N-labeled N-Ac- L-valyl- L-leucine and 13C, 15N-labeled- L-threonine.

  7. Action of a Basic Copolymer of Ornithine and Leucine on Cells of Staphylococcus aureus

    PubMed Central

    Shenfeld, Avner; Flowers, Harold M.; Katchalski, Ephraim

    1974-01-01

    A basic, random copolymer of l-ornithine and l-leucine (OL; molar ratios 1:1) was bactericidal to a sensitive (S) strain of Staphylococcus aureus at low concentration. Resistant cells (R) were selected from the culture medium and, after serial transfers to solutions containing increasing amounts of the polymer, grew well in the presence of very high concentrations of it (1,000 μg/ml). S cells bound much more OL than did R cells, but no difference in binding was shown between separated cell walls or cell membranes of S and R. The binding of OL and sensitivity to it were not dependent on the teichoic acid-content of the cells. Bound OL was only partially removed from the cells by a variety of reagents, such as sodium dodecyl sulfate, Triton X-100, dilute trichloroacetic acid, and Ba(OH)2, and the extent of removal was similar for R and S cells. Images PMID:4840430

  8. The gas chromatographic resolution of DL-isovaline

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Bonner, W. A.; Van Dort, M. A.

    1977-01-01

    Isovaline is of cosmological interest because it is one of the 12 non-protein amino acids which have been isolated from the Murchison meteorite, and unlike the other chiral amino acids in this meteorite, it has no alpha-hydrogen at its asymmetric center and hence cannot racemize by the customary alpha-hydrogen-dependent mechanisms which engender racemization in ordinary amino acids. Experiments were conducted in which a .01 M solution of N-TFA-DL-isovalyl-L-leucine isopropyl ester in nitromethane was injected into the capillary column of a gas chromatograph coupled to a digital electronic integrator-recorder. Efflux times and integrated peak area percents are shown next to each diastereometer peak.

  9. Effect of TiO2 nanoparticles and UV radiation on extracellular enzyme activity of intact heterotrophic biofilms.

    PubMed

    Schug, Hannah; Isaacson, Carl W; Sigg, Laura; Ammann, Adrian A; Schirmer, Kristin

    2014-10-01

    When introduced into the aquatic environment, TiO2 NP are likely to settle from the water column, which results in increased exposure of benthic communities. Here, we show that the activity of two extracellular enzymes of intact heterotrophic biofilms, β-glucosidase (carbon-cycling) and l-leucin aminopeptidase (nitrogen-cycling), was reduced following exposure to surface functionalized TiO2 NP and UV radiation, depending on the particles' coating. This reduction was partially linked to ROS production. Alkaline phosphatase (phosphorus-cycling) activity was not affected, however in contrast, an alkaline phosphatase isolated from E. coli was strongly inhibited at lower concentrations of TiO2 NP than the intact biofilms. These results indicate that enzymes present in the biofilm matrix are partly protected against exposure to TiO2 NP and UV radiation. Impairment of extracellular enzymes which mediate the uptake of nutrients from water may affect ecosystem function.

  10. Synthesis and Cytotoxic Activity on Human Cancer Cells of Novel Isoquinolinequinone-Amino Acid Derivatives.

    PubMed

    Valderrama, Jaime A; Delgado, Virginia; Sepúlveda, Sandra; Benites, Julio; Theoduloz, Cristina; Buc Calderon, Pedro; Muccioli, Giulio G

    2016-09-08

    A variety of aminoisoquinoline-5,8-quinones bearing α-amino acids moieties were synthesized from 3-methyl-4-methoxycarbonylisoquinoline-5,8-quinone and diverse l- and d-α-amino acid methyl esters. The members of the series were evaluated for their cytotoxic activity against normal and cancer cell lines by using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. From the current investigation, structure-activity relationships demonstrate that the location and structure of the amino acid fragment plays a significant role in the cytotoxic effects. Moderate to high cytotoxic activity was observed and four members, derived from l-alanine, l-leucine, l-phenylalanine, and d-phenylalanine, were selected as promising compounds by their IC50 ranging from 0.5 to 6.25 μM and also by their good selectivity indexes (≥2.24).

  11. Enzymatic determination of carbon-14 labeled L-alanine in biological samples

    SciTech Connect

    Serra, F.; Palou, A.; Pons, A.

    1987-07-15

    A method for determination of L-alanine-specific radioactivity in biological samples is presented. This method is based on the specific enzymatic transformation of L-alanine to pyruvic acid hydrazone catalyzed by the enzyme L-alanine dehydrogenase, formation of the pyruvic acid 2,4-dinitrophenylhydrazone derivative, and quantitative trapping in Amberlite XAD-7 columns, followed by radioactivity counting of the lipophilic eluate. No interferences from other UC-labeled materials such as D-glucose, glycerol, L-lactate, L-serine, L-glutamate, L-phenylalanine, glycine, L-leucine, and L-arginine were observed. This inexpensive and high-speed method is applicable to the simultaneous determination of L-alanine-specific radioactivity for a large number of samples.

  12. Amperometric biosensor based on diamond paste for the enantioanalysis of L-lysine.

    PubMed

    Stefan-van Staden, Raluca-Ioana; Nejem, R'afat Mahmoud; van Staden, Jacobus Frederick; Aboul-Enein, Hassan Y

    2012-05-15

    An amperometric biosensor was proposed for the enantioanalysis of L-lysine. The biosensor is based on the impregnation of L-lysine oxidase in diamond paste. The potential used for the determination of l-lysine was 650 mV. The biosensor exhibited a linear concentration range between 1 and 100 nmol/L with a limit of detection of 4 pmol/L. The selectivity of the biosensor is high over other amino acids, such as L-serine, L-leucine, L-aspartic acid, L-glutamic acid, histamine, glycine. The proposed biosensor can be applied for the determination of L-lysine in serum samples and pharmaceutical compounds.

  13. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide.

    PubMed

    Carvalho, M Fernanda N N; Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a -N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  14. Novel mechanistic aspects on the reaction between low spin Fe(II) Schiff base amino acid complexes and hydrogen peroxide-spectrophotometric tracer of intraperoxo intermediate catalyzed reaction.

    PubMed

    Awad, Aida M; Shaker, Ali Mohamad; Zaki, Ahmad Borhan El-Din; Nassr, Lobna Abdel-Mohsen Ebaid

    2008-12-01

    The kinetics and mechanism of the reaction of hydrogen peroxide with some Fe(II) Schiff base complexes were investigated spectrophotometrically in aqueous solution at pH 8 and 35 degrees C under pseudo-first-order conditions. The used ligands were derived from salicylaldehyde or o-hydroxynaphthaldehyde and some amino acids (l-leucine, l-iso-leucine, l-serine, l-methionine and dl-tryptophan). It was found that the formation of the purple interaperoxo complex appears only above pH 7.5. The reaction consists of two steps. The first step involves reversible formation of the intraperoxo intermediate which renders irreversible at pH 8. The second step consists of inner-sphere electron transfer. The suggested scheme illustrated first-order kinetics at low [H(2)O(2)] and zero-order at high [H(2)O(2)]. Moreover, the activation parameters of the reaction were evaluated. PMID:18394952

  15. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    SciTech Connect

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern.

  16. Blind spectral unmixing in terahertz domain using nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Li, Xian; Huang, Ping J.; Ma, Ye H.; Hou, Di B.; Zhang, Guangxin

    2015-11-01

    Recovering component spectra from terahertz measurements of unknown mixtures has been studied in this paper using nonnegative matrix factorization (NMF). NMF mathematically decomposes the spectra data into two nonnegative matrixes which describe the component spectra and the corresponding fractional abundance. Two basic algorithms in the class of this method, NMF and NMF with smoothness constraint (cNMF), were adopted to resolve the terahertz absorption spectra matrix obtained from a ternary mixture with varying compositions of Nitrofurantoin, L-Leucine and D-Tyrosine. The quality of the decomposition results was evaluated. The performance of the two algorithms on extracting component terahertz spectra was compared. The optimal result reached by cNMF in this study implies the capability of the NMF method for blind terahertz spectral unmixing. The attempt made in our work helps to further investigate unknown mixtures by terahertz spectroscopy.

  17. Characterization of a flavinogenic mutant of methanol yeast Candida boidinii and its extracellular secretion of riboflavin.

    PubMed

    Suryadi, H; Yoshida, N; Yamada-Onodera, K; Katsuragi, T; Tani, Y

    2000-01-01

    A flavinogenic mutant was derived from Candida boidinii by mutagenesis. The mutant was smaller than the wild type, did not grow on a minimal medium, and required l-tryptophan, l-leucine, inositol, and nicotinate for growth. The mutant was defective in the oxidative pentose phosphate pathway, lacking glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The specific activities of the transaldolase and transketolase of the mutant were higher than those of the wild type. These high activities might direct the flux of the carbon source to the nonoxidative pathway with formation of a large amount of pentose phosphates, increasing riboflavin synthesis. Under microaerobic conditions at 25 degrees C, 90 mg/l riboflavin was obtained. PMID:16232817

  18. Synthesis and Cytotoxic Activity on Human Cancer Cells of Novel Isoquinolinequinone-Amino Acid Derivatives.

    PubMed

    Valderrama, Jaime A; Delgado, Virginia; Sepúlveda, Sandra; Benites, Julio; Theoduloz, Cristina; Buc Calderon, Pedro; Muccioli, Giulio G

    2016-01-01

    A variety of aminoisoquinoline-5,8-quinones bearing α-amino acids moieties were synthesized from 3-methyl-4-methoxycarbonylisoquinoline-5,8-quinone and diverse l- and d-α-amino acid methyl esters. The members of the series were evaluated for their cytotoxic activity against normal and cancer cell lines by using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. From the current investigation, structure-activity relationships demonstrate that the location and structure of the amino acid fragment plays a significant role in the cytotoxic effects. Moderate to high cytotoxic activity was observed and four members, derived from l-alanine, l-leucine, l-phenylalanine, and d-phenylalanine, were selected as promising compounds by their IC50 ranging from 0.5 to 6.25 μM and also by their good selectivity indexes (≥2.24). PMID:27617997

  19. The distribution of some hydrolases in glomeruli and tubular fragments prepared from rat kidney by zonal centrifugation

    PubMed Central

    Taylor, D. G.; Price, R. G.; Robinson, D.

    1971-01-01

    1. A collagenase digest of rat kidney cortex was separated into four bands by zonal centrifugation. 2. Two of these bands were shown by light-microscopy to contain glomeruli and tubular fragments, which were free from each other and well separated from other renal material. 3. Protein, N-acetyl-β-glucosaminidase, 5′-nucleotidase, l-leucine β-naphthylamidase, leucine aminopeptidase, acid phosphatase and alkaline phosphatase were assayed across the gradient. 4. The greater proportion of these enzyme activities was recovered in the tubular fragments and acid phosphatase was the only enzyme detected in significant amounts in the glomeruli. 5. Tubular fragments and glomeruli were sedimented and multiple forms of β-naphthylamidase, N-acetyl-β-glucosaminidase, acid phosphatase and alkaline phosphatase were investigated by starch-gel electrophoresis. ImagesPLATE 1 PMID:4331586

  20. Molecular dynamics simulation and NMR investigation of the association of the β-blockers atenolol and propranolol with a chiral molecular micelle

    NASA Astrophysics Data System (ADS)

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2015-08-01

    Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies.

  1. Isolation, Structure Elucidation and Total Synthesis of Lajollamide A from the Marine Fungus Asteromyces cruciatus

    PubMed Central

    Gulder, Tobias A. M.; Hong, Hanna; Correa, Jhonny; Egereva, Ekaterina; Wiese, Jutta; Imhoff, Johannes F.; Gross, Harald

    2012-01-01

    The marine-derived filamentous fungus Asteromyces cruciatus 763, obtained off the coast of La Jolla, San Diego, USA, yielded the new pentapeptide lajollamide A (1), along with the known compounds regiolone (2), hyalodendrin (3), gliovictin (4), 1N-norgliovicitin (5), and bis-N-norgliovictin (6). The planar structure of lajollamide A (1) was determined by Nuclear Magnetic Resonance (NMR) spectroscopy in combination with mass spectrometry. The absolute configuration of lajollamide A (1) was unambiguously solved by total synthesis which provided three additional diastereomers of 1 and also revealed that an unexpected acid-mediated partial racemization (2:1) of the L-leucine and L-N-Me-leucine residues occurred during the chemical degradation process. The biological activities of the isolated metabolites, in particular their antimicrobial properties, were investigated in a series of assay systems. PMID:23342379

  2. Thermodynamic Approach to Enhanced Dispersion and Physical Properties in a Carbon Nanotube/Polypeptide Nanocomposite

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad S.; Wise, Kristopher E.; Kim, Jae-Woo; Lillehei, Peter T.; Harrison, Joycelyn S.; Park, Cheol

    2009-01-01

    A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions with single wall carbon nanotubes (SWCNTs). The enthalpic and entropic penalties of mixing between these two molecules are reduced due to the polypeptide's aromatic sidechains and helical secondary structure, respectively. These enhanced interactions result in a well dispersed SWCNT/Poly (L-Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using only shear mixing and sonication. At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, respectively. At one kHz, the same nanotube loading level also enhances the dielectric constant from 2.95 to 22.81, while increasing the conductivity by four orders of magnitude.

  3. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

    PubMed Central

    Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    Summary A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a –N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  4. Extrusion decreases the negative effects of kidney bean on enzyme and transport activities of the rat small intestine.

    PubMed

    Marzo, F; Milagro, F I; Urdaneta, E; Barrenetxe, J; Ibañez, F C

    2011-10-01

    The objective of the present study was to evaluate the influence of raw and extruded kidney bean (Phaseolus vulgaris L. var. Pinto) consumption on the gut physiology of young growing rats. The intestinal enzyme activity (sucrase, maltase, Na(+) /K(+) ATPase, aminopeptidase N, dipeptidylpeptidase IV, alkaline phosphatase) and the uptake of sugar (d-galactose) and amino acids (l-leucine) were measured in brush border membrane vesicles. Five groups of growing male Wistar rats were fed ad libitum for 15 days on five different 10% protein diets: one containing casein as the main source of protein (Control, C), and four containing raw (RKB1, RKB6) or extruded kidney bean (EKB1, EKB6) at 1% and 6% of total protein content respectively. Extrusion treatment significantly reduced the content of bioactive factors (phytates, tannins) and abolished lectins, trypsin, chymotrypsin, and α-amylase inhibitory activities. Rats fed raw beans (especially RKB6) showed lower growth rate and food intake as compared to those fed extruded legumes, probably due to the high levels of lectins and other anti-nutritive factors in the raw beans. Gut enzymatic activities and uptake of d-galactose and l-leucine were lower in RKB6 and RKB1-fed animals, although they significantly improved in the groups fed extruded beans. Enzymatic activity and uptake in EKB1 were similar to those of casein-fed rats, whereas the uptake and growth rate of EKB6 were different to the control. This is attributable to the higher non-thermolabile biofactor content in the EKB6 diet, especially phytates and tannins, than in EKB1. This article shows the dose-dependent toxicological effects of bioactive factors contained in kidney beans on gut function. The extrusion process reduced their adverse impact on gut physiology and growth rate.

  5. The D-amino acid transport by the invertebrate SLC6 transporters KAAT1 and CAATCH1 from Manduca sexta.

    PubMed

    Vollero, Alessandra; Imperiali, Francesca G; Cinquetti, Raffaella; Margheritis, Eleonora; Peres, Antonio; Bossi, Elena

    2016-02-01

    The ability of the SLC6 family members, the insect neutral amino acid cotransporter KAAT1(K(+)-coupled amino acid transporter 1) and its homologous CAATCH1(cation anion activated amino acid transporter/channel), to transport D-amino acids has been investigated through heterologous expression in Xenopus laevis oocytes and electrophysiological techniques. In the presence of D-isomers of leucine, serine, and proline, the msKAAT1 generates inward, transport-associated, currents with variable relative potencies, depending on the driving ion Na(+) or K(+). Higher concentrations of D-leucine (≥1 mmol/L) give rise to an anomalous response that suggests the existence of a second binding site with inhibitory action on the transport process. msCAATCH1 is also able to transport the D-amino acids tested, including D-leucine, whereas L-leucine acts as a blocker. A similar behavior is exhibited by the KAAT1 mutant S308T, confirming the relevance of the residue in this position in L-leucine binding and the different interaction of D-leucine with residues involved in transport mechanism. D-leucine and D-serine on various vertebrate orthologs B(0)AT1 (SLC6A19) elicited only a very small current and singular behavior was not observed, indicating that it is specific of the insect neutral amino acid transporters. These findings highlight the relevance of D-amino acid absorption in the insect nutrition and metabolism and may provide new evidences in the molecular transport mechanism of SLC6 family. PMID:26884475

  6. Mechanism of peptide hydrolysis by co-catalytic metal centers containing leucine aminopeptidase enzyme: a DFT approach.

    PubMed

    Zhu, Xiaoxia; Barman, Arghya; Ozbil, Mehmet; Zhang, Tingting; Li, Shanghao; Prabhakar, Rajeev

    2012-02-01

    In this density functional theory study, reaction mechanisms of a co-catalytic binuclear metal center (Zn1-Zn2) containing enzyme leucine aminopeptidase for two different metal bridging nucleophiles (H(2)O and -OH) have been investigated. In addition, the effects of the substrate (L-leucine-p-nitroanilide → L-leucyl-p-anisidine) and metal (Zn1 → Mg and Zn2 → Co, i.e., Mg1-Zn2 and Mg1-Co2 variants) substitutions on the energetics of the mechanism have been investigated. The general acid/base mechanism utilizing a bicarbonate ion followed by this enzyme is divided into two steps: (1) the formation of the gem-diolate intermediate, and (2) the cleavage of the peptide bond. With the computed barrier of 17.8 kcal/mol, the mechanism utilizing a hydroxyl nucleophile was found to be in excellent agreement with the experimentally measured barrier of 18.7 kcal/mol. The rate-limiting step for reaction with L-leucine-p-nitroanilide is the cleavage of the peptide bond with a barrier of 17.8 kcal/mol. However, for L-leucyl-p-anisidine all steps of the mechanism were found to occur with similar barriers (18.0-19.0 kcal/mol). For the metallovariants, cleavage of the peptide bond occurs in the rate-limiting step with barriers of 17.8, 18.0, and 24.2 kcal/mol for the Zn1-Zn2, Mg1-Zn2, and Mg1-Co2 enzymes, respectively. The nature of the metal ion was found to affect only the creation of the gem-diolate intermediate, and after that all three enzymes follow essentially the same energetics. The results reported in this study have elucidated specific roles of both metal centers, the nucleophile, indirect ligands, and substrates in the catalytic functioning of this important class of binuclear metallopeptidases.

  7. Extrusion decreases the negative effects of kidney bean on enzyme and transport activities of the rat small intestine.

    PubMed

    Marzo, F; Milagro, F I; Urdaneta, E; Barrenetxe, J; Ibañez, F C

    2011-10-01

    The objective of the present study was to evaluate the influence of raw and extruded kidney bean (Phaseolus vulgaris L. var. Pinto) consumption on the gut physiology of young growing rats. The intestinal enzyme activity (sucrase, maltase, Na(+) /K(+) ATPase, aminopeptidase N, dipeptidylpeptidase IV, alkaline phosphatase) and the uptake of sugar (d-galactose) and amino acids (l-leucine) were measured in brush border membrane vesicles. Five groups of growing male Wistar rats were fed ad libitum for 15 days on five different 10% protein diets: one containing casein as the main source of protein (Control, C), and four containing raw (RKB1, RKB6) or extruded kidney bean (EKB1, EKB6) at 1% and 6% of total protein content respectively. Extrusion treatment significantly reduced the content of bioactive factors (phytates, tannins) and abolished lectins, trypsin, chymotrypsin, and α-amylase inhibitory activities. Rats fed raw beans (especially RKB6) showed lower growth rate and food intake as compared to those fed extruded legumes, probably due to the high levels of lectins and other anti-nutritive factors in the raw beans. Gut enzymatic activities and uptake of d-galactose and l-leucine were lower in RKB6 and RKB1-fed animals, although they significantly improved in the groups fed extruded beans. Enzymatic activity and uptake in EKB1 were similar to those of casein-fed rats, whereas the uptake and growth rate of EKB6 were different to the control. This is attributable to the higher non-thermolabile biofactor content in the EKB6 diet, especially phytates and tannins, than in EKB1. This article shows the dose-dependent toxicological effects of bioactive factors contained in kidney beans on gut function. The extrusion process reduced their adverse impact on gut physiology and growth rate. PMID:21114542

  8. Astrocyte-microglia cooperation in the expression of a pro-inflammatory phenotype.

    PubMed

    Barbierato, Massimo; Facci, Laura; Argentini, Carla; Marinelli, Carla; Skaper, Stephen D; Giusti, Pietro

    2013-08-01

    Glial cells not only serve supportive and nutritive roles for neurons, but also respond to protracted stress and insults by up-regulating inflammatory processes. The complexity of studying glial activation in vivo has led to the widespread adoption of in vitro approaches, for example the use of the bacterial toxin lipopolysaccharide (LPS, a ligand for toll-like receptor 4 (TLR4)) as an experimental model of glial activation. Astrocyte cultures frequently contain minor numbers of microglia, which can complicate interpretation of responses. In the present study, enriched (≤5% microglia) astrocytes cultured from neonatal rat cortex and spinal cord were treated with the lysosomotropic agent L-leucyl-L-leucine methyl ester to eliminate residual microglia, as confirmed by loss of microglia-specific marker genes. L-Leucyl-L-leucine methyl ester treatment led to a loss of LPS responsiveness, in terms of nitric oxide and cytokine gene up-regulation and mediator (pro-inflammatory cytokines, nitric oxide) output into the culture medium. Surprisingly, when astrocyte/microglia co-cultures were then reconstituted by adding defined numbers of purified microglia to microglia-depleted astrocytes, the LPS-induced up-regulation of pro-inflammatory gene and mediator output far exceeded that observed from cultures containing the same numbers of microglia only. Similar behaviors were found when examining interleukin-1β release caused by activation of the purinergic P2X7 receptor. Given that astrocytes greatly outnumber microglia in the central nervous system, these data suggest that a similar interaction between microglia and astrocytes in vivo may be an important element in the evolution of an inflammatory pathology.

  9. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    SciTech Connect

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  10. Molecular sizes of amino acid transporters in the luminal membrane from the kidney cortex, estimated by the radiation-inactivation method.

    PubMed Central

    Béliveau, R; Demeule, M; Jetté, M; Potier, M

    1990-01-01

    Renal brush-border membrane vesicles from rat kidney cortex were irradiated in frozen state with a gamma-radiation source. Initial rates of influx into these vesicles were estimated for substrates such as L-glutamic acid, L-alanine, L-proline and L-leucine to establish the molecular sizes of their carriers. Transport was measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Initial rates of Na(+)-independent uptakes for those four substrates appeared unaffected in the dose range used (0-6 Mrad), indicating that the passive permeability of the membrane towards these substrates was unaffected. However, at higher doses of irradiation the Na+ influx and the intravesicular volume evaluated by the uptake of glucose at equilibrium were altered by radiation. Thus Na(+)-dependent influx values were corrected for volume changes, and the corrected values were used to compute radiation-inactivation sizes of the transport systems. Their respective values for L-glutamic acid, L-proline, L-leucine and L-alanine carriers were 250, 224, 293 and 274 kDa. The presence of the free-radicals scavenger benzoic acid in the frozen samples during irradiation did not affect the uptake of glucose, phosphate and alkaline phosphatase activity. These results indicate that freezing samples in a cryoprotective medium was enough to prevent secondary inactivation of transporters by free radicals. Uptakes of beta-alanine and L-lysine were much less affected by radiation. The radiation-inactivation size of the Na(+)-dependent beta-alanine carrier was 127 kDa and that of the L-lysine carrier was 90 kDa. PMID:1971509

  11. Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.

    PubMed

    Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian

    2016-05-01

    In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures.

  12. 4-Hydroxyisoleucine: A Potential New Treatment for Type 2 Diabetes Mellitus.

    PubMed

    Zafar, Mohammad Ishraq; Gao, Feng

    2016-08-01

    4-Hydroxyisoleucine (4-HIL) is a compound found in Trigonella foenum-graecum (fenugreek) seeds, which have been used as part of traditional medicine to treat diabetes mellitus. The synthesis of 4-HIL on a large scale is possible using fermentation methods (artificial synthesis) involving the isolation of the L-isoleucine dioxygenase gene from Bacillus thuringiensis, which can yield a greater quantity of 4-HIL than that produced with conventional methods (82 % attained with fermentation methods vs. 0.6-39 % attained with conventional methods). In studies of rats and humans, T. foenum-graecum improved laboratory parameters associated with renal dysfunction and dyslipidemia, increased levels of antioxidants and hormones that are altered in patients with type 2 diabetes mellitus (T2DM), and decreased fasting blood glucose, 2-h postprandial plasma glucose, and glycated hemoglobin. Similarly, in in vitro and preclinical studies, 4-HIL decreased glucose levels, hepatic glucose production, glucose/insulin ratios, indicators of hepatic damage, triglycerides, and total cholesterol, and increased utilization of glucose and levels of high-density lipoprotein cholesterol. Studies in humans are needed to determine whether 4-HIL is safer and more effective than current medications for the treatment of T2DM. PMID:27151154

  13. Three chiral ionic liquids as additives for enantioseparation in capillary electrophoresis and their comparison with conventional modifiers.

    PubMed

    Zhang, Qi; Qi, Xueyong; Feng, Chunlai; Tong, Shanshan; Rui, Mengjie

    2016-09-01

    The combined use of chiral ionic liquids (ILs) and conventional chiral selectors in CE to establish synergistic system has proven to be a convenient and effective approach for enantioseparation. In this work, three amino acid chiral ILs, tetramethylammonium-l-arginine (TMA-l-Arg), tetramethylammonium-l-hydroxyproline (TMA-l-Hyp) and tetramethylammonium-l-isoleucine (TMA-l-Ile), were first applied in CE enantioseparation to investigate their potential synergistic effect with hydroxypropyl-β-cyclodextrin (HP-β-CD). Markedly improved separations were obtained in the chiral ILs/HP-β-CD synergistic systems compared with single HP-β-CD system. Parameters, such as the chiral ILs concentration, HP-β-CD concentration, buffer pH, applied voltage and capillary temperature, were optimized. A systematic comparison of chiral ILs with conventional (commonly used) modifiers was also performed, including the use of achiral ILs, conventional salts and molecular organic solvents. In addition, the chiral configuration of ILs was investigated to demonstrate the existence of synergistic effect between chiral ILs and HP-β-CD. All these results indicate that chiral ILs, as additives for CE chiral separation, has significant superiority over conventional modifiers in certain cases. PMID:27515552

  14. Conversion Percentage of Tryptophan to Nicotinamide is Higher in Rice Protein Diet than in Wheat Protein Diet in Rats

    PubMed Central

    Shibata, Katsumi; Fukuwatari, Tsutomu; Kawamura, Tomoyo

    2015-01-01

    We reported previously that the pellagragenic property of corn protein is not only low l-tryptophan concentration but also the lower conversion percentage of l-tryptophan to nicotinamide; the amino acid composition greatly affected the conversion percentage. The amino acid value of wheat protein is lower than that of rice protein. In the present study, we compare the conversion percentages of l-tryptophan to nicotinamide between wheat protein and rice protein diets in growing rats. The body weight gain for 28 days in rats fed with a 10% amino acid mixture diet with wheat protein was lower than that of rats fed with a 10% amino acid diet with rice protein (68.1 ± 1.6 g vs 108.4 ± 1.9 g; P < 0.05). The conversion percentage of l-tryptophan to nicotinamide was also lower for the wheat protein diet compared with the rice protein diet (1.44 ± 0.036% vs 2.84 ± 0.19%; P < 0.05). The addition of limiting amino acids (l-isoleucine, l-lysine, l-tryptophan, l-methionine, l-threonine) to the wheat protein diet improved growth and the conversion percentage. In conclusion, our result supports the thinking that the composition of amino acids affects the conversion ratio of l-tryptophan to nicotinamide. PMID:25788834

  15. Novel players fine-tune plant trade-offs.

    PubMed

    Gimenez-Ibanez, Selena; Boter, Marta; Solano, Roberto

    2015-01-01

    Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival. PMID:26374889

  16. The SARP Family Regulator Txn9 and Two-Component Response Regulator Txn11 are Key Activators for Trioxacarcin Biosynthesis in Streptomyces bottropensis.

    PubMed

    Yang, Kui; Qi, Li-Hua; Zhang, Mei; Hou, Xian-Feng; Pan, Hai-Xue; Tang, Gong-Li; Wang, Wei; Yuan, Hua

    2015-10-01

    Trioxacarcin A is a polyoxygenated, structurally complex antibiotic produced by Streptomyces spp., which possesses high anti-bacterial, anti-malaria, and anti-tumor activities. The trioxacarcin biosynthetic pathway involves type II polyketide synthases (PKSs) with L-isoleucine as a unique starter unit, as well as many complex post-PKS tailoring enzymes and resistance and regulatory proteins. In this work, two regulatory genes, txn9 coding for a Streptomyces antibiotic regulatory protein family regulator and txn11 for a two-component response regulator, were revealed to be absolutely required for trioxacarcin production by individually inactivating all the six annotated regulatory genes in the txn cluster. Complementation assay suggested that these two activators do not have a regulatory cascade relationship. Moreover, transcriptional analysis showed that they activate 15 of the 28 txn operons, indicating that a complicated regulatory network is involved in the trioxacarcin production. Information gained from this study may be useful for improving the production of the highly potent trioxacarcin A.

  17. Amino acid geochronology of raised beaches in south west Britain

    NASA Astrophysics Data System (ADS)

    Bowen, D. Q.; Sykes, G. A.; Reeves (nee Henry), Alayne; Miller, G. H.; Andrews, J. T.; Brew, J. S.; Hare, P. E.

    Based on (1) the epimerization of L:isoleucine to D:alloisoleucine ( {D}/{L} ratios) in Patella vulgata, Littorina littorea, L. littoralis, L. saxatilis, Littorina species and Nucella lapillus from raised beaches in south west Britain, (2) statistical analysis of the {D}/{L} ratios, and (3) lithostratigraphic and geomorphic evaluation, three ( {D}/{L}) Stages are proposed. The {D}/{L} ratios for all the species measured are converted to a Patella vulgata standard. The three ( {D}/{L}) Stages are: (1) The Minchin Hole ( {D}/{L}) Stage, {D}/{L} ratios 0.175 ± 0.014, defined at a stratotype in Minchin Hole Cave, Gower, Wales. (2) A provisionally defined, but as yet, unamed ( {D}/{L}) Stage, because of the current unavailability of a suitable stratotype, with {D}/{L} ratios of 0.135 ± 0.014 (3) The Pennard ( {D}/{L}) Stage, {D}/{L} ratios 0.105 ± 0.016, defined at a stratotype in Minchin Hole Cave, Gower, Wales. Two geochronological models of the three high sea-level events representing the {D}/{L} Stages are constrained by uranium-series age determinations on stalagmite interbedded with marine beds in Minchin Hole and Bacon Hole Caves, Gower, Wales. A potential 'fixed point' in model evaluation is an age determination which is equivalent to Oxygen Isotope Sub-stage 5e (122 ka). The two models are:

  18. Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene

    PubMed Central

    Tsukahara, Keita; Sawada, Hiroko; Kohno, Yoshihisa; Matsuura, Takakazu; Mori, Izumi C.; Terao, Tomio; Ioki, Motohide; Tamaoki, Masanori

    2015-01-01

    Rice grain yield is predicted to decrease in the future because of an increase in tropospheric ozone concentration. However, the underlying mechanisms are unclear. Here, we investigated the responses to ozone of two rice (Oryza Sativa L.) cultivars, Sasanishiki and Habataki. Sasanishiki showed ozone-induced leaf injury, but no grain yield loss. By contrast, Habataki showed grain yield loss with minimal leaf injury. A QTL associated with grain yield loss caused by ozone was identified in Sasanishiki/Habataki chromosome segment substitution lines and included the ABERRANT PANICLE ORGANIZATION 1 (APO1) gene. The Habataki allele of the APO1 locus in a near-isogenic line also resulted in grain yield loss upon ozone exposure, suggesting APO1 involvement in ozone-induced yield loss. Only a few differences in the APO1 amino acid sequences were detected between the cultivars, but the APO1 transcript level was oppositely regulated by ozone exposure: i.e., it increased in Sasanishiki and decreased in Habataki. Interestingly, the levels of some phytohormones (jasmonic acid, jasmonoyl-L-isoleucine, and abscisic acid) known to be involved in attenuation of ozone-induced leaf injury tended to decrease in Sasanishiki but to increase in Habataki upon ozone exposure. These data indicate that ozone-induced grain yield loss in Habataki is caused by a reduction in the APO1 transcript level through an increase in the levels of phytohormones that reduce leaf damage. PMID:25923431

  19. Biosynthesis of the defensive alkaloid cicindeloine in Stenus solutus beetles

    NASA Astrophysics Data System (ADS)

    Schierling, Andreas; Dettner, Konrad; Schmidt, Jürgen; Seifert, Karlheinz

    2012-08-01

    To protect themselves from predation and microorganismic infestation, rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine, 3-(2-methyl-1-butenyl)pyridine, and cicindeloine in their pygidial glands. The biosynthesis of stenusine and 3-(2-methyl-1-butenyl)pyridine was previously investigated in Stenus bimaculatus and Stenus similis, respectively. Both molecules follow the same biosynthetic pathway, where the N-heterocyclic ring is derived from l-lysine and the side chain from l-isoleucine. The different alkaloids are finally obtained by slight modifications of shared precursor molecules. The piperideine alkaloid cicindeloine occurs as a main compound additionally to ( E)-3-(2-methyl-1-butenyl)pyridine and traces of stenusine in the pygidial gland secretion of Stenus cicindeloides and Stenus solutus. Feeding of S. solutus beetles with [D,15N]-labeled amino acids followed by GC/MS analysis techniques showed that cicindeloine is synthesized via the identical pathway and precursor molecules as the other two defensive alkaloids.

  20. Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA)

    PubMed Central

    Dave, Anuja; Graham, Ian A.

    2012-01-01

    Oxylipins are lipid-derived compounds, many of which act as signals in the plant response to biotic and abiotic stress. They include the phytohormone jasmonic acid (JA) and related jasmonate metabolites cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), methyl jasmonate, and jasmonoyl-L-isoleucine (JA-Ile). Besides the defense response, jasmonates are involved in plant growth and development and regulate a range of processes including glandular trichome development, reproduction, root growth, and senescence. cis-OPDA is known to possess a signaling role distinct from JA-Ile. The non-enzymatically derived phytoprostanes are structurally similar to cis-OPDA and induce a common set of genes that are not responsive to JA in Arabidopsis thaliana. A novel role for cis-OPDA in seed germination regulation has recently been uncovered based on evidence from double mutants and feeding experiments showing that cis-OPDA interacts with abscisic acid (ABA), inhibits seed germination, and increases ABA INSENSITIVE5 (ABI5) protein abundance. Large amounts of cis-OPDA are esterified to galactolipids in A. thaliana and the resulting compounds, known as Arabidopsides, are thought to act as a rapidly available source of cis-OPDA. PMID:22645585

  1. Novel players fine-tune plant trade-offs.

    PubMed

    Gimenez-Ibanez, Selena; Boter, Marta; Solano, Roberto

    2015-01-01

    Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.

  2. The Amidohydrolases IAR3 and ILL6 Contribute to Jasmonoyl-Isoleucine Hormone Turnover and Generate 12-Hydroxyjasmonic Acid Upon Wounding in Arabidopsis Leaves*

    PubMed Central

    Widemann, Emilie; Miesch, Laurence; Lugan, Raphaël; Holder, Emilie; Heinrich, Clément; Aubert, Yann; Miesch, Michel; Pinot, Franck; Heitz, Thierry

    2013-01-01

    Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-l-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response. PMID:24052260

  3. Catabolism and Deactivation of the Lipid-Derived Hormone Jasmonoyl-Isoleucine

    PubMed Central

    Koo, Abraham J. K.; Howe, Gregg A.

    2012-01-01

    The oxylipin hormone jasmonate controls myriad processes involved in plant growth, development, and immune function. The discovery of jasmonoyl-l-isoleucine (JA-Ile) as the major bioactive form of the hormone highlights the need to understand biochemical and cell biological processes underlying JA-Ile homeostasis. Among the major metabolic control points governing the accumulation of JA-Ile in plant tissues are the availability of jasmonic acid, the immediate precursor of JA-Ile, and oxidative enzymes involved in catabolism and deactivation of the hormone. Recent studies indicate that JA-Ile turnover is mediated by a ω-oxidation pathway involving members of the CYP94 family of cytochromes P450. This discovery opens new opportunities to genetically manipulate JA-Ile levels for enhanced resistance to environmental stress, and further highlights ω-oxidation as a conserved pathway for catabolism of lipid-derived signals in plants and animals. Functional characterization of the full complement of CYP94 P450s promises to reveal new pathways for jasmonate metabolism and provide insight into the evolution of oxylipin signaling in land plants. PMID:22639640

  4. Comparative planktonic foraminiferal aminostratigraphy of the Colombia basin and the northeast Gulf of Mexico

    SciTech Connect

    Fletcher, R.R.; Wehmiller, J.F.; Martin, R.E.; Johnson, B.J. )

    1991-03-01

    The increase in the proportion of D-amino acids in fossil shells with increasing age can be used as a relative dating method as far back as the mid-Miocene. Planktonic foraminiferal biostratigraphy and mixed foraminiferal aminostratigraphy were determined for DSDP Site 502B (late Pliocene-Pleistocene) and 502A (late Miocene-Pliocene) in the Colombia basin. The aminostratigraphic analysis was conducted every 2.5-5.0 m in the Pleistocene and every 5-10 m in the Pliocene. Previously established planktonic foraminiferal datums and subzonal boundaries were used to establish the geochronology of DSDP Site 502B-502A. Sediment accumulation rates were then calculated and used to estimate the absolute age at a particular depth in each core. Aminostratigraphic analysis indicates a logarithmic increase in D-alloisoleucine/L-isoleucine (A/I) ratios with increasing age, where equilibrium is not reached until ca. 5 Ma. Using the logarithmic curve that best fits the A/I data, one can estimate the numerical age of a bulk sample given the A/I ratio. The mixed species assemblage A/I ratios from ODP Site 625B (Gulf of Mexico) and 502B are comparable from the late Pliocene-Pleistocene, which suggests that aminostratigraphic analysis of a mixed foraminiferal assemblage offers a very useful and unique opportunity to estimate ages in other Pliocene-Pleistocene sections in regions where independent geochronologic control may be lacking.

  5. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor

    SciTech Connect

    Sheard, Laura B; Tan, Xu; Mao, Haibin; Withers, John; Ben-Nissan, Gili; Hinds, Thomas R; Kobayashi, Yuichi; Hsu, Fong-Fu; Sharon, Michal; Browse, John; He, Sheng Yang; Rizo, Josep; Howe, Gregg A; Zheng, Ning

    2011-11-07

    Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved {alpha}-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.

  6. Use of branched chain amino acids for treating hepatic encephalopathy: clinical experiences.

    PubMed Central

    Rossi Fanelli, F; Cangiano, C; Capocaccia, L; Cascino, A; Ceci, F; Muscaritoli, M; Giunchi, G

    1986-01-01

    The efficacy of branched chain amino acids in two consecutive clinical studies in patients with severe hepatic encephalopathy was tested. In the preliminary uncontrolled study 19 patients with grade 3-4 hepatic encephalopathy were given an intravenous solution containing leucine 11 g/l, isoleucine 9 g/l, and valine 8.4 g/l in 20% dextrose. A complete recovery of mental state was obtained in all patients in a mean time of 20.5 hours. In a subsequent controlled study 40 patients with grade 3-4 hepatic encephalopathy were randomly assigned to receive intravenous branched chain amino acid in 20% dextrose (group A) or oral lactulose (group B). Twelve patients (70.6%) in group A and eight (47%) in group B regained consciousness in a mean time of 27.6 and 31.5 hours, respectively. The difference in the recovery rate between the two groups, although evident, was not significant. Intravenous branched chain amino acids are thus at least as effective as lactulose in reversing hepatic coma. These data argue strongly in favour of a therapeutic effect of branched chain amino acids in the treatment of hepatic encephalopathy in patients with chronic liver failure. PMID:3539709

  7. Amino acid chronostratigraphy of late Quaternary coral reefs: Huon Peninsula, New Guinea, and the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Hearty, Paul J.; Aharon, Paul

    1988-07-01

    D-alloisoleucine/L-isoleucine (D/L) ratios were measured in Tridacna gigas (the giant clam) whose ages were calibrated against radiometrically dated coral reef terraces from New Guinea and storm ridges on coral islands from the Great Barrier Reef. The results of 52 samples show several distinct intervals encompassing a fast epimerization phase at a rate of 0.077/ka for the first 8 ka, a transitional interval for the next 60 ka during which epimerization evolves at the rate of 0.006/ka, and the final phase between 60 and 185 ka when D/L ratios attain quasi-equilibrium (˜1.30) at an average rate of 0.003/ka. The demonstrated relation between the D/L ratios and the radiometric ages is useful for estimating ages of undated or insufficiently dated terraces. A comparison of the "New Guinea curve" and other less completely dated curves from elsewhere demonstrates the effect of sedimentary temperature on the rate of epimerization through time. Refinements of the D/L reaction among coral reef terraces, coupled with a better definition of the kinetic model presented here, would improve our knowledge of the temperature history and the chrono-stratigraphy of Quaternary coral reefs.

  8. Separation of Ofloxacin and Its Six Related Substances Enantiomers by Chiral Ligand-Exchange Chromatography.

    PubMed

    Liang, Xinlei; Zhao, Longshan; Deng, Miaoduo; Liu, Lijie; Ma, Yongfu; Guo, Xingjie

    2015-11-01

    A chiral ligand-exchange high-performance liquid chromatography method was developed for the enantioseparation of ofloxacin and its six related substances termed impurities A, B, C, D, E, and F. The separation was performed on a conventional C18 column. Different organic modifiers, copper salts, amino acids, the ratio of Cu(2+) to amino acid, pH of aqueous phase, and column temperature were optimized. The optimal mobile phase conditions were methanol-water systems consisting of 5 mmol/L copper sulfate and 10 mmol/L L-isoleucine (L-Ile). Under such conditions, good enantioseparation of ofloxacin and impurities A, C, E, and F could be observed with resolutions (RS ) of 3.54, 1.97, 3.21, 3.50, and 2.12, respectively. On the relationship between the thermodynamic parameters and structures of analytes, the mechanism of chiral recognition was investigated. It was concluded that ofloxacin and impurities A, C, E, and F were all enthalpically driven enantioseparation and that low column temperature was beneficial to enantioseparation. Furthermore, the structure-separation relationship of these analytes is also discussed.

  9. The SARP Family Regulator Txn9 and Two-Component Response Regulator Txn11 are Key Activators for Trioxacarcin Biosynthesis in Streptomyces bottropensis.

    PubMed

    Yang, Kui; Qi, Li-Hua; Zhang, Mei; Hou, Xian-Feng; Pan, Hai-Xue; Tang, Gong-Li; Wang, Wei; Yuan, Hua

    2015-10-01

    Trioxacarcin A is a polyoxygenated, structurally complex antibiotic produced by Streptomyces spp., which possesses high anti-bacterial, anti-malaria, and anti-tumor activities. The trioxacarcin biosynthetic pathway involves type II polyketide synthases (PKSs) with L-isoleucine as a unique starter unit, as well as many complex post-PKS tailoring enzymes and resistance and regulatory proteins. In this work, two regulatory genes, txn9 coding for a Streptomyces antibiotic regulatory protein family regulator and txn11 for a two-component response regulator, were revealed to be absolutely required for trioxacarcin production by individually inactivating all the six annotated regulatory genes in the txn cluster. Complementation assay suggested that these two activators do not have a regulatory cascade relationship. Moreover, transcriptional analysis showed that they activate 15 of the 28 txn operons, indicating that a complicated regulatory network is involved in the trioxacarcin production. Information gained from this study may be useful for improving the production of the highly potent trioxacarcin A. PMID:26178900

  10. Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene.

    PubMed

    Tsukahara, Keita; Sawada, Hiroko; Kohno, Yoshihisa; Matsuura, Takakazu; Mori, Izumi C; Terao, Tomio; Ioki, Motohide; Tamaoki, Masanori

    2015-01-01

    Rice grain yield is predicted to decrease in the future because of an increase in tropospheric ozone concentration. However, the underlying mechanisms are unclear. Here, we investigated the responses to ozone of two rice (Oryza Sativa L.) cultivars, Sasanishiki and Habataki. Sasanishiki showed ozone-induced leaf injury, but no grain yield loss. By contrast, Habataki showed grain yield loss with minimal leaf injury. A QTL associated with grain yield loss caused by ozone was identified in Sasanishiki/Habataki chromosome segment substitution lines and included the ABERRANT PANICLE ORGANIZATION 1 (APO1) gene. The Habataki allele of the APO1 locus in a near-isogenic line also resulted in grain yield loss upon ozone exposure, suggesting APO1 involvement in ozone-induced yield loss. Only a few differences in the APO1 amino acid sequences were detected between the cultivars, but the APO1 transcript level was oppositely regulated by ozone exposure: i.e., it increased in Sasanishiki and decreased in Habataki. Interestingly, the levels of some phytohormones (jasmonic acid, jasmonoyl-L-isoleucine, and abscisic acid) known to be involved in attenuation of ozone-induced leaf injury tended to decrease in Sasanishiki but to increase in Habataki upon ozone exposure. These data indicate that ozone-induced grain yield loss in Habataki is caused by a reduction in the APO1 transcript level through an increase in the levels of phytohormones that reduce leaf damage. PMID:25923431

  11. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens.

    PubMed Central

    Matsuyama, T; Kaneda, K; Nakagawa, Y; Isa, K; Hara-Hotta, H; Yano, I

    1992-01-01

    Serrawettin W2, a surface-active exolipid produced by nonpigmented Serratia marcescens NS 25, was examined for its chemical structure and physiological functions. The chemical structure was determined by degradation analyses, infrared spectroscopy, mass spectrometry, and proton magnetic resonance spectroscopy. Serrawettin W2 was shown to be a novel cyclodepsipeptide containing a fatty acid (3-hydroxydecanoic acid) and five amino acids. The peptide was proposed to be D-leucine (N-bonded to the carboxylate of the fatty acid)-L-serine-L-threonine-D-phenylalanine-L-isoleucine (bonded to the 3-hydroxyl group). By examining the effects of isolated serrawettin W2 on serrawettinless mutants, this lipopeptide was shown to be active in the promotion of flagellum-independent spreading growth of the bacteria on a hard agar surface. The parent strain NS 25 formed a giant colony with a self-similar characteristic after incubation for a relatively long time (1 to 2 weeks), similar to other fractal colony-producing strains of S. marcescens (producers of the different serrawettins W1 and W3). On a semisolid medium that permitted flagellum-dependent spreading growth, an external supply of serrawettin W2 accelerated surface translocation of a serrawettinless mutant during a short period (12 h) of observation. In contrast, bacterial translocation in the subsurface space of the semisolid agar was not enhanced by serrawettins. Thus, the extracellular lipids seem to contribute specifically to the surface translocation of the bacteria by exhibiting surfactant activity. Images PMID:1548227

  12. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding.

    PubMed

    Glauser, Gaetan; Grata, Elia; Dubugnon, Lucie; Rudaz, Serge; Farmer, Edward E; Wolfender, Jean-Luc

    2008-06-13

    A new metabolite profiling approach combined with an ultrarapid sample preparation procedure was used to study the temporal and spatial dynamics of the wound-induced accumulation of jasmonic acid (JA) and its oxygenated derivatives in Arabidopsis thaliana. In addition to well known jasmonates, including hydroxyjasmonates (HOJAs), jasmonoyl-isoleucine (JA-Ile), and its 12-hydroxy derivative (12-HOJA-Ile), a new wound-induced dicarboxyjasmonate, 12-carboxyjasmonoyl-l-isoleucine (12-HOOCJA-Ile) was discovered. HOJAs and 12-HOOCJA-Ile were enriched in the midveins of wounded leaves, strongly differentiating them from the other jasmonate metabolites studied. The polarity of these oxylipins at physiological pH correlated with their appearance in midveins. When the time points of accumulation of different jasmonates were determined, JA levels were found to increase within 2-5 min of wounding. Remarkably, these changes occurred throughout the plant and were not restricted to wounded leaves. The speed of the stimulus leading to JA accumulation in leaves distal to a wound is at least 3 cm/min. The data give new insights into the spatial and temporal accumulation of jasmonates and have implications in the understanding of long-distance wound signaling in plants. PMID:18400744

  13. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli.

    PubMed

    Choi, So Young; Park, Si Jae; Kim, Won Jun; Yang, Jung Eun; Lee, Hyuk; Shin, Jihoon; Lee, Sang Yup

    2016-04-01

    Poly(lactate-co-glycolate) (PLGA) is a widely used biodegradable and biocompatible synthetic polymer. Here we report one-step fermentative production of PLGA in engineered Escherichia coli harboring an evolved polyhydroxyalkanoate (PHA) synthase that polymerizes D-lactyl-CoA and glycolyl-CoA into PLGA. Introduction of the Dahms pathway enables production of glycolate from xylose. Deletion of ptsG enables simultaneous utilization of glucose and xylose. An evolved propionyl-CoA transferase converts D-lactate and glycolate to D-lactyl-CoA and glycolyl-CoA, respectively. Deletion of adhE, frdB, pflB and poxB prevents by-product formation. We also demonstrate modulation of the monomer fractions in PLGA by overexpressing ldhA and deleting dld to increase the proportion of D-lactate or by deleting aceB, glcB, glcD, glcE, glcF and glcG to increase the proportion of glycolate. Incorporation of 2-hydroxybutyrate is prevented by deleting ilvA or feeding strains with L-isoleucine. The utility of our approach for generating diverse forms of PLGA is shown by the production of copolymers containing 3-hydroxybutyrate, 4-hydroxybutyrate or 2-hydroxyisovalerate. PMID:26950748

  14. Phosphoramidate ProTides of 2'-C-methylguanosine as highly potent inhibitors of hepatitis C virus. Study of their in vitro and in vivo properties.

    PubMed

    McGuigan, Christopher; Gilles, Arnaud; Madela, Karolina; Aljarah, Mohamed; Holl, Sabrina; Jones, Sarah; Vernachio, John; Hutchins, Jeff; Ames, Brenda; Bryant, K Dawn; Gorovits, Elena; Ganguly, Babita; Hunley, Damound; Hall, Andrea; Kolykhalov, Alexander; Liu, Yule; Muhammad, Jerry; Raja, Nicholas; Walters, Robin; Wang, Jin; Chamberlain, Stanley; Henson, Geoffrey

    2010-07-01

    Hepatitis C virus infection constitutes a serious health problem in need of more effective therapies. Nucleoside analogues with improved exposure, efficacy, and selectivity are recognized as likely key components of future HCV therapy. 2'-C-Methylguanosine triphosphate has been known as a potent inhibitor of HCV RNA polymerase for some time, but the parent nucleoside is only moderately active due to poor intracellular phosphorylation. We herein report the application of phosphoramidate ProTide technology to bypass the rate-limiting initial phosphorylation of this nucleoside. Over 30 novel ProTides are reported, with variations in the aryl, ester, and amino acid regions. l-Alanine compounds are recognized as potent and selective inhibitors of HCV in replicon assay but lack rodent plasma stability despite considerable ester variation. Amino acid variation retaining the lead benzyl ester moiety gives an increase in rodent stability but at the cost of potency. Finally l-valine esters with ester variation lead to potent, stable compounds. Pharmacokinetic studies on these agents in the mouse reveal liver exposure to the bioactive triphosphate species following single oral dosing. Systemic exposure of the ProTide and parent nucleoside are low, indicating possible low toxicity in vivo, while liver concentrations of the active species may be predictive of efficacy in the clinic. This represents one of the most thorough cross-species studies of ProTides to date.

  15. Group 11 complexes with amino acid derivatives: Synthesis and antitumoral studies.

    PubMed

    Ortego, Lourdes; Meireles, Margarida; Kasper, Cornelia; Laguna, Antonio; Villacampa, M Dolores; Gimeno, M Concepción

    2016-03-01

    Gold(I), gold(III), silver(I) and copper(I) complexes with modified amino acid esters and phosphine ligands have been prepared in order to test their cytotoxic activity. Two different phosphine fragments, PPh3 and PPh2py (py=pyridine), have been used. The amino acid esters have been modified by introducing an aromatic amine as pyridine that coordinates metal fragments through the nitrogen atom, giving complexes of the type [M(L)(PR3)](+) or [AuCl3(L)] (L=l-valine-N-(4-pyridylcarbonyl) methyl ester (L1), l-alanine-N-(4-pyridylcarbonyl) methyl ester (L2), l-phenylalanine-N-(4-pyridylcarbonyl) methyl-ester) (L3); M=Au(I), Ag(I), Cu(I), PR3=PPh3, PPh2py). The in vitro cytotoxic activity of metal complexes was tested against four tumor human cell lines and one tumor mouse cell line. A metabolic activity test (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT) was used and IC50 values were compared with those obtained for cisplatin. Several complexes displayed significant cytotoxic activities. In order to determine whether antiproliferation and cell death are associated with apoptosis, NIH-3T3 cells were exposed to five selected complexes (Annexin V+ FITC, PI) and analyzed by flow cytometry. These experiments showed that the mechanism by which the complexes inhibit cell proliferation inducing cell death in NIH-3T3 cells is mainly apoptotic.

  16. Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation.

    PubMed

    Ghosh, Sonali; Zhang, Pengfei; Li, Yong-qing; Setlow, Peter

    2009-09-01

    Purified superdormant spores of Bacillus cereus, B. megaterium, and B. subtilis isolated after optimal heat activation of dormant spores and subsequent germination with inosine, d-glucose, or l-valine, respectively, germinate very poorly with the original germinants used to remove dormant spores from spore populations, thus allowing isolation of the superdormant spores, and even with alternate germinants. However, these superdormant spores exhibited significant germination with the original or alternate germinants if the spores were heat activated at temperatures 8 to 15 degrees C higher than the optimal temperatures for the original dormant spores, although the levels of superdormant spore germination were not as great as those of dormant spores. Use of mixtures of original and alternate germinants lowered the heat activation temperature optima for both dormant and superdormant spores. The superdormant spores had higher wet-heat resistance and lower core water content than the original dormant spore populations, and the environment of dipicolinic acid in the core of superdormant spores as determined by Raman spectroscopy of individual spores differed from that in dormant spores. These results provide new information about the germination, heat activation optima, and wet-heat resistance of superdormant spores and the heterogeneity in these properties between individual members of dormant spore populations.

  17. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii.

    PubMed

    Giuliano Garisto Donzelli, Bruno; Krasnoff, Stuart B; Moon, Yong-Sun; Sun-Moon, Yong; Churchill, Alice C L; Gibson, Donna M

    2012-04-01

    Destruxins are among the most exhaustively researched secondary metabolites of entomopathogenic fungi, yet definitive evidence for their roles in pathogenicity and virulence has yet to be shown. To establish the genetic bases for the biosynthesis of this family of depsipeptides, we identified a 23,792-bp gene in Metarhizium robertsii ARSEF 2575 containing six complete nonribosomal peptide synthetase modules, with an N-methyltransferase domain in each of the last two modules. This domain arrangement is consistent with the positioning of the adjacent amino acids N-methyl-L: -valine and N-methyl-L: -alanine within the depsipeptide structure of destruxin. DXS expression levels in vitro and in vivo exhibited comparable patterns, beginning at low levels during the early growth phases and increasing with time. Targeted gene knockout using Agrobacterium-mediated transformation produced mutants that failed to synthesize destruxins, in comparison with wild type and ectopic control strains, indicating the involvement of this gene in destruxin biosynthesis. The destruxin synthetase (DXS) disruption mutant was as virulent as the control strain when conidial inoculum was topically applied to larvae of Spodoptera exigua, Galleria mellonella, and Tenebrio molitor indicating that destruxins are dispensable for virulence in these insect hosts. The DXS mutants exhibited no other detectable changes in morphology and development.

  18. Utilization of benzylpenicillin as carbon, nitrogen and energy source by a Pseudomonas fluorescens strain.

    PubMed

    Johnsen, J

    1977-12-15

    A bacterium which utilizes benzylpenicillin as carbon, nitrogen and energy source was isolated from a lake sediment. The organism was identified as a strain of Pseudomonas fluorescens with a GC content of 59.71 Mol%. After growth of the organism on a mineral salts medium containing benzylpenicillin, the derivatives benzylpenicilloic acid, benzylpenilloic acid and benzylpenicillenic acid were found in culture media. There was no indication that the phenylacetate side chain of benzylpenicillin is decomposed. In uninoculated culture media benzylpenicillin, benzylpenicilloic acid and benzylpenicillenic acid were demonstrable. The following compounds were found to be absent from inoculated or uninoculated culture fluids: D-penicillamine, L-valine, L-cysteine, benzylpenillic acid and 6-aminopenicillanic acid. The organism possesses penicillinase. Penicillin acylase was not demonstrable. The reaction product of penicillinase, benzylpenicilloic acid, supports only little growth. There is no growth on 6-aminopenicillanic acid with or without NH4Cl. Relatively little growth occurs on 6-aminopenicillanic acid in the presence of phenylacetic acid. The data indicate that the nucleus of the benzylpenicillin molecule is utilized as carbon, nitrogen and energy source. During growth a part of the substrate is destroyed into scarcely usable benzylpenicilloic acid; hereby the antibiotic is detoxified. PMID:414683

  19. An approach to molecular composites

    NASA Astrophysics Data System (ADS)

    Krigbaum, W. R.; Preston, J.

    1982-12-01

    One objective was to demonstrate that a nematogen can be made to exhibit a cholesteric phase by the incorporation of chiral centers into the polymer chain. The Yamazaki reaction was used to introduce 3 mole percent of chiral L-valine into poly(p-benzamide). This was shown to form a lyotropic cholesteric phase by circular dichroism and the induced circular dichroism of an achiral dye. A disadvantage of the use of lyotropic mesomorphism was that few solvents were available and the production costs were high. The early lattice model treatment of Flory indicated that a highly extended molecular conformation was essential to the formation of this type of mesophase. It has been demonstrated that the melting point depression of a crystalline polymer by this type of mesophase will be quite small unless the polymer-solvent interaction is very favorable. This implies that the polymer solubility will only be sufficient for the formation of a lyotropic mesaphase for those few polymer-solvent systems in which the interactions were very favorable. It was found that the Yamazaki phosphorylation reaction could be made to yield aromatic polyamides of higher inherent viscosity by using a monomer having pre-formed amide linkages. It is believed that this occurs due to reduction in the byproducts of the polymerization.

  20. Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems.

    PubMed

    Ekka, Deepak; Roy, Mahendra Nath

    2013-10-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, L-alanine, L-valine and aqueous solution of β-cyclodextrin (β-CD) have been probed by thermophysical properties. Density (ρ), viscosity (η), and ultrasonic speed (u) measurements have been reported at different temperatures. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume ([Formula: see text]), viscosity B-coefficient and limiting apparent molar adiabatic compressibility ([Formula: see text]). The changes on the enthalpy ([Formula: see text]) and entropy ([Formula: see text]) of the encapsulation analysis give information about the driving forces governing the inclusion. The temperature dependence behaviour of partial molar quantities and group contributions to partial molar volumes has been determined for the amino acids. The trends in transfer volumes, [Formula: see text], have been interpreted in terms of solute-cosolute interactions based on a cosphere overlap model. The role of the solvent (aqueous solution of β-CD) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  1. A novel aceE mutation leading to a better growth profile and a higher L-serine production in a high-yield L-serine-producing Corynebacterium glutamicum strain.

    PubMed

    Guo, Wen; Chen, Ziwei; Zhang, Xiaomei; Xu, Guoqiang; Zhang, Xiaojuan; Shi, Jinsong; Xu, Zhenghong

    2016-09-01

    A comparative genomic analysis was performed to study the genetic variations between the L-serine-producing strain Corynebacterium glutamicum SYPS-062 and the mutant strain SYPS-062-33a, which was derived from SYPS-062 by random mutagenesis with enhanced L-serine production. Some variant genes between the two strains were reversely mutated or deleted in the genome of SYPS-062-33a to verify the influences of the gene mutations introduced by random mutagenesis. It was found that a His-594 → Tyr mutation in aceE was responsible for the more accumulation of by-products, such as L-alanine and L-valine, in SYPS-062-33a. Furthermore, the influence of this point mutation on the L-serine production was investigated, and the results suggested that this point mutation led to a better growth profile and a higher L-serine production in the high-yield strain 33a∆SSAAI, which was derived from SYPS-062-33a by metabolic engineering with the highest L-serine production to date.

  2. Simultaneous determination of atenolol and amiloride by capillary electrophoresis with capacitively coupled contactless conductivity detection (C4D).

    PubMed

    AL Azzam, Khaldun M; Aboul-Enein, Hassan Y

    2013-01-01

    Capillary electrophoresis coupled with a capacitively coupled contactless conductivity detector (CE-C(4)D) has been employed for the determination of the β-blocker drugs (atenolol and amiloride) in pharmaceutical formulations. 150 mM acetic acid was used as background electrolyte. The influence of several factors (detector excitation voltage and frequency, buffer concentration, applied voltage, capillary temperature, and injection time) was studied. Non-UV absorbing L-valine was used as an internal standard; the analytes were all separated in less than 7 min. The separation was carried out in normal polarity mode at 28 °C, 25 kV, and using hydrodynamic injection (25 s). The separation was effected in a bare fused-silica capillary 75 μm × 52 cm. The CE-C(4)D method was validated with respect to linearity, limit of detection and quantification, accuracy, precision, and selectivity. Calibration curves were linear over the range 5-250 μg mL(-1) for the studied analytes. The relative standard deviations of intra- and inter-day precisions of migration times and corrected peak areas were less than 6.0%. The method showed good precision and accuracy and was successfully applied to the simultaneous determination of the β-blocker drugs in different pharmaceutical tablets.

  3. Evaluation of two commercial capillary columns for the enantioselective gas chromatographic separation of organophosphorus pesticides.

    PubMed

    Fidalgo-Used, Natalia; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2006-12-15

    The separation of the enantiomers of 13 organophosphorus pesticides (OPPs) has been investigated by gas chromatography (GC) with flame ionisation detection (FID) using two different commercially available chiral columns, Chirasil-Val (l-valine-tert-butylamide) and CP-Chirasil-Dex CB (heptakis (2,3,6-tri-O-metil)-beta-cyclodextrin). Using the Chirasil-Val column no chiral resolution was obtained for the OPPs investigated under any tested experimental condition. The use of the CP-Chirasil-Dex CB stationary phase enabled good individual enantiomeric separation of two OPPs, ruelene and trichlorfon and partial separation of naled, chloretoxyphos, isophenphos and metamidophos. Also, the obtained chromatographic results showed that Chirasil-Dex could resolve enantiomers through the combination of different mechanism (e.g. formation of inclusion complexes and/or interactions outside the cyclodextrin cavity). Under optimised conditions, precision, linearity range and detection limits were evaluated for the enantiomers of ruelene and trichlorfon using CP-Chirasil-Dex CB column and electron capture detection (ECD). By using the GC-ECD method the enantiomers of these OPPs could be satisfactorily detected at very low concentration levels. The detection limits observed were 1.5ngmL(-1) and 11.5ngmL(-1) for the enantiomers of trichlorfon and ruelene, respectively. PMID:18970881

  4. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    PubMed

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems. PMID:26540455

  5. Enantioselective conjugate addition of nitro compounds to α,β-unsaturated ketones: an experimental and computational study.

    PubMed

    Manzano, Rubén; Andrés, José M; Álvarez, Rosana; Muruzábal, María D; de Lera, Ángel R; Pedrosa, Rafael

    2011-05-16

    A series of chiral thioureas derived from easily available diamines, prepared from α-amino acids, have been tested as catalysts in the enantioselective Michael additions of nitroalkanes to α,β-unsaturated ketones. The best results are obtained with the bifunctional catalyst prepared from L-valine. This thiourea promotes the reaction with high enantioselectivities and chemical yields for aryl/vinyl ketones, but the enantiomeric ratio for alkyl/vinyl derivatives is very modest. The addition of substituted nitromethanes led to the corresponding adducts with excellent enantioselectivity but very poor diastereoselectivity. Evidence for the isomerization of the addition products has been obtained from the reaction of chalcone with [D(3)]nitromethane, which shows that the final addition products epimerize under the reaction conditions. The epimerization explains the low diastereoselectivity observed in the formation of adducts with two adjacent tertiary stereocenters. Density functional studies of the transition structures corresponding to two alternative activation modes of the nitroalkanes and α,β-unsaturated ketones by the bifunctional organocatalyst have been carried out at the B3LYP/3-21G* level. The computations are consistent with a reaction model involving the Michael addition of the thiourea-activated nitronate to the ketone activated by the protonated amine of the organocatalyst. The enantioselectivities predicted by the computations are consistent with the experimental values obtained for aryl- and alkyl-substituted α,β-unsaturated ketones.

  6. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  7. Simultaneous determination of atenolol and amiloride in pharmaceutical preparations by capillary zone electrophoresis with capacitively coupled contactless conductivity detection.

    PubMed

    Al Azzam, Khaldun M; Saad, Bahruddin; Aboul-Enein, Hassan Y

    2010-09-01

    Capillary zone electrophoresis coupled with a capacitively coupled contactless conductivity detector (CE-C(4)D) has been employed for the determination of atenolol and amiloride in pharmaceutical formulations. Acetic acid (150 mm) was used as background electrolyte. The influence of several factors (detector excitation voltage and frequency, buffer concentration, applied voltage, capillary temperature and injection time) was studied. Non-UV-absorbing L-valine was used as internal standard; the analytes were all separated in less than 7 min. The separation was carried out in normal polarity mode at 28 degrees C, 25 kV and using hydrodynamic injection (25 s). The separation was effected in an uncoated fused-silica capillary (75 microm, i.d. x 52 cm). The CE-C(4)D method was validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. Calibration curves were linear over the range 5-250 microg/mL for the studied analytes. The relative standard deviations of intra- and inter-day migration times and corrected peak areas were less than 6.0%. The method showed good precision and accuracy and was successfully applied to the simultaneous determination of atenolol and amiloride in different pharmaceutical tablet formulations.

  8. Resolution and isolation of enantiomers of (±)-isoxsuprine using thin silica gel layers impregnated with L-glutamic acid, comparison of separation of its diastereomers prepared with chiral derivatizing reagents having L-amino acids as chiral auxiliaries.

    PubMed

    Bhushan, Ravi; Nagar, Hariom

    2015-03-01

    Thin silica gel layers impregnated with optically pure l-glutamic acid were used for direct resolution of enantiomers of (±)-isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l-alanine, l-valine and S-benzyl-l-cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed-phase high-performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin-layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)-isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)-isoxsuprine. The elution order in the experimental study of RP-TLC and RP-HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1-0.09 µg/mL in TLC while it was in the range of 22-23 pg/mL in HPLC and 11-13 ng/mL in RP-TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification.

  9. Metabonomic Profiling of TASTPM Transgenic Alzheimer's Disease Mouse Model

    SciTech Connect

    Hu, Zeping; Browne, Edward R.; Liu, Tao; Angel, Thomas E.; Ho, Paul C.; Chun Yong Chan, Eric

    2012-12-07

    Identification of molecular mechanisms underlying early stage Alzheimer’s disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, non-targeted metabotyping of TASTPM transgenic AD mice was performed. The metabolic profiles of both brain and plasma of TASTPM mice were characterized using gas chromatography-mass spectrometry and compared to those of wild type C57BL/6J mice. TASTPM mice were metabolically distinct compared to wild type mice (Q28 Y = 0.587 and 0.766 for PLS-DA models derived from brain and plasma, respectively). A number of metabolites were found to be perturbed in TASTPM mice in both brain (D11 fructose, L-valine, L-serine, L-threonine, zymosterol) and plasma (D-glucose, D12 galactose, linoleic acid, arachidonic acid, palmitic acid and D-gluconic acid). In addition, enzyme immunoassay confirmed that selected endogenous steroids were significantly perturbed in brain (androstenedione and 17-OH-progesterone) and plasma (cortisol and testosterone) of TASTPM mice. Ingenuity pathway analysis revealed that perturbations related to amino acid metabolism (brain), steroid biosynthesis (brain), linoleic acid metabolism (plasma) and energy metabolism (plasma) accounted for the differentiation of TASTPM and wild-type

  10. Amino acid and carbohydrate preferences in C57BL/6ByJ and 129P3/J mice

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2008-01-01

    Compared with mice from the 129P3/J (129) inbred strain, mice from the C57BL/6ByJ (B6) inbred strain have higher consumption of several sweet-tasting amino acids and carbohydrates. To examine the relative contribution of taste and nutritive properties in these strain differences, we measured responses of B6 and 129 mice to eight sweet and non-sweet amino acids and carbohydrates in two-bottle preference tests with water. Mice from the two strains did not differ in consumption of non-sweet L-valine and L-histidine. Compared with 129 mice, B6 mice had higher consumption and lower preference thresholds for sweet amino acids L-glutamine, L-alanine and L-threonine, monosaccharides glucose and fructose, and maltooligosaccharide. These data suggest that differences in gustatory responsiveness are an important factor underlying higher consumption of some amino acids and carbohydrates by B6 mice compared with 129 mice. It is likely that in B6 mice, higher sweet taste responsiveness results in increased consumption of sweet-tasting amino acids and sugars, and higher taste responsiveness to complex carbohydrates results in increased consumption of maltooligosaccharide. However, postingestive processes also influence nutrient consumption and may be responsible for higher intake of carbohydrates compared with sweet-tasting amino acids. Results of this study set the stage for genetic analysis of differences between B6 and 129 mice in taste responsiveness and macronutrient consumption. PMID:17764708

  11. Correlation analysis of urine metabolites and clinical staging in patients with ovarian cancer.

    PubMed

    Jiang, Ting; Lin, Yunliang; Yin, Haiqin; Wang, Shanshan; Sun, Qinglei; Zhang, Peihai; Bi, Wenxiang

    2015-01-01

    This study is to investigate the correlation between urine metabolites and clinical staging in patients with ovarian cancer. The urina sanguinis from 56 cases of primary epithelial ovarian cancer patients and 15 healthy volunteers was collected and the urine metabolites were extracted. Ultra high performance liquid chromatography/time-of-flight mass spectrometry (UPLC-Q-TOF-MS) analysis was performed. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to analyze the mass spectrometry data. Database retrieval and comparison of the screened metabolites were performed and one-way ANOVA and least significant difference (LSD) t test were carried out. PCA analysis of UPLC-Q-TOF-MS results showed that the score plots of samples from healthy people and patients with ovarian cancer at different clinical stages were separated. Further PLS-DA analysis significantly improved the classification results. The R(2)X was 0.757, the R(2)Y was 0.977 and the Q(2)Y was 0.87, indicating that the model stability and predictability were good. Eight metabolites, including N-acetylneuraminic acid-9-phosphate, 5'-methioadenosine, uric acid-3-nucleoside, pseudouridine, L-valine, succinic acid, L-proline and β-nicotinamide mononucleotide were identified. The contents of these metabolites increased with the development of the disease. There was correlation between urine metabolites and clinical staging in patients with ovarian cancer. PMID:26770415

  12. Aromatic Interactions in Organocatalyst Design: Augmenting Selectivity Reversal in Iminium Ion Activation.

    PubMed

    Holland, Mareike C; Metternich, Jan Benedikt; Daniliuc, Constantin; Schweizer, W Bernd; Gilmour, Ryan

    2015-07-01

    Substituting N-methylpyrrole for N-methyindole in secondary-amine-catalysed Friedel-Crafts reactions leads to a curious erosion of enantioselectivity. In extreme cases, this substrate dependence can lead to an inversion in the sense of enantioinduction. Indeed, these closely similar transformations require two structurally distinct catalysts to obtain comparable selectivities. Herein a focussed molecular editing study is disclosed to illuminate the structural features responsible for this disparity, and thus identify lead catalyst structures to further exploit this selectivity reversal. Key to effective catalyst re-engineering was delineating the non-covalent interactions that manifest themselves in conformation. Herein we disclose preliminary validation that intermolecular aromatic (CH-π and cation-π) interactions between the incipient iminium cation and the indole ring system is key to rationalising selectivity reversal. This is absent in the N-methylpyrrole alkylation, thus forming the basis of two competing enantio-induction pathways. A simple L-valine catalyst has been developed that significantly augments this interaction. PMID:25982418

  13. -HPLC determination of acidic d-amino acids and their N-methyl derivatives in biological tissues

    PubMed Central

    Tsesarskaia, Mara; Galindo, Erika; Szókán, Gyula; Fisher, George

    2015-01-01

    d-aspartate (d-Asp) and N-methyl-d-aspartate (NMDA) occur in the neuroendocrine systems of vertebrates and invertebrates where they play a role in hormone release and synthesis, neurotransmission, and memory and learning. N-methyl-d-glutamate (NMDG) has also been detected in marine bivalves. Several methods have been used to detect these amino acids, but they require pretreatment of tissue samples with o-phthaldialdehyde (OPA) to remove primary amino acids which interfere with the detection of NMDA and NMDG. We report here a one step derivatization procedure with the chiral reagent N-α-(5-fluoro-2,4-dinitrophenyl)-(d or l)-valine amide, FDNP-Val-NH2, a close analog of Marfey’s reagent but with better resolution and higher molar absorptivity. The diastereomers formed are separated by HPLC on an ODS-Hypersil column eluted with TFA/water – TFA/MeCN. UV absorption at 340 nm permits detection levels as low as 5–10 picomoles. D-Asp, NMDA and NMDG peaks are not obscured by other primary or secondary amino acids; hence pretreatment of tissues with OPA is not required. This method is highly reliable and fast (less than 40 minutes HPLC run). Using this method, we have detected D-Asp, NMDA and NMDG in several biological tissues (octopus brain, optical lobe, and bucchal mass; foot and mantle of the mollusk Scapharca broughtonii), confirming the results of other researchers. PMID:19277955

  14. Effects of water-alcohol binary solvents on the thermochemical characteristics of L-tryptophane dissolution at 298.15 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Smirnov, V. I.

    2013-01-01

    The enthalpies of L-tryptophane solution in water-methanol, water-ethanol, water-1-propanol, and water-2-propanol mixtures at alcohol concentrations of x 2 = 0-0.4 mole fractions were measured by calorimetry. The standard enthalpies of L-tryptophane solution (Δsol H ∘) and transfer (Δtr H ∘) from water to the binary solvent were calculated. The influence of the composition of the water-alcohol mixture and the structure and properties of L-tryptophane on the enthalpy characteristics of the latter was considered. The enthalpy coefficients of pair interactions ( h xy ) of L-tryptophane with alcohol molecules were calculated. The coefficients were positive and increased in the series: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), and 2-propanol (2-PrOH). The solution and transfer enthalpies of L-tryptophane were compared with those of aliphatic amino acids (glycine, L-threonine, DL-alanine, L-valine, and L-phenylalanine) in similar binary solvents.

  15. Adsorption and Transport of Methane Molecules through One-Dimensional Channels in Dipeptide-Based Materials

    NASA Astrophysics Data System (ADS)

    Paradiso, Daniele; Perelli Cippo, Enrico; Gorini, Giuseppe; Rossi, Giorgio; Larese, John Z.

    The development of new materials for use in energy and environmental applications is of great interest, in particular in the areas of gas separation and carbon capture, where molecular transport plays a significant role. The dipeptides are organic molecules that offer an attractive possibility in such areas, because they form open hexagonal crystalline structures (space group P61) with quasi one-dimensional channels of tunable pore diameters in the range 3-6 Å. These molecular crystals exhibit selective adsorption, as well as, water and gas transport properties: these are believed to result from collective vibrations of the crystal structure that are coupled to the motions of the guest molecules within the channels. Current studies focus on characterizing the system methane and L-Isoleucyl-L-Valine (IV): this was initially done with high-resolution adsorption isotherms; then, high-resolution Inelastic Neutron Scattering measurements at the Spallation Neutron Source (BASIS spectrometer) revealed clear rotational tunneling peaks, offering details to unravel the potential energy surface of the system, as well as, evidences that channels flexibility and dynamical motion of the molecules have influence on the dipeptides adsorption properties.

  16. Identification and biosynthesis of novel male specific esters in the wings of the tropical butterfly, Bicyclus martius sanaos.

    PubMed

    Wang, Hong-Lei; Brattström, Oskar; Brakefield, Paul M; Francke, Wittko; Löfstedt, Christer

    2014-06-01

    Representatives of the highly speciose tropical butterfly genus Bicyclus (Lepidoptera: Nymphalidae) are characterized by morphological differences in the male androconia, a set of scales and hair pencils located on the surface of the wings. These androconia are assumed to be associated with the release of courtship pheromones. In the present study, we report the identification and biosynthetic pathways of several novel esters from the wings of male B. martius sanaos. We found that the volatile compounds in this male butterfly were similar to female-produced moth sex pheromones. Components associated with the male wing androconial areas were identified as ethyl, isobutyl and 2-phenylethyl hexadecanoates and (11Z)-11-hexadecenoates, among which the latter are novel natural products. By topical application of deuterium-labelled fatty acid and amino acid precursors, we found these pheromone candidates to be produced in patches located on the forewings of the males. Deuterium labels from hexadecanoic acid were incorporated into (11Z)-11-hexadecenoic acid, providing experimental evidence of a Δ11-desaturase being active in butterflies. This unusual desaturase was found previously to be involved in the biosynthesis of female-produced sex pheromones of moths. In the male butterflies, both hexadecanoic acid and (11Z)-11-hexadecenoic acid were then enzymatically esterified to form the ethyl, isobutyl and 2-phenylethyl esters, incorporating ethanol, isobutanol, and 2-phenylethanol, derived from the corresponding amino acids L-alanine, L-valine, and L-phenylalanine.

  17. Rational design of heat-set and specific-ion-responsive supramolecular hydrogels based on the Hofmeister effect.

    PubMed

    Nebot, Vicent J; Ojeda-Flores, Juan J; Smets, Johan; Fernández-Prieto, Susana; Escuder, Beatriu; Miravet, Juan F

    2014-10-27

    Smart supramolecular hydrogels have been prepared from a bolaamphiphilic L-valine derivative in aqueous solutions of different salts. The hydrogels respond selectively to different ions and are either reinforced or weakened. In one case, in contrast to conventional systems, the hydrogels are formed upon heating of the system. The use of the hydrogels in the controlled release of an entrapped dye is described as a proof of the potential applications of these systems. The responsive hydrogels were rationally designed by taking into account the noticeable effect of different ions from the Hofmeister series in the solubility of the hydrogelator, which was assessed by using NMR experiments. On the one hand, kosmotropic anions such as sulfate produce a remarkable solubility decrease in the gelator, which is associated with gel reinforcement, as measured by rheological experiments. On the other hand, chaotropic species such as perchlorate weaken the gel. A dramatic effect was observed in the presence of guanidinium chloride, which boosted the solubility of the gelator, in accordance with its chaotropic behaviour reported in protein science. In this case, a direct interaction of the guanidinium species with the carbonyl groups of the hydrogelator is detected by (13) C NMR spectroscopy. The weakening of this interaction upon a temperature increase allows for the preparation of heat-set hydrogelating systems. PMID:25220485

  18. Production of L-(1-/sup 11/C)valine by HPLC resolution

    SciTech Connect

    Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Callahan, A.P.

    1982-01-01

    Based on a recently developed analytical technique, preparative high-performance liquid chromatographic (HPLC) resolution of DL-(1-/sup 11/C)valine has been achieved. A conventional reverse-phase HPLC column and a chiral mobile phase (aqueous solution of L-proline, cupric acetate, and sodium acetate) were used. The copper can be removed from the L-valine fraction by precipitation as the sulfide, and final purification by cation-exchange chromatography yields L-(1-/sup 11/C)valine in a form that is acceptable for clinical positron tomographic studies. This purification method does not remove the L-proline introduced in the resolution process, but added L-proline did not affect the tissue distribution of L-(1-/sup 14/C)valine in rats. We have produced up to 60 mCi of L-(1-/sup 11/C)valine in an overall synthesis and resolution time of 50 min. This procedure should be adaptable to the rapid resolution of other C-/sup 11/-labeled amino acid racemates.

  19. Production of L-(1-/sup 11/C)valine by HPLC resolution

    SciTech Connect

    Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Callahan, A.P.

    1982-01-01

    Based on a recently developed analytical technique, preparative high-performance liquid chromatographic (HPLC) resolution of DL-(1-/sup 11/C)valine has been achieved. A conventional reverse-phase HPLC column and a chiral mobile phase (aqueous solution of L-proline, cupric acetate, and sodium acetate) were used. The copper can be removed from the L-valine fraction by precipitation as the sulfide, and final purification by cation-exchange chromatography yields L-(1-/sup 11/C)valine in a form that is acceptable for clinical positron tomographic studies. This purification method does not remove the L-proline introduced in the resolution process, but added L-proline did not affect the tissue distribution of L-(1-/sup 14/C)valine in rats. We have produced up to 60 mCi of L-(1-/sup 11/C)valine in an overall synthesis and resolution time of 50 min. This procedure should be adapable to the rapid resolution of other C-11-labeled amino acid racemates.

  20. Antipolarity in the ilv Operon of Escherichia coli K-12

    PubMed Central

    Wechsler, James A.; Adelberg, E. A.

    1969-01-01

    The genes governing three of the enzymes of the isoleucine-valine biosynthetic pathway form the operon: operator-ilvA-ilvD-ilvE. The enzymes are: ilvA, l-threonine deaminase; ilvD, dihydroxy acid dehydrase; and ilvE, transaminase B. A nonsense mutation in the ilvD gene (D-ochre) and a nonsense mutation in the ilvE gene (E-amber) affect the properties of the proximal gene product, l-threonine deaminase (TD), in addition to inactivating the enzymes produced by the genes in which the mutations have occurred. The D-ochre mutation causes TD to move in diffusion and gel filtration experiments as though it were 30% smaller than the wild-type enzyme. The E-amber mutation causes TD to move in similar experiments as though it were much larger than the wild-type enzyme. Both mutations completely abolish the sensitivity of TD to l-isoleucine, the normal feedback inhibitor of the wild-type enzyme. The effects of the nonsense mutations on TD can be reversed in three ways: by genetic reversion of the D-ochre mutation; by treatment of the altered enzymes with 3.0 m urea; and by forming a heterozygous diploid, containing the wild-type allele as well as the mutant allele of ilvD or ilvE. The results suggest that the subunits of TD undergo abnormal aggregation in the presence of the partial polypeptides produced by the mutant alleles of ilvD or ilvE; multi-enzyme aggregates in extracts of wild type, however, could not be detected. PMID:4892370

  1. Amperometric Measurement of Glutamate Release Modulation by Gabapentin and Pregabalin in Rat Neocortical Slices: Role of Voltage-Sensitive Ca2+ α2δ-1 Subunit

    PubMed Central

    Dooley, David J.; Pomerleau, François; Huettl, Peter; Gerhardt, Greg A.

    2011-01-01

    Gabapentin (GBP; Neurontin) and pregabalin (PGB; Lyrica, S-(+)-3-isobutylgaba) are used clinically to treat several disorders associated with excessive or inappropriate excitability, including epilepsy; pain from diabetic neuropathy, postherpetic neuralgia, and fibromyalgia; and generalized anxiety disorder. The molecular basis for these drugs' therapeutic effects are believed to involve the interaction with the auxiliary α2δ subunit of voltage-sensitive Ca2+ channel (VSCC) translating into a modulation of pathological neurotransmitter release. Glutamate as the primary excitatory neurotransmitter in the mammalian central nervous system contributes, under conditions of excessive glutamate release, to neurological and psychiatric disorders. This study used enzyme-based microelectrode arrays to directly measure extracellular glutamate release in rat neocortical slices and determine the modulation of this release by GBP and PGB. Both drugs attenuated K+-evoked glutamate release without affecting basal glutamate levels. PGB (0.1–100 μM) exhibited concentration-dependent inhibition of K+-evoked glutamate release with an IC50 value of 5.3 μM. R-(−)-3-Isobutylgaba, the enantiomer of PGB, did not significantly reduce K+-evoked glutamate release. The decrease of K+-evoked glutamate release by PGB was blocked by the l-amino acid l-isoleucine, a potential endogenous ligand of the α2δ subunit. In neocortical slices from transgenic mice having a point mutation (i.e., R217A) of the α2δ-1 (subtype) subunit of VSCC, PGB did not affect K+-evoked glutamate release yet inhibited this release in wild-type mice. The results show that GBP and PGB attenuated stimulus-evoked glutamate release in rodent neocortical slices and that the α2δ-1 subunit of VSCC appears to mediate this effect. PMID:21464332

  2. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid

    PubMed Central

    Vos, Irene A.; Verhage, Adriaan; Schuurink, Robert C.; Watt, Lewis G.; Pieterse, Corné M. J.; Van Wees, Saskia C. M.

    2013-01-01

    In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA) signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA) and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly) results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+)-7-iso-jasmonoyl-L-isoleucine raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis. PMID:24416038

  3. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy

    2015-01-01

    Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional (1)H-(13)C dipolar coupling/chemical shift correlation experiment using (13)C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H-w1C=±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly (13)C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of (1)H-(13)C dipolar couplings are insensitive to (1)H/(13)C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated (1)H detected avenues for ultrafast MAS.

  4. Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis.

    PubMed

    Demianski, Agnes J; Chung, Kwi Mi; Kunkel, Barbara N

    2012-01-01

    The jasmonates (JAs) comprise a family of plant hormones that regulate several developmental processes and mediate responses to various abiotic and biotic stresses, including pathogens. JA signalling is manipulated by several strains of the bacterial pathogen Pseudomonas syringae, including P. syringae strain DC3000, using the virulence factor coronatine (COR) as a mimic of jasmonyl-L-isoleucine (JA-Ile). To better understand the JA-Ile-mediated processes contributing to P. syringae disease susceptibility, it is important to investigate the regulation of JA signalling during infection. In Arabidopsis thaliana, JASMONATE ZIM-DOMAIN (JAZ) proteins are negative regulators of JA signalling. The transcription factor JASMONATE INSENSITIVE1 (JIN1/ATMYC2) has been implicated in the regulation of JAZ gene expression. To investigate the regulation of JAZ genes during P. syringae pathogenesis, we examined JAZ gene expression during infection of Arabidopsis by DC3000. We found that eight of the 12 JAZ genes are induced during infection in a COR-dependent manner. Unexpectedly, the induction of the majority of JAZ genes during infection was not dependent on JIN1, indicating that JIN1 is not the only transcription factor regulating JAZ genes. A T-DNA insertion mutant and an RNA interference line disrupted for the expression of JAZ10, one of the few JAZ genes regulated by JIN1 during infection, exhibited enhanced JA sensitivity and increased susceptibility to DC3000, with the primary effect being increased disease symptom severity. Thus, JAZ10 is a negative regulator of both JA signalling and disease symptom development. PMID:21726394

  5. Crystallization and preliminary X-ray crystallographic analysis of biodegradative threonine deaminase (TdcB) from Salmonella typhimurium

    SciTech Connect

    Simanshu, Dhirendra K.; Chittori, Sagar; Savithri, H. S.; Murthy, M. R. N.

    2006-03-01

    S. typhimurium biodegradative threonine deaminase (TdcB), a member of the β-family of PLP-dependent enzymes, has been overexpressed, purified and crystallized in three different crystal forms using the hanging-drop vapour-diffusion method. Biodegradative threonine deaminase (TdcB) catalyzes the deamination of l-threonine to α-ketobutyrate, the first reaction in the anaerobic breakdown of l-threonine to propionate. Unlike the biosynthetic threonine deaminase, TdcB is insensitive to l-isoleucine and is activated by AMP. Here, the cloning of TdcB (molecular weight 36 kDa) from Salmonella typhimurium with an N-terminal hexahistidine affinity tag and its overexpression in Escherichia coli is reported. TdcB was purified to homogeneity using Ni–NTA affinity column chromatography and crystallized using the hanging-drop vapour-diffusion technique in three different crystal forms. Crystal forms I (unit-cell parameters a = 46.32, b = 55.30, c = 67.24 Å, α = 103.09, β = 94.70, γ = 112.94°) and II (a = 56.68, b = 76.83, c = 78.50 Å, α = 66.12, β = 89.16, γ = 77.08°) belong to space group P1 and contain two and four molecules of TdcB, respectively, in the asymmetric unit. Poorly diffracting form III crystals were obtained in space group C2 and based on the unit-cell volume are most likely to contain one molecule per asymmetric unit. Two complete data sets of resolutions 2.2 Å (crystal form I) and 1.7 Å (crystal form II) were collected at 100 K using an in-house X-ray source.

  6. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions. PMID:27187211

  7. Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis.

    PubMed

    Demianski, Agnes J; Chung, Kwi Mi; Kunkel, Barbara N

    2012-01-01

    The jasmonates (JAs) comprise a family of plant hormones that regulate several developmental processes and mediate responses to various abiotic and biotic stresses, including pathogens. JA signalling is manipulated by several strains of the bacterial pathogen Pseudomonas syringae, including P. syringae strain DC3000, using the virulence factor coronatine (COR) as a mimic of jasmonyl-L-isoleucine (JA-Ile). To better understand the JA-Ile-mediated processes contributing to P. syringae disease susceptibility, it is important to investigate the regulation of JA signalling during infection. In Arabidopsis thaliana, JASMONATE ZIM-DOMAIN (JAZ) proteins are negative regulators of JA signalling. The transcription factor JASMONATE INSENSITIVE1 (JIN1/ATMYC2) has been implicated in the regulation of JAZ gene expression. To investigate the regulation of JAZ genes during P. syringae pathogenesis, we examined JAZ gene expression during infection of Arabidopsis by DC3000. We found that eight of the 12 JAZ genes are induced during infection in a COR-dependent manner. Unexpectedly, the induction of the majority of JAZ genes during infection was not dependent on JIN1, indicating that JIN1 is not the only transcription factor regulating JAZ genes. A T-DNA insertion mutant and an RNA interference line disrupted for the expression of JAZ10, one of the few JAZ genes regulated by JIN1 during infection, exhibited enhanced JA sensitivity and increased susceptibility to DC3000, with the primary effect being increased disease symptom severity. Thus, JAZ10 is a negative regulator of both JA signalling and disease symptom development.

  8. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  9. Effects of Light and Wounding on Jasmonates in Rice phyAphyC Mutants

    PubMed Central

    Brendel, Rita; Svyatyna, Katharina; Jikumaru, Yusuke; Reichelt, Michael; Mithöfer, Axel; Takano, Makoto; Kamiya, Yuji; Nick, Peter; Riemann, Michael

    2014-01-01

    Jasmonates (JA) are lipid-derived plant hormones. They have been shown to be important regulators of photomorphogenesis, a developmental program in plants, which is activated by light through different red and blue light sensitive photoreceptors. In rice, inhibition of coleoptile growth by light is a central event in photomorphogenesis. This growth inhibition is impaired, when jasmonate biosynthesis is knocked out. Previously, we found that JASMONATE RESISTANT 1 (OsJAR1) transcripts were not induced in the phytochrome (phy) mutant phyAphyC. Therefore, in the current study we investigated the regulation of JA and its highly bioactive derivative (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), as well as the transcriptional regulation of several JA-dependent genes both in wild type and phyAphyC mutant. JA and JA-Ile levels increased in the mutant seedlings in response to blue light. However, in phyAphyC mutant leaves, which were continuously wounded, JA and JA-Ile levels were lower compared to those in the wild type. Hence, the mutation of phyA and phyC has differential effects on jasmonate levels depending on the tissue and developmental stage. Our results suggest that the contribution of JA-Ile to signaling during photomorphogenesis of rice is minor, as coleoptile phenotypes of phyAphyC mutants resemble those of jasmonate-deficient mutants despite the fact that induction by blue light leads to higher levels of JA-Ile compared to the wild type. We postulate that phyA and phyC could control the activity of specific enzymes metabolizing JA to active derivatives. PMID:27135497

  10. SO-LAAO, a novel L-amino acid oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus mutans by generating H2O2 from peptone.

    PubMed

    Tong, Huichun; Chen, Wei; Shi, Wenyuan; Qi, Fengxia; Dong, Xiuzhu

    2008-07-01

    We previously demonstrated that Streptococcus oligofermentans suppressed the growth of Streptococcus mutans, the primary cariogenic pathogen, by producing hydrogen peroxide (H(2)O(2)) through lactate oxidase activity. In this study, we found that the lox mutant of S. oligofermentans regained the inhibition while growing on peptone-rich plates. Further studies demonstrated that the H(2)O(2) produced on peptone by S. oligofermentans was mainly derived from seven L-amino acids, i.e., L-aspartic acid, L-tryptophan, L-lysine, L-isoleucine, L-arginine, L-asparagine, and L-glutamine, indicating the possible existence of L-amino acid oxidase (LAAO) that can produce H(2)O(2) from L-amino acids. Through searching the S. oligofermentans genome for open reading frames with a conserved flavin adenine dinucleotide binding motif that exists in the known LAAOs, including those of snake venom, fungi, and bacteria, a putative LAAO gene, assigned as aao(So), was cloned and overexpressed in Escherichia coli. The purified protein, SO-LAAO, showed a molecular mass of 43 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and catalyzed H(2)O(2) formation from the seven L-amino acids determined above, thus confirming its LAAO activity. The SO-LAAO identified in S. oligofermentans differed evidently from the known LAAOs in both substrate profile and sequence, suggesting that it could represent a novel LAAO. An aao(So) mutant of S. oligofermentans did lose H(2)O(2) formation from the seven L-amino acids, further verifying its function as an LAAO. Furthermore, the inhibition by S. oligofermentans of S. mutans in a peptone-rich mixed-species biofilm was greatly reduced for the aao(So) mutant, indicating the gene's importance in interspecies competition. PMID:18469105

  11. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  12. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  13. Regulation of Coronafacoyl Phytotoxin Production by the PAS-LuxR Family Regulator CfaR in the Common Scab Pathogen Streptomyces scabies

    PubMed Central

    Cheng, Zhenlong; Bown, Luke; Tahlan, Kapil; Bignell, Dawn R. D.

    2015-01-01

    Potato common scab is an economically important crop disease that is characterized by the formation of superficial, raised or pitted lesions on the potato tuber surface. The most widely distributed causative agent of the disease is Streptomyces scabies, which produces the phytotoxic secondary metabolite thaxtomin A that serves as a key virulence factor for the organism. Recently, it was demonstrated that S. scabies can also produce the phytotoxic secondary metabolite coronafacoyl-L-isoleucine (CFA-L-Ile) as well as other related metabolites in minor amounts. The expression of the biosynthetic genes for CFA-L-Ile production is dependent on a PAS-LuxR family transcriptional regulator, CfaR, which is encoded within the phytotoxin biosynthetic gene cluster in S. scabies. In this study, we show that CfaR activates coronafacoyl phytotoxin production by binding to a single site located immediately upstream of the putative -35 hexanucleotide box within the promoter region for the biosynthetic genes. The binding activity of CfaR was shown to require both the LuxR and PAS domains, the latter of which is involved in protein homodimer formation. We also show that CFA-L-Ile production is greatly enhanced in S. scabies by overexpression of both cfaR and a downstream co-transcribed gene, orf1. Our results provide important insight into the regulation of coronafacoyl phytotoxin production, which is thought to contribute to the virulence phenotype of S. scabies. Furthermore, we provide evidence that CfaR is a novel member of the PAS-LuxR family of regulators, members of which are widely distributed among actinomycete bacteria. PMID:25826255

  14. Regulation of coronafacoyl phytotoxin production by the PAS-LuxR family regulator CfaR in the common scab pathogen Streptomyces scabies.

    PubMed

    Cheng, Zhenlong; Bown, Luke; Tahlan, Kapil; Bignell, Dawn R D

    2015-01-01

    Potato common scab is an economically important crop disease that is characterized by the formation of superficial, raised or pitted lesions on the potato tuber surface. The most widely distributed causative agent of the disease is Streptomyces scabies, which produces the phytotoxic secondary metabolite thaxtomin A that serves as a key virulence factor for the organism. Recently, it was demonstrated that S. scabies can also produce the phytotoxic secondary metabolite coronafacoyl-L-isoleucine (CFA-L-Ile) as well as other related metabolites in minor amounts. The expression of the biosynthetic genes for CFA-L-Ile production is dependent on a PAS-LuxR family transcriptional regulator, CfaR, which is encoded within the phytotoxin biosynthetic gene cluster in S. scabies. In this study, we show that CfaR activates coronafacoyl phytotoxin production by binding to a single site located immediately upstream of the putative -35 hexanucleotide box within the promoter region for the biosynthetic genes. The binding activity of CfaR was shown to require both the LuxR and PAS domains, the latter of which is involved in protein homodimer formation. We also show that CFA-L-Ile production is greatly enhanced in S. scabies by overexpression of both cfaR and a downstream co-transcribed gene, orf1. Our results provide important insight into the regulation of coronafacoyl phytotoxin production, which is thought to contribute to the virulence phenotype of S. scabies. Furthermore, we provide evidence that CfaR is a novel member of the PAS-LuxR family of regulators, members of which are widely distributed among actinomycete bacteria. PMID:25826255

  15. Direct and individual analysis of stress-related phytohormone dispersion in the vascular system of Cucurbita maxima after flagellin 22 treatment.

    PubMed

    Furch, Alexandra C U; Zimmermann, Matthias R; Kogel, Karl-Heinz; Reichelt, Michael; Mithöfer, Axel

    2014-03-01

    • The stress-related phytohormones, salicylic acid (SA) and abscisic acid (ABA), and the three jasmonates, jasmonic acid (JA), cis-12-oxo-phytodienoic acid (cis-OPDA), and (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), were investigated in phloem and xylem exudates of Cucurbita maxima. • Phloem and xylem exudates were separately collected and analysed via liquid chromatography-mass spectrometry. • We show direct evidence for all three jasmonates, ABA, and SA in both phloem and xylem exudates of C. maxima. JA and JA-Ile concentrations are higher in xylem (JA: c(xylem) ≈ 199.5 nM, c(phloem) ≈ 43.9 nM; JA-Ile: c(xylem) ≈ 7.9 nM, c(phloem) ≈ 1.6 nM), whereas ABA and SA concentrations are higher in phloem exudates (ABA: c(xylem) ≈ 37.1 nM, c(phloem) ≈ 142.6 nM; SA: c(xylem) ≈ 61.6 nM, c(phloem) ≈ 1319 nM). During bacteria-derived flagellin 22 (flg22)-triggered remote root-to-shoot signalling, phytohormone concentration changed rapidly both in phloem and xylem. • The unequal distribution of phytohormones suggests that phloem and xylem have distinct roles in defence responses. Our data shed light on systemic phytohormone signalling and help explain how plants cope with environmental challenges by lateral exchange between phloem and xylem. Our analysis is a starting point for further investigations of how phytohormones contribute to phloem- and xylem-based defence signalling.

  16. The combination effect of L-arginine and NaCl on bitterness suppression of amino acid solutions.

    PubMed

    Ogawa, Tazuko; Nakamura, Tomoko; Tsuji, Eriko; Miyanaga, Yohko; Nakagawa, Hiroyo; Hirabayashi, Hitomi; Uchida, Takahiro

    2004-02-01

    The purpose of the present study was to quantify the degree of suppression of the bitterness of two amino acids (L-isoleucine (L-Ile), and L-phenylalanine (L-Phe)) which could be achieved by the addition of various test chemicals, and to examine the mechanism of this bitterness suppression. The test chemicals used were two sweeteners (sucrose, aspartame), NaCl, various acidic (L-aspartic acid, L-glutamic acid), or basic (L-histidine, L-lysine and L-arginine) amino acids, tannic acid and phosphatidic acid. The combination of L-arginine (L-Arg) and NaCl together was the most effective in reducing the bitterness of 100 mM L-Ile and L-Phe solutions in human gustatory sensation tests. Even in bitterness of 0.1 mM quinine solution, L-Arg was also successful in reducing the bitterness. This bitterness-suppression effect was specific to L-Arg and not to the other basic amino acids. No comparable taste-masking effect was observed for the acidic amino acids. The artificial taste sensor failed to predict completely the bitterness-suppressing effect of L-Arg. It seems likely that the bitterness-suppressing effect of L-Arg is mediated not only by binding at the receptor site, but also elsewhere in the process of bitterness perception, such as a direct effect on the sodium channel. It is conjectured that the guanidinium group of L-Arg may interact with sodium channels in taste bud membranes.

  17. Aminostratigraphy of Middle and Late Pleistocene deposits in The Netherlands and the southern part of the North Sea Basin

    NASA Astrophysics Data System (ADS)

    Meijer, T.; Cleveringa, P.

    2009-09-01

    A review of all available amino acid racemization D (alloisoleucine)/L (isoleucine) data from the whole shell of four molluscan species from Late and late Middle Pleistocene deposits of the Netherlands is presented. The data allow the distinction of 5 aminostratigraphical units, NAZ (Netherlands Amino Zone) A-E, each representing a temperate stage. The zones are correlated with marine isotope stages 1, 5e, 7, 9, and 11 respectively. Apart from NAZ-D (MIS 9), in all aminozones the marine transgression reached the present-day onshore area of the Netherlands. The transgression during NAZ-C (Oostermeer Interglacial: MIS 7) seems to be at least as widespread as its counterpart during NAZ-B (Eemian: MIS 5e) in the southern bight of the North Sea Basin. The stratigraphic position of the Oostermeer Interglacial is just below deposits of the Drente phase of the Saalian and because of this position the interglacial marine deposits have formerly erroneously considered to be of Holsteinian age. Neede, the 'classic' Dutch Holsteinian site, is dated in NAZ-E (MIS 11), like Noordbergum. Although the validity of these zones has been checked with independent data, some overlap between succeeding zones may occur. The relation between amino acid data from elsewhere in the North Sea Basin and the Netherlands amino zonation is discussed. The deposits at the Holsteinian stratotype Hummelsbüttel in North West Germany are dated in NAZ-D. This interglacial correlates with MIS 9. The Belvédère Interglacial, which is of importance for its archaeology, is in NAZ-D (MIS 9) and therefore of Holsteinian age as well. The lacustroglacial 'pottery clays' in the Noordbergum area are deposits from two glacial stages, which can be correlated with MIS 8 and 10 (the Elsterian). The pottery clay that is considered equivalent to the German 'Lauenburger Ton' correlates with MIS 10.

  18. Deciphering the Biosynthetic Origin of L-allo-Isoleucine.

    PubMed

    Li, Qinglian; Qin, Xiangjing; Liu, Jing; Gui, Chun; Wang, Bo; Li, Jie; Ju, Jianhua

    2016-01-13

    The nonproteinogenic amino acid L-allo-isoleucine (L-allo-Ile) is featured in an assortment of life forms comprised of, but not limited to, bacteria, fungi, plants and mammalian systems including Homo sapiens. Despite its ubiquity and functional importance, the specific origins of this unique amino acid have eluded characterization. In this study, we describe the discovery and characterization of two enzyme pairs consisting of a pyridoxal 5'-phosphate (PLP)-linked aminotransferase and an unprecedented isomerase synergistically responsible for the biosynthesis of L-allo-Ile from L-isoleucine (L-Ile) in natural products. DsaD/DsaE from the desotamide biosynthetic pathway in Streptomyces scopuliridis SCSIO ZJ46, and MfnO/MfnH from the marformycin biosynthetic pathway in Streptomyces drozdowiczii SCSIO 10141 drive L-allo-Ile generation in each respective system. In vivo gene inactivations validated the importance of the DsaD/DsaE pair and MfnO/MfnH pair in L-allo-Ile unit biosynthesis. Inactivation of PLP-linked aminotransferases DsaD and MfnO led to significantly diminished desotamide and marformycin titers, respectively. Additionally, inactivation of the isomerase genes dsaE and mfnH completely abolished production of all L-allo-Ile-containing metabolites in both biosynthetic pathways. Notably, in vitro biochemical assays revealed that DsaD/DsaE and MfnO/MfnH each catalyze a bidirectional reaction between L-allo-Ile and L-Ile. Site-directed mutagenesis experiments revealed that the enzymatic reaction involves a PLP-linked ketimine intermediate and uses an arginine residue from the C-terminus of each isomerase to epimerize the amino acid β-position. Consequently, these data provide important new insight into the origins of L-allo-Ile in natural products with medicinal potential and illuminate new possibilities for biotool development.

  19. Human Lung Angiotensin Converting Enzyme

    PubMed Central

    Friedland, Joan; Silverstein, Emanuel; Drooker, Martin; Setton, Charlotte

    1981-01-01

    To enable its immunohistologic localization, angiotensin converting enzyme (EC 3.4.15.1) from human lung was solubilized by trypsinization and purified ∼2,660-fold to apparent homogeneity from a washed lung particulate fraction. The specific activity of pure enzyme was estimated to be 117 μmol/min per mg protein with the substrate hippuryl-l-histidyl-l-leucine. Consistent with previously described lung enzyme studies, catalytic activity was strongly inhibited by EDTA, O-phenanthroline, SQ 20,881, and SQ 14,225 and increased by CoCl2. SQ 20,881 was a somewhat more potent inhibitor than SQ 14,225, unlike rabbit lung enzyme. The Michaelis constant (Km) with hippuryl-l-histidyl-l-leucine was 1.6 mM. The molecular weight was estimated at 150,000 from sucrose density gradient centrifugation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a single polypeptide chain estimated at 130,000 daltons. Rabbit antibody to human lung enzyme was prepared by parenteral administration of pure angiotensin-converting enzyme in Freund's adjuvant. Rabbit antibody to human lung angiotensin-converting enzyme appeared to crossreact weakly with the rabbit enzyme and strongly inhibited the catalytic activity of the enzymes from human serum, lung, and lymph node. The specificity of the rabbit antibody and purity of the final human lung enzyme preparation was suggested by the single precipitin lines obtained by radial double immunodiffusion, and by the coincidence of enzyme catalytic activity and immunoreactivity on polyacrylamide gel electrophoresis, with both relatively pure and highly impure enzymes. Generally applicable sensitive analysis of acrylamide gels for immunoreactivity (and subsequently for any other activity) by use of intact gel slices in radial double immunodiffusion was devised. Human lung enzyme was very tightly bound to and catalytically active on anti-human enzyme antibody covalently bound to Sepharose 4B, and could not be readily dissociated without

  20. Aspects of the haemolytic reaction induced by Kanagawa haemolysin of Vibrio parahaemolyticus.

    PubMed

    Huntley, J S; Hall, A C

    1994-11-01

    Vibrio parahaemolyticus, an important enteric pathogen, produces toxin (Kanagawa haemolysin, KH), the presence of which correlates well with pathogenicity. KH induced lysis of human red blood cells (HRBC); the kinetics were strongly dependent on KH concentration (0-1 HU/ml) and rather independent of target cell concentration [0.5 < or = haematocrit (%) < or = 6] and the ratio KH:HRBC. The suggestion that KH-induced haemolysis is due to colloid osmosis is supported by results indicating: (1) osmotic protection (by suspension in iso-osmotic choline chloride, D-sorbitol or L-valine, or MOPS-buffered saline with added sucrose), (2) a cell volume increase prior to lysis, and (3) an increase in HRBC cation (86Rb+) influx after KH addition, indicating raised passive cation permeation. The effect of temperature on KH-induced haemolysis indicates the importance of processes other than the action of a simple water-filled pore, because of the high activation energy [53.30 +/- 2.79 kJ (mol.)-1] involved. Although haemolytic rate was attenuated by washout after 5 min KH exposure, the KH-induced lesion itself was not susceptible to washout by either extracellular volume expansion (at constant osmolarity) or centrifugation/resuspension. This suggests that HRBC binding of KH from aqueous solution still continues after 5 min exposure at 37 degrees C. Pre-vortexing KH with dibutyl phthalate (DBP) dramatically reduced the haemolytic activity of the aqueous toxin preparation, suggesting a protein-lipid interaction, which may support the contention that KH can move from a hydrophilic to a hydrophobic environment. Two features were identified that are characteristic of highly purified TDH preparations: (1) thermostability of haemolysin, and (2) monovalent cation selectivity series of lesion: Cs+ > Li+ > K+ > Rb+ > Na+, confirming that TDH is the important leak-inducing agent of KH. PMID:7886698

  1. Pharmacology of Valinate and tert-Leucinate Synthetic Cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and Their Analogues.

    PubMed

    Banister, Samuel D; Longworth, Mitchell; Kevin, Richard; Sachdev, Shivani; Santiago, Marina; Stuart, Jordyn; Mack, James B C; Glass, Michelle; McGregor, Iain S; Connor, Mark; Kassiou, Michael

    2016-09-21

    Indole and indazole synthetic cannabinoids (SCs) featuring l-valinate or l-tert-leucinate pendant group have recently emerged as prevalent recreational drugs, and their use has been associated with serious adverse health effects. Due to the limited pharmacological data available for these compounds, 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues were synthesized and assessed for cannabimimetic activity in vitro and in vivo. All SCs acted as potent, highly efficacious agonists at CB1 (EC50 = 0.45-36 nM) and CB2 (EC50 = 4.6-128 nM) receptors in a fluorometric assay of membrane potential, with a general preference for CB1 activation. The cannabimimetic properties of two prevalent compounds with confirmed toxicity in humans, 5F-AMB and MDMB-FUBINACA, were demonstrated in vivo using biotelemetry in rats. Bradycardia and hypothermia were induced by 5F-AMB and MDMB-FUBINACA doses of 0.1-1 mg/kg (and 3 mg/kg for 5F-AMB), with MDMB-FUBINACA showing the most dramatic hypothermic response recorded in our laboratory for any SC (>3 °C at 0.3 mg/kg). Reversal of hypothermia by pretreatment with a CB1, but not CB2, antagonist was demonstrated for 5F-AMB and MDMB-FUBINACA, consistent with CB1-mediated effects in vivo. The in vitro and in vivo data indicate that these SCs act as highly efficacious CB receptor agonists with greater potency than Δ(9)-THC and earlier generations of SCs. PMID:27421060

  2. Effects of fasting and semistarvation on the kinetics of active and passive sugar absorption across the small intestine in vivo.

    PubMed Central

    Debnam, E S; Levin, R J

    1975-01-01

    The effects of dietary restriction on the kinetics of absorption in vivo of glucose, galactose and alpha-methyl glucoside were assessed by electrical and chemical methods in the rat jejunum. 2. The 'apparent Km', maximum absorption or Vmax (mu-mole/10 cm. 15 min) and maximum potential difference (p.d.max) were obtained for the jejunal electrogenic active transfer mechanism from the transfer p.d.s and the chemical absorption data corrected for diffusion using various graphical kinetic plots. 3. Fasting for 3 days greatly decreased the 'apparent Kms', obtained from electrical or chemical data, for all the sugars but had no effect on those for L-valine or L-methionine. Semistarvation caused a less pronounced reduction of the 'apparent Kms' for the sugars. The dietary-induced change in 'apparent Km' for glucose was also observed in the fasted hamster. One interpretation of these changes is that the affinity of the carriers for sugars increases during dietary restriction; the greater the level of restriction the greater the increase. 4. Fasting and semistarvation caused large reductions in the Vmax. These reductions were correlated with a reduced enterocyte population estimated by changes in enterocyte column size. 5. The reduction in the Vmax for galactose was mainly accounted for by the decrease in enterocyte population. In the case of glucose, other factors such as reduced enterocyte metabolism or changes in the carriers must be involved to explain the discrepancy between the large decrease in Vmax and the enterocyte column size. 6. Fasting and semi-starvation had complex, differential actions on the p.d.max for glucose, galactose and alpha-methyl glucoside. These changes did not correlate with those observed in the Vmax measured chemically. 7. A standard diet obtained from two commercial sources was found to differ greatly in its effect on the electrogenic transfer system for alpha-methyl glucoside but had no effect on those for galactose and glucose. PMID:1206572

  3. Investigation of Isovaline Enantiomeric Excesses and Other C5 Amino Acids in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Glavin, Daniel P.

    2009-01-01

    The origin of biological homochirality is one of the most perplexing puzzles to understanding the emergence of life on Earth. While many models have been proposed, the only reported non-biologically generated. compounds that show a significant enantiomeric excess are a few amino acids in the CM2 Murchison and Murray meteorites (e.g. Pizzarello and Cronin 2000; Pizzarello et al, 2008). Of these isovaline (alpha-ethyl-alanine) is of particular interest since it is typically abundant in CM2 meteorites, is exceedingly rare in biology, and due to its chemical structure is likely to maintain its primordial D/L ratio. Instead of the gas chromatography-mass spectrometry (GC-MS) technique employed by Pizzarello et al., we have used liquid chromatography-fluorescence detection/time of flight-mass spectrometry (LC-FD/ToF-MS) to study the enantiomeric ratio of isovaline in the CM2 meteorites Murchison and LEW90500 and the CR2 QUE99177. We have placed particular emphasis on understanding the suite of C5 amino acids in these meteorites. In doing so, we have determined that D and L 3-aminopentanoic acid co-elutes with Lisovaline and L-valine under common chromatographic conditions (Glavin and Dworkin 2006) for omicron-phthaldialdehyde/N-acetyl-L-cysteine (OPA/NAC). We have devised a method to separate these compounds and we will report the actual D/ L ratios of isovaline in these meteorites and how they compare to the GC-MS measurements of Pizzarello and co-workers.

  4. The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins.

    PubMed

    Luu, Stephanie; Cruz-Mora, Jose; Setlow, Barbara; Feeherry, Florence E; Doona, Christopher J; Setlow, Peter

    2015-04-01

    Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75 °C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the L-asparagine-glucose-fructose-K(+) mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation.

  5. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems.

  6. Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement

    PubMed Central

    Haack, Tobias B; Jackson, Christopher B; Murayama, Kei; Kremer, Laura S; Schaller, André; Kotzaeridou, Urania; de Vries, Maaike C; Schottmann, Gudrun; Santra, Saikat; Büchner, Boriana; Wieland, Thomas; Graf, Elisabeth; Freisinger, Peter; Eggimann, Sandra; Ohtake, Akira; Okazaki, Yasushi; Kohda, Masakazu; Kishita, Yoshihito; Tokuzawa, Yoshimi; Sauer, Sascha; Memari, Yasin; Kolb-Kokocinski, Anja; Durbin, Richard; Hasselmann, Oswald; Cremer, Kirsten; Albrecht, Beate; Wieczorek, Dagmar; Engels, Hartmut; Hahn, Dagmar; Zink, Alexander M; Alston, Charlotte L; Taylor, Robert W; Rodenburg, Richard J; Trollmann, Regina; Sperl, Wolfgang; Strom, Tim M; Hoffmann, Georg F; Mayr, Johannes A; Meitinger, Thomas; Bolognini, Ramona; Schuelke, Markus; Nuoffer, Jean-Marc; Kölker, Stefan; Prokisch, Holger; Klopstock, Thomas

    2015-01-01

    Objective Short-chain enoyl-CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal-recessive ECHS1 deficiency. Methods Using exome sequencing, we identified ten unrelated individuals carrying compound heterozygous or homozygous mutations in ECHS1. Functional investigations in patient-derived fibroblast cell lines included immunoblotting, enzyme activity measurement, and a palmitate loading assay. Results Patients showed a heterogeneous phenotype with disease onset in the first year of life and course ranging from neonatal death to survival into adulthood. The most prominent clinical features were encephalopathy (10/10), deafness (9/9), epilepsy (6/9), optic atrophy (6/10), and cardiomyopathy (4/10). Serum lactate was elevated and brain magnetic resonance imaging showed white matter changes or a Leigh-like pattern resembling disorders of mitochondrial energy metabolism. Analysis of patients’ fibroblast cell lines (6/10) provided further evidence for the pathogenicity of the respective mutations by showing reduced ECHS1 protein levels and reduced 2-enoyl-CoA hydratase activity. While serum acylcarnitine profiles were largely normal, in vitro palmitate loading of patient fibroblasts revealed increased butyrylcarnitine, unmasking the functional defect in mitochondrial β-oxidation of short-chain fatty acids. Urinary excretion of 2-methyl-2,3-dihydroxybutyrate – a potential derivative of acryloyl-CoA in the valine catabolic pathway – was significantly increased, indicating impaired valine oxidation. Interpretation In conclusion, we define the phenotypic spectrum of a new syndrome caused by ECHS1 deficiency. We speculate that both the β-oxidation defect and the block in l-valine metabolism, with accumulation of toxic methacrylyl-CoA and acryloyl

  7. Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes.

    PubMed

    Herr, Andreas; Fischer, Reinhard

    2014-09-01

    Aspergillus nidulans is able to synthesize penicillin and serves as a model to study the regulation of its biosynthesis. Only three enzymes are required to form the beta lactam ring tripeptide, which is comprised of l-cysteine, l-valine and l-aminoadipic acid. Whereas two enzymes, AcvA and IpnA localize to the cytoplasm, AatA resides in peroxisomes. Here, we tested a novel strategy to improve penicillin production, namely the change of the residence of the enzymes involved in the biosynthesis. We tested if targeting of AcvA or IpnA (or both) to peroxisomes would increase the penicillin yield. Indeed, AcvA peroxisomal targeting led to a 3.2-fold increase. In contrast, targeting IpnA to peroxisomes caused a complete loss of penicillin production. Overexpression of acvA, ipnA or aatA resulted in 1.4, 2.8 and 3.1-fold more penicillin, respectively in comparison to wildtype. Simultaneous overexpression of all three enzymes resulted even in 6-fold more penicillin. Combination of acvA peroxisomal targeting and overexpression of the gene led to 5-fold increase of the penicillin titer. At last, the number of peroxisomes was increased through overexpression of pexK. A strain with the double number of peroxisomes produced 2.3 times more penicillin. These results show that penicillin production can be triggered at several levels of regulation, one of which is the subcellular localization of the enzymes.

  8. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems. PMID:25551720

  9. Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy.

    PubMed

    Wang, Shiwei; Yu, Jing; Suvira, Milomir; Setlow, Peter; Li, Yong-qing

    2015-01-01

    Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis).

  10. Organometallic complexes of bulky, optically active, C3-symmetric tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*)

    SciTech Connect

    Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; Schmidt, Bradley M.; Ellern, Arkady; Sadow, Aaron D.

    2015-07-16

    A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[ToP*] (1). That compound is readily converted to the thallium complex Tl[ToP*] (2) and to the acid derivative H[ToP*] (3). Group 7 tricarbonyl complexes ToP*M(CO)3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)5 and Li[ToP*] and are crystallographically characterized. The νCO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with ToP* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (ToP). The reaction of H[ToP*] and ZnEt2 gives ToP*ZnEt (6), while ToP*ZnCl (7) is synthesized from Li[ToP*] and ZnCl2. The reaction of ToP*ZnCl and KOtBu followed by addition of PhSiH3 provides the zinc hydride complex ToP*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.

  11. Organometallic complexes of bulky, optically active, C3-symmetric tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*)

    DOE PAGES

    Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; Schmidt, Bradley M.; Ellern, Arkady; Sadow, Aaron D.

    2015-07-16

    A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[ToP*] (1). That compound is readily converted to the thallium complex Tl[ToP*] (2) and to the acid derivative H[ToP*] (3). Group 7 tricarbonyl complexes ToP*M(CO)3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)5 and Li[ToP*] and are crystallographically characterized. The νCO bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with ToP* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (ToP). The reaction of H[ToP*] and ZnEt2 gives ToP*ZnEt (6), whilemore » ToP*ZnCl (7) is synthesized from Li[ToP*] and ZnCl2. The reaction of ToP*ZnCl and KOtBu followed by addition of PhSiH3 provides the zinc hydride complex ToP*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.« less

  12. Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance

    PubMed Central

    Qiang, Wei; Tycko, Robert

    2012-01-01

    We present the theoretical description and experimental demonstration of a zero-quantum stochastic dipolar recoupling (ZQ-SDR) technique for solid state nuclear magnetic resonance (NMR) studies of 13C-labeled molecules, including proteins, under magic-angle spinning (MAS). The ZQ-SDR technique combines zero-quantum recoupling pulse sequence blocks with randomly varying chemical shift precession periods to create randomly amplitude- and phase-modulated effective homonuclear magnetic dipole-dipole couplings. To a good approximation, couplings between different 13C spin pairs become uncorrelated under ZQ-SDR, leading to spin dynamics (averaged over many repetitions of the ZQ-SDR sequence) that are fully described by an orientation-dependent N × N polarization transfer rate matrix for an N-spin system, with rates that are inversely proportional to the sixth power of internuclear distances. Suppression of polarization transfers due to non-commutivity of pairwise couplings (i.e., dipolar truncation) does not occur under ZQ-SDR, as we show both analytically and numerically. Experimental demonstrations are reported for uniformly 13C-labeled L-valine powder (at 14.1 T and 28.00 kHz MAS), uniformly 13C-labeled protein GB1 in microcrystalline form (at 17.6 T and 40.00 kHz MAS), and partially labeled 13C-labeled protein GB1 (at 14.1 T and 40.00 kHz MAS). The experimental results verify that spin dynamics under ZQ-SDR are described accurately by rate matrices and suggest the utility of ZQ-SDR in structural studies of 13C-labeled solids. PMID:22979851

  13. Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.

    PubMed

    Blombach, Bastian; Buchholz, Jens; Busche, Tobias; Kalinowski, Jörn; Takors, Ralf

    2013-12-01

    We investigated the growth kinetics and transcriptional responses of Corynebacterium glutamicum in environments with low (pCO2<40 mbar) and high (pCO2 ≥ 300 mbar) CO2/HCO3(-) levels compared to standard conditions. When cultivated at high CO2/HCO3(-)-levels, C. glutamicum showed increased (63%) biomass to substrate yields during the initial growth phase. Other kinetic parameters such as growth rate (μ), specific glucose consumption rate (qS), and selected enzymatic activities of anaplerotic reactions, the pentose phosphate pathway and the tricarboxylic acid cycle were similar to standard conditions. However, microarray hybridization disclosed a complex transcriptional response involving 117 differentially expressed genes. Among those, 60 genes were assigned to the complete DtxR/RipA regulon controlling iron homeostasis in C. glutamicum. Impaired growth of a ΔdtxR mutant at high CO2/HCO3(-) levels validated the relevance of this master regulator to cope with excessive CO2/HCO3(-) availability. At low CO2/HCO3(-) levels, C. glutamicum grew in a bi-level manner with three distinct growth phases. Differential analyses revealed approximately doubled activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase accompanied by the formation of L-alanine and L-valine during the lowest μ occurring in mid-phase of the cultivation. DNA microarray analysis revealed more than 100 differentially expressed genes in growth phase II compared to phase I including almost all thiamin pyrophosphate (TPP) biosynthesis genes, which were significantly up regulated. Concluding, we hypothesize that C. glutamicum counteracts the lack of CO2/HCO3(-) by triggering TPP biosynthesis for increasing the activities of TPP-dependent enzymes involved in CO2 formation.

  14. Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores

    PubMed Central

    Cermak, Nathan; Feijó Delgado, Francisco; Setlow, Barbara; Setlow, Peter

    2015-01-01

    ABSTRACT We use a suspended microchannel resonator to characterize the water and small-molecule permeability of Bacillus subtilis spores based on spores' buoyant mass in different solutions. Consistent with previous results, we found that the spore coat is not a significant barrier to small molecules, and the extent to which small molecules may enter the spore is size dependent. We have developed a method to directly observe the exchange kinetics of intraspore water with deuterium oxide, and we applied this method to wild-type spores and a panel of congenic mutants with deficiencies in the assembly or structure of the coat. Compared to wild-type spores, which exchange in approximately 1 s, several coat mutant spores were found to have relatively high water permeability with exchange times below the ∼200-ms temporal resolution of our assay. In addition, we found that the water permeability of the spore correlates with the ability of spores to germinate with dodecylamine and with the ability of TbCl3 to inhibit germination with l-valine. These results suggest that the structure of the coat may be necessary for maintaining low water permeability. IMPORTANCE Spores of Bacillus species cause food spoilage and disease and are extremely resistant to standard decontamination methods. This hardiness is partly due to spores' extremely low permeability to chemicals, including water. We present a method to directly monitor the uptake of molecules into B. subtilis spores by weighing spores in fluid. The results demonstrate the exchange of core water with subsecond resolution and show a correlation between water permeability and the rate at which small molecules can initiate or inhibit germination in coat-damaged spores. The ability to directly measure the uptake of molecules in the context of spores with known structural or genetic deficiencies is expected to provide insight into the determinants of spores' extreme resistance. PMID:26483518

  15. Synthesis, chemical and enzymatic hydrolysis, and aqueous solubility of amino acid ester prodrugs of 3-carboranyl thymidine analogs for boron neutron capture therapy of brain tumors.

    PubMed

    Hasabelnaby, Sherifa; Goudah, Ayman; Agarwal, Hitesh K; abd Alla, Mosaad S M; Tjarks, Werner

    2012-09-01

    Various water-soluble L-valine-, L-glutamate-, and glycine ester prodrugs of two 3-Carboranyl Thymidine Analogs (3-CTAs), designated N5 and N5-2OH, were synthesized for Boron Neutron Capture Therapy (BNCT) of brain tumors since the water solubilities of the parental compounds proved to be insufficient in preclinical studies. The amino acid ester prodrugs were prepared and stored as hydrochloride salts. The water solubilities of these amino acid ester prodrugs, evaluated in phosphate buffered saline (PBS) at pH 5, pH 6 and pH 7.4, improved 48-6600 times compared with parental N5 and N5-2OH. The stability of the amino acid ester prodrugs was evaluated in PBS at pH 7.4, Bovine serum, and Bovine cerebrospinal fluid (CSF). The rate of the hydrolysis in all three incubation media depended primarily on the amino acid promoiety and, to a lesser extend, on the site of esterification at the deoxyribose portion of the 3-CTAs. In general, 3'-amino acid ester prodrugs were less sensitive to chemical and enzymatic hydrolysis than 5'-amino acid ester prodrugs and the stabilities of the latter decreased in the following order: 5'-valine > 5'-glutamate > 5'-glycine. The rate of the hydrolysis of the 5'-amino acid ester prodrugs in Bovine CSF was overall higher than in PBS and somewhat lower than in Bovine serum. Overall, 5'-glutamate ester prodrug of N5 and the 5'-glycine ester prodrugs of N5 and N5-2OH appeared to be the most promising candidates for preclinical BNCT studies. PMID:22889558

  16. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  17. Constant time tensor correlation experiments by non-gamma-encoded recoupling pulse sequences

    NASA Astrophysics Data System (ADS)

    Mou, Yun; Tsai, Tim W. T.; Chan, Jerry C. C.

    2012-10-01

    Constant-time tensor correlation under magic-angle spinning conditions is an important technique in solid-state nuclear magnetic resonance spectroscopy for the measurements of backbone or side-chain torsion angles of polypeptides and proteins. We introduce a general method for the design of constant-time tensor correlation experiments under magic-angle spinning. Our method requires that the amplitude of the average Hamiltonian must depend on all the three Euler angles bringing the principal axis system to the rotor-fixed frame, which is commonly referred to as non-gamma encoding. We abbreviate this novel approach as COrrelation of Non-Gamma-Encoded Experiment (CONGEE), which exploits the orientation-dependence of non-gamma-encoded sequences with respect to the magic-angle rotation axis. By manipulating the relative orientation of the average Hamiltonians created by two non-gamma-encoded sequences, one can obtain a modulation of the detected signal, from which the structural information can be extracted when the tensor orientations relative to the molecular frame are known. CONGEE has a prominent feature that the number of rf pulses and the total pulse sequence duration can be maintained to be constant so that for torsion angle determination the effects of systematic errors owing to the experimental imperfections and/or T2 effects could be minimized. As a proof of concept, we illustrate the utility of CONGEE in the correlation between the C' chemical shift tensor and the Cα-Hα dipolar tensor for the backbone psi angle determination. In addition to a detailed theoretical analysis, numerical simulations and experiments measured for [U-13C, 15N]-L-alanine and N-acetyl-[U-13C, 15N]-D,L-valine are used to validate our approach at a spinning frequency of 20 kHz.

  18. Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinatha, N.; Nair, K. G. M.; Angadi, Basavaraj

    2015-10-01

    We report on the microstructure, electronic structure and optical properties of nanocrystalline Zn1-xCoxO (x=0, 0.01, 0.03, 0.05 and 0.07) particles prepared by solution combustion technique using L-Valine as fuel. The detailed structural and micro-structural studies were carried out by XRD, HRTEM and TEM-SAED respectively, which confirms the formation of single phased, nano-sized particles. The electronic structure was determined through NEXAFS and atomic multiplet calculations/simulations performed for various symmetries and valence states of 'Co' to determine the valance state, symmetry and crystal field splitting. The correlations between the experimental NEXAFS spectra and atomic multiplet simulations, confirms that, 'Co' present is in the 2+ valence state and substituted at the 'Zn' site in tetrahedral symmetry with crystal field splitting, 10Dq =-0.6 eV. The optical properties and 'Co' induced defect formation of as-synthesized materials were examined by using diffuse reflectance and Photoluminescence spectroscopy, respectively. Red-shift of band gap energy (Eg) was observed in Zn1-xCoxO samples due to Co (0.58 Å) substitution at Zn (0.60 Å) site of the host ZnO. Also, in PL spectra, a prominent pre-edge peak corresponds to ultraviolet (UV) emission around 360-370 nm was observed with Co concentration along with near band edge emission (NBE) of the wide band gap ZnO and all samples show emission in the blue region.

  19. Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Tycko, Robert

    2012-09-01

    We present the theoretical description and experimental demonstration of a zero-quantum stochastic dipolar recoupling (ZQ-SDR) technique for solid state nuclear magnetic resonance (NMR) studies of 13C-labeled molecules, including proteins, under magic-angle spinning (MAS). The ZQ-SDR technique combines zero-quantum recoupling pulse sequence blocks with randomly varying chemical shift precession periods to create randomly amplitude- and phase-modulated effective homonuclear magnetic dipole-dipole couplings. To a good approximation, couplings between different 13C spin pairs become uncorrelated under ZQ-SDR, leading to spin dynamics (averaged over many repetitions of the ZQ-SDR sequence) that are fully described by an orientation-dependent N × N polarization transfer rate matrix for an N-spin system, with rates that are inversely proportional to the sixth power of internuclear distances. Suppression of polarization transfers due to non-commutivity of pairwise couplings (i.e., dipolar truncation) does not occur under ZQ-SDR, as we show both analytically and numerically. Experimental demonstrations are reported for uniformly 13C-labeled L-valine powder (at 14.1 T and 28.00 kHz MAS), uniformly 13C-labeled protein GB1 in microcrystalline form (at 17.6 T and 40.00 kHz MAS), and partially labeled 13C-labeled protein GB1 (at 14.1 T and 40.00 kHz MAS). The experimental results verify that spin dynamics under ZQ-SDR are described accurately by rate matrices and suggest the utility of ZQ-SDR in structural studies of 13C-labeled solids.

  20. The Effects of Heat Activation on Bacillus Spore Germination, with Nutrients or under High Pressure, with or without Various Germination Proteins

    PubMed Central

    Luu, Stephanie; Cruz-Mora, Jose; Setlow, Barbara; Feeherry, Florence E.; Doona, Christopher J.

    2015-01-01

    Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75°C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the l-asparagine–glucose–fructose–K+ mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation. PMID:25681191

  1. Construction of a novel expression system for use in Corynebacterium glutamicum.

    PubMed

    Hu, Jinyu; Li, Yanyan; Zhang, Hailing; Tan, Yanzhen; Wang, Xiaoyuan

    2014-09-01

    Corynebacterium glutamicum is an important microorganism for production of amino acids in industrial fermentation. Suitable vectors are needed for metabolic engineering in C. glutamicum. Most available vectors used in C. glutamicum carry antibiotic resistant genes as a genetic labeling for rapid identification of recombinant strains, and antibiotics have to be added to maintain the vector when growing the cells. These vectors, though excellent for laboratory use, are not preferable choices for industry-scale fermentation. In this work, we developed a novel expression system for use in C. glutamicum, which do not require antibiotics when used for industrial fermentation. This system includes two vectors: the shuttle vector pJYW-4 for expression of genes and the vector pJYW-6 for deletion of the essential gene alr in C. glutamicum. The vector pJYW-4 contains a large multiple cloning site for cloning multiple genes and two selective markers: one is the kanamycin-resistant gene kan and the other is an essential gene alr. The selective marker kan facilitates molecular manipulation or fermentations in the laboratory, and the selection marker alr is good for use in industry-scale fermentation, allowing in vivo maintenance of the expression vector through auxotrophic complementation; therefore, the two selection markers in pJYW-4 make it useful for both laboratory research and industrial fermentation, and convenient to transfer valuable laboratory-developed strains into industrial production. This newly-constructed expression system was successfully used to increase L-valine production in C. glutamicum ATCC 14067, indicating its potential on developing amino acid-producing C. glutamicum strains.

  2. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    DOE PAGES

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; Amador-Noguez, Daniel; Engle, Nancy L.; Tschaplinski, Timothy J.; van Dijken, Johannes P.; Lynd, Lee R.

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel)more » initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.« less

  3. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    SciTech Connect

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; Amador-Noguez, Daniel; Engle, Nancy L.; Tschaplinski, Timothy J.; van Dijken, Johannes P.; Lynd, Lee R.

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel) initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.

  4. Characterization of CeO{sub 2} crystals synthesized with different amino acids

    SciTech Connect

    Atla, Shashi B.; Wu, Min-Nan; Pan, Wei; Hsiao, Yu Tang; Sun, An-Cheng; Tseng, Min-Jen; Chen, Yen-Ju; Chen, Chien-Yen

    2014-12-15

    We investigated the relationship between the structures of the CeO{sub 2} products (particle size, morphology and their characteristics) prepared using different amino acids. Cerium hydroxide carbonate precursors were initially prepared by a hydrothermal method and were subsequently converted to CeO{sub 2} by its thermal decomposition. Various amino acids were used as structure-directing agents in the presence of cerium nitrate and urea as precursors. The results indicate morphology selectivity using different amino acids; CeO{sub 2} structures, such as quasi-prism-sphere, straw-bundle, urchin-flower like and polyhedron prisms, indeed could be produced. Raman and photoluminescence studies indicate the presence of oxygen vacancies in the CeO{sub 2} samples. Photoluminescence spectra of CeO{sub 2} with L-Valine exhibit stronger emission compared with other amino acids utilized under this study, indicating the higher degree of defects in these particles. This study clearly indicates that the degree of defects varied in the presence of different amino acids. Improved precision to control the crystal morphology is important in various material applications and our study provides a novel method to achieve this specificity. - Highlights: • We used urea hydrolysis of process for synthesis of CeO{sub 2}. • Structures have been directed using various amino acids. • We obtained straw bundle-like, quasi prism-sphere, polyhedron prisms and urchin flower-like based on amino acids. • We have found that amino acids could achieve the specificity of different degrees of defects. • This could provide the “tailor-make” of cerium crystals.

  5. Pharmacology of Valinate and tert-Leucinate Synthetic Cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and Their Analogues.

    PubMed

    Banister, Samuel D; Longworth, Mitchell; Kevin, Richard; Sachdev, Shivani; Santiago, Marina; Stuart, Jordyn; Mack, James B C; Glass, Michelle; McGregor, Iain S; Connor, Mark; Kassiou, Michael

    2016-09-21

    Indole and indazole synthetic cannabinoids (SCs) featuring l-valinate or l-tert-leucinate pendant group have recently emerged as prevalent recreational drugs, and their use has been associated with serious adverse health effects. Due to the limited pharmacological data available for these compounds, 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues were synthesized and assessed for cannabimimetic activity in vitro and in vivo. All SCs acted as potent, highly efficacious agonists at CB1 (EC50 = 0.45-36 nM) and CB2 (EC50 = 4.6-128 nM) receptors in a fluorometric assay of membrane potential, with a general preference for CB1 activation. The cannabimimetic properties of two prevalent compounds with confirmed toxicity in humans, 5F-AMB and MDMB-FUBINACA, were demonstrated in vivo using biotelemetry in rats. Bradycardia and hypothermia were induced by 5F-AMB and MDMB-FUBINACA doses of 0.1-1 mg/kg (and 3 mg/kg for 5F-AMB), with MDMB-FUBINACA showing the most dramatic hypothermic response recorded in our laboratory for any SC (>3 °C at 0.3 mg/kg). Reversal of hypothermia by pretreatment with a CB1, but not CB2, antagonist was demonstrated for 5F-AMB and MDMB-FUBINACA, consistent with CB1-mediated effects in vivo. The in vitro and in vivo data indicate that these SCs act as highly efficacious CB receptor agonists with greater potency than Δ(9)-THC and earlier generations of SCs.

  6. Chiral changes of simple amino acids in early Earth's ocean by meteorite impacts: Experimental simulations

    NASA Astrophysics Data System (ADS)

    Takase, A.; Sekine, T.; Furukawa, Y.; Kakegawa, T.

    2012-12-01

    It has been recognized that meteorite impacts on early Earth ocean may have contributed significantly for molecules related to the origin of life to originate and evolve. We have already established the formation of simple biomolecules from inorganic materials through oceanic impacts that may have occurred at late heavy bombardment. These simple molecules including amino acids need to be subjected to further developments to initiate life on the Earth. The chirality of terrestrial amino acids constructing proteins is only L-type. In order to make clear the the point that biomolecules are formed by oceanic impacts of meteorites, it wll be crucial to determine how they select the chirality. In order to investigate the basic chemistry on chirality of simple amino acids, we tried to simulate experimentally the chiral change of some amino acids present in ocean at that time under shock loading. Each aqueous solution (0.1 M) of L- and D-valine was prepared and used as mixtures of olivine powders and solutions in sealed steel containers. We performed shock recovery experiments at an impact condition where samples were compressed at ~5 GPa. The analytical results of shock recovered solutions indicate that valine survives significantly (~10%) and that L- and D-valines transform partially to D- and L-valine, respectively. The transformation rate varied with the chemical species present in solutions. These results imply that meteorite impacts as well as the surrounding conditions play important roles to control the chirality of simple amino acids that may have been formed at that time.

  7. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation.

    PubMed

    Wu, Xiaobin; García-Estrada, Carlos; Vaca, Inmaculada; Martín, Juan-Francisco

    2012-02-01

    The first step in the penicillin biosynthetic pathway is the non-ribosomal condensation of L-α-aminoadipic acid, L-cysteine and L-valine into the tripeptide δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine (ACV). This reaction is catalysed by the multienzyme ACV synthetase (ACVS), which is encoded in the filamentous fungus Penicillium chrysogenum by the pcbAB gene. This enzyme contains at least ten catalytic domains. The precise role of the C-terminal domain of this multidomain NRPS still remains obscure. The C-terminal region of ACVS bears the epimerase and the thioesterase domains and may be involved in the epimerization of LLL-ACV to LLD-ACV and in the hydrolysis of the thioester bond. In this work, the conserved motifs (3371)EGHGRE(3376) (located in the putative epimerase domain) and (3629)GWSFG(3633) (located in the thioesterase domain) were changed by site-directed-mutagenesis to LGFGLL and GWAFG, respectively. In addition, the whole thioesterase domain (230 amino acids) and the different parts of this domain were deleted. The activity of these mutant enzymes was assessed in vivo by two different procedures: i) through the quantification of bisACV produced by the fungus and ii) by quantifying the benzylpenicillin production using tailored strains of P. chrysogenum, which lack the pcbAB gene, as host strains. All indicated mutant enzymes showed lower or null activity than the control strain confirming that E3371, H3373, R3375 and E3376 belong to the epimerase active centre. Different fragments included in the C-terminal region of ACVS control thioester hydrolysis. Overexpression of the sequence encoding the ACVS integrated thioesterase domain as a separate (stand-alone) transcriptional unit complemented mutants lacking the integrated thioesterase domain, although with low ACV releasing activity, suggesting that the stand-alone thioesterease interacts with the other ACVS domains.

  8. Substrate specificity of amino acid transport in sheep erythrocytes.

    PubMed Central

    Young, J D; Ellory, J C

    1977-01-01

    The specificity of amino acid transport in normal (high-glutathione) sheep erythrocytes was investigated by studying the interaction of various neutral and dibasic amino acids in both competition and exchange experiments. Apparent Ki values were obtained for amino acids as inhibitors of L-alanine influx. Amino acids previously found to be transported by high-glutathione cells at fast rates (L-cysteine, L-alpha-amino-n-butyrate) were the most effective inhibitors. D-Alanine and D-alpha-amino-n-butyrate were without effect. Of the remaining amino acids studied, only L-norvaline, L-valine, L-norleucine, L-serine and L-2,4-diamino-n-butyrate significantly inhibited L-alanine uptake. L-Alanine efflux from pre-loaded cells was markedly stimulated by extracellular L-alanine. Those amino acids that inhibited L-alanine influx also stimulated L-alanine efflux. In addition, D-alanine, D-alpha-amino-n-biutyrate, L-threonine, L-asparagine, L-alpha, beta-diaminoproprionate, L-ornithine, L-lysine and S-2-aminoethyl-L-cysteine also significantly stimulated L-alanine efflux. L-Lysine uptake was inhibited by L-alanine but not by D-alanine, and the inhibitory potency of L-alanine was not influenced by the replacement of Na+ in the incubation medium with choline. L-Lysine efflux from pre-loaded cells was stimulated by L-alanine but not by D-alanine. It is concluded that these cells possess a highly selective stero-specific amino acid-transport system. Although the optimum substrates are small neutral amino acids, this system also has a significant affinity for dibasic amino acids. PMID:849280

  9. Puromycin-Sensitive Aminopeptidase: An Antiviral Prodrug Activating Enzyme

    PubMed Central

    Tehler, Ulrika; Nelson, Cara H.; Peterson, Larryn W.; Provoda, Chester J.; Hilfinger, John M.; Lee, Kyung-Dall; McKenna, Charles E.; Amidon, Gordon L.

    2010-01-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al. Molecular Pharmaceutics, 2008 vol 5 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The kcat for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher kcat for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design. PMID:19969024

  10. Acute effects of ethanol in the control of protein synthesis in isolated rat liver cells

    SciTech Connect

    Girbes, T.; Susin, A.; Ayuso, M.S.; Parrilla, R.

    1983-10-01

    The acute effect of ethanol on hepatic protein synthesis is a rather controversial issue. In view of the conflicting reports on this subject, the effect of ethanol on protein labeling from L-(/sup 3/H)valine in isolated liver cells was studied under a variety of experimental conditions. When tracer doses of the isotope were utilized, ethanol consistently decreased the rate of protein labeling, regardless of the metabolic conditions of the cells. This inhibition was not prevented by doses of 4-methylpyrazole large enough to abolish all the characteristic metabolic effects of ethanol, and it was not related to perturbations on the rates of L-valine transport and/or proteolysis. When ethanol was tested in the presence of saturating doses of L-(/sup 3/H)valine no effect on protein labeling was observed. These observations suggest that the ethanol effect in decreasing protein labeling from tracer doses of the radioactive precursor does not reflect variations in the rate of protein synthesis but reflects changes in the specific activity of the precursor. These changes probably are secondary to variations in the dimensions of the amino acid pool utilized for protein synthesis. Even though it showed a lack of effect when tested alone, in the presence of saturating doses of the radioactive precursor ethanol inhibited the stimulatory effects on protein synthesis mediated by glucose and several gluconeogenic substrates. This effect of ethanol was not prevented by inhibitors of alcohol dehydrogenase, indicating that a shift of the NAD system to a more reduced state is not the mediator of its action. It is suggested that ethanol probably acted by changing the steady-state levels of some common effector(s) generated from the metabolism of all these fuels or else by preventing the inactivation of a translational repressor.

  11. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    SciTech Connect

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  12. Molecular recognition of α-cyclodextrin (CD) to choral amino acids based on methyl orange as a molecular probe

    NASA Astrophysics Data System (ADS)

    Yuexian, Fan; Yu, Yang; Shaomin, Shuang; Chuan, Dong

    2005-03-01

    The molecular recognition interaction of α-CD to chiral amino acids was investigated by using spectrophotometry based on methyl orange as a molecular probe. The molecular recognition ability depended on the inclusion formation constants. The molecular recognition of α-CD to aromatic amino acids was the order: DL-tryptophan > L-tryptophan > L-phenylalanine > L-tyrosine ≈ DL-β-3,4-dihydroxy-phenylalanine; whereas for aliphatic amino acids, the order was: L- iso-leucine > L-leucine ≈ L-methionine ≈ DL-mehtionine > D-leucine. The effect of temperature on the inclusion interaction was examined and the thermodynamic parameters of inclusion process, Δ G, Δ H, Δ S, were determined. The experimental results indicated that the inclusion process was an exothermic and enthalpy-driven process accompanied with a negative or minor positive entropic contribution. The inclusion interaction between α-CD and amino acids satisfied the law of enthalpy-entropy compensation. The compensation temperature was 291 K.

  13. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    PubMed

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (D- and L-cysteine, D- and L-arginine, D- and L-leucine, D- and L-glutamine and D- and L-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, D- and L-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates.

  14. Synthesis and renewal of proteins in duck anterior hypophysis in organ culture.

    PubMed

    Tixier-Vidal, A; Gourdji, D

    1970-07-01

    In cultures of duck anterior pituitaries, the synthesis and renewal of the specific secretory protein prolactin and of total newly synthesized tissue proteins were studied. As concerns prolactin, assay of the tissue and culture media hormone content demonstrates de novo synthesis of prolactin in vitro at a constant rate during at least 2 wk. The prolactin content after 1 wk and after 2 wk of culture is the same and is similar to the initial content. The renewal time of this prolactin can be estimated at 28 or 48 hr. As concerns total proteins, the use of a chase after a short pulse of 5 min in the presence of tritiated L-leucine demonstrated that newly synthesized proteins are excreted into the culture medium from 30 min to 1 hr after the beginning of the chase. Therefore, the synthesis and excretion of proteins are two discontinuous phenomena. The migration rate of the total proteins was slower than that of prolactin, indicating that this hormone does not represent more than about half of the newly synthesized proteins. These conclusions are in good agreement with those based on high resolution radioautographic data previously obtained on the same material. PMID:5460460

  15. Glutamine inhibits ammonia-induced accumulation of cGMP in rat striatum limiting arginine supply for NO synthesis.

    PubMed

    Hilgier, Wojciech; Freśko, Inez; Klemenska, Emilia; Beresewicz, Andrzej; Oja, Simo S; Saransaari, Pirjo; Albrecht, Jan; Zielińska, Magdalena

    2009-07-01

    Brain L-glutamine (Gln) accumulation and increased activity of the NO/cGMP pathway are immediate consequences of acute exposure to ammonia. This study tested whether excess Gln may influence NO and/or cGMP synthesis. Intrastriatal administration of the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine or the system A-specific Gln uptake inhibitor methylaminoisobutyrate increased microdialysate Gln concentration and reduced basal and ammonia-induced NO and cGMP accumulation. Gln applied in vivo (via microdialysis) or in vitro (to rat brain cortical slices) reduced NO and cGMP accumulation in the presence and/or absence of ammonia, but not cGMP synthesis induced by the NO donor sodium nitroprusside. Attenuation of cGMP synthesis by Gln was prevented by administration of L-arginine (Arg). The L-arginine co-substrates of y(+)LAT2 transport system, L-leucine and cyclo-leucine, mimicked the effect of exogenous Gln, suggesting that Gln limits Arg supply for NO synthesis by interfering with y+LAT2-mediated Arg uptake across the cell membrane.

  16. Synthesis and characterization of functional elastomeric poly(ester amide) co-polymers.

    PubMed

    Jokhadze, G; Machaidze, M; Panosyan, H; Chu, C C; Katsarava, R

    2007-01-01

    A new family of random co-poly(ester amides)s (co-PEAs) having reactive pendant functional carboxylic acid groups were synthesized by co-polycondensation of di-p-toluenesulfonic acid salts of bis-(L-alpha-amino acid (L-leucine and/or L-phenylalanine)) alpha,omega-alkylene diesters with active diesters of dicarboxylic acids using di-p-toluenesulfonic acid salt of L-lysine benzyl ester as a co-monomer. The lateral benzyl ester groups in the L-lysine segment of co-PEAs were subsequently transformed into free COOH groups by catalytic hydrogenolysis using Pd black as a catalyst. The co-PEA-based polyacids obtained, as well as the original co-PEA having lateral benzyl ester groups were characterized by standard methods. In vitro biodegradation studies in the presence of hydrolases like alpha-chymotrypsin and lipase showed significant enzymatic-catalyzed biodegradation of these co-PEAs. These co-PEA-based polyacids were used for covalent attachment of iminoxyl radicals (4-amino-TEMPO) and in vitro biodegradation of 4-aminoTEMPO attached polymer was studied along with releasing kinetic of iminoxyl radical. PMID:17540117

  17. Dietary L-Lysine Suppresses Autophagic Proteolysis and Stimulates Akt/mTOR Signaling in the Skeletal Muscle of Rats Fed a Low-Protein Diet.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2015-09-23

    Amino acids, especially L-leucine, regulate protein turnover in skeletal muscle and have attracted attention as a means of increasing muscle mass in people suffering from malnutrition, aging (sarcopenia), or a bedridden state. We previously showed that oral administration of L-lysine (Lys) by gavage suppressed proteolysis in skeletal muscles of fasted rats. However, the intake of Lys in the absence of other dietary components is unlikely in a non-experimental setting, and other dietary components may interfere with the suppressive effect of Lys on proteolysis. We supplemented Lys to a 10% casein diet and investigated the effect of Lys on proteolysis and autophagy, a major proteolytic system, in the skeletal muscle of rats. The rate of proteolysis was evaluated from 3-methylhisitidine (MeHis) released from isolated muscles, in plasma, and excreted in urine. Supplementing lysine with the 10% casein diet decreased the rate of proteolysis induced by intake of a low-protein diet. The upregulated autophagy activity [light chain 3 (LC3)-II/total LC3] caused by a low-protein diet was reduced, and the Akt/mTOR signaling pathway was activated by Lys. Importantly, continuous feeding of a Lys-rich 10% casein diet for 15 days increased the masses of the soleus and gastrocnemius muscles. Taken together, supplementation of Lys to a low-protein diet suppresses autophagic proteolysis through the Akt/mTOR signaling pathway, and continuous feeding of a Lys-rich diet may increase skeletal muscle mass.

  18. A Molecular Dynamics Simulation Study of the Association of 1,1’-Binaphthyl-2,2’-diyl hydrogenphosphate Enantiomers with a Chiral Molecular Micelle

    PubMed Central

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2014-01-01

    Molecular dynamics (MD) simulations were used to investigate the binding of 1,1’-binaphthyl-2,2’-diyl hydrogenphosphate (BNP) enantiomers to the molecular micelle poly-(sodium undecyl-(L,L)-leucine-valine) (poly(SULV)). Poly(SULV) is used as a chiral selector in capillary electrophoresis separations. Four poly(SULV) binding pockets were identified and either (R)-BNP or (S)-BNP were docked into each pocket. MD simulations were then used to identify the preferred BNP binding site. Within the preferred site, both enantiomers formed hydrogen bonds with poly(SULV) and penetrated into the poly(SULV) core. Comparisons of BNP enantiomer binding to the preferred poly(SULV) pocket showed that (S)-BNP formed stronger hydrogen bonds, moved deeper into the binding site, and had a lower poly(SULV) binding free energy than the (R) enantiomer. Finally, MD simulation results were in agreement with capillary electrophoresis and NMR experiments. Each technique showed (S)-BNP interacted more strongly with poly(SULV) than (R)-BNP and that the site of chiral recognition was near the poly(SULV) leucine chiral center. PMID:25083022

  19. Molecular Dynamics Simulation and NMR Investigation of the Association of the β-Blockers Atenolol and Propranolol with a Chiral Molecular Micelle

    PubMed Central

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2015-01-01

    Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies. PMID:26257464

  20. Beta-decay, Bremsstrahlen, and the origin of molecular chirality

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Yi, L.

    1984-01-01

    A brief review is presented of the Vester-Ulbricht beta-decay Bremsstrahlen hypothesis for the origin of optical activity, and of subsequent experiments designed to test it. Certain experiments along these lines, begun in 1974 and involving the irradiation of racemic and optically active amino acids in a 61.7 KCi Sr-90-Y-90 Bremsstrahlen source, have now been completed and are described. After 10.89 years of irradiation with a total Bremsstrahlen dose of 2.5 x 10 to the 9th rads, crystalline DL-leucine, norleucine, and norvaline suffered 47.2, 33.6, and 27.4 percent radiolysis, respectively, but showed no evidence whatsoever of asymmetric degradation. Dand L-Leucine underwent about 48 percent radiolysis and showed 2.4-2.9 percent radioracemization. Other samples in solution were too severely degraded to analyze. Probable intrinsic reasons for the failure of the Vester-Ulbricht mechanism to afford asymmetric radiolysis in the present and related experiments involving beta-decay Bremsstrahlen are enumerated.

  1. Biconical tapered optical fiber biosensor for measuring refractive index of a-amino acids in aqueous D-glucose and sucrose solution

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Karami, M.; Gholami, M.; Hosseini, S. M.; Ghezelayagh, M. H.

    2010-04-01

    A single-mode biconical tapered optical fiber (BTOF) sensor was utilized for sensing the variation of refractive index (RI) with concentration of D-glucose in double distilled deionized water and measuring of RI of amino acids (AAs) in carbohydrate solutions. This method showed a rewarding ability in understanding the basis of biomolecular interactions in biological systems. The BTOF is fabricated by heat pulling method, utilizing a CO2 laser. The detection limit of the BTOF was 50 ppb for the D-glucose concentration ranging from 0 to 80 ppm, and RI detection limit corresponding to these concentrations in the range at 1.3333 to 1.3404 was 5.4×10-6 as a refractometer sensor. The response of the BTOF shows that the different kinds of interactions of various groups of AAs such as L-alanine, L-leucine, and L-cystein with D-glucose, sucrose and water molecules depend on functional groups in AAs such as OH, SH;CH2;NH3+ ,COO-. These results can be interpreted in terms of solute-solute and solute-solvent interactions and structure making/breaking ability of solutes in the given solution.

  2. Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Welsh, Eric A.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2012-02-03

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-L-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 422 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly and degradation showed higher levels of isotope incorporation suggesting that these biochemical pathways are important for growth under non-diazotrophic conditions. Calculation of relative isotope abundances (RIA) values allowed to measure actual active protein synthesis over time for different biochemical pathways under non-diazotrophic conditions. Overall results demonstrated the utility of 'non-steady state' pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.

  3. STUDIES ON THE SITE OF SYNTHESIS OF SEVERAL SOLUBLE ENZYMES OF THE CELL NUCLEUS

    PubMed Central

    Kuehl, LeRoy; Sumsion, Earl N.

    1971-01-01

    Rats were given radioactive L-leucine intravenously. At various times after injection, the livers were removed and separated into nuclear and cytoplasmic fractions by a nonaqueous technique. Glyceraldehyde-3-phosphate dehydrogenase, aldolase, and lactic dehydrogenase were isolated from each cell fraction by antibody precipitation followed by gel electrophoresis, and the specific radioactivities of the isolated enzymes were determined. In all three cases, the onset of labeling and the rate of incorporation were the same for the nuclear enzyme as for the corresponding enzyme from the cytoplasm. If we assume that equilibration of the enzymes between the cytoplasmic and nuclear pools occurs slowly relative to the labeling times employed, we may conclude that the labeled nuclear enzymes either were synthesized in the nucleus or moved into the nucleus from a cytoplasmic site of synthesis without first passing into the cytoplasmic pool of enzyme. Treatment with puromycin, an antibiotic which depresses incorporation into cytoplasmic proteins to a greater extent than into nuclear proteins, led to a situation in which the specific activities of the nuclear enzymes were several times as high as those of the corresponding cytoplasmic enzymes following a short period of incorporation. These data substantiate the assumption that equilibration between the cytoplasmic and nuclear enzyme pools occurs slowly and provide further evidence that the labeled nuclear enzymes do not arise from the cytoplasmic enzyme pool. PMID:5563445

  4. Crystal and molecular structure of bestatin and its implications regarding substrate binding to the active site of leucine aminopeptidase

    SciTech Connect

    Ricci, J.S. Jr.; Bousvaros, A.; Taylor, A.

    1982-07-30

    The X-ray crystal structure of bestatin, ((2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl)-L-leucine (C/sub 16/H/sub 24/N/sub 2/O/sub 4/), has been determined. Four molecules of bestatin crystallize with four molecules of 2-methyl-2,4-pentanediol (MPD) and eight molecules of water in the space group P2/sub 1/2/sub 1/2/sub 1/. Unit cell dimensions are a = 6.653 (1), b = 15.150 (3), and c = 27.309 (4) angstrom. The final R was 8.5%, based on 2871 independent structure amplitudes. The MPD was found to be disordered. In addition to the usual functional groups needed for binding to leucine aminopeptidase, bestatin includes a tetrahedral carbon, C(8), as might be found in the putative transition-state intermediate. The structure indicates that the nonpolar side chains are oppositely disposed and separated by approx.10 angstrom. The peptide bond is trans. There is no H bonding between OH on C(8) and the adjacent carbonyl. These data suggest possible modes of binding of this transition-state analogue to leucine aminopeptidase.

  5. Electrochemical Imprinted Polycrystalline Nickel-Nickel Oxide Half-Nanotube-Modified Boron-Doped Diamond Electrode for the Detection of L-Serine.

    PubMed

    Dai, Wei; Li, Hongji; Li, Mingji; Li, Cuiping; Wu, Xiaoguo; Yang, Baohe

    2015-10-21

    This paper presents a novel and versatile method for the fabrication of half nanotubes (HNTs) using a flexible template-based nanofabrication method denoted as electrochemical imprinting. With use of this method, polycrystalline nickel and nickel(II) oxide (Ni-NiO) HNTs were synthesized using pulsed electrodeposition to transfer Ni, deposited by radio frequency magnetron sputtering on a porous polytetrafluoroethylene template, onto a boron-doped diamond (BDD) film. The Ni-NiO HNTs exhibited semicircular profiles along their entire lengths, with outer diameters of 50-120 nm and inner diameters of 20-50 nm. The HNT walls were formed of Ni and NiO nanoparticles. A biosensor for the detection of L-serine was fabricated using a BDD electrode modified with Ni-NiO HNTs, and the device demonstrated satisfactory analytical performance with high sensitivity (0.33 μA μM(-1)) and a low limit of detection (0.1 μM). The biosensor also exhibited very good reproducibility and stability, as well as a high anti-interference ability against amino acids such as L-leucine, L-tryptophan, L-cysteine, L-phenylalanine, L-arginine, and L-lysine.

  6. Evaluation of in vitro antimicrobial and in vivo cytotoxic properties of some novel titanium-based coordination complexes.

    PubMed

    Sheikh, Chanmiya; Hossain, Mohammad Shamim; Easmin, Mosammat Sabina; Islam, Mohammad Saidul; Rashid, Mamunur

    2004-05-01

    The aim of the present study was to determine the antimicrobial and cytotoxic activities of eight novel titanium(III) based coordination complexes [Ti(Pht)(2)(DL-serine)(2), S(1)], [Ti(Pht)(2)(glycine)(2), S(2))], [Ti(Pht)(2)(cystine)(2), S(3)], [Ti(Pht)(2)(DL-leucine)(2), S(4)], [Ti(Suc)(2)(L-leucine)(2), S(5)], [Ti(Suc)(2)(cystine)(2), S(6)], [Ti(Suc)(2)(cystein)(2), S(7)] and [Ti(Suc)(2)(DL-serine)(2), S(8)] against several gram-positive and -negative bacteria, fungi and brine shrimp nauplii. The investigation showed that almost all of the complexes were moderately active against tested bacteria and fungi at high concentration (200 microg/disc) compared with the standard antibiotic, amoxicillin and the antifungal agent, nystatin. In vivo lethality bioassay experiment showed that only S(7) and S(8) among the complexes had better cytotoxic effect than standard gallic acid. The LC(50) values of these two complexes were found to be 1.00 and 1.21 microg/ml, respectively. Thus the results suggest that only two complexes (S(7), S(8)) among the titanium(III) based coordination complexes show the anticancer properties comparable to the standard cytotoxic agent, and further studies of these two complexes may be helpful for their clinical implication. PMID:15133251

  7. Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians.

    PubMed

    Li, Chunjie; Nan, Zhibiao; Li, Fei

    2008-01-01

    Biological and physiological characteristics of Neotyphodium gansuense were compared with Neotyphodium coenophialum and Epichloë festucae at a range of temperatures and pH values, and on carbon and nitrogen amended media. N. gansuense was able to grow at 10-30 degrees C, but not at 5 degrees C, and slowly at 35 degrees C. The optimal temperature for both N. gansuense and N. coenophialum was 25 degrees C, but that of E. festucae was 20-25 degrees C. The optimal pH ranges for mycelial growth of N. gansuense, N. coenophialum and E. festucae were 5-9, 5-9 and 5-7, respectively. The Neotyphodium and Epichloë endophytes varied in their ability to grow on media containing different carbon and nitrogen nutrients. The preference of N. gansuense for carbon source was sucrose>glucose, lactose, sorbitol, inulin, maltose, mannitol, starch, fructose>xylose. Growth of all three endophytes tested was significantly improved by peptone, tryptone, casein, yeast extract and l-proline. Yeast extract, peptone, casein, tryptone, l-proline, potassium nitrate, ammonium oxalic acid and l-leucine significantly improved growth of N. gansuense. However, ammonium nitrite was not utilized at all by any tested endophyte. N. gansuense grew significantly better on potato dextrose agar (PDA) and oat meal agar (OMA) than on corn meal agar (CMA) and drunken-horse-grass agar (DA), and most slowly on water agar (WA) and saltwater nutrient agar (SNA).

  8. Genetic and physiological analysis of branched-chain alcohols and isoamyl acetate production in Saccharomyces cerevisiae.

    PubMed

    Yoshimoto, H; Fukushige, T; Yonezawa, T; Sone, H

    2002-08-01

    Branched-chain alcohols, such as isoamyl alcohol and isobutanol, and isoamyl acetate are important flavor components of yeast-fermented alcoholic beverages. Analysis of a null mutant of the BAT2 gene encoding cytosolic branched-chain amino acid aminotransferase, and a transformant with multi-copy plasmids containing the BAT2 gene showed that the BAT2 gene product plays an important role in the production of branched-chain alcohols and isoamyl acetate. Fermentation tests using the bat2 null mutant transformed with multi-copy plasmids carrying the ATF1 gene, which encodes alcohol acetyltransferase, indicated that modified expression of BAT2 and ATF1 genes could significantly alter the proportion of branched-chain alcohols and isoamyl acetate synthesized. Furthermore, fermentation tests using different ratios of nitrogen source and RNA blot analyses demonstrated that transcription of L-leucine biosynthetic ( LEU) and BAT genes is co-regulated by nitrogen source, that production of isoamyl alcohol depends on this transcription, and that ATF transcription increased with increased concentrations of nitrogen source. Our data suggest that changes in isoamyl alcohol production by nitrogen source are due to transcriptional co-regulation of LEU and BAT genes, and that production of isoamyl acetate is dependent on isoamyl alcohol production and ATF transcription. PMID:12172617

  9. Improved production of isoamyl acetate by a sake yeast mutant resistant to an isoprenoid analog and its dependence on alcohol acetyltransferase activity, but not on isoamyl alcohol production.

    PubMed

    Hirooka, Kiyoo; Yamamoto, Yoshihiro; Tsutsui, Nobuo; Tanaka, Toshio

    2005-02-01

    1-Farnesylpyridinium (FPy), an analog of isoprenoid farnesol, strongly inhibited the growth of sake yeast at 120 microM in YPD medium, whereas at 30 microM it reduced cellular production of isoamyl acetate to 20% of the control level despite the absence of inhibitory effect on CO2 evolution. The FPy-resistant mutant A1 was characterized by the high production of flavor compounds represented by a nearly threefold increase in the level of isoamyl acetate in YPD medium in which the level of isoamyl alcohol as its precursor remained almost unchanged. The FPy resistance phenotype of strain A1 was not accompanied by cellular resistance to either the L-leucine analog or L-canavanine, which alters yeast amino acid metabolism in favor of isoamyl alcohol production. Alcohol acetyltransferase (AATase) activity was high in strain A1, which further increased in response to isoamyl alcohol accumulation in medium. Flavor compound production in sake brewing could be improved using strain A1, resulting in a 1.4-fold increase in isoamyl acetate production in spite of a limited production of isoamyl alcohol. PMID:16233768

  10. (19)F NMR studies of the leucine-isoleucine-valine binding protein: evidence that a closed conformation exists in solution.

    PubMed

    Salopek-Sondi, Branka; Vaughan, Mark D; Skeels, Matthew C; Honek, John F; Luck, Linda A

    2003-10-01

    The leucine-isoleucine-valine binding protein (LIV) found in the periplasmic space of E. coli has been used as a structural model for a number of neuronal receptors. This "venus fly trap" type protein has been characterized by crystallography in only the open form. Herein we have labeled LIV with 5-fluorotryptophan (5F-Trp) and difluoromethionine (DFM) in order to explore the structural dynamics of this protein and the application of DFM as a potential (19)F NMR structural probe for this family of proteins. Based on mass spectrometric analysis of the protein overproduced in the presence of DFM, approximately 30% of the five LIV methionine residues were randomly substituted with the fluorinated analog. Urea denaturation experiments imply a slight decrease in protein stability when DFM is incorporated into LIV. However, the fluorinated methionine did not alter leucine-binding activity upon its incorporation into the protein. Binding of L-leucine stabilizes both the unlabeled and DFM-labeled LIV, and induces the protein to adopt a three-state unfolding model in place of the two-state process observed for the free protein. The (19)F NMR spectrum of DFM-labeled LIV gave distinct resonances for the five Met residues found in LIV. 5F-Trp labeled LIV gave a well resolved spectrum for the three Trp residues. Trp to Phe mutants defined the resonances in the spectrum. The distinct narrowing in line width of the resonances when ligand was added identified the closed form of the protein.

  11. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study.

    PubMed

    Wu, Lei; Fang, Shengtao; Shi, Shuai; Deng, Jizhe; Liu, Bin; Cai, Lintao

    2013-09-01

    Indocyanine green (ICG) is a near-infrared (NIR) fluorescence dye for extensive applications; however, it is limited for further biological application due to its poor aqueous stability in vitro, concentration-dependent aggregation, rapid elimination from the body, and lack of target specificity. To overcome its limitations, ICG was encapsulated in the core of a polymeric micelle, which self-assembled from amphiphilic PEG-polypeptide hybrid triblock copolymers of poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-leucine) (PEG-PLL-PLLeu), with PLLeu as the hydrophobic core and PEG as the hydrophilic shell. The ICG was associated with the hydrophobic core via hydrophobic interaction and also the hydrophilic heads through electrostatic attractive interaction. Compared with free ICG, PEG-PLL-PLLeu-ICG micelles significantly improved quantum yield and fluorescent stability. The cellular uptake experiments showed that PEG-PLL-PLLeu-ICG micelles have a high cellular uptake rate. And the in vivo experiments revealed the excellent passive tumor targeting ability and long circulation time of PEG-PLL-PLLeu-ICG. The above results indicated the broad prospects of PEG-PLL-PLLeu-ICG application in the fields of tumor diagnosis and imaging. In addition, temperature measurements under NIR laser irradiation and in vitro photothermal ablation studies proved the potential application of PEG-PLL-PLLeu-ICG in tumor photothermal therapy.

  12. Nanoparticle agglomerates of indomethacin: The role of poloxamers and matrix former on their dissolution and aerosolisation efficiency.

    PubMed

    Malamatari, Maria; Somavarapu, Satyanarayana; Bloxham, Mark; Buckton, Graham

    2015-11-10

    Nanoparticles (NPs) were prepared and assembled to microsized agglomerates with and without matrix formers (mannitol and L-leucine) by coupling wet milling and spray drying to harmonise the advantages of NPs with handling and aerodynamics of microparticles without induction of amorphisation. Indomethacin was selected as poorly water-soluble drug and poloxamers with different ratios of hydrophilic to hydrophobic domains were evaluated as stabilisers comparatively to D-α-Tocopherol polyethylene-glycol succinate (TPGS). Particle size of nanosuspensions and morphology, size, crystal form, drug loading, redispersibility, in vitro dissolution, and in vitro aerosolisation of NP-agglomerates were determined. Molecular weight of stabilisers affected the rate but not the limit of NP size reduction and the length of hydrophilic segment in poloxamers was found important for the nanosuspension stabilisation. SEM revealed the structure of agglomerates consisting of nanocrystal assemblies. XRPD with DSC proved that NP agglomerates retained their crystallinity. NP-agglomerates exhibited enhanced dissolution compared to physical mixtures of drug and stabilisers while incorporation of matrix formers enabled redispersibility upon hydration and further increased the drug dissolution. Also, matrix formers resulted in significantly improved aerosolisation with higher fine particle fractions (49-62%) and smaller mass median aerodynamic diameters (<3.5 μm), compared to cases without matrix formers (34-43% and <4.5 μm). PMID:26364709

  13. Amino Acid and Vitamin Requirements of Several Bacteroides Strains

    PubMed Central

    Quinto, Grace

    1966-01-01

    Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins. PMID:16349673

  14. Nutritional and regulatory roles of leucine in muscle growth and fat reduction.

    PubMed

    Duan, Yehui; Li, Fengna; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Zhang, Yuzhe; Deng, Dun; Tang, Yulong; Feng, Zemeng; Wu, Guoyao; Yin, Yulong

    2015-01-01

    The metabolic roles for L-leucine, an essential branched-chain amino acid (BCAA), go far beyond serving exclusively as a building block for de novo protein synthesis. Growing evidence shows that leucine regulates protein and lipid metabolism in animals. Specifically, leucine activates the mammalian target of rapamycin (mTOR) signaling pathway, including the 70 kDa ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1) to stimulate protein synthesis in skeletal muscle and adipose tissue and to promote mitochondrial biogenesis, resulting in enhanced cellular respiration and energy partitioning. Activation of cellular energy metabolism favors fatty acid oxidation to CO2 and water in adipocytes, lean tissue gain in young animals, and alleviation of muscle protein loss in aging adults, lactating mammals, and food-deprived subjects. As a functional amino acid, leucine holds great promise to enhance the growth, efficiency of food utilization, and health of animals and humans.  PMID:25553480

  15. Delivery of DNAzyme targeting aurora kinase A to inhibit the proliferation and migration of human prostate cancer

    PubMed Central

    Xing, Zhen; Gao, Sai; Duan, Yan; Han, Haobo; Li, Li; Yang, Yan; Li, Quanshun

    2015-01-01

    Herein, a polyethylenimine derivative N-acetyl-l-leucine-polyethylenimine (N-Ac-l-Leu-PEI) was employed as a carrier to achieve the delivery of DNAzyme targeting aurora kinase A using PC-3 cell as a model. Flow cytometry and confocal laser scanning microscopy demonstrated that the derivative could realize the cellular uptake of nanoparticles in an energy-dependent and clathrin-mediated pathway and obtain a high DNAzyme concentration in the cytoplasm through further endosomal escape. After DNAzyme transfection, expression level of aurora kinase A would be downregulated at the protein level. Meanwhile, the inhibition of cell proliferation was observed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell colony formation assay, attributing to the activation of apoptosis and cell cycle arrest. Through flow cytometric analysis, an early apoptotic ratio of 25.93% and G2 phase of 22.58% has been detected after N-Ac-l-Leu-PEI-mediated DNAzyme transfection. Finally, wound healing and Transwell migration assay showed that DNAzyme transfection could efficiently inhibit the cell migration. These results demonstrated that N-Ac-l-Leu-PEI could successfully mediate the DNAzyme delivery and downregulate the expression level of aurora kinase A, triggering a significant inhibitory effect of excessive proliferation and migration of tumor cells. PMID:26425080

  16. Influence of the insecticides acetamiprid and carbofuran on arylamidase and myrosinase activities in the tropical black and red clay soils.

    PubMed

    Mohiddin, G Jaffer; Srinivasulu, M; Maddela, N R; Manjunatha, B; Rangaswamy, V; Koch Kaiser, Alma Rosel; Maisincho Asqui, Jessica Cristina; Darwin Rueda, O

    2015-06-01

    The objective of this study was to determine the effects of two insecticides, namely, acetamiprid and carbofuran on the enzymatic activities of arylamidase (as glucose formed from sinigrin) and myrosinase (as β-naphthylamine formed from L-leucine β-naphthylamide) in the black and red clay soils collected from a fallow groundnut (Arachis hypogaea L.) fields in the Anantapur District, Andhra Pradesh, India. The study was realized within the framework of the laboratory experiments in which the acetamiprid and carbofuran were applied to the soils at different doses (1.0, 2.5, 5.0, 7.5, 10.0 kg ha(-1)). Initially, the physicochechemical properties of the soil samples were analyzed. After 10 days of pesticide application, the soil samples were analyzed for the enzyme activities. Acetamiprid and carbofuran stimulated the arylamidase and myrosinase activities at lower concentrations after 10 days incubation. Striking stimulation in soil enzyme activities was noticed at 2.5 kg ha(-1), persists for 20 days in both the soils. Overall, higher concentrations (5.0-10.0 kg ha(-1)) of acetamiprid and carbofuran were toxic or innocuous to the arylamidase and myrosinase activities. Nevertheless, the outcomes of the present study clearly indicate that the use of these insecticides (at field application rates) in the groundnut fields (black and red clay soils) stimulated the enzyme (arylamidase and myrosinase) activities. PMID:26024750

  17. Self-assembled cationic micelles based on PEG-PLL-PLLeu hybrid polypeptides as highly effective gene vectors.

    PubMed

    Deng, Jizhe; Gao, Ningning; Wang, Yanan; Yi, Huqiang; Fang, Shengtao; Ma, Yifan; Cai, Lintao

    2012-11-12

    Developing safe and effective nonviral gene vector is highly crucial for successful gene therapy. In the present study, we designed a series of biodegradable micelles based on hybrid polypeptide copolymers of poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-leucine) (PEG-PLL-PLLeu) for efficient gene delivery. A group of amphiphilic PEG-PLL-PLLeu hybrid polypeptide copolymers were synthesized by ring-opening polymerization of N-carboxyanhydride, and the chemical structure of each copolymer was characterized by (1)H NMR and FT-IR spectroscopy measurement. The PEG-PLL-PLLeu micelles were positively charged with tunable sizes ranging from 40 to 90 nm depending on the length of PLL and PLLeu segment. Compared with PEG-PLL copolymers, PEG-PLL-PLLeu micelles demonstrated significantly higher transfection efficiency and less cytotoxicity. Furthermore, the transfection efficiency and biocompatibility of the micelles can be simultaneously improved by tuning the length of PLL and PLLeu segments. The transfection efficiency of PEG-PLL-PLLeu micelles in vivo was two to three times higher than that of PEI(25k), which was attributable to their capability of promoting DNA condensation and cell internalization as well as successful lysosome escape. Hence well-defined PEG-PLL-PLLeu micelles would serve as highly effective nonviral vectors for in vivo gene delivery.

  18. Treating psoriasis by targeting its susceptibility gene Rel.

    PubMed

    Fan, Tingting; Wang, Shaowen; Yu, Linjiang; Yi, Huqiang; Liu, Ruiling; Geng, Wenwen; Wan, Xiaochun; Ma, Yifan; Cai, Lintao; Chen, Youhai H; Ruan, Qingguo

    2016-04-01

    Psoriasis is a chronic inflammatory disorder of the skin. Accumulating evidence indicates that the Rel gene, a member of the NF-κB family, is a risk factor for the disease. We sought to investigate whether psoriasis can be prevented by directly targeting the Rel gene transcript, i.e., the c-Rel mRNA. Using chemically-modified c-Rel specific siRNA (siRel) and poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-leucine) (PEG-PLL-PLLeu) micelles, we successfully knocked down the expression of c-Rel, and showed that the expression of cytokine IL-23, a direct target of c-Rel that can drive the development of IL-17-producing T cells, was markedly inhibited. More importantly, treating mice with siRel not only prevented but also ameliorated imiquimod (IMQ)-induced psoriasis. Mechanistic studies showed that siRel treatment down-regulated the expression of multiple inflammatory cytokines. Taken together, these results indicate that the susceptibility gene Rel can be targeted to treat and prevent psoriasis.

  19. Biochemical characterization of the soluble alkaline phosphatase isolated from the venomous snake W. aegyptia.

    PubMed

    Al-Saleh, Saad S M

    2002-12-01

    A soluble form of alkaline phosphatase (ALP) has been identified and purified from Walterinnesia aegyptia venom using an HPLC system Gold 126/1667 equipped with Protein PAK 125 and Protein PAK 60 columns. The enzyme was purified 3.4 fold over crude venom with a yield of 37.3%. On SDS-PAGE under non-reduced conditions the purified enzyme showed three bands of 212 kD, 80 kD, and 55 kD. However, under reducing conditions, the enzyme showed two bands of 80 kD and 55 kD. The specific activity of ALP was 24 U/mg with p-nitrophenylephosphate as the substrate. During isoelectric focusing experiments the ALP exhibited two bands focused at pH 6.2 and 6.8, which suggests that either the enzyme exists as two different isoforms or the two bands in IEF may be two subunits of 80 kD and 55 kD. The kinetic parameters (Km and Vmax) and IC50 of ALP inhibition by L-phenylalanine, L-leucine, imidazole, caffeine, orthophosphate and permanganate were also investigated in the present study. Zinc and cyanide ions at a concentration of 15 mM and 10 mM, respectively, completely inhibited the activity of W. aegyptia ALP. PMID:12503880

  20. Synthesis and renewal of proteins in duck anterior hypophysis in organ culture.

    PubMed

    Tixier-Vidal, A; Gourdji, D

    1970-07-01

    In cultures of duck anterior pituitaries, the synthesis and renewal of the specific secretory protein prolactin and of total newly synthesized tissue proteins were studied. As concerns prolactin, assay of the tissue and culture media hormone content demonstrates de novo synthesis of prolactin in vitro at a constant rate during at least 2 wk. The prolactin content after 1 wk and after 2 wk of culture is the same and is similar to the initial content. The renewal time of this prolactin can be estimated at 28 or 48 hr. As concerns total proteins, the use of a chase after a short pulse of 5 min in the presence of tritiated L-leucine demonstrated that newly synthesized proteins are excreted into the culture medium from 30 min to 1 hr after the beginning of the chase. Therefore, the synthesis and excretion of proteins are two discontinuous phenomena. The migration rate of the total proteins was slower than that of prolactin, indicating that this hormone does not represent more than about half of the newly synthesized proteins. These conclusions are in good agreement with those based on high resolution radioautographic data previously obtained on the same material.

  1. Effect of diet-induced obesity on kinetic parameters of amino acid uptake by rat erythrocytes.

    PubMed

    Picó, C; Pons, A; Palou, A

    1992-11-01

    The effects of cafeteria diet-induced obesity upon in vitro uptake of L-Alanine, Glycine, L-Lysine, L-Glutamine, L-Glutamic acid, L-Phenylalanine and L-Leucine by isolated rat erythrocytes have been studied. The total Phe and Leu uptakes followed Michaelis-Menten kinetics. The Glu uptake was fitted to diffusion kinetics. The uptakes of Ala, Gly, Lys and Gln were best explained by a two-component transport: one saturable and one diffusion. Obesity increased the Km value for Ala, Gln and Leu, and the Vmax value for Ala, but decreased the Vmax for Lys. Kinetic parameters of Phe uptake were unaffected by obesity. In addition, the pseudo-first order rate constant (Vmax/Km) for Ala, Gly, Gln, Lys and Leu uptake decreased as a result of cafeteria diet-induced obesity. The Kd value for Ala, Gly, Gln and Glu decreased and that of Lys increased as result of obesity. These adaptations could, at least in part, explain alterations in amino acid distribution between blood cells and plasma related to overfeeding or obesity.

  2. Aspartate-specific peptidases in Salmonella typhimurium: mutants deficient in peptidase E.

    PubMed Central

    Carter, T H; Miller, C G

    1984-01-01

    The only dipeptide found to serve as a leucine source for a Salmonella strain lacking peptidases N, A, B, D, P, and Q was alpha-L-aspartyl-L-leucine. A peptidase (peptidase E) that specifically hydrolyzes Asp-X peptides was identified and partially purified from cell extracts. The enzyme (molecular weight, 35,000) is inactive toward dipeptides with N-terminal asparagine or glutamic acid. Mutants (pepE) lacking this enzyme were isolated by screening extracts for loss of the activity. Genetic mapping placed the pepE locus at 91.5 map units and established the gene order metA pepE zja-861::Tn5 malB. Duplications of the pepE locus showed a gene dosage effect on levels of peptidase E, suggesting that pepE is the structural gene for this enzyme. Mutations in pepE resulted in the loss of the ability to grow on Asp-Pro as a proline source but did not affect utilization of other dipeptides with N-terminal aspartic acid. Loss of peptidase E did not cause a detectable impairment in protein degradation. Two other peptidases present in cell extracts of mutants lacking peptidases N, A, B, D, P, Q, and E also hydrolyze many Asp-X dipeptides. Images PMID:6086568

  3. Development of budesonide nanocluster dry powder aerosols: preformulation.

    PubMed

    El-Gendy, Nashwa; Selvam, Parthiban; Soni, Pravin; Berkland, Cory

    2012-09-01

    Wet milling was previously demonstrated as a simple process for producing agglomerates of budesonide nanoparticles (also known as NanoClusters) for use in dry powder aerosol formulation. The resulting budesonide NanoCluster powders exhibited a large emitted fraction and a high fine particle fraction (FPF) from a Monodose® dry powder inhaler. In this work, excipients were added premilling or postmilling and the performance of budesonide NanoCluster dry powders was investigated. Sodium chloride, Pluronic®, or ethanol was added prior to milling due to their ability to modify surface tension or ionic strength and thereby affect the attrition/agglomeration process. Lactose or l-leucine was added after milling because these are known to modify powder flow and dispersion. The chemical stability of budesonide was maintained in all cases, but the physical aerosol properties changed substantially with the addition of excipients. In all cases, the addition of excipients led to an increase in the size of the budesonide NanoClusters and tended to reduce the emitted fraction and FPF. Titrating excipients may provide a means to discretely modify the aerosol properties of budesonide NanoClusters but did not match the performance of excipient-free NanoCluster powder.

  4. 1H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate Curve Resolution-Alternating Least Squares for Pathway Analysis

    PubMed Central

    Puig-Castellví, Francesc; Alfonso, Ignacio; Piña, Benjamin; Tauler, Romà

    2016-01-01

    Disruption of specific metabolic pathways constitutes the mode of action of many known toxicants and it is responsible for the adverse phenotypes associated to human genetic defects. Conversely, many industrial applications rely on metabolic alterations of diverse microorganisms, whereas many therapeutic drugs aim to selectively disrupt pathogens’ metabolism. In this work we analyzed metabolic changes induced by auxotrophic starvation conditions in yeast in a non-targeted approach, using one-dimensional proton Nuclear Magnetic Resonance spectroscopy (1H NMR) and chemometric analyses. Analysis of the raw spectral datasets showed specific changes linked to the different stages during unrestricted yeast growth, as well as specific changes linked to each of the four tested starvation conditions (L-methionine, L-histidine, L-leucine and uracil). Analysis of changes in concentrations of more than 40 metabolites by Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) showed the normal progression of key metabolites during lag, exponential and stationary unrestricted growth phases, while reflecting the metabolic blockage induced by the starvation conditions. In this case, different metabolic intermediates accumulated over time, allowing identification of the different metabolic pathways specifically affected by each gene disruption. This synergy between NMR metabolomics and molecular biology may have clear implications for both genetic diagnostics and drug development. PMID:27485935

  5. Presentation via the class I pathway by Leishmania amazonensis-infected macrophages of an endogenous leishmanial antigen to CD8+ T cells.

    PubMed

    Kima, P E; Ruddle, N H; McMahon-Pratt, D

    1997-08-15

    CD8+ T cells play a protective role in immunity to cutaneous leishmaniasis. However, it has been unclear how these cells execute this function, since results from several investigations attempting to demonstrate recognition of Leishmania-infected macrophages by CD8+ T cells have been contradictory. In this study, we report the generation of CD8+ T cell lines specific for GP46/M-2, a leishmanial Ag, previously shown to protectively immunize mice against a Leishmania amazonensis challenge. Using T cell cytolysis and IFN-gamma production to assess CD8+ T cell activation, we show that in addition to recognizing mammalian cells transfected with GP46/M-2, these CD8+ T cell lines also recognize macrophages infected with Leishmania amazonensis. MHC class I presentation of GP46/M-2 by infected macrophages can be blocked by treatment with brefeldin A and also by inhibitors of the cytosolic multicatalytic proteasome, N-acetyl-L-leucinyl-L-leucinal-L-norleucinal and N-acetyl-L-leucinyl-L-leucinylmethional. These results suggest that this leishmanial Ag is processed in the macrophage cytoplasm and is presented to CD8+ T cells via the classical pathway of MHC class I presentation. The relevance of these findings as they impact on our understanding of the biology of the parasite within the macrophage is discussed.

  6. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    SciTech Connect

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  7. Biochemical and molecular characterization of Saccharomyces cerevisiae strains obtained from sugar-cane juice fermentations and their impact in cachaça production.

    PubMed

    Oliveira, Valdinéia Aparecida; Vicente, Maristela Araújo; Fietto, Luciano Gomes; Castro, Ieso de Miranda; Coutrim, Maurício Xavier; Schüller, Dorit; Alves, Henrique; Casal, Margarida; Santos, Juliana de Oliveira; Araújo, Leandro Dias; da Silva, Paulo Henrique Alves; Brandão, Rogelio Lopes

    2008-02-01

    Saccharomyces cerevisiae strains from different regions of Minas Gerais, Brazil, were isolated and characterized aiming at the selection of starter yeasts to be used in the production of cachaça, the Brazilian sugar cane spirit. The methodology established took into account the screening for biochemical traits desirable in a yeast cachaça producer, such as no H2S production, high tolerance to ethanol and high temperatures, high fermentative capacity, and the abilities to flocculate and to produce mycocins. Furthermore, the yeasts were exposed to drugs such as 5,5',5"-trifluor-D,L-leucine and cerulenin to isolate those that potentially overproduce higher alcohols and esters. The utilization of a random amplified polymorphic DNA-PCR method with primers based on intron splicing sites flanking regions of the COX1 gene, as well as microsatellite analysis, was not sufficient to achieve good differentiation among selected strains. In contrast, karyotype analysis allowed a clear distinction among all strains. Two selected strains were experimentally evaluated as cachaça producers. The results suggest that the selection of strains as fermentation starters requires the combined use of biochemical and molecular criteria to ensure the isolation and identification of strains with potential characteristics to produce cachaça with a higher quality standard.

  8. Influence of the insecticides acetamiprid and carbofuran on arylamidase and myrosinase activities in the tropical black and red clay soils.

    PubMed

    Mohiddin, G Jaffer; Srinivasulu, M; Maddela, N R; Manjunatha, B; Rangaswamy, V; Koch Kaiser, Alma Rosel; Maisincho Asqui, Jessica Cristina; Darwin Rueda, O

    2015-06-01

    The objective of this study was to determine the effects of two insecticides, namely, acetamiprid and carbofuran on the enzymatic activities of arylamidase (as glucose formed from sinigrin) and myrosinase (as β-naphthylamine formed from L-leucine β-naphthylamide) in the black and red clay soils collected from a fallow groundnut (Arachis hypogaea L.) fields in the Anantapur District, Andhra Pradesh, India. The study was realized within the framework of the laboratory experiments in which the acetamiprid and carbofuran were applied to the soils at different doses (1.0, 2.5, 5.0, 7.5, 10.0 kg ha(-1)). Initially, the physicochechemical properties of the soil samples were analyzed. After 10 days of pesticide application, the soil samples were analyzed for the enzyme activities. Acetamiprid and carbofuran stimulated the arylamidase and myrosinase activities at lower concentrations after 10 days incubation. Striking stimulation in soil enzyme activities was noticed at 2.5 kg ha(-1), persists for 20 days in both the soils. Overall, higher concentrations (5.0-10.0 kg ha(-1)) of acetamiprid and carbofuran were toxic or innocuous to the arylamidase and myrosinase activities. Nevertheless, the outcomes of the present study clearly indicate that the use of these insecticides (at field application rates) in the groundnut fields (black and red clay soils) stimulated the enzyme (arylamidase and myrosinase) activities.

  9. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.

    PubMed

    Sun, Xuefei; Li, Dan; Lee, Milton L

    2009-08-01

    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips. PMID:19572700

  10. Eritadenine from Edible Mushrooms Inhibits Activity of Angiotensin Converting Enzyme in Vitro.

    PubMed

    Afrin, Sadia; Rakib, Md Abdur; Kim, Boh Hyun; Kim, Jeong Ok; Ha, Yeong Lae

    2016-03-23

    The inhibition of angiotensin converting enzyme (ACE) activity was determined in vitro by mushroom-derived eritadenine (EA), which was analyzed in 11 principal Korean edible mushrooms. EA inhibited ACE activity with 0.091 μM IC50, whereas the IC50 of captopril (CP), which is a reference compound, was 0.025 μM. Kinetic measurements of ACE reaction in the substrate of hippuryl-l-histidyl-l-leucine (HHL) with or without EA revealed that the Vmax (0.0465 O.D/30 min) was unchanged, but the the Km increased from 2.063 to 3.887 mM, indicating that EA competes with HHL for the active site. When EA was analyzed by HPLC, Lentinus edodes with a soft cap contained the highest amount EA (642.8 mg%); however, Phellinus linteus with a hard cap contained the least amount of EA (9.4 mg%). These results indicate that EA was a strong competitive inhibitor for ACE, and edible mushrooms with soft caps contained a significant amount of EA.

  11. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.

    PubMed

    Jin, Lixia; Son, Yowhan; Yoon, Tae Kyung; Kang, Yu Jin; Kim, Woong; Chung, Haegeun

    2013-02-01

    Nanomaterials such as single-walled carbon nanotubes (SWCNTs) may enter the soil environment with unknown consequences resulting from the development of nanotechnology for a variety of applications. We determined the effects of SWCNTs on soil enzyme activity and microbial biomass through a 3-week incubation of urban soils treated with different concentrations of SWCNTs ranging from 0 to 1000 μg g(-1) soil. The activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase and microbial biomass were measured in soils treated with powder and suspended forms of SWCNTs. SWCNTs of concentrations at 300-1000 μg g(-1) soil significantly lowered activities of most enzymes and microbial biomass. It is noteworthy that the SWCNTs showed similar effects to that of multi-walled carbon nanotubes (MWCNTs), but at a concentration approximately 5 times lower; we suggest that this is mainly due to the higher surface area of SWCNTs than that of MWCNTs. Indeed, our results show that surface area of CNTs has significant negative relationship with relative enzyme activity and biomass, which suggests that greater microorganism-CNT interactions could increase the negative effect of CNTs on microorganisms. Current work may contribute to the preparation of a regulatory guideline for the release of CNTs to the soil environment.

  12. Self-Assembled Arginine-Capped Peptide Bolaamphiphile Nanosheets for Cell Culture and Controlled Wettability Surfaces.

    PubMed

    da Silva, Emerson Rodrigo; Walter, Merlin Nathaniel Mark; Reza, Mehedi; Castelletto, Valeria; Ruokolainen, Janne; Connon, Che John; Alves, Wendel Andrade; Hamley, Ian William

    2015-10-12

    The spontaneous assembly of a peptide bolaamphiphile in water, namely, RFL4FR (R, arginine; F, phenylalanine; L, leucine) is investigated, along with its novel properties in surface modification and usage as substrates for cell culture. RFL4FR self-assembles into nanosheets through lateral association of the peptide backbone. The L4 sequence is located within the core of the nanosheets, whereas the R moieties are exposed to the water at the surface of the nanosheets. Kinetic assays indicate that the self-assembly is driven by a remarkable two-step process, where a nucleation phase is followed by fast growth of nanosheets with an autocatalysis process. The internal structure of the nanosheets is formed from ultrathin bolaamphiphile monolayers with a crystalline orthorhombic symmetry with cross-β organization. We show that human corneal stromal fibroblast (hCSF) cells can grow on polystyrene films coated with films dried from RFL4FR solutions. For the first time, this type of amphiphilic peptide is used as a substrate to modulate the wettability of solid surfaces for cell culture applications. PMID:26348849

  13. Treating psoriasis by targeting its susceptibility gene Rel.

    PubMed

    Fan, Tingting; Wang, Shaowen; Yu, Linjiang; Yi, Huqiang; Liu, Ruiling; Geng, Wenwen; Wan, Xiaochun; Ma, Yifan; Cai, Lintao; Chen, Youhai H; Ruan, Qingguo

    2016-04-01

    Psoriasis is a chronic inflammatory disorder of the skin. Accumulating evidence indicates that the Rel gene, a member of the NF-κB family, is a risk factor for the disease. We sought to investigate whether psoriasis can be prevented by directly targeting the Rel gene transcript, i.e., the c-Rel mRNA. Using chemically-modified c-Rel specific siRNA (siRel) and poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-leucine) (PEG-PLL-PLLeu) micelles, we successfully knocked down the expression of c-Rel, and showed that the expression of cytokine IL-23, a direct target of c-Rel that can drive the development of IL-17-producing T cells, was markedly inhibited. More importantly, treating mice with siRel not only prevented but also ameliorated imiquimod (IMQ)-induced psoriasis. Mechanistic studies showed that siRel treatment down-regulated the expression of multiple inflammatory cytokines. Taken together, these results indicate that the susceptibility gene Rel can be targeted to treat and prevent psoriasis. PMID:26993753

  14. Deuterium NMR study of amino acid coordination to chromium(III)

    SciTech Connect

    Green, C.A.; Place, H.; Willett, R.D.; Legg, J.I.

    1986-12-17

    A series of bis(ethylenediamine)Cr(III)-amino acid complexes, synthesized with deuterium-labeled alanine, glycine, homoserine, leucine, methionine, phenylalanine, serine, and threonine, was characterized by /sup 2/H NMR spectroscopy. The spectra show that these bidentate-coordinated amino acid complexes decompose via monodentate species. In addition, the diastereomeric isomers of alanine and leucine can be distinguished in the spectra. This was confirmed by the isolation of one of the L-leucine isomers. The bis(1,3-propanediamine)Cr(III) complexes of glycine and alanine were also synthesized, and the NMR spectra of these complexes and ..cap alpha..-cis-(Cr(ethylenediaminediacetate)(glycinate)) show changes due to variation in the ligand complement. The crystal structure of ..cap alpha..-cis(Cr(ethylenediaminediacetate)(glycinate)) x 2H/sub 2/O (CrO/sub 6/N/sub 3/C/sub 8/H/sub 14/ x 2H/sub 2/O) was determined and supports the NMR observations. This complex crystallizes in the space group P2/sub 1//c of the monoclinic crystal system with a = 8.9231 (19) A, b = 10.1889 (22) A, c = 15.4180 (30) A, ..beta.. = 102.657 (17)/sup 0/, and Z = 4. An improved method for the synthesis of bis(diamine)Cr(III)-amino acid complexes is also reported. 24 references, 3 figures, 7 tables.

  15. Molecular Dynamics of Peptide Folding at Aqueous Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Even though most monomeric peptides are disordered in water they can adopt sequence-dependent, ordered structures, such as a-helices, at aqueous interfaces. This property is relevant to cellular signaling, membrane fusion, and the action of toxins and antibiotics. The mechanism of folding nonpolar peptides at the water-hexane interface was studied in the example of an 11-mer, of poly-L-leucine. Initially placed as a random coil on the water side of the interface, the peptide folded into an a-helix in 36 ns. Simultaneously, the peptide translocated into the hexane side of the interface. Folding was not sequential and involved a 3/10-helix as an intermediate. The folded peptide was either parallel to the interface or had its C-terminus exposed to water. An 11-mer, LQQLLQQLLQL, composed of leucine (L) and glutamine (G), was taken as a model amphiphilic peptide. It rapidly adopted an amphiphilic, disordered structure at the interface. Further folding proceeded through a series of amphiphilic intermediates.

  16. Response of Bacillus Spores to Combinations of Germinative Compounds

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (University of Texas, Austin), and J. W. Foster. Response of Bacillus spores to combinations of germinative compounds. J. Bacteriol. 91:1168–1177. 1966.—Spores of 21 strains of Bacillus megaterium and 25 other strains representing 13 species of Bacillus were produced under standardized conditions. The germination of a washed spore suspension of each strain was measured as a response to various combinations of 30 different germinative compounds. The strains were first typed with respect to their response to “primary” germination compounds, i.e., glucose, l-alanine, inosine, and l-alanine-inosine mixture, and also Na+ and K+. The second stage was the determination of the response to various organic and inorganic anions and cations, each strain being supplied with the “primary” compounds best for it. Marked differences in germination patterns were observed among species and strains of the same species. No relation to established taxonomic lines was evident. A nonspecific requirement for ions was found for all strains, but not all ions were effective. A striking degree of interchangeability of germinative chemicals was found. “Fractional germination” was very common. A mixture of l-alanine and inosine and various ions was the best germinative solution for most strains. Some anomalous germination patterns were encountered. Those studied included a strain whose cells lysed spontaneously upon germination and other strains for which l-leucine had striking germinative powers. PMID:4956331

  17. Mercury 203 distribution in pregnant and nonpregnant rats following systemic infusions with thiol-containing amino acids

    SciTech Connect

    Aschner, M.; Clarkson, T.W.

    1987-12-01

    Near-term pregnant (gestational day 17) and nonpregnant Long-Evans female rats were continuously infused into the external jugular vein with 0.1 mmole/hour L-cysteine, 0.1 mmole/hour L-leucine, or saline. At 24, 48, and 72 hours, 50 mumole/hour (/sup 203/Hg)-MeHgCl was administered over 1 hour. Total /sup 203/Hg body burden, brain, kidney, liver, and blood /sup 203/Hg concentrations were determined at 96 hours by gamma scintillation spectrometry. Despite significantly greater /sup 203/Hg whole body retention in the pregnant animals /sup 203/Hg concentrations in blood, brain, kidney, and liver were higher in nonpregnant rats. In addition, brain /sup 203/Hg concentrations in both pregnant and virgin rats were significantly higher in L-cysteine-treated rats compared with controls. These results suggest that the fetus may act as a sink for MeHg, thus decreasing /sup 203/Hg concentrations in maternal blood, brain, kidney, and liver. Furthermore, the data indicate that brain uptake of methylmercury in both pregnant and nonpregnant rats is enhanced by chronic L-cysteine infusion, lending support to the hypothesis that methylmercury in the rat may be translocated across the blood-brain barrier by the neutral amino acid carrier transport system.

  18. Evidence that synaptosomal high-affinity carriers for amino acid neurotransmitters are glycosylated

    SciTech Connect

    Zaleska, M.M.; Erecinska, M.

    1987-05-01

    The effect of removal of surface sialic acid from synaptosomes on the high-affinity, Na/sup +/-dependent uptake systems for amino acid neurotransmitters was evaluated. Synaptosomes from rat forebrain were preincubated with neuraminidase from Vibrio cholerae for 20 min at 34/sup 0/. After washing and resuspension, their ability to transport /sup 14/C-GABA and the acidic amino acid, /sup 3/H-aspartate was studied. Pretreatment with neuraminidase resulted in a concentration-dependent inhibition of the uptake of both amino acids while the influx of /sup 3/H-L-leucine was unaffected. Inhibition was a function of the amount of sialic acid released from membranes. The analysis of the kinetic parameters of amino acid uptake revealed that inhibition resulted from a decrease of Vmax without any change in the Km. Neither the synaptosomal energy levels nor the internal concentration of potassium ions was affected by the pretreatment with neuraminidase. The maximum accumulation ratios for both amino acids remained largely unaltered. It is concluded that the GABA and acidic amino acid transporters are glycosylated and that sialic acid is involved in the operation of carrier proteins directly and not through modification of the driving forces responsible for amino acid transport.

  19. Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa

    PubMed Central

    Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J.

    2014-01-01

    Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L−1, but not at 1 and 2 mg L−1. Peroxide dosed at 4 or 8 mg L−1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L−1) and 12-times (8 mg L−1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

  20. Synthesis, DNA/HSA Interaction Spectroscopic Studies and In Vitro Cytotoxicity of a New Mixed Ligand Cu(II) Complex.

    PubMed

    Gan, Qian; Fu, Xiabing; Chen, Weijiang; Xiong, Yahong; Fu, Yinlian; Chen, Shi; Le, Xueyi

    2016-05-01

    A new mixed ligand copper(II)-dipeptide complex with 2-(2'-pyridyl)benzothiazole (pbt), [Cu(Gly-L-leu)(pbt)(H2O)]·ClO4 (Gly-L-leu = Glycyl-L-leucine anion) was synthesized and characterized by various physico-chemical means. The DNA binding and cleavage properties of the complex investigated by viscosity, agarose gel electrophoresis and multi-spectroscopic techniques (UV, circular dichroism (CD) and fluorescence) showed that the complex was bound to CT-DNA through intercalation mode with moderate binding constant (K b = 3.132 × 10(4) M(-1)), and cleaved pBR322 DNA efficiently (~ 5 μM) in the presence of Vc, probably via an oxidative mechanism induced by •OH. Additionally, the interaction of the complex with human serum albumin (HSA) was explored by UV-visible, CD, fluorescence, synchronous fluorescence and 3D fluorescence spectroscopy. The complex exhibits desired affinity to HSA through hydrophobic interaction. Moreover, the cytotoxicity of the complex against three human carcinoma cell lines (HeLa, HepG2 and A549) was evaluated by MTT assay, which showed that the complex had effective cytotoxicity and higher inhibition toward A549 cell lines with IC50 of 38.0 ± 3.2 μM.

  1. Synergistic effects of resistance training and protein intake: practical aspects.

    PubMed

    Guimarães-Ferreira, Lucas; Cholewa, Jason Michael; Naimo, Marshall Alan; Zhi, X I A; Magagnin, Daiane; de Sá, Rafaele Bis Dal Ponte; Streck, Emilio Luiz; Teixeira, Tamiris da Silva; Zanchi, Nelo Eidy

    2014-10-01

    Resistance training is a potent stimulus to increase skeletal muscle mass. The muscle protein accretion process depends on a robust synergistic action between protein intake and overload. The intake of protein after resistance training increases plasma amino acids, which results in the activation of signaling molecules leading to increased muscle protein synthesis (MPS) and muscle hypertrophy. Although both essential and non-essential amino acids are necessary for hypertrophy, the intake of free L-leucine or high-leucine whole proteins has been specifically shown to increase the initiation of translation that is essential for elevated MPS. The literature supports the use of protein intake following resistance-training sessions to enhance MPS; however, less understood are the effects of different protein sources and timing protocols on MPS. The sum of the adaptions from each individual training session is essential to muscle hypertrophy, and thus highlights the importance of an optimal supplementation protocol. The aim of this review is to present recent findings reported in the literature and to discuss the practical application of these results. In that light, new speculations and questions will arise that may direct future investigations. The information and recommendations generated in this review should be of benefit to clinical dietitians as well as those engaged in sports.

  2. Short-term effects of ACTH on protein synthesis in adrenal cortex cells of young rats.

    PubMed

    Magalhães, M C; Magalhães, M M; Cimbra, A

    1975-11-19

    Two units of ACTH were administered intraperitoneally to young 20 gm-rats which received an intravenous injection of L-leucine-3H thirteen min later. ACTH-injected rats, and control rats which received the isotope alone, were killed at 2-, 10-, 30- and 60-min intervals. Electron microscope autoradiographs in control animals showed strong amino-acid uptake at pulse time (2-min) in the cytoplasm of adrenal zona fasciculata cells. Label was shared between the endoplasmic reticulum (ER) and mitochondria, and a lower but still considerable uptake was seen in nucleoli. At first chase time interval (10-min) cytoplasmic labelling declined, while nuclear and nucleolar labelling increased, both changing little thereafter, and there was a 10-30 min Golgi peak. ACTH administration provoked an overall increase in amino-acid incorporation into cytoplasm, nucleus and nucleolus at pulse time, with no changes in the distribution of the reactions among organelles. Intensification of labelling was most evident over nucleoli, the grain density of which was four-times as high as in controls. The short-term increase in ER and mitochondrial protein synthesis observed after ACTH injections was considered to be consistent with the hypothesis that most newly-formed proteins in these cells may be involved in the regulation of steroidogenesis. The marked increase in nucleolar labelling suggested the presence of proteins involved in RNA synthesis.

  3. Poly(ester amide) blend microspheres for oral insulin delivery.

    PubMed

    He, Pan; Liu, Huaiyu; Tang, Zhaohui; Deng, Mingxiao; Yang, Yan; Pang, Xuan; Chen, Xuesi

    2013-10-15

    This study developed a novel oral insulin formulation centered on microspheres consisting of a blend of biodegradable poly(ester amide) (PEA). In the formulation, L-lysine-/L-leucine-based PEA with pendant COOH groups (PEA-COOH) was used as a pH-responsive material for the protection of insulin from the harsh environmental conditions of the stomach. Arginine-based PEA (Arg-PEA) was introduced to improve the intestinal absorption of the drug. The influence of both the hydrophobicity of PEA-COOH and the content of Arg-PEA was investigated in detail on microsphere surface morphology, drug loading, and the in vitro release profile of insulin. The PEA-COOH/Arg-PEA blend microspheres protected the loaded insulin in simulated gastric fluid and released insulin in a fast and sustained manner in simulated intestinal fluid. The in vivo test demonstrated that the oral administration of insulin-loaded PEA blend microspheres could effectively suppress the blood glucose level in diabetic rats for 10h, and the oral bioavailability was improved to 5.89+1.84% in healthy rats. These results indicate that the PEA blend microspheres are promising vehicles for the oral delivery of insulin.

  4. Effect of weight loss, independent of change in diet composition, on apolipoprotein AI kinetic in men with metabolic syndrome.

    PubMed

    Richard, Caroline; Couture, Patrick; Desroches, Sophie; Lichtenstein, Alice H; Lamarche, Benoît

    2013-01-01

    We investigated the effect of weight loss, independent of change in diet composition, on HDL and apoAI metabolism in men with metabolic syndrome (MetS). Subjects (19 men with MetS [NCEP-ATPIII]) were fed an isoenergetic Mediterranean-style diet for 5 weeks (all foods provided). Participants then underwent a 20-week free-living period during which they were counseled to restrict energy intake, after which they were again fed an isoenergetic Mediterranean-style diet for 5 weeks. At the end of the two controlled diets, participants received a single bolus of [5,5,5-(2)H(3)] (L)-leucine, and fasting blood samples were collected over a 96 h period. ApoAI kinetic was assessed using multicompartmental modeling of the tracer enrichment data. Participants achieved a 9.1 ± 2.8% reduction in body weight (P < 0.001). Weight loss resulted in an increase in plasma HDL-cholesterol (HDL-C) concentrations of 6.0% (P = 0.059) and HDL(3)-C of 7.9% (P = 0.045), attributable to a reduction in apoAI fractional catabolic rate (-7.8%; P = 0.046) with no change in apoAI production rate (2.2%; P = 0.58). These data indicate that weight loss, independent of variation in diet composition, increases plasma HDL primarily by delaying the catabolism of apoAI.

  5. Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation.

    PubMed

    Rafiemanzelat, Fatemeh; Fathollahi Zonouz, Abolfazl; Emtiazi, Giti

    2013-02-01

    Conventional polyurethanes (PUs) are among biomaterials not intended to degrade but are susceptible to hydrolytic, oxidative and enzymatic degradation in vivo. Biodegradable PUs are typically prepared from polyester polyols, aliphatic diisocyanates and chain extenders. In this work we have developed a degradable monomer based on α-amino acid to accelerate hard segment degradation. Thus a new class of degradable poly(ether-urethane-urea)s (PEUUs) was synthesized via direct reaction of 4,4'-methylene-bis(4-phenylisocyanate) (MDI), L-leucine anhydride (LA) and polyethylene glycol with molecular weight of 1,000 (PEG-1000) as polyether soft segment. The resulting polymers are environmentally biodegradable and thermally stable. Decomposition temperatures for 5 % weight loss occurred above 300 °C by TGA in nitrogen atmospheres. Some structural characterization and physical properties of these polymers before and after degradation in soil, river water and sludge are reported. The environmental degradation of the polymer films was investigated by SEM, FTIR, TGA, DSC, GPC and XRD techniques. A significant rate of degradation occurred in PEUU samples under river water and sludge condition. The polymeric films were not toxic to E. coli (Gram negative), Staphylococcus aureus and Micrococcus (Gram positive) bacteria and showed good biofilm formation on polymer surface. Our results show that hard segment degraded selectively as much as soft segment and these polymers are susceptible to degradation in soil and water. Thus our study shows that new environment-friendly polyurethane, which can degrade in soil, river water and sludge, is synthesized.

  6. Study of Biological Degradation of New Poly(Ether-Urethane-Urea)s Containing Cyclopeptide Moiety and PEG by Bacillus amyloliquefaciens Isolated from Soil.

    PubMed

    Rafiemanzelat, Fatemeh; Jafari, Mahboobeh; Emtiazi, Giti

    2015-10-01

    The present work for the first time investigates the effect of Bacillus amyloliquefaciens, M3, on a new poly(ether-urethane-urea) (PEUU). PEUU was synthesized via reaction of 4,4'-methylenebis(4-phenylisocyanate) (MDI), L-leucine anhydride cyclopeptide (LACP) as a degradable monomer and polyethylene glycol with molecular weight of 1000 (PEG-1000). Biodegradation of the synthesized PEUU as the only source for carbon and nitrogen for M3 was studied. The co-metabolism biodegradation of the polymer by this organism was also investigated by adding mannitol or nutrient broth to the basic media. Biodegradation of the synthesized polymer was followed by SEM, FT-IR, TGA, and XRD techniques. It was shown that incubation of PEUU with M3 resulted in a 30-44 % reduction in polymer's weight after 1 month. This study indicates that the chemical structure of PEUU significantly changes after exposure to M3 due to hydrolytic and enzymatic degradation of polymer chains. The results of this work supports the idea that this poly(ether-urethane) is used as a sole carbon source by M3 and this bacterium has a good capability for degradation of poly(ether-urethane)s.

  7. Genomic and Metabolomic Insights into the Natural Product Biosynthetic Diversity of a Feral-Hog-Associated Brevibacillus laterosporus Strain

    PubMed Central

    Theodore, Christine M.; Stamps, Blake W.; King, Jarrod B.; Price, Lauren S. L.; Powell, Douglas R.; Stevenson, Bradley S.; Cichewicz, Robert H.

    2014-01-01

    Bacteria associated with mammals are a rich source of microbial biodiversity; however, little is known concerning the abilities of these microbes to generate secondary metabolites. This report focuses on a bacterium isolated from the ear of a feral hog from southwestern Oklahoma, USA. The bacterium was identified as a new strain (PE36) of Brevibacillus latersporus, which was shown via genomic analysis to contain a large number of gene clusters presumably involved in secondary metabolite biosynthesis. A scale-up culture of B. latersporus PE36 yielded three bioactive compounds that inhibited the growth of methicillin-resistant Staphylococcus aureus (basiliskamides A and B and 12-methyltetradecanoic acid). Further studies of the isolate's secondary metabolome provided both new (auripyrazine) and previously-described pyrazine-containing compounds. In addition, a new peptidic natural product (auriporcine) was purified that was determined to be composed of a polyketide unit, two L-proline residues, two D-leucine residues, one L-leucine residue, and a reduced L-phenylalanine (L-phenylalanol). An examination of the genome revealed two gene clusters that are likely responsible for generating the basiliskamides and auriporcine. These combined genomic and chemical studies confirm that new and unusual secondary metabolites can be obtained from the bacterial associates of wild mammals. PMID:24595070

  8. BETAview: a digital /β-imaging system for dynamic studies of biological phenomena

    NASA Astrophysics Data System (ADS)

    Bertolucci, E.; Conti, M.; Mettivier, G.; Montesi, M. C.; Russo, P.

    2002-02-01

    We present a digital autoradiography (DAR) system, named BETA view, based on semiconductor pixel detectors and a single particle counting chip, for quantitative analysis of β-emitting radioactive tracers in biological samples. The system is able to perform a real time monitoring of time-dependent biological phenomena. BETA view could be equipped either with GaAs or with Si semiconductor pixellated detectors. In this paper, we describe the results obtained with an assembly based on a Si detector, 300 μm thick, segmented into 64×64 170 μm size square pixels. The detector is bump-bonded to the low threshold, single particle counting chip named Medipix1, developed by a CERN-based European collaboration. The sensitive area is about 1 cm 2. Studies of background noise and detection efficiency have been performed. Moreover, time-resolved cellular uptake studies with radiolabelled molecules have been monitored. Specifically, we have followed in vivo and in real time, the [ 14C] L-leucine amino acid uptake by eggs of Octopus vulgaris confirming the preliminary results of a previous paper. This opens the field of biomolecular kynetic studies with this new class of semiconductor DAR systems, whose evolution (using the Medipix2 chip, 256×256 pixels, 55 μm pixel size) is soon to come.

  9. Recent Advances in the 5q- Syndrome

    PubMed Central

    Pellagatti, Andrea; Boultwood, Jacqueline

    2015-01-01

    The 5q- syndrome is the most distinct of the myelodysplastic syndromes (MDS) and patients with this disorder have a deletion of chromosome 5q [del(5q)] as the sole karyotypic abnormality. Several genes mapping to the commonly deleted region of the 5q- syndrome have been implicated in disease pathogenesis in recent years. Haploinsufficiency of the ribosomal gene RPS14 has been shown to cause the erythroid defect in the 5q- syndrome. Loss of the microRNA genes miR-145 and miR-146a has been associated with the thrombocytosis observed in 5q- syndrome patients. Haploinsufficiency of CSNK1A1 leads to hematopoietic stem cell expansion in mice and may play a role in the initial clonal expansion in patients with 5q- syndrome. Moreover, a subset of patients harbor mutation of the remaining CSNK1A1 allele. Mouse models of the 5q- syndrome, which recapitulate the key features of the human disease, indicate that a p53-dependent mechanism underlies the pathophysiology of this disorder. Importantly, activation of p53 has been demonstrated in the human 5q- syndrome. Recurrent TP53 mutations have been associated with an increased risk of disease evolution and with decreased response to the drug lenalidomide in del(5q) MDS patients. Potential new therapeutic agents for del(5q) MDS include the translation enhancer L-leucine. PMID:26075044

  10. Human Aging Is a Metabolome-related Matter of Gender.

    PubMed

    Jové, Mariona; Maté, Ianire; Naudí, Alba; Mota-Martorell, Natalia; Portero-Otín, Manuel; De la Fuente, Mónica; Pamplona, Reinald

    2016-05-01

    A molecular description of the mechanisms by which aging is produced is still very limited. Here, we have determined the plasma metabolite profile by using high-throughput metabolome profiling technologies of 150 healthy humans ranging from 30 to 100 years of age. Using a nontargeted approach, we detected 2,678 metabolite species in plasma, and the multivariate analyses separated perfectly two groups indicating a specific signature for each gender. In addition, there is a set of gender-shared metabolites, which change significantly during aging with a similar tendency. Among the identified molecules, we found vitamin D2-related compound, phosphoserine (40:5), monoacylglyceride (22:1), diacylglyceride (33:2), and resolvin D6, all of them decreasing with the aging process. Finally, we found three molecules that directly correlate with age and seven that inversely correlate with age, independently of gender. Among the identified molecules (6 of 10 according to exact mass and retention time), we found a proteolytic product (l-γ-glutamyl-l-leucine), which increased with age. On the contrary, a hydroxyl fatty acid (25-hydroxy-hexacosanoic), a polyunsaturated fatty acid (eicosapentaenoic acid), two phospholipids (phosphocholine [42:9]and phosphoserine [42:3]) and a prostaglandin (15-keto-prostaglandin F2α) decreased with aging. These results suggest that lipid species and their metabolism are closely linked to the aging process.

  11. Initial adhesion of Listeria monocytogenes to fine polished stainless steel under flow conditions is determined by prior growth conditions.

    PubMed

    Skovager, Anne; Larsen, Marianne Halberg; Castro-Mejia, Josue Leonardo; Hecker, Michael; Albrecht, Dirk; Gerth, Ulf; Arneborg, Nils; Ingmer, Hanne

    2013-07-01

    Listeria monocytogenes is a food-borne pathogen known to persist in food production environments, where it is able to attach and form biofilms, potentially contaminating food products ready for consumption. In this study the first step in the establishment of L. monocytogenes in a food-processing environment was examined, namely the initial adhesion to stainless steel under specific dynamic flow conditions. It was found that the intrinsic ability of L. monocytogenes to adhere to solid surfaces under flow conditions is dependent on nutrient availability. The addition of L-leucine to the growth medium altered the fatty acid composition of the L. monocytogenes cells and increased adhesion. The growth conditions resulting in the highest adhesion (growth medium with added glucose) had cells with the highest electron donating and lowest electron accepting properties, whereas growth conditions resulting in lowest adhesion (growth medium with added mannose) had cells with the lowest electron donating properties and highest electron accepting properties. The highest and lowest adhesion conditions correlated with differences in expression of cell surface protein of L. monocytogenes and among these the autolysin amidase (Ami). This study implies that food composition influences the adhesion of L. monocytogenes to solid surfaces during dynamic flow conditions.

  12. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in the cyanobacterium, Microcystis aeruginosa.

    PubMed

    Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J

    2014-01-01

    Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L-1, but not at 1 and 2 mg L-1. Peroxide dosed at 4 or 8 mg L-1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L-1) and 12-times (8 mg L-1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

  13. Ultrafast Reorientational Dynamics of Leucine at the Air-Water Interface.

    PubMed

    Donovan, Michael A; Yimer, Yeneneh Y; Pfaendtner, Jim; Backus, Ellen H G; Bonn, Mischa; Weidner, Tobias

    2016-04-27

    Ultrafast dynamics of protein side chains are involved in important biological processes such as ligand binding, protein folding, and hydration. In addition, the dynamics of a side chain can report on local environments within proteins. While protein side chain dynamics have been probed for proteins in solution with nuclear magnetic resonance and infrared methods for decades, information about side chain dynamics at interfaces is lacking. At the same time, the dynamics and motions of side chains can be particularly important for interfacial binding and protein-driven surface manipulation. We here demonstrate that ultrafast reorientation dynamics of leucine amino acids at interfaces can be recorded in situ and in real time using polarization- and time-resolved pump-probe sum frequency generation (SFG). Combined with molecular dynamics simulations, time-resolved SFG was used to probe the reorientation of the isopropyl methyl groups of l-leucine at the air-water interface. The data show that the methyl units reorient diffusively at an in plane rate of Dφ = 0.07 rad(2)/ps and an out of plane rate of Dθ = 0.05 rad(2)/ps. PMID:27057584

  14. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying

    PubMed Central

    Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu

    2015-01-01

    In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708

  15. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying.

    PubMed

    Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu

    2015-01-01

    In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708

  16. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.

    PubMed

    Sun, Xuefei; Li, Dan; Lee, Milton L

    2009-08-01

    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips.

  17. Solubility calculations of branched and linear amino acids using lattice cluster theory

    NASA Astrophysics Data System (ADS)

    Fischlschweiger, Michael; Enders, Sabine; Zeiner, Tim

    2014-09-01

    In this work, the activity coefficients and the solubility of amino acids in water were calculated using the lattice cluster theory (LCT) combined with the extended chemical association lattice model allowing self-association as well as cross-association. This permits the study of the influence of the amino acids structure on the thermodynamic properties for the first time. By the used model, the activity coefficient and solubilities of the investigated fourteen amino acids (glycine, alanine, γ-aminobutyric acid, dl-valine, dl-threonine, dl-methionine, l-leucine, l-glutamic acid, l-proline, hydroxyproline, histidine, l-arginine, α-amino valeric acid) could be described in good accordance with experimental data. In the case of different α-amino acids, but different hydrocarbon chains, the same interaction energy parameter can be used within the LCT. All studied amino acids could be modelled using the same parameter for the description of the amino acid association properties. The formed cross-associates contain more amino acids than expressed by the overall mole fraction of the solution. Moreover, the composition of the cross-associates depends on temperature, where the amount of amino acids increases with increasing temperature.

  18. A molecular dynamics simulation study of the association of 1,1";-binaphthyl-2,2";-diyl hydrogenphosphate enantiomers with a chiral molecular micelle

    NASA Astrophysics Data System (ADS)

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2014-08-01

    Molecular dynamics (MD) simulations were used to investigate the binding of 1,1";-binaphthyl-2,2";-diyl hydrogenphosphate (BNP) enantiomers to the molecular micelle poly-(sodium undecyl-(L,L)-leucine-valine) (poly(SULV)). Poly(SULV) is used as a chiral selector in capillary electrophoresis separations. Four poly(SULV) binding pockets were identified and either (R)-BNP or (S)-BNP were docked into each pocket. MD simulations were then used to identify the preferred BNP binding site. Within the preferred site, both enantiomers formed hydrogen bonds with poly(SULV) and penetrated into the poly(SULV) core. Comparisons of BNP enantiomer binding to the preferred poly(SULV) pocket showed that (S)-BNP formed stronger hydrogen bonds, moved deeper into the binding site, and had a lower poly(SULV) binding free energy than the (R) enantiomer. Finally, MD simulation results were in agreement with capillary electrophoresis and NMR experiments. Each technique showed (S)-BNP interacted more strongly with poly(SULV) than (R)-BNP and that the site of chiral recognition was near the poly(SULV) leucine chiral center.

  19. Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

    PubMed Central

    Bhoj, Elizabeth J.; Li, Dong; Harr, Margaret; Edvardson, Shimon; Elpeleg, Orly; Chisholm, Elizabeth; Juusola, Jane; Douglas, Ganka; Guillen Sacoto, Maria J.; Siquier-Pernet, Karine; Saadi, Abdelkrim; Bole-Feysot, Christine; Nitschke, Patrick; Narravula, Alekhya; Walke, Maria; Horner, Michele B.; Day-Salvatore, Debra-Lynn; Jayakar, Parul; Vergano, Samantha A. Schrier; Tarnopolsky, Mark A.; Hegde, Madhuri; Colleaux, Laurence; Crino, Peter; Hakonarson, Hakon

    2016-01-01

    Through an international multi-center collaboration, 13 individuals from nine unrelated families and affected by likely pathogenic biallelic variants in TBC1-domain-containing kinase (TBCK) were identified through whole-exome sequencing. All affected individuals were found to share a core phenotype of intellectual disability and hypotonia, and many had seizures and showed brain atrophy and white-matter changes on neuroimaging. Minor non-specific facial dysmorphism was also noted in some individuals, including multiple older children who developed coarse features similar to those of storage disorders. TBCK has been shown to regulate the mammalian target of rapamycin (mTOR) signaling pathway, which is also stimulated by exogenous leucine supplementation. TBCK was absent in cells from affected individuals, and decreased phosphorylation of phospho-ribosomal protein S6 was also observed, a finding suggestive of downregulation of mTOR signaling. Lastly, we demonstrated that activation of the mTOR pathway in response to L-leucine supplementation was retained, suggesting a possible avenue for directed therapies for this condition. PMID:27040691

  20. A Trypanosoma cruzi alkaline antigen induces polyclonal B-cell activation of normal murine spleen cells by T-cell-independent, BCR-directed stimulation.

    PubMed

    Montes, C L; Zuñiga, E; Minoprio, P; Vottero-Cima, E; Gruppi, A

    1999-08-01

    We have previously reported that a cytosolic alkaline fraction (FI) obtained from epimastigotes of Trypanosoma cruzi promotes the activation, proliferation and differentiation of normal murine B cells into antibody-secreting plasmocytes. Neither the mechanism nor the cells involved in the FI-induced polyclonal B-cell activation were established. In this work we report that accessory cells are required for FI-induced polyclonal B-cell activation as no proliferative responses were obtained following treatment of normal spleen mononuclear cells (NSMC) with L-leucine methyl ester. Furthermore, FI did not induce the expression of CD25 on T cells and it promoted the proliferation of a T-cell-depleted population, indicating that it acts in a T-independent manner. We observed that NSMC were stimulated in vitro by FI-released cytokines, such as interleukin (IL)-4, IL-6 and IL-10, which are involved in B-cell proliferation and differentiation. Interestingly, while significant amounts of interferon-gamma (IFN-gamma) were found in culture supernatants we did not observe detectable levels of IL-2. Additionally, we found that B-cell receptor (BCR) and major histocompatibility complex (MHC) class II antigens were involved in the proliferative response induced by FI because antibodies directed against cell-surface immunoglobulin M (IgM), CD45 and MHC class II molecules inhibited the FI-induced B-cell proliferation. CD40 ligand (CD40L) did not participate in such a phenomenon.

  1. Long polypeptide 310-helices at atomic resolution

    PubMed Central

    Bavoso, Alfonso; Benedetti, Ettore; Di Blasio, Benedetto; Pavone, Vincenzo; Pedone, Carlo; Toniolo, Claudio; Bonora, Gian Maria

    1986-01-01

    The crystal-state preferred conformation of the terminally blocked homooctapeptide from the Cα,α-dimethylated α-aminoisobutyric acid (Aib) residue, pBrBz-(Aib)8-OBut, in which pBrBz is para-bromobenzoyl and OBut is tert-butoxy, determined by x-ray diffraction analysis using direct methods, was found to be a 310-helix stabilized by six consecutive intramolecular N—H....O=C hydrogen bonds of the C10-III (or III′) type. This is the first observation at atomic resolution of a regular 310-helix longer than two complete turns. The solid-state structural analysis was extended to the terminally blocked, α-aminoisobutyric acid-rich octapeptide corresponding to the 2-9 sequence of the peptaibol antibiotics emerimicins III and IV, pBrBz-Aib3-L-Val-Gly-L-Leu-Aib2-OMe. Again, this peptide adopts a (right-handed) 310-helical structure, although slightly distorted at the level of the L-leucine residue. The role of specific amino acid sequence and peptide main-chain length in stabilizing either the 310- or the α-helical conformation and their possible implications on the nature of the channel formed by peptaibol antibiotics in the membrane are also briefly discussed. PMID:16593674

  2. A Zebrafish Model of 5q-Syndrome Using CRISPR/Cas9 Targeting RPS14 Reveals a p53-Independent and p53-Dependent Mechanism of Erythroid Failure.

    PubMed

    Ear, Jason; Hsueh, Jessica; Nguyen, Melinda; Zhang, QingHua; Sung, Victoria; Chopra, Rajesh; Sakamoto, Kathleen M; Lin, Shuo

    2016-05-20

    5q-syndrome is a distinct form of myelodysplastic syndrome (MDS) where a deletion on chromosome 5 is the underlying cause. MDS is characterized by bone marrow failures, including macrocytic anemia. Genetic mapping and studies using various models support the notion that ribosomal protein S14 (RPS14) is the candidate gene for the erythroid failure. Targeted disruption of RPS14 causes an increase in p53 activity and p53-mediated apoptosis, similar to what is observed with other ribosomal proteins. However, due to the higher risk for cancer development in patients with ribosome deficiency, targeting the p53 pathway is not a viable treatment option. To better understand the pathology of RPS14 deficiency in 5q-deletion, we generated a zebrafish model harboring a mutation in the RPS14 gene. This model mirrors the anemic phenotype seen in 5q-syndrome. Moreover, the anemia is due to a late-stage erythropoietic defect, where the erythropoietic defect is initially p53-independent and then becomes p53-dependent. Finally, we demonstrate the versatility of this model to test various pharmacological agents, such as RAP-011, L-leucine, and dexamethasone in order to identify molecules that can reverse the anemic phenotype. PMID:27216296

  3. Activation of L-arginine transport (system y+) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells.

    PubMed Central

    Sobrevia, L; Nadal, A; Yudilevich, D L; Mann, G E

    1996-01-01

    1. Modulation of L-arginine transport (system y+) and release of nitric oxide (NO) and prostacyclin (PGI2) by elevated glucose and insulin were investigated in human cultured umbilical vein endothelial cells. 2. Elevated glucose induced a time- (6-12 h) and concentration-dependent stimulation of L-arginine transport, which was reversible and associated with a 3-fold increase in intracellular cGMP accumulation (index of NO synthesis) and 75% decrease in PGI2 production. 3. Elevated glucose had no effect on the initial transport rates for L-serine, L-citrulline, L-leucine, L-cystine or 2-deoxyglucose. 4. Resting membrane potential was unaffected by elevated glucose whereas basal intracellular [Ca2+] increased from 65 +/- 5 nM to 136 +/- 16 nM. 5. Insulin induced a protein synthesis-dependent stimulation of L-arginine transport and increased NO and PGI2 production in cells exposed to 5 mM glucose. 6. In cells exposed to high glucose, insulin downregulated elevated rates of L-arginine transport and cGMP accumulation but had no effect on the depressed PGI2 production. 7. Our findings suggest that insulin's normal stimulatory action on human endothelial cell vasodilator pathways may be impaired under conditions of sustained hyperglycaemia. PMID:8683475

  4. Production of organic micro-crystals by using templated crystallization as nucleation trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirokuni; Takiyama, Hiroshi

    2013-06-01

    Fine monomodal crystalline particles are required in many fields such as pharmaceuticals and fine chemicals. In this study, the effect of template at the air/solution interface on the nucleation phenomenon was investigated. And the relationship between the nucleation time and the time at which the template interfaces were introduced into the supersaturated solution became clear, and the nucleation phenomenon of templated crystallization was also investigated. If the time of nucleation can be controlled by using template effects, monomodal crystalline particles can also be produced. The glycine- water-L-leucine (template compound) system was used. The air bubble insertion experiments and nucleation and growth experiments at re-created air/solution interface were carried out. As a result, the nucleation time after the template interface was introduced into the supersaturated solution was important for controlling size distribution. The formation of new template interface into the supersaturated solution acted as the nucleation trigger which induced controlled nucleation. By using this nucleation trigger, monomodal crystalline particles were obtained at the air/solution interface. By collecting crystalline particles immediately after nucleation was induced by nucleation trigger, submicron-order particles were obtained.

  5. Effects of amino acids on membrane potential and 86Rb+ fluxes in pancreatic beta-cells

    SciTech Connect

    Henquin, J.C.; Meissner, H.P.

    1981-03-01

    The membrane potential of beta-cells was studied with microelectrodes in mouse islets and their potassium permeability was evaluated by measuring 86Rb+ fluxes in rat islets. In the absence of glucose, L-leucine, its metabolite ketoisocaproate, and its nonmetabolized analogue 2-aminonorbornane-2-carboxylic acid (BCH) depolarized beta-cells and triggered bursts of electrical activity like glucose. The effect of leucine was weak, but was potentiated by a low concentration of glucose or by theophylline; the effect of ketoisocaproate was stronger and faster than that of an equimolar concentration of glucose. Arginine alone produced only a fast depolarization of beta-cells, insufficient to trigger electrical activity. Leucine and arginine potentiated the activity induced by glucose. In a glucose-free medium, alanine only slightly depolarized beta cells, whereas isoleucine and phenylalanie had no effect. Leucine, ketoisocaproate, and BCH reversibly decreased 86Rb+ efflux from islets perifused in the absence of glucose and increased 86Rb+ uptake. By contrast, both in the absence or presence of glucose, arginine increased 86Rb+ efflux and decreased 86Rb+ uptake. It is proposed that leucine, ketoisocaproate, and BCH, as glucose, deplolarize beta-cells by decreasing their potassium permeability, whereas arginine acts differently. The appearance of bursts of electrical activity with secretagogues unrelated to glucose suggests that they reflect an intrinsic property of the beta-cell membrane.

  6. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  7. Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties.

    PubMed

    Zhang, Shanshan; Alvarez, Daniel J; Sofroniew, Michael V; Deming, Timothy J

    2015-04-13

    Polypeptide-based formulations that undergo liquid to hydrogel transitions upon change in temperature have become desirable targets since they can be mixed with cells or injected into tissues as liquids, and subsequently transform into rigid scaffolds or depots. Such materials have been challenging to prepare using synthetic polypeptides, especially when reversible gelation and tunable physical properties are desired. Here, we designed and prepared new nonionic diblock copolypeptide hydrogels (DCH) containing hydrophilic poly(γ-[2-(2-methoxyethoxy)ethyl]-rac-glutamate) and hydrophobic poly(l-leucine) segments, named DCHEO, and also further incorporated copolypeptide domains into DCHEO to yield unprecedented thermoresponsive DCH, named DCHT. Although previous attempts to prepare nonionic hydrogels composed solely of synthetic polypeptides have been unsuccessful, our designs yielded materials with highly reversible thermal transitions and tunable properties. Nonionic, thermoresponsive DCHT were found to support the viability of suspended mesenchymal stem cells in vitro and were able to dissolve and provide prolonged release of both hydrophilic and hydrophobic molecules. The versatility of these materials was further demonstrated by the independent molecular tuning of DCHT liquid viscosity at room temperature and DCHT hydrogel stiffness at elevated temperature, as well as the DCHT liquid to hydrogel transition temperature itself.

  8. A Different Pattern of Production and Scavenging of Reactive Oxygen Species in Halophytic Eutrema salsugineum (Thellungiella salsuginea) Plants in Comparison to Arabidopsis thaliana and Its Relation to Salt Stress Signaling.

    PubMed

    Pilarska, Maria; Wiciarz, Monika; Jajić, Ivan; Kozieradzka-Kiszkurno, Małgorzata; Dobrev, Petre; Vanková, Radomíra; Niewiadomska, Ewa

    2016-01-01

    Isolated thylakoids from halophytic Eutrema salsugineum (Thellungiella salsuginea) produces more H2O2 in comparison to glycophytic Arabidopsis thaliana. The first objective of this study was to verify whether this feature is relevant also to the intact chloroplasts and leaves. Enhanced H2O2 levels in chloroplasts and leaves of E. salsugineum were positively verified with several methods (electron microscopy, staining with Amplex Red and with diaminobenzidine). This effect was associated with a decreased ratio of [Formula: see text]/H2O2 in E. salsugineum in comparison to A. thaliana as detected by electron paramagnetic resonance method. As a next step, we tested how this specific ROS signature of halophytic species affects the antioxidant status and down-stream components of ROS signaling. Comparison of enzymatic antioxidants revealed a decreased activity of ascorbate peroxidase (APX), enhanced activity of glutathione peroxidase, and the presence of thylakoid-bound forms of iron superoxide dismutase (FeSOD) and APX in E. salsugineum. These cues were, however, independent from application of salt stress. The typical H2O2-dependent cellular responses, namely the levels of glucosinolates and stress-related hormones were determined. The total glucosinolate content in E. salsugineum water-treated leaves was higher than in A. thaliana and increased after salinity treatment. Treatment with salinity up-regulated all of tested stress hormones, their precursors and catabolites [abscisic acid (ABA), dihydrophaseic acid, phaseic acid, 1-aminocyclopropane-1-carboxylic acid, salicylic acid, jasmonic acid, cis-(+)-12-oxo-phytodienoic acid and jasmonoyl-L-isoleucine] in A. thaliana, whereas in E. salsugineum only a stimulation in ethylene synthesis and ABA catabolism was noted. Obtained results suggest that constitutively enhanced H2O2 generation in chloroplasts of E. salsugineum might be a crucial component of stress-prepardeness of this halophytic species. It shapes a very

  9. Induction of Phenylalanine Ammonia-lyase in Xanthium Leaf Disks. Photosynthetic Requirement and Effect of Daylength 1

    PubMed Central

    Zucker, Milton

    1969-01-01

    A cycloheximide-sensitive increase in the activity of phenylalanine ammonia-lyase (EC 4.3.1.5) occurs in Xanthium leaf disks exposed to light. Radioactive ammonia-lyase has been isolated by means of sucrose density gradient centrifugation and starch gel electrophoresis from disks fed l-isoleucine-U-14C or l-arginine-U-14C. The incorporation of radioactive amino acids into phenylalanine ammonia-lyase together with the inhibitory effects of cycloheximide indicate that the observed increase in enzyme activity involves the induction of lyase synthesis. The light-dependent synthesis of the ammonia-lyase is completely inhibited by 50 μm 3-(4-chlorophenyl)-1,1-dimethylurea (CMU) indicating that photosynthesis is involved. Only a trace quantity of some photosynthetic product must be needed because half light saturation occurs at very low intensity (ca. 30 ft-c). Exogenous carbohydrate is also required for continuing enzyme synthesis over a 72 hr period. But carbohydrate does not replace the photosynthetic requirement in darkness. Enzyme formed in light disappears rapidly from disks placed in the dark. The decay of ammonia-lyase activity follows first order kinetics. The half-life of the lyase ranged from 6 to 15 hr in leaf material used. Cyoloheximide inhibits the decay of lyase activity. Thus the maintenance of turnover in Xanthium leaf disks requires de novo synthesis of protein. That turnover, i.e., degradation as well as synthesis of lyase protein occurs is suggested by the apparent loss of radioactive ammonia-lyase from leaf disks placed in darkness. Light-induced synthesis coupled with rapid turnover can produce a diurnal fluctuation of ammonia-lyase activity in Xanthium leaf disks. Alternating periods of enzyme synthesis and degradation were observed in disks exposed to 24 hr cycles of light and dark. The average level of enzyme activity maintained in the tissue was directly related to the length of the light period. Induction of lyase synthesis was also observed

  10. Rational design and characterization of D-Phe-Pro-D-Arg-derived direct thrombin inhibitors.

    PubMed

    Figueiredo, Ana C; Clement, Cristina C; Zakia, Sheuli; Gingold, Julian; Philipp, Manfred; Pereira, Pedro J B

    2012-01-01

    The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both L- and D-amino acids, with the general sequence D-Phe(P3)-Pro(P2)-D-Arg(P1)-P1'-CONH₂. The P1' position was scanned with L- and D-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1' position. The lead tetrapeptide, D-Phe-Pro-D-Arg-D-Thr-CONH₂, competitively inhibits α-thrombin's cleavage of the S2238 chromogenic substrate with a K(i) of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1' L-isoleucine (fPrI), L-cysteine (fPrC) or D-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the D-Arg residue in position P1 and thrombin are similar to those observed for the L-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 D-Arg and a bulkier P1' residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational

  11. A Different Pattern of Production and Scavenging of Reactive Oxygen Species in Halophytic Eutrema salsugineum (Thellungiella salsuginea) Plants in Comparison to Arabidopsis thaliana and Its Relation to Salt Stress Signaling

    PubMed Central

    Pilarska, Maria; Wiciarz, Monika; Jajić, Ivan; Kozieradzka-Kiszkurno, Małgorzata; Dobrev, Petre; Vanková, Radomíra; Niewiadomska, Ewa

    2016-01-01

    Isolated thylakoids from halophytic Eutrema salsugineum (Thellungiella salsuginea) produces more H2O2 in comparison to glycophytic Arabidopsis thaliana. The first objective of this study was to verify whether this feature is relevant also to the intact chloroplasts and leaves. Enhanced H2O2 levels in chloroplasts and leaves of E. salsugineum were positively verified with several methods (electron microscopy, staining with Amplex Red and with diaminobenzidine). This effect was associated with a decreased ratio of O2•–/H2O2 in E. salsugineum in comparison to A. thaliana as detected by electron paramagnetic resonance method. As a next step, we tested how this specific ROS signature of halophytic species affects the antioxidant status and down-stream components of ROS signaling. Comparison of enzymatic antioxidants revealed a decreased activity of ascorbate peroxidase (APX), enhanced activity of glutathione peroxidase, and the presence of thylakoid-bound forms of iron superoxide dismutase (FeSOD) and APX in E. salsugineum. These cues were, however, independent from application of salt stress. The typical H2O2-dependent cellular responses, namely the levels of glucosinolates and stress-related hormones were determined. The total glucosinolate content in E. salsugineum water-treated leaves was higher than in A. thaliana and increased after salinity treatment. Treatment with salinity up-regulated all of tested stress hormones, their precursors and catabolites [abscisic acid (ABA), dihydrophaseic acid, phaseic acid, 1-aminocyclopropane-1-carboxylic acid, salicylic acid, jasmonic acid, cis-(+)-12-oxo-phytodienoic acid and jasmonoyl-L-isoleucine] in A. thaliana, whereas in E. salsugineum only a stimulation in ethylene synthesis and ABA catabolism was noted. Obtained results suggest that constitutively enhanced H2O2 generation in chloroplasts of E. salsugineum might be a crucial component of stress-prepardeness of this halophytic species. It shapes a very efficient

  12. The enigma of 3400 years BP coastal oolites in tropical northwest Western Australia… why then, why there?

    NASA Astrophysics Data System (ADS)

    Hearty, Paul; O'Leary, Michael; Donald, Andrew; Lachlan, Terry

    2006-05-01

    Oolites crop out along the northwestern coast of Western Australia at Port Smith, about 80 km SW of Broome. An oolitic coastal ridge truncated by marine erosion exposes subtidal, intertidal, and supratidal (aeolian) facies. The deposits are firmly indurated and composed of about 75% tangentially and moderately thickly layered, aragonitic ooid grains with over 90% quartz nuclei. Subtidal sedimentary structures are exposed about a metre above the present high tide mark, hinting that sea level may have been somewhat higher when the shoreline was formed. However, the macrotidal range of up to 7 m, and the possibility of cyclonic surges along the coast, precludes unequivocal determinations on this point. Whole-rock amino acid racemisation (AAR) geochronology (epimerisation of isoleucine: D-alloisoleucine/ L-isoleucine or A/I) on each facies of the oolite outcrop averaged 0.106 ± 0.013 ( N = 10). The modern beach contains fewer ooids (˜ 30%), and nearly half of these are stained brown, grey, or black, perhaps as a result of burial, reduction and/or mineralization. A higher (older) mean and large standard deviation in whole-rock amino acid ratio of 0.145 ± 0.067 ( N = 2) supports our inference that ooids on the modern beach were reworked from fossil deposits. Reverse phase chronostratigraphy (RPC) on individual ooid grains holds tremendous promise in this preliminary study. RPC results show a narrow variation of D/ L values (CV = 6-11%), and yield nearly identical D/ L Asp means from light coloured fossil ooids (0.307 ± 0.018 ( N = 17)); light (0.323 ± 0.026 ( N = 12)) and dark coloured ooids (0.298 ± 0.027 ( N = 10)) from the active beach face. When compared to A/I ratios from 14C dated mid-Holocene ooids in the Bahamas, the mean A/I from Port Smith reflects an age of ca. 3500-4500 years that is in agreement with a calibrated AMS 14C age of 3370 ± 50 calendar years BP on the same material. Thus, the ooids were formed, transported, emplaced, strongly cemented, and

  13. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  14. Insulin-driven translational capacity is impaired in primary fibroblasts of Prader Willi

    PubMed Central

    Meneghello, Cristiana; Segat, Daniela; Fortunati, Elisabetta

    2016-01-01

    Summary Prader-Willi (PW) syndrome is a rare genetic disorder characterized by hypothalamic-pituitary abnormalities and severe hypotonia, hyperphagia, behavioural and psychiatric problems. Absence of satiety leads to severe obesity and frequently to diabetes. Furthermore, adult patients suffer from a severe loss of muscle mass, which severely impacts their quality of life. The mechanisms underlying alterations in muscle growth in PW remain to be clarified. In this study we explored the hypothesis that, in PW cells, alterations of protein synthesis are determined by dysfunctions in the promotion of cell growth. In order to study the molecular changes leading to dysfunction in protein translation, primary fibroblasts derived from four PW patients and five control subjects were used to study the insulin-mediated signaling pathway implicated in the control of protein synthesis by immunoblotting. Here we present, for the first time, evidences that the protein translation response to insulin is impaired in PW fibroblasts. Insulin alone has a major upregulatory effect on protein kinase B (AKT), glycogen synthase kinase (GSK3beta), while phosphorylation of p70S6K1 protein elongation factor controlled by mammalian target of rapamycin complex I (mTORC1) is reduced. In addition, we provide data that the response to insulin in PW cells can be restored by previous treatment with the amino acid L-Leucine (L-Leu). Our experiments in primary cell cultures demonstrate an impairment of insulin signaling that can be rescued by supplementation with the branched aminoacid L-Leu, indicating a possible therapeutic approach for alleviating muscle mass loss in PW patients. PMID:26989644

  15. Solid state radiolysis of amino acids in an astrochemical perspective

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Angelini, Giancarlo; Iglesias-Groth, Susana; Manchado, Arturo

    2011-01-01

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T1/2 for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6×109 years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6×109 years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant krac.

  16. (19)F NMR studies of the leucine-isoleucine-valine binding protein: evidence that a closed conformation exists in solution.

    PubMed

    Salopek-Sondi, Branka; Vaughan, Mark D; Skeels, Matthew C; Honek, John F; Luck, Linda A

    2003-10-01

    The leucine-isoleucine-valine binding protein (LIV) found in the periplasmic space of E. coli has been used as a structural model for a number of neuronal receptors. This "venus fly trap" type protein has been characterized by crystallography in only the open form. Herein we have labeled LIV with 5-fluorotryptophan (5F-Trp) and difluoromethionine (DFM) in order to explore the structural dynamics of this protein and the application of DFM as a potential (19)F NMR structural probe for this family of proteins. Based on mass spectrometric analysis of the protein overproduced in the presence of DFM, approximately 30% of the five LIV methionine residues were randomly substituted with the fluorinated analog. Urea denaturation experiments imply a slight decrease in protein stability when DFM is incorporated into LIV. However, the fluorinated methionine did not alter leucine-binding activity upon its incorporation into the protein. Binding of L-leucine stabilizes both the unlabeled and DFM-labeled LIV, and induces the protein to adopt a three-state unfolding model in place of the two-state process observed for the free protein. The (19)F NMR spectrum of DFM-labeled LIV gave distinct resonances for the five Met residues found in LIV. 5F-Trp labeled LIV gave a well resolved spectrum for the three Trp residues. Trp to Phe mutants defined the resonances in the spectrum. The distinct narrowing in line width of the resonances when ligand was added identified the closed form of the protein. PMID:12956607

  17. The role of doxorubicin in non-viral gene transfer in the lung.

    PubMed

    Griesenbach, Uta; Meng, Cuixiang; Farley, Raymond; Gardner, Aaron; Brake, Maresa A; Frankel, Gad M; Gruenert, Dieter C; Cheng, Seng H; Scheule, Ronald K; Alton, Eric W F W

    2009-04-01

    Proteasome inhibitors have been shown to increase adeno-associated virus (AAV)-mediated transduction in vitro and in vivo. To assess if proteasome inhibitors also increase lipid-mediated gene transfer with relevance to cystic fibrosis (CF), we first assessed the effects of doxorubicin and N-acetyl-l-leucinyl-l-leucinal-l-norleucinal in non-CF (A549) and CF (CFTE29o-) airway epithelial cell lines. CFTE29o- cells did not show a response to Dox or LLnL; however, gene transfer in A549 cells increased in a dose-related fashion (p < 0.05), up to approximately 20-fold respectively at the optimal dose (no treatment: 9.3 x 10(4) +/- 1.5 x 10(3), Dox: 1.6 x 10(6)+/-2.6 x 10(5), LLnL: 1.9 x 10(6) +/- 3.2 x 10(5)RLU/mg protein). As Dox is used clinically in cancer chemotherapy we next assessed the effect of this drug on non-viral lung gene transfer in vivo. CF knockout mice were injected intraperitoneally (IP) with Dox (25-100 mg/kg) immediately before nebulisation with plasmid DNA carrying a luciferase reporter gene under the control of a CMV promoter/enhancer (pCIKLux) complexed to the cationic lipid GL67A. Dox also significantly (p < 0.05) increased expression of a plasmid regulated by an elongation factor 1alpha promoter (hCEFI) approximately 8-fold. Although administration of Dox before lung gene transfer may not be a clinically viable option, understanding how Dox increases lung gene expression may help to shed light on intracellular bottle-necks to gene transfer, and may help to identify other adjuncts that may be more appropriate for use in man. PMID:19152975

  18. Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells.

    PubMed

    Omidi, Yadollah; Barar, Jaleh; Ahmadian, Somaieh; Heidari, Hamid Reza; Gumbleton, Mark

    2008-04-01

    Brain trafficking of amino acids is mainly mediated by amino acids transport machineries of the blood-brain barrier (BBB), where astrocytes play a key maintenance role. However, little is known about astrocytes impacts on such transport systems, in particular system L that consists of large and small neutral amino acids (NAAs) transporters, that is, LAT1/4F2hc and LAT2/4F2hc, respectively. In the current investigation, functionality and expression of system L were studied in the immortalized mouse brain microvascular endothelial b.End3 cells cocultured with astrocytes or treated with astrocyte-conditioned media (ACM). LAT2/4F2hc mediated luminal uptake of L-phenylalanine and L-leucine resulted in significantly decreased affinity of system L in b.End3 cells treated with ACM, while LAT2/4F2hc mediated luminal uptake of L-alanine remained unchanged. Gene expression analysis revealed marked upregulation of LAT1 and 4F2hc, but downregulation of LAT2 in b.End3 cells cultured with ACM. The basal to apical transport of L-phenylalanine and L-alanine appeared to be significantly greater than that of the apical to basal direction in b.End3 cells indicating an efflux functionality of system L. No marked influence was observed for transport of L-phenylalanine in b.End3 cells cocultured with astrocytes, while a slight decrease was seen for L-alanine in the basal to apical direction. Based on our findings, we propose that system L functions as influx and/or efflux transport machinery displaying a greater propensity for the outward transport of large and small NAAs. Astrocytes appeared to modulate the transcriptic expression and uptake functionalities of system L, but not the transport activities. PMID:18210381

  19. A Comprehensive Assessment of the Effects of Transgenic Cry1Ac/Cry1Ab Rice Huahui 1 on Adult Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae)

    PubMed Central

    Zhou, Xia; Guo, Yunling; Kong, Hua; Zuo, Jiao; Huang, Qixing; Jia, Ruizong; Guo, Anping; Xu, Lin

    2016-01-01

    Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae) is a widely distributed coleoptera predator in southern Asia in rice ecosystem, and adult M. discolor feed on both rice pollen and soft-bodied arthropods. Bitrophic bioassay and tritrophic bioassay were conducted to evaluate the potential impact of Cry1Ac/Cry1Ab-expressing rice Huahui 1 and its non-transgenic counterpart Minghui 63 on fitness parameters of adult M. discolor. The results showed that the survival, and fecundity of this beetle’ adults were not different when they fed on Bt rice or non-Bt rice pollen or Nilaparvata lugens (Stål) reared on Bt rice or non-Bt rice. Toxicity assessment to ensure M. discolor adults were not sensitive to Cry1Ab or Cry1Ac protein independent from the pollen background, M. discolor adults were fed with an artificial diet containing Cry1Ac, Cry1Ab or both protein approximately 10 times higher concentration than in Huahui 1 rice pollen. No difference was detected for any of the life-table parameters tested between Cry protein-containing and pure diet. Artificial diet containing E-64 (N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide) was included as a positive control. In contrast, the pre-oviposition and fecundity of M. discolor were significantly adversely affected by feeding on E-64-containing diet. In both bioassays, the uptakes of Cry protein by adult M. discolor were tested by ELISA measurements. These results indicated that adults of M. discolor are not affected by Cry1Ab- or Cry1Ac-expressing rice pollen and are not sensitive to Cry protein at concentrations exceeding the levels in rice pollen in Huahui1. This suggests that M. discolor adults would not be harmed by Cry1Ac/Cry1Ab rice if Bt rice Huahui 1 were commercialized. PMID:26914608

  20. A Comprehensive Assessment of the Effects of Transgenic Cry1Ac/Cry1Ab Rice Huahui 1 on Adult Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae).

    PubMed

    Zhou, Xia; Guo, Yunling; Kong, Hua; Zuo, Jiao; Huang, Qixing; Jia, Ruizong; Guo, Anping; Xu, Lin

    2016-01-01

    Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae) is a widely distributed coleoptera predator in southern Asia in rice ecosystem, and adult M. discolor feed on both rice pollen and soft-bodied arthropods. Bitrophic bioassay and tritrophic bioassay were conducted to evaluate the potential impact of Cry1Ac/Cry1Ab-expressing rice Huahui 1 and its non-transgenic counterpart Minghui 63 on fitness parameters of adult M. discolor. The results showed that the survival, and fecundity of this beetle' adults were not different when they fed on Bt rice or non-Bt rice pollen or Nilaparvata lugens (Stål) reared on Bt rice or non-Bt rice. Toxicity assessment to ensure M. discolor adults were not sensitive to Cry1Ab or Cry1Ac protein independent from the pollen background, M. discolor adults were fed with an artificial diet containing Cry1Ac, Cry1Ab or both protein approximately 10 times higher concentration than in Huahui 1 rice pollen. No difference was detected for any of the life-table parameters tested between Cry protein-containing and pure diet. Artificial diet containing E-64 (N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide) was included as a positive control. In contrast, the pre-oviposition and fecundity of M. discolor were significantly adversely affected by feeding on E-64-containing diet. In both bioassays, the uptakes of Cry protein by adult M. discolor were tested by ELISA measurements. These results indicated that adults of M. discolor are not affected by Cry1Ab- or Cry1Ac-expressing rice pollen and are not sensitive to Cry protein at concentrations exceeding the levels in rice pollen in Huahui1. This suggests that M. discolor adults would not be harmed by Cry1Ac/Cry1Ab rice if Bt rice Huahui 1 were commercialized.

  1. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins.

    PubMed

    Mas, Guillaume; Crublet, Elodie; Hamelin, Olivier; Gans, Pierre; Boisbouvier, Jérôme

    2013-11-01

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D2O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d10. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  2. Defects of protein production in erythroid cells revealed in a zebrafish Diamond-Blackfan anemia model for mutation in RPS19.

    PubMed

    Zhang, Y; Ear, J; Yang, Z; Morimoto, K; Zhang, B; Lin, S

    2014-01-01

    Diamond-Blackfan anemia (DBA) is a rare congenital red cell aplasia that classically presents during early infancy in DBA patients. Approximately, 25% of patients carry a mutation in the ribosomal protein (RP) S19 gene; mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 have been reported. How ribosome protein deficiency causes defects specifically to red blood cells in DBA has not been well elucidated. To genetically model the predominant ribosome defect in DBA, we generated an rps19 null mutant through the use of TALEN-mediated gene targeting in zebrafish. Molecular characterization of this mutant line demonstrated that rps19 deficiency reproduced the erythroid defects of DBA, including a lack of mature red blood cells and p53 activation. Notably, we found that rps19 mutants' production of globin proteins was significantly inhibited; however, globin transcript level was either increased or unaffected in rps19 mutant embryos. This dissociation of RNA/protein levels of globin genes was confirmed in another zebrafish DBA model with defects in rpl11. Using transgenic zebrafish with specific expression of mCherry in erythroid cells, we showed that protein production in erythroid cells was decreased when either rps19 or rpl11 was mutated. L-Leucine treatment alleviated the defects of protein production in erythroid cells and partially rescued the anemic phenotype in both rps19 and rpl11 mutants. Analysis of this model suggests that the decreased protein production in erythroid cells likely contributes to the blood-specific phenotype of DBA. Furthermore, the newly generated rps19 zebrafish mutant should serve as a useful animal model to study DBA. Our in vivo findings may provide clues for the future therapy strategy for DBA.

  3. Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae.

    PubMed

    Wolf, D H; Ehmann, C

    1981-08-01

    A new carboxypeptidase (carboxypeptidase S) was found in a Saccharomyces cerevisiae strain lacking carboxypeptidase Y (D. H. Wolf and U. Weiser, Eur. J. Biochem. 73:553-556, 1977). Mutants devoid of carboxypeptidase S activity were isolated from a mutant strain that was also deficient in carboxypeptidase Y. Four mutants were analyzed in detail and fell into one complementation group. The defect segregated 2:2 in meiotic tetrads. Gene dosage experiments indicated that the mutation might reside in the structural gene of carboxypeptidase S. The absence of both enzymes, carboxypeptidases Y and S, did not affect mitotic growth. Ascopore formation was only slightly affected by the absence of both carboxypeptidases. Protein degradation under conditions of nutrient deprivation and under sporulation conditions showed no obvious alteration in the absence of carboxypeptidases Y and S. When a proteinase B mutation, which led to the absence of proteinase B activity and resulted in the partial reduction of sporulation, was introduced into a mutant lacking both carboxypeptidases, the ability of diploid cells to sporulate was nearly completely lost. Mutants lacking both carboxypeptidases were unable to grow on the dipeptide benzyloxycarbonylglycyl-l-leucine as a sole nitrogen source, which indicates an additional function for carboxypeptidases Y and S in supplying nutrients from exogenous peptides. Catabolite inactivation of fructose-1,6-bisphosphatase, cytoplasmic malate dehydrogenase, and phosphoenolpyruvate carboxykinase and inactivation of nicotin-amide adenine dinucleotide phosphate-dependent, glutamate dehydrogenase, events which have been proposed to involve proteolysis in vivo, were not dependent on the presence of carboxypeptidase Y and S. In a mutant lacking both carboxypeptidases, four new proteolytic enzymes with carboxypeptidase activity were detected. PMID:7021530

  4. Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Karami, M.; Gholami, M.; Hosseini, S. M.; Ghezelayagh, M. H.

    2010-10-01

    A single-mode non-adiabatic tapered optical fiber (NATOF) sensor was utilized for sensing the variation in refractive index (RI) with concentration of d-glucose in deionized water and measurement of the RI of amino acids (AAs) in carbohydrate solutions. This method showed a rewarding ability in understanding the basis of biomolecular interactions in biological systems. Due to high sensitivity, ease of application, low cost and real-time measurement, this method is more efficient in comparison with other techniques, such as calorimetric titration, NMR, UV absorption spectroscopy, x-ray crystallography, computer calculations, kinetic studies and chromatography data. The NATOF is fabricated by the heat pulling method, utilizing a CO2 laser. The limit of detection of the NATOF was 55 ppm for a d-glucose concentration ranging from 0 to 80 mg ml-1, and the limit of detection of the RI measurement corresponding to these concentrations in the range from 1.3330 to 1.3447 was 8.2 × 10-6 as a refractometer sensor. The response of the NATOF shows that different kinds of interactions of various groups of AAs, such as l-alanine, l-leucine and l-cysteine with d-glucose, sucrose and water molecules, depend on functional groups in AAs such as OH, SH, CH2, NH+3 and COO-. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making/breaking ability of solutes in the given solution. Such a study helps in the better understanding of the interactions occurring between AA molecules and entities present in biological matrices.

  5. Differences between Brahman and Holstein cows in heat-shock induced alterations of protein synthesis and secretion by oviducts and uterine endometrium.

    PubMed

    Malayer, J R; Hansen, P J

    1990-01-01

    Our objectives were to test differences in protein synthesis and secretion by cultured oviducts and endometrium from Brahman and Holstein cows and the response of those tissues to in vitro heat shock. Explants of oviductal tissue obtained at estrus from Holstein (n = 5) and Brahman (n = 6) cows were cultured at a homeothermic (39 degrees C) or heat shock (43 degrees C) temperature. At 6 h, cultures were pulse-chase labeled (2 h, L[4,5-3H]leucine; 2 h, L-leucine). Endometrial explants were cultured similarly except that pulse labeling was performed for the first 0 to 15, 0 to 30, 30 to 60 and 60 to 90 min following onset of heat shock. A temperature of 43 degrees C increased secretion of nondialyzable 3H-labeled macromolecules by both oviducts of Brahmans but depressed secretion by the oviduct ipsilateral to the side of ovulation of Holsteins. For both breeds, 43 degrees C decreased incorporation of [3H]leucine into trichloroacetic acid (TCA)-precipitable radioactivity in oviducts from the ipsilateral side. Secretion of 3H-labeled macromolecules by pulse-labeled endometrial explants increased at 43 degrees C. Heat shock caused an immediate increase in TCA-precipitable radioactivity in tissue during pulse labeling for Holstein tissues. Incorporation was decreased at 43 degrees C in tissue from Brahmans in the first 30 min and increased thereafter. Incorporation of [3H]thymidine by endometrial explants from Brahmans was increased at 43 degrees C, whereas it was suppressed at 43 degrees C in explants from Holstein cows. Heat shock proteins of 72,000 and 90,000 molecular weight were present in endometrial tissues. A major secretory product of endometrium had a molecular weight of 57,500 for Brahmans and a lower molecular weight (55,600) for Holsteins. PMID:2303398

  6. Effects of single-walled carbon nanotubes on soil microorganisms

    NASA Astrophysics Data System (ADS)

    Jin, L.; Chung, H.; Son, Y.

    2011-12-01

    Single-walled carbon nanotubes (SWCNTs) are novel materials that have the potential to be used in various commercial fields due to their unique physicochemical properties. As a result of commercial development of nanotechnology, SWCNTs may be discharged to the soil environment with unknown consequences. However, there are as yet no data in the scientific literature that demonstrate the effects of SWCNTs on microbial function in soils. Therefore, we aimed to determine the effects of SWCNTs on soil microbial activity through a 2-week incubation study on urban soils supplemented with different concentrations of SWCNTs ranging from 0 to 1000 μg CNT/g soil. Fluorometric test using fluorogenic substrates were employed for the measurement of several enzyme activities in soil samples. More specifically, we determined the changes in the activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase and acid phosphatase which play important roles in the carbon, nitrogen, and phosphorus cycles in response to the addition of SWCNTs. We found that microbial enzyme activities decreased as the concentrations of SWCNT added increased. The lowest enzyme activities were observed under 1000 μg CNT/g soil. The overall pattern shows that enzyme activities decreased slightly in the first 2-3 days and increased in the later stage of the incubation. Our results suggest that relatively high concentrations of SWCNTs can inhibit microbial activities, and this may be due to microbial cell membrane damage caused by SWCNTs. However, further study needs to be conducted to determine the mechanism responsible for inhibitory effect of SWCNTs on soil microbial activity. It can be concluded that changes in the activities of extracellular enzymes can indicate the effect of SWCNTs on soil microorganisms and nutrient cycling.

  7. Degradation capability of the coastal environment adjacent to the Itata River in central Chile (36.5° S)

    NASA Astrophysics Data System (ADS)

    Pantoja, S.; Gutiérrez, M. H.; Ampuero, P.; Tejos, E.

    2011-08-01

    The response of the coastal ocean influenced by both river discharges and inputs of photosynthetically derived organic carbon product of upwelling, was evaluated by estimating rates of microbial hydrolysis of macromolecules with the goal of estimating the potential degradation capability of the coastal ecosystem off central Chile. Extracellular enzymatic activity (EEA) in seawater was dominated by aminopeptidase activity on substrate L-leucine-4-methyl-7-coumarinylamide (MCA-leu) (1.2 to 182 nmol l-1 h-1) followed by 4-methylumbelliferyl-ß-D-glucoside (MUF-glu) (0.08-61 nmol l-1 h-1) and 4-methylumbelliferyl-ß-D-cellobiose (MUF-cel) (0.15-7 nmol l-1 h-1), with the highest rates measured during spring-summer. In riverine waters, extracellular enzymatic hydrolysis remained within the range of 45 to 131 nmol l-1 h-1 for MCA-leu and ca. 20 nmol l-1 h-1 for glucosidic substrates, year-round. Contrary to the EEA observed for the marine water column, surface sediment extracellular enzymatic hydrolysis of MCA-leu (0.04 to 6.13 nmol g-1 dw h-1) was in the same order of magnitude as the rates observed for MUF-cel (0.004 to 5.1 nmol g-1 dw h-1) and MUF-glu (0.007 to 10.5 nmol g-1 dw h-1). Moreover, hydrolysis in sediments was characterized by higher rates during winter compared with spring-summer in the coastal and estuarine zone. The five years of data allowed us to evaluate the potential capability of microbial processing of organic carbon in the coastal area adjacent to the Itata river discharge where the increase in primary production in the productive seasons is accompanied by the increase in hydrolysis of macromolecules.

  8. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) by recombinant Escherichia coli expressing leucine metabolism-related enzymes derived from Clostridium difficile.

    PubMed

    Saika, Azusa; Watanabe, Yoriko; Sudesh, Kumar; Tsuge, Takeharu

    2014-06-01

    An obligate anaerobic bacterium Clostridium difficile has a unique metabolic pathway to convert leucine to 4-methylvalerate, in which 4-methyl-2-pentenoyl-CoA (4M2PE-CoA) is an intermediate of this pathway. 4M2PE-CoA is also able to be converted to 3-hydroxy-4-methylvalerate (3H4MV), a branched side chain monomer unit, for synthesis of polyhydroxyalkanoate (PHA) copolymer. In this study, to synthesize 3H4MV-containing PHA copolymer from leucine, the leucine metabolism-related enzymes (LdhA and HadAIBC) derived from C. difficile and PHA biosynthesis enzymes (PhaPCJAc and PhaABRe) derived from Aeromonas caviae and Ralstonia eutropha were co-expressed in the codon usage-improved Escherichia coli. Under microaerobic culture conditions, this E. coli was able to synthesize P(3HB-co-12.2 mol% 3H4MV) from glucose with the supplementation of 1 g/L leucine. This strain also produced P(3HB-co-12.6 mol% 3H4MV) using the culture supernatant of leucine overproducer E. coli strain NS1391 as the medium for PHA production, achieving 3H4MV copolymer synthesis only from glucose. Furthermore, we tested the feasibility of the 3H4MV copolymer synthesis in E. coli strain NS1391 from glucose. The recombinant E. coli NS1391 was able to synthesize P(3HB-co-3.0 mol% 3H4MV) from glucose without any leucine supplementation. This study demonstrates the potential of the new metabolic pathway for 3H4MV synthesis using leucine metabolism-related enzymes from C. difficile.

  9. Light-Activated Amino Acid Transport Systems in Halobacterium halobium Envelope Vesicles: Role of Chemical and Electrical Gradients

    NASA Technical Reports Server (NTRS)

    MacDonald, Russell E.; Greene, Richard V.; Lanyi, Janos K.

    1977-01-01

    The accumulation of 20 commonly occurring L-amino acids by cell envelope vesicles of Halobacterium halobium, in response to light-induced membrane potential and an artificially created sodium gradient, has been studied. Nineteen of these amino acids are actively accumulated under either or both of these conditions. Glutamate is unique in that its uptake is driven only by a chemical gradient for sodium. Amino acid concentrations at half-maximal uptake rates (Km) and maximal transport rates (V(sub max) have been determined for the uptake of all 19 amino acids. The transport systems have been partially characterized with respect to groups of amino acids transported by common carriers, cation effects, and relative response to the electrical and chemical components of the sodium gradient, the driving forces for uptake. The data presented clearly show that the carrier systems, which are responsible for uptake of individual amino acids, are as variable in their properties as those found in other organisms, i. e., some are highly specific for individual amino acids, some transport several amino acids competitively, some are activated by a chemical gradient of sodium only, and some function also in the complete absence of such a gradient. For all amino acids, Na(+) and K(+) are both required for maximal rate of uptake. The carriers for L-leucine and L-histidine are symmetrical in that these amino acids are transported in both directions across the vesicle membrane. It is suggested that coupling of substrate transport to metabolic energy via transient ionic gradients may be a general phenomenon in procaryotes.

  10. Insulin-driven translational capacity is impaired in primary fibroblasts of Prader Willi.

    PubMed

    Meneghello, Cristiana; Segat, Daniela; Fortunati, Elisabetta

    2016-02-01

    Prader-Willi (PW) syndrome is a rare genetic disorder characterized by hypothalamic-pituitary abnormalities and severe hypotonia, hyperphagia, behavioural and psychiatric problems. Absence of satiety leads to severe obesity and frequently to diabetes. Furthermore, adult patients suffer from a severe loss of muscle mass, which severely impacts their quality of life. The mechanisms underlying alterations in muscle growth in PW remain to be clarified. In this study we explored the hypothesis that, in PW cells, alterations of protein synthesis are determined by dysfunctions in the promotion of cell growth. In order to study the molecular changes leading to dysfunction in protein translation, primary fibroblasts derived from four PW patients and five control subjects were used to study the insulin-mediated signaling pathway implicated in the control of protein synthesis by immunoblotting. Here we present, for the first time, evidences that the protein translation response to insulin is impaired in PW fibroblasts. Insulin alone has a major upregulatory effect on protein kinase B (AKT), glycogen synthase kinase (GSK3beta), while phosphorylation of p70S6K1 protein elongation factor controlled by mammalian target of rapamycin complex I (mTORC1) is reduced. In addition, we provide data that the response to insulin in PW cells can be restored by previous treatment with the amino acid L-Leucine (L-Leu). Our experiments in primary cell cultures demonstrate an impairment of insulin signaling that can be rescued by supplementation with the branched aminoacid L-Leu, indicating a possible therapeutic approach for alleviating muscle mass loss in PW patients. PMID:26989644

  11. Operon for biosynthesis of lipstatin, the Beta-lactone inhibitor of human pancreatic lipase.

    PubMed

    Bai, Tingli; Zhang, Daozhong; Lin, Shuangjun; Long, Qingshan; Wang, Yemin; Ou, Hongyu; Kang, Qianjin; Deng, Zixin; Liu, Wen; Tao, Meifeng

    2014-12-01

    Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-β-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the α-branched 3,5-dihydroxy fatty acid β-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two β-ketoacyl-acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the α-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the α-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3β-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the β-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique β-lactone ring. PMID:25239907

  12. Dietary Leucine Supplementation Improves the Mucin Production in the Jejunal Mucosa of the Weaned Pigs Challenged by Porcine Rotavirus

    PubMed Central

    Mao, Xiangbing; Liu, Minghui; Tang, Jun; Chen, Hao; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Zheng, Ping

    2015-01-01

    The present study was mainly conducted to determine whether dietary leucine supplementation could attenuate the decrease of the mucin production in the jejunal mucosa of weaned pigs infected by porcine rotavirus (PRV). A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets supplemented with 1.00% L-leucine or 0.68% L-alanine (isonitrogenous control) for 17 d. On day 11, all pigs were orally infused PRV or the sterile essential medium. During the first 10 d of trial, dietary leucine supplementation could improve the feed efficiency (P = 0.09). The ADG and feed efficiency were impaired by PRV infusion (P<0.05). PRV infusion also increased mean cumulative score of diarrhea, serum rotavirus antibody concentration and crypt depth of the jejunal mucosa (P<0.05), and decreased villus height: crypt depth (P = 0.07), goblet cell numbers (P<0.05), mucin 1 and 2 concentrations (P<0.05) and phosphorylated mTOR level (P<0.05) of the jejunal mucosa in weaned pigs. Dietary leucine supplementation could attenuate the effects of PRV infusion on feed efficiency (P = 0.09) and mean cumulative score of diarrhea (P = 0.09), and improve the effects of PRV infusion on villus height: crypt depth (P = 0.06), goblet cell numbers (P<0.05), mucin 1 (P = 0.08) and 2 (P = 0.07) concentrations and phosphorylated mTOR level (P = 0.08) of the jejunal mucosa in weaned pigs. These results suggest that dietary 1% leucine supplementation alleviated the decrease of mucin production and goblet cell numbers in the jejunal mucosa of weaned pigs challenged by PRV possibly via activation of the mTOR signaling. PMID:26336074

  13. Efficient fermentation of an improved synthetic grape must by enological and laboratory strains of Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Grape must or freshly pressed grape juice is a complex chemical matrix that impacts the efficiency of yeast fermentation. The composition of natural grape must (NGM) can be variable; thus, to ensure reproducibility, a synthetic grape must (SGM) with defined composition is commonly used. The aim of this work was to create conditions to advance the use of Saccharomyces cerevisiae laboratory strains for wine fermentation studies, considering previous results obtained for enological strains fermenting NGM under simulated winery conditions. We designed a new SGM formulation, ISA-SGM, by introducing specific modifications to a commonly used formulation, putting together previous reports. We added glucose and fructose in equal amounts (125 g/l) and 50 parts per million (ppm) sulfur dioxide (SO2, corresponding to standard enological treatment), and we optimized the concentrations of malic acid (3 g/l), citric acid (0.3 g/l), and tartaric acid (3 g/l). Using ISA-SGM, we obtained similar fermentative profiles for the wine strain ISA1000, the prototrophic strain S288C, and its auxotrophic derivative BY4741. In this case, the concentrations of supplements were optimized to 120 mg/l L-uracil, 80 mg/l L-methionine, 400 mg/l L-leucine, and 100 mg/l L-histidine. All these strains tested in ISA-SGM presented a similar fermentative performance as ISA1000 in NGM. ISA-SGM formulation is a promising new tool to allow the use of the auxotrophic BY strains in the detailed assessment of the alcoholic fermentation process under simulated winery conditions, and it provides a foundation to extract relevant physiological conclusions in future research on enological yeast traits. PMID:24949253

  14. Facile electrochemical detection of botulinum neurotoxin type E using a two-step proteolytic cleavage.

    PubMed

    Park, Seonhwa; Shin, Yu Mi; Song, Ji-Joon; Yang, Haesik

    2015-10-15

    Facile electrochemical methods for measuring protease concentration or protease activity are essential for point-of-care testing of toxic proteases. However, electrochemical detection of proteases, such as botulinum neurotoxin type E (BoNT/E), that cleave a peptide bond between two specific amino acid residues is challenging. This study reports a facile and sensitive electrochemical method for BoNT/E detection. The method is based on a two-step proteolytic cleavage using a target BoNT/E light chain (BoNT/E-LC) and an externally supplemented exopeptidase, L-leucine-aminopeptidase (LAP). BoNT/E-LC cleaves a peptide bond between arginine and isoleucine in IDTQNRQIDRI-4-amino-1-naphthol (oligopeptide-AN) to generate isoleucine-AN. Subsequently, LAP cleaves a bond between isoleucine and AN to liberate a free electroactive AN species. The liberated AN participates in electrochemical-chemical-chemical (ECC) redox cycling involving Ru(NH3)6(3+), AN, and a reducing agent, which allows a high signal amplification. Electrochemical detection is carried out without surface modification of indium-tin oxide electrodes. We show that dithiothreitol is beneficial for enhancing the enzymatic activity of BoNT/E-LC and also for achieving a fast ECC redox cycling. An incubation temperature of 37°C and the use of phosphate buffered saline (PBS) buffer resulted in optimal signal-to-background ratios for efficient BoNT/E detection. BoNT/E-LC could be detected at concentrations of approximately 2.0 pg/mL, 0.2, and 3 ng/mL after 4h, 2h, and 15 min incubation in PBS buffer, respectively, and approximately 0.3 ng/mL after 2-h incubation in bottled water. The method developed could be applied in fast, sensitive, and selective detection of any protease that cleaves a peptide bond between two specific amino acid residues.

  15. Intracellular production of beta A4 amyloid of Alzheimer's disease: modulation by phosphoramidon and lack of coupling to the secretion of the amyloid precursor protein.

    PubMed

    Fuller, S J; Storey, E; Li, Q X; Smith, A I; Beyreuther, K; Masters, C L

    1995-06-27

    The amyloid precursor protein (APP) undergoes abnormal metabolism in Alzheimer's disease, resulting in the accumulation of beta A4 amyloid in the brain. Normal APP metabolism includes the release of a truncated form (sAPP) which has been cleaved at the alpha-secretase site within the beta A4 amyloidogenic domain. However, intact forms of beta A4 protein may also be generated by the beta- and gamma-secretases. Soluble forms of beta A4 have been detected in various cell lines and in cerebrospinal fluid. Previous studies of protein kinase C activation have suggested a reciprocal relationship between sAPP secretion and beta A4 production and release. We find that phorbol ester activation of protein kinase C in untransfected SH-SY5Y neuroblastoma cells increases the release of sAPP without affecting beta A4 secretion. We provide further evidence for intracellular beta A4 production. Treatment of SY5Y cells with the protease inhibitor phosphoramidon results in a 2-fold increase in beta A4 secretion and an increase in the amount of beta A4 recovered from cell lysates, yet it does not affect sAPP secretion. The protease inhibitors thiorphan and N-[(RS)-2-carboxy-3-phenylpropanoyl]-L-leucine had no effect on beta A4 or sAPP secretion. The lysosomotropic agents chloroquine and NH4Cl decreased beta A4 secretion, providing additional evidence for the involvement of intracellular acidic compartments in the production of beta A4. Our results therefore demonstrate a double dissociation between the secretion of sAPP and beta A4 in the SH-SY5Y cell line. The effect of phosphoramidon supports previous studies which show that metalloproteases are involved in the biogenesis of beta A4.

  16. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    SciTech Connect

    Kamolrat, Torkamol; Gray, Stuart R.

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  17. RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs.

    PubMed

    Rinaldi, Gabriel; Morales, Maria E; Alrefaei, Yousef N; Cancela, Martín; Castillo, Estela; Dalton, John P; Tort, José F; Brindley, Paul J

    2009-10-01

    Schistosoma mansoni leucine aminopeptidase (LAP) is thought to play a central role in hatching of the miracidium from the schistosome egg. We identified two discrete LAPs genes in the S. mansoni genome, and their orthologs in S. japonicum. The similarities in sequence and exon/intron structure of the two genes, LAP1 and LAP2, suggest that they arose by gene duplication and that this occurred before separation of the mansoni and japonicum lineages. The SmLAP1 and SmLAP2 genes have different expression patterns in diverse stages of the cycle; whereas both are equally expressed in the blood dwelling stages (schistosomules and adult), SmLAP2 expression was higher in free living larval (miracidia) and in parasitic intra-snail (sporocysts) stages. We investigated the role of each enzyme in hatching of schistosome eggs and the early stages of schistosome development by RNA interference (RNAi). Using RNAi, we observed marked and specific reduction of mRNAs, along with a loss of exopeptidase activity in soluble parasite extracts against the diagnostic substrate l-leucine-7-amido-4-methylcoumarin hydroxide. Strikingly, knockdown of either SmLAP1 or SmLAP2, or both together, was accompanied by >or=80% inhibition of hatching of schistosome eggs showing that both enzymes are important to the escape of miracidia from the egg. The methods employed here refine the utility of RNAi for functional genomics studies in helminth parasites and confirm these can be used to identify potential drug targets, in this case schistosome aminopeptidases. PMID:19463860

  18. Jejunal microvilli atrophy and reduced nutrient transport in rats with advanced liver cirrhosis: improvement by Insulin-like Growth Factor I

    PubMed Central

    Castilla-Cortázar, Inma; Pascual, María; Urdaneta, Elena; Pardo, Javier; Puche, Juan Enrique; Vivas, Bárbara; Díaz-Casares, Amelia; García, María; Díaz-Sánchez, Matías; Varela-Nieto, Isabel; Castilla, Alberto; González-Barón, Salvador

    2004-01-01

    Background Previous results have shown that in rats with non-ascitic cirrhosis there is an altered transport of sugars and amino acids associated with elongated microvilli. These alterations returned to normal with the administration of Insulin-Like Growth Factor-I (IGF-I). The aims of this study were to explore the evolution of these alterations and analyse the effect of IGF-I in rats with advanced cirrhosis and ascites. Thus, jejunal structure and nutrient transport (D-galactose, L-leucine, L-proline, L-glutamic acid and L-cystine) were studied in rats with ascitic cirrhosis. Methods Advanced cirrhosis was induced by CCl4 inhalation and Phenobarbital administration for 30 weeks. Cirrhotic animals were divided into two groups which received IGF-I or saline during two weeks. Control group was studied in parallel. Jejunal microvilli were studied by electron microscopy. Nutrient transport was assessed in brush border membrane vesicles using 14C or 35S-labelled subtracts in the three experimental groups. Results Intestinal active Na+-dependent transport was significantly reduced in untreated cirrhotic rats. Kinetic studies showed a decreased Vmax and a reduced affinity for sugar and four amino acids transporters (expressed as an increased Kt) in the brush border membrane vesicles from untreated cirrhotic rats as compared with controls. Both parameters were normalised in the IGF-I-treated cirrhotic group. Electron microscopy showed elongation and fusion of microvilli with degenerative membrane lesions and/or notable atrophy. Conclusions The initial microvilli elongation reported in non ascitic cirrhosis develops into atrophy in rats with advanced cirrhosis and nutrient transports (monosaccharides and amino acids) are progressively reduced. Both morphological and functional alterations improved significantly with low doses of IGF-I. PMID:15196310

  19. Measurement of protein synthesis in human skeletal muscle: further investigation of the flooding technique.

    PubMed

    McNurlan, M A; Essen, P; Heys, S D; Buchan, V; Garlick, P J; Wernerman, J

    1991-10-01

    1. The rate of protein synthesis in quadriceps muscle of healthy subjects estimated from the incorporation of L-[1-13C]leucine given by continuous infusion was 1.1%/day. The estimate of protein synthesis from the incorporation of a flooding amount of labelled leucine was 1.8%/day (SD 0.65). The possibility that the higher rate obtained with the flooding technique arose from stimulation of protein synthesis by the large amount of leucine is unlikely. 2. The same rate of protein synthesis (1.7%/day, SD 0.3) was obtained with a flooding amount (0.05 g/kg) of a different amino acid, L-[1-13C]phenylalanine, as was obtained with leucine. 3. Incorporation of L-[1-13C]phenylalanine was not affected by simultaneous injection of leucine (1.7%/day, SD 0.7) or valine (1.6%/day, SD 0.4). 4. Protein synthesis, assessed in a completely different way from the proportion of polyribosomes isolated from the skeletal muscle, was unaltered by the injection of 0.05 g of L-leucine/kg (44.6%, SD 8.5 versus 43.8%, SD 7.7). 5. Good agreement in estimates of protein synthesis was observed in subjects in whom both legs were measured with both L-[1-13C]leucine (mean difference 0.16%/day) and L-[1-13C]phenylalanine (mean difference 0.2%/day).

  20. Thiolation of polycarbophil enhances its inhibition of intestinal brush border membrane bound aminopeptidase N.

    PubMed

    Bernkop-Schnürch, A; Zarti, H; Walker, G F

    2001-11-01

    The purpose of this study was to evaluate the potential of polycarbophil-cysteine conjugates (PCP-Cys) as an oral excipient to protect leucine enkephalin (leu-enkp) from enzymatic degradation by the intestinal mucosa. Cysteine was covalently linked to polycarbophil by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC). Inhibitory activity was tested towards isolated aminopeptidase N and excised intact pig intestinal mucosa, with native mucus. Aminopeptidase N activity was assayed spectrophotometrically using L-leucine p-nitroanilide (leu-pNA) as a synthetic substrate and against the model peptide drug leu-enkp, by high-performance liquid chromatography (HPLC). Free cysteine at 6.3 and 63 microM (pH 6) significantly (p < 0.05) inhibited aminopeptidase N activity, and PCP-Cys (0.25% w/v, pH 6) had a significantly (p < 0.05) greater inhibitory effect than PCP on the aminopeptidase N activity towards both substrates. PCP-Cys completely protected leu-enkp against aminopeptidase N activity over a 2-h incubation period, whereas 83 +/- 4 and 60 +/- 7% remained stable in the presence of PCP and buffer only, respectively. Leu-enkp in the absence and presence of PCP (0.25% w/v) at pH 6 was completely digested by the intact intestinal mucosa at the 60- and 90-min incubation time points, respectively, whereas in the presence of PCP-Cys (0.25% w/v, pH 6) 11 +/- 3.5% of leu-enkp remained at the 120-min time point. Thiolation of PCP increased the stability of leu-enkp against the enzymatic degradation by aminopeptidase N and the intact intestinal mucosa, identifying a promising new excipient for peroral delivery of peptides.