Sample records for l-leucyl-l-leucine methyl ester

  1. L-Leucyl-L-Leucine Methyl Ester Treatment of Canine Marrow and Peripheral Blood Cells: Inhibition of Proliferative Responses with Maintenance of the Capacity for Autologous Marrow Engraftment

    DTIC Science & Technology

    1988-11-01

    Copyright 0 198 by The Winiams & Wilkins Co. Printed in U.S.A. L-LEUCYL-L-LEUCINE METHYL ESTER TREATMENT OF CANINE MARROW AND PERIPHERAL BLOOD CELLS...Reearch CeThs eatetle, Washington 9%104 tInaiyuba on o canine UMrrowt and peripher hi Recently, Thiele and Lipsky have described adipeptide nionon clear...that marrow iincubation with Leu-Leu. Leu-Leu-OMe is a feasible method to deplete canine marrows of aloreactive and cytotoxic T cells prior to OMe

  2. L-Leucyl-L-Leucine Methyl Ester Treatment of Canine Marrow and Peripheral Blood Cells

    DTIC Science & Technology

    1988-11-01

    comple- OMe or MeOll treament of 7-day B-MIX generated CTL (day 7). merit, and incubated agan for 60 run. After washing twice in medium, CThe "mt mixed...cytotoxic T useed methods of marrow T cell depletion. It needs to be dete. cells. J Immunol 1967; 136: 61. mined whether treament of marrow with

  3. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury

    PubMed Central

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-01-01

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis. PMID:23921551

  4. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.

    PubMed

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-08-28

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.

  5. A dipeptide and an amino acid present in whey protein hydrolysate increase translocation of GLUT-4 to the plasma membrane in Wistar rats.

    PubMed

    Morato, P N; Lollo, P C B; Moura, C S; Batista, T M; Carneiro, E M; Amaya-Farfan, J

    2013-08-15

    Whey protein hydrolysate (WPH) is capable of increasing muscle glycogen reserves and of concentrating the glucose transporter in the plasma membrane (PM). The objective of this study was to determine which WPH components could modulate translocation of the glucose transporter GLUT-4 to the PM of animal skeletal muscle. Forty-nine animals were divided into 7 groups (n=7) and received by oral gavage 30% glucose plus 0.55 g/kg body mass of the following WPH components: (a) control; (b) WPH; (c) L-isoleucine; (d) L-leucine; (e) L-leucine plus L-isoleucine; (f) L-isoleucyl-L-leucine dipeptide; (g) L-leucyl-L-isoleucine dipeptide. After receiving these solutions, the animals were sacrificed and the GLUT-4 analysed by western blot. Additionally, glycogen, glycaemia, insulin and free amino acids were also determined by standard methods. Of the WPH components tested, the amino acid L-isoleucine and the peptide L-leucyl-L-isoleucine showed greater efficiency in translocating GLUT-4 to the PM and of increasing glucose capture by skeletal muscle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. 21 CFR 172.829 - Neotame.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Neotame is the chemical N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine-1-methyl ester (CAS Reg. No... acid (N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine), not more than 1.5 percent. (3) Other... neotame is used as a sugar substitute tablet, L-leucine may be used as a lubricant in the manufacture of...

  7. Three new amino acid derivatives from edible mushroom Pleurotus ostreatus.

    PubMed

    Lu, Xiao-Jie; Feng, Bao-Min; Chen, Shao-Fei; Zhao, Dan; Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu

    2017-12-01

    Three new amino acid derivatives, oxalamido-L-phenylalanine methyl ester (1), oxalamido-L-leucine methyl ester (2), and lumichrome hydrolyzate (3), together with nine known compounds (4-12), were isolated from the solid culture of edible mushroom Pleurotus ostreatus. Their structures were elucidated on the basis of extensive spectroscopic analysis. The absolute configurations of 1 and 2 were established by the chiral synthesis and confirmed by circular dichroism (CD) analysis of their total synthesis products and natural isolates. All new compounds were evaluated for their antioxidant effects, antimicrobial activities, and cytotoxic activity. Compounds 1-3 showed weak antifungal activities against Candida albicans with minimum inhibitory concentration (MIC) value of 500 μg/ml.

  8. Constituents of cultivated Agaricus blazei.

    PubMed

    Ueguchi, Yumi; Matsunami, Katsuyoshi; Otsuka, Hideaki; Kondo, Kazunari

    2011-04-01

    Two phenylhexane derivatives (1, 2), benzoylergostane (3), N-benzoyl-L-leucine methyl ester (4), two known ergostanes, and highly degraded incisterol were isolated from fruit bodies of Agaricus blazei. Compound 3 exhibited strong cytotoxicity toward HepG2 cells (IC(50) = 6.0 ± 0.33 μM).

  9. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    PubMed

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  10. New dicyclopeptides from Dianthus chinensis.

    PubMed

    Han, Jing; Wang, Zhe; Zheng, Yu-Qing; Zeng, Guang-Zhi; He, Wen-Jun; Tan, Ning-Hua

    2014-05-01

    One new dicyclopeptide cyclo-(L-N-methyl Glu-L-N-methyl Glu) (1), together with one new natural dicyclopeptide cyclo-(L-methyl Glu ester-L-methyl Glu ester) (2), and two known dicyclopeptides cyclo-(L-methyl Glu ester-L-Glu) (3), and cyclo-(L-Glu-L-Glu) (4), were isolated from the aerial parts of Dianthus chinensis L. Their structures were determined by spectroscopic analyses and chemical methods.

  11. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  12. Effect of tyrosine administration on duodenal ulcer induced by cysteamine in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, T.; Szabo, S.

    1987-03-01

    Duodenal ulcers were produced by administering cysteamine to rats. Pretreatment with the catecholamine precursor, L-tyrosine (40 mg/100 g i.p. for 5 days), decreased the intensity of duodenal ulcers induced by cysteamine. Equimolar doses of tyrosine methyl ester (51.2 mg/100 g i.p. or s.c.) were equally effective in reducing ulcer intensity. Other amino acids (i.e., alanine, aspartic acid, glutamic acid, glycine, leucine, lysine, tryptophan and valine) did not prevent experimental duodenal ulcers. Coadministration of other large neutral amino acids (e.g., leucine and valine) that compete with tyrosine for uptake into the brain did not inhibit the effect of tyrosine on duodenalmore » ulcers induced by cysteamine. Gastric, duodenal and brain dopamine concentrations were increased 1 hr after the injection of tyrosine methyl ester (25.6 mg/100 g s.c.). These results suggest that the effect of tyrosine on duodenal ulcer induced by cysteamine may be mediated by changes in gastrointestinal dopamine metabolism.« less

  13. Trapping Phyllophaga spp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants.

    PubMed Central

    Robbins, Paul S.; Alm, Steven R.; Armstrong, Charles. D.; Averill, Anne L.; Baker, Thomas C.; Bauernfiend, Robert J.; Baxendale, Frederick P.; Braman, S. Kris; Brandenburg, Rick L.; Cash, Daniel B.; Couch, Gary J.; Cowles, Richard S.; Crocker, Robert L.; DeLamar, Zandra D.; Dittl, Timothy G.; Fitzpatrick, Sheila M.; Flanders, Kathy L.; Forgatsch, Tom; Gibb, Timothy J.; Gill, Bruce D.; Gilrein, Daniel O.; Gorsuch, Clyde S.; Hammond, Abner M.; Hastings, Patricia D.; Held, David W.; Heller, Paul R.; Hiskes, Rose T.; Holliman, James L.; Hudson, William G.; Klein, Michael G.; Krischik, Vera L.; Lee, David J.; Linn, Charles E.; Luce, Nancy J.; MacKenzie, Kenna E.; Mannion, Catherine M.; Polavarapu, Sridhar; Potter, Daniel A.; Roelofs, Wendell L.; Royals, Brian M.; Salsbury, Glenn A.; Schiff, Nathan M.; Shetlar, David J.; Skinner, Margaret; Sparks, Beverly L.; Sutschek, Jessica A.; Sutschek, Timothy P.; Swier, Stanley R.; Sylvia, Martha M.; Vickers, Neil J.; Vittum, Patricia J.; Weidman, Richard; Weber, Donald C.; Williamson, R. Chris; Villani, Michael G

    2006-01-01

    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera: Scarabaeidae: Melolonthinae) were captured and identified. Three major findings included: (1) widespread use of the two compounds [of the 147 Phyllophaga (sensu stricto) species found in the United States and Canada, males of nearly 40% were captured]; (2) in most species intraspecific male response to the pheromone blends was stable between years and over geography; and (3) an unusual pheromone polymorphism was described from P. anxia. Populations at some locations were captured with L-valine methyl ester alone, whereas populations at other locations were captured with L-isoleucine methyl ester alone. At additional locations, the L-valine methyl ester-responding populations and the L-isoleucine methyl ester-responding populations were both present, producing a bimodal capture curve. In southeastern Massachusetts and in Rhode Island, in the United States, P. anxia males were captured with blends of L-valine methyl ester and L-isoleucine methyl ester. PMID:19537965

  14. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    PubMed

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway differentially. Our results indicated that antioxidant therapy, by melatonin or N-acetylcysteine, in pregnant rats with nitric oxide deficiency can prevent programmed hypertension in male adult offspring. Early intervention with specific antioxidants that target redox imbalance in pregnancy to reprogram hypertension may well allow us to reduce the future burden of hypertension. The roles of transcriptome changes that are induced by N G -nitro-L-arginine-methyl ester in the offspring kidney require further clarification. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions.

    PubMed

    Hiralal, Lettisha; Olaniran, Ademola O; Pillay, Balakrishna

    2014-01-01

    A broad range of aroma-active esters produced during fermentation are vital for the complex flavour of beer. This study assessed the influence of fermentation temperature, pH, and wort nutritional supplements on the production of yeast-derived ester compounds and the overall fermentation performance. The best fermentation performance was achieved when wort was supplemented with 0.75 g/l l-leucine resulting in highest reducing sugar and FAN (free amino nitrogen) utilization and ethanol production. At optimum fermentation pH of 5, 38.27% reducing sugars and 35.28% FAN was utilized resulting in 4.07% (v/v) ethanol. Wort supplemented with zinc sulphate (0.12 g/l) resulted in 5.01% ethanol (v/v) production and 54.32% reducing sugar utilization. Increase in fermentation temperature from 18°C to room temperature (± 22.5°C) resulted in 17.03% increased ethanol production and 14.42% and 62.82% increase in total acetate ester concentration and total ethyl ester concentration, respectively. Supplementation of worth with 0.12 g/l ZnSO4 resulted in 2.46-fold increase in both isoamyl acetate and ethyl decanoate concentration, while a 7.05-fold and 1.96-fold increase in the concentration of isoamyl acetate and ethyl decanoate, respectively was obtained upon 0.75 g/l l-leucine supplementation. Wort supplemented with l-leucine (0.75 g/l) yielded the highest beer foam head stability with a rating of 2.67, while highest yeast viability was achieved when wort was supplemented with 0.12 g/l zinc sulphate. Results from this study suggest that supplementing wort with essential nutrients required for yeast growth and optimizing the fermentation conditions could be an effective way of improving fermentation performance and controlling aroma-active esters in beer. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    PubMed

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  17. Cyclo(l-Leucyl-l-Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus

    PubMed Central

    Yan, Pei-Sheng; Song, Yuan; Sakuno, Emi; Nakajima, Hiromitsu; Nakagawa, Hiroyuki; Yabe, Kimiko

    2004-01-01

    Aflatoxins are potent carcinogenic and toxic substances that are produced primarily by Aspergillus flavus and Aspergillus parasiticus. We found that a bacterium remarkably inhibited production of norsolorinic acid, a precursor of aflatoxin, by A. parasiticus. This bacterium was identified as Achromobacter xylosoxidans based on its 16S ribosomal DNA sequence and was designated A. xylosoxidans NFRI-A1. A. xylosoxidans strains commonly showed similar inhibition. The inhibitory substance(s) was excreted into the medium and was stable after heat, acid, or alkaline treatment. Although the bacterium appeared to produce several inhibitory substances, we finally succeeded in purifying a major inhibitory substance from the culture medium using Diaion HP20 column chromatography, thin-layer chromatography, and high-performance liquid chromatography. The purified inhibitory substance was identified as cyclo(l-leucyl-l-prolyl) based on physicochemical methods. The 50% inhibitory concentration for aflatoxin production by A. parasiticus SYS-4 (= NRRL2999) was 0.20 mg ml−1, as determined by the tip culture method. High concentrations (more than 6.0 mg ml−1) of cyclo(l-leucyl-l-prolyl) further inhibited fungal growth. Similar inhibitory activities were observed with cyclo(d-leucyl-d-prolyl) and cyclo(l-valyl-l-prolyl), whereas cyclo(d-prolyl-l-leucyl) and cyclo(l-prolyl-d-leucyl) showed weaker activities. Reverse transcription-PCR analyses showed that cyclo(l-leucyl-l-prolyl) repressed transcription of the aflatoxin-related genes aflR, hexB, pksL1, and dmtA. This is the first report of a cyclodipeptide that affects aflatoxin production. PMID:15574949

  18. Bioactivity of food peptides: biological response of rats to bovine milk whey peptides following acute exercise

    PubMed Central

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Risso, Eder Muller; Amaya-Farfan, Jaime

    2017-01-01

    ABSTRACT Background: Several physiologically beneficial effects of consuming a whey protein hydrolysate (WPH) have been attributed to the greater availability of bioactive peptides. Aims: The aim was to investigate the effect of four branched-chain amino acid- (BCAA-)containing dipeptides, present in WPH, on immune modulation, stimulation of HSP expression, muscle protein synthesis, glycogen content, satiety signals and the impact of these peptides on the plasma free amino acid profiles. Methods: The animals were divided in groups: control (rest, without gavage), vehicle (water), L-isoleucyl-L-leucine (lle-Leu), L-leucyl-L-isoleucine (Leu-lle), L-valyl-Lleucine (Val-Leu), L-leucyl-L-valine (Leu-Val) and WPH. All animals were submitted to acute exercise, except for control. Results: lle-Leu stimulated immune response, hepatic and muscle glycogen and HSP60 expression, whereas Leu-Val enhanced HSP90 expression. All dipeptides reduced glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, no changes were observed on leptin. All peptides inhibited NF-kB expression. The plasma amino acid time-course showed peptide-specific and isomer-specific metabolic features, including increases of the BCAAs. Conclusion: The data indicate that lle-Leu was effective to attenuate immune-suppression exercise-induced, promoted glycogen content and stimulated anti-stress effect (HSP). Furthermore, Leu-Val increased HSP90, p-4EBP1, p-mTOR and p-AMPK expression. The data suggest the involvement of these peptides in various beneficial functions of WPH consumption. PMID:28326005

  19. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    PubMed Central

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  20. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    PubMed

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  2. Development of an HPLC Method with an ODS Column to Determine Low Levels of Aspartame Diastereomers in Aspartame

    PubMed Central

    Ohtsuki, Takashi; Nakamura, Ryoichiro; Kubo, Satoru; Otabe, Akira; Oobayashi, Yoko; Suzuki, Shoko; Yoshida, Mika; Yoshida, Mitsuya; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi

    2016-01-01

    α-L-Aspartyl-D-phenylalanine methyl ester (L, D-APM) and α-D-aspartyl-L-phenylalanine methyl ester (D, L-APM) are diastereomers of aspartame (N-L-α-Aspartyl-L-phenylalanine-1-methyl ester, L, L-APM). The Joint FAO/WHO Expert Committee on Food Additives has set 0.04 wt% as the maximum permitted level of the sum of L, D-APM and D, L-APM in commercially available L, L-APM. In this study, we developed and validated a simple high-performance liquid chromatography (HPLC) method using an ODS column to determine L, D-APM and D, L-APM in L, L-APM. The limits of detection and quantification, respectively, of L, D-APM and D, L-APM were found to be 0.0012 wt% and 0.004 wt%. This method gave excellent accuracy, repeatability, and reproducibility in a recovery test performed on five different days. Moreover, the method was successfully applied to the determination of these diastereomers in commercial L, L-APM samples. Thus, the developed method is a simple, useful, and practical tool for determining L, D-APM and D, L-APM levels in L, L-APM. PMID:27015640

  3. Development of an HPLC Method with an ODS Column to Determine Low Levels of Aspartame Diastereomers in Aspartame.

    PubMed

    Ohtsuki, Takashi; Nakamura, Ryoichiro; Kubo, Satoru; Otabe, Akira; Oobayashi, Yoko; Suzuki, Shoko; Yoshida, Mika; Yoshida, Mitsuya; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi

    2016-01-01

    α-L-Aspartyl-D-phenylalanine methyl ester (L, D-APM) and α-D-aspartyl-L-phenylalanine methyl ester (D, L-APM) are diastereomers of aspartame (N-L-α-Aspartyl-L-phenylalanine-1-methyl ester, L, L-APM). The Joint FAO/WHO Expert Committee on Food Additives has set 0.04 wt% as the maximum permitted level of the sum of L, D-APM and D, L-APM in commercially available L, L-APM. In this study, we developed and validated a simple high-performance liquid chromatography (HPLC) method using an ODS column to determine L, D-APM and D, L-APM in L, L-APM. The limits of detection and quantification, respectively, of L, D-APM and D, L-APM were found to be 0.0012 wt% and 0.004 wt%. This method gave excellent accuracy, repeatability, and reproducibility in a recovery test performed on five different days. Moreover, the method was successfully applied to the determination of these diastereomers in commercial L, L-APM samples. Thus, the developed method is a simple, useful, and practical tool for determining L, D-APM and D, L-APM levels in L, L-APM.

  4. The impact of intrarenal nitric oxide synthase inhibition on renal blood flow and function in mild and severe hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Bellomo, Rinaldo; May, Clive N

    2011-04-01

    In experimental hyperdynamic sepsis, renal function deteriorates despite renal vasodilatation and increased renal blood flow. Because nitric oxide is increased in sepsis and participates in renal blood flow control, we investigated the effects of intrarenal Nω-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, in mild and severe sepsis. Prospective crossover and randomized control interventional studies. University-affiliated research institute. Thirty-two merino ewes. Examination of responses to intrarenal infusion of Nω-nitro-L-arginine methyl ester for 8 hrs in unilaterally nephrectomized normal sheep and in sheep administered Escherichia coli. : In normal sheep, Nω-nitro-L-arginine methyl ester decreased renal blood flow (301 ± 30 to 228 ± 26 mL/min) and creatinine clearance (40.0 ± 5.8 to 31.1 ± 2.8 mL/min), whereas plasma creatinine increased, but fractional excretion of sodium was unchanged. In sheep with nonhypotensive hyperdynamic sepsis, plasma creatinine increased and there were decreases in creatinine clearance (34.5 ± 4.6 to 20.1 ± 3.7 mL/min) and fractional excretion of sodium despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester normalized renal blood flow and increased urine output, but creatinine clearance did not improve and plasma creatinine and fractional excretion of sodium increased. In sheep with severe hypotensive sepsis, creatinine clearance decreased further (31.1 ± 5.4 to 16.0 ± 1.7 mL/min) despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester restored mean arterial pressure and reduced renal blood flow but did not improve plasma creatinine or creatinine clearance. In hyperdynamic sepsis, with or without hypotension, creatinine clearance decreased despite increasing renal blood flow. Intrarenal Nω-nitro-L-arginine methyl ester infusion reduced renal blood flow but did not improve creatinine clearance. These data indicate that septic acute kidney injury is not the result of decreased renal blood flow nor is it improved by nonspecific nitric oxide synthase inhibition.

  5. The lysosomotropic drug LeuLeu-OMe induces lysosome disruption and autophagy-independent cell death in Trypanosoma brucei

    PubMed Central

    Koh, Hazel X.; Aye, Htay M.; Tan, Kevin S. W.; He, Cynthia Y.

    2015-01-01

    Background: Trypanosoma brucei is a blood-borne, protozoan parasite that causes African sleeping sickness in humans and nagana in animals. The current chemotherapy relies on only a handful of drugs that display undesirable toxicity, poor efficacy and drug-resistance. In this study, we explored the use of lysosomotropic drugs to induce bloodstream form T. brucei cell death via lysosome destabilization. Methods: We measured drug concentrations that inhibit cell proliferation by 50% (IC50) for several compounds, chosen based on their lysosomotropic effects previously reported in Plasmodium falciparum. The lysosomal effects and cell death induced by L-leucyl-L-leucyl methyl ester (LeuLeu-OMe) were further analyzed by flow cytometry and immunofluorescence analyses of different lysosomal markers. The effect of autophagy in LeuLeu-OMe-induced lysosome destabilization and cytotoxicity was also investigated in control and autophagy-deficient cells. Results: LeuLeu-OMe was selected for detailed analyses due to its strong inhibitory profile against T. brucei with minimal toxicity to human cell lines in vitro. Time-dependent immunofluorescence studies confirmed an effect of LeuLeu-OMe on the lysosome. LeuLeu-OMe-induced cytotoxicity was also found to be dependent on the acidic pH of the lysosome. Although an increase in autophagosomes was observed upon LeuLeu-OMe treatment, autophagy was not required for the cell death induced by LeuLeu-OMe. Necrosis appeared to be the main cause of cell death upon LeuLeu-OMe treatment. Conclusions: LeuLeu-OMe is a lysosomotropic agent capable of destabilizing lysosomes and causing necrotic cell death in bloodstream form of T. brucei. PMID:28357304

  6. Progesterone up-regulates vasodilator effects of calcitonin gene-related peptide in N(G)-nitro-L-arginine methyl ester-induced hypertension.

    PubMed

    Gangula, P R; Wimalawansa, S J; Yallampalli, C

    1997-04-01

    We recently reported that calcitonin gene-related peptide can reverse the hypertension produced by N(G)-nitro-L-arginine methyl ester in pregnant rats. In the current study we investigated whether these vasodilator effects of calcitonin gene-related peptide were progesterone dependent. Calcitonin gene-related peptide or N(G)-nitro-L-arginine methyl ester was infused through osmotic minipumps, either separately or in combination, to groups of five pregnant rats from day 17 of gestation until day 8 post partum or to nonpregnant ovariectomized rats for 8 days. Progesterone was injected during days 1 to 6 post partum and for 6 days after ovariectomy. Systolic blood pressure was measured daily. Animals receiving N(G)-nitro-L-arginine methyl ester exhibited significant elevations of blood pressure during pregnancy and post partum. Coadministration of calcitonin gene-related peptide to these rats reversed the hypertension during pregnancy but not during the postpartum period. At the dose used in this study calcitonin gene-related peptide administered alone was without significant effects on blood pressure. However, it reduced both the mortality and growth restriction of the fetus associated with N(G)-nitro-L-arginine methyl ester in these animals. Calcitonin gene-related peptide reversed the hypertension in N(G)-nitro-L-arginine methyl ester-infused postpartum rats during the periods of progesterone treatment only, and these effects were lost when progesterone treatment was stopped. Neither progesterone nor calcitonin gene-related peptide alone were effective. To further confirm these observations, progesterone effects were tested in ovariectomized adult rats. Similar to the findings in postpartum rats, calcitonin gene-related peptide completely reversed the elevation in blood pressure in N(G)-nitro-L-arginine methyl ester-treated rats receiving progesterone injections. The effects of calcitonin gene-related peptide were apparent only during the progesterone treatment period, and these effects were lost when progesterone treatment was stopped. Again, at these doses calcitonin gene-related peptide and progesterone were each ineffective alone. Calcitonin gene-related peptide reverses the N(G)-nitro-L-arginine methyl ester-induced hypertension during pregnancy, when progesterone levels are elevated, but not post partum or in ovariectomized nonpregnant rats. The blood pressure-lowering effects of calcitonin gene-related peptide were restored in both postpartum and ovariectomized rats with progesterone treatment. Therefore we conclude that progesterone modulates vasodilator effects of calcitonin gene-related peptide in hypertensive rats.

  7. Structure of aureobasidin A.

    PubMed

    Ikai, K; Takesako, K; Shiomi, K; Moriguchi, M; Umeda, Y; Yamamoto, J; Kato, I; Naganawa, H

    1991-09-01

    Aureobasidin A, a new antifungal antibiotic, was isolated from the culture medium of Aureobasidium pullulans R106. Aureobasidin A was a cyclic depsipeptide consisting of eight alpha-amino acid units and one hydroxy acid unit. The structures of the units were found by acid hydrolysis of the antibiotic to be 2(R)-hydroxy-3(R)-methylpentanoic acid, beta-hydroxy-N-methyl-L-valine, N-methyl-L-valine, L-proline, allo-L-isoleucine, N-methyl-L-phenylalanine, L-leucine, and L-phenyl-alanine. The sequence of the units was identified by NMR and FAB-MS of the products from the alkaline hydrolysis of aureobasidin A.

  8. N- and C-terminal degradation of ecdysteroid receptor isoforms, when transiently expressed in mammalian CHO cells, is regulated by the proteasome and cysteine and threonine proteases.

    PubMed

    Schauer, S; Burster, T; Spindler-Barth, M

    2012-06-01

    Transcriptional activity of nuclear receptors is the result of transactivation capability and the concentration of the receptor protein. The concentration of ecdysteroid receptor (EcR) isoforms, constitutively expressed in mammalian CHO cells, is dependent on a number of factors. As shown previously, ligand binding stabilizes receptor protein concentration. In this paper, we investigate the degradation of EcR isoforms and provide evidence that N-terminal degradation is modulated by isoform-specific ubiquitination sites present in the A/B domains of EcR-A and -B1. This was demonstrated by the increase in EcR concentration by treatment with carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), an inhibitor of ubiquitin-mediated proteasomal degradation and by deletion of ubiquitination sites. In addition, EcR is degraded by the peptidyl-dipeptidase cathepsin B (CatB) and the endopeptidase cathepsin S (CatS) at the C-terminus in an isoform-specific manner, despite identical C-termini. Ubiquitin-proteasome-mediated degradation and the proteolytic action are modulated by heterodimerization with Ultraspiracle (USP). The complex regulation of receptor protein concentration offers an additional opportunity to regulate transcriptional activity in an isoform- and target cell-specific way and allows the temporal limitation of hormone action. © 2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.

  9. The PPARgamma agonist FMOC-L-leucine protects both mature and immature brain.

    PubMed

    Maurois, Pierre; Rocchi, Stéphane; Pages, Nicole; Bac, Pierre; Stables, James P; Gressens, Pierre; Vamecq, Joseph

    2008-01-01

    (N-[9-fluorenylmethoxycarbonyl]-)-L-leucine (FMOC-L-leucine) and rosiglitazone, two ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), were evaluated in mature (adult mice) and immature (pups) brain injury models. In adult magnesium-deficient mice, a model responsive to both neuroprotective and anti-seizure compounds, FMOC-L-leucine, but not rosiglitazone, protected against audiogenic seizures. The protection afforded by FMOC-L-leucine was alleviated by the PPARgamma antagonist GW9662 (1-2 mg/kg) and was induced in 50% animals by 4.8+/-1.2 mg/kg. At this dose, FMOC-L-leucine modified audiogenic seizure phase durations in convulsing mice differently than prototype antiepileptic drugs did. FMOC-L-leucine (up to 100 mg/kg) was inactive in the 6 Hz seizure test, an adult animal model largely responsive to anti-seizure drugs. In a model of neonatal brain injury, FMOC-L-leucine (4 microg/kg) was neuroprotective against cerebral ibotenate toxicity. It reduced significantly the size of lesions in grey but not in white matter, while rosiglitazone (10 microg/kg) was inactive. Taken as a whole, the present data support neuroprotective potentialities of FMOC-L-leucine towards both mature and immature brain. The PPAR-based protection of immature brain is more important as it is known that classic adult brain protectants (GABA(A) activators, N-methyl-D-aspartate and sodium channel blockers) may be toxic for immature brain. The PPARgamma agonist FMOC-L-leucine is likely to be devoid of these classic protective mechanisms because of its inactivity in the 6 Hz seizure test, its activity in the audiogenic test being explained by neuroprotective rather than intrinsic anti-seizure mechanisms. Targeting PPARs might be thus a promising way to protect immature brain.

  10. Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33

    PubMed Central

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  11. EPR study of gamma-irradiated N-methyl-L-alanine, DL-2-methyl glutamic acid hemihydrate and Di-leucine hydrochloride in solid state

    NASA Astrophysics Data System (ADS)

    Sütçü, Kerem; Osmanoğlu, Y. Emre

    2017-12-01

    In this study, it was aimed to investigate ɣ-irradiated powders of N-methyl-L-alanine (NMLA), DL-2-methyl glutamic acid hemihydrate (DL2MGAH), and Di-leucine hydrochloride (DLHCl) at room temperature by electron paramagnetic resonance spectroscopy. After the γ-irradiation the samples indicated the existence of the CH3ĊNHCH3COOH, HOOCCH3NH2CĊHCH2COOH·1/2H2O and (CH3)2ĊCH2CH NHCOOHCOCH (NH2HCl) CH2CH (CH3)2 radicals, respectively. The spectral parameters of the radicals were determined. The results were compared with the earlier studies and discussed accordingly.

  12. Liner Technology Program. Volume 3. Liner Development Methodology Manual

    DTIC Science & Technology

    1982-05-01

    derivative of trimesic acid, trimenoyl-l- (2-ethyl) aziridine BNO Hydroxyl ethyl ester of carboxy-terminated polybutadiene Catocene Liquid ferrocene ...diisocyanate MAPO rris-l-(2-methyl) aziridinyl phosphine oxide I.’ lNA Methyl nedic anhydride; methyl endo-cis-cicyolo-2,2,1-5- heptene-2,3-dicarboxylic

  13. Surface-enhanced Raman scattering spectroscopy of explosive 2,4-dinitroanisole using modified silver nanoparticles.

    PubMed

    Xu, Zhonghou; Hao, Jumin; Braida, Washington; Strickland, David; Li, Fasheng; Meng, Xiaoguang

    2011-11-15

    2,4-Dinitroanisole (DNAN) is being used as a replacement for 2,4,6-trinitrotoluene (TNT) as a less-sensitive melt-cast medium explosive than TNT. In this paper, we studied the surface-enhanced Raman spectroscopy (SERS) analysis of DNAN using Ag nanoparticles (AgNPs) modified by L-cysteine methyl ester hydrochloride. Due to the formation of a Meisenheimer complex between DNAN and the modifier, the modified AgNPs can detect 20 μg/L (0.2 ng) and 0.1 mg/L (1 ng) DNAN in deionized water and aged tap water, respectively. Three other chemicals (L-cysteine, N-acetyl-L-cysteine, and L-cysteine ethyl ester hydrochloride) were used as AgNPs modifiers to study the mechanism of the SERS of DNAN. It was confirmed that the amino group of L-cysteine methyl ester hydrochloride was the active group and that the methyl ester group significantly contributed to the high SERS sensitivity of DNAN. In order to further test the mechanism of Meisenheimer complex formation, the effect of anions and cations present in natural water on the SERS of DNAN was studied. It was found that CO(3)(2-), Cl(-), and K(+) at 100 mg/L did not negatively affect the SERS of 10 mg/L DNAN, while SO(4)(2-), Na(+), Mg(2+), and Ca(2+) at 100 mg/L significantly quenched the SERS of 10 mg/L DNAN. The negative effect of the bivalent cations could be offset by SO(4)(2-).

  14. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures.

    PubMed

    Huijghebaert, S M; Hofmann, A F

    1986-07-01

    The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial cultures from healthy volunteers also hydrolyzed cholyl-L-valine and cholyl-D-valine more slowly than cholylglycine, suggesting that cholylglycine hydrolase from Clostridium perfringens has a substrate specificity similar to that of the deconjugating enzymes of the fecal flora. The results indicate that modification of the position of the amide bond, introduction of steric hindrance near the amide bond, or loss of a negative charge on the terminal group of the amino acid moiety of the bile acid conjugate greatly reduces the rate of bacterial deconjugation in vitro when compared to that of the naturally occurring glycine and taurine conjugates.

  15. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    PubMed Central

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  16. Characterization of a Feruloyl Esterase from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626

  17. Characterization of a feruloyl esterase from Lactobacillus plantarum.

    PubMed

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de Las Rivas, Blanca; Muñoz, Rosario

    2013-09-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species.

  18. Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization.

    PubMed

    Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián

    2005-02-23

    Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.

  19. Kenaf methyl esters

    USDA-ARS?s Scientific Manuscript database

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  20. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots.

    PubMed

    Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin

    2015-06-15

    In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Molecular Modulation of Inhibitors of Apoptosis as a Novel Approach for Radiosensitization of Human Prostate Cancer

    DTIC Science & Technology

    2008-11-01

    was purified from natural racemic gossypol. Briefly, racemic gossypol was reacted with L - phenylalanine methyl ester hydrochloride overnight at room...solution of the resolved (F)-gossypol- phenylalanine methyl ester Schiff’s base was hydrolyzed by a mixture of tetrahydro- furan, glacial acetic acid...suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Mol Pharmacol 2007; 71: 209-19. [136]Wang L , Du F, Wang X. TNF- alpha induces

  2. Bioactive Steroids with Methyl Ester Group in the Side Chain from a Reef Soft Coral Sinularia brassica Cultured in a Tank.

    PubMed

    Huang, Chiung-Yao; Su, Jui-Hsin; Liaw, Chih-Chuang; Sung, Ping-Jyun; Chiang, Pei-Lun; Hwang, Tsong-Long; Dai, Chang-Feng; Sheu, Jyh-Horng

    2017-09-01

    A c ontinuing chemical investigation of the ethyl acetate (EtOAc) extract of a reef soft coral Sinularia brassica , which was cultured in a tank, afforded four new steroids with methyl ester groups, sinubrasones A-D (1-4) for the first time. In particular, 1 possesses a β-D-xylopyranose. The structures of the new compounds were elucidated on the basis of spectroscopic analyses. The cytotoxicities of compounds 1-4 against the proliferation of a limited panel of cancer cell lines were assayed. The anti-inflammatory activities of these new compounds 1-4 were also evaluated by measuring their ability to suppress superoxide anion generation and elastase release in N -formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced human neutrophils. Compounds 2 and 3 were shown to exhibit significant cytotoxicity, and compounds 3 and 4 were also found to display attracting anti-inflammatory activities.

  3. Plant-derived juvenile hormone III analogues and other sesquiterpenes from the stem bark of Cananga latifolia.

    PubMed

    Yang, Heejung; Kim, Hye Seong; Jeong, Eun Ju; Khiev, Piseth; Chin, Young-Won; Sung, Sang Hyun

    2013-10-01

    Juvenile hormone III (JH III) is a larval metamorphosis-regulating hormone present in most insect species. JH III was first isolated from the plant, Cyperus iria L., but the presence of JH III has not been reported in other plant species. In the present study, proof of the existence of JH III and its analogues from Cananga latifolia was established. From an aqueous MeOH extract of C. latifolia stem bark, six compounds were isolated along with nine known compounds. These were identified by using spectroscopic analyses as: (2E,6E,10R)-11-butoxy-10-hydroxy-3,7,11-trimethyldodeca-2,6-dienoic acid methyl ester, (2E,6E)-3,7,11-trimethyl-10-oxododeca-2,6-dienoic acid methyl ester, (2E)-3-methyl-5-[(1S,2R,6R)-1,2,6-trimethyl-3-oxocyclohexyl]-pent-2-enoic acid methyl ester, 1β-hydroxy-3-oxo-4β, 5α,7α-H-eudesmane 11-O-α-l-rhamnopyranoside, 4-epi-aubergenone 11-O-2',3'-di-O-acetyl-α-l-rhamnopyranoside and 4-epi-aubergenone 11-O-2',4'-di-O-acetyl-α-l-rhamnopyranoside. Three of the previously known compounds, (2E,6E,10R)-10-hydroxy-3,7,11-trimethyldodeca-2,6,11-trienoaic acid methyl ester, (2E,6E,10R)-10,11-dihydroxy-3,7,11-trimethyldodeca-2,6-dienoic acid and (2E,6S)-3-methyl-6-hydroxy-6-[(2R,5R)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl]-hex-2-enoaic acid methyl ester have now been found in a plant species. Ultra performance liquid chromatography-quadruple time-of-flight mass spectroscopy (UPLC-QTOF/MS) analysis of the chemical constituents of C. latifolia showed that several were predominant in the sub-fractions of a C. latifolia stem bark extract. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164.

    PubMed

    Bruns, Hilke; Herrmann, Jennifer; Müller, Rolf; Wang, Hui; Wagner Döbler, Irene; Schulz, Stefan

    2018-01-26

    The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.

  5. Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing-Impaired Leucyl-tRNA Synthetase

    PubMed Central

    Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.

    2011-01-01

    A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197

  6. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    USDA-ARS?s Scientific Manuscript database

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  7. L-arginine and arginine analogues: effects on isolated blood vessels and cultured endothelial cells.

    PubMed Central

    Schmidt, H. H.; Baeblich, S. E.; Zernikow, B. C.; Klein, M. M.; Böhme, E.

    1990-01-01

    1. The present study examined effects of arginine (Arg) and various Arg analogues on the vascular tone of rabbit and rat aortic rings, the release of nitrite from cultured bovine aortic endothelial cells and the metabolism of L-Arg in bovine and porcine endothelial cell homogenates. The respective D-enantiomers or N-alpha-benzoyl-L-arginine ethyl ester did not substitute for L-Arg. 2. In bovine aortic endothelial cells, the release of nitrite was only observed in the presence of L-Arg or L-Arg methyl ester in the cell culture medium. 3. In dialyzed homogenates of porcine and bovine aortic endothelial cells, L-Arg was metabolized independently of NADPH and Ca2+ to yield L-ornithine (L-Orn) and L-citrulline (L-Cit). No concomitant nitrite formation was detected. 4. Pretreatment of rabbit and rat aortic rings with L-canavanine (L-Can) or NG-monomethyl-L-Arg (L-NMMA) inhibited ATP- and acetylcholine-induced relaxations (endothelium-dependent) but not glyceryltrinitrate-induced relaxations (endothelium-independent). 5. In rabbit aortic rings, Arg and monomeric Arg analogues induced endothelium-independent relaxations. L-Arg methyl ester induced an endothelium-independent contraction, and L-NMMA induced a relaxation in the absence of endothelium and a contraction in the presence of endothelium. Polymeric basic amino acids such as poly L-Arg induced endothelium-dependent relaxations (inhibited by L-Can), a subsequent refractoriness to endothelium-dependent vasodilators (not prevented by L-Can) and endothelial cell death.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2282457

  8. Thermally reversible gels based on acryloyl- L-proline methyl ester as drug delivery systems

    NASA Astrophysics Data System (ADS)

    Martellini, Flavia; Higa, Olga Z.; Takacs, Erzsebet; Safranj, Agneza; Yoshida, Masaru; Katakai, Ryoichi; Carenza, Mario

    1999-06-01

    Thermally reversible hydrogels were synthesized by radiation-induced copolymerization of acryloyl- L-proline methyl ester with hydrophilic or hydrophobic monomers. The swelling behaviour was found to be affected by a proper balance of the latter. In particular, the transition temperature of the different hydrogels shifted to higher or lower values depending on the presence of hydrophilic or hydrophobic moieties in the polymer chain, respectively. Acetaminophen, an analgesic and antipyretic drug, was entrapped into some hydrogels and a wide range of release rates was obtained according to the nature of the comonomers. A novel thermoresponsive hydrogel was also prepared by radiation polymerization of acryloyl- L-proline methyl ester in the presence of 4-acryloyloxy acetanilide, an acrylic derivative of acetaminophen. Again, the swelling curves showed an inverse function of temperature. It was shown that with this hydrogel bearing the drug covalently attached to the polymer backbone, the hydrolysis process was the rate-determining process of the drug release.

  9. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins.

    PubMed

    Mas, Guillaume; Crublet, Elodie; Hamelin, Olivier; Gans, Pierre; Boisbouvier, Jérôme

    2013-11-01

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D2O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d10. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  10. Modulation of IgE-dependent COX-2 gene expression by reactive oxygen species in human neutrophils.

    PubMed

    Vega, Antonio; Chacón, Pedro; Alba, Gonzalo; El Bekay, Rajaa; Martín-Nieto, José; Sobrino, Francisco

    2006-07-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of its COX-2 isoform is responsible for the increased PG release, taking place under inflammatory conditions, and also, is thought to be involved in allergic and inflammatory diseases. In the present work, we demonstrate that COX-2 expression becomes highly induced by anti-immunoglobulin E (IgE) antibodies and by antigens in human neutrophils from allergic patients. This induction was detected at mRNA and protein levels and was accompanied by a concomitant PGE(2) and thromboxane A(2) release. We also show evidence that inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, such as 4-(2-aminoethyl)benzenesulphonyl fluoride and 4-hydroxy-3-methoxyaceto-phenone, completely cancelled anti-IgE-induced COX-2 protein up-regulation, suggesting that this process is mediated by reactive oxygen species (ROS) derived from NADPH oxidase activity. Moreover, the mitogen-activated protein kinases (MAPKs), p38 and extracellular signal-regulated kinase, and also, the transcription factor, nuclear factor (NF)-kappaB, are involved in the up-regulation of COX-2 expression, as specific chemical inhibitors of these two kinases, such as SB203580 and PD098059, and of the NF-kappaB pathway, such as N(alpha)-benzyloxycarbonyl-l-leucyl-l-leucyl-l-leucinal, abolished IgE-dependent COX-2 induction. Evidence is also presented, using Fe(2)(+)/Cu(2)(+) ions, that hydroxyl radicals generated from hydrogen peroxide through Fenton reactions could constitute candidate modulators able to directly trigger anti-IgE-elicited COX-2 expression through MAPK and NF-kappaB pathways. Present results underscore a new role for ROS as second messengers in the modulation of COX-2 expression by human neutrophils in allergic conditions.

  11. Characterization of Feruloyl Esterases Produced by the Four Lactobacillus Species: L. amylovorus, L. acidophilus, L. farciminis and L. fermentum, Isolated from Ensiled Corn Stover.

    PubMed

    Xu, Zhenshang; He, Huiying; Zhang, Susu; Guo, Tingting; Kong, Jian

    2017-01-01

    Lactic acid bacteria (LAB) play important roles in silage fermentation, which depends on the production of sufficient organic acids to inhibit the growth of undesirable microorganisms. However, LAB are not able to degrade cellulose and hemicellulose. Bacteria and fibrolytic enzymes are usually used as inoculants to improve the silage quality and digestibility. In the present study, we isolated four Lactobacillus strains ( L. amylovorus CGMCC 11056, L. acidophilus CCTCC AB2010208, L. farciminis CCTCC AB2016237 and L. fermentum CCTCC AB2010204) with feruloyl esterase (FAE) activities from ensiled corn stover (CS) by a plate screening assay. The genes encoding FAEs were cloned and hetero-expressed in Escherichia coli . The optimal temperature and pH of these purified enzymes ranged from 45 to 50°C and from 7.0 to 8.0, respectively. They could hydrolyze hydroxycinnamoyl esters in a substrate-specific manner when methyl ferulate, methyl caffeate, methyl ρ-coumarate and methyl sinapinate were used as substrates. Moreover, these four FAEs were able to hydrolyze CS to release hydroxycinnamic acids. Furthermore, these strains could degrade hydroxycinnamic esters, and L. amylovorus CGMCC 11056 was the most efficient strain among these four isolates. These results provided a new target for the development of inoculants to improve silage quality and digestibility.

  12. Characterization of Feruloyl Esterases Produced by the Four Lactobacillus Species: L. amylovorus, L. acidophilus, L. farciminis and L. fermentum, Isolated from Ensiled Corn Stover

    PubMed Central

    Xu, Zhenshang; He, Huiying; Zhang, Susu; Guo, Tingting; Kong, Jian

    2017-01-01

    Lactic acid bacteria (LAB) play important roles in silage fermentation, which depends on the production of sufficient organic acids to inhibit the growth of undesirable microorganisms. However, LAB are not able to degrade cellulose and hemicellulose. Bacteria and fibrolytic enzymes are usually used as inoculants to improve the silage quality and digestibility. In the present study, we isolated four Lactobacillus strains (L. amylovorus CGMCC 11056, L. acidophilus CCTCC AB2010208, L. farciminis CCTCC AB2016237 and L. fermentum CCTCC AB2010204) with feruloyl esterase (FAE) activities from ensiled corn stover (CS) by a plate screening assay. The genes encoding FAEs were cloned and hetero-expressed in Escherichia coli. The optimal temperature and pH of these purified enzymes ranged from 45 to 50°C and from 7.0 to 8.0, respectively. They could hydrolyze hydroxycinnamoyl esters in a substrate-specific manner when methyl ferulate, methyl caffeate, methyl ρ-coumarate and methyl sinapinate were used as substrates. Moreover, these four FAEs were able to hydrolyze CS to release hydroxycinnamic acids. Furthermore, these strains could degrade hydroxycinnamic esters, and L. amylovorus CGMCC 11056 was the most efficient strain among these four isolates. These results provided a new target for the development of inoculants to improve silage quality and digestibility. PMID:28626449

  13. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis.

    PubMed

    Hirao, Yoshinori; Mihara, Yasuhiro; Kira, Ikuo; Abe, Isao; Yokozeki, Kenzo

    2013-01-01

    An enzymatic production method for synthesizing L-alanyl-L-glutamine (Ala-Gln) from L-alanine methyl ester hydrochloride (AlaOMe) and L-glutamine (Gln) was developed in this study. The cultivation conditions for an Escherichia coli strain overexpressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis AJ 2458 (SAET) and reaction conditions for Ala-Gln production were optimized. A high cell density culture broth prepared by fed-batch cultivation showed 440 units/mL of Ala-Gln-producing activity. In addition, an Ala-Gln-producing reaction using intact E. coli cells overexpressing SAET under optimum conditions was conducted. A total Ala-Gln yield of 69.7 g/L was produced in 40 min. The molar yield was 67% against both AlaOMe and Gln.

  14. Tension cost correlates with mechanical and biochemical parameters in different myocardial contractility conditions

    PubMed Central

    Moreira, Cleci M.; Meira, Eduardo F.; Vestena, Luis; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.

    2012-01-01

    OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1) streptozotocin-induced diabetic and control Wistar rats; (2) N-nitro-L-arginine methyl ester (L-NAME) hypertensive and untreated Wistar rats; (3) deoxycorticosterone acetate (DOCA) salt-treated, nephrectomized and salt- and DOCA-treated rats; (4) spontaneous hypertensive rats (SHR) and Wistar Kyoto (WKY) rats; (5) rats with myocardial infarction and sham-operated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes), a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better mechanical advantage. PMID:22666794

  15. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property.

    PubMed

    Davoodbasha, MubarakAli; Edachery, Baldev; Nooruddin, Thajuddin; Lee, Sang-Yul; Kim, Jung-Wan

    2018-02-01

    Fatty acid methyl esters (FAME) derived from lipids of microalgae is known to have wide bio-functional materials including antimicrobials. FAME is an ideal super-curator and superior anti-pathogenic. The present study evaluated the efficiency of FAME extracted from microalgae Scenedesmus intermedius as an antimicrobial agent against Gram positive (Staphylococcus aureus, Streptococcus mutans, and Bacillus cereus) Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and Fungi (Aspergillus parasiticus and Candida albicans). The minimal inhibitory concentration (MIC) for the gram negative bacteria was determined as 12-24 μg mL -1 , whereas MIC for gram positive bacteria was 24-48 μg mL -1 . MIC for the fungi was as high as 60-192 μg mL -1 . The FAME profiles determined by gas chromatography showed 18 methyl esters. Among them, pharmacologically active FAME such as palmitic acid methyl ester (C16:0) was detected at high percentage (23.08%), which accounted for the bioactivity. FAME obtained in this study exhibited a strong antimicrobial activity at the lowest MIC than those of recent reports. This result clearly indicated that FAME of S. intermedius has a strong antimicrobial and antioxidant property and that could be used as an effective resource against microbial diseases. Copyright © 2017. Published by Elsevier Ltd.

  16. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    PubMed

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    USDA-ARS?s Scientific Manuscript database

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  18. Antineoplastic activity of linear leucine homodipeptides and their potential mechanisms of action.

    PubMed

    Lei, Yun; Yang, Xiao-Xia; Guo, Wei; Zhang, Fu-Yong; Liao, Xiao-Jian; Yang, Hui-Fu; Xu, Shi-Hai; Xiong, Sheng

    2018-07-01

    Galaxamide is a rare cyclic homopentapeptide composed of three leucines and two N-methyl leucines isolated from marine algae Galaxaura filamentosa. The strong antitumor activity of this compound makes it a promising candidate for tumor therapy. The synthesis of galaxamide, however, is a complex process, and it has poor water solubility. On the basis of its special chemical composition, we designed a series of linear leucine homopeptides. Among seven dipeptide derivatives, five compounds with terminal protection groups and methyl substitution of the hydrogen in the amido group showed remarkable inhibitory effects against various cancer cells. N-tertbutyl-D-leucine-N-methyl-D-leucinebenzyl (A7), the only stereomer condensed by two D-leucines, showed the highest antineoplastic activity. A7-treated cells showed cell cycle arrest and morphological changes typical of cells undergoing apoptosis. The population of Annexin-V positive/propidium iodide-negative cells also increased, indicating the induction of early apoptosis. A7 promoted the cleavage of caspase-9 and caspase-3, as well as increased intracellular Ca levels and decreased the mitochondrial membrane potential. Collectively, certain linear leucine dipeptides derived from cyclic pentapeptide are able to inhibit tumor cell proliferation through cell cycle arrest and apoptosis induction. The N-methyl group in the side chain and the D/L conformation of the amino-acid residue are critical for their activity.

  19. 21 CFR 172.829 - Neotame.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... percent on a dry basis. (2) Free dipeptide acid (N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine... Multipurpose Additives § 172.829 Neotame. (a) Neotame is the chemical N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine-1-methyl ester (CAS Reg. No. 165450-17-9). (b) Neotame meets the following specifications when it...

  20. 21 CFR 172.829 - Neotame.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... percent on a dry basis. (2) Free dipeptide acid (N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine... Multipurpose Additives § 172.829 Neotame. (a) Neotame is the chemical N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine-1-methyl ester (CAS Reg. No. 165450-17-9). (b) Neotame meets the following specifications when it...

  1. 21 CFR 172.829 - Neotame.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... percent on a dry basis. (2) Free dipeptide acid (N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine... Multipurpose Additives § 172.829 Neotame. (a) Neotame is the chemical N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine-1-methyl ester (CAS Reg. No. 165450-17-9). (b) Neotame meets the following specifications when it...

  2. 21 CFR 172.829 - Neotame.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... percent on a dry basis. (2) Free dipeptide acid (N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine... Multipurpose Additives § 172.829 Neotame. (a) Neotame is the chemical N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine-1-methyl ester (CAS Reg. No. 165450-17-9). (b) Neotame meets the following specifications when it...

  3. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

    PubMed Central

    Wharton, Christopher W.

    1974-01-01

    1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742

  4. Studies on the in vitro and in vivo hydrolysis and intramolecular aminolysis of L-aspartyl-l-phenylalanine methyl ester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouvette, R.E.

    The disposition and metabolism of L-aspartyl-L-(/sup 14/C-phenyl) alanine methyl ester (/sup 14/C-APM) was studied in male Sprague-Dawley rats after a single intragastric injection. Plasma levels of /sup 14/C-activity increased slowly within the first four hours after a 5 ..mu..Ci dose. Within 2 hours after injection 90% of the /sup 14/C-activity observed in the plasma was incorporated into precipitated proteins. HPLC analysis of the deproteinated plasma showed the /sup 14/C-activity present to be in the form of phenylalanine Disposition studies of /sup 14/C-APM 4 hours after a single intragastric dose showed the highest organs of /sup 14/C-accumulation to be the blood,more » liver, stomach, and small intestine. The molecular form of the /sup 14/C-activity in the tissues was not determined.« less

  5. Aroma enhancement and enzymolysis regulation of grape wine using β-glycosidase

    PubMed Central

    Zhu, Feng-Mei; Du, Bin; Li, Jun

    2014-01-01

    Adding β-glycosidase into grape wine for enhancing aroma was investigated using gas chromatography-mass spectrometry (GC-MS) and Kramer sensory evaluation. Compared with the extract from control wines, the extract from enzyme-treated wines increased more aromatic compounds using steam distillation extraction (SDE) and GC-MS analyses. Theses aromatic compounds were as follows: 3-methyl-1-butanol formate, 3-pentanol, furfural, 3-methyl-butanoic acid, 2-methyl-butanoic acid, 3-hydroxy-butanoic acid ethyl ester, hexanoic acid, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid, octanoic acid ethyl ester, dodecanoic acid, and ethyl ester. The enzymolysis regulation conditions, including enzymolysis temperature, enzymolysis time, and enzyme amount, were optimized through L9(34) orthogonal test. Kramer sensory evaluation was performed by an 11-man panel of judges. The optimum enzymolysis regulation conditions were found to be temperature of 45°C, enzymolysis time of 90 min, and enzyme amount of 58.32 U/mL grape wine, respectively. The Kramer sensory evaluation supported that the enzyme-treated wines produced a stronger fragrance. PMID:24804072

  6. Identification of Abscisic Acid in Tulipa gesneriana L. by Gas-Liquid Chromatography with Electron Capture and Combined Gas-Liquid Chromatography and Mass Spectrometry

    PubMed Central

    Terry, Paul H.; Aung, Louis H.; De Hertogh, August A.

    1982-01-01

    A major growth inhibitory substance of tulip bulbs (Tulipa gesneriana L. cv Paul Richter) has been unequivocally shown to be abscisic acid (ABA). The ABA methyl ester of the free ether-soluble acid fractions of tulip organs had the identical retention time on gas-liquid chromatography with electron capture detector as authentic ABA methyl ester. In addition, the mass spectra were the same. On a unit dry matter basis, the basalplate and floral shoot contained 3.6 and 2.6 times more ABA than the fleshy scales, respectively. PMID:16662721

  7. Polyphenolic profile and bioactivity study of Oenothera speciosa Nutt. aerial parts.

    PubMed

    Marzouk, Mohamed S; Moharram, Fatma A; El Dib, Rabab A; El-Shenawy, Siham M; Tawfike, Ahmed F

    2009-04-07

    Two new flavonol glycosides, myricetin 4'-O-alpha-L-rhamnopyranoside (1) and quercetin 3'-O-alpha-L-rhamnopyranoside (2), together with a novel biflavonol compound, speciin (3), as well as eleven phenolic metabolites, namely myricitrin (4), europetin 3-O-alpha-L-(1)C(4)-rhamnopyranoside (5), quercitrin (6), hyperin (7), rhamnetin 3-O-beta-galacto-pyranoside (8), caffeic acid (9), caffeic acid methyl ester (10), chlorogenic acid (11), chlorogenic acid methyl ester (12), gallic acid (13) and gallic acid methyl ester (14), were identified from the 80 % methanol extract of the aerial parts (leaves and stems) of Oenothera speciosa Nutt. (Onagraceae). In addition myricetin (15), quercetin (16) and ellagic acid (17) were identified from the chloroform extract. The structures were established depending on their chemical and physical analyses (UV, HR-ESIMS, 1D and 2D NMR). It was found that 80 % aqueous methanol extract of O. speciosa is non-toxic to mice up to 5 g kg(-1)b wt. The investigated extract exhibited significant antihyperglycaemic and anti-inflammatory activities in a dose dependant manner. Also, the 80 % methanol extract, myricitrin(4) and hyperin(7) showed potent antioxidant activity in vitro using 1,1-diphenyl 2-picryl hydrazyl (DPPH) radical assay.

  8. New poly(ester urea) derived from L-leucine: electrospun scaffolds loaded with antibacterial drugs and enzymes.

    PubMed

    Díaz, Angélica; del Valle, Luis J; Tugushi, David; Katsarava, Ramaz; Puiggalí, Jordi

    2015-01-01

    Electrospun scaffolds from an amino acid containing poly(ester urea) (PEU) were developed as promising materials in the biomedical field and specifically in tissue engineering applications. The selected poly(ester urea) was obtained with a high yield and molecular weight by reaction of phosgene with a bis(α-aminoacyl)-α,ω-diol-diester monomer. The polymer having L-leucine, 1,6-hexanediol and carbonic acid units had a semicrystalline character and relatively high glass transition and melting temperatures. Furthermore it was highly soluble in most organic solvents, an interesting feature that facilitated the electrospinning process and the effective incorporation of drugs with bactericidal activity (e.g. biguanide derivatives such as clorhexidine and polyhexamethylenebiguanide) and enzymes (e.g. α-chymotrypsin) that accelerated the degradation process. Continuous micro/nanofibers were obtained under a wide range of processing conditions, being diameters of electrospun fibers dependent on the drug and solvent used. Poly(ester urea) samples were degradable in media containing lipases and proteinases but the degradation rate was highly dependent on the surface area, being specifically greater for scaffolds with respect to films. The high hydrophobicity of new scaffolds had repercussions on enzymatic degradability since different weight loss rates were found depending on how samples were exposed to the medium (e.g. forced or non-forced immersion). New scaffolds were biocompatible, as demonstrated by adhesion and proliferation assays performed with fibroblast and epithelial cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters.

    PubMed

    Staples, C A; Murphy, S R; McLaughlin, J E; Leung, H W; Cascieri, T C; Farr, C H

    2000-01-01

    Acrylic acid, methyl acrylate, ethyl acrylate, and butyl acrylate are commercially important and widely used materials. This paper reports the results of a series of fate and aquatic toxicity studies. The mobility in soil of acrylic acid and its esters ranged from 'medium' to 'very high'. Calculated bioconcentration factors ranged from 1 to 37, suggesting a low bioconcentration potential. Acrylic acid and methyl acrylate showed limited biodegradability in the five day biochemical oxygen demand (BOD5) test, while ethyl acrylate and butyl acrylate were degraded easily (77% and 56%, respectively). Using the OECD method 301D 28-d closed bottle test, degradability for acrylic acid was 81% at 28 days, while the acrylic esters ranged from 57% to 60%. Acrylic acid degraded rapidly to carbon dioxide in soil (t1/2 < 1 day). Toxicity tests were conducted using freshwater and marine fish, invertebrates, and algae. Acrylic acid effect concentrations for fish and invertebrates ranged from 27 to 236 mg/l. Effect concentrations (LC50 or EC50) for fish and invertebrates using methyl acrylate, ethyl acrylate, and butyl acrylate ranged from 1.1 to 8.2 mg/l. The chronic MATC for acrylic acid with Daphnia magna was 27 mg/l based on length and young produced per adult reproduction day and for ethyl acrylate was 0.29 mg/l based on both the reproductive and growth endpoints. Overall these studies show that acrylic acid and the acrylic esters studied can rapidly biodegrade, have a low potential for persistence or bioaccumulation in the environment, and have low to moderate toxicity.

  10. Ester carbonyl vibration as a sensitive probe of protein local electric field.

    PubMed

    Pazos, Ileana M; Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-06-10

    The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme.

    PubMed

    Sherkhanov, Saken; Korman, Tyler P; Clarke, Steven G; Bowie, James U

    2016-04-07

    Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.

  12. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    DOE PAGES

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G.; ...

    2016-04-07

    Here, most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase,more » Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase ( DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.« less

  13. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G.

    Here, most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase,more » Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase ( DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.« less

  14. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    PubMed Central

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G; Bowie, James U.

    2016-01-01

    Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes. PMID:27053100

  15. Kinetics of the hydrolysis of N-benzoyl-l-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses

    PubMed Central

    Wharton, Christopher W.; Cornish-Bowden, Athel; Brocklehurst, Keith; Crook, Eric M.

    1974-01-01

    1. N-Benzoyl-l-serine methyl ester was synthesized and evaluated as a substrate for bromelain (EC 3.4.22.4) and for papain (EC 3.4.22.2). 2. For the bromelain-catalysed hydrolysis at pH7.0, plots of [S0]/vi (initial substrate concn./initial velocity) versus [S0] are markedly curved, concave downwards. 3. Analysis by lattice nomography of a modifier kinetic mechanism in which the modifier is substrate reveals that concave-down [S0]/vi versus [S0] plots can arise when the ratio of the rate constants that characterize the breakdown of the binary (ES) and ternary (SES) complexes is either less than or greater than 1. In the latter case, there are severe restrictions on the values that may be taken by the ratio of the dissociation constants of the productive and non-productive binary complexes. 4. Concave-down [S0]/vi versus [S0] plots cannot arise from compulsory substrate activation. 5. Computational methods, based on function minimization, for determination of the apparent parameters that characterize a non-compulsory substrate-activated catalysis are described. 6. In an attempt to interpret the catalysis by bromelain of the hydrolysis of N-benzoyl-l-serine methyl ester in terms of substrate activation, the general substrate-activation model was simplified to one in which only one binary ES complex (that which gives rise directly to products) can form. 7. In terms of this model, the bromelain-catalysed hydrolysis of N-benzoyl-l-serine methyl ester at pH7.0, I=0.1 and 25°C is characterized by Km1 (the dissociation constant of ES)=1.22±0.73mm, k (the rate constant for the breakdown of ES to E+products, P)=1.57×10−2±0.32×10−2s−1, Ka2 (the dissociation constant that characterizes the breakdown of SES to ES and S)=0.38±0.06m, and k′ (the rate constant for the breakdown of SES to E+P+S)=0.45±0.04s−1. 8. These parameters are compared with those in the literature that characterize the bromelain-catalysed hydrolysis of α-N-benzoyl-l-arginine ethyl ester and of α-N-benzoyl-l-arginine amide; Km1 and k for the serine ester hydrolysis are somewhat similar to Km and kcat. for the arginine amide hydrolysis and Kas and k′ for the serine ester hydrolysis are somewhat similar to Km and kcat. for the arginine ester hydrolysis. 9. A previous interpretation of the inter-relationships of the values of kcat. and Km for the bromelain-catalysed hydrolysis of the arginine ester and amide substrates is discussed critically and an alternative interpretation involving substantial non-productive binding of the arginine amide substrate to bromelain is suggested. 10. The parameters for the bromelain-catalysed hydrolysis of the serine ester substrate are tentatively interpreted in terms of non-productive binding in the binary complex and a decrease of this type of binding by ternary complex-formation. 11. The Michaelis parameters for the papain-catalysed hydrolysis of the serine ester substrate (Km=52±4mm, kcat.=2.80±0.1s−1 at pH7.0, I=0.1, 25.0°C) are similar to those for the papain-catalysed hydrolysis of methyl hippurate. 12. Urea and guanidine hydrochloride at concentrations of 1m have only small effects on the kinetic parameters for the hydrolysis of the serine ester substrate catalysed by bromelain and by papain. PMID:4455211

  16. Role of endothelial nitric oxide synthase as a trigger and mediator of isoflurane-induced delayed preconditioning in rabbit myocardium.

    PubMed

    Chiari, Pascal C; Bienengraeber, Martin W; Weihrauch, Dorothee; Krolikowski, John G; Kersten, Judy R; Warltier, David C; Pagel, Paul S

    2005-07-01

    Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Isoflurane significantly (P < 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed preconditioning by isoflurane in vivo.

  17. Properties and substrate specificity of the leucyl-, the threonyl- and the valyl-transfer-ribonucleic acid synthetases from Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Leucyl- and threonyl-tRNA synthetases were partially purified up to 100-fold and 30-fold respectively from cotyledons of Aesculus hippocastanum and were largely separated from the other aminoacyl-tRNA synthetases. Valyl-tRNA synthetase was purified 25-fold from cotyledons of Aesculus californica. 2. Some properties are reported for the three enzymes when assayed by the [32P]pyrophosphate-ATP exchange technique. 3. β-(Methylenecyclopropyl)alanine, isoleucine, azaleucine, norleucine and γ-hydroxynorvaline acted as alternative substrates for the leucyl-tRNA synthetase; the enzyme's affinity for β-(methylenecyclopropyl)-alanine and for isoleucine was about 80-fold less than that exhibited for leucine. 4. α-Cyclopropylglycine and α-cyclobutylglycine acted as alternative substrates for the valyl-tRNA synthetase. PMID:5493505

  18. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli

    PubMed Central

    Eggink, Gerrit; Weusthuis, Ruud A.

    2016-01-01

    ABSTRACT The enzyme system AlkBGT from Pseudomonas putida GPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells of Escherichia coli expressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate. In time-lapse conversions with 5 mM NAEE the main product was 9-hydroxy NAEE (3.6 mM), but also 9-oxo NAEE (0.1 mM) and 9-carboxy NAEE (0.6 mM) were formed. AlkBGT also ω-oxidized ethyl, propyl, and butyl esters of fatty acids ranging from C6 to C10. Increasing the length of the alkyl chain improved the ω-oxidation activity of AlkBGT on esters of C6 and C7 fatty acids. From these esters, application of butyl hexanoate resulted in the highest ω-oxidation activity, 82 U/gcdw. Coexpression of AlkL only had a positive effect on ω-functionalization of substrates with a total length of C11 or longer. These findings indicate that AlkBGT(L) can be applied as a biocatalyst for ω-functionalization of ethyl, propyl, and butyl esters of medium-chain fatty acids. IMPORTANCE Fatty acid esters are promising renewable starting materials for the production of ω-hydroxy fatty acid esters (ω-HFAEs). ω-HFAEs can be used to produce sustainable polymers. Chemical conversion of the fatty acid esters to ω-HFAEs is challenging, as it generates by-products and needs harsh reaction conditions. Biocatalytic production is a promising alternative. In this study, biocatalytic conversion of fatty acid esters toward ω-HFAEs was investigated using whole cells. This was achieved with recombinant Escherichia coli cells that produce the AlkBGT enzymes. These enzymes can produce ω-HFAEs from a wide variety of fatty acid esters. Medium-chain-length acids (C6 to C10) esterified with ethanol, propanol, or butanol were applied. This is a promising production platform for polymer building blocks that uses renewable substrates and mild reaction conditions. PMID:27084021

  19. [Inhibition effect on Microcystis aeruginosa PCC7806 as well as separation and identification of algicidal substances isolated from Salvinia natans (L.) All].

    PubMed

    Zhang, Shengjuan; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting

    2016-05-01

    To study the inhibition effect of Salvinia natans ( L. ) All. on harmful algae. With Microcystis aeruginosa as the subjects, deionized water, ethanol, acetone, ethyl acetate as solvent, four kinds of crude extracts from Salvinia natans (L.) All. were prepared, and their alga-inhibiting actions were verified, respectively. The crude extracts of Salvinia natans (L.) All. with better inhibition effect were selected. The components of algal inhibiting material through macroporous resin purification were obtained, and determined by gas chromatography-mass spectrometry (GC-MS). The algicidal effect as follows: ethyl acetate extract > acetone crude extract > ethanol crude extract > water crude extract. Meanwhile, the inhibitory substances of Salvinia natans (L.) All. may be: diacetone alcohol, methyl isobutenyl ketone, 5-methyl-2-(1-methylethyl)-1-hexanol, pentadecanal, 14-heptadecenal, cumene, butyl acetate, ascorbyl dipalmitate, 1, 2-benzenedicarboxylic acid, mono (2- ethylhexyl) ester, dibutyl phthalate and phthalic acid, butyl undecane ester. The algal inhibiting effect research of Salvinia natans (L.) All., as well as its separation and identification of allelochemicals supplys theoretical basis and practical evidence not only for algae control, but also exploitation of algal inhibiting agent.

  20. 21 CFR 182.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde... aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3-Methyl-3-phenyl glycidic acid ethyl ester (ethyl-methyl-phenyl-glycidate, so-called strawberry aldehyde, C-16 aldehyde). Ethyl...

  1. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway.

    PubMed

    Lee, Minji; Kim, Jong Hyun; Yoon, Ina; Lee, Chulho; Fallahi Sichani, Mohammad; Kang, Jong Soon; Kang, Jeonghyun; Guo, Min; Lee, Kang Young; Han, Gyoonhee; Kim, Sunghoon; Han, Jung Min

    2018-06-05

    A protein synthesis enzyme, leucyl-tRNA synthetase (LRS), serves as a leucine sensor for the mechanistic target of rapamycin complex 1 (mTORC1), which is a central effector for protein synthesis, metabolism, autophagy, and cell growth. However, its significance in mTORC1 signaling and cancer growth and its functional relationship with other suggested leucine signal mediators are not well-understood. Here we show the kinetics of the Rag GTPase cycle during leucine signaling and that LRS serves as an initiating "ON" switch via GTP hydrolysis of RagD that drives the entire Rag GTPase cycle, whereas Sestrin2 functions as an "OFF" switch by controlling GTP hydrolysis of RagB in the Rag GTPase-mTORC1 axis. The LRS-RagD axis showed a positive correlation with mTORC1 activity in cancer tissues and cells. The GTP-GDP cycle of the RagD-RagB pair, rather than the RagC-RagA pair, is critical for leucine-induced mTORC1 activation. The active RagD-RagB pair can overcome the absence of the RagC-RagA pair, but the opposite is not the case. This work suggests that the GTPase cycle of RagD-RagB coordinated by LRS and Sestrin2 is critical for controlling mTORC1 activation, and thus will extend the current understanding of the amino acid-sensing mechanism.

  2. L-leucine, L-methionine, and L-phenylalanine share a Na(+)/K (+)-dependent amino acid transporter in shrimp hepatopancreas.

    PubMed

    Duka, Ada; Ahearn, Gregory A

    2013-08-01

    Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of (3)H-L-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. (3)H-L-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na(+)- and K(+)-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. (3)H-L-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, L-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM (3)H-L-leucine in both Na(+)- and K(+)-containing incubation media. The residual (3)H-L-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an L-methionine- and cation-independent transport system. (3)H-L-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [L-leucine], following the carrier-mediated Michaelis-Menten equation. In NaCl, (3)H-L-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. L-methionine or L-phenylalanine (7 and 20 mM) were competitive inhibitors of (3)H-L-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in (3)H-L-leucine influx K M, but no significant response in (3)H-L-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with (3)H-L-leucine, significantly (p < 0.01) increasing (3)H-L-leucine influx K M in the presence of sodium, but having negligible effect on (3)H-L-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport (3)H-L-leucine by a single L-methionine- and L-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na(+) or K(+) acting as co-transport drivers binding to shared activator sites.

  3. [Glycosides from flowers of Jasminum officinale L. var. grandiflorum].

    PubMed

    Zhao, Gui-qin; Xia, Jing-jing; Dong, Jun-xing

    2007-10-01

    To study the chemical constituents of the flower of Jasminum officinale L. var. grandiflorum. The compounds were isolated and purified by re-crystallization and chromatography on silica gel and Sephadex LH-20 column. Their structures were elucidated on the physicochemical properties and spectral analysis. Seven glycosides were identified as kaempferol-3-O-alpha-L-rhamnopyranosyl (1-->3)-[alpha-L-rhamnopyranosyl (1-->6)]-beta-D-galactopyranoside (I), kaempferol-3-O-rutinoside (II), 7-ketologanin (III), oleoside-11-methyl ester (IV), 7-glucosyl-l1-methyl oleoside (V), ligstroside (VI), oleuropein (VII). Compound I is a new compound. Compounds III and V were isolated from the family of Jasminum for the first time and compounds II, IV and VI were isolated from Jasminum officinale L. var. grandiflorum for the first time.

  4. Chemical Composition and Vasorelaxant and Antispasmodic Effects of Essential Oil from Rosa indica L. Petals

    PubMed Central

    Rasheed, Hafiz Majid; Khan, Taous; Wahid, Fazli; Khan, Rasool; Shah, Abdul Jabbar

    2015-01-01

    Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS) technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester), santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K+ (80 mM) than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K+ induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases. PMID:26357519

  5. HIGH DOSES OF ASPARTAME HAVE NO EFFECTS ON SENSORIMOTOR FUNCTION OR LEARNING AND MEMORY IN RATS

    EPA Science Inventory

    Acute or repeated (14 days) intragastric administration of L-d-aspartyl-L-phenylalanine methyl ester suspended in saline and Tween-80 in doses of up to 1,000 mg/kg had no significant effect in male Fischer-344 rats on routine measures of sensorimotor function, including spontaneo...

  6. Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence.

    PubMed

    Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula

    2017-09-01

    Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be responsible for speed degradation of compounds by accommodation of them in inner part of aggregates.

  7. Practical method for the confirmation of authentic flours of different types of cereals and pseudocereals.

    PubMed

    Ačanski, Marijana M; Vujić, Djura N; Psodorov, Djordje B

    2015-04-01

    Gas chromatography with mass spectrometry was used to perform a qualitative analysis of the liposoluble flour extract of different types of cereals (bread wheat and spelt) and pseudocereals (amaranth and buckwheat). In addition to major fatty acids, the liposoluble extract also contained minor fatty acids with more than 20 carbon atoms, higher hydrocarbons and phytosterols. TMSH (trimethylsulfonium hydroxide, 0.2 mol/l in methanol) was used as a trans-esterification reagent. In a trans-esterification reaction, triglycerides esterified from acilglycerols to methyl-esters. SIM (selected ion monitoring) was applied to isolate fatty acid methyl esters on TIC (total ion current) chromatograms, using the 74 Da fragment ion, which originated from McLafferty rearrangement, and is typical for methyl-esters. GC-MS system was used for the trans-esterification of triglycerides to fatty acid methyl esters in the gas chromatographic injector. This eliminated laboratory preparation for fatty acid methyl esters. Cluster analysis was applied to compare the liposoluble flour extract from different types of cereals and pseudocereals. Statistical data showed the liposoluble extract analysis enabled determination of flour origin and, because the results were unambiguous, this approach could be used for quality control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Chemical Constituents of Luffa acutangula (L.) Roxb Fruit

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Marliyana, S. D.; Astuti, I. Y.

    2017-04-01

    The phytochemical screening conducted on ethanol extract of Luffa acutangula (L.) Roxb’s fruit revealed the presence of alkaloids, saponins, carotenoids and terpenoids and the absence of flavonoids, tannins and anthraquinones. The GC-MS of the analysis L. acutangula (L.) Roxb’s fraction resulted in the identification of six compounds. The compounds that could be identified were 2,3-dihydro,3,5-dihydroxy-6-methyl-(4H)-pyran-4-one; 3,7,11,15-tetramethyl-2-hexadecen-1-ol; (3β, 20R)-cholest-5-en-3-ol; n-hexadecanoic acid; 9, 12, 15-octadecatrienoic acid methyl ester and citronellyl tiglate. The present study provides evidence that L. acutangula’s fruit contains medicinally important bioactive compounds and this justifies the possibly use of these fruits as traditional medicine for treatment of various diseases.

  9. Effects of nitric oxide synthase inhibitors, L-NG-nitroarginine and L-NG-nitroarginine methyl ester, on responses to vasodilators of the guinea-pig coronary vasculature.

    PubMed Central

    Vials, A.; Burnstock, G.

    1992-01-01

    1. The effects of L-NG-nitroarginine (L-NOARG) and L-NG-nitroarginine methyl ester (L-NAME) on vasodilatation induced by ATP, substance P, 5-hydroxytryptamine (5-HT), bradykinin and sodium nitroprusside (SNP) were examined in the guinea-pig coronary bed, by use of a Langendorff technique. The effects of these inhibitors of nitric oxide synthesis were assessed on their ability to inhibit both the amplitude and the area of the vasodilator response. 2. The vasodilator responses evoked by low doses of 5-HT (5 x 10(-10)-10(-8) mol) were almost abolished by L-NAME and L-NOARG (both at 10(-5), 3 x 10(-5) and 10(-4) M), although L-NOARG (3 x 10(-5) M) was significantly less potent than L-NAME (3 x 10(-5) M) as an inhibitor of vasodilator responses to 5-HT (5 x 10(-8) mol). 3. The vasodilator responses evoked by substance P (5 x 10(-12)-5 x 10(-9) mol) were reduced in the presence of L-NAME and L-NOARG (both at 10(-5) and 3 x 10(-5) M). The response to substance P was almost abolished by L-NAME and L-NOARG (both at 10(-4) M). 4. The amplitude of the vasodilator responses to ATP (5 x 10(-11) and 5 x 10(-9)-5 x 10(-7) mol) was little affected by either L-NAME or L-NOARG (both at 10(-5), 3 x 10(-5) and 10(-4) M).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1384916

  10. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages

    PubMed Central

    Xia, Yong; Zweier, Jay L.

    1997-01-01

    Superoxide (O2⨪) and nitric oxide (NO) act to kill invading microbes in phagocytes. In macrophages NO is synthesized by inducible nitric oxide synthase (iNOS, NOS 2) from l-arginine (l-Arg) and oxygen; however, O2⨪ was thought to be produced mainly by NADPH oxidase. Electron paramagnetic resonance (EPR) spin trapping experiments performed in murine macrophages demonstrate a novel pathway of O2⨪ generation. It was observed that depletion of cytosolic l-Arg triggers O2⨪ generation from iNOS. This iNOS-mediated O2⨪ generation was blocked by the NOS inhibitor N-nitro-l-arginine methyl ester or by l-Arg, but not by the noninhibitory enantiomer N-nitro-d-arginine methyl ester. In l-Arg-depleted macrophages iNOS generates both O2⨪ and NO that interact to form the potent oxidant peroxynitrite (ONOO−), which was detected by luminol luminescence and whose formation was blocked by superoxide dismutase, urate, or l-Arg. This iNOS-derived ONOO− resulted in nitrotyrosine formation, and this was inhibited by iNOS blockade. iNOS-mediated O2⨪ and ONOO− increased the antibacterial activity of macrophages. Thus, with reduced l-Arg availability iNOS produces O2⨪ and ONOO− that modulate macrophage function. Due to the existence of l-Arg depletion in inflammation, iNOS-mediated O2⨪ and ONOO− may occur and contribute to cytostatic/cytotoxic actions of macrophages. PMID:9192673

  11. Construction of chiral ligand exchange capillary electrochromatography for d,l-amino acids enantioseparation and its application in glutaminase kinetics study.

    PubMed

    Zhao, Liping; Qiao, Juan; Zhang, Ke; Li, Dan; Zhang, Hongyi; Qi, Li

    2018-05-04

    A chiral ligand exchange capillary electrochromatography (CLE-CEC) protocol was designed and implemented for d,l-amino acids enantioseparation with poly(maleic anhydride-styrene-methacryloyl-l-arginine methyl ester) as the coating. The block copolymer was synthesized through the reversible addition fragmentation chain transfer reaction. In the constructed CLE-CEC system, poly (methacryloyl-l-arginine methyl ester) moiety of the block copolymer played the role as the immobilized chiral ligand and Zn (II) was used as the central ion. Key factors, including pH of buffer solution, ratio of Zn (II) to ligands, the mass ratio of monomers in the block copolymer, which affect the enantioresolution were investigated. Comparing with the bare capillary, the CLE-CEC enantioresolution was enhanced greatly with the coating one. 5 Pairs of d,l-amino acids enantiomers obtained baseline separation with 5 pairs partly separated. The mechanism of enhancement enantioresolution of the developed CLE-CEC system was explored briefly. Further, good linearities were achieved in the range of 25.0 μM-5.0 mM for quantitative analysis of d-glutamine (r 2  = 0.997) and l-glutamine (r 2  = 0.991). Moreover, the proposed CLE-CEC assay was successfully applied in the kinetics study of glutaminase by using l-glutamine as the substrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Rapid determination of amino acids in neonatal blood samples based on derivatization with isobutyl chloroformate followed by solid-phase microextraction and gas chromatography/mass spectrometry.

    PubMed

    Deng, Chunhui; Li, Ning; Zhang, Xiangmin

    2004-01-01

    The purpose of this study was to develop a simple, rapid and sensitive analytical method for determination of amino acids in neonatal blood samples. The developed method involves the employment of derivatization and a solid-phase microextraction (SPME) technique together with gas chromatography/mass spectrometry (GC/MS). Amino acids in blood samples were derivatized by a mixture of isobutyl chloroformate, methanol and pyridine, and the N(O,S)-alkoxycarbonyl alkyl esters thus formed were headspace extracted by a SPME fiber. Finally, the extracted analytes on the fiber were desorbed and detected by GC/MS in electron impact (EI) mode. L-Valine, L-leucine, L-isoleucine, L-phenylanaline and L-tyrosine in blood samples were quantitatively analyzed by measurement of the corresponding N(O,S)-alkoxycarbonyl alkyl esters using an external standard method. SPME conditions were optimized, and the method was validated. The method was applied to diagnosis of neonatal phenylkenuria (PKU) and maple syrup urine disease (MSUD) by the analyses of five amino acids in blood samples. The results showed that the proposed method is a potentially powerful tool for simultaneous screening for neonatal PKU and MSUD. Copyright (c) 2004 John Wiley & Sons, Ltd.

  13. Parallel synthesis: a new approach for developing analytical internal standards. Application to the analysis of patulin by gas chromatography-mass spectrometry.

    PubMed

    Llovera, Montserrat; Balcells, Mercè; Torres, Mercè; Canela, Ramon

    2005-08-24

    The polymer-assisted reaction of 4-(hydroxymethyl)furan-2(5H)-one (4HM2F) with 21 carboxylic acids using polystyrene-carbodiimide (PS-carbodiimide) yielded an ester library. Four of the esters, (5-oxo-2,5-dihydrofuran-3-yl)methyl acetate (IS-1), (5-oxo-2,5-dihydrofuran-3-yl)methyl butyrate (IS-2), (5-oxo-2,5-dihydrofuran-3-yl)methyl 2-methylpropanoate (IS-3), and (5-oxo-2,5-dihydrofuran-3-yl)methyl chloroacetate (IS-4), were tested as internal standards for the quantification of patulin in apple juice by gas chromatography-mass spectrometry in the selected ion monitoring mode (GC-MS-SIM). The developed method combines an AOAC official extractive step and a GC-MS-SIM analysis. Using a chromatographic column containing trifluoropropylmethylpolysiloxane as the stationary phase and IS-1 as the internal standard, it was possible to perform an accurate and precise quantification of underivatizated patulin in apple juice at concentrations down to 6 microg/L. A detection limit of 1 microg/L was established.

  14. Effects of supplemental L-arginine on the intestinal adaptive response after massive small-bowel resection in rats.

    PubMed

    Oztürk, Hayrettin; Dokucu, Ali Ihsan; Yağmur, Yusuf; Sari, Ibrahim

    2002-09-01

    To evaluate whether L-arginine methyl ester (L-Arg) can improve the structure of the small intestine and enhance adaptation in an experimental model of short-bowel syndrome (SBS), 40 Sprague-Dawley rats were divided randomly into four groups of 10 each. In one group only a laparotomy was performed (G1). The remaining 30 rats underwent 90% small-bowel resection (SBR) and formed the three experimental groups: the SBR/untreated group (G2), the SBR/L-NAME-treated group (G3), and the SBR/ L-Arg-treated group (G4). Rats in G2 received no therapeutic treatment. Rats in the SBR/L-NAME and SBR/L-Arg treated groups received N-G-nitro-L-arginine-methyl ester (L-NAME) and L-Arg intraperitoneally for 3 weeks, respectively. The animals were weighed daily. All rats underwent a relaparotomy on day 21 of the experiment. Remnant small bowel was excised and evaluated for villus height and crypt cell mitoses. After the 90% SBR, all animals had from diarrhea and weight loss between the 1st and 6th postoperative days (POD). The body weight of the SBR/L-Arg group showed significant increases at POD 10 and 21 in comparison to the SBR/untreated and SBR/L-NAME groups (P < 0.001). The rats treated with L-Arg had significantly greater villus height and crypt-cell mitoses compared to the other groups (P < 0.0001, P < 0.001). These observations suggest that L-Arg treatment increases villus height and crypt-cell mitoses after massive SBR and may play a considerable role in the mucosal adaptive response in SBS in rats.

  15. Potential grape-derived contributions to volatile ester concentrations in wine.

    PubMed

    Boss, Paul K; Pearce, Anthony D; Zhao, Yanjia; Nicholson, Emily L; Dennis, Eric G; Jeffery, David W

    2015-04-29

    Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L(-1) β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L(-1) β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L(-1) required for the stimulatory effect on ethyl and acetate ester production observed in this study.

  16. The influence of gastric pentadecapeptide BPC 157 on acute and chronic ethanol administration in mice. The effect of N(G)-nitro-L-arginine methyl ester and L-arginine.

    PubMed

    Boban-Blagaic, Alenka; Blagaic, Vladimir; Romic, Zeljko; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Seiwerth, Sven; Sikiric, Predrag

    2006-01-01

    Alcohol disturbances, NO stimulation (by the NO-precursor L-arginine), and/or NO-synthesis blockade (by N(G)-nitro-L-arginine methyl ester, i.e. L-NAME) were challenged with stable gastric pentadecapeptide BPC 157, which inhibits both acute alcohol intoxication and alcohol withdrawal symptoms. Mice received intraperitoneally (i.p.) BPC 157 (10 microg/kg), L-NAME (10 mg/kg), and L-arginine (400 mg/kg), alone or in combination, 5 minutes before or after acute ethanol (4 g/kg i.p.) intoxication or after 0, 3, or 7 hours of withdrawal after drinking 20% alcohol for 13 days. BPC 157 rapidly opposes the strongest disturbance presentations in acute intoxication (sustained ethanol anesthesia, complete loss of righting reflex, no reaction to external stimuli, hypothermia, 25% mortality) and withdrawal (prominent seizures). NO-agents: Aggravation of acute alcohol intoxication and opposition to withdrawal are common, but the later intervals affected by L-arginine and the action throughout the experiment by L-NAME are distinctive. Given together, L-arginine and L-NAME counteract each other, while either the "L-NAME presentation" (acute intoxication) or the "L-arginine presentation" (withdrawal) predominates. BPC157+NO-agent: In acute intoxication (L-NAME predominating in NO-system functioning to aggravate intoxication), both BPC157+L-NAME and BPC157+L-arginine follow the presentation of L-NAME, but without worsened mortality. In withdrawal (L-arginine predominating in NO-system functioning to oppose disturbance symptoms), BPC157+L-NAME follows the presentation of L-NAME, while BPC 157+L-arginine imitates that of L-arginine. The relationships among pentadecapeptide BPC 157, the NO-system, acute alcohol intoxication, and opposed withdrawal may be important, presenting pentadecapeptide BPC 157 as a suitable alcohol antagonist.

  17. Investigation of the adsorption mechanism of a peptide in reversed phase liquid chromatography, from pH controlled and uncontrolled solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    The single-component equilibrium adsorption of the tripeptide Leucyl-Leucyl-Leucine (LLL) on a high-efficiency Jupiter Proteo column (C{sub 12}) was investigated experimentally and modeled theoretically. The experimental equilibrium isotherms of LLL for adsorption on a C{sub 12} packing material from an aqueous solution of methanol (48%) and trifluoroacetic acid (0.1%) were measured by frontal analysis (FA). The FA measurements were done with two solutions, one in which the pH was controlled, the other in which it was not. Two solutions of LLL in the mobile phase were prepared (4.3 and 5.4 g/L) and their pH measured (2.94 and 2.88), respectively. The firstmore » solution was titrated with TFA to match the pH of the mobile phase (2.03), so its pH was controlled. The pH of the other solution was left uncontrolled. In both cases the isotherms could be modeled by a bi-Langmuir equation, a choice consistent with the bimodal affinity energy distribution (AED) obtained for LLL. The isotherm parameters derived from the inverse method (IM) of isotherm determination under controlled pH conditions (by fitting calculated profiles to experimental breakthrough profiles) are in a good agreement with those derived from the FA data. Under uncontrolled pH conditions, the application of IM suggests the coexistence of two different adsorption mechanisms. According to the isotherm parameters found by these three methods (FA, AED and IM), the C{sub 12}-bonded silica can adsorb around 500 and 70 g/L of LLL under controlled and uncontrolled pH conditions, respectively. The adsorption of LLL on the C{sub 12} material strongly depends on the pH of the mobile phase and on the quantity of TFA added, which plays the role of an ion-pairing agent.« less

  18. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds

    PubMed Central

    Deepthi, B. V.; Poornachandra Rao, K.; Chennapa, G.; Naik, M. K.; Chandrashekara, K. T.; Sreenivasa, M. Y.

    2016-01-01

    Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production. PMID:27285317

  19. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds.

    PubMed

    Deepthi, B V; Poornachandra Rao, K; Chennapa, G; Naik, M K; Chandrashekara, K T; Sreenivasa, M Y

    2016-01-01

    Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production.

  20. Bioconcentration of haloxyfop-methyl in bluegill (Lepomis macrochirus Rafinesque)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, P.G.; Lutenske, N.E.

    1990-01-01

    Bluegill (Lepomis macrochirus Rafinesque) were exposed to a {sup 14}C haloxyfop-methyl (methyl 2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoate) concentration averaging 0.29 {mu}g/L under flow-through conditions for 28 days. At the end of 28 days, the fish were transferred to clean water for a 4-day flow-through clearance period. Bluegill were found to rapidly absorb the ester from water which was then biotransformed at an extremely fast rate within the fish, such that essentially no haloxyfop-methyl was detected in the fish. The estimated bioconcentration factor for haloxyfop-methyl in whole fish was <17, based upon the detection limit for the ester in fish (0.005 {mu}g/g) and the averagemore » concentration of haloxyfop-methyl in exposure water (0.29 {mu}g/L). The principal component of the {sup 14}C residue within whole fish was haloxyfop acid (2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoic acid) which accounted for an average of about 60% of the total radioactivity. The high rate of biotransformation of the parent compound within the fish demonstrates the importance of basing the bioconcentration factor upon the actual concentration of parent material within the organism rather than the total radioactive residue levels for bioconcentration studies with radiolabeled compounds.« less

  1. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    PubMed

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. Copyright © 2015. Published by Elsevier B.V.

  2. Rapid sensing of l-leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights.

    PubMed

    Heeley, Nicholas; Kirwan, Peter; Darwish, Tamana; Arnaud, Marion; Evans, Mark L; Merkle, Florian T; Reimann, Frank; Gribble, Fiona M; Blouet, Clemence

    2018-04-01

    Dietary proteins are sensed by hypothalamic neurons and strongly influence multiple aspects of metabolic health, including appetite, weight gain, and adiposity. However, little is known about the mechanisms by which hypothalamic neural circuits controlling behavior and metabolism sense protein availability. The aim of this study is to characterize how neurons from the mediobasal hypothalamus respond to a signal of protein availability: the amino acid l-leucine. We used primary cultures of post-weaning murine mediobasal hypothalamic neurons, hypothalamic neurons derived from human induced pluripotent stem cells, and calcium imaging to characterize rapid neuronal responses to physiological changes in extracellular l-Leucine concentration. A neurochemically diverse subset of both mouse and human hypothalamic neurons responded rapidly to l-leucine. Consistent with l-leucine's anorexigenic role, we found that 25% of mouse MBH POMC neurons were activated by l-leucine. 10% of MBH NPY neurons were inhibited by l-leucine, and leucine rapidly reduced AGRP secretion, providing a mechanism for the rapid leucine-induced inhibition of foraging behavior in rodents. Surprisingly, none of the candidate mechanisms previously implicated in hypothalamic leucine sensing (K ATP channels, mTORC1 signaling, amino-acid decarboxylation) were involved in the acute activity changes produced by l-leucine. Instead, our data indicate that leucine-induced neuronal activation involves a plasma membrane Ca 2+ channel, whereas leucine-induced neuronal inhibition is mediated by inhibition of a store-operated Ca 2+ current. A subset of neurons in the mediobasal hypothalamus rapidly respond to physiological changes in extracellular leucine concentration. Leucine can produce both increases and decreases in neuronal Ca 2+ concentrations in a neurochemically-diverse group of neurons, including some POMC and NPY/AGRP neurons. Our data reveal that leucine can signal through novel mechanisms to rapidly affect neuronal activity. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. [Studies on chemical constituents from rhizome of Anemone flaccida].

    PubMed

    Zhang, Lan-tian; Takaishi, Yoshihisa; Zhang, Yan-wen; Duan, Hong-quan

    2008-07-01

    To study the chemical constituents from Anemone flaccida. Chemical constituents were isolated by repeated column chromatography (silica gel, Toyopearl HW-40C and preparative HPLC). The structures were elucidated on the basis of spectral data analysis. Twelve triterpenes were isolated and their structures were identified as follow: oleanolic acid (1), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-beta-D-xylopyranoside (2), eleutheroside K (3), oleanolic acid 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranoside (4), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-alpha-L-arabinofurnoside (5), oleanolic acid 3-O-beta-D-glccuronopyranose (6), oleanolic acid 3-O-beta-D-glccuronopyranose methyl ester (7), oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranosyl (8), oleanolic acid 3-O-beta-D-glccuronopyranose 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (9), oleanolic acid 3-O-beta-D-glccopyranosyl methyl ester 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (10), oleanolic acid 3-O-beta-D-glccopyranosyl-(1-->2)-beta-D-xylopyranosyl-28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (11), oleanolic acid 3-O-alpha-L-rh-amnopyranosyl-(1-->2)-alpha-L-arabinopyrnosyl-28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glccopyranosyl (1-->6)-beta-D-glccopyranoside (12). compounds 5-8, 10, 12 were isolated from this plant for the first time. Compounds 2, 5 and 11 showed positive anti-tumor activities.

  4. Amine fluoride gel affects the viability and the generation of superoxide anions in human polymorphonuclear leukocytes: an in vitro study.

    PubMed

    Knoll-Köhler, Elisabeth; Stiebel, Juliane

    2002-08-01

    Amine hydrofluorides are widely used to prevent caries. As an acidulated gel, they were also studied for their applicability to reduce pathogenic bacteria in periodontal pockets. We assessed the toxicity of this pharmaceutical amine hydrofluoride preparation on human polymorphonuclear leukocytes in vitro by measuring Trypan blue exclusion and the generation of superoxide anions (O2) by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) after a 3-min contact with gel. Depending on the experimental conditions, gel dilutions up to 1.3 x 10(4) resulted in an increase in Trypan blue-colored cells and liberation of beta-glucuronidase. Dilutions between 3 x 10(4) and 1 x 10(5) augmented the fMLP-mediated O2- generation, which could be prevented by Ca2+ chelation with BAPTA-AM (1,2'-bis (o-aminophenoxyethane-N.N.N'.N'-tetraacetic acid tetra (acetoxymethyl) ester) and ethyleneglycoltetraacetic acid (EGTA) or inhibition of protein kinase C (PKC) with staurosporine and bisindolylmaleimide I. respectively. Compared with data published on the minimal inhibitory concentration for periodontal pathogenic bacteria, the cytotoxicity of amine hydrofluorides on eukaryotic cells is much greater and thus of consequence for their clinical use.

  5. Dietary L-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia.

    PubMed

    Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Bryder, David; Flygare, Johan; Karlsson, Stefan

    2012-09-13

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Recently, a case study reported a patient who became transfusion-independent in response to treatment with the amino acid L-leucine. Therefore, we have validated the therapeutic effect of L-leucine using our recently generated mouse model for RPS19-deficient DBA. Administration of L-leucine significantly improved the anemia in Rps19-deficient mice (19% improvement in hemoglobin concentration; 18% increase in the number of erythrocytes), increased the bone marrow cellularity, and alleviated stress hematopoiesis. Furthermore, the therapeutic response to L-leucine appeared specific for Rps19-deficient hematopoiesis and was associated with down-regulation of p53 activity. Our study supports the rationale for clinical trials of L-leucine as a therapeutic agent for DBA.

  6. [Chemical constituents of Lepidium meyenii].

    PubMed

    Liang, Wen-juan; Xu, Hong-bo; Yang, Cai-yan; Geng, Chang-an; Zhang Xue-mei; Chen, Ji-jun

    2015-12-01

    To study the chemical constituents of Lepidium meyenii, the air-dried rhizome of L. meyenii was extracted with 70% EtOH. The extract was condensed to a small amount of volume and extracted with petroleum ether, EtOAc and n-BuOH, successively. The compounds were isolated and purified by column chromatography, and identified based on spectral analyses (1H-NMR, 13C-NMR, HRESIMS). Eighteen compounds were isolated from L. meyenii, including 7 alkaloids and 4 fatty acids and 7 other compounds. They were characterized as (3-hydroxybenzyl) carbamic acid(1), phenylmethanamine(2), N-benzylformamide (3), N-benzylacetamide (4), pyridin-4-ylmethanamine(5), n-(4-methoxybenzyl) aniline(6), uracil(7), succininc acid(8), decanedioic acid(9), n-hexa- decanoic acid methyl ester(10), heptanoic acid(11), solerole(12), pyromucic acid methyl ester(13), 5-hydroxymethyl-2-furancar- boxadehyde(14), 5-(methoxymethyl)-1H-pyrrole-2-carbaldehyde(15), 1,7-dihydroxy-2,3, 4-trimethoxyxanthone (16), 1,7-di- hydroxy-3,4- dimethoxy-xanthone(17), (+)-pinoresinol(18). Meanwhile, compounds 1-18 were obtained from L. neyenii for the first time.

  7. Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada Mountains

    USGS Publications Warehouse

    Zabik, John M.; Seiber, James N.

    1993-01-01

    Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada mountains was assessed by collecting air- and wet-deposition samples during December, January, February, and March, 1990 to 1991. Large-scale spraying of these pesticides occurs during December and January to control insect infestations in valley orchards. Sampling sites were placed at 114- (base of the foothills), 533-, and 1920-m elevations. Samples acquired at these sites contained chlorpyrifos [phosphorothioic acid; 0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl) ester], parathion [phosphorothioic acid, 0-0-diethylo-(4-nitrophenyl) ester], diazinon {phosphorothioic acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester} diazinonoxon {phosphoric acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester}, and paraoxon [phosphoric acid, 0,0-diethyl 0-(4-nitrophenyl) ester] in both air and wet deposition samples. Air concentrations of chloropyrifos, diazinon and parathion ranged from 13 to 13 000 pg/m3 at the base of the foothills. At 533-m air concentrations were below the limit of quantification (1.4 pg/m3) to 83 pg/m3 and at 1920 m concentrations were below the limit of quantification. Concentrations in wet deposition varied with distance and elevation from the Central Valley. Rainwater concentrations at the base of the foot hills ranged from 16 to 7600 pg/mL. At 533-m rain and snow water concentrations ranged from below the limit of quantification (1.3 pg/mL) to 140 pg/mL and at 1920 m concentrations ranged from below the limit of quantification to 48 pg/mL. These findings indicate that atmospheric transport of pesticides applied in the valley to the Sierra Nevada mountains is occurring, but the levels decrease as distance and elevation increase from the valley floor.

  8. Trapping Phyllophaga spp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants

    Treesearch

    Paul S. Robbins; Steven R. Alm; Charles D. Armstrong; Anne L. Averill; Thomas C. Baker; Robert J. Bauernfiend; Frederick P. Baxendale; S. Kris Braman; Rick L. Brandenburg; Daniel B. Cash; Gary J. Couch; Richard S. Cowles; Robert L. Crocker; Zandra D. DeLamar; Timothy G. Dittl; Sheila M. Fitzpatrick; Kathy L. Flanders; Tom Forgatsch; Timothy J. Gibb; Bruce D. Gill; Daniel O. Gilrein; Clyde S. Gorsuch; Abner M. Hammond; Patricia D. Hastings; David W. Held; Paul R. Heller; Rose T. Hiskes; James L. Holliman; William G. Hudson; Michael G. Klein; Vera L. Krischik; David J. Lee; Charles E. Linn; Nancy J. Luce; Kenna E. MacKenzie; Catherine M. Mannion; Sridhar Polavarapu; Daniel A. Potter; Wendell L. Roelofs; Brian M. Rovals; Glenn A. Salsbury; Nathan M. Schiff; David J. Shetlar; Margaret Skinner; Beverly L. Sparks; Jessica A. Sutschek; Timothy P. Sutschek; Stanley R. Swier; Martha M. Sylvia; Niel J. Vickers; Patricia J. Vittum; Richard Weidman; Donald C. Weber; R. Chris Williamson; Michael G. Villani

    2006-01-01

    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera...

  9. Controlling The Spread of Land-Attack Cruise Missiles.

    DTIC Science & Technology

    1995-01-01

    propellant additives and agents: (1) Bonding agents as follows: (i) tris(l-(2-methyl)aziridinyl) phosphine oxide (MAPO); (ii) trimesoyl-l(2-ethyl...Triphenyl bismuth (TPB) (ii) Isophorone diisocyanate (IPDI) (3) Burning rate modifiers as follows: (i) Catocene (ii) N-butyl- ferrocene (iii...Butacene (iv) Other ferrocene derivatives 9g Controlling the Spread of Land-Attack Cruise Missiles (4) Nitrate esters and nitrato plasticizers as

  10. Duodenocutaneous fistula in rats as a model for "wound healing-therapy" in ulcer healing: the effect of pentadecapeptide BPC 157, L-nitro-arginine methyl ester and L-arginine.

    PubMed

    Skorjanec, S; Kokot, A; Drmic, D; Radic, B; Sever, M; Klicek, R; Kolenc, D; Zenko, A; Lovric Bencic, M; Belosic Halle, Z; Situm, A; Zivanovic Posilovic, G; Masnec, S; Suran, J; Aralica, G; Seiwerth, S; Sikiric, P

    2015-08-01

    While very rarely reported, duodenocutanenous fistula research might alter the duodenal ulcer disease background and therapy. Our research focused on rat duodenocutaneous fistulas, therapy, stable gastric pentadecapeptide BPC 157, an anti-ulcer peptide that healed other fistulas, nitric oxide synthase-substrate L-arginine, and nitric oxide synthase-inhibitor L-nitro-arginine methyl ester (L-NAME). The hypothesis was, duodenal ulcer-healing, like the skin ulcer, using the successful BPC 157, with nitric oxide-system involvement, the "wound healing-therapy", to heal the duodenal ulcer, the fistula-model that recently highlighted gastric and skin ulcer healing. Pressure in the lower esophageal and pyloric sphincters was simultaneously assessed. Duodenocutaneous fistula-rats received BPC 157 (10 μg/kg or 10 ng/kg, intraperitoneally or perorally (in drinking water)), L-NAME (5 mg/kg intraperitoneally), L-arginine (100 mg/kg intraperitoneally) alone and/or together, throughout 21 days. Duodenocutaneous fistula-rats maintained persistent defects, continuous fistula leakage, sphincter failure, mortality rate at 40% until the 4(th) day, all fully counteracted in all BPC 157-rats. The BPC 157-rats experienced rapidly improved complete presentation (maximal volume instilled already at 7(th) day). L-NAME further aggravated the duodenocutaneous fistula-course (mortality at 70% until the 4(th) day); L-arginine was beneficial (no mortality; however, maximal volume instilled not before 21(st) day). L-NAME-worsening was counteracted to the control level with the L-arginine effect, and vice versa, while BPC 157 annulled the L-NAME effects (L-NAME + L-arginine; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157 brought below the level of the control). It is likely that duodenocutaneous fistulas, duodenal/skin defect simultaneous healing, reinstated sphincter function, are a new nitric oxide-system related phenomenon. In conclusion, resolving the duodenocutanenous fistulashealing, nitric oxide-system involvement, should illustrate further wound healing therapy to heal duodenal ulcers.

  11. Potent anti-seizure effects of D-leucine

    PubMed Central

    Hartman, Adam L.; Santos, Polan; O’Riordan, Kenneth J.; Stafstrom, Carl E.; Hardwick, J. Marie

    2015-01-01

    There are no effective treatments for millions of patients with intractable epilepsy. High-fat ketogenic diets may provide significant clinical benefit but are challenging to implement. Low carbohydrate levels appear to be essential for the ketogenic diet to work, but the active ingredients in dietary interventions remain elusive, and a role for ketogenesis has been challenged. A potential antiseizure role of dietary protein or of individual amino acids in the ketogenic diet is understudied. We investigated the two exclusively ketogenic amino acids, L-leucine and L-lysine, and found that only L-leucine potently protects mice when administered prior to the onset of seizures induced by kainic acid injection, but not by inducing ketosis. Unexpectedly, the D-enantiomer of leucine, which is found in trace amounts in the brain, worked as well or better than L-leucine against both kainic acid and 6 Hz electroshock-induced seizures. However, unlike L-leucine, D-leucine potently terminated seizures even after the onset of seizure activity. Furthermore, D-leucine, but not L-leucine, reduced long-term potentiation but had no effect on basal synaptic transmission in vitro. In a screen of candidate neuronal receptors, D-leucine failed to compete for binding by cognate ligands, potentially suggesting a novel target. Even at low doses, D-leucine suppressed ongoing seizures at least as effectively as diazepam but without sedative effects. These studies raise the possibility that D-leucine may represent a new class of anti-seizure agents, and that D-leucine may have a previously unknown function in eukaryotes. PMID:26054437

  12. Metabolic Mechanism for l-Leucine-Induced Metabolome To Eliminate Streptococcus iniae.

    PubMed

    Du, Chao-Chao; Yang, Man-Jun; Li, Min-Yi; Yang, Jun; Peng, Bo; Li, Hui; Peng, Xuan-Xian

    2017-05-05

    Crucial metabolites that modulate hosts' metabolome to eliminate bacterial pathogens have been documented, but the metabolic mechanisms are largely unknown. The present study explores the metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae in tilapia. GC-MS-based metabolomics was used to investigate the tilapia liver metabolic profile in the presence of exogenous l-leucine. Thirty-seven metabolites of differential abundance were determined, and 11 metabolic pathways were enriched. Pattern recognition analysis identified serine and proline as crucial metabolites, which are the two metabolites identified in survived tilapias during S. iniae infection, suggesting that the two metabolites play crucial roles in l-leucine-induced elimination of the pathogen by the host. Exogenous l-serine reduces the mortality of tilapias infected by S. iniae, providing a robust proof supporting the conclusion. Furthermore, exogenous l-serine elevates expression of genes IL-1β and IL-8 in tilapia spleen, but not TNFα, CXCR4 and Mx, suggesting that the metabolite promotes a phagocytosis role of macrophages, which is consistent with the finding that l-leucine promotes macrophages to kill both Gram-positive and Gram-negative bacterial pathogens. Therefore, the ability of phagocytosis enhanced by exogenous l-leucine is partly attributed to elevation of l-serine. These results demonstrate a metabolic mechanism by which exogenous l-leucine modulates tilapias' metabolome to enhance innate immunity and eliminate pathogens.

  13. A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species.

    PubMed

    Dinsmore, P K; O'Sullivan, D J; Klaenhammer, T R

    1998-05-28

    The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, phi 31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against phi 31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.

  14. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2.

    PubMed

    Vollmann, Karl; Qurishi, Ramatullah; Hockemeyer, Jörg; Müller, Christa E

    2008-02-12

    The compound L-valine-3-{8-[(E)-2-[3-methoxyphenyl)ethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4) was synthesized as an amino acid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to be stable in artificial gastric acid, but readily cleaved by pig liver esterase.

  15. Electrochemical preparation of polyaniline-polypyrrole solid-phase microextraction coating and its application in the GC determination of several esters.

    PubMed

    Zhao, Shasha; Wu, Mian; Zhao, Faqiong; Zeng, Baizhao

    2013-12-15

    A novel polyaniline-polypyrrole (PANI-PPY) composite film coated stainless steel wire was prepared by cyclic voltammetry. Firstly, PANI was electrodeposited on a stainless steel wire from a solution containing 0.1 M aniline and 1M HNO3, after the PANI coating was dried in air PPY was electrodeposited on it from a solution containing 0.1 M pyrrole and 0.1 M p-methylbenzene sulfonic acid. The resulting PANI-PPY fiber showed reticulate structure and had large specific surface area. When it was used for the headspace solid-phase microextraction of several esters (i.e. methyl anthranilate, ethyl-o-aminobenzoate, dimethyl phthalate, methyl laurate, and diethyl phthalate), followed by gas chromatographic determination, it presented higher extraction capability in comparison with PPY and PANI coatings. Under the optimized conditions, the linear ranges were 0.07-300 μg L(-1) and the detection limits were 0.05-0.38 μg L(-1) for different esters. The PANI-PPY fiber also showed high durability, after being used for about 160 times its extraction capacity only changed a little. The proposed method was successfully applied to the determination of these esters in real samples and the recoveries were 90-102%. © 2013 Elsevier B.V. All rights reserved.

  16. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    PubMed Central

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  17. Identification and quantification of astaxanthin esters in shrimp (Pandalus borealis) and in a microalga (Haematococcus pluvialis) by liquid chromatography-mass spectrometry using negative ion atmospheric pressure chemical ionization.

    PubMed

    Breithaupt, Dietmar E

    2004-06-16

    Negative ion liquid chromatography-atmospheric pressure chemical ionization mass spectrometry [negative ion LC-(APCI)MS] was used for the identification of astaxanthin esters in extracts of commercial shrimp (Pandalus borealis) and dried microalga (Haematococcus pluvialis) samples. A cleanup step using a normal phase solid phase extraction (SPE) cartridge was applied prior to analysis. Recovery experiments with astaxanthin oleate as model compound proved the applicability of this step (98.5 +/- 7.6%; n = 4). The assignment of astaxanthin esters in negative ion LC-(APCI)MS was based on the detection of the molecular ion (M*-) and the formation of characteristic fragment ions, resulting from the loss of one or two fatty acids. Quantification of individual astaxanthin esters was performed using an astaxanthin calibration curve, which was found to be linear over the required range (1-51 micromol/L; r2 = 0.9996). Detection limits, based on the intensity of M*-, a signal-to-noise ratio of 3:1, and an injection volume of 20 microL, were estimated to be 0.05 microg/mL (free astaxanthin), 0.28 microg/mL (astaxanthin-C16:0), and 0.78 microg/mL (astaxanthin-C16:0/C16:0), respectively. This LC-(APCI)MS method allows for the first time the characterization of native astaxanthin esters in P. borealis and H. pluvialis without using time-consuming isolation steps with subsequent gas chromatographic analyses of fatty acid methyl esters. The results suggest that the pattern of astaxanthin-bound polyunsaturated fatty acids of P. borealis does not reflect the respective fatty acid pattern found in triacylglycerides. Application of the presented LC-(APCI)MS technique in common astaxanthin ester analysis will forestall erroneous xanthophyll ester assignment in natural sources.

  18. Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia.

    PubMed

    Arami, Masoumeh Kourosh; Zade, Javad Mirnajafi; Komaki, Alireza; Amiri, Mahmood; Mehrpooya, Sara; Jahanshahi, Ali; Jamei, Behnam

    2015-10-01

    Nucleus Raphe Magnus (NRM) that is involved in the regulation of body temperature contains nitric oxide (NO) synthase. Considering the effect of NO on skin blood flow control, in this study, we assessed its thermoregulatory role within the raphe magnus. To this end, tail blood flow of male Wistar rats was measured by laser doppler following the induction of hypothermia. Intra-NRM injection of SNP (exogenous NO donor, 0.1- 0.2 μl, 0.2 nM) increased the blood flow. Similarly, unilateral microinjection of glutamate (0.1- 0.2 μl, 2.3 nM) into the nucleus increased the blood flow. This effect of L-glutamate was reduced by prior intra NRM administration of NO synthase inhibitor N(G)-methyl-L-arginine or N(G)-nitro-L-arginine methyl ester (L-NAME, 0.1 µl, 100 nM). It is concluded that NO modulates the thermoregulatory response of NRM to hypothermia and may interact with excitatory amino acids in central skin blood flow regulation.

  19. Chronic N(G)-nitro-L-arginine methyl ester-induced hypertension : novel molecular adaptation to systolic load in absence of hypertrophy

    NASA Technical Reports Server (NTRS)

    Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.

  20. Calpain inhibition reduces NMDA receptor rundown in rat substantia nigra dopamine neurons.

    PubMed

    Zhao, Jerry; Baudry, Michel; Jones, Susan

    2018-05-04

    Repeated activation of N-Methyl-d-aspartate receptors (NMDARs) causes a Ca 2+ -dependent reduction in NMDAR-mediated current in dopamine (DA) neurons of the substantia nigra pars compacta (SNc) in one week old rats; however, a Ca 2+ -dependent regulatory protein has not been identified. The role of the Ca 2+ -dependent cysteine protease, calpain, in mediating NMDAR current rundown was investigated. In brain slices from rats aged postnatal day 7-9 ('P7'), bath application of either of the membrane permeable calpain inhibitors, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN, 20 μM) or MDL-28170 (30 μM) significantly reduced whole-cell NMDAR current rundown. To investigate the role of the calpain-2 isoform, the membrane permeable calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I, 200 nM), was applied; C2I application significantly reduced whole cell NMDAR current rundown. Interestingly, ALLN but not C2I significantly reduced rundown of NMDA-EPSCs. These results suggest the calpain-2 isoform mediates Ca 2+ -dependent regulation of extrasynaptic NMDAR current in the first postnatal week, while calpain-1 might mediate rundown of synaptic NMDAR currents. One week later in postnatal development, at P12-P16 ('P14'), there was significantly less rundown in SNc-DA neurons, and no significant effect on rundown of either Ca 2+ chelation or treatment with the calpain inhibitor, ALLN, suggesting that the rundown observed in SNc-DA neurons from two week-old rats might be Ca 2+ -independent. In conclusion, Ca 2+ -dependent rundown of extrasynaptic NMDAR currents in SNc DA neurons involves calpain-2 activation, but Ca 2+ - and calpain-2-dependent NMDAR current rundown is developmentally regulated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach.

    PubMed

    Salmas, Ramin Ekhteiari; Gulhan, Mehmet Fuat; Durdagi, Serdar; Sahna, Engin; Abdullah, Huda I; Selamoglu, Zeliha

    2017-08-01

    The objective of this study was to evaluate the antioxidant effects of propolis, caffeic acid phenethyl ester (CAPE; active compound in propolis), and pollen on biochemical oxidative stress biomarkers in rat kidney tissue inhibited by N ω -nitro-L-arginine methyl ester (L-NAME). The biomarkers evaluated were paraoxonase (PON1), oxidative stress index (OSI), total antioxidant status (TAS), total oxidant status (TOS), asymmetric dimethylarginine (ADMA), and nuclear factor kappa B (NF-κB). TAS levels and PON1 activity were significantly decreased in kidney tissue samples in the L-NAME-treated group (P < 0.05). The levels of TAS and PONI were higher in the L-NAME plus propolis, CAPE, and pollen groups compared with the L-NAME-treated group. TOS, ADMA, and NF-κB levels were significantly increased in the kidney tissue samples of the L-NAME-treated group (P < 0.05). However, these parameters were significantly lower in the L-NAME plus propolis, CAPE, and pollen groups (P < 0.05) compared with rats administered L-NAME alone (P < 0.05). Furthermore, the binding energy of CAPE within catalytic domain of glutathione reductase (GR) enzyme as well as its inhibitory mechanism was determined using molecular modeling approaches. In conclusion, experimental and theoretical data suggested that oxidative alterations occurring in the kidney tissue of chronic hypertensive rats may be prevented via active compound of propolis, CAPE administration. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology.

    PubMed

    Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A

    2016-01-01

    This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library.

    PubMed

    Yan, Wei; Li, Furong; Wang, Li; Zhu, Yaxin; Dong, Zhiyang; Bai, Linhan

    2017-03-01

    A new gene encoding a lipase (designated as Lip-1 ) was identified from a metagenomic bacterial artificial chromosome(BAC) library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1) and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production.

  4. Cytochrome c oxidase inhibition in the rice weevil Sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates.

    PubMed

    Haritos, V S; Dojchinov, G

    2003-10-01

    Volatile alkyl formates are potential replacements for the ozone-depleting fumigant, methyl bromide, as postharvest insecticides and here we have investigated their mode of insecticidal action. Firstly, a range of alkyl esters, ethanol and formic acid were tested in mortality bioassays with adults of the rice weevil, Sitophilus oryzae (L.) and the grain borer, Rhyzopertha dominica (F.) to determine whether the intact ester or one of its components was the toxic moiety. Volatile alkyl formates and formic acid caused similar levels of mortality (LC(50) 131-165 micromol l(-1)) to S. oryzae and were more potent than non-formate containing alkyl esters and ethanol (LC(50)>275 micromol l(-1)). The order of potency was the same in R. dominica. Ethyl formate was rapidly metabolised in vitro to formic acid when incubated with insect homogenates, presumably through the action of esterases. S. oryzae and R. dominica fumigated with a lethal dose of ethyl formate had eight and 17-fold higher concentrations of formic acid, respectively, in their bodies than untreated controls. When tested against isolated mitochondria from S. oryzae, alkyl esters, alcohols, acetate and propionate salts were not inhibitory towards cytochrome c oxidase (EC 1.9.3.1), but sodium cyanide and sodium formate were inhibitory with IC(50) values of 0.0015 mM and 59 mM, respectively. Volatile formate esters were more toxic than other alkyl esters, and this was found to be due, at least in part, to their hydrolysis to formic acid and its inhibition of cytochrome c oxidase.

  5. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  6. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    PubMed Central

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  7. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2.

    PubMed

    Jin, Li; Lin, Ming Quan; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Sun, Simei; Kee, Hae Jin; Jeong, Myung Ho

    2017-07-01

    Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.

  8. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats.

    PubMed

    Paulis, Ludovit; Pechanova, Olga; Zicha, Josef; Krajcirovicova, Kristina; Barta, Andrej; Pelouch, Vaclav; Adamcova, Michaela; Simko, Fedor

    2009-08-01

    Melatonin was shown to reduce blood pressure, enhance nitric oxide availability and scavenge free radicals. There is, however, a shortage of data with respect to the effect of melatonin on pathological left ventricular remodelling associated with haemodynamic overload. We investigated whether melatonin was able to prevent left ventricular hypertrophy (LVH) and fibrosis associated with N(G)-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension. Four groups of male Wistar rats were investigated: control, L-NAME (50 mg/kg per day), melatonin (10 mg/kg per day) and L-NAME plus melatonin. Blood pressure was measured non-invasively each week. After 5 weeks of treatment the animals were killed and nitric oxide synthase (NOS) activity, endothelial and inducible NOS expression, the level of collagenous proteins, hydroxyproline and conjugated dienes in the left ventricle were determined. The administration of L-NAME inhibited NOS activity, increased conjugated dienes concentration, elevated blood pressure and induced LVH and fibrosis (indicated by increased collagenous proteins and hydroxyproline levels). The addition of melatonin to L-NAME treatment failed to prevent the attenuation of NOS activity and the development of LVH and prevented hypertension only partly. The administration of melatonin, however, completely prevented the increase in conjugated dienes concentration and the development of left ventricular fibrosis. NOS expression was not different among experimental groups. Melatonin prevented the development of left ventricular fibrosis and the increase in oxidative load in rats with L-NAME-induced hypertension. The antifibrotic effect of melatonin seems to be independent of its effects on NOS activity and might be linked to its antioxidant properties.

  9. A large blood pressure-raising effect of nitric oxide synthase inhibition in humans

    NASA Technical Reports Server (NTRS)

    Sander, M.; Chavoshan, B.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    In experimental animals, systemic administration of nitric oxide synthase (NOS) inhibitors causes large increases in blood pressure that are in part sympathetically mediated. The aim of this study was to determine the extent to which these conclusions can be extrapolated to humans. In healthy normotensive humans, we measured blood pressure in response to two NOS inhibitors, NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine methyl ester (L-NAME), the latter of which recently became available for use in humans. The major new findings are 3-fold. First, L-NAME produced robust increases in blood pressure that were more than 2 times larger than those previously reported in humans with L-NMMA and approximated those seen in experimental animals. L-NAME (4 mg/kg) raised mean arterial pressure by 24+/-2 mm Hg (n=27, P<0.001), whereas in subjects who received both inhibitors, a 12-fold higher dose of L-NMMA (50 mg/kg) raised mean arterial pressure by 15+/-2 mm Hg (n=4, P<0.05 vs L-NAME). Second, the L-NAME-induced increases in blood pressure were caused specifically by NOS inhibition because they were reversed by L-arginine (200 mg/kg, n=12) but not D-arginine (200 mg/kg, n=6) and because NG-nitro-D-arginine methyl ester (4 mg/kg, n=5) had no effect on blood pressure. Third, in humans, there is an important sympathetic component to the blood pressure-raising effect of NOS inhibition. alpha-Adrenergic blockade with phentolamine (0.2 mg/kg, n=9) attenuated the L-NAME-induced increase in blood pressure by 40% (P<0.05). From these data, we conclude that pharmacological inhibition of NOS causes large increases in blood pressure that are in part sympathetically mediated in humans as well as experimental animals.

  10. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    PubMed Central

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus. PMID:25803613

  11. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus.

    PubMed

    Günther, Lisa; Beck, Roswitha; Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus.

  12. [Simultaneous determination of cocaine and its metabolite ecgonine methyl ester in human blood using microwave extraction-gas chromatography].

    PubMed

    Wang, Xiaobo; Ye, Nengsheng; Wang, Jifen; Gu, Xuexin

    2010-07-01

    A method was developed for the simultaneous determination of cocaine (COC) and its metabolite ecgonine methyl ester (EME) in human blood using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The blood sample was prepared by microwave extraction (MWE). The optimal parameters of MWE were as follows: 6 mL of chloroform-isopropanol (9: 1, v/v) mixture as extraction solvent, the pH value of the sample was adjusted at 10.0 with 0.05 mol/L Na2CO3-NaHCO3 buffer, the extraction was performed at 40 degrees C for 6 min. The COC and EME in the extract were qualified using GC-MS and quantitated using GC-FID. The average recoveries of COC and EME were from 79.91% to 99.85%, the relative standard deviations were less than 3.10%, and the limits of detection (LOD) were 60 and 40 mg/L, respectively. In the method COC and EME were detected without derivatization. The method is rapid, accurate and sensitive, and can be used for the simultaneous determination of COC and EME in blood samples.

  13. Comparative Physiological Studies of the Yeast and Mycelial Forms of Histoplasma capsulatum: Uptake and Incorporation of l-Leucine

    PubMed Central

    Gupta, Rishab K.; Howard, Dexter H.

    1971-01-01

    l-Leucine entered the cells of both morphological forms of Histoplasma capsulatum by a permease-like system at low external concentrations of substrate. However, at levels greater than 5 × 10−5m l-leucine, the amino acid entered the cells both through a simple diffusion-like process and the permease-like system. The rate of the amino acid diffusion into yeast and mycelial forms appeared to be the same, whereas the initial rate of accumulation through the permease-like system was 5 to 10 times faster in the mycelial phase than it was in the yeast phase. The Michaelis constants were 2.2 × 10−5m in yeast phase and 2 × 10−5m in mycelial phase cells. Transport of l-leucine at an external concentration of 10−5m showed all of the characteristics of a system of active transport, which was dependent on temperature and pH. Displacement or removal of the α-amino group, or modification of the α-carboxyl group abolished amino acid uptake. The process was competitively inhibited by neutral aliphatic side-chain amino acids (inhibition constants ranged from 1.5 × 10−5 to 6.2 × 10−5m). Neutral aromatic side-chain amino acids and the d-isomers of leucine and valine did not inhibit l-leucine uptake. These data were interpreted to mean that the l-leucine transport system is stereospecific and is highly specific for neutral aliphatic side-chain amino acids. Incorporation of l-leucine into macromolecules occurred at almost the same rate in both morphological forms of the fungus. The mycelial phase but not the yeast phase showed a slight initial lag in incorporation. In both morphological forms the intracellular pool of l-leucine was of limited capacity, and the total uptake of the amino acid was a function of intracellular pool size. The initial rate of l-leucine uptake was independent of the level of intracellular pool. Both morphological forms deaminated and degraded only a minor fraction of the accumulated leucine. PMID:4323295

  14. Palladium(II) complexes with R(2)edda derived ligands. Part IV. O,O'-dialkyl esters of (S,S)-ethylenediamine-N,N'-di-2-(4-methyl)-pentanoic acid dihydrochloride and their palladium(II) complexes: synthesis, characterization and in vitro antitumoral activity against chronic lymphocytic leukemia (CLL) cells.

    PubMed

    Vujić, Jelena M; Cvijović, Milica; Kaluderović, Goran N; Milovanović, Marija; Zmejkovski, Bojana B; Volarević, Vladislav; Arsenijević, Nebojsa; Sabo, Tibor J; Trifunović, Srećko R

    2010-09-01

    Four novel bidentate N,N'-ligand precursors, including O,O'-dialkyl esters (alkyl = ethyl, n-propyl, n-butyl and n-pentyl), L1 x 2 HCl-L4 x 2 HCl, of (S,S)-ethylenediamine-N,N'-di-2-(4-methyl)-pentanoic acid dihydrochloride [(S,S)-H(4)eddl]Cl(2) and the corresponding palladium(II) complexes 1-4, were prepared and characterized by IR, (1)H NMR and (13)C NMR spectroscopy and elemental analysis. In vitro cytotoxicity of all compounds was determined against chronic lymphocytic leukemia cells (CLL). The compounds were found to exhibit higher antitumoral activity than cisplatin. The most active compound 2, [PdCl(2){(S,S)-nPr(2)eddl}], was found to be 13.6 times more active than cisplatin on CLL cells. 2010 Elsevier Masson SAS. All rights reserved.

  15. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Jayaseelan, Chidambaram; Rahuman, Abdul Abdul; Roopan, Selvaraj Mohana; Kirthi, Arivarasan Vishnu; Venkatesan, Jayachandran; Kim, Se-Kwon; Iyappan, Moorthy; Siva, Chinnadurai

    2013-04-01

    Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) was reported. The resulting nanoparticles were characterized by FTIR, XRD, AFM and FESEM with EDX. FTIR showed characteristic bands (1643 and 3430 cm-1) finds the role of carboxyl group Osbnd H stretching amine Nsbnd H stretch in the formation of TiO2 NPs. The XRD spectrum confirmed that the synthesized TiO2 NPs were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.47°, 31.77°, 36.11°, 41.25°, 54.39°, 56.64° and 69.54° were identified as 110, 100, 101, 111, 211, 220 and 301 reflections, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 40.50 nm. The morphological characterization was analyzed by FESEM and the analysis showed the NPs smooth shaped, spherical and uneven. GC-MS analysis showed the main compounds found in A. hydrophila were uric acid (2.95%), glycyl-L-glutamic acid (6.90%), glycyl-L-proline (74.41%) and l-Leucyl-d-leucine (15.74%). The potential glycyl-L-proline could have played an important role as a capping agent. A possible mechanism for the biosynthesis of TiO2 NPs has been proposed. The antibacterial activity of the synthesized TiO2 NPs was assessed by well diffusion method toward A. hydrophila, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis and showed effective inhibitory activity against S. aureus (33 mm) and S. pyogenes (31 mm).

  16. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity.

    PubMed

    Jayaseelan, Chidambaram; Rahuman, Abdul Abdul; Roopan, Selvaraj Mohana; Kirthi, Arivarasan Vishnu; Venkatesan, Jayachandran; Kim, Se-Kwon; Iyappan, Moorthy; Siva, Chinnadurai

    2013-04-15

    Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) was reported. The resulting nanoparticles were characterized by FTIR, XRD, AFM and FESEM with EDX. FTIR showed characteristic bands (1643 and 3430 cm(-1)) finds the role of carboxyl group OH stretching amine NH stretch in the formation of TiO2 NPs. The XRD spectrum confirmed that the synthesized TiO2 NPs were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.47°, 31.77°, 36.11°, 41.25°, 54.39°, 56.64° and 69.54° were identified as 110, 100, 101, 111, 211, 220 and 301 reflections, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 40.50 nm. The morphological characterization was analyzed by FESEM and the analysis showed the NPs smooth shaped, spherical and uneven. GC-MS analysis showed the main compounds found in A. hydrophila were uric acid (2.95%), glycyl-L-glutamic acid (6.90%), glycyl-L-proline (74.41%) and L-Leucyl-D-leucine (15.74%). The potential glycyl-L-proline could have played an important role as a capping agent. A possible mechanism for the biosynthesis of TiO2 NPs has been proposed. The antibacterial activity of the synthesized TiO2 NPs was assessed by well diffusion method toward A. hydrophila, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis and showed effective inhibitory activity against S. aureus (33 mm) and S. pyogenes (31 mm). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Combined synthesis and in situ coating of nanoparticles in the gas phase

    NASA Astrophysics Data System (ADS)

    Lähde, Anna; Raula, Janne; Kauppinen, Esko I.

    2008-12-01

    Combined gas phase synthesis and coating of sodium chloride (NaCl) and lactose nanoparticles has been developed using an aerosol flow reactor. Nano-sized core particles were produced by the droplet-to-particle method and coated in situ by the physical vapour deposition of L-leucine vapour. The saturation of L-leucine in the reactor determined the resulting particle size and size distribution. In general, particle size increased with the addition of L-leucine and notable narrowing of the core particle size distribution was observed. In addition, homogeneous nucleation of the vapour, i.e. formation of pure L-leucine particles, was observed depending on the saturation conditions of L-leucine as well as the core particle characteristics. The effects of core particle properties, i.e. size and solid-state characteristics, on the coating process were studied by comparing the results for coated NaCl and lactose particles. During deposition, L-leucine formed a uniform coating on the surface of the core particles. The coating stabilised the nanoparticles and prevented the sintering of particles during storage.

  18. Nutritional Profile of Phytococktail from Trans-Himalayan Plants

    PubMed Central

    Dhar, Priyanka; Tayade, Amol B.; Kumar, Jatinder; Chaurasia, Om P.; Srivastava, Ravi B.; Singh, Shashi B.

    2013-01-01

    We estimated the nutritive value, vitamin content, amino acid composition, fatty acid content, and mineral profile of a phytococktail comprising sea buckthorn (Hippophae rhamnoides), apricot (Prunus armeniaca), and roseroot (Rhodiola imbricata) from trans-Himalaya. The free vitamin forms in the phytococktail were determined by rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS). Vitamin E and B-complex vitamins were detected as the principle vitamins. Reversed-phase high performance liquid chromatography (RP-HPLC) with pre-column derivatization was used for identification and quantification of amino acids. Eight essential and eleven non-essential amino acids were quantified, and the content ranged between 76.33 and 9485.67 µg/g. Among the essential amino acids, L-methionine, L-phenylalanine, L-lysine, L-leucine, and L-histidine were found to be the dominant contributors. We also quantified the fatty acids in the phytococktail by using gas chromatography coupled with a flame ionization detector (GC-FID) with fatty acid methyl esters (FAMEs) derivatization. The analysis revealed the presence of 4 major fatty acids contributing to the total lipid content. Palmitic acid was found to be the rich source of saturated fatty acid (SFA) and constituted ∼31% of the total lipid content. Among the unsaturated fatty acids (UFAs), palmitoleic acid (43.47%), oleic acid (20.89%), and linoleic acid (4.31%) were prominent. The mineral profiling was carried out by inductively coupled plasma optical emission spectrometer (ICP-OES), and it was found to contain a number of important dietary mineral elements. The harsh climatic conditions, difficult terrain, and logistic constraints at high altitude regions of Indian trans-Himalayan cold desert lead to the scarcity of fresh fruits and vegetables. Therefore, the source of multiple vitamins, essential amino acids, fatty acids, and dietary minerals from the phytococktail would provide great health benefit in the stressful environment and could be used as a high value nutritional supplement. PMID:24376624

  19. Effect of caffeine coadministration and of nitric oxide synthesis inhibition on the antinociceptive action of ketorolac.

    PubMed

    López-Muñoz, F J; Castañeda-Hernández, G; Flores-Murrieta, F J; Granados-Soto, V

    1996-07-25

    The effects of caffeine and nitric oxide synthesis inhibition on the antinociceptive action of ketorolac were assessed using the pain-induced functional impairment model in the rat. Nociception was induced by the intra-articular injection of uric acid. Ketorolac, but not caffeine, produced an antinociceptive effect which was reduced by NG nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthesis. Caffeine coadministration potentiated the ketorolac effect. L-NAME induced a dose-dependent reduction of this potentiation. The results suggest the participation of the L-arginine-nitric oxide-cyclic GMP pathway in the caffeine potentiation of ketorolac-induced antinociception.

  20. Regulation of transmural transport of amino acid/metal conjugates by dietary calcium in crustacean digestive tract.

    PubMed

    Abdel-Malak, Rania; Ahearn, Gregory A

    2014-03-01

    Effects of luminal Ca(2+) and Mn(2+) on transmural mucosal to serosal (MS) transport of (3) H-L-leucine were characterized in the isolated and perfused intestine of the American lobster, Homarus americanus. (3) H-L-leucine MS transport in the presence of 20 µM Mn(2+) was a sigmoidal function of luminal amino acid concentration, following the Hill equation for multisite cooperative, carrier-mediated, transport. Luminal Ca(2+) was a non-competitive inhibitor of Mn(2+) -stimulated (3) H-L-leucine MS flux. Amino acid transport was hyperbolically stimulated by luminal Ca(2+) or Mn(2+). During 20 µM Mn(2+) -stimulation of (3) H-L-leucine MS flux, addition of 25 mM Ca(2+) strongly reduced amino acid transport Jmax , without affecting amino acid binding properties. Hyperbolic luminal Mn(2+) stimulation of 20 µM (3) H-L-leucine MS flux was also strongly inhibited by 25 mM luminal Ca(2+) , significantly reducing 20 µM (3) H-L-leucine Jmax . Increasing the luminal concentration of verapamil, a calcium channel blocker, significantly increased MS transport of 20 µM (3) H-L-leucine in the presence of 100 nM Mn(2+) by reducing diffusional Ca(2+) uptake into intestinal epithelial cells through verapamil-sensitive channels. A model is proposed supporting the concept of molecular mimicry, whereby (3) H-L-leucine enters lobster intestinal epithelial cells by one or more amino acid-specific transporters and by a dipeptide-like transporter that is capable of binding and transporting peptide molecular mimics (bis-complexes) between Ca(2+) or Mn(2+) and (3) H-L-leucine using the membrane potential as a major driving force for the transport event. According to the model, Ca(2+) entry through apical Ca(2+) channels regulates the magnitude of the membrane potential and therefore the size of the driving force for bis-complex uptake. © 2013 Wiley Periodicals, Inc.

  1. Vascular and antioxidant effects of an aqueous Mentha cordifolia extract in experimental N(G)-nitro-L-arginine methyl ester-induced hypertension.

    PubMed

    Pakdeechote, Poungrat; Prachaney, Parichat; Berkban, Warinee; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Khrisanapant, Wilaiwan; Phirawatthakul, Yada

    2014-01-01

    The effect of an aqueous Mentha cordifolia (MC) extract on the haemodynamic status, vascular remodeling, function, and oxidative status in NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertension was investigated. Male Sprague-Dawley rats were given L-NAME [50 mg/(kg body weight (BW) d)] in their drinking water for 5 weeks and were treated by intragastric administration with the MC extract [200 mg/(kgBWd)] for 2 consecutive weeks. Quercetin [25 mg/(kg BW d)] was used as a positive control. The effects of the MC extract on the haemodynamic status, thoracic aortic wall thickness, and oxidative stress markers were determined, and the vasorelaxant activity of the MC extract was tested in isolated mesenteric vascular beds in rats. Significant increases in the mean arterial pressure (MAP), heart rate (HR), hind limb vascular resistance (HVR), wall thickness, and cross-sectional area of the thoracic aorta, as well as oxidative stress markers were found in the L-NAME-treated group compared to the control (P < 0.05). MAP, HVR, wall thickness, cross-sectional area of the thoracic aorta, plasma malondialdehyde (MDA), and vascular superoxide anion production were significantly reduced in L-NAME hypersensitive rats treated with the MC extract or quercetin. Furthermore, the MC extract induced vasorelaxation in the pre-constricted mesenteric vascular bed with intact and denuded endothelium of normotensive and hypertensive rats. Our results suggest that the MC extract exhibits an antihypertensive effect via its antioxidant capacity, vasodilator property, and reduced vascular remodeling.

  2. Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters.

    PubMed

    Suárez-Quiroz, M L; Alonso Campos, A; Valerio Alfaro, G; González-Ríos, O; Villeneuve, P; Figueroa-Espinoza, M C

    2013-01-01

    The antifungal activities of 5-O-caffeoyl quinic acid (5-CQA) and of methyl, butyl, octyl, and dodecyl esters or 5-CQA, were tested on five toxigenic moulds from the Aspergillus genus (Aspergillus flavus, Aspergillus nomius, Aspergillus ochraceus, Aspergillus parasiticus, Aspergillus westerdijkiae). These mycotoxin producers' moulds may contaminate many types of food crops throughout the food chain posing serious health hazard to animals and humans. The use of chemical methods to decrease mycotoxin producer moulds contamination on food crops in the field, during storage, and/or during processing, has been proved to be efficient. In this work, the antifungal effect of 5-CQA and a homologous series of 5-CQA esters (methyl, butyl, octyl, dodecyl), was investigated using the microdilution method and the minimum inhibitory concentrations (MIC50 and MIC80). All molecules presented antifungal activity, and two esters showed a MIC for all fungi: octyl (MIC50 ≤ 0.5-0.75 mg/mL, MIC80 = 1.0-1.5 mg/mL) and dodecyl (MIC50 = 0.75-1.25 mg/mL) chlorogenates. Dodecyl chlorogenate showed a MIC80 (1.5 mg/mL) only for A. parasiticus. The maximum percent of growth inhibition on aspergillii was observed with octyl (78.4-92.7%) and dodecyl (54.5-83.7%) chlorogenates, being octyl chlorogenate the most potent antifungal agent. It was thus concluded that lipophilization improved the antifungal properties of 5-CQA, which increased with the ester alkyl chain length, exhibiting a cut-off effect at 8 carbons. As far as we know, it is the first report demonstrating that lipophilization may improve the antifungal activity of 5-CQA on five toxigenic moulds from the Aspergillus genus. Lipophilization would be a novel way to synthesize a new kind of antifungal agents with a good therapeutic value or a potential use as preservative in food or cosmetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides by gas–liquid chromatography

    PubMed Central

    Hediger, Hedy; Stevens, Richard L.; Brandenberger, Hans; Schmid, Karl

    1973-01-01

    A new procedure for the qualitative and quantitative determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides based on g.l.c. has been developed. Under the conditions of esterification and trifluoroacetylation N-trifluoroacetylaspartic acid mono-n-butyl ester was formed from asparagine and N-trifluoroacetylglutamic acid mono-n-butyl ester from both glutamine and pyrrolidonecarboxylic acid. To distinguish between the latter two compounds, the esterification was carried out at room temperature yielding 30% of esterified pyrrolidonecarboxylic acid but less than 1% of esterified glutamine. In extending the g.l.c. of amino acids, the previously unknown positions in the g.l.c. elution pattern of the following amino acids could also be reproducibly determined: carboxymethylcysteine, homoserine, hydroxylysine and ∈-methyl-lysine. Further, certain glycopeptides were investigated and the artifacts due to their carbohydrate moieties were determined. PMID:4733240

  4. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  5. Effect of N(G)-nitro-L-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model.

    PubMed

    Luo, C C; Chen, H M; Chiu, C H; Lin, J N; Chen, J C

    2001-07-01

    Subclinical intestinal ischemia-reperfusion injury (IRI) causes an increase in mucosal permeability and may represent an early event in the pathogenesis of necrotizing enterocolitis in premature infants. Previous studies suggested that continuous, endogenous formation of nitric oxide (NO) maintains the mucosal integrity of the intestine, thus protecting the gut from injuries from blood-borne toxins and tissue-destructive mediators. This study was undertaken to assess whether the inhibition of NO production causes an increase in intestinal permeability in rats following IRI. Sprague-Dawley rats weighing 200-300 g were divided into 4 groups: (1) untreated group (normal control); (2) ischemia-reperfusion group; (3) early N(G)-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of NO production, treatment group, and (4) late L-NAME treatment group. Transient IRI was induced by 30-min occlusion, followed by reperfusion of the isolated ileal loop. The L-NAME was administered 15 min before and after mesenteric ischemia as a 25-mg/kg bolus. Fluorescein isothiocyanate-dextran (FITC-D) was used to quantitatively assess the alteration in mucosal permeability of the intestine. There was no significant increase in the portal vein FITC-D level among normal controls, ischemia-reperfusion group and late L-NAME-treated group, but there was an approximately 6-fold increase in the early L-NAME treatment group. The pathological features of the intestine following IRI include denudation of the villus epithelium and reduction of villus height, associated with marked inflammatory cell infiltration over the lamina propria. These results suggest that endogenous NO may play a role in the protecting intestinal integrity after IRI. Copyright 2001 S. Karger AG, Basel

  6. The Nitric Oxide Synthase Inhibitor NG-Nitro-L-Arginine Methyl Ester Diminishes the Immunomodulatory Effects of Parental Arginine in Rats with Subacute Peritonitis

    PubMed Central

    Lo, Hui-Chen; Hung, Ching-Yi; Huang, Fu-Huan; Su, Tzu-Cheng; Lee, Chien-Hsing

    2016-01-01

    The combined treatment of parenteral arginine and the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) have been shown to improve liver function and systemic inflammation in subacute peritonitic rats. Here, we investigated the effects of single and combined parenteral arginine and L-NAME treatments on leukocyte and splenocyte immunity. Male Wistar rats were subjected to cecal punctures and were intravenously given total parenteral nutrition solutions with or without arginine and/or L-NAME supplementations for 7 days. Non-surgical and sham-operated rats with no cecal puncture were given a chow diet and parenteral nutrition, respectively. Parenteral feeding elevated the white blood cell numbers and subacute peritonitis augmented the parenteral nutrition-induced alterations in the loss of body weight gain, splenomegaly, and splenocyte decreases. Parenteral arginine significantly increased the B-leukocyte level, decreased the natural killer T (NKT)-leukocyte and splenocyte levels, alleviated the loss in body weight gain and total and cytotoxic T-splenocyte levels, and attenuated the increases in plasma nitrate/nitrite and interferon-gamma production by T-splenocytes. L-NAME infusion significantly decreased NKT-leukocyte level, tumor-necrosis factor (TNF)-alpha production by T-splenocytes and macrophages, and interferon-gamma production by T-leukocytes, monocytes, and T-splenocytes, as well as increased interleukin-6 production by T-leukocytes and monocytes and nitrate/nitrite production by T-leukocytes. Combined treatment significantly decreased plasma nitrate/nitrite, the NKT-leukocyte level, and TNF-alpha production by T-splenocytes. Parenteral arginine may attenuate immune impairment and L-NAME infusion may augment leukocyte proinflammatory response, eliminate splenocyte proinflammatory and T-helper 1 responses, and diminish arginine-induced immunomodulation in combined treatment in subacute peritonitic rats. PMID:27007815

  7. Effective methylation of phosphonic acids related to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection and identification by gas chromatography-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Carlos A.; Leif, Roald N.; Alcaraz, Armando

    The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF 4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found tomore » be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (~10 μg mL -1). Due to its insolubility in methylene chloride, TMO·BF 4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. We demonstrated the method to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL -1 concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O 3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. Additionally, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. This work described herein represents the first report on the use of TMO·BF 4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis.« less

  8. Effective methylation of phosphonic acids related to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection and identification by gas chromatography-mass spectrometry

    DOE PAGES

    Valdez, Carlos A.; Leif, Roald N.; Alcaraz, Armando

    2016-06-01

    The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF 4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found tomore » be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (~10 μg mL -1). Due to its insolubility in methylene chloride, TMO·BF 4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. We demonstrated the method to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL -1 concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O 3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. Additionally, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. This work described herein represents the first report on the use of TMO·BF 4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis.« less

  9. Modulation of Polymorphonuclear Neutrophil Response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine

    DTIC Science & Technology

    1988-11-10

    mi. Blood drawing was done by a team of ALAAS certified technicians. Previous experience had shown it to be tolerated without evidence of pain or...collected through a 525 nM bandpass filter on a linear scale . G. SIGNAL TRANSDUCTION STUDIES-PERTUSSIS TOXIN PMNs separated on percol gradients were...Clin. Immun. and Immunopath., 15:525, 1980. 16. Gray, G.D., Ohlmann, G.M., Morton. D.R. and Schaaub, R.G., Feline Polymorphonuclear Leukocytes Respond

  10. Local anesthetic-induced inhibition of human neutrophil priming: the influence of structure, lipophilicity, and charge.

    PubMed

    Picardi, Susanne; Cartellieri, Sibylle; Groves, Danja; Hahnenkamp, Klaus; Hahnenekamp, Klaus; Gerner, Peter; Durieux, Marcel E; Stevens, Markus F; Lirk, Philipp; Hollmann, Markus W

    2013-01-01

    Local anesthetics (LAs) are widely known for inhibition of voltage-gated sodium channels underlying their antiarrhythmic and antinociceptive effects. However, LAs have significant immunomodulatory properties and were shown to affect human neutrophil functions independent of sodium-channel blockade. Previous studies suggest a highly selective interaction between LAs and the α-subunit of G protein-coupled receptors of the Gq/G11 family as underlying mechanism. Providing a detailed structure function analysis, this study aimed to determine the active parts within the LA molecule responsible for the effects on human neutrophil priming. Human neutrophils were incubated with structurally different LAs for 60 minutes, followed by priming and activation using either platelet-activating factor or lysophosphatidic acid and N-formyl-methionyl-L-leucyl-L-phenylalanine. Superoxide anion generation was determined, using the cytochrome c reduction assay. Differences in priming inhibition of human neutrophils between LAs were smaller than expected, although significant. Ester-linked LAs blocked priming responses more effectively than did amide LAs. Furthermore, the inhibitory potency of LAs on priming decreased with an increase of their respective octanol-buffer coefficient, and inhibition did not correlate with sodium-channel-blocking potency. Charge was not crucially required for priming inhibition, yet it played a role in effect size. Local anesthetics significantly attenuated Gαq-protein-mediated neutrophil priming. The most potent inhibition was achieved by ester compounds, inversely correlated with their octanol-buffer coefficient, and enhanced by permanent charges within the LA molecule. No correlation to their potency of blocking sodium channels was found.

  11. Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously

    NASA Astrophysics Data System (ADS)

    Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil

    2017-03-01

    Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.

  12. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation

    PubMed Central

    Mangal, Sharad; Nie, Haichen; Xu, Rongkun; Guo, Rui; Cavallaro, Alex; Zemlyanov, Dmitry; Zhou, Qi (Tony)

    2018-01-01

    Purpose Inhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution. Methods The produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated. Results The spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations. Conclusions We developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine. PMID:29374368

  13. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation.

    PubMed

    Mangal, Sharad; Nie, Haichen; Xu, Rongkun; Guo, Rui; Cavallaro, Alex; Zemlyanov, Dmitry; Zhou, Qi Tony

    2018-01-08

    Inhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution. The produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated. The spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations. We developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine.

  14. Quantitative profiling of 4'-geranyloxyferulic acid and its conjugate with l-nitroarginine methyl ester in mononuclear cells by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Taddeo, Vito Alessandro; Genovese, Salvatore; Carlucci, Giuseppe; Ferrone, Vincenzo; Patruno, Antonia; Ferrone, Alessio; de Medina, Philippe; Fiorito, Serena; Epifano, Francesco

    2017-01-30

    Oxyprenylated natural products were shown to exert in vitro and in vivo remarkable anti-cancer and anti-inflammatory effects. This paper describes a rapid, selective, and sensitive HPLC method with fluorescence detection for determination of 4'-geranyloxyferulic acid (GOFA) and its conjugate with l-nitroarginine methyl ester (GOFA-L-NAME) in mononuclear cells. Analytes were extracted from cells using methanol and eluted on a GraceSmart RP 18 analytical column (250×4.6mm i.d., 5μm particle size) kept at 25°C. A mixture of formic acid 1% in water (A) and methanol (B) were used as mobile phase, at a flow-rate of 1.2mL/min in gradient elution. A fluorescence detector (excitation/emission wavelength of 319/398nm for GOFA and GOFA-L-NAME), was used for the two analytes. Calibration curves of GOFA and GOFA-L-NAME were linear over the concentration range of 1.0-50μg/mL, with correlation coefficients (r 2 )≥0.9995. Intra- and inter-assay precision do not exceed 6.8%. The accuracy was from 94% to 105% for quality control samples (2.0, 25.0 and 40μg/mL). The mean (RSD%) extraction recoveries (n=5) for GOFA and GOFA-L-NAME from spiked cells at 2.0, 25.0 and 40.0μg/mL were 92.4±1.5%, 94.7±0.9% and 93.8±1.1%, for GOFA and 95.3±1.2%, 94.8±1.0% and 93.9±1.3%, for GOFA-L-NAME. The limits of detection and quantification were 0.3μg/mL and 1.0μg/mL for GOFA and GOFA-L-NAME. This method was successfully applied to measure GOFA and GOFA-L-NAME concentrations in a mononuclear cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Beneficial effects of l-leucine and l-valine on arrhythmias, hemodynamics and myocardial morphology in rats.

    PubMed

    Mitręga, Katarzyna; Zorniak, Michał; Varghese, Benoy; Lange, Dariusz; Nożynski, Jerzy; Porc, Maurycy; Białka, Szymon; Krzemiński, Tadeusz F

    2011-09-01

    Branched chain amino acids (BCAA) have been shown to have a general protective effect on the heart in different animal models as well as in humans. However, so far no attempt has been made to specifically elucidate their influence on arrhythmias. Our study was performed to evaluate whether an infusion of either l-leucine or l-valine in a dose of 1mgkg(-1)h(-1) 10min before a 7-min period of left anterior descending artery occlusion followed by 15min of reperfusion, had an effect on arrhythmias measured during the reperfusion phase in the ischemia- and reperfusion-induced arrhythmias model in rats in vivo. The effect of the infusion of these substances on mean arterial blood pressure was monitored throughout the experiment. Both of the tested amino acids exhibited significant antiarrhythmic properties. l-Leucine reduced the duration of ventricular fibrillation (P<0.05) and l-valine decreased the duration of ventricular fibrillation (P<0.001) and ventricular tachycardia (P<0.05). The two amino acids were generally hypotensive. l-Valine lowered blood pressure in all phases of the experiment (P<0.05) while l-leucine lowered this parameter mainly towards the end of occlusion and reperfusion (P<0.05). In addition, 30min infusion of the amino acids in the used dose did not produce any apparent adverse histological changes that were remarkably different from control. In summary, the results of our study suggest that l-leucine and l-valine in the dose that was used attenuates arrhythmias and are hypotensive in their influence. Our findings lend support to the many ongoing investigations into the benefit of the application of l-leucine and l-valine in cardiology like their addition to cardioplegic solutions. 2011 Elsevier Ltd. All rights reserved.

  16. One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation.

    PubMed

    Yang, Ru; Su, Mengxing; Li, Min; Zhang, Jianchun; Hao, Xinmin; Zhang, Hua

    2010-08-01

    A one-pot process combining transesterification and selective hydrogenation was established to produce biodiesel from hemp (Cannabis sativa L.) seed oil which is eliminated as a potential feedstock by a specification of iodine value (IV; 120 g I(2)/100g maximum) contained in EN 14214. A series of alkaline earth metal oxides and alkaline earth metal supported copper oxide were prepared and tested as catalysts. SrO supported 10 wt.% CuO showed the superior catalytic activity for transesterification with a biodiesel yield of 96% and hydrogenation with a reduced iodine value of 113 and also exhibited a promising selectivity for eliminating methyl linolenate and increasing methyl oleate without rising methyl stearate in the selective hydrogenation. The fuel properties of the selective hydrogenated methyl esters are within biodiesel specifications. Furthermore, cetane numbers and iodine values were well correlated with the compositions of the hydrogenated methyl esters according to degrees of unsaturation. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Incorporation of leucine into phospholipids of Bacteroides thetaiotaomicron.

    PubMed Central

    Smith, R D; Salyers, A A

    1981-01-01

    L-[4,5-3H]- or L-[U-14C]leucine was incorporated by Bacteroides thetaiotaomicron into acid-precipitable material even when the bacteria were treated with concentrations of tetracycline high enough to prevent growth. Similar results were obtained when L-[2,3,4-3H]valine or L-[4,5-3H]isoleucine was used instead of leucine. In bacteria which had been treated with tetracycline, the acid-precipitable label was not solubilized by treatment with protease, lysozyme, or deoxyribonuclease. However, virtually all of the label was extractable with chloroform-methanol, indicating that the label had been incorporated into membrane lipids. Since L-[1-14C]leucine was not incorporated into lipids, leucine was probably decarboxylated before incorporation. When a chloroform extract from bacteria which had been labeled with both [32P]phosphate and [3H]leucine was resolved into component phospholipids by two-dimensional thin-layer chromatography, 3H was incorporated into all of the phospholipids. When these phospholipids were deacylated, the 3H from leucine was associated with released fatty acids rather than with the head groups. Thus, it appears that B. thetaiotaomicron can utilize leucine and similar amino acids not only by incorporating them into protein but also by incorporating portions of these amino acids into membrane phospholipids. PMID:7462155

  18. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol.

    PubMed

    Takagi, Hiroshi; Hashida, Keisuke; Watanabe, Daisuke; Nasuno, Ryo; Ohashi, Masataka; Iha, Tomoya; Nezuo, Maiko; Tsukahara, Masatoshi

    2015-02-01

    Awamori shochu is a traditional distilled alcoholic beverage made from steamed rice in Okinawa, Japan. Although it has a unique aroma that is distinguishable from that of other types of shochu, no studies have been reported on the breeding of awamori yeasts. In yeast, isoamyl alcohol (i-AmOH), known as the key flavor of bread, is mainly produced from α-ketoisocaproate in the pathway of L-leucine biosynthesis, which is regulated by end-product inhibition of α-isopropylmalate synthase (IPMS). Here, we isolated mutants resistant to the L-leucine analog 5,5,5-trifluoro-DL-leucine (TFL) derived from diploid awamori yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular L-leucine, and among them, one mutant overproduced i-AmOH in awamori brewing. This mutant carried an allele of the LEU4 gene encoding the Ser542Phe/Ala551Val variant IPMS, which is less sensitive to feedback inhibition by L-leucine. Interestingly, we found that either of the constituent mutations (LEU4(S542F) and LEU4(A551V)) resulted in the TFL tolerance of yeast cells and desensitization to L-leucine feedback inhibition of IPMS, leading to intracellular L-leucine accumulation. Homology modeling also suggested that L-leucine binding was drastically inhibited in the Ser542Phe, Ala551Val, and Ser542Phe/Ala551Val variants due to steric hindrance in the cavity of IPMS. As we expected, awamori yeast cells expressing LEU4(S542F), LEU4(A551V), and LEU4(S542F/A551V) showed a prominent increase in extracellular i-AmOH production, compared with that of cells carrying the vector only. The approach described here could be a practical method for the breeding of novel awamori yeasts to expand the diversity of awamori taste and flavor. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel.

    PubMed

    Peng, Chiung-Yu; Lan, Cheng-Hang; Dai, Yu-Tung

    2006-12-01

    This study characterizes the compositions of two biodiesel vapors, soy biodiesel and waste cooking oil biodiesel, to provide a comprehensive understanding of biodiesels. Vapor phases were sampled by purging oil vapors through thermal desorption tubes which were then analyzed by the thermal desorption/GC/MS system. The results show that the compounds of biodiesel vapors can be divided into four groups. They include methyl esters (the main biodiesel components), oxygenated chemicals, alkanes and alkenes, and aromatics. The first two chemical groups are only found in biodiesel vapors, not in the diesel vapor emissions. The percentages of mean concentrations for methyl esters, oxygenated chemicals, alkanes and alkenes, and aromatics are 66.1%, 22.8%, 4.8% and 6.4%, respectively for soy biodiesel, and 35.8%, 35.9%, 27.9% and 0.3%, respectively for waste cooking oil biodiesel at a temperature of 25+/-2 degrees C. These results show that biodiesels have fewer chemicals and lower concentrations in vapor phase than petroleum diesel, and the total emission rates are between one-sixteenth and one-sixth of that of diesel emission, corresponding to fuel evaporative emissions of loading losses of between 106 microg l(-1) and 283 microg l(-1). Although diesels generate more vapor phase emissions, biodiesels still generate considerable amount of vapor emissions, particularly the emissions from methyl esters and oxygenated chemicals. These two chemical groups are more reactive than alkanes and aromatics. Therefore, speciation and quantification of biodiesel vapor phases are important.

  20. Characterization of Bacillus thuringiensis l-Isoleucine Dioxygenase for Production of Useful Amino Acids▿†

    PubMed Central

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V.; Sokolov, Pavel M.; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-01-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  1. Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles.

    PubMed

    Sasselli, I R; Pappas, C G; Matthews, E; Wang, T; Hunt, N T; Ulijn, R V; Tuttle, T

    2016-10-12

    Despite progress, a fundamental understanding of the relationships between the molecular structure and self-assembly configuration of Fmoc-dipeptides is still in its infancy. In this work, we provide a combined experimental and computational approach that makes use of free energy equilibration of a number of related Fmoc-dipeptides to arrive at an atomistic model of Fmoc-threonine-phenylalanine-amide (Fmoc-TF-NH 2 ) which forms twisted fibres. By using dynamic peptide libraries where closely related dipeptide sequences are dynamically exchanged to eventually favour the formation of the thermodynamically most stable configuration, the relative importance of C-terminus modifications (amide versus methyl ester) and contributions of aliphatic versus aromatic amino acids (phenylalanine F vs. leucine L) is determined (F > L and NH 2 > OMe). The approach enables a comparative interpretation of spectroscopic data, which can then be used to aid the construction of the atomistic model of the most stable structure (Fmoc-TF-NH 2 ). The comparison of the relative stabilities of the models using molecular dynamic simulations and the correlation with experimental data using dynamic peptide libraries and a range of spectroscopy methods (FTIR, CD, fluorescence) allow for the determination of the nanostructure with atomistic resolution. The final model obtained through this process is able to reproduce the experimentally observed formation of intertwining fibres for Fmoc-TF-NH 2 , providing information of the interactions involved in the hierarchical supramolecular self-assembly. The developed methodology and approach should be of general use for the characterization of supramolecular structures.

  2. (-)-Xanthienopyran, a new inhibitor of superoxide anion generation by activated neutrophils, and further constituents of the seeds of Xanthium strumarium.

    PubMed

    Lee, Chia-Lin; Huang, Po-Ching; Hsieh, Pei-Wen; Hwang, Tsong-Long; Hou, Yu-Yi; Chang, Fang-Rong; Wu, Yang-Chang

    2008-08-01

    The dried seeds of XANTHIUM STRUMARIUM (Asteraceae) are used after thorough stir-frying as an ingredient in traditional Chinese medicines for relieving allergy. Two new compounds, xanthialdehyde ( 2) and (-)-xanthienopyran ( 7), as well as 26 known compounds were isolated in the present study. The structures of the isolates were elucidated by spectroscopic methods. Among them, compound 7 exhibited significant selective inhibition of superoxide anion generation by human neutrophils induced by formyl- L-methionyl- L-leucyl- L-phenylalanine, with an IC50 value of 1.72 microg/mL.

  3. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root.

    PubMed

    Othman, Ahmad Razi; Abdullah, Norhani; Ahmad, Syahida; Ismail, Intan Safinar; Zakaria, Mohamad Pauzi

    2015-02-05

    The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved. In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites. The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid. This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.

  4. Absorption of CO2 from modified flue gases of power generation Tarahan chemically using NaOH and Na2CO3 and biologically using microalgae

    NASA Astrophysics Data System (ADS)

    Purba, Elida; Agustina, Dewi; Putri Pertama, Finka; Senja, Fita

    2018-03-01

    This research was carried out on the absorption of CO2 from the modified flue gases of power generation Tarahan using NaOH (sodium hydroxide) and Na2CO3 (sodium carbonate). The operation was conducted in a packed column absorber and then the output gases from the packed column was fed into photo-bioreactor for biological absorption. In the photo-bioreactor, two species of microalgae, N. occulata and T. chuii, were cultivated to both absorb CO2 gas and to produce biomass for algal oil. The aims of this research were, first, to determine the effect of absorbent flow rate on the reduction of CO2 and on the decrease of output gas temperature, second, to determine the characteristics of methyl ester obtained from biological absorption process. Flow rates of the absorbent were varied as 1, 2, and 3 l/min. The concentrations of NaOH and Na2CO3 were 1 M at a constant gas flow rate of 6 l/min. The output concentrations of CO2 from the absorber was analyzed using Gas Chromatography 2014-AT SHIMADZU Corp 08128. The results show that both of the absorbents give different trends. From the absorption using NaOH, it can be concluded that the higher the flow rate, the higher the absorption rate obtained. The highest flow rate achieved maximum absorption of 100%. On the other hand, absorption with Na2CO3 revealed the opposite trend where the higher the flow rates the lower the absorption rate. The highest absorption using Na2CO3 was obtained with the lowest flow rate, 1 l/min, that was 45,5%. As the effect of flow rate on output gas temperature, the temperature decreased with increasing flow rates for both absorbents. The output gas temperature for NaOH and Na2CO3 were consecutively 35 °C and 31 °C with inlet gas temperature of 50°C. Absorption of CO2 biologically resulted a reduction of CO2 up to 60% from the input gas concentration. Algal oil was extracted with mixed hexane and chloroform to obtain algal oil. Extracted oil was transesterified to methyl ester using sodium hydroxide as a catalyst. The results of in-situ transesterification method cannot be identified. Both microalgae achieved maximum yield at 2% catalyst concentration. Nannochloropsis occulata achieved the highest yield of algal oil that is 88.5%. The highest content of methyl ester from Nannochloropsis occulata was undecanoic acid methyl ester by 55.42% and the result from Tetraselmis chuii was palmitic acid methyl ester by 81.58%.

  5. An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo.

    PubMed

    Lozano-Torres, Beatriz; Galiana, Irene; Rovira, Miguel; Garrido, Eva; Chaib, Selim; Bernardos, Andrea; Muñoz-Espín, Daniel; Serrano, Manuel; Martínez-Máñez, Ramón; Sancenón, Félix

    2017-07-05

    A naphthalimide-based two-photon probe (AHGa) for the detection of cell senescence is designed. The probe contains a naphthalimide core, an l-histidine methyl ester linker, and an acetylated galactose bonded to one of the aromatic nitrogen atoms of the l-histidine through a hydrolyzable N-glycosidic bond. Probe AHGa is transformed into AH in senescent cells resulting in an enhanced fluorescent emission intensity. In vivo detection of senescence is validated in mice bearing tumor xenografts treated with senescence-inducing chemotherapy.

  6. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.

    PubMed

    Su, Haifeng; Jiang, Juan; Lu, Qiuli; Zhao, Zhao; Xie, Tian; Zhao, Hai; Wang, Maolin

    2015-02-07

    Early trials have demonstrated great potential for the use of duckweed (family Lemnaceae) as the next generation of energy plants for the production of biofuels. Achieving this technological advance demands research to develop novel bioengineering microorganisms that can ferment duckweed feedstock to produce higher alcohols. In this study, we used relevant genes to transfer five metabolic pathways of isoleucine, leucine and valine from the yeast Saccharomyces cerevisiae into the bioengineered microorganism Corynebacterium crenatum. Experimental results showed that the bioengineered strain was able to produce 1026.61 mg/L of 2-methyl-1-butanol by fermenting glucose, compared to 981.79 mg/L from the acid hydrolysates of duckweed. The highest isobutanol yields achieved were 1264.63 mg/L from glucose and 1154.83 mg/L from duckweed, and the corresponding highest yields of 3-methyl-1-butanol were 748.35 and 684.79 mg/L. Our findings demonstrate the feasibility of using bioengineered C. crenatum as a platform to construct a bacterial strain that is capable of producing higher alcohols. We have also shown the promise of using duckweed as the basis for developing higher alcohols, illustrating that this group of plants represents an ideal fermentation substrate that can be considered the next generation of alternative energy feedstocks.

  7. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation.

    PubMed

    Misawa, Naoki; Hosoya, Takahiro; Yoshida, Shuhei; Sugimoto, Osamu; Yamada-Kato, Tomoe; Kumazawa, Shigenori

    2018-02-26

    To investigate the compounds present in wasabi leaves (Wasabia japonica Matsumura) that inhibit the adipocyte differentiation, activity-guided fractionation was performed on these leaves. 5-Hydroxyferulic acid methyl ester (1: 5-HFA ester), one of the phenylpropanoids, was isolated from wasabi leaves as a compound that inhibits the adipocyte differentiation. Compound 1 suppressed the intracellular lipid accumulation of 3T3-L1 cells without significant cytotoxicity. Gene expression analysis revealed that 1 suppressed the mRNA expression of 2 master regulators of adipocyte differentiation, PPARγ and C/EBPα. Furthermore, 1 downregulated the expression of adipogenesis-related genes, GLUT4, LPL, SREBP-1c, ACC, and FAS. Protein expression analysis revealed that 1 suppressed PPARγ protein expression. Moreover, to investigate the relationship between the structure and activity of inhibiting the adipocyte differentiation, we synthesized 12 kinds of phenylpropanoid analog. Comparison of the activity among 1 and its analogs suggested that the compound containing the substructure that possess a common functional group at the ortho position such as a catechol group exhibits the activity of inhibiting the adipocyte differentiation. Taken together, our findings suggest that 1 from wasabi leaves inhibits adipocyte differentiation via the downregulation of PPARγ. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    PubMed

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Targeted mutations and MD simulations of a methanol-stable lipase YLIP9 from Yarrowia lipolytica MSR80 to develop a biodiesel enzyme.

    PubMed

    Syal, Poonam; Verma, Ved Vrat; Gupta, Rani

    2017-11-01

    Biodiesel, an environment friendly alternative for fuels, contains methyl esters of long-chain fatty acids. Our group has reported a methanol-stable YLIP9 from Yarrowia lipolytica MSR80 that shows poor catalysis of long-chain fatty acids. To shift its substrate specificity, residues within lid and binding pocket were identified for sequential mutations using YLIP2 as the template. Of the two point mutations (Glu116Leu and Ser119Val) introduced in the lid, the former mutation (YLIP9L1) increased the catalytic rate by ∼2-fold without any change in substrate specificity. In this mutant, six binding pocket residues (Bp2-Bp7) were further mutated to obtain six double mutants. YLIP9L1Bp3 showed significant shift in substrate specificity towards long-chain pNPesters with 11-fold increase in catalytic efficiency than YLIP9. Double mutations also led to increased thermostability and lowered activation energy of YLIP9L1Bp3 thereby shifting its optimum temperature from 60°C to 50°C. In silico molecular dynamics simulations revealed improved lid flexibility and increased catalytic triad volume in YLIP9L1Bp3. The enzyme YLIP9L1Bp3 was methanol-stable having selectivity for long-chain fatty acids with improved catalytic efficiency. Its application as a biodiesel enzyme was validated by transesterification of palm oil in presence of methanol, where it showed 8-fold increase in conversion of oil to methyl esters. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of sampling and analytical methods for concerted determination of commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand-wash, dermal-patch, and air samples.

    PubMed

    Tucker, S P; Reynolds, J M; Wickman, D C; Hines, C J; Perkins, J B

    2001-06-01

    Sampling and analytical methods were developed for commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand washes, on dermal patches, and in air. Eight herbicides selected for study were alachlor, atrazine, cyanazine, 2,4-dichlorophenoxyacetic acid (2,4-D), metolachlor, simazine, and two esters of 2,4-D, the 2-butoxyethyl ester (2,4-D, BE) and the 2-ethylhexyl ester (2,4-D, EH). The hand-wash method consisted of shaking the worker's hand in 150 mL of isopropanol in a polyethylene bag for 30 seconds. The dermal-patch method entailed attaching a 10-cm x 10-cm x 0.6-cm polyurethane foam (PUF) patch to the worker for exposure; recovery of the herbicides was achieved by extraction with 40 mL of isopropanol. The air method involved sampling with an OVS-2 tube (which contained an 11-mm quartz fiber filter and two beds of XAD-2 resin) and recovery with 2 mL of 10:90 methanol:methyl t-butyl ether. Analysis of each of the three sample types was performed by gas chromatography with an electron-capture detector. Diazomethane in solution was employed to convert 2,4-D as the free acid to the methyl ester in each of the three methods for ease of gas chromatography. Silicic acid was added to sample solutions to quench excess diazomethane. Limits of detection for all eight herbicides were matrix-dependent and, generally, less than 1 microgram per sample for each matrix. Sampling and analytical methods met NIOSH evaluation criteria for all herbicides in hand-wash samples, for seven herbicides in air samples (all herbicides except cyanazine), and for six herbicides in dermal-patch samples (all herbicides except cyanazine and 2,4-D). Speciation of 2,4-D esters and simultaneous determination of 2,4-D acid were possible without losses of the esters or of other herbicides (acetanilides and triazines) being determined.

  11. Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain.

    PubMed

    Gui, Yongli; Ma, Yuechao; Xu, Qingyang; Zhang, Chenglin; Xie, Xixian; Chen, Ning

    2016-02-20

    Here, we report the complete genome sequence of Corynebacterium glutamicum CP, an industrial l-leucine producing strain in China. The whole genome consists of a circular chromosome and a plasmid. The comparative genomics analysis shows that there are many mutations in the key enzyme coding genes relevant to l-leucine biosynthesis compared to C. glutamicum ATCC 13032. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects of aqueous leaf extract of Tridax procumbens on contractile activity of corpus cavernosum in N-nitro-l-arginine methyl ester-induced hypertensive male rats.

    PubMed

    Salami, Shakiru Ademola; Salahdeen, Hussein Mofomosara; Ugbebor, Evangelshane Chukwudubem; Murtala, Babatunde Adekunle; Raji, Yinusa

    2018-01-01

    This study investigated the effects of aqueous leaf extract of Tridax procumbens (ALETP) on contractile activity of corpus cavernosum in N-nitro-l-arginine methyl ester (l-NAME)-induced hypertensive male rats. Twenty normal, adult male rats (130-150 g) were divided into four groups of five rats each. Group I (control) was given normal saline (0.6 mL/kg) and group II was given l-NAME (40 mg/kg) for 6 weeks. Groups III and IV also received l-NAME (40 mg/kg) for 6 weeks but were further co-treated with 100 and 200 mg/kg of ALETP, respectively, from week 4 to week 6. All treatments were given orally. Strips of corpus cavernosum from each of the four groups were exposed to increasing concentrations of acetylcholine (ACh) and sodium nitroprusside (SNP) (10 -9 -10 -5 mol/L) after contraction with phenylephrine (10 -7  mol/L) to test for a dose-response effect. Response to potassium and calcium was also measured after cumulatively adding potassium and calcium (10-50 mmol/L) to potassium- and calcium-free organ chamber. Isometric contractions were recorded through an Ugo Basile data capsule acquisition system. Mean arterial blood pressure was significantly reduced in the ALETP co-treated group compared to the control and l-NAME-only groups (P < 0.05). Cavernosa strips from ALETP co-treated rats exhibited significant inhibition of contraction in response to phenylephrine, potassium chloride, and calcium chloride (P < 0.05). Relaxation in response to Ach and SNP was also significantly impaired in cavernosa strips from the l-NAME-only treated group (P < 0.05), while ALETP co-treated groups showed enhanced percentage relaxation. ALETP treatment of l-NAME-induced hypertensive rats promotes a relaxant effect on isolated cavernosa strips. ALETP shows potential in correcting erectile dysfunction in hypertension. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  13. Cytotoxic principles from the formosan milkweed, Asclepias curassavica.

    PubMed

    Roy, Michael C; Chang, Fang-Rong; Huang, Hsiao-Chu; Chiang, Michael Y-N; Wu, Yang-Chang

    2005-10-01

    A series of cardenolides and related compounds have been isolated from the aerial parts and roots of the ornamental milkweed, Asclepias curassavica. Their structures were determined by spectroscopic and chemical methods. Among them, three derivatives of calactinic acid methyl ester (13-15), 19-nor-16 alpha-acetoxy-10 beta-hydroxyasclepin (16), 20 beta,21-dihydroxypregna-4,6-dien-3-one (19), and 3,4-seco-urs-20(30)-en-3-oic acid (22) are new compounds. The relative configuration of calactinic acid methyl ester (12) has been confirmed by X-ray diffraction analysis on its derivative 13. Most of the cardenolides obtained showed pronounced cytotoxicity against four cancer cell lines (IC(50) 0.01 to 2.0 microg/mL).

  14. New flavan and benzil isolated from Fissistigma latifolium.

    PubMed

    Lan, Yu-Hsuan; Peng, Yi-Ting; Thang, Tran-Dinh; Hwang, Tsong-Long; Dai, Do-Ngoc; Leu, Yann-Lii; Lai, Wan-Chun; Wu, Yang-Chang

    2012-01-01

    Further investigation of the methanolic extract of Fissistigma latifolium resulted in two new compounds whose structures were assigned as 2,5,6,7-tetramethoxyflavan (1) and 2'-hydroxy-4',5',6'-trimethoxybenzil (2). These two compounds were determined on the basis of chemical and spectroscopic evidences. Compound 2 is the first report of benzil from Fissistigma species. 2,5,6,7-Tetramethoxyflavan (1) showed a potent inhibitory effect on superoxide anion production in formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)/cytochalasin B (CB)-activated human neutrophils.

  15. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.

    PubMed

    Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael

    2015-03-01

    2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l(-1)) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l(-1)  h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation.

    PubMed

    Shetty, Nivedita; Park, Heejun; Zemlyanov, Dmitry; Mangal, Sharad; Bhujbal, Sonal; Zhou, Qi Tony

    2018-06-10

    The aim of this study is to investigate the influence of excipients on physical and aerosolization stability of spray dried Ciprofloxacin dry powder inhaler formulations. The model drug, Ciprofloxacin hydrochloride, was co-spray dried with excipients such as disaccharides (sucrose, lactose, trehalose), mannitol and l-leucine. The spray dried samples were stored at two different relative humidity (RH) conditions of: (1) 20% and (2) 55% RH at 20 °C. Ciprofloxacin co-spray dried with disaccharides and l-leucine in the mass ratio of 1:1 demonstrated an increase in fine particle fraction (FPF) as compared with the spray dried Ciprofloxacin alone when stored at 20% RH. However, deterioration in FPF of Ciprofloxacin co-spray dried with disaccharide and mannitol was observed upon storage at 55% RH as compared to the corresponding formulations stored at 20% RH due to particle agglomeration. Whereas, 10% and 50% w/w l-leucine in the formulation showed no change in aerosol performance (FPF of 71.1 ± 3.5% and 79.5 ± 3.1%, respectively) when stored at 55% RH for 10 days as compared to 20% RH (FPF of 68.1 ± 0.3% and 73.6 ± 7.1%, respectively). l-Leucine demonstrated aerosolization stability by alleviating crystallization of Ciprofloxacin to some extent and preventing significant change in particle morphology. l-Leucine is well-recognized as aerosolization enhancer; our study has shown l-leucine is also a physical and aerosolization stabilizer for spray dried Ciprofloxacin DPI formulations. Such stability enhancing activities were attributed to the enrichment of l-leucine on the particle surface as confirmed by XPS data, and intermolecular interactions between l-leucine and Ciprofloxacin as measured by FT-IR. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Molecular view of the structural reorganization of water in DPPC multilamellar membranes induced by L-cysteine methyl ester

    NASA Astrophysics Data System (ADS)

    Arias, Juan Marcelo; Tuttolomondo, María Eugenia; Díaz, Sonia Beatriz; Altabef, Aida Ben

    2018-03-01

    In order to study the interaction between L-cysteine methyl ester (CM) and multilamellar vesicles (MLV's) of DPPC, an extensive study was made by various techniques such as Infrared and Raman spectroscopy and Differential Scanning Calorimetry (DSC). Our results revealed by the different techniques used that CM interacts with the DPPC in the region of the polar head, specifying with the phosphate groups, replacing water molecules of hydration by modifying the hydration of the polar head. By Infrared spectroscopy and DSC we observed an increase in the main transition temperature (Tm) and a gradual loss of the pre-transition (Tp) with the increase of the molar ratio CM:DPPC. Of the analyzed, we can conclude that the interaction of CM with DPPC alters the degree of hydration of the membrane altering properties of the same as the transition temperature. Moreover, the results of the thiol site behavior in CM interacting in the CM/DPPC complex will be reveal the possibility of unknown functional roles of the lipidic components of the membrane.

  18. Feeding deterrent compounds to the boll weevil,Anthonomus grandis Boheman in Rose-of-Sharon,Hibiscus syriacus L.

    PubMed

    Bird, T G; Hedin, P A; Burks, M L

    1987-05-01

    The Rose-of-Sharon,Hibiscus syriacus (L.), can be a significant alternate host plant for the boll weevil,Anthonomus gradis (Boh.). Boll weevils are known to be deterred from feeding and ovipositing in the buds unless the calyx is removed. This investigation was initiated to identify calyx allelochemicals that deter feeding with the eventual strategy of breeding for cotton lines high in these allelochemicals in the appropriate tissues. The feeding deterrency of calyx tissue from the buds of Rose-of-Sharon for the boll weevil was confirmed. The most active deterrent fraction was found to contain mostly fatty acids and their methyl esters. Saturated fatty acids and their methyl esters were generally found to be stimulatory, while the unsaturated species were found to be deterrent. Higher quantities of the fatty acids, particularly the unsaturated species, were found in Rose-of-Sharon calyx tissue than in the buds without calyx. This supports the hypothesis developed through the isolational work and testing of standards that the unsaturated fatty acids are significant deterrents of boll weevil feeding.

  19. Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac.

    PubMed

    Lázaro-Ibáñez, G G; Torres-López, J E; Granados-Soto, V

    2001-08-24

    The involvement of nitric oxide (NO), cyclic GMP and ATP-sensitive K(+) channels in the antinociceptive effect of ketorolac was assessed using the formalin test in the rat. Local administration of ketorolac in a formalin-injured paw produced a dose-dependent antinociceptive effect due to a local action, as drug administration in the contralateral paw was ineffective. Pretreatment of the injured paw with N(G)-L-nitro-arginine methyl ester (L-NAME, an NO synthesis inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) or glibenclamide (an ATP-sensitive K(+) channel blocker) prevented ketorolac-induced antinociception. However, pretreatment with saline or N(G)-D-nitro-arginine methyl ester (D-NAME) did not block antinociception. Local administration of S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) was inactive by itself, but increased the effect of ketorolac. The present results suggest that the antinociceptive effect of ketorolac involves activation of the NO-cyclic GMP pathway, followed by an opening of ATP-sensitive K(+) channels at the peripheral level.

  20. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles.

    PubMed

    Anahas, Antonyraj Matharasi Perianaika; Muralitharan, Gangatharan

    2015-05-01

    This study reports on the biodiesel quality parameters of eleven heterocystous cyanobacterial strains based on fatty acid methyl esters (FAME) profiles. The biomass productivity of the tested cyanobacterial strains ranged from 9.33 to 20.67 mg L(-1) d(-1) while the lipid productivity varied between 0.65 and 2.358 mg L(-1) d(-1). The highest biomass and lipid productivity was observed for Calothrix sp. MBDU 013 but its lipid content is only 11.221 in terms of percent dry weight, next to the Anabaena sphaerica MBDU 105, whose lipid content is high. To identify the most competent isolate, a multi-criteria decision analyses (MCDA) was performed by including the key chemical and physical parameters of biodiesel calculated from FAME profiles. The isolate A.sphaerica MBDU 105 is the most promising biodiesel feed stock based on decision vector through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Extraction of extracellular lipids from chemoautotrophic bacteria Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-08-01

    A CO2 sequestering bacterial strain, Serratia sp. ISTD04, that produces a significant amount of extracellular lipids was isolated from marble mine rocks. (14)C labeling analysis revealed that the rate of assimilation of CO2 by the strain is 0.756×10(-9)μmolCO2fixedcell(-1)h(-1). It was found to produce 466mg/l of extracellular lipid which was characterized using (1)H NMR. After transesterification of lipids, the total saturated and unsaturated FAME was found to be 51% and 49% respectively. The major FAME contained in the biodiesel were palmitic acid methyl ester (C16:0), oleic acid methyl ester (C18:1) and 10-nonadecenoic acid methyl ester (C19:1). Biodiesel produced by Serratia sp. ISTD04 is balanced in terms of FAME composition of good quality. It also contained higher proportion of oleic acid (35%) which makes it suitable for utilization in existing engines. Thus, the strain can be harnessed commercially to sequester CO2 into biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Differential effects of low and high dose folic acid on endothelial dysfunction in a murine model of mild hyperhomocysteinaemia.

    PubMed

    Clarke, Zoe L; Moat, Stuart J; Miller, Alastair L; Randall, Michael D; Lewis, Malcolm J; Lang, Derek

    2006-12-03

    The exact mechanism(s) by which hyperhomocysteinaemia promotes vascular disease remains unclear. Moreover, recent evidence suggests that the beneficial effect of folic acid on endothelial function is independent of homocysteine-lowering. In the present study the effect of a low (400 microg/70 kg/day) and high (5 mg/70 kg/day) dose folic acid supplement on endothelium-dependent relaxation in the isolated perfused mesenteric bed of heterozygous cystathionine beta-synthase deficient mice was investigated. Elevated total plasma homocysteine and impaired relaxation responses to methacholine were observed in heterozygous mice. In the presence of N(G)-nitro-L-arginine methyl ester relaxation responses in wild-type tissues were reduced, but in heterozygous tissues were abolished. Clotrimazole and 18alpha-glycyrrhetinic acid, both inhibitors of non-nitric oxide/non-prostanoid-induced endothelium-dependent relaxation, reduced responses to methacholine in wild-type but not heterozygous tissues. The combination of N(G)-nitro-L-arginine methyl ester and either clotrimazole or 18alpha-glycyrrhetinic acid completely inhibited relaxation responses in wild-type tissues. Both low and high dose folic acid increased plasma folate, reduced total plasma homocysteine and reversed endothelial dysfunction in heterozygous mice. A greater increase in plasma folate in the high dose group was accompanied by a more significant effect on endothelial function. In the presence of N(G)-nitro-L-arginine methyl ester, a significant residual relaxation response was evident in tissues from low and high dose folic acid treated heterozygous mice. These data suggest that the impaired mesenteric relaxation in heterozygous mice is largely due to loss of the non-nitric oxide/non-prostanoid component. While low dose folic acid may restore this response in a homocysteine-dependent manner, the higher dose has an additional effect on nitric oxide-mediated relaxation that would appear to be independent of homocysteine lowering.

  3. Preliminary Assessment/Site Investigation, Tooele Army Depot, Utah. Volume 2. South Area. Appendixes

    DTIC Science & Technology

    1988-12-01

    METHYL BENZOATE BZOTHP BENZO [B) THIOPHENE BZOTRZ 1H-BENZOThIAZOLE / 1,* 2 , 3 -SENZOThIAZO! E BZPA BENZENEPHOSPHONIC ACID BZYLBR BENZYL BROMIDE / ALPH.A...DEFINITIONS ~ STEST-NAMLE Cil MENECANE C12 DODECANE CI2AMM 8-KETHYLDECANOIC ACID , METHYL ESTER C12DCE CIS-l , 2 -DICHLOROETHENE C13 TRIDECANE C13DCP CIS-1 , 3 ...DBTSPY 4,5-DIMETHYL-2,6-BIS(ThIMETHYLSILOXY)PYRINIDINE DSZFIJR DIBDNZOFURAN DBZTHP DIBENZOThIOPHENE DCAKIBA 2 -METHOXY- 3 ,6-DICHLOROBENZOIC ACID DCBPH

  4. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects.

    PubMed

    Kim, Minjoo; Lee, Sang-Hyun; Lee, Jong Ho

    2016-12-01

    The effect of weight loss from long-term, mild-calorie diets (MCD) on plasma metabolites is unknown. This study was to examine whether MCD-induced weight reduction caused changes in the extended plasma metabolites. Overweight and obese subjects aged 40-59 years consumed a MCD (approximately 100 kcal/day deficit, n =47) or a weight-maintenance diet (control, n =47) in a randomized, controlled design with a three-year clinical intervention period and plasma samples were analyzed by using UPLC-LTQ-Orbitrap mass spectrometry. The three-year MCD intervention resulted in weight loss (-8.87%) and significant decreases in HOMA-IR and TG. The three-year follow-up of the MCD group showed reductions in the following 13 metabolites: L-leucine; L-phenylalanine; 9 lysoPCs; PC (18:0/20:4); and SM (d18:0/16:1). The three-year MCD group follow-up identified increases in palmitic amide, oleamide, and PC (18:2/18:2). Considering the age-related alterations in the identified metabolites, the MCD group showed a greater decrease in L-leucine, L-phenylalanine, and SM (d18:0/16:1) compared with those of the control group. Overall, the change (Δ) in BMI positively correlated with the ΔTG, ΔHOMA-IR, ΔL-leucine, and ΔSM (d18:0/16:1). The ΔHOMA-IR positively correlated with ΔTG, ΔL-leucine, ΔL-phenylalanine, and ΔSM (d18:0/16:1). The weight loss resulting from three-year mild-caloric restriction lessens the age-related increase in SM and reduces L-leucine and L-phenylalanine in overweight and obese subjects. These changes were coupled with improved insulin resistance (ClinicalTrials.gov: NCT02081898).

  5. Effective methylation of phosphonic acids related to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection and identification by gas chromatography-mass spectrometry.

    PubMed

    Valdez, Carlos A; Leif, Roald N; Alcaraz, Armando

    2016-08-24

    The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found to be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (∼10 μg mL(-1)). Due to its insolubility in methylene chloride, TMO·BF4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. The method was demonstrated to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL(-1) concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. In addition, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. The work described herein represents the first report on the use of TMO·BF4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Hydrolysis of Synthetic Esters by the Antibacterial Agent in Serum

    PubMed Central

    Yotis, William W.

    1966-01-01

    Yotis, William W. (Loyola University, Chicago, Ill.). Hydrolysis of synthetic esters by the antibacterial agent in serum. J. Bacteriol. 91:488–493. 1966.—An antistaphylococcal serum agent was assayed colorimetrically, manometrically, and titrimetrically for esterase activity. p-Nitrophenol acetate, triacetin, l-lysine methyl and ethyl ester, and norleucine methyl ester were hydrolyzed by the antistaphylococcal agent. Acetylcholine and benzoylcholine esters, triolein, tristearin, and p-tosylarginine methyl ester were not attacked by this agent. With p-nitrophenol acetate as substrate, optimal activity occurred at pH 7.4. Incubation at 60 C for 30 min reduced drastically the esterase activity of the antistaphylococcal agent, and incubation at 75 C for 30 min abolished the esterase activity of this agent. Almost complete inhibition of esterase activity was observed with 0.001 m HgCl2, ZnSO4, and ethylenediaminetetraacetic acid (EDTA). EDTA inhibition could be reversed by the addition of CaCl2, but not MgCl2. Cysteine reversed the inhibition of HgCl2. NaF, atoxyl, diisopropyl fluorophosphate, quinine, and physostigmine did not influence the esterase activity of the antibacterial agent. The demonstration of esterase activity of both the antistaphylococcal agent and coagulase may shed further light on the reported ability of coagulase to neutralize the antistaphylococcal activity of this agent, or the prevention of absorption of the agent on the staphylococcal cell surface. In addition, the colorimetric procedure described in this report may be a convenient tool in assaying the potency of the antistaphylococcal agent. Images PMID:4956776

  7. Neutral amino acid transport across brain microvessel endothelial cell monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audus, K.L.; Borchardt, R.T.

    1986-03-01

    Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with (/sup 3/H)-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional,more » and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, ..cap alpha..-methyldopa, L-DOPA, ..cap alpha..-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB.« less

  8. Is there evidence for man-made nanoparticles in the Dutch environment?

    PubMed

    Bäuerlein, Patrick S; Emke, Erik; Tromp, Peter; Hofman, Jan A M H; Carboni, Andrea; Schooneman, Ferry; de Voogt, Pim; van Wezel, Annemarie P

    2017-01-15

    Only very limited information is available on measured environmental concentrations of nanoparticles. In this study, several environmental compartments in The Netherlands were probed for the presence of nanoparticles. Different types of water were screened for the presence of inorganic (Ag, Au, TiO 2 ) and organic nanoparticles (C 60 , C 70 , [6,6]-phenyl-C 61 -butyric acid octyl ester, [6,6]-phenyl-C 61 -butyric acid butyl ester, [6,6]-phenyl-C 61 -butyric acid methyl ester, [6,6]-bis-phenyl-C 61 -butyric acid methyl ester, [6,6]-phenyl-C 71 -butyric acid methyl ester, [6,6]-thienyl-C 61 -butyric acid methyl ester). Air samples were analysed for the presence of nanoparticulate Mo, Ag, Ce, W, Pd, Pt, Rh, Zn, Ti, Si, B as well as Fe and Cu. ICP-MS, Orbitrap-HRMS, SEM and EDX were used for this survey. Water samples included dune and bank filtrates, surface waters and ground waters as well as influents, effluents and sludge of sewage treatment plants (STPs), and surface waters collected near airports and harbours. Air samples included both urban and rural samples. C 60 was detected in air, sewage treatment plants, influents, effluents and sludge, but in no other aqueous samples despite the low detection limit of 0.1ng/L. C 70 and functionalised fullerenes were not detected at all. In STP sludge and influent the occurrence of Ag and Au nanoparticles was verified by SEM/EDX and ICP-MS. In air up to about 25m% of certain metals was found in the nanosize fraction. Overall, between 1 and 6% of the total mass from metals in the air samples was found in the size fraction <100nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Iridoid and phenylethanoid glycosides from Phlomis tuberosa L.

    PubMed

    Ersöz, T; Ivancheva, S; Akbay, P; Sticher, O; Caliş, I

    2001-01-01

    A new iridoid glucoside, 8-O-acetylshanzhiside (1), was isolated from the aerial parts of Phlomis tuberosa, together with two known iridoid glucosides, shanzhiside methyl ester and lamalbide. The known phenylethanoid glycosides acteoside and forsythoside B were also obtained and characterized. The structure of 1 was determined by means of 1D- and 2D-NMR spectroscopic evidence.

  10. Towards an automatic lab-on-valve-ion mobility spectrometric system for detection of cocaine abuse.

    PubMed

    Cocovi-Solberg, David J; Esteve-Turrillas, Francesc A; Armenta, Sergio; de la Guardia, Miguel; Miró, Manuel

    2017-08-25

    A lab-on-valve miniaturized system integrating on-line disposable micro-solid phase extraction has been interfaced with ion mobility spectrometry for the accurate and sensitive determination of cocaine and ecgonine methyl ester in oral fluids. The method is based on the automatic loading of 500μL of oral fluid along with the retention of target analytes and matrix clean-up by mixed-mode cationic/reversed-phase solid phase beads, followed by elution with 100μL of 2-propanol containing (3% v/v) ammonia, which are online injected into the IMS. The sorptive particles are automatically discarded after every individual assay inasmuch as the sorptive capacity of the sorbent material is proven to be dramatically deteriorated with reuse. The method provided a limit of detection of 0.3 and 0.14μgL -1 for cocaine and ecgonine methyl ester, respectively, with relative standard deviation values from 8 till 14% with a total analysis time per sample of 7.5min. Method trueness was evaluated by analyzing oral fluid samples spiked with cocaine at different concentration levels (1, 5 and 25μgL -1 ) affording relative recoveries within the range of 85±24%. Fifteen saliva samples were collected from volunteers and analysed following the proposed automatic procedure, showing a 40% cocaine occurrence with concentrations ranging from 1.3 to 97μgL -1 . Field saliva samples were also analysed by reference methods based on lateral flow immunoassay and gas chromatography-mass spectrometry. The application of this procedure to the control of oral fluids of cocaine consumers represents a step forward towards the development of a point-of-care cocaine abuse sensing system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Shear stress regulates endothelial microparticle release.

    PubMed

    Vion, Anne-Clémence; Ramkhelawon, Bhama; Loyer, Xavier; Chironi, Gilles; Devue, Cecile; Loirand, Gervaise; Tedgui, Alain; Lehoux, Stéphanie; Boulanger, Chantal M

    2013-05-10

    Endothelial activation and apoptosis release membrane-shed microparticles (EMP) that emerge as important biological effectors. Because laminar shear stress (SS) is a major physiological regulator of endothelial survival, we tested the hypothesis that SS regulates EMP release. EMP levels were quantified by flow cytometry in medium of endothelial cells subjected to low or high SS (2 and 20 dyne/cm(2)). EMP levels augmented with time in low SS conditions compared with high SS conditions. This effect was sensitive to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Rho kinases inhibitors but unaffected by caspase inhibitors. Low SS-stimulated EMP release was associated with increased endothelial Rho kinases and ERK1/2 activities and cytoskeletal reorganization. Overexpression of constitutively active RhoA stimulated EMP release under high SS. We also examined the effect of nitric oxide (NO) in mediating SS effects. L-NG-nitroarginine methyl ester (L-NAME), but not D-NG-nitroarginine methyl ester, increased high SS-induced EMP levels by 3-fold, whereas the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) decreased it. L-NAME and SNAP did not affect Rho kinases and ERK1/2 activities. Then, we investigated NO effect on membrane remodeling because microparticle release is abolished in ABCA1-deficient cells. ABCA1 expression, which was greater under low SS than under high SS, was augmented by L-NAME under high SS and decreased by SNAP under low SS conditions. Altogether, these results demonstrate that sustained atheroprone low SS stimulates EMP release through activation of Rho kinases and ERK1/2 pathways, whereas atheroprotective high SS limits EMP release in a NO-dependent regulation of ABCA1 expression and of cytoskeletal reorganization. These findings, therefore, identify endothelial SS as a physiological regulator of microparticle release.

  12. Volatile changes in Hawaiian noni fruit, Morinda citrifolia L., during ripening and fermentation.

    PubMed

    Wall, Marisa M; Miller, Samuel; Siderhurst, Matthew S

    2018-07-01

    Noni fruit (Morinda citrifolia L., Rubiaceae) has been used in traditional medicine throughout the tropics and subtropics and is now attracting interest in western medicine. Fermented noni juice is of particular interest for its promising antitumor activity. The present study collected and analyzed volatiles released at nine time intervals by noni fruit during ripening and fermentation using headspace autosampling coupled to gas chromatography-mass spectrometry. Twenty-three noni volatiles were identified and relatively quantified. In addition to volatiles previously identified in noni, four novel volatile 3-methyl-2/3-butenyl esters were identified via the synthesis of reference compounds. Principle component analysis (PCA) and canonical discriminant analysis (CDA) were used to facilitate multidimensional pattern recognition. PCA showed that ripening noni fruit cluster into three groups, pre-ripe, fully ripe (translucent) and fermented, based on released volatiles. CDA could 83.8% correctly classify noni samples when all ripeness stages were analyzed and 100% when samples were classified into the three PCA groupings. The results of the present study confirm the identities of 3-methyl-2/3-butenyl esters, both novel and previously identified, through the synthesis of reference compounds. These esters constitute a large percentage of the volatiles released by fully ripe and fermented noni and likely produced from the decomposition of noniosides, a group of unique glucosides present in the fruit. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase.

    PubMed

    Orhan, Ilkay; Kartal, Murat; Kan, Yüksel; Sener, Bilge

    2008-01-01

    We have tested acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of nineteen essential oils obtained from cultivated plants, namely one from Anethum graveolens L. (organic fertilizer), two from Foeniculum vulgare Mill. collected at fully-mature and flowering stages (organic fertilizer), two from Melissa officinalis L. (cultivated using organic and chemical fertilizers), two from Mentha piperita L. and M. spicata L. (organic fertilizer), two from Lavandula officinalis Chaix ex Villars (cultivated using organic and chemical fertilizers), two from Ocimum basilicum L. (green and purple-leaf varieties cultivated using only organic fertilizer), four from Origanum onites L., O. vulgare L., O. munitiflorum Hausskn., and O. majorana L. (cultivated using organic fertilizer), two from Salvia sclarea L. (organic and chemical fertilizers), one from S. officinalis L. (organic fertilizer), and one from Satureja cuneifolia Ten. (organic fertilizer) by a spectrophotometric method of Ellman using ELISA microplate-reader at 1 mg/ml concentration. In addition, a number of single components widely encountered in most of the essential oils [gamma-terpinene, 4-allyl anisole, (-)-carvone, dihydrocarvone, (-)-phencone, cuminyl alcohol, cumol, 4-isopropyl benzaldehyde, trans-anethole, camphene, iso-borneol, (-)-borneol, L-bornyl acetate, 2-decanol, 2-heptanol, methyl-heptanol, farnesol, nerol, iso-pulegol, 1,8-cineole, citral, citronellal, citronellol, geraniol, linalool, alpha-pinene, beta-pinene, piperitone, iso-menthone, menthofurane, linalyl oxide, linalyl ester, geranyl ester, carvacrol, thymol, menthol, vanilline, and eugenol] was also screened for the same activity in the same manner. Almost all of the essential oils showed a very high inhibitory activity (over 80%) against both enzymes, whereas the single components were not as active as the essential oils.

  14. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Engineering of Glarea lozoyensis for Exclusive Production of the Pneumocandin B0 Precursor of the Antifungal Drug Caspofungin Acetate

    PubMed Central

    Chen, Li; Yue, Qun; Li, Yan; Niu, Xuemei; Xiang, Meichun; Wang, Wenzhao; Bills, Gerald F.

    2014-01-01

    Pneumocandins produced by the fungus Glarea lozoyensis are acylated cyclic hexapeptides of the echinocandin family. Pneumocandin B0 is the starting molecule for the first semisynthetic echinocandin antifungal drug, caspofungin acetate. In the wild-type strain, pneumocandin B0 is a minor fermentation product, and its industrial production was achieved by a combination of extensive mutation and medium optimization. The pneumocandin biosynthetic gene cluster was previously elucidated by a whole-genome sequencing approach. Knowledge of the biosynthetic cluster suggested an alternative way to produce exclusively pneumocandin B0. Disruption of GLOXY4, encoding a nonheme, α-ketoglutarate-dependent oxygenase, confirmed its involvement in l-leucine cyclization to form 4S-methyl-l-proline. The absence of 4S-methyl-l-proline abolishes pneumocandin A0 production, and 3S-hydroxyl-l-proline occupies the hexapeptide core's position 6, resulting in exclusive production of pneumocandin B0. Retrospective analysis of the GLOXY4 gene in a previously isolated pneumocandin B0-exclusive mutant (ATCC 74030) indicated that chemical mutagenesis disrupted the GLOXY4 gene function by introducing two amino acid mutations in GLOXY4. This one-step genetic manipulation can rationally engineer a high-yield production strain. PMID:25527531

  16. Dimethylarginine dimethylaminohydrolase 1 is involved in spinal nociceptive plasticity.

    PubMed

    DʼMello, Richard; Sand, Claire A; Pezet, Sophie; Leiper, James M; Gaurilcikaite, Egle; McMahon, Stephen B; Dickenson, Anthony H; Nandi, Manasi

    2015-10-01

    Activation of neuronal nitric oxide synthase, and consequent production of nitric oxide (NO), contributes to spinal hyperexcitability and enhanced pain sensation. All NOS isoforms are inhibited endogenously by asymmetric dimethylarginine, which itself is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Inhibition of DDAH can indirectly attenuate NO production by elevating asymmetric dimethylarginine concentrations. Here, we show that the DDAH-1 isoform is constitutively active in the nervous system, specifically in the spinal dorsal horn. DDAH-1 was found to be expressed in sensory neurons within both the dorsal root ganglia and spinal dorsal horn; L-291 (NG-[2-Methoxyethyl]-L-arginine methyl ester), a DDAH-1 inhibitor, reduced NO synthesis in cultured dorsal root ganglia neurons. Spinal application of L-291 decreased N-methyl-D-aspartate-dependent postdischarge and windup of dorsal horn sensory neurons--2 measures of spinal hyperexcitability. Finally, spinal application of L-291 reduced both neuronal and behavioral measures of formalin-induced central sensitization. Thus, DDAH-1 may be a potential therapeutic target in neuronal disorders, such as chronic pain, where elevated NO is a contributing factor.

  17. On the stereoselective aminoacylation of RNA

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Needels, M. C.

    1984-01-01

    Gabbay and Kleinman (1970) have found that stereospecific complex formation (noncovalent) occurs between nucleic acids and a number of derivatives of amino acids. However, until recently, chiral selection in any nonenzymatic RNA-aminoacylation reaction was unknown. Profy and Usher (1984) reported that aminoacylation of the 'internal' 2-prime-ester occurred with a significant amount of stereoselection. Profy and Usher (1984) have also observed that aminoacylation of the 'internal' 2-prime-hydroxyl groups of polyribonucleotides by the imidazolide of N-3,5-dinitrobenzoylalanine occurs with chiral selection. In order to obtain further information regarding the considered phenomena, a systematic investigation was initiated of the factors which contribute to the observed stereoselectivity of the aminoacylation reaction. In the present paper, the effect of a change in the amino acid from alanine to leucine is considered along with an investigation of the D- and L-alanyl internal' 2-prime esters of the dinucleoside monophosphate of 3-prime,5-prime-ApA.

  18. Enhanced Incorporation of 3-Hydroxy-4-Methylvalerate Unit into Biosynthetic Polyhydroxyalkanoate Using Leucine as a Precursor

    PubMed Central

    2011-01-01

    Ralstonia eutropha PHB-4 expressing Pseudomonas sp. 61-3 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1Ps) synthesizes PHA copolymer containing 3-hydroxybutyrate (3HB) and a small amount (0.5 mol%) of 3-hydroxy-4-methylvalerate (3H4MV) from fructose as a carbon source. In this study, enhanced incorporation of 3H4MV into PHA was investigated using branched amino acid leucine as a precursor of 3H4MV. Leucine has the same carbon backbone as 3H4MV and is expected to be a natural and self-producible precursor. We found that the incorporation of 3H4MV was enhanced by the supplementation of excess amount (10 g/L) of leucine in the culture medium. This finding indicates that 3H4MV can be derived from leucine. To increase metabolic flux to leucine biosynthesis in the host strain by eliminating the feedback inhibition, the cells were subjected to N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and leucine analog resistant mutants were generated. The mutants showed statistically higher 3H4MV fraction than the parent strain without supplementing leucine. Additionally, by supplying excess amount of leucine, the mutants synthesized 3HB-based PHA copolymer containing 3.1 mol% 3H4MV and 1.2 mol% 3-hydroxyvalerate (3HV) as minor constituents, which significantly affected the thermal properties of the copolymer. This study demonstrates that it is possible to enhance the monomer supply of 3H4MV into PHA by manipulating leucine metabolism. PMID:21906338

  19. Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation.

    PubMed

    Vijaya Saradhi, U V R; Prabhakar, S; Jagadeshwar Reddy, T; Murty, M R V S

    2007-07-20

    In the present paper, we report an improved ion-pair solid-phase extraction (IP-SPE) method for the analysis of alkylphosphonic acids, namely, methyl, ethyl and propylphosphonic acids, present in the aqueous sample. The aqueous sample was mixed with an ion-pair reagent, phenyltrimethylammonium hydroxide (PTMAH) and passed through activated charcoal SPE cartridge. The retained chemicals in the cartridge were extracted with methanol and analysed by gas chromatography-mass spectrometry (GC-MS) under the electron impact ionization (EI) mode. The analytes were converted to their methyl esters by pyrolytic methylation in the hot GC injection port. The recoveries of alkylphosphonic acids were above 95% and the minimum detection limits were as low as 10 ng/mL. The recovery of the test chemicals was tested with solvents, dichloromethane, n-hexane, ethyl acetate, acetone, acetonitrile and methanol. The chemicals could be efficiently extracted by the hydrophilic solvents. The method did not work at the highly acidic pH (when acidified with dilute HCl) but worked well from pH 4.0 to 14.0. The present method was also tested with other tetra-(methyl, ethyl, propyl and n-butyl)ammonium hydroxides. The test chemicals were not converted to their methyl and ethyl esters with tetramethyl and tetraethylammonium hydroxides, whereas they were converted to their corresponding propyl and n-butyl esters with tetrapropyl and tetra(n-butyl)ammonium hydroxides. The method was also applied to two highly cross-linked polymeric sorbents DSC-6S and Oasis HLB. The recovery of the chemicals on these sorbents was observed to be poor. Methylation using phenyltrimethylammonium hydroxide is non-hazardous and advantageous over methylation using diazomethane. The method was applied to the analysis of aqueous samples given in one of the official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons and all the spiked chemicals were identified as methyl esters.

  20. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome.

    PubMed

    Xu, Baoshan; Gogol, Madelaine; Gaudenz, Karin; Gerton, Jennifer L

    2016-01-05

    Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 signaling was depressed and overall translation was reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved development. In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed independent of L-leucine treatment, including imprinted genes such as H19 and GTL2, miRNAs regulated by GTL2, HOX genes, and genes in nucleolar associated domains. Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-leucine stimulation of mTORC1 in RBS cells and supports that normal gene expression and translation requires ESCO2 function.

  1. Leucine increases mucin 2 and occludin production in LS174T cells partially via PI3K-Akt-mTOR pathway.

    PubMed

    Mao, Xiangbing; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing

    2016-09-01

    Mucin 2 and occludin play a crucial role in preserving the intestinal mucosal integrity. However, the role for leucine mediating intestinal mucin 2 and occludin expression has little been investigated. The current study was conducted to test the hypothesis that leucine treatment could increase mucin 2 and occludin levels in LS174T cells. The LS174T cells were incubated in the Dulbecco's Modified Eagle Medium (DMEM) supplementing 0, 0.5 and 5 mmol/L L-leucine for the various durations. Two hours after the leucine treatment, the inhibitor of mammalian target of rapamycin (mTOR) and protein kinase B (Akt) phosphorylation in LS174T cells were significantly increased ( P  < 0.05), and the mucin 2 and occludin levels were also significantly enhanced ( P  < 0.05). However, the pretreatment of 10 nmol/L rapamycin, which was an mTOR inhibitor, or 1 μmol/L wortmanin, which was an inhibitor of phosphatidylinositol 3-kinase (PI3K), completely inhibited leucine-induced mTOR or Akt phosphorylation ( P  < 0.05), and significantly reduced leucine-stimulated mucin 2 and occludin levels ( P  < 0.05). These results suggest that leucine treatment promotes the mucin 2 and occludin levels in LS174T cells partially through the PI3K-Akt-mTOR signaling pathway.

  2. The gas chromatographic resolution of DL-isovaline

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Bonner, W. A.; Van Dort, M. A.

    1977-01-01

    Isovaline is of cosmological interest because it is one of the 12 non-protein amino acids which have been isolated from the Murchison meteorite, and unlike the other chiral amino acids in this meteorite, it has no alpha-hydrogen at its asymmetric center and hence cannot racemize by the customary alpha-hydrogen-dependent mechanisms which engender racemization in ordinary amino acids. Experiments were conducted in which a .01 M solution of N-TFA-DL-isovalyl-L-leucine isopropyl ester in nitromethane was injected into the capillary column of a gas chromatograph coupled to a digital electronic integrator-recorder. Efflux times and integrated peak area percents are shown next to each diastereometer peak.

  3. Suicide Inhibitors of Reverse Transcriptase in the Therapy of AIDS and Other Retroviruses

    DTIC Science & Technology

    1989-07-01

    Acquired Immun Deficiency Syndrome (AIDS) (7-8). The most recent evaluation of the AIDS epidemic in the U.S. (4) indicates that the currer total of...are shown below. One of the first, [N-(L-3-tran carboxyxiran-2-carbonyl)-L-leucyl]-amido (4-guanido) butane was isolated from Asperg /II japonicus and...risk of acquired immune deficiency syndrome (AIDS). Science. 2.4: 497- 500 (1983). 9. Kopkrowski H., De Freitas E.C., Harper M.E., Woliheim S.M

  4. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and consumer activities. Requirements as specified in § 721.80 (l) and (q). (iv) Release to water...)(4), if the waste stream containing the PMN substance will be treated using biological treatment (activated sludge or equivalent) plus clarification, then the amount of PMN substance reasonably likely to be...

  6. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus

    PubMed Central

    Abdelillah, Amrouche; Houcine, Benmehdi; Halima, Dalile; Meriem, Chabane sari; Imane, Zaaboub; Eddine, Smahi Djamal; Abdallah, Moussaoui; Daoudi, Chabane sari

    2013-01-01

    Objective The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). Methods The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. Results The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. Conclusions We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field. PMID:23730556

  7. Phenylalanine containing hydrophobic nanospheres for antibody purification.

    PubMed

    Türkmen, Deniz; Denizli, Adil; Oztürk, Nevra; Akgöl, Sinan; Elkak, Assem

    2008-01-01

    In this study, novel hydrophobic nanospheres with an average size of 158 nm utilizing N-methacryloyl-(L)-phenylalanine methyl ester (MAPA) as a hydrophobic monomer were produced by surfactant free emulsion polymerization of 2-hydroxyethyl methacrylate (HEMA) and MAPA conducted in an aqueous dispersion medium. MAPA was synthesized using methacryloyl chloride and L-phenylalanine methyl ester. Specific surface area of the nonporous nanospheres was found to be 1874 m2/g. Poly(HEMA-MAPA) nanospheres were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Average particle size, size distribution, and surface charge measurements were also performed. Elemental analysis of MAPA for nitrogen was estimated as 0.42 mmol/g polymer. Then, poly(HEMA-MAPA) nanospheres were used in the adsorption of immunoglobulin G (IgG) in batch system. Higher adsorption values (780 mg/g) were obtained when the poly (HEMA-MAPA) nanospheres were used from both aqueous solutions and human plasma. The adsorption phenomena appeared to follow a typical Langmuir isotherm. It was observed that IgG could be repeatedly adsorbed and desorbed without significant loss in adsorption amount. These findings show considerable promise for this material as a hydrophobic support in industrial processes.

  8. Physical and chemical properties of pyropheophorbide-a methyl ester in ethanol, phosphate buffer and aqueous dispersion of small unilamellar dimyristoyl-L-alpha-phosphatidylcholine vesicles.

    PubMed

    Delanaye, Lisiane; Bahri, Mohamed Ali; Tfibel, Francis; Fontaine-Aupart, Marie-Pierre; Mouithys-Mickalad, Ange; Heine, Bélinda; Piette, Jacques; Hoebeke, Maryse

    2006-03-01

    The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).

  9. A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.

    PubMed

    Mukai, Masaru; Minamikawa, Hiroyuki; Aoyagi, Masaru; Asakawa, Masumi; Shimizu, Toshimi; Kogiso, Masaki

    2013-04-01

    This work presents a novel bola-type peptide lipid which can gelate water, organic solvents, and water/organic-solvent mixtures. In its molecular structure, an amphiphilic dipeptide aspartame (L-α-aspartyl-L-phenylalanine methyl ester) is connected at both ends of an alkylene linker. The different morphologies in the hydrogel (helical nanotapes) and the organogel (tape-like nanostructures) were visualized by energy-filtering transmission electron microscopy (EF-TEM) and energy-filtering scanning electron microscopy (FE-SEM), and the molecular arrangement was examined using X-ray diffraction (XRD), infrared (IR) spectroscopy, and circular dichroism (CD) spectroscopy. Possessing a hydrophilic aspartic acid group and a (relatively) hydrophobic phenylalanine methyl ester group, the dipeptide head group can turn about in response to solvent polarity. As a consequence, the solvent condition changed the molecular packing of the gelator and affected the overall supramolecular structure of the gel. It is noted that the peptide lipid gelated mixed solvents of water and organic solvents such as dichloromethane, liquid-paraffin, olive-oil, silicone-oils, and so on. The present hybrid gel can simultaneously hold hydrophilic and hydrophobic functional materials. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Aspartame Attenuates 2, 4-Dinitrofluorobenzene-Induced Atopic Dermatitis-Like Clinical Symptoms in NC/Nga Mice.

    PubMed

    Kim, Gun-Dong; Park, Yong Seek; Ahn, Hyun-Jong; Cho, Jeong-Je; Park, Cheung-Seog

    2015-11-01

    Atopic dermatitis (AD) is a common multifactorial chronic skin disease that has a multiple and complex pathogenesis. AD is gradually increasing in prevalence globally. In NC/Nga mice, repetitive applications of 2, 4-dinitrofluorobenzene (DNFB) evoke AD-like clinical symptoms similar to human AD. Aspartame (N-L-α-aspartyl-L-phenylalanine 1-methyl ester) is a methyl ester of a dipeptide, which is used as an artificial non-nutritive sweetener. Aspartame has analgesic and anti-inflammatory functions that are similar to the function of nonsteroidal anti-inflammatory drugs such as aspirin. We investigated whether aspartame can relieve AD-like clinical symptoms induced by DNFB treatment in NC/Nga mice. Sucrose did not relieve AD-like symptoms, whereas aspartame at doses of 0.5 μg kg(-1) and 0.5 mg kg(-1) inhibited ear swelling and relieved AD-like clinical symptoms. Aspartame inhibited infiltration of inflammatory cells including eosinophils, mast cells, and CD4(+) T cells, and suppressed the expression of cytokines including IL-4 and IFN-γ, and total serum IgE levels. Aspartame may have therapeutic value in the treatment of AD.

  11. The oxidation products of crude mesobilirubinogen

    PubMed Central

    Stoll, M. S.; Gray, C. H.

    1970-01-01

    Bile pigment esters were separated by ascending t.l.c. Apparently pure pigments, obtained by ferric chloride oxidation of crude mesobilirubinogen, derived from commercial bilirubin by reduction with sodium amalgam, were shown to be complex mixtures. Successive chromatography of their dimethyl esters on silica gel in methyl acetate–methyl propionate–dichloromethane–carbon tetrachloride (1:1:1:1, by vol.), ethyl methyl ketone–1,2-dichloroethane (1:2, v/v) and benzene–ethanol (100:3, v/v) revealed two major blue pigments (verdins), six major violet pigments (violins) and a red pigment (rhodin) together with numerous minor components. i-Urobilin dimethyl ester, prepared from mesobilirubinogen by dehydrogenation with aqueous iodine, was resolved into three major and at least four minor components on silica gel–kieselguhr (3:1, w/w) in benzene–ethanol (25:2, v/v). The chemical nature of these pigments was investigated by oxidation, by visible and u.v. spectroscopy, by mass spectrometry and by n.m.r. spectrometry. The evidence suggests unusual rearrangement of bilirubin during reduction leading to the formation of IIIα and XIIIα isomers. Isomeric forms of mesobiliviolin IXα and of i-urobilin IXα may also be formed. PMID:5420035

  12. A comparison of cationic polymerization and esterification for end-point detection in the catalytic thermometric titration of organic bases.

    PubMed

    J Greenhow, E; Viñas, P

    1984-08-01

    A systematic comparison has been made of two indicator systems for the non-aqueous catalytic thermometric titration of strong and weak organic bases. The indicator reagents, alpha-methylstyrene and mixtures of acetic anhydride and hydroxy compounds, are shown to give results (for 14 representative bases) which do not diner significantly in coefficient of variation or titration error. Calibration graphs for all the samples, in the range 0.01-0.1 meq, are linear, with correlation coefficients of 0.995 or better. Aniline, benzylamine, n-butylamine, morpholine, pyrrole, l-dopa, alpha-methyl-l-dopa, dl-alpha-alanine, dl-leucine and l-cysteine cannot be determined when acetic anhydride is present in the sample solution, but some primary and second amines can. This is explained in terms of rates of acetylation of the amino groups.

  13. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    PubMed

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  14. Involvement of LAT1 and LAT2 in the high- and low-affinity transport of L-leucine in human retinal pigment epithelial cells (ARPE-19 cells).

    PubMed

    Yamamoto, Atsushi; Akanuma, Shin-Ichi; Tachikawa, Masanori; Hosoya, Ken-Ichi

    2010-05-01

    System L, which is encoded by LAT1 and LAT2, is an amino acid transport system that transports neutral amino acids, including several essential amino acids in an Na+-independent manner. Due to its broad substrate selectivity, system L has been proposed to mediate the transport of amino-acid-related drugs across the blood-tissue barriers. We characterized L-leucine transport and its corresponding transporter in a human retinal pigment epithelial cell line (ARPE-19 cells) as an in vitro model of the outer blood-retinal barrier. [3H]L-leucine uptake by ARPE-19 cells took place in an Na+-, Cl(-)-independent and saturable manner with K(m) values of 8.71 and 220 microM. This process was more potently cis-inhibited by substrates of LAT1 than those of LAT2. [3H]L-leucine efflux from ARPE-19 cells was trans-stimulated by substrates of LAT1 and LAT2 through the obligatory exchange mechanism of system L. Although RT-PCR analysis demonstrated that LAT1 and LAT2 mRNA are expressed in ARPE-19 cells, the LAT1 mRNA concentration is 42-fold higher than that of LAT2. Moreover, immunoblot analysis demonstrated that LAT1 is expressed in ARPE-19 cells. In conclusion, although the transport function of LAT1 is greater than that of LAT2, LAT1 and LAT2 are involved in L-leucine transport in ARPE-19 cells.

  15. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    PubMed Central

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-01-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P < 0.01), and this effect was rapidly reversed upon removal of the inhibitor. The peptide aldehydes did not alter protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P < 0.001). Similarly, the rise in muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting. PMID:9202072

  16. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    PubMed

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-07-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P < 0.01), and this effect was rapidly reversed upon removal of the inhibitor. The peptide aldehydes did not alter protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P < 0.001). Similarly, the rise in muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting.

  17. Detection of Bacillus and Stenotrophomonas species growing in an organic acid and endocrine-disrupting chemical-rich environment of distillery spent wash and its phytotoxicity.

    PubMed

    Chandra, Ram; Kumar, Vineet

    2017-01-01

    Sugarcane molasses-based distillery spent wash (DSW) is well known for its toxicity and complex mixture of various recalcitrant organic pollutants with acidic pH, but the chemical nature of these pollutants is unknown. This study revealed the presence of toxic organic acids (butanedioic acid bis(TMS)ester; 2-hydroxysocaproic acid; benzenepropanoic acid, α-[(TMS)oxy], TMS ester; vanillylpropionic acid, bis(TMS)), and other recalcitrant organic pollutants (2-furancarboxylic acid, 5-[[(TMS)oxy] methyl], TMS ester; benzoic acid 3-methoxy-4-[(TMS)oxy], TMS ester; and tricarballylic acid 3TMS), which are listed as endocrine-disrupting chemicals. In addition, several major heavy metals were detected, including Fe (163.947), Mn (4.556), Zn (2.487), and Ni (1.175 mg l -1 ). Bacterial community analysis by restriction fragment length polymorphism revealed that Bacillus and Stenotrophomonas were dominant autochthonous bacterial communities belonging to the phylum Firmicutes and γ-Proteobacteria, respectively. The presence of Bacillus and Stenotrophomonas species in highly acidic environments indicated its broad range adaptation. These findings indicated that these autochthonous bacterial communities were pioneer taxa for in situ remediation of this hazardous waste during ecological succession. Further, phytotoxicity assay of DSW with Phaseolus mungo L. and Triticum aestivum revealed that T. aestivum was more sensitive than P. mungo L. in the seed germination test. The results of this study may be useful for monitoring and toxicity assessment of sugarcane molasses-based distillery waste at disposal sites.

  18. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    PubMed

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.

  19. Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water.

    PubMed

    Özer, Elif Tümay; Osman, Bilgen; Yazıcı, Tuğçe

    2017-06-02

    The aim of this study was to investigate the usability of newly synthesized dummy molecularly imprinted microbeads (DMIMs) as a solid phase extraction (SPE) material to determine six phthalate esters (PEs) in water by GC-MS analysis. Diethyl phthalate (DEP) was used as a dummy template to prepare poly(ethylene glycol dimethacrylate N-methacryloyl-l-tryptophan methyl ester) [PEMATrp)] DMIMs by using suspension polymerization. The PEMATrp DMIMs were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Firstly, the adsorption capacities of the DMIMs prepared in different template molecule (DEP) to functional monomer (MATrp) ratios were investigated by using DEP solutions in the concentration range of 1-500mg/L at pH 3.0. Styrene and vanillic acid were used to evaluate the selectivity of the prepared DMIMs towards the template molecule (DEP). Then, the best analytical conditions were investigated for the simultaneous determination of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzylbutyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) in aqueous media by using the PEMATrp DMIMs as SPE material. Validation experiments showed that the PEMATrp DMIMs-SPE method had good linearity at 12.5-250.0μg/L (0.988-0.999), good precision (1.2-5.9%), and limits of detection in a range of 0.31-0.41μg/L. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A germination bioassay as a toxicological screening system for studying the effects of potential prodrugs of naproxen.

    PubMed

    Gonzalez-de la Parra, M; Ramos-Mundo, C; Jimenez-Estrada, M; Ponce-de Leon, C; Castillo, R; Tejeda, V; Cuevas, K G; Enriquez, R G

    1998-01-01

    A germination bioassay with radish (Raphanus sativus L.) seeds was developed as a toxicological screening system for assessing the effects of new potential prodrugs of naproxen, as an alternative to animals and animal cell toxicity screens. Both enantiomers of naproxen (6-methoxy-α-methyl-2-naphthaleneacetic acid) and naproxol (6-methoxy-β-2-naphthaleneethanol), and their racemic mixtures, inhibited the radicle growth of R. sativus at a concentration of 1mM, while only (R)-(+ )-naproxol and racemic naproxol inhibited the hypocotyl growth of R. sativus at the same concentration. Four novel combinatorial esters, naproxen naproxyl esters (6-methoxy-β-methyl-2-naphthaleneethyl 6-methoxy-α-methyl-2-naphthaleneacetate), resulting from the combinatorial chemistry of the esterification reaction between naproxen and naproxol, were synthesised and then tested in the germination bioassay, at a concentration of 0.5mM. It was found that they did not inhibit either the radicle or the hypocotyl growth of R. sativus. 1998 FRAME.

  1. Effects of proteasome inhibitors MG132, ZL3VS and AdaAhx3L3VS on protein metabolism in septic rats

    PubMed Central

    Kadlčíková, Jana; Holeček, Milan; Šafránek, Roman; Tilšer, Ivan; Kessler, Benedikt M

    2004-01-01

    Proteasome inhibitors are novel therapeutic agents for the treatment of cancer and other severe disorders. One of the possible side effects is influencing the metabolism of proteins. The aim of our study was to evaluate the influence of three proteasome inhibitors MG132, ZL3VS and AdaAhx3L3VS on protein metabolism and leucine oxidation in incubated skeletal muscle of control and septic rats. Total proteolysis was determined according to the rates of tyrosine release into the medium during incubation. The rates of protein synthesis and leucine oxidation were measured in a medium containing L-[1-14C]leucine. Protein synthesis was determined as the amount of L-[1-14C]leucine incorporated into proteins, and leucine oxidation was evaluated according to the release of 14CO2 during incubation. Sepsis was induced in rats by means of caecal ligation and puncture. MG132 reduced proteolysis by more than 50% and protein synthesis by 10–20% in the muscles of healthy rats. In septic rats, proteasome inhibitors, except ZL3VS, decreased proteolysis in both soleus and extensor digitorum longus (EDL) muscles, although none of the inhibitors had any effect on protein synthesis. Leucine oxidation was increased by AdaAhx3L3VS in the septic EDL muscle and decreased by MG132 in intact EDL muscle. We conclude that MG132 and AdaAhx3L3VS reversed protein catabolism in septic rat muscles. PMID:15566433

  2. Enteridinines A and B from slime mold Enteridium lycoperdon.

    PubMed

    Rezanka, Tomás; Dvoráková, Radmila; Hanus, Lumír O; Dembitsky, Valery M

    2004-02-01

    Two novel deoxysugar esters, named enteridinines A and B, were isolated from the slime mold Enteridium lycoperdon. Their structures, including the absolute configurations of the hydroxyl and methyl groups, were determined by means of extensive spectroscopic data such as UV, IR, MS, 1D and 2D NMR spectra. Enteridinines A and B have unique structures containing 1,7-dioxaspiro[5.5]undecanes with an O-beta-D-mycarosyl-(1-->4)-beta-D-olivosyl and an O-beta-L-olivomycosyl-(1-->4)-beta-D-amicetosyl-(1-->4)-beta-L-digitoxosyl unit, respectively, and showed growth inhibitory activities against Gram positive bacteria.

  3. New Labdane-Type Diterpenoids and Anti-Inflammatory Constituents from Hedychium coronarium

    PubMed Central

    Chen, Jih-Jung; Ting, Chia-Wei; Wu, Yi-Chin; Hwang, Tsong-Long; Cheng, Ming-Jen; Sung, Ping-Jyun; Wang, Tai-Chi; Chen, Jinn-Fen

    2013-01-01

    Four new labdane-type diterpenoids: hedychicoronarin (1), peroxycoronarin D (2), 7β-hydroxycalcaratarin A (3), and (E)-7β-hydroxy-6-oxo-labda-8(17),12-diene-15,16-dial (4), have been isolated from the rhizomes of Hedychium coronarium, together with 13 known compounds (5–17). The structures of these new compounds were determined through spectroscopic and MS analyses. Compounds 3, 5, 6, and 10 exhibited inhibition (IC50 values ≤4.52 μg/mL) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 3–6, 10, and 11 inhibited fMLP/CB-induced elastase release with IC50 values ≤6.17 μg/mL. PMID:23799360

  4. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis.

    PubMed

    Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan

    2017-04-01

    L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1  day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.

  5. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media

    NASA Astrophysics Data System (ADS)

    Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna

    2017-12-01

    Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.

  6. [Preparation of poly(methyl acrylate) microfluidic chips surface-modified by hyperbranched polyamide ester and their application in the separation of biomolecules].

    PubMed

    Liu, Bing; Lin, Donge; Xu, Lin; Lei, Yanhui; Bo, Qianglong; Shou, Chongqi

    2012-05-01

    The surface of poly (methyl acrylate) (PMMA) microfluidic chips were modified using hyperbranched polyamide ester via chemical bonding. The contact angles of the modified chips were measured. The surface morphology was observed by scanning electron microscope (SEM) and stereo microscope. The results showed that the surface of the modified chips was coated by a dense, uniform, continuous, hydrophilic layer of hyperbranched polyamide ester. The hydrophilic of the chip surface was markedly improved. The contact angle of the chips modified decreased from 89.9 degrees to 29.5 degrees. The electro osmotic flow (EOF) in the modified microchannel was lower than that in the unmodified microchannel. Adenosine and L-lysine were detected and separated via the modified PMMA microfluidic chips. Compared with unmodified chips, the modified chips successfully separated the two biomolecules. The detection peaks were clear and sharp. The separation efficiencies of adenosine and L-lysine were 8.44 x 10(4) plates/m and 9.82 x 10(4) plates/m respectively, and the resolutions (Rs) was 5.31. The column efficiencies and resolutions of the modified chips were much higher than those of the unmodified chips. It was also observed that the modified chips possessed good reproducibility of migration time. This research may provide a new and effective method to improve the hydrophilicity of the PMMA surface and the application of PMMA microfluidic chips in the determination of trace biomolecules.

  7. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid.

  8. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography.

    PubMed

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P; Phillips, Nelson B; Weiss, Michael A; Kent, Stephen B H

    2013-02-27

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp(B10), Lys(B28), Pro(B29)]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed.

  9. Fully Convergent Chemical Synthesis of Ester Insulin: Determination of the High Resolution X-ray Structure by Racemic Protein Crystallography

    PubMed Central

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P.; Phillips, Nelson B.; Weiss, Michael A.; Kent, Stephen B.H.

    2013-01-01

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described ‘ester insulin’ – a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond – as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e. [AspB10, LysB28, ProB29]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed. PMID:23343390

  10. Effect of agmatine on locus coeruleus neuron activity: possible involvement of nitric oxide

    PubMed Central

    Ruiz-Durántez, Eduardo; Ruiz-Ortega, José A; Pineda, Joseba; Ugedo, Luisa

    2002-01-01

    To investigate whether agmatine (the proposed endogenous ligand for imidazoline receptors) controls locus coeruleus neuron activity and to elucidate its mechanism of action, we used single-unit extracellular recording techniques in anaesthetized rats. Agmatine (10, 20 and 40 μg, i.c.v.) increased in a dose-related manner the firing rate of locus coeruleus neurons (maximal increase: 95±13% at 40 μg). I1-imidazoline receptor ligands stimulate locus coeruleus neuron activity through an indirect mechanism originated in the paragigantocellularis nucleus via excitatory amino acids. However, neither electrolytic lesions of the paragigantocellularis nucleus nor pretreatment with the excitatory amino acid antagonist kynurenic acid (1 μmol, i.c.v.) modified agmatine effect (10 μg, i.c.v.). After agmatine administration (20 μg, i.c.v.), dose-response curves for the effect of clonidine (0.625 – 10 μg kg−1 i.v.) or morphine (0.3 – 4.8 mg kg−1 i.v.) on locus coeruleus neurons were not different from those obtained in the control groups. Pretreatment with the nitric oxide synthase inhibitors Nω-nitro-L-arginine (10 μg, i.c.v.) or Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) but not with the less active stereoisomer Nω-nitro-D-arginine methyl ester (100 μg, i.c.v.) completely blocked agmatine effect (10 and 40 μg, i.c.v.). Similarly, when agmatine (20 pmoles) was applied into the locus coeruleus there was an increase that was blocked by Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) in the firing rate of the locus coeruleus neurons (maximal increase 53±11% and 14±10% before and after nitric oxide synthase inhibition, respectively). This study demonstrates that agmatine stimulates the firing rate of locus coeruleus neurons via a nitric oxide synthase-dependent mechanism located in this nucleus. PMID:11877321

  11. Novel selective agonists and antagonists confirm neurokinin NK1 receptors in guinea-pig vas deferens.

    PubMed Central

    Hall, J. M.; Morton, I. K.

    1991-01-01

    1. This study investigated the recognition characteristics of neurokinin receptors mediating potentiation of the contractile response to field stimulation in the guinea-pig vas deferens. 2. A predominant NK1 receptor population is strongly suggested by the relative activities of the common naturally-occurring tachykinin agonists, which fall within less than one order of magnitude. This conclusion is supported by the relative activities of the synthetic NK1 selective agonists substance P methyl ester, [Glp6,L-Pro9]-SP(6-11) and delta-aminovaleryl-[L-Pro9,N-MeLeu10]- SP(7-11) (GR73632) which were 0.78, 9.3 and 120 as active as substance P, respectively. Furthermore, the NK2 selective agonist [Lys3, Gly8,-R-gamma-lactam-Leu9]-NKA(3-10) (GR64349) was active only at the highest concentrations tested (greater than 10 microM), and the NK3 selective agonist, succ-[Asp6,N-MePhe8]-SP(6-11) (senktide) was essentially inactive (10 nM-32 microM). 3. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP(1-11) antagonized responses to neurokinin A, neurokinin B, physalaemin, eledoisin, [Glp6,D-Pro9]-SP(6-11), GR73632 and GR64349 (apparent pKB s 5.6-6.2), but was less potent in antagonizing responses to substance P, substance P methyl ester and [Glp6,L-Pro9]-SP(6-11) (apparent pKB s less than or equal to 5.0-5.0). 4. In contrast, the recently developed NK1-selective receptor antagonist [D-Pro9[Spiro-gamma-lactam]Leu10,Trp11]-SP(1-11) (GR71251) did not produce agonist-dependent pKB estimates. Schild plot analysis indicated a competitive interaction with a single receptor population where the antagonist had an estimated overall pKB of 7.58 +/- 0.13 for the four agonists of differing subtype selectivity tested (GR73632, GR64349, substance P methyl ester and neurokinin B).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1707714

  12. Changes in cholinergic and nitrergic systems of defunctionalized colons after colostomy in rabbits.

    PubMed

    Moralıoğlu, Serdar; Vural, İsmail Mert; Özen, İbrahim Onur; Öztürk, Gökçe; Sarıoğlu, Yusuf; Başaklar, Abdullah Can

    2017-01-01

    This study was designed to assess smooth muscle function and motility in defunctionalized colonic segments and subsequent changes in pathways responsible for gastrointestinal motility. Two-month-old New Zealand rabbits were randomly allocated into control and study groups. Sigmoid colostomies were performed in the study group. After a 2-month waiting period, colonic segments were harvested in both groups. For the in vitro experiment, the isolated circular muscle strips which were prepared from the harvested distal colon were used. First, contraction responses were detected using KCl and carbachol; relaxation responses were detected using papaverine, sodium nitroprusside, sildenafil, and l-arginine. The neurologic responses of muscle strips to electrical field stimulation (EFS) were evaluated in an environment with guanethidine and indomethacin. EFS studies were then repeated with atropine, Nω-nitro-l-arginine methyl ester, atropine, and Nω-nitro-l-arginine methyl ester-added environments. Although macroscopic atrophy had developed in the distal colonic segment of the colostomy, the contraction and relaxation capacity of the smooth muscle did not change. EFS-induced nitrergic-peptidergic, cholinergic-peptidergic, and noncholinergic nonnitrergic responses significantly decreased at all frequencies (0.5-32 Hz) in the study group compared with those in the control group (P < 0.05). Although the contraction capacity of the smooth muscle was not affected, the motility of the distal colon deteriorated owing to the defective secretion of presynaptic neurotransmitters such as acetylcholine, nitric oxide, and neuropeptides. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Quantitative role of splanchnic region in leucine metabolism: L-(1-13C,15N)leucine and substrate balance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y.M.; Wagner, D.A.; Tredget, E.E.

    1990-07-01

    The role of the splanchnic region (Sp) in whole body leucine metabolism was assessed in six chronically catheterized fasting mongrel dogs and in eight dogs during constant enteral feeding of a complete amino acid solution (0.24 g.kg-1.h-1). We used primed continuous intravenous infusions of L-(1-13C,15N)leucine and L-(1-14C)leucine and measurements of arteriovenous isotope and leucine balance across the gut, liver, and Sp. In the fasted condition, 3.5% of arterial leucine supply was oxidized in the Sp, accounting for 13% of total body leucine oxidation, with 10% by liver. With amino acid feeding (1) leucine carbon and nitrogen fluxes and oxidation weremore » increased (P less than 0.01) at the whole body level; (2) the percent of whole body leucine oxidation occurring in the Sp and liver increased (P less than 0.01) to 41 and 27%, respectively; (3) fractional metabolic utilization of leucine delivered to the Sp was reduced (P less than 0.01) from 47 to 35%; (4) the deamination rate of leucine in the gut was increased (P less than 0.05), along with an increased reamination rate of alpha-ketoisocaproic acid in the Sp (P less than 0.05). These findings reveal that the Sp accounts for a small fraction of whole body leucine oxidation during the fasting condition, but it plays a quantitatively important role in total body leucine oxidation during amino acid feeding; the gut and liver play cooperative roles in controlling leucine supply to peripheral tissues.« less

  14. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells

    PubMed Central

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. PMID:27076746

  15. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells.

    PubMed

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

  16. Interaction of Pd(II) and Pt(II) Amino Acid Complexes With Dinucleotides

    PubMed Central

    Vicens, Margarita; Caubet, Amparo

    1997-01-01

    The interaction of the dinucleotides d(ApG) and d(ApA) with [Pd(aa)Cl2], where aa = L- or D-histidine or the methyl ester of L-histidine, and with [Pt(Met)Cl2], where Met = L-methionine was studied by 1H and 13C NMR and CD measurements. In the case of the L-histidine and L-histidineOMe, the reaction with d(ApG) appeared to give the bifunctional adducts Pd(L-Histidine)N1(1)N7(2) and Pd(L-HisOMe)N1(1)N7(2), but the behavior with D-histidine suggested the formation of the monofunctional adduct Pd(D-His)N7(2). The reaction of L-histidine with d(ApA) seemed to form the bimetallic adduct (L-His)PdN7(1)N7(2)Pd(L-His). The Pt(II)-L-methionine complex in both reactions with d(ApG) and d(ApA) seemed to yield mainly adducts Pt(L-Met)N7(1)N7(2) but the existence of adducts Pt(L-Met)N1(1)N7(2) cannot be ruled out. PMID:18475765

  17. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract.

    PubMed

    Wei, Lee Seong; Wee, Wendy; Siong, Julius Yong Fu; Syamsumir, Desy Fitrya

    2011-01-01

    Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.

  18. Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production.

    PubMed

    Eleutério Dos Santos, Caroline Mongruel; Pietrowski, Giovana de Arruda Moura; Braga, Cíntia Maia; Rossi, Márcio José; Ninow, Jorge; Machado Dos Santos, Tâmisa Pires; Wosiacki, Gilvan; Jorge, Regina Maria Matos; Nogueira, Alessandro

    2015-06-01

    The amino acid profile in dessert apple must and its effect on the synthesis of fusel alcohols and esters in cider were established by instrumental analysis. The amino acid profile was performed in nine apple musts. Two apple musts with high (>150 mg/L) and low (<75 mg/L) nitrogen content, and four enological yeast strains, were used in cider fermentation. The aspartic acid, asparagine and glutamic acid amino acids were the majority in all the apple juices, representing 57.10% to 81.95%. These three amino acids provided a high consumption (>90%) during fermentation in all the ciders. Principal component analysis (PCA) explained 81.42% of data variability and the separation of three groups for the analyzed samples was verified. The ciders manufactured with low nitrogen content showed sluggish fermentation and around 50% less content of volatile compounds (independent of the yeast strain used), which were mainly 3-methyl-1-butanol (isoamyl alcohol) and esters. However, in the presence of amino acids (asparagine, aspartic acid, glutamic acid and alanine) there was a greater differentiation between the yeasts in the production of fusel alcohols and ethyl esters. High contents of these aminoacids in dessert apple musts are essential for the production of fusel alcohols and most of esters by aromatic yeasts during cider fermentation. © 2015 Institute of Food Technologists®

  19. Effects of site-directed mutagenesis of Asn116 in the β-hairpin of the N-terminal domain of thermolysin on its activity and stability.

    PubMed

    Menach, Evans; Yasukawa, Kiyoshi; Inouye, Kuniyo

    2012-09-01

    In the N-terminal domain of thermolysin, two anti-parallel β-strands, Asn112-Ala113-Phe114-Trp115 and Ser118-Gln119-Met120-Val121-Tyr122 are connected by an Asn116-Gly117 turn to form a β-hairpin structure. In this study, we examined the role of Asn116 in the activity and stability of thermolysin by site-directed mutagenesis. Of the 19 Asn116 variants, four (N116A, N116D, N116T and N116Q) were produced in Escherichia coli, by co-expressing the mature and pro domains separately, while the other 15 were not. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) at 25°C, the intrinsic k(cat)/K(m) value of N116D was 320% of that of the wild-type thermolysin (WT), and in the hydrolysis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZDFM) at pH 7.5 at 25°C, the k(cat)/K(m) value of N116D was 140% of that of WT, indicating that N116D exhibited higher activity than WT. N116Q exhibited similar activity as WT, and N116A and N116T exhibited reduced activities. The first-order rate constants, k(obs), of the thermal inactivation at 80°C were in the order N116A, N116D, N116T > N116Q > WT at all CaCl(2) concentrations examined (1-100 mM), indicating that all variants exhibited reduced stabilities. These results suggest that Asn116 plays an important role in the activity and stability of thermolysin presumably by stabilizing this β-hairpin structure.

  20. Role of the anterior region of the third ventricle in the cardiovascular responses produced by systemic injection of a nitric oxide synthase inhibitor

    NASA Technical Reports Server (NTRS)

    Lewis, S. J.; Whalen, E. J.; Beltz, T. G.; Johnson, A. K.

    1999-01-01

    This study examined whether a prior electrolytic lesion of the tissue surrounding the anteroventral third ventricle (AV3V) would affect the increase in mean arterial blood pressure (MAP) and the fall in heart rate (HR) produced by systemic injection of the nitric oxide synthesis (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 25 micromol/kg, i.v.) in conscious rats. L-NAME produced a smaller increase in MAP in AV3V-lesion than in sham-lesion rats (+19+/-3 vs. +40+/-3 mmHg, respectively; P<0.05). In contrast, L-NAME produced similar falls in HR in the AV3V-lesion and sham-lesion rats (-103+/-15 vs. -97+/-8 bpm, respectively; P<0.05). These findings demonstrate that the L-NAME-induced pressor response is dependent upon the integrity of the AV3V region, whereas the L-NAME-induced bradycardia is not. Copyright 1999 Elsevier Science B. V.

  1. High-throughput simultaneous analysis of buprenorphine, methadone, cocaine, opiates, nicotine, and metabolites in oral fluid by liquid chromatography tandem mass spectrometry

    PubMed Central

    Concheiro, Marta; Gray, Teresa R.; Shakleya, Diaa M.

    2011-01-01

    A method for simultaneous determination of buprenorphine (BUP), norbuprenorphine (NBUP), methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), cocaine, benzoylecgonine (BE), ecgonine methyl ester (EME), anhydroecgonine methyl ester (AEME), morphine, codeine, 6-acetylmorphine (6AM), heroin, 6-acetylcodeine (6AC), nicotine, cotinine, and trans-3′-hydroxycotinine (OH-cotinine) by liquid chromatography tandem mass spectrometry in oral fluid (OF) was developed and extensively validated. Acetonitrile (800 μL) and OF (250 μL) were added to a 96-well Isolute-PPT+protein precipitation plate. Reverse-phase separation was achieved in 16 min and quantification was performed by multiple reaction monitoring. The assay was linear from 0.5 or 1 to 500 μg/L. Intraday, interday, and total imprecision were less than 13% (n=20), analytical recovery was 92–114% (n= 20), extraction efficiencies were more than 77% (n=5), and process efficiencies were more than 45% (n=5). Although ion suppression was detected for EME, cocaine, morphine, 6AC, and heroin (less than 56%) and enhancement was detected for BE and nicotine (less than 316%), deuterated internal standards compensated for these effects. The method was sensitive (limit of detection 0.2–0.8 μg/L) and specific (no interferences) except that 3-hydroxy-4-methoxyamphetamine interfered with AEME. No carryover was detected, and all analytes were stable for 24 h at 22 °C, for 72 h at 4 °C, and after three freeze–thaw cycles, except cocaine, 6AC, and heroin (22–97% loss). The method was applied to 41 OF specimens collected throughout pregnancy with a Salivette® OF collection device from an opioid-dependent BUP-maintained pregnant woman. BUP ranged from 0 to 7,400 μg/L, NBUP from 0 to 71 μg/L, methadone from 0 to 3 μg/L, nicotine from 32 to 5,020 μg/L, cotinine from 125 to 508 μg/L, OH-cotinine from 11 to 51 μg/L, cocaine from 0 to 419 μg/L, BE from 0 to 351 μg/L, EME from 0 to 286 μg/L, AEME from 0 to 7 μg/L, morphine from 0 to 22 μg/L, codeine from 0 to 1 μg/L, 6AM from 0 to 4 μg/L, and heroin from 0 to 2 μg/L. All specimens tested negative for EDDP and 6AC. This method permits a fast and simultaneous quantification of 16 drugs and metabolites in OF, with good selectivity and sensitivity. PMID:20652688

  2. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    PubMed

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Marine Sponge, Diacarnus bismarckensis, as a Source of Peroxiterpene Inhibitors of Trypanosoma brucei, the Causative Agent of Sleeping Sickness

    PubMed Central

    Rubio, Brent K.; Tenney, Karen; Ang, Kean-Hooi; Abdulla, Maha; Arkin, Michelle; McKerrow, James H.; Crews, Phillip

    2009-01-01

    Human African trypanosomiasis (HAT), also known as African sleeping sickness, is a neglected tropical disease with inadequate therapeutic options. We have launched a collaborative new lead discovery venture using our repository of extracts and natural product compounds as input into our growth inhibition primary screen against Trypanosoma brucei. Careful evaluation of the spectral data of the natural products and derivatives allowed for the elucidation of the absolute configuration (using the modified Mosher’s method) of two new peroxiterpenes: (+)-muqubilone B (1a) and (−)-ent-muqubilone (3a). Five known compounds were also isolated: (+)-sigmosceptrellin A (4a), (+)-sigmosceptrellin A methyl ester (4b), (−)-sigmosceptrellin B (5), (+)-epi-muqubillin A (6) and (−)-epi-nuapapuin B methyl ester (7). The isolated peroxiterpenes demonstrated activities in the range from IC50 = 0.2 – 2 μg/mL. PMID:19159277

  4. Potential Pharmacologic Treatments for Cystinuria and for Calcium Stones Associated with Hyperuricosuria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, David S.

    Two new potential pharmacologic therapies for recurrent stone disease are described. The role of hyperuricosuria in promoting calcium stones is controversial with only some but not all epidemiologic studies demonstrating associations between increasing urinary uric acid excretion and calcium stone disease. The relationship is supported by the ability of uric acid to 'salt out' (or reduce the solubility of) calcium oxalate in vitro. A randomized, controlled trial of allopurinol in patients with hyperuricosuria and normocalciuria was also effective in preventing recurrent stones. Febuxostat, a nonpurine inhibitor of xanthine oxidase (also known as xanthine dehydrogenase or xanthine oxidoreductase) may have advantagesmore » over allopurinol and is being tested in a similar protocol, with the eventual goal of determining whether urate-lowering therapy prevents recurrent calcium stones. Treatments for cystinuria have advanced little in the past 30 years. Atomic force microscopy has been used recently to demonstrate that effective inhibition of cystine crystal growth is accomplished at low concentrations of L-cystine methyl ester and L-cystine dimethyl ester, structural analogs of cystine that provide steric inhibition of crystal growth. In vitro, L-cystine dimethyl ester had a significant inhibitory effect on crystal growth. The drug's safety and effectiveness will be tested in an Slc3a1 knockout mouse that serves as an animal model of cystinuria.« less

  5. Interactions in L-phenylalanine/L-leucine/L-glutamic Acid/L-proline + 2 M aqueous NaCl/2 M NaNO3 systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Riyazuddeen, Imran Khan; Afrin, Sadaf

    2012-12-01

    Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.

  6. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats.

    PubMed

    Calabró, Valeria; Litterio, María C; Fraga, Cesar G; Galleano, Monica; Piotrkowski, Barbara

    2018-06-01

    This study investigated the effects of a quercetin-supplemented diet on the biochemical changes installed in the heart of NO-deficient rats in terms of oxidants production and NO bioavailability determinants. Sprague-Dawley rats were subjected to N ω -nitro-l-arginine methyl ester (l-NAME) treatment (360 mg/L l-NAME in the drinking water, 4 d) with or without supplementation with quercetin (4 g/kg diet). l-NAME administration led to increased blood pressure (BP) (30%), decreased nitric oxide synthase (NOS) activity (50%), and increases in NADPH oxidase (NOX)-dependent superoxide anion production (60%) and p47 phox protein level (65%). The co-administration of quercetin prevented the increase in BP and the activation of NOX but did not modify the decrease in NOS activity caused by l-NAME. In addition, quercetin affected oxidative stress parameters as glutathione oxidation, and the activities of oxidant detoxifying enzymes superoxide dismutase, glutathione peroxidase, and catalase. Thus, quercetin administration counteracts l-NAME effects on NO bioavailability determinants in vivo, essentially through controlling NOX-mediated superoxide anion production. Copyright © 2018. Published by Elsevier Inc.

  7. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine.

    PubMed

    Chin-Leo, G; Kirchman, D L

    1988-08-01

    We examined the simultaneous incorporation of [H]thymidine and [C]leucine to obtain two independent indices of bacterial production (DNA and protein syntheses) in a single incubation. Incorporation rates of leucine estimated by the dual-label method were generally higher than those obtained by the single-label method, but the differences were small (dual/single = 1.1 +/- 0.2 [mean +/- standard deviation]) and were probably due to the presence of labeled leucyl-tRNA in the cold trichloroacetic acid-insoluble fraction. There were no significant differences in thymidine incorporation between dual- and single-label incubations (dual/ single = 1.03 +/- 0.13). Addition of the two substrates in relatively large amounts (25 nM) did not apparently increase bacterial activity during short incubations (<5 h). With the dual-label method we found that thymidine and leucine incorporation rates covaried over depth profiles of the Chesapeake Bay. Estimates of bacterial production based on thymidine and leucine differed by less than 25%. Although the need for appropriate conversion factors has not been eliminated, the dual-label approach can be used to examine the variation in bacterial production while ensuring that the observed variation in incorporation rates is due to real changes in bacterial production rather than changes in conversion factors or introduction of other artifacts.

  8. Third system for neutral amino acid transport in a marine pseudomonad.

    PubMed Central

    Pearce, S M; Hildebrandt, V A; Lee, T

    1977-01-01

    Uptake of leucine by the marine pseudomonad B-16 is an energy-dependent, concentrative process. Respiratory inhibitors, uncouplers, and sulfhydryl reagents block transport. The uptake of leucine is Na+ dependent, although the relationship between the rate of leucine uptake and Na+ concentration depends, to some extent, on the ionic strength of the suspending assay medium and the manner in which cells are washed prior to assay. Leucine transport can be separated into at least two systems: a low-affinity system with an apparent Km of 1.3 X 10(-5) M, and a high-affinity system with an apparent Km of 1.9 X 10(-7) M. The high-affinity system shows a specificity unusual for bacterial systems in that both aromatic and aliphatic amino acids inhibit leucine transport, provided that they have hydrophobic side chains of a length greater than that of two carbon atoms. The system exhibits strict stereospecificity for the L form. Phenylalanine inhibition was investigated in more detail. The Ki for inhibition of leucine transport by phenylalanine is about 1.4 X 10(-7) M. Phenylalanine itself is transported by an energy-dependent process whose specificity is the same as the high-affinity leucine transport system, as is expected if both amino acids share the same transport system. Studies with protoplasts indicate that a periplasmic binding protein is not an essential part of this transport system. Fein and MacLeod (J. Bacteriol. 124:1177-1190, 1975) reported two neutral amino acid transport systems in strain B-16: the DAG system, serving glycine, D-alanine, D-serine, and alpha-aminoisobutyric acid; and the LIV system, serving L-leucine, L-isoleucine, L-valine, and L-alanine. The high-affinity system reported here is a third neutral amino acid transport system in this marine pseudomonad. We propose the name "LIV-II" system. PMID:856786

  9. Alpha-ketoisocaproate is not a true substrate for ATP production by pancreatic beta-cell mitochondria.

    PubMed

    Lembert, N; Idahl, L A

    1998-03-01

    The ability of alpha-ketoisocaproate (KIC) to induce ATP production in isolated mitochondria from pancreatic beta-cells was examined with a bioluminometric method. There was no ATP production from KIC when tested alone or in combination with malate (1 mmol/l), nor did DL-beta-hydroxybutyrate induce mitochondrial ATP production, whereas palmitoyl-carnitine and pyruvate were efficient stimulators of mitochondrial ATP production in the presence of an equimolar concentration of malate. However, KIC stimulated the mitochondrial ATP production when tested in combination with glutamate (10 mmol/l). The concentration necessary to obtain half-maximal stimulation was approximately 50 micromol/l KIC, and maximal activity, comparable to that obtained with fatty acids, was reached at 1 mmol/l KIC. Higher KIC concentrations inhibited the mitochondrial ATP production, whereas a plateau was attained at 1 mmol/l KIC in the presence of glutamine. Ca2+ stimulated the maximal mitochondrial ATP production induced by KIC. Maximal stimulation was obtained with 300 nmol/l Ca2+ in the presence of 0.3 mmol/l KIC. Ca2+ reduced the concentration of KIC necessary for half-maximal stimulation to <30 micromol/l. Leucine stimulated the mitochondrial ATP production in the presence of glutamate to the same extent as KIC. Half-maximal stimulation was observed with 2 mmol/l leucine. There were no additive effects on mitochondrial ATP production when KIC and leucine were tested in combination. The results demonstrate that KIC by itself is not a mitochondrial substrate for ATP production. KIC must transaminate with glutamate or glutamine to yield alpha-ketoglutarate and leucine. Since leucine allosterically activates glutamate dehydrogenase, which also produces alpha-ketoglutarate, the insulinogenic effect of KIC may in part be due to the intramitochondrial generation of alpha-ketoglutarate. Since KIC-induced ATP production reaches a plateau already at micromolar concentrations (i.e., far below the concentrations at which KIC induces insulin release), it is proposed here that the catabolism of KIC may induce additional signals related to insulin release.

  10. Optimization of one-step in situ transesterification method for accurate quantification of EPA in Nannochloropsis gaditana

    DOE PAGES

    Tang, Yuting; Zhang, Yue; Rosenberg, Julian N.; ...

    2016-11-08

    Microalgae are a valuable source of lipid feedstocks for biodiesel and valuable omega-3 fatty acids. Nannochloropsis gaditana has emerged as a promising producer of eicosapentaenoic acid (EPA) due to its fast growth rate and high EPA content. In the present study, the fatty acid profile of Nannochloropsis gaditana was found to be naturally high in EPA and devoid of docosahexaenoic acid (DHA), thereby providing an opportunity to maximize the efficacy of EPA production. Using an optimized one-step in situ transesterification method (methanol:biomass = 90 mL/g; HCl 5% by vol.; 70 °C; 1.5 h), the maximum fatty acid methyl ester (FAME)more » yield of Nannochloropsis gaditana cultivated under rich condition was quantified as 10.04% ± 0.08% by weight with EPA-yields as high as 4.02% ± 0.17% based on dry biomass. The total FAME and EPA yields were 1.58- and 1.23-fold higher separately than that obtained using conventional two-step method (solvent system: methanol and chloroform). Furthermore, this one-step in situ method provides a fast and simple method to measure fatty acid methyl ester (FAME) yields and could serve as a promising method to generate eicosapentaenoic acid methyl ester from microalgae.« less

  11. Optimization of one-step in situ transesterification method for accurate quantification of EPA in Nannochloropsis gaditana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yuting; Zhang, Yue; Rosenberg, Julian N.

    Microalgae are a valuable source of lipid feedstocks for biodiesel and valuable omega-3 fatty acids. Nannochloropsis gaditana has emerged as a promising producer of eicosapentaenoic acid (EPA) due to its fast growth rate and high EPA content. In the present study, the fatty acid profile of Nannochloropsis gaditana was found to be naturally high in EPA and devoid of docosahexaenoic acid (DHA), thereby providing an opportunity to maximize the efficacy of EPA production. Using an optimized one-step in situ transesterification method (methanol:biomass = 90 mL/g; HCl 5% by vol.; 70 °C; 1.5 h), the maximum fatty acid methyl ester (FAME)more » yield of Nannochloropsis gaditana cultivated under rich condition was quantified as 10.04% ± 0.08% by weight with EPA-yields as high as 4.02% ± 0.17% based on dry biomass. The total FAME and EPA yields were 1.58- and 1.23-fold higher separately than that obtained using conventional two-step method (solvent system: methanol and chloroform). Furthermore, this one-step in situ method provides a fast and simple method to measure fatty acid methyl ester (FAME) yields and could serve as a promising method to generate eicosapentaenoic acid methyl ester from microalgae.« less

  12. DNA Methylation Influences Chlorogenic Acid Biosynthesis in Lonicera japonica by Mediating LjbZIP8 to Regulate Phenylalanine Ammonia-Lyase 2 Expression.

    PubMed

    Zha, Liangping; Liu, Shuang; Liu, Juan; Jiang, Chao; Yu, Shulin; Yuan, Yuan; Yang, Jian; Wang, Yaolong; Huang, Luqi

    2017-01-01

    The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5'-UTR of phenylalanine ammonia-lyase 2 ( PAL2 ). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5'-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica .

  13. DNA Methylation Influences Chlorogenic Acid Biosynthesis in Lonicera japonica by Mediating LjbZIP8 to Regulate Phenylalanine Ammonia-Lyase 2 Expression

    PubMed Central

    Zha, Liangping; Liu, Shuang; Liu, Juan; Jiang, Chao; Yu, Shulin; Yuan, Yuan; Yang, Jian; Wang, Yaolong; Huang, Luqi

    2017-01-01

    The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5′-UTR of phenylalanine ammonia-lyase 2 (PAL2). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5′-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica. PMID:28740500

  14. Phytotoxic Metabolites Produced by Diaporthella cryptica, the Causal Agent of Hazelnut Branch Canker.

    PubMed

    Cimmino, Alessio; Nocera, Paola; Linaldeddu, Benedetto Teodoro; Masi, Marco; Gorecki, Marcin; Pescitelli, Gennaro; Montecchio, Lucio; Maddau, Lucia; Evidente, Antonio

    2018-04-04

    From the culture filtrates of Diaporthella cryptica, an emerging hazelnut pathogen, 2-hydroxy-3-phenylpropanoate methyl ester and its 3-(4-hydroxyphenyl) and 3-(1 H-indol-3-yl) analogues, named crypticins A-C, were isolated together with the well-known tyrosol. Crypticins A-C were identified by spectroscopic (essentially nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry) methods. The R absolute configuration (AC) of crypticin A was determined by comparing its optical rotation and electronic circular dichroism (ECD) spectrum with those of papuline, the methyl ester of (-)( S)-phenyllactic acid isolated as the main phytotoxin of Pseudomonas syringae pv.  papulans, responsible for apple blister spot. The ACs of crypticins B and C were determined by time-dependent density functional theory calculations of their ECD spectra. Papuline and the new metabolites herein isolated, except tyrosol, were tested at 1 mg/mL on cork oak, grapevine, hazelnut, and holm oak leaves using the leaf puncture assay. They were also tested on tomato cuttings at 0.5 and 0.05 mg/mL. In the leaf puncture assay, none of the compounds was found to be active. Crypticin C and papuline were active in the tomato cutting assay. Additionally, crypticin C displayed moderate inhibitory effect against Phytophthora cambivora.

  15. Screening of cocaine and its metabolites in human urine samples by direct analysis in real-time source coupled to time-of-flight mass spectrometry after online preconcentration utilizing microextraction by packed sorbent.

    PubMed

    Jagerdeo, Eshwar; Abdel-Rehim, Mohamed

    2009-05-01

    Microextraction by packed sorbent (MEPS) has been evaluated for fast screening of drugs of abuse with mass spectrometric detection. In this study, C8 (octyl-silica, useful for nonpolar to moderately polar compounds), ENV(+) (hydroxylated polystyrene-divinylbenzene copolymer, for extraction of aliphatic and aromatic polar compounds), Oasis MCX (sulfonic-poly(divinylbenzene-co-N-polyvinyl-pyrrolidone) copolymer), and Clean Screen DAU (mixed mode, ion exchanger for acidic and basic compounds) were used as sorbents for the MEPS. The focus was on fast extraction and preconcentration of the drugs with rapid analysis using a time-of-flight (TOF) mass spectrometer as the detector with direct analysis in a real-time (DART) source. The combination of an analysis time of less than 1 min and accurate mass of the first monoisotopic peak of the analyte and the relative abundances of the peaks in the isotopic clusters provided reliable information for identification. Furthermore, the study sought to demonstrate that it is possible to quantify the analyte of interest using a DART source when an internal standard is used. Of all the sorbents used in the study, Clean Screen DAU performed best for extraction of the analytes from urine. Using Clean Screen DAU to extract spiked samples containing the drugs, linearity was demonstrated for ecgonine methyl ester, benzoylecgonine, cocaine, and cocaethylene with average ranges of: 65-910, 75-1100, 95-1200, and 75-1100 ng/mL (n = 5), respectively. The limits of detection (LOD) for ecgonine methyl ester, benzoylecgonine, cocaine, and cocaethylene were 22.9 ng/mL, 23.7 ng/mL, 4.0 ng/mL, and 9.8 ng/mL respectively, using a signal-to-noise ratio of 3:1.

  16. Synthesis of Novel Chiral Sulfonamide-Bearing 1,2,4-Triazole-3-thione Analogs Derived from D- and L-Phenylalanine Esters as Potential Anti-Influenza Agents.

    PubMed

    Başaran, Eyüp; Karaküçük-Iyidoğan, Ayşegül; Schols, Dominique; Oruç-Emre, Emine Elçin

    2016-06-01

    Novel enantiopure 1,2,4-trizole-3-thiones containing a benzensulfonamide moiety were synthesized via multistep reaction sequence starting with D-phenylalanine methyl ester and L-phenylalanine ethyl ester as a source of chirality. The chemical structures of all compounds were characterized by elemental analysis, UV, IR, (1) H NMR, (13) C NMR, 2D NMR (HETCOR), and mass spectral data. All compounds were tested in vitro antiviral activity against a broad variety of DNA and RNA viruses and in vitro cytostatic activity against murine leukemia (L1210), human T-lymphocyte (CEM) and human cervix carcinoma (HeLa) cell lines. Although enantiopure 1,2,4-triazole-3-thione analogs in (R) configuration emerged as promising anti-influenza A H1N1 subtype in Madin Darby canine kidney cell cultures (MDCK), their enantiomers exhibited no activity. Especially compounds , , , , and (EC50 : 6.5, 6.1, 2.4, 1.6, 1.7 μM, respectively) had excellent activity against influenza A H1N1 subtype compared to the reference drug ribavirin (EC50 : 8.0 μM). Several compounds have been found to inhibit proliferation of L1210, CEM and HeLa cell cultures with IC50 in the 12-53 μM range. Compound and in (R) configuration were the most active compounds (IC50 : 12-22 μM for and IC50 : 19-23 μM for ). Chirality 28:495-513, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Kanmi; Pruski, Marek

    Two-dimensional through-bond {sup 1}H({sup 13}C) solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse {sup 1}H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of {sup 1}H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine (f-MLF-OH) and brown coal.

  18. Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS

    NASA Astrophysics Data System (ADS)

    Mao, Kanmi; Pruski, Marek

    2009-12-01

    Two-dimensional through-bond 1H{ 13C} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of 1H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N- formyl- L-methionyl- L-leucyl- L-phenylalanine (f-MLF-OH) and brown coal.

  19. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  20. Peripheral NMDA Receptor/NO System Blockage Inhibits Itch Responses Induced by Chloroquine in Mice

    PubMed Central

    Haddadi, Nazgol-Sadat; Foroutan, Arash; Ostadhadi, Sattar; Azimi, Ehsan; Rahimi, Nastaran; Nateghpour, Mehdi; Lerner, Ethan A.; Dehpour, Ahmad Reza

    2017-01-01

    Intradermal administration of chloroquine (CQ) provokes scratching behavior in mice. Chloroquine-induced itch is histamine-independent and we have reported that the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is involved in CQ-induced scratching behavior in mice. Previous studies have demonstrated that activation of N-methyl-d-aspartate receptors (NMDARs) induces NO production. Here we show that NMDAR antagonists significantly decrease CQ-induced scratching in mice while a non-effective dose of an NMDAR agonist potentiates the scratching behavior provoked by sub-effective doses of CQ. In contrast, combined pre-treatment with sub-effective doses of an NMDAR antagonist, MK-801, and the NO synthase inhibitor, L-N-nitro arginine methyl ester (L-NAME), decreases CQ-induced scratching behavior. While intradermal administration of CQ significantly increases the concentration of intradermal nitrite, the end product of NO metabolism, effective doses of intraperitoneal and intradermal MK-801 significantly decrease intradermal nitrite levels. Likewise, administration of an effective dose of L-NAME significantly decreases CQ-induced nitrite production. We conclude that the NMDA/NO pathway in the skin modulates CQ-induced scratching behavior. PMID:28119997

  1. Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae

    NASA Astrophysics Data System (ADS)

    Knight, Alan L.; Light, Douglas M.

    2001-08-01

    The alkyl ethyl and methyl esters of (2 E,4 Z)-2,4-decadienoic acid found in head-space samples of ripe Bartlett pear ( Pyrus communis L.) stimulated a response from neonate larvae of the codling moth (CM), Cydia pomonella (L.), in both static-air Petri-plate and in upwind Y-tube and straight-tube olfactometer bioassays. In comparison with the known CM neonate attractant, ( E,E)-α-farnesene, ethyl (2 E,4 Z)-2,4-decadienoate was attractive at 10-fold and 1,000-fold lower threshold dosages in the Petri-plate and in the Y-tube bioassays, respectively. Methyl (2 E,4 Z)-2,4-decadienoate was attractive to CM neonates in these bioassays at much higher doses than ethyl (2 E,4 Z)-2,4-decadienoate. Other principal head-space volatiles from ripe pear fruit and pear leaves, including butyl acetate, hexyl acetate, ( Z)-3-hexenyl acetate, and ( E)-β-ocimene, were not attractive to CM neonates. The potential uses of these pear kairomones for monitoring and control of CM in walnuts and apple are discussed.

  2. Amino acid derivatives of 5-ASA as novel prodrugs for intestinal drug delivery.

    PubMed

    Clerici, C; Gentili, G; Boschetti, E; Santucci, C; Aburbeh, A G; Natalini, B; Pellicciari, R; Morelli, A

    1994-12-01

    In an attempt to obtain site-specific delivery of 5-ASA in the intestinal tract, we have determined the extent of absorption and metabolism of a number of novel 5-ASA derivatives, namely, (N-L-glutamyl)-amino-2-salicylic acid (1), (N-L-aspartyl)-amino-2-salicylic-acid (2), 5-aminosalicyl-L-proline-L-leucine (3), and 5-(N-L-glutamyl)-aminosalicyl-L-proline-L-leucine (4), which are selectively cleaved by intestinal brush border aminopeptidase A and carboxypeptidases. These novel prodrugs, 5-ASA, and sulfasalazine were administered to adult Fisher rats (N = 30) and to animals that had undergone prior colostomy (N = 30). Urine and feces were collected at timed intervals for 48 hr and the metabolites, 5-ASA, and N-acetyl-5-ASA were measured by high-performance liquid chromatography. The absorption and metabolism of all compounds were essentially identical in colostomized and normal animals. 5-ASA exhibited a rapid proximal intestinal absorption as evidenced by the high cumulative urinary excretion (> 65%) and low fecal excretion. Sulfasalazine, as expected, exhibited a lower urinary recovery (< 35%) and higher fecal excretion of 5-ASA and its metabolite. The novel glutamate and aspartate derivatives (1 and 2) behaved similarly to sulfasalazine, while administration of the proline-leucine derivative (3) resulted in urinary and fecal recovery values intermediate with respect to those observed with 5-ASA and sulfasalazine. 5-(N-L-Glutamyl)-aminosalicyl-L-proline-L-leucine yielded the highest fecal recovery of 5-ASA and its N-acetyl derivative, indicating a more efficient delivery to the distal bowel. Amino acid derivatives of 5-ASA appear to be potentially useful prodrugs for the site-specific delivery of 5-ASA to different regions of the intestinal tract.

  3. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity.

    PubMed

    Al-Zaydi, Khadijah M; Khalil, Hosam H; El-Faham, Ayman; Khattab, Sherine N

    2017-05-10

    Replacement of chloride ions in cyanuric chloride give several variants of 1,3,5-triazine derivatives which were investigated as biologically active small molecules. These compounds exhibit antimalarial, antimicrobial, anti-cancer and anti-viral activities, among other beneficial properties. On the other hand, treatment of bacterial infections remains a challenging therapeutic problem because of the emerging infectious diseases and the increasing number of multidrug-resistant microbial pathogens. As multidrug-resistant bacterial strains proliferate, the necessity for effective therapy has stimulated research into the design and synthesis of novel antimicrobial molecules. 1,3,5-Triazine 4-aminobenzoic acid derivatives were prepared by conventional method or by using microwave irradiation. Using microwave irradiation gave the desired products in less time, good yield and higher purity. Esterification of the 4-aminobenzoic acid moiety afforded methyl ester analogues. The s-triazine derivatives and their methyl ester analogues were fully characterized by FT-IR, NMR ( 1 H-NMR and 13 C-NMR), mass spectra and elemental analysis. All the synthesized compounds were evaluated for their antimicrobial activity. Some tested compounds showed promising activity against Staphylococcus aureus and Escherichia coli. Three series of mono-, di- and trisubstituted s-triazine derivatives and their methyl ester analogues were synthesized and fully characterized. All the synthesized compounds were evaluated for their antimicrobial activity. Compounds (10), (16), (25) and (30) have antimicrobial activity against S. aureus comparable to that of ampicillin, while the activity of compound (13) is about 50% of that of ampicillin. Compounds (13) and (14) have antimicrobial activity against E. coli comparable to that of ampicillin, while the activity of compounds (9-12) and (15) is about 50% of that of ampicillin. Furthermore, minimum inhibitory concentrations values for clinical isolates of compounds (10), (13), (14), (16), (25) and (30) were measured. Compounds (10) and (13) were more active against MRSA and E. coli than ampicillin. Invitro cytotoxicity results revealed that compounds (10) and (13) were nontoxic up to 250 µg/mL (with SI = 10) and 125 µg/mL (with SI = 5), respectively. Graphical abstract Three series of mono-, di- and trisubstituted s-triazine derivatives and their methyl ester analogues were synthesized and evaluated for their antimicrobial activity. Several compounds have antimicrobial activity against S. aureus and E. coli comparable to that of ampicillin.

  4. Cyclic Tetrapyrrolic Photosensitisers from the leaves of Phaeanthus ophthalmicus

    PubMed Central

    2011-01-01

    Background Twenty-seven extracts from 26 plants were identified as photo-cytotoxic in the course of our bioassay guided screening program for photosensitisers from 128 extracts prepared from 64 terrestrial plants in two different collection sites in Malaysia - Royal Belum Forest Reserve in the State of Perak and Gunung Nuang in the State of Selangor. One of the photo-cytotoxic extracts from the leaves of Phaeanthus ophtalmicus was further investigated. Results The ethanolic extract of the leaves from Phaeanthus ophtalmicus was able to reduce the in vitro viability of leukaemic HL60 cells to < 50% when exposed to 9.6 J/cm2 of a broad spectrum light at a concentration of 20 μg/mL. Dereplication of the photo-cytotoxic fractions from P. ophthalmicus extracts based on TLC Rf values and HPLC co-injection of reference tetrapyrrolic compounds enabled quick identification of known photosensitisers, pheophorbide-a, pheophorbide-a methyl ester, 132-hydroxypheophorbide-a methyl ester, pheophytin-a and 151-hydroxypurpurin 7-lactone dimethyl ester. In addition, compound 1 which was not previously isolated as a natural product was also identified as 7-formyl-151-hydroxypurpurin-7-lactone methyl ester using standard spectroscopic techniques. Conclusions Our results suggest that the main photosensitisers in plants are based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in very minor amounts or are not as active as those with the cyclic tetrapyrrole structure. PMID:21682931

  5. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation.

    PubMed

    Ji, Min-Kyu; Yun, Hyun-Shik; Park, Sanghyun; Lee, Hongkyun; Park, Young-Tae; Bae, Sunyoung; Ham, Jungyeob; Choi, Jaeyoung

    2015-03-01

    Effect of food wastewater (FW) on the biomass, lipid and carbohydrate production by a green microalga Scenedesmus obliquus cultivated in Bold's Basal Medium (BBM) was investigated. Different dilution ratios (0.5-10%) of BBM either with FW or salt solution (NaCl) or sea water (SW) were evaluated. S. obliquus showed the highest growth (0.41 g L(-1)), lipid productivity (13.3 mg L(-1) day L(-1)), carbohydrate productivity (14.7 mg L(-1) day L(-1)) and nutrient removal (38.9 mg TN L(-1) and 12.1 mg TP L(-1)) with 1% FW after 6 days of cultivation. The FW promoted algal autoflocculation due to formation of inorganic precipitates at an alkali pH. Fatty acid methyl ester analysis revealed that the palmitic and oleic acid contents were increased up to 8% with FW. Application of FW improved the growth, lipid/carbohydrate productivity and biomass recovery efficiency of S. obliquus, which can be exploited for cost effective production of microalgae biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production.

    PubMed

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-08-01

    The study synergistically optimized nitrogen and phosphorous concentrations for attainment of maximum lipid productivity in Chlorella minutissima. Nitrogen and phosphorous limited cells (N(L)P(L)) showed maximum lipid productivity (49.1±0.41mg/L/d), 1.47 folds higher than control. Nitrogen depletion resulted in reduced cell size with large sized lipid droplets encompassing most of the intracellular space while discrete lipid bodies were observed under nitrogen sufficiency. Synergistic N/P starvations showed more prominent effect on photosynthetic pigments as to individual deprivations. Phosphorous deficiency along with N starvation exhibited 17.12% decline in carbohydrate while no change in nitrogen sufficient cells were recorded. The optimum N(L)P(L) concentration showed balance between biomass and lipid by maintaining intermediate cell size, pigments, carbohydrate and proteins. FAME profile showed C14-C18 carbon chains in N(L)P(L) cells with biodiesel properties comparable to plant oil methyl esters. Hence, synergistic N/P limitation was effective for enhancing lipid productivity with reduced consumption of nutrients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Carbohydrates as a source of energy and matter for the origin of life

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1991-01-01

    Recently, we proposed a new model of early glycolysis in which the oxidation of glyceraldehyde self-hemiacetals yielded energy rich polyglyceric acid instead of energy rich thioesters. In this model, polyglyceric acid not only acts as an energy source for phosphoanhydride synthesis, but also as an autocatalyst that can replicate the sequence of D and L residues in its structure. We began our investigation of this new hypothesis - the triose model - by developing a thermal method for the racemization-free synthesis of polyglyceric acid. The hydrolytic stability and the role of chirality in interactions of polyglyceric acid were studied using this thermal polymer. Next, we established that the 2- and 3-glycerol esters of polyglyceric acid are energy rich by measuring the Gibbs free energy change of hydrolysis of the 2- and 3-glycerol esters of 2 and 3-O-L glyceroyl-glyceric acid methyl ester - a model of polyglyceric acid. Recently, we discovered that glyceraldehyde is bound and oxidized to glyceric acid on the surface of ferric hydroxide and that soluble ferric ion catalyzes the rearrangement of glyceraldehyde to lactic acid. We are exploring the possibility that these reactions could yield polyglyceric acid and polylactic acid under plausible prebiotic conditions.

  8. Nitric oxide inhibits the production of soluble endothelin converting enzyme-1.

    PubMed

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W; Dunstan, Rhys A; Smith, A Ian

    2014-11-01

    This study examined the effect of nitric oxide on the production of soluble ECE-1. Activity of ECE-1 in media was measured using a quenched fluorescent substrate assay, and expressed as a percentage of control. Endothelial cells were incubated with the nitric oxide donor Diethylenetriamine NONOate (DETA; 250-800 µM), NOS substrate L-Arg (200-1,000 µM), a L-Arg transport inhibitor (L-Lys; 10 µM) and NOS inhibitors (L-Gln and N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester, monohydrochloride (L-NAME); 10-100 µM). The effect of L-Arg (1,000 µM) was also tested in the presence of L-Lys (10 µM), L-Gln (100 µM) and L-NAME (10-100 µM). Ultracentrifugation (100,000×g, 4 °C, 1 h) completely removed ECE-1 activity from the supernatant. In addition, fractionation of concentrated media on a sucrose density gradient indicated that ECE-1 activity was localised to the mid portion of the gradient, thus suggesting the possible role of exosomes in ECE-1 release. Production of soluble ECE-1 by Ea.hy926 cells was inhibited significantly (P < 0.05, unpaired t test, n = 4) in the presence of DETA (75.31 ± 3.59; 800 µM) and L-Arg (60.97 ± 9.22; 1,000 µM). L-Arg-mediated reduction in the release of soluble ECE-1 was blocked by the inhibition of NOS using L-NAME (100 µM; 99.19 ± 0.58) and L-Gln (100 µM; 104.41 ± 0.65). In addition, the presence of L-Lys (10 µM) significantly blocked the L-Arg (1,000 µM)-induced reduction in soluble ECE-1 levels (122.38 ± 13.16). These treatments had no effect on the expression of ECE-1 on the cell surface. Our data provide evidence that NO can inhibit the production of soluble ECE-1 by endothelial cells.

  9. Impaired intracortical transmission in G2019S leucine rich-repeat kinase Parkinson patients.

    PubMed

    Ponzo, Viviana; Di Lorenzo, Francesco; Brusa, Livia; Schirinzi, Tommaso; Battistini, Stefania; Ricci, Claudia; Sambucci, Manolo; Caltagirone, Carlo; Koch, Giacomo

    2017-05-01

    A mutation in leucine-rich repeat kinase 2 is the most common cause of hereditary Parkinson's disease (PD), yet the neural mechanisms and the circuitry potentially involved are poorly understood. We used different transcranial magnetic stimulation protocols to explore in the primary motor cortex the activity of intracortical circuits and cortical plasticity (long-term potentiation) in patients with the G2019S leucine-rich repeat kinase 2 gene mutation when compared with idiopathic PD patients and age-matched healthy subjects. Paired pulse transcranial magnetic stimulation was used to investigate short intracortical inhibition and facilitation and short afferent inhibition. Intermittent theta burst stimulation, a form of repetitive transcranial magnetic stimulation, was used to test long-term potentiation-like cortical plasticity. Leucine-rich repeat kinase 2 and idiopathic PD were tested both in ON and in OFF l-dopa therapy. When compared with idiopathic PD and healthy subjects, leucine-rich repeat kinase 2 PD patients showed a remarkable reduction of short intracortical inhibition in both ON and in OFF l-dopa therapy. This reduction was paralleled by an increase of intracortical facilitation in OFF l-dopa therapy. Leucine-rich repeat kinase 2 PD showed abnormal long-term potentiation-like cortical plasticity in ON l-dopa therapy. The motor cortex in leucine-rich repeat kinase 2 mutated PD patients is strongly disinhibited and hyperexcitable. These abnormalities could be a result of an impairment of inhibitory (gamma-Aminobutyric acid) transmission eventually related to altered neurotransmitter release. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  10. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    PubMed

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions

    PubMed Central

    Sun, Li-rui; Wang, Yan; Xia, Chun-gu

    2017-01-01

    The synthesis of L-ascorbyl flurbiprofenate was achieved by esterification and transesterification in nonaqueous organic medium with Novozym 435 lipase as biocatalyst. The conversion was greatly influenced by the kinds of organic solvents, speed of agitation, catalyst loading amount, reaction time, and molar ratio of acyl donor to L-ascorbic acid. A series of solvents were investigated, and tert-butanol was found to be the most suitable from the standpoint of the substrate solubility and the conversion for both the esterification and transesterification. When flurbiprofen was used as acyl donor, 61.0% of L-ascorbic acid was converted against 46.4% in the presence of flurbiprofen methyl ester. The optimal conversion of L-ascorbic acid was obtained when the initial molar ratio of acyl donor to ascorbic acid was 5 : 1. kinetics parameters were solved by Lineweaver-Burk equation under nonsubstrate inhibition condition. Since transesterification has lower conversion, from the standpoint of productivity and the amount of steps required, esterification is a better method compared to transesterification. PMID:28421196

  12. Role of aromatic interactions in amyloid formation by islet amyloid polypeptide.

    PubMed

    Tu, Ling-Hsien; Raleigh, Daniel P

    2013-01-15

    Aromatic-aromatic and aromatic-hydrophobic interactions have been proposed to play a role in amyloid formation by a range of polypeptides, including islet amyloid polypeptide (IAPP or amylin). IAPP is responsible for amyloid formation in patients with type 2 diabetes. The polypeptide is 37 residues long and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. The ability of all single aromatic to leucine mutants, all double aromatic to leucine mutants, and the triple leucine mutant to form amyloid were examined. Amyloid formation was almost twice as rapid for the F15L mutant as for the wild type but was almost 3-fold slower for the Y37L mutant and almost 2-fold slower for the F23L mutant. Amyloid fibrils formed from each of the single mutants were effective at seeding amyloid formation by wild-type IAPP, implying that the fibril structures are similar. The F15L/F23L double mutant has a larger effect than the F15L/Y37L double mutant on the rate of amyloid formation, even though a Y37L substitution has more drastic consequences in the wild-type background than does the F23L mutation, suggesting nonadditive effects between the different sites. The triple leucine mutant and the F23L/Y37L double mutant are the slowest to form amyloid. F15 has been proposed to make important contacts early in the aggregation pathway, but the data for the F15L mutant indicate that they are not optimal. A set of variants containing natural and unnatural amino acids at position 15, which were designed to conserve hydrophobicity, but alter α-helix and β-sheet propensity, were analyzed to determine the properties of this position that control the rate of amyloid formation. There is no correlation between β-sheet propensity at this position and the rate of amyloid formation, but there is a correlation with α-helical propensity.

  13. l-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome

    PubMed Central

    Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E.; Gerton, Jennifer L.

    2015-01-01

    Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS. PMID:25378554

  14. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome.

    PubMed

    Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E; Gerton, Jennifer L

    2015-03-15

    Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS. © The Author 2014. Published by Oxford University Press.

  15. L-leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway

    PubMed Central

    Virgilio, Maria; Narla, Anupama; Sun, Hong; Levine, Michelle; Paw, Barry H.; Berliner, Nancy; Look, A. Thomas; Ebert, Benjamin L.

    2012-01-01

    Haploinsufficiency of ribosomal proteins (RPs) has been proposed to be the common basis for the anemia observed in Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome with loss of chromosome 5q [del(5q) MDS]. We have modeled DBA and del(5q) MDS in zebrafish using antisense morpholinos to rps19 and rps14, respectively, and have demonstrated that, as in humans, haploinsufficient levels of these proteins lead to a profound anemia. To address the hypothesis that RP loss results in impaired mRNA translation, we treated Rps19 and Rps14-deficient embryos with the amino acid L-leucine, a known activator of mRNA translation. This resulted in a striking improvement of the anemia associated with RP loss. We confirmed our findings in primary human CD34+ cells, after shRNA knockdown of RPS19 and RPS14. Furthermore, we showed that loss of Rps19 or Rps14 activates the mTOR pathway, and this is accentuated by L-leucine in both Rps19 and Rps14 morphants. This effect could be abrogated by rapamycin suggesting that mTOR signaling may be responsible for the improvement in anemia associated with L-leucine. Our studies support the rationale for ongoing clinical trials of L-leucine as a therapeutic agent for DBA, and potentially for patients with del(5q) MDS. PMID:22734070

  16. Development of Intrinsically Labeled Eggs and Poultry Meat for Use in Human Metabolic Research.

    PubMed

    van Vliet, Stephan; Beals, Joseph W; Parel, Justin T; Hanna, Christina D; Utterback, Pamela L; Dilger, Anna C; Ulanov, Alexander V; Li, Zhong; Paluska, Scott A; Moore, Daniel R; Parsons, Carl M; Burd, Nicholas A

    2016-07-01

    Stable isotope amino acids are regularly used as tracers to examine whole-body and muscle protein metabolism in humans. To accurately assess in vivo dietary protein digestion and absorption kinetics, the amino acid tracer is required to be incorporated within the dietary protein food source (i.e., intrinsically labeled protein). We assessed the practicality of producing eggs and poultry meat intrinsically labeled with l-[5,5,5-(2)H3]leucine through noninvasive oral tracer administration. A specifically formulated diet containing 0.52% leucine was supplemented with 0.3% l-[5,5,5-(2)H3]leucine and subsequently fed to 3 laying hens (Lohmann LSL Whites) for 55 d. On day 55, the hens were slaughtered and their meat, bones, and organs were harvested to determine tissue labeling. In Expt. 1, 2 healthy young men [mean ± SEM age: 22 ± 1.5 y; mean ± SEM body mass index (BMI; in kg/m(2)): 23.7 ± 0.5] ingested 18 g l-[5,5,5-(2)H3]leucine-labeled egg protein. In Expt. 2, 2 healthy young men (mean ± SEM age: 20.0 ± 0.0 y; mean ± SEM BMI: 26.4 ± 3.1) ingested 28 g l-[5,5,5-(2)H3]leucine-labeled poultry meat protein. Plasma samples (Expts. 1 and 2) and muscle biopsies (Expt. 1) were collected before and after labeled-food ingestion. High tracer labeling [>20 mole percent excess (MPE)] in the eggs was obtained after 7 d and maintained throughout the feeding protocol (P < 0.05). Over a 55-d period, ∼850 g egg protein (145 eggs) was produced, with a mean ± SEM tracer enrichment of 22.0 ± 0.8 MPE. Mean ± SEM l-[5,5,5-(2)H3]leucine enrichment in the meat was 9.6 ± 0.1 MPE. In Expts. 1 and 2, the consumption of labeled eggs and poultry meat protein increased plasma l-[5,5,5-(2)H3]leucine enrichment, with mean ± SEM peak values of 6.7 ± 0.1 MPE and 4.0 ± 0.9 MPE, respectively. The mean ± SEM 5-h postprandial increase in myofibrillar l-[5,5,5-(2)H3]leucine enrichment after egg ingestion in healthy young men was 0.051 ± 0.008 MPE (Expt. 1). We demonstrated the feasibility of producing intrinsically labeled eggs and poultry meat for use in human metabolic research. © 2016 American Society for Nutrition.

  17. Phthalate esters in main source water and drinking water of Zhejiang Province (China): Distribution and health risks.

    PubMed

    Wang, Xiaofeng; Lou, Xiaoming; Zhang, Nianhua; Ding, Gangqiang; Chen, Zhijian; Xu, Peiwei; Wu, Lizhi; Cai, Jianmin; Han, Jianlong; Qiu, Xueting

    2015-10-01

    To evaluate the distributions and health risks of phthalate esters in the main source water and corresponding drinking water of Zhejiang Province, the concentrations of 16 phthalate esters in water samples from 19 sites were measured from samples taken in the dry season and wet season. The concentration of the total phthalate ester congeners in source water ranged from 1.07 μg/L to 7.12 μg/L in the wet season, from 0.01 μg/L to 1.58 μg/L in the dry season, from 1.18 μg/L to 15.28 μg/L from drinking water in the wet season, and from 0.16 μg/L to 1.86 μg/L from drinking water in the dry season. Of the 16 phthalate esters, dimethyl phthalate, dibutyl phthalate, di-(2-ethyl-hexyl) phthalate, di-iso-butyl phthalate, bis-2-n-butoxyethyl phthalate, and dicyclohexyl phthalate were present in the samples analyzed, dominated by di-iso-butyl phthalate and di-(2-ethyl-hexyl) phthalate. The concentrations of phthalate esters in the wet season were all relatively higher than those in the dry season, and the drinking water had higher concentrations of phthalate esters than source water. The phthalate ester congeners studied pose little health risk to nearby citizens. Environ Toxicol Chem 2015;34:2205-2212. © 2015 SETAC. © 2015 SETAC.

  18. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  19. Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production.

    PubMed

    Long, Jodi H D; Lira, Vitor A; Soltow, Quinlyn A; Betters, Jenna L; Sellman, Jeff E; Criswell, David S

    2006-01-01

    The semi-essential amino acid, L-arginine (L-Arg), is the substrate for endogenous synthesis of nitric oxide, a molecule that is involved in myoblast proliferation and fusion. Since L-Arg supply may limit nitric oxide synthase (NOS) activity in endothelial cells, we examined L-Arg supplementation in differentiating mouse myoblasts and tested the hypothesis that L-Arg exerts direct effects on myoblast fusion via augmentation of endogenous nitric oxide production. C(2)C(12) myoblasts in differentiation media received one of the following treatments for 120 h: 1 mM L-Arg, 0.1 mM N-nitro-L-arginine methyl ester (L-NAME), L-Arg + L-NAME, 10 mM L-Lysine, or no supplement (Control). Cultures were fixed and stained with hematoxylin and eosin for microphotometric image analysis of myotube density, nuclear density, and fusion index (% of total nuclei in myotubes). Endogenous production of nitric oxide during the treatment period peaked between 24 and 48 h. L-Arg amplified nitric oxide production between 0 and 24 h and increased myotube density, total nuclei number, and nuclear fusion index. These L-Arg effects were prevented by the NOS inhibitor, L-NAME. Further, L-Lysine, a competitive inhibitor of L-Arg uptake, repressed nitric oxide production and reduced myotube density and fusion index. In summary, L-Arg augments myotube formation and increases nitric oxide production in a process limited by cellular L-Arg uptake.

  20. The radiolysis and radioracemization of amino acids on clays

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hall, H.; Chow, G.; Yi, L.; Lemmon, R. M.

    1985-01-01

    The effects of the surfaces of kaolinite and bentonite clays on the radiolysis and radioracemization of L-leucine and its hydrochloride salt have been investigated experimentally. L-leucine and its hydrochloride salt were deposited on the clays and the amino acid/clay preparations were irradiated by a Co-60 gamma-ray source which induced 2-89 percent radiolysis. The efficiency of radiolysis and radioracemization were measured using gas chromatography. Results were obtained for leucine in 0.1 M aqueous solution for comparison with the clay-deposted leucine and leucine hydrochloride. It is found that radiolysis and radioracemization in the samples occurred according to a pseudo-first-order rate law. Comparison of the specific rate constants showed that leucine and its hydrochloride salt were the most resistant to both radiolysis and radioracemization, followed by leucine and its hydrochloride salt on kaolin. Leucine and its HCl salt on bentonite, and leucine in aqueous solution were found to be the least resistant to radiolysis and radioracemization. The experimental results are intepreted with respect to the Vester-Ulbricht mechanism for the origin of optical activity.

  1. Ruthenium Catalyzed Hydrohydroxyalkylation of Acrylates with Diols and α-Hydroxycarbonyl Compounds to Form Spiro- and α-Methylene-γ-Butyrolactones

    PubMed Central

    McInturff, Emma L.; Mowat, Jeffrey; Waldeck, Andrew R.; Krische, Michael J.

    2013-01-01

    Under the conditions of ruthenium(0) catalyzed hydrohydroxyalkylation, vicinal diols 1a–1l and methyl acrylate 2a are converted to the corresponding lactones 3a–3l in good to excellent yield. The reaction of methyl acrylate 2a with hydrobenzoin 1f, benzoin didehydro-1f, and benzil tetradehydro-1f form the same lactone 3f product, demonstrating that this process may be deployed in a redox level-independent manner. A variety of substituted acrylic esters 2a–2h participate in spirolactone formation, as illustrated in the conversion of N-benzyl-3-hydroxyoxindole 1o to cycloadducts 4a–4h. Hydrohydroxyalkylation of hydroxyl-substituted methacrylate 2i with diols 1b, 1f, 1j and 1l forms α-exo-methylene-γ-butyrolactones 5b, 5f, 5j and 5l in moderate to good yield. A catalytic cycle involving 1,2-dicarbonyl-acrylate oxidative coupling to form oxaruthenacyclic intermediates is postulated. A catalytically competent mononuclear ruthenium(II) complex was characterized by single crystal X-ray diffraction. The influence of electronic effects on regioselectivity in reactions of nonsymmetric diols were probed using para-substituted 1-phenyl-1,2-propanediols 1g, 1m and 1n and density functional theory (DFT) calculations. PMID:24187991

  2. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    PubMed

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  3. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2.

    PubMed

    Qu, Chen; Leung, Susan W S; Vanhoutte, Paul M; Man, Ricky Y K

    2010-08-01

    Acute inhibition of nitric-oxide synthase (NOS) unmasks the release of endothelium-derived contracting factors (EDCFs). The present study investigated whether chronic inhibition of NOS modulates endothelium-dependent contractions. Eighteen-week-old male Sprague-Dawley rats were treated by daily gavage for 6 weeks with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (60 mg/kg) or vehicle (distilled water; 1 ml/kg). Chronic treatment with L-NAME increased arterial blood pressure. Isometric tension was measured in aortic rings with or without endothelium. Endothelium-dependent relaxations to acetylcholine and the calcium ionophore 5-(methylamino)-2-[(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)-ethyl]-1,7-dioxaspiro[5.5]undec-2-yl]methyl]-4-benzoxazolecarboxylic acid (A23187) were reduced in preparations from L-NAME-treated rats. The reduction in relaxation to A23187 was partially reversed by L-arginine (1 mM). In quiescent aortic rings, A23187 caused contractions in the presence of L-NAME and intact endothelium. The A23187-induced contractions were greater in rings from the L-NAME-treated rats than in those from the control group. These contractions were abolished by the cyclooxygenase (COX)-2 inhibitor N-[2-cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS-398) and the thromboxane-prostanoid (TP) receptor antagonist 3-((6R)-6-{[(4-chlorophenyl)sulfonyl]amido}-2-methyl-5,6,7,8-tetrahydronaphthalen-1-yl)propanoate (S18886), but not by the COX-1 inhibitor 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560). Chronic L-NAME treatment reduced the level of nitric oxide in the plasma but increased COX activity in the aortic rings. Western blotting and immunohistochemical staining showed that endothelial NOS expression was reduced in the aortae of the chronic L-NAME-treated group. COX-1 expression was augmented slightly, whereas COX-2 expression was up-regulated markedly. The TP receptor expression was comparable with control. These experiments demonstrate that chronic NOS inhibition increases endothelium-dependent contractions of the rat aorta by inducing COX-2 expression and augmenting the production of EDCF.

  4. Leucine minimizes denervation-induced skeletal muscle atrophy of rats through akt/mtor signaling pathways

    PubMed Central

    Ribeiro, Carolina B.; Christofoletti, Daiane C.; Pezolato, Vitor A.; de Cássia Marqueti Durigan, Rita; Prestes, Jonato; Tibana, Ramires A.; Pereira, Elaine C. L.; de Sousa Neto, Ivo V.; Durigan, João L. Q.; da Silva, Carlos A.

    2015-01-01

    The aim of the present study was to evaluate the effect of leucine treatment (0.30 mM) on muscle weight and signaling of myoproteins related to synthesis and degradation pathways of soleus muscle following seven days of complete sciatic nerve lesion. Wistar rats (n = 24) of 3–4 months of age (192 ± 23 g) were used. The animals were randomly distributed into four experimental groups (n = 6/group): control, treated with leucine (L), denervated (D) and denervated treated with leucine (DL). Dependent measures were proteins levels of AKT, AMPK, mTOR, and ACC performed by Western blot. Leucine induced a reduction in the phosphorylation of AMPK (p < 0.05) by 16% in the L and by 68% in the DL groups as compared with control group. Denervation increased AMPK by 24% in the D group as compared with the control group (p < 0.05). AKT was also modulated by denervation and leucine treatment, highlighted by the elevation of AKT phosphorylation in the D (65%), L (98%) and DL (146%) groups as compared with the control group (p < 0.05). AKT phosphorylation was 49% higher in the D group as compared with the DL group. Furthermore, denervation decreased mTOR phosphorylation by 29% in the D group as compared with the control group. However, leucine treatment induced an increase of 49% in the phosphorylation of mTOR in the L group as compared with the control group, and an increase of 154% in the DL as compared with the D group (p < 0.05). ACC phosphorylation was 20% greater in the D group than the control group. Furthermore, ACC in the soleus was 22% lower in the in the L group and 50% lower in the DL group than the respective control group (p < 0.05). In conclusion, leucine treatment minimized the deleterious effects of denervation on rat soleus muscle by increasing anabolic (AKT and mTOR) and decreasing catabolic (AMPK) pathways. These results may be interesting for muscle recovery following acute denervation, which may contribute to musculoskeletal rehabilitation after denervation. PMID:25852565

  5. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange.

    PubMed

    Moufida, Saïdani; Marzouk, Brahim

    2003-04-01

    This paper reports on the composition of aroma compounds and fatty acids and some physico-chemical parameters (juice percentage, acidity and total sugars) in five varieties of citrus: blood orange, sweet orange, lemon, bergamot and bitter orange. Volatile compounds and methyl esters have been analyzed by gas chromatography. Limonene is the most abundant compound of monoterpene hydrocarbons for all of the examined juices. Eighteen fatty acids have been identified in the studied citrus juices, their quantification points out that unsaturated acids predominate over the saturated ones. Mean concentration of fatty acids varies from 311.8 mg/l in blood orange juice to 678 mg/l in bitter orange juice. Copyright 2003 Elsevier Science Ltd.

  6. Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen.

    PubMed

    Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Basso, Sara; Deidda, Antonio; Serra, Salvatorica; Evidente, Antonio

    2014-07-01

    In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 μg/mL. Copyright © 2014. Published by Elsevier Ltd.

  7. Magnolol inhibits colonic motility through down-regulation of voltage-sensitive L-type Ca2+ channels of colonic smooth muscle cells in rats.

    PubMed

    Zhang, Man; Zang, Kai-Hong; Luo, Jia-Lie; Leung, Fung-Ping; Huang, Yu; Lin, Cheng-Yuan; Yang, Zhi-Jun; Lu, Ai-Ping; Tang, Xu-Dong; Xu, Hong-Xi; Sung, Joseph Jao-yiu; Bian, Zhao-Xiang

    2013-11-15

    This study aimed to investigate the effect of magnolol (5,5'-diallyl-2,2'-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca(2+) currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3-100 μM). In the presence of Bay K8644 (100 nM), magnolol (10-100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-L-arginine methyl ester (L-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3-100 μM) inhibited the L-type Ca(2+) currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca(2+) channel activity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Vascular smooth muscle cell polyploidy and cardiomyocyte hypertrophy due to chronic NOS inhibition in vivo.

    PubMed

    Devlin, A M; Brosnan, M J; Graham, D; Morton, J J; McPhaden, A R; McIntyre, M; Hamilton, C A; Reid, J L; Dominiczak, A F

    1998-01-01

    To assess the vascular and cardiac response to NO (nitric oxide) synthase (NOS) blockade in vivo, Wistar-Kyoto rats (WKY) were treated for 3 wk with NG-nitro-L-arginine methyl ester (L-NAME; 10 mg.kg-1.day-1). L-NAME treatment induced hypertension that was associated with increased plasma renin activity. Flow cytometry cell cycle DNA analysis showed that aortic vascular smooth muscle cells (VSMC) from L-NAME-treated WKY had a significantly higher polyploid population compared with WKY controls. Using organ bath experiments, we have shown that aortic rings from L-NAME-treated WKY have an increased contractile response to phenylephrine and impaired relaxation to carbachol compared with control rings. NOS blockade in vivo caused a significant increase in cardiac and left ventricular hypertrophy. Northern mRNA analysis of the myocardium showed that L-NAME treatment caused reexpression of the fetal skeletal alpha-actin isoform without alterations in collagen type I expression, a pattern indicating true hypertrophy of the cardiomyocytes. These studies provide further insight to confirm that NO deficiency in vivo results in the development of vascular and cardiac hypertrophy.

  9. Development of supported liquid membrane techniques for the monitoring of trace levels of organic pollutants in wastewaters and water purification systems

    NASA Astrophysics Data System (ADS)

    Msagati, Titus A. M.; Mamba, Bhekie B.

    The supported liquid membrane (SLM) extraction technique has been developed and successfully used for the monitoring of trace quantities of ionisable organic contaminants, including 17β-estradiol and its metabolites, testosterones and their methyl ester derivatives, benzimidazole anthelmintic antibiotics and sulphonamides in aquatic systems. A number of parameters which control the mass transfer in the supported liquid membrane extraction process such as donor and acceptor pH, extraction time and the type of organic liquid membrane were optimised to enhance the efficiency of the liquid membrane in the removal of these compounds. The method developed gave very low detection limits (0.3 ng/l to 2.4 ng/l for 17β-estradiol and its metabolites; between 1 μg/l and 20 μg/l for sulphonamides; and between 0.1 ng/l and 10 ng/l for benzimidazole anthelmintic compounds). The SLM method showed good linearity, reproducibility and repeatability values and is therefore suitable for routine monitoring of such compounds in water and wastewater systems.

  10. Structural modulation of silver complexes and their distinctive catalytic properties.

    PubMed

    Zhao, Yue; Chen, Kai; Fan, Jian; Okamura, Taka-aki; Lu, Yi; Luo, Li; Sun, Wei-Yin

    2014-02-07

    A family of silver(I) complexes, [Ag2(L)2(OOCCF3)2] (1), [Ag(L)0.5(OOCCF3)] (2), [Ag(L)2](OOCCF3)(H2O)2 (3), was obtained by reactions of 4,4'-di(2-oxazolinyl)biphenyl (L) and AgOOCCF3 in different reaction media. Compound 1 has a 1D chain structure with alternative connections between the Ag(I) and L ligand. When the crystal nucleation inductor, pyrazine, was added into the reaction system, complex 2 was isolated with no pyrazine observed in its structure. In 2, the 1D inorganic chains formed by Ag(I) cations and OOCCF3(-) anions were connected by the L ligand to produce a 2D network. When a different inductor, imidazole, was added into the reaction system, 3 with (4,4) topology was synthesized, and again no imidazole was found in 3. When 1-3 were used as catalysts for cycloaddition reactions between imino esters and methyl acrylate, 3 affords the highest yield, in which the particular size of the channels in 3 led to its selective catalytic performance.

  11. The sex differences in nature of vascular endothelial stress: nitrergic mechanisms

    NASA Astrophysics Data System (ADS)

    Sindeev, Sergey; Gekaluyk, Artem; Ulanova, Maria; Agranovich, Ilana; Sharref, Ali Esmat; Semyachkina-Glushkovskaya, Oxana

    2016-04-01

    Here we studied the role of nitric oxide in cardiovascular regulation in male and female hypertensive rats under normal and stress conditions. We found that the severity of hypertension in females was lower than in males. Hypertensive females demonstrated more favorable pattern of cardiovascular responses to stress. Nitric oxide blockade by NG-nitro-L-arginine methyl ester (L-NAME) increased the mean arterial pressure and decreased the heart rate more effectively in females than in males. During stress, L-NAME modified the stress-induced cardiovascular responses more significantly in female compared with male groups. Our data show that hypertensive females demonstrated the more effective nitric oxide control of cardiovascular activity under normal and especially stress conditions than male groups. This sex differences may be important mechanism underlying greater in females vs. males stress-resistance of cardiovascular system and hypertension formation.

  12. Estimating Bacterial Production in Marine Waters from the Simultaneous Incorporation of Thymidine and Leucine

    PubMed Central

    Chin-Leo, Gerardo; Kirchman, David L.

    1988-01-01

    We examined the simultaneous incorporation of [3H]thymidine and [14C]leucine to obtain two independent indices of bacterial production (DNA and protein syntheses) in a single incubation. Incorporation rates of leucine estimated by the dual-label method were generally higher than those obtained by the single-label method, but the differences were small (dual/single = 1.1 ± 0.2 [mean ± standard deviation]) and were probably due to the presence of labeled leucyl-tRNA in the cold trichloroacetic acid-insoluble fraction. There were no significant differences in thymidine incorporation between dual- and single-label incubations (dual/ single = 1.03 ± 0.13). Addition of the two substrates in relatively large amounts (25 nM) did not apparently increase bacterial activity during short incubations (<5 h). With the dual-label method we found that thymidine and leucine incorporation rates covaried over depth profiles of the Chesapeake Bay. Estimates of bacterial production based on thymidine and leucine differed by less than 25%. Although the need for appropriate conversion factors has not been eliminated, the dual-label approach can be used to examine the variation in bacterial production while ensuring that the observed variation in incorporation rates is due to real changes in bacterial production rather than changes in conversion factors or introduction of other artifacts. PMID:16347706

  13. Measurement of salivary metabolite biomarkers for early monitoring of oral cancer with ultra performance liquid chromatography-mass spectrometry.

    PubMed

    Wang, Qihui; Gao, Pan; Cheng, Fei; Wang, Xiaoyi; Duan, Yixiang

    2014-02-01

    This study aimed to set-up an ultra performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) method for the determination of salivary L-phenylalanine and L-leucine for early diagnosis of oral squamous cell carcinoma (OSCC). In addition, the diagnostic accuracy for both biomarkers was established by using receiver operating characteristic (ROC) analysis. Mean recoveries of l-phenylalanine and L-leucine ranged from 88.9 to 108.6% were obtained. Intra- and inter-day precision for both amino acids was less than 7%, with acceptable accuracy. Linear regression coefficients of both biomarkers were greater than 0.99. The diagnostic accuracy for both biomarkers was established by analyzing 60 samples from apparently healthy individuals and 30 samples from OSCC patients. Both potential biomarkers demonstrated significant differences in concentrations in distinguishing OSCC from control (P<0.05). As a single biomarker, L-leucine might have better predictive power in OSCC with T1-2 (early stage of OSCC including stage I and II), and L-phenylalanine might be used for screening and diagnosis of OSCC with T3-4 (advanced stage of OSCC including stage III and IV). The combination of L-phenylalanine and L-leucine will improve the sensitivity (92.3%) and specificity (91.7%) for early diagnosis of OSCC. The possibility of salivary metabolite biomarkers for OSCC diagnosis is successfully demonstrated in this study. This developed method shows advantages with non-invasive, simple, reliable, and also provides lower detection limits and excellent precision and accuracy. These non-invasive salivary biomarkers may lead to a simple clinical tool for the early diagnosis of OSCC. © 2013 Published by Elsevier B.V.

  14. Dose- and Glucose-Dependent Effects of Amino Acids on Insulin Secretion from Isolated Mouse Islets and Clonal INS-1E Beta-Cells

    PubMed Central

    Liu, Zhenping; Jeppesen, Per B.; Gregersen, Søren; Chen, Xiaoping; Hermansen, Kjeld

    2008-01-01

    BACKGROUND: The influence of glucose and fatty acids on beta-cell function is well established whereas little is known about the role of amino acids (AAs). METHODS: Islets isolated from NMRI mice were incubated overnight. After preincubation, isolated islets as well as clonal INS-1E beta-cells were incubated for 60 min in a modified Krebs Ringer buffer containing glucose and AAs. RESULTS: At 16.7 mmol/l (mM) glucose, L-arginine, L-lysine, L-alanine, L-proline, L-leucine, and L-glutamine potentiated glucose-stimulated insulin secretion dose-dependently, while DL-homocysteine inhibited insulin secretion. Maximal insulin stimulation was obtained at 20 mM L-proline, L-lysine, L-alanine, L-arginine (islets: 2.5 to 6.7 fold increase; INS-1E cells: 1.6 to 2.2 fold increase). L-glutamine and L-leucine only increased glucose-stimulated (16.7 mM) insulin secretion (INS-1E cells: 1.5 and 1.3 fold, respectively) at an AA concentration of 20 mM. Homocysteine inhibited insulin secretion both at 5.6 mM and 16.7 mM glucose. At glucose levels ranging from 1.1 to 25 mM, the equimolar concentration of 10 mM, L-proline, L-lysine, L-arginine increased insulin secretion from mouse islets and INS-1E cells at all glucose levels applied, with a maximal effect obtained at 25 mM glucose. At a concentration of 10 mM, L-arginine and L-lysine had the highest insulinotropic potency among the AAs investigated. CONCLUSION: L-arginine, L-lysine, L-alanine, L-proline, L-leucine and L-glutamine acutely stimulate insulin secretion from mouse islets and INS-1E cells in a dose- and glucose-dependent manner, whereas DL-homocysteine inhibits insulin release. PMID:19290384

  15. Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC/MS).

    PubMed

    Steingass, Christof B; Grauwet, Tara; Carle, Reinhold

    2014-05-01

    Profiling of volatiles from pineapple fruits was performed at four ripening stages using headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC/MS). In total, 142 volatiles were detected, of which 132 were identified. Multivariate data analysis was carried out to assess the effect of post-harvest storage on volatiles composition of green-ripe sea-freighted pineapple in comparison to air-freighted fruits harvested at full maturity. The latter fruits were characterised by volatiles described as potent odorants in pineapples, such as δ-octalactone, γ-lactones, 1-(E,Z)-3,5-undecatriene and 1,3,5,8-undecatetraene, as well as various methyl esters. In contrast, post-harvest storage of green-ripe sea-freighted fruits resulted in an increased formation of ethyl esters, acetates, acetoxy esters and alcohols, thus allowing the authentication of sea- and air-freighted pineapples, respectively. Particularly, compounds presumably derived from methyl-branched amino acid catabolism were identified in the fruits at later post-harvest stages. In addition, physicochemical traits were determined to characterise the fruit maturity stages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Enantiomerically Pure Acetals in Organic Synthesis: Resolutions and Diastereoselective Alkylations of Alpha-Hydroxy Esters

    DTIC Science & Technology

    1990-01-01

    sensitivity of the alkylating agent to the reaction conditions. In either case , a decision was made to use 5-iodo-2- methyl -l-pentene as the alkylating ...agent, and the reaction conditions. In most cases the diastereomeric products of the alkylation were also separated by column chromatography. This...equatorially substituted product. Oxidation of the alcohol to the ketone followed by treatment with an alkyl Grignard reagent gave only the product which

  17. Sonodynamic action of pyropheophorbide-a methyl ester in liver cancer cells.

    PubMed

    Xu, Jing; Xia, Xinshu; Wang, Xinna; Xu, Chuanshan; Wang, Ping; Xiang, Junyan; Jiang, Yuan; Leung, Albert Wingnang

    2010-07-01

    This study aimed to investigate the sonodynamic action of pyropheophorbide-a methyl ester (MPPa) in liver cancer cells to explore a novel therapeutic modality. H22 cells were chosen as model cells to investigate the sonodynamic action of MPPa on liver cancer. The MPPa concentration was kept constant at 2 micromol/L, and the cells were subjected to ultrasound exposure at an intensity of 0.97 W/cm(2). Cytotoxicity was investigated 24 hours after ultrasound exposure. Apoptosis was evaluated using flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodine staining and nuclear staining with Hoechst 33258. Reactive oxygen species (ROS) were analyzed using flow cytometry with 2,7-dichlorodihydrofluorescein diacetate staining. No significant dark cytotoxicity of MPPa was shown in the H22 cells at the concentration of 2 micromol/L. The cell death rate induced by ultrasound treatment was significantly higher in the presence of MPPa than in the absence of it (P < .05). Flow cytometry showed that the sonodynamic action of MPPa significantly increased the early and late apoptotic rates of the H22 cells. Nuclear condensation and an ROS increase were found after sonodynamic treatment. Our findings showed that MPPa-mediated sonodynamic action significantly enhanced death of H22 cells and the ROS level, suggesting that MPPa is a novel sonosensitizer and the sonodynamic action of MPPa might be a potential therapeutic modality in the management of liver cancer.

  18. Isoleucine/leucine2 is essential for chemoattractant activity of beta-defensin Defb14 through chemokine receptor 6.

    PubMed

    Tyrrell, Christine; De Cecco, Martin; Reynolds, Natalie L; Kilanowski, Fiona; Campopiano, Dominic; Barran, Perdita; Macmillan, Derek; Dorin, Julia R

    2010-03-01

    Beta-defensins are both antimicrobial and able to chemoattract various immune cells including immature dendritic cells and CD4 T cells through CCR6. They are short, cationic peptides with a highly conserved six-cysteine motif. It has been shown that only the fifth cysteine is critical for chemoattraction of cells expressing CCR6. In order to identify other residues essential for functional interaction with CCR6 we used a library of peptide deletion derivatives based on Defb14. Loss of the initial two amino acids from the Defb14-1C(V) derivative destroys its ability to chemoattract cells expressing CCR6. As the second amino acid is an evolutionarily conserved leucine, we make full-length Defb14-1C(V) peptides with substitution of the leucine(2) for glycine (L2G), lysine (L2K) or isoleucine (L2I). Defb14-1C(V) L2G and L2K and are unable to chemoattract CCR6 expressing cells but the semi-conservative change L2I has activity. By circular dichroism spectroscopy we can see no evidence for a significant change in secondary structure as a consequence of these substitutions and so cannot attribute loss of chemotactic activity with disruption of the N-terminal helix. We conclude that isoleucine/leucine in the N-terminal alpha-helix region of this beta-defensin is essential for CCR6-mediated chemotaxis. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Soluble lipase-catalyzed synthesis of methyl esters using a blend of edible and nonedible raw materials.

    PubMed

    Wancura, João H C; Rosset, Daniela V; Brondani, Michel; Mazutti, Marcio A; Oliveira, J Vladimir; Tres, Marcus V; Jahn, Sérgio L

    2018-04-26

    This work investigates the use of blends of edible and nonedible raw materials as an alternative feedstock to fatty acid methyl esters (FAME) production through enzymatic catalysis. As biocatalyst, liquid lipase from Thermomyces lanuginosus (Callera™ Trans L), was used. Under reaction conditions of 35 °C, methanol to feedstock molar ratio of 4.5:1 and 1.45% of catalyst load, the best process performance was reached using 9% of water concentration in the medium-yield of 79.9% after 480 min of reaction. In terms of use of tallow mixed with soybean oil, the best yield was obtained when 100% of tallow was used in the process-84.6% after 480 min of reaction-behavior that was associated with the degree of unsaturation of the feedstock, something by that time, not addressed in papers of the area. The results show that tallow can be used as an alternative to FAME production, catalyzed by soluble lipase.

  20. Species-specific identification of commercial probiotic strains.

    PubMed

    Yeung, P S M; Sanders, M E; Kitts, C L; Cano, R; Tong, P S

    2002-05-01

    Products containing probiotic bacteria are gaining popularity, increasing the importance of their accurate speciation. Unfortunately, studies have suggested that improper labeling of probiotic species is common in commercial products. Species identification of a bank of commercial probiotic strains was attempted using partial 16S rDNA sequencing, carbohydrate fermentation analysis, and cellular fatty acid methyl ester analysis. Results from partial 16S rDNA sequencing indicated discrepancies between species designations for 26 out of 58 strains tested, including two ATCC Lactobacillus strains. When considering only the commercial strains obtained directly from the manufacturers, 14 of 29 strains carried species designations different from those obtained by partial 16S rDNA sequencing. Strains from six commercial products were species not listed on the label. The discrepancies mainly occurred in Lactobacillus acidophilus and Lactobacillus casei groups. Carbohydrate fermentation analysis was not sensitive enough to identify species within the L. acidophilus group. Fatty acid methyl ester analysis was found to be variable and inaccurate and is not recommended to identify probiotic lactobacilli.

  1. Intrinsic nitric oxide regulates the taste response of the sugar receptor cell in the blowfly, Phormia regina.

    PubMed

    Murata, Yoshihiro; Mashiko, Masashi; Ozaki, Mamiko; Amakawa, Taisaku; Nakamura, Tadashi

    2004-01-01

    The taste organ in insects is a hair-shaped taste sensory unit having four functionally differentiated contact chemoreceptor cells. In the blowfly, Phormia regina, cGMP has been suggested to be a second messenger for the sugar receptor cell. Generally, cGMP is produced by membranous or soluble guanylyl cyclase (sGC), which can be activated by nitric oxide (NO). In the present paper, we electrophysiologically showed that an NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO), an NO donor, 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC 7) or an NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) specifically affected the response in the sugar receptor cell, but not in other receptor cells. PTIO, when introduced into the receptor cells in a sensillum aided by sodium deoxycholate (DOC, pH 7.2), depressed the response of sugar receptor cells to sucrose but did not affect those of the salt or water receptor cells. NOC 7, given extracellularly, latently induced the response of sugar receptor cells; and L-NAME, when introduced into the receptor cells, depressed the response of sugar receptor cells. The results clearly suggest that NO, which may be produced by intrinsic NOS in sugar receptor cells, participates in the transduction cascade of these cells in blowfly.

  2. The effect of amino acids and dipeptides on sodium-ion transport in rat enterocytes.

    PubMed

    Cheeseman, C I; Devlin, D

    1985-02-14

    Sodium efflux from isolated intestinal epithelial cells was measured during incubation with several different free amino acids and dipeptides. L-Leucine, which is cotransported with sodium across the brush border membrane, significantly stimulated the total sodium efflux and almost all of this increase involved the ouabain-sensitive flux, i.e., the active component. In contrast, glycyl-L-leucine had little or no effect on active sodium efflux either in the presence or absence of 0.1 mM bestatin, a peptide hydrolase inhibitor. A second dipeptide L-carnosine (beta-alanyl-L-histidine) which is poorly hydrolysed by enterocytes also had no effect upon sodium efflux. However, glycylglycine, which has been shown to be cotransported with sodium, did stimulate the ionic efflux. In addition, measurement of sodium uptake by sheets of small intestine showed that glycyl-L-leucine, carnosine and glycyl-L-proline failed to increase the uptake of the ion, while glycylglycine did significantly stimulate sodium uptake. These data indicate that some dipeptides are not cotransported with sodium, while others are. This suggests that there may well be multiple peptide transporters with very different characteristics in the brush border membrane of enterocytes.

  3. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  4. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs

    PubMed Central

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  5. Activation of l-arginine transport by protein kinase C in rabbit, rat and mouse alveolar macrophages

    PubMed Central

    Racké, Kurt; Hey, Claudia; Mössner, Jutta; Hammermann, Rainer; Stichnote, Christina; Wessler, Ignaz

    1998-01-01

    The role of protein kinase C in controlling L-arginine transport in alveolar macrophages was investigated. L-[3H]Arginine uptake in rabbit alveolar macrophages declined by 80 % after 20 h in culture. 4β-Phorbol 12-myristate 13-acetate (PMA), but not 4α-phorbol 12-myristate 13-acetate (α-PMA), present during 20 h culture, enhanced L-[3H]arginine uptake more than 10-fold. Staurosporine and chelerythrine opposed this effect. L-[3H]Arginine uptake was saturable and blockable by L-lysine. After PMA treatment Vmax was increased more than 5-fold and Km was reduced from 0.65 to 0.32 mM. Time course experiments showed that PMA increased L-[3H]arginine uptake almost maximally within 2 h. This short-term effect was not affected by cycloheximide or actinomycin D. L-[3H]Arginine uptake and its stimulation by PMA was also observed in sodium-free medium. L-Leucine (0.1 mM) inhibited L-[3H]arginine uptake by 50 % in sodium-containing medium, but not in sodium-free medium. At 1 mM, L-leucine caused significant inhibition in sodium-free medium also. L-Leucine showed similar effects on PMA-treated cells. N-Ethylmaleimide (200 μm, 10 min) reduced L-[3H]arginine uptake by 70 % in control cells, but had no effect on PMA-treated (20 or 2 h) cells. In alveolar macrophages, multiple transport systems are involved in L-arginine uptake, which is markedly stimulated by protein kinase C, probably by modulation of the activity of already expressed cationic amino acid transporters. PMID:9714862

  6. Coronary responses to endothelin-1 and acetylcholine during partial coronary ischaemia and reperfusion in anaesthetized goats.

    PubMed

    Martínez, Maria Angeles; Fernández, Nuria; Monge, Luis; García-Villalón, Angel Luis; Sanz, Elena; Diéguez, Godofredo

    2002-08-01

    To examine coronary reactivity to acetylcholine and endothelin-1 (ET-1) during partial ischaemia and reperfusion, flow in the left circumflex coronary artery was measured electromagnetically, and coronary partial ischaemia was induced by stenosis of this artery in anaesthetized goats. In eight animals not treated with N(G)-nitro-l-arginine methyl ester (l-NAME), coronary stenosis reduced coronary flow by 45%, mean arterial pressure by 16% and coronary vascular conductance by 34%. During this ischaemia, coronary vasodilatation to acetylcholine (0.003-0.1 microg) and sodium nitroprusside (SNP; 1-10 microg) was markedly reduced, and coronary vasoconstriction to ET-1 (0.01-0.3 nmol) was attenuated. After 30 min of reperfusion, coronary flow, mean arterial pressure and coronary vascular conductance remained decreased, and the effects of acetylcholine, SNP and ET-1 were as in control animals. In six goats treated with N(G)-nitro-l-arginine methyl ester, coronary stenosis reduced coronary flow by 26% and coronary vascular conductance by 24%, but did not affect mean arterial pressure. During this ischaemia, coronary vasodilatation to acetylcholine and SNP was also markedly reduced, but vasoconstriction to ET-1 was unaffected. After 30 min of reperfusion, coronary flow and coronary vascular conductance remained decreased and mean arterial pressure was normal; in addition, the effects of acetylcholine were lower, those of SNP were similar and those of ET-1 were higher than in control animals. Therefore partial ischaemia reduces the coronary vasodilator reserve and blunts coronary vasoconstriction to ET-1, and reperfusion does not alter the endothelium-dependent and -independent coronary vasodilatation or vasoconstriction to ET-1.

  7. Effects of short term and long term Extremely Low Frequency Magnetic Field on depressive disorder in mice: Involvement of nitric oxide pathway.

    PubMed

    Madjid Ansari, Alireza; Farzampour, Shahrokh; Sadr, Ali; Shekarchi, Babak; Majidzadeh-A, Keivan

    2016-02-01

    Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50 Hz, single 2h and 2 weeks 2h a day). Locomotor behavior was assessed by using open-field test (OFT) followed by FST to evaluate the immobility time. Accordingly, NΩ-nitro-l-arginine methyl ester 30 mg/kg was used to exert anti-depressant like effect. According to the results, short term exposure did not alter the immobility time, whereas long term exposure significantly reduces immobility time (p<0.01). However, it was revealed that the locomotion did not differ among all experimental groups. Short term exposure reversed the anti-depressant like effect resulting from 30 mg/kg of NΩ-nitro-l-arginine methyl ester (p<0.01). It has been concluded that long term exposure could alter the depressive disorder in mice, whereas short term exposure has no significant effect. Also, reversing the anti-depressant activity of L-NAME indicates a probable increase in the brain nitric oxide. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Liquid chromatography/tandem mass spectrometry method for simultaneous determination of cocaine and its metabolite (-)ecgonine methyl ester in human acidified stabilized plasma samples.

    PubMed

    Liu, Yongzhen; Zheng, Bo; Strafford, Stephanie; Orugunty, Ravi; Sullivan, Michael; Gus, Jeffrey; Heidbreder, Christian; Fudala, Paul J; Nasser, Azmi

    2014-06-15

    Two simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods (low range and high range) were developed and validated for the quantification of cocaine and its metabolite (-)ecgonine methyl ester (EME) in human acidified stabilized plasma samples. In the low range assay, cocaine and the internal standard, cocaine-D3, were extracted using a single step liquid-liquid extraction from human acidified stabilized plasma. For the high range assay, human acidified stabilized plasma containing cocaine, EME, and the internal standards, cocaine-D3 and EME-D3, was mixed with acetonitrile, and the protein precipitate was separated by centrifugation. Both cocaine and EME extracted from both assays were separated on a HILIC column and detected in positive ion mode using multiple reaction monitoring (MRM). Both methods were validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. The linear range for the low range assay was 0.01-5ng/mL for cocaine; in the high range assay values were 5-1000ng/mL for cocaine and 1-200ng/mL for EME. The correlation coefficient (R(2)) values for both assays were 0.993 or greater. The precision and accuracy for intra-day and inter-day were better than 13.0%. The recovery was above 85% and matrix effects were low with the matrix factor ranging from 0.817 to 1.10 for both analytes in both assays. The validated methods were successfully used to quantify the plasma concentrations of cocaine and EME in clinical pharmacokinetic and pharmacodynamic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Usefulness of Fatty Acid Composition for Differentiation of Legionella Species

    PubMed Central

    Diogo, Alexandra; Veríssimo, António; Nobre, M. Fernanda; da Costa, Milton S.

    1999-01-01

    Numerical analysis of fatty acid methyl ester (FAME) profiles of 199 isolates and 76 reference strains, belonging to all validly described species of the genus Legionella that can be cultured in laboratory media, was used to differentiate between the species of this genus. With the exception of the strains that autofluoresced red, it was possible to differentiate all the other Legionella species. The strains of the species L. bozemanii, L. dumoffii, L. feeleii, L. gormanii, L. maceachernii, L. micdadei, and L. quinlivanii did not form single clusters, showing some degree of variability in the fatty acid compositions. The strains of the blue-white autofluorescent species had very similar fatty acid compositions and were difficult to distinguish from each other. Nine isolates had fatty acid profiles unlike those of any of the validly described species and may represent different FAME groups of known species or undescribed Legionella species. The method used in this study was useful for screening and discriminating large number of isolates of Legionella species. Moreover, the results obtained can be included in a database of fatty acid profiles, leading to a more accurate automatic identification of Legionella isolates. PMID:10364593

  10. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons.

    PubMed

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla

    2017-11-01

    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The radiolysis and radioracemization of amino acids on silica surfaces

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Lemmon, R. M.

    1981-01-01

    Results are presented of experiments on the radioracemization of amino acids in the presence of silica surfaces such as may have been found on the prebiotic earth. L-leucine and a DL-leucine mixture deposited on samples of 1-quartz and an amorphous silica preparation (Syloid 63) was subjected to Co-60 gamma-ray irradiation, then analyzed by gas chromatography to determine the radiolysis and racemization rates. The quartz surface is found to have a marginal efficacy in enhancing radiolysis when compared with a crystalline L-leucine control, although enhancing radioracemization symmetrically by a factor of two. Both the radiolysis and radioracemization of L-leucine and DL-leucine on a Syloid-63 silica surface are observed to increase with increasing radiation dose, and to be substantially greater than in the crystalline controls. Additional experiments with the nonprotein amino acid isovaline deposited on Syloid 63 confirm the greater radiolysis susceptibility of amino acids deposited on silica with respect to the crystalline state, although racemization is not observed. The observations suggest that the presence of a silica surface would have a deleterious effect on any mechanism for the origin of molecular chirality relying on stereoselective beta-radiolysis.

  12. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

    PubMed Central

    Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171

  13. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil ester...

  14. Experiments on the origin of molecular chirality by parity non-conservation during beta-decay

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1973-01-01

    Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta decay, and their resulting circularly polarized Bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. Experiments involve subjecting a number of racemic and optically active amino acid samples to irradiation in a 61700 Ci90SR-90Y beta radiation source for a period of 1.34 years, then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography. In the cases of D,L-leucine, norleucine, norvaline and proline as solids, of D,L-leucine in solution and of D,L-tyrosine in alkaline solution no optical rotation was observed during CRD measurements in the 250-630 nm spectral region. While slight differences were noted in the percent radiolysis of solid D- (12.7%) and L-leucine (16.2%) as determined by GC, no enrichment of either enantiomer was found.

  15. New ester alkaloids from lupins (genus lupinus).

    PubMed

    Mühlbauer, P; Witte, L; Wink, M

    1988-06-01

    Esters of 13-hydroxylupanine and 4-hydroxylupanine with acetic, propionic, butyric, isobutyric, valeric, isovaleric, tiglic, benzoic, and TRANS-cinnamic acid have been synthesized and characterized by capillary gas-liquid chromatography and mass spectrometry (EI-MS, CI-MS). In LUPINUS POLYPHYLLUS, L. ALBUS, L. ANGUSTIFOLIUS, and L. MUTABILIS we could identify new ester alkaloids (e.g. 13-propyloxylupanine, 13-butyryloxylupanine, 13-isobutyryloxylupanine, and 4-tigloyloxylupanine) besides the known esters, i.e. 13-acetoxylupanine, 13-isovaleroyloxylupanine, 13-angeloyloxylupanine, 13-tigloyloxylupanine, 13-benzoyloxylupanine, 13- CIS-cinnamoyloxylupanine nine, and 13- TRANS-cinnamoyloxylupanine.

  16. Kinetics and molecular characteristics of arginine transport by Leishmania donovani promastigotes.

    PubMed

    Kandpal, M; Fouce, R B; Pal, A; Guru, P Y; Tekwani, B L

    1995-05-01

    Characteristics of transport of L-arginine were studied in Leishmania donovani promastigotes grown in vitro in a defined medium. The promastigotes exhibited a time-dependent, temperature-sensitive, pH-dependent and saturable uptake of arginine. Metabolic inhibitors caused 81-92% inhibition, indicating that arginine influx in promastigotes is an energy requiring process. The presence of Na+ ions was necessary for full activity. Considerable inhibition was also noticed with valinomycin, gramicidin and amiloride. The transporter seems to involve an -SH group at the active site. The most distinctive feature of the leishmanial transporter was that lysine and ornithine did not show significant competition with arginine transport. Other neutral and acidic amino acids, as well as polyamines were also ineffective. The arginine analogues, viz., nitro-L-arginine methyl ester, N-nitro-L-arginine, aminoguanidine, agmatine and D-arginine were not recognised by the transporter, while N-methyl-L-arginine acetate and phospho-L-arginine showed competition, indicating stereo-specificity of the transporter and recognition of both the guanidino group, as well as the arginine side chain by the transporter. No exchange of intracellular [14C]arginine taken up by the promastigotes was noticed during incubation with 2 or 5 mM arginine in the extracellular medium. Eighty percent of the arginine taken up remained in the trichloroacetic acid-soluble fraction. Pentamidine caused competitive inhibition of arginine transport, exhibiting an IC50 value of 40 microM. Results indicate the presence of a novel distinct arginine transporter in Leishmania promastigotes.

  17. Determination of β-hydroxy-β-methylbutyrate concentration and enrichment in human plasma using chemical ionization gas chromatography tandem mass spectrometry

    PubMed Central

    Walker, Dillon K.; Thaden, John J.; Wierzchowska-McNew, Agata; Engelen, Marielle P.K.J.; Deutz, Nicolaas E.P.

    2016-01-01

    Our objective was to develop a quick and simplified method for the determination of β-Hydroxy-β-methylbutyrate (HMB) and α-ketoisocaproic acid (KIC) concentrations and enrichments by GC/MS/MS to determine the turnover rate of HMB in humans. In experiment 1, we provided a pulse of L-[5,5,5-2H3]leucine to younger adults in the postabsorptive state then collected blood samples over a 4 h time period. In experiment 2, we provided a pulse of [3,4,methyl-13C3]HMB to older adults in the postabsorptive state then collected blood samples over a 3 h time period. Plasma concentrations of KIC and HMB and MPE of KIC and HMB were determined by GC/MS/MS. Plasma enrichment of leucine was determined by LC/MS/MS. To determine plasma enrichment of [5,5,5-2H3]HMB and [3,4,methyl-13C3]HMB, samples were derivatized using pentafluorobenzyl bromide and analyzed using chemical ionization mode. The final methods used included multiple reaction monitoring of transitions 117.3 > 59.3 for M + 0 and 120.3 > 59.3 for M + 3. In experiment 1, peak MPE of Leu peaked at 9.76% generating a peak MPE of KIC at 2.67% and a peak HMB MPE of 0.3%. In experiment 2, the rate of appearance for HMB was 0.66 μmol/kg ffm/h. We calculated that production of HMB in humans accounts for 0.66% of total leucine turnover. PMID:27856194

  18. An Iterative O-Methyltransferase Catalyzes 1,11-Dimethylation of Aspergillus fumigatus Fumaric Acid Amides.

    PubMed

    Kalb, Daniel; Heinekamp, Thorsten; Schieferdecker, Sebastian; Nett, Markus; Brakhage, Axel A; Hoffmeister, Dirk

    2016-10-04

    S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-α glycyrrhetinic acid

    PubMed Central

    Taylor, Hannah J; Chaytor, Andrew T; Evans, W Howard; Griffith, Tudor M

    1998-01-01

    The gap junction inhibitor 18-α-glycyrrhetinic acid (α-GA, 100 μM) attenuated endothelium-dependent relaxations to acetylcholine and cyclopiazonic acid by ∼20% in rings of pre-constricted rabbit iliac artery. The nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 300 μM) inhibited relaxations to both agents by ∼65% and these were further attenuated by α-GA to <10% of control. In endothelium-denuded preparations, relaxations to sodium nitroprusside were not affected by α-GA. Heterocellular gap junctional communication may therefore account for nitric oxide-independent relaxations evoked both by receptor-dependent and -independent mechanisms in rabbit iliac artery. PMID:9776336

  20. Repeated administration of the monoamine reuptake inhibitor BTS 74 398 induces ipsilateral circling in the 6-hydroxydopamine lesioned rat without sensitizing motor behaviours.

    PubMed

    Lane, E L; Cheetham, S C; Jenner, P

    2005-01-01

    BTS 74 398 (1-[1-(3,4-dichlorophenyl)cyclobutyl]-2-(3-diaminethylaminopropylthio)ethanone monocitrate) is a monoamine reuptake inhibitor that reverses motor deficits in MPTP-treated (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) common marmosets without provoking established dyskinesia. However, it is not known whether BTS 74 398 primes the basal ganglia for dyskinesia induction. In this study, the ability of BTS 74 398 to sensitize 6-hydroxydopamine (6-OHDA)-lesioned rats for the production of abnormal motor behaviours and the induction of striatal DeltaFosB were determined in comparison with l-3,4-dihydroxyphenylalanine methyl ester (L-dopa). Acute administration of BTS 74 398 induced a dose-dependent ipsilateral circling response in unilaterally 6-OHDA-lesioned rats whereas L-dopa produced dose-dependent contraversive rotation. The ipsilateral circling response to BTS 74 398 did not alter during 21 days of administration. In contrast, L-dopa treatment for 21 days caused a marked increase in rotational response. Repeated administration of both L-dopa and BTS 74 398 increased general motor activity and stereotypic behaviour. In L-dopa-treated rats, orolingual, locomotive, forelimb and axial abnormal movements developed whereas BTS 74 398 produced only locomotion with a side bias but no other abnormal movements. Sensitization of circling responses and the development of abnormal movements in 6-OHDA-lesioned rats have been associated with the potential of dopaminergic drugs to induce dyskinesia. Furthermore, striatal DeltaFosB immunoreactivity, shown to correlate with dyskinesia induction, was increased by L-dopa but was unaffected by repeated BTS 74 398 administration. The lack of such changes following repeated BTS 74 398 treatment suggests that it may be an effective antiparkinsonian therapy that is unlikely to produce involuntary movements.

  1. [Variation of long-chain 3-hydroxyacyl-CoA dehydrogenase DNA methylation in placenta of different preeclampsia-like mouse models].

    PubMed

    Han, Yiwei; Yang, Zi; Ding, Xiaoyan; Yu, Huan; Yi, Yanhong

    2015-10-01

    By detecting the variation of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) DNA methylation in preeclampsia-like mouse models generated by different ways, to explore the roles of multifactor and multiple pathways in preeclampsia pathogenesis on molecular basis. Established preeclampsia-like mouse models in different ways and divided into groups as follows: (1) Nw-nitro-L-arginine-methyl ester (L-NAME) group: wild-type pregnant mouse received subcutaneous injection of L-NAME; (2) lipopolysaccharide (LPS) group: wild-type pregnant mouse received intraperitoneal injection of LPS; (3) apolipoprotein C-III (ApoC3) group: ApoC3 transgenic pregnant mouse with dysregulated lipid metabolism received subcutaneous injection of L-NAME; (4) β2 glycoprotein I (β-2GPI) group: wild-type pregnant mouse received subcutaneous injection of β-2GPI. According to the first injection time (on day 3, 11, 16 respectively), the L-NAME, LPS and ApoC3 groups were further subdivided into: pre-implantation (PI) experimental stage, early gestation (EG) experimental stage, and late gestation (LG) experimental stage. β-2GPI group was only injected before implantation. LCHAD gene methylation levels in placental were detected in different experimental stage. Normal saline control groups were set within wild-type and ApoC3 transgenic pregnant mice simultaneously. (1) CG sites in LCHAD DNA: 45 CG sites were detected in the range of 728 bp before LCHAD gene transcription start site, the 5, 12, 13, 14, 15, 16, 19, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 43 CG sites were complex sites which contained two or more CG sequences, others were single site which contained one CG sequence. The 3, 5, 6, 11, 13, 14, 18, 28 sites in L-NAME, LPS, ApoC3 and β-2GPI groups showed different high levels of methylation; the 16, 25, 31, 42, 44 sites showed different low levels of methylation; other 32 sites were unmethylated. (2) Comparison of LCHAD gene methylation between different groups: the methylation levels of LCAHD gene at 3, 11, 13, 14, 18 sites in L-NAME, LPS, ApoC3 and β-2GPI groups were significantly higher than those in the normal saline control group (P < 0.05); and the methylation levels of 42, 44 sites in these groups were significantly lower than those in the normal saline control group (P < 0.05). (3) Methylation of LCHAD gene at the same site between different experimental stages: ① The 3, 11, 18 sites of EG experimental stage was significantly lower than PI and LG experimental stage in L-NAME group (P < 0.05); the 3, 11, 18 sites of PI experimental stage was significantly lower than EG and LG experimental stage in LPS group (P < 0.05); these sites of PI experimental stage was significantly higher than EG and LG experimental stages in ApoC3 group (P < 0.05). ② The methylation of site 5 in L-NAME and LPS groups were significantly higher than that of the normal saline control group (P < 0.05), and the LG experimental stages were significantly higher than other stages, but in ApoC3 group, only PI and EG stages were significantly higher than the normal saline control group (P < 0.05). ③ At site 6 in L-NAME group which showed high methylation level was significantly higher than the same site in other groups which showed low methylation level (P < 0.05). ④ At 13, 14 sites, earlier preeclampsia onset caused a lower methylation level in L-NAME group, but PI experimental stage was significantly higher than EG and LG experimental stages in LPS group (P < 0.05), EG experimental stage was significantly higher than PI and LG experimental stages in ApoC3 group (P < 0.05). ⑤ At site 28, earlier preeclampsia onset caused a higher methylation level in L-NAME group, but PI experimental stage was significantly lower than EG and LG experimental stages in LPS group (P < 0.05), EG experimental stage was significantly higher than PI and LG experimental stages in ApoC3 group (P < 0.05). ⑥ The 16, 25, 31 sites in ApoC3 group were significantly higher than other groups (P < 0.05). ⑦ At site 42 in β-2GPI group was unmethylated, but it in other groups showed low methylation level, the methylation level of site 42 in β-2GPI group was significantly lower than that in other groups (P < 0.05). The methylation of 6 and 42 CG sites may be related to LCHAD gene expression in placenta of L-NAME and β-2GPI induced preeclampsia-like models respectively; LCHAD gene expression and DNA methylation may not have obvious correlation in LPS and ApoC3 induced preeclampsia-like models. Differences exist in LCHAD DNA methylation in preeclampsia-like models generated by different ways, revealed a molecular basis to expand our understanding of the multi-factorial pathogenesis of preeclampsia.

  2. Biotechnological Approaches to Enhance Halotolerance and Photosynthetic Efficacy in the Cyanobacterium, Fremyella diplosiphon

    NASA Astrophysics Data System (ADS)

    Tabatabai, Ben

    Growing concerns over dwindling energy supplies linked to nonrenewable fossil fuels have driven profound interest in biofuels as a clean and sustainable alternative. Cyanobacteria are a promising source of third-generation biofuel due to their fast generation time and high net biomass conversion. In this study, the effect of salinity stress on Fremyella diplosiphon, a model organism for studying photosynthetic pathways, was investigated and nanobiotechnological approaches undertaken to enhance its halotolerance and photosynthetic efficacy. Heat-induced mutagenesis resulted in a mutant strain that could survive in 20 g L-1 sodium chloride (NaCl) with no loss in pigmentation. To further enhance F. diplosiphon halotolerance, expression plasmids harboring the hlyB and mdh genes were overexpressed in the wild type resulting in two transformants that thrived in 35 g L-1 NaCl, the average salinity of sea water. In addition, no significant reduction in photosynthetic efficacy was detected in the halotolerant strains relative to the wild type. Total lipid content and fatty acid methyl ester composition of wild type and halotolerant strains were assessed for their potential as a production-scale biofuel agent. Methyl palmitate, the methyl ester of hexodeconoate (C16:0), was found to be most abundant in the wild type and transformants accounting for 60-70% of total FAMEs produced. Efforts to enhance the photosynthetic efficiency of the strains revealed that gold nanoparticle-derived surface plasmon resonance augmented culture growth and pigment accumulation. Cell-nanoparticles interactions were visualized using scanning and transmission electron microscopy. Our findings address two key challenges that cyanobacterial biofuel agents need to overcome: enhanced halotolerance and photosynthetic efficacy to minimize freshwater input and artificial light supply. These innovations have paved the way for an efficient cyanobacterial cultivation system for large-scale production of biofuel.

  3. Antiacanthain A: New proteases isolated from Bromelia antiacantha Bertol. (Bromeliaceae).

    PubMed

    Vallés, Diego; Cantera, Ana M B

    2018-07-01

    Crude extract (CE) from pulp of Bromelia antiacantha Bertol. mature fruit, contains at least 3 cysteine proteases with proteolytic activity. By single step cation exchange chromatography (Hi-trap SP-HP) of partially purified CE, the protease with the lowest pI, Antiacanthain A (AntA), was isolated. It showed maximum activity at pH9, and 75% of remaining activity was maintained over a wide pH range (pH6-10). The AntA activity exhibits a constant increase up to 70°C. Maintains almost 100% of its activity at 45 at pH6 and 9. A 60% of AntA was active by titration with specific inhibitor, E64. Amidasic activity was studied with pyroglutamyl-phenyl-leucyl-paranitroaniline (PFLNA) substrate having higher AntA catalytic efficiency of (k cat /K m =470s -1 M -1 ) relative to stem bromelain (k cat /K m =305s -1 M -1 ). Esterase activity using p-nitrophenyl esters of N-α-CBZ-l-Lysine (z-L-LysONp) showed a 10-fold higher catalytic efficiency for AntA (k cat /K m =6376s -1 M -1 ) relative to stem bromelain (k cat /K m =688s -1 M -1 ). Incubation with 8M Urea did not affect AntA activity and remained unchanged for 18h, with 6M GndHCl resulted in a 41% decrease in activity after 30min incubation, maintained this activity 18h. AntA exhibits high sequence identity with proteases of the Bromeliaceae family. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Kinetic Behavior of Leucine and Other Amino Acids Modulating Cognitive Performance via mTOR Pathway

    DTIC Science & Technology

    2011-12-02

    is a potential target for modulation with leucine (or other therapeutic agents), to maintain/enhance normal functioning under stress conditions. Such... functioning under stress conditions. Such an effect has potential for optimizing warfighter cognitive performance under high demand conditions. The... Isoleucine L1 Essential Neutral Non-polar Branched chain Lysine Basic Y+ Essential Basic Polar Proline L1? Neutral Non-polar Aromatic Asparagine Neutral

  5. Structural alterations in rat myocardium induced by chronic l-arginine and l-NAME supplementation.

    PubMed

    Hmaid, Amal Abdussalam Ali A; Markelic, Milica; Otasevic, Vesna; Masovic, Sava; Jankovic, Aleksandra; Korac, Bato; Korac, Aleksandra

    2018-03-01

    Structural changes affecting cardiomyocyte function may contribute to the pathophysiological remodeling underlying cardiac function impairment. Recent reports have shown that endogenous nitric oxide (NO) plays an important role in this process. In order to examine the role of NO in cardiomyocyte remodeling, male rats were acclimated to room temperature (22 ± 1 °C) or cold (4 ± 1 °C) and treated with 2.25% l-arginine·HCl or 0.01% l-NAME (N ω -nitro-l-arginine methyl ester)·HCl for 45 days. Untreated groups served as controls. Right heart ventricles were routinely prepared for light microscopic examination. Stereological estimations of volume densities of cardiomyocytes, surrounding blood vessels and connective tissue, as well as the morphometric measurements of cardiomyocyte diameters were performed. Tissue sections were also analyzed for structural alterations. We observed that both l-arginine and l-NAME supplementation induced cardiomyocyte hypertrophy, regardless of ambient temperature. However, cardiomyocyte hypertrophy was associated with fibrosis and extra collagen deposition only in the l-NAME treated group. Taken together, our results suggest that NO has a modulatory role in right heart ventricle remodeling by coordinating hypertrophy of cardiomyocytes and fibrous tissue preventing cardiac fibrosis.

  6. Perfusion of isolated carotid sinus with hydrogen sulfide attenuated the renal sympathetic nerve activity in anesthetized male rats.

    PubMed

    Guo, Q; Wu, Y; Xue, H; Xiao, L; Jin, S; Wang, R

    2016-07-18

    The purpose of the present study was to define the indirect central effect of hydrogen sulfide (H(2)S) on baroreflex control of sympathetic outflow. Perfusing the isolated carotid sinus with sodium hydrosulfide (NaHS), a H(2)S donor, the effect of H(2)S was measured by recording changes of renal sympathetic nerve activity (RSNA) in anesthetized male rats. Perfusion of isolated carotid sinus with NaHS (25, 50, 100 micromol/l) dose and time-dependently inhibited sympathetic outflow. Preconditioning of glibenclamide (20 micromol/l), a ATP-sensitive K(+) channels (K(ATP)) blocker, the above effect of NaHS was removed. With 1, 4-dihydro-2, 6-dimethyl-5-nitro-4-(2-[trifluoromethyl] phenyl) pyridine-3-carboxylic acid methyl ester (Bay K8644, 500 nmol/l) pretreatment, which is an agonist of L-calcium channels, the effect of NaHS was eliminated. Perfusion of cystathionine gamma-lyase (CSE) inhibitor, DL-propargylglycine (PPG, 200 micromol/l), increased sympathetic outflow. The results show that exogenous H(2)S in the carotid sinus inhibits sympathetic outflow. The effect of H(2)S is attributed to opening K(ATP) channels and closing the L-calcium channels.

  7. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.

    PubMed

    Creelman, R A; Tierney, M L; Mullet, J E

    1992-06-01

    Jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are plant lipid derivatives that resemble mammalian eicosanoids in structure and biosynthesis. These compounds are proposed to play a role in plant wound and pathogen responses. Here we report the quantitative determination of JA/MeJA in planta by a procedure based on the use of [13C,2H3]MeJA as an internal standard. Wounded soybean (Glycine max [L] Merr. cv. Williams) stems rapidly accumulated MeJA and JA. Addition of MeJA to soybean suspension cultures also increased mRNA levels for three wound-responsive genes (chalcone synthase, vegetative storage protein, and proline-rich cell wall protein) suggesting a role for MeJA/JA in the mediation of several changes in gene expression associated with the plants' response to wounding.

  8. Arginine reduces Cryptosporidium parvum infection in undernourished suckling mice involving both nitric oxide synthase and arginase

    PubMed Central

    Castro, Ibraim C.; Oliveira, Bruna B.; Slowikowski, Jacek J.; Coutinho, Bruna P.; Siqueira, Francisco Júlio W.S.; Costa, Lourrany B.; Sevilleja, Jesus Emmanuel; Almeida, Camila A.; Lima, Aldo A.M.; Warren, Cirle A.; Oriá, Reinaldo B.; Guerrant, Richard L.

    2011-01-01

    Objective This study investigated the role of L-arginine supplementation to undernourished and Cryptosporidium parvum-infected suckling mice. Methods The following regimens were initiated on the 4th day of life and given subcutaneously daily: either 200mM of L-arginine or PBS for the C. parvum-infected controls. L-arginine-treated mice were grouped to receive either 20mM of NG-nitroarginine-methyl-ester (L-NAME) or PBS. Infected mice received orally 106 excysted-C. parvum oocysts on day 6 and were euthanized on day 14th at the infection peak. Results L-arginine improved weight gain compared to the untreated infected controls. L-NAME profoundly impaired body weight gain as compared to all other groups. Cryptosporidiosis was associated with ileal crypt hyperplasia, villus blunting, and inflammation. L-arginine improved mucosal histology following infection. L-NAME abrogated these arginine-induced improvements. Infected control mice showed an intense arginase expression, which was even greater with L-NAME. L-arginine reduced parasite burden, an effect that was reversed by L-NAME. C. parvum infection increased urine NO3-/NO2- concentration when compared to uninfected controls, which was increased by L-arginine supplementation, an effect that was also reversed by L-NAME. Conclusion These findings show a protective role of L-arginine during C. parvum infection in undernourished mice with involvement of arginase I and nitric oxide synthase enzymatic actions. PMID:22261576

  9. RECOVERY OF LACTIC ACID FROM AMERICAN CRYSTAL SUGAR COMPANY WASTEWATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel J. Stepan; Edwin S. Olson; Richard E. Shockey

    2001-04-30

    This project has shown that the recovery of several valuable lactic acid products is both technically feasible and economically viable. One of the original objectives of this project was to recover lactic acid. However, the presence of a variety of indigenous bacteria in the wastewater stream and technical issues related to recovery and purification have resulted in the production of lactic acid esters. These esters could by hydrolyzed to lactic acid, but only with unacceptable product losses that would be economically prohibitive. The developed process is projected to produce approximately 200,000 lb per day of lactate esters from wastewater atmore » a single factory at costs that compete with conventional solvents. The lactate esters are good solvents for polymers and resins and could replace acetone, methyl ethyl ketone, MIBK, and other polar solvents used in the polymer industry. Because of their low volatility and viscosity-lowering properties, they will be especially useful for inks for jet printers, alkyl resins, and high-solid paints. Owing to their efficiency in dissolving salts and flux as well as oils and sealants, lactate esters can be used in cleaning circuit boards and machine and engine parts. Unlike conventional solvents, lactate esters exhibit low toxicity, are biodegradable, and are not hazardous air pollutants. Another application for lactate esters is in the production of plasticizers. Severe health problems have been attributed to widely used phthalate ester plasticizers. The U.S. Department of Agriculture showed that replacement of these with inexpensive lactate esters is feasible, owing to their superior polymer compatibility properties. A very large market is projected for polymers prepared from lactic acid. These are called polylactides and are a type of polyester. Thermoplastics of this type have a variety of uses, including moldings, fibers, films, and packaging of both manufactured goods and food products. Polylactides form tough, orientable, self-supporting thin films and have, therefore, been used for adhesives, safety glass, and finishes. If the bacterial culture produces the L-lactic acid enanatiomer form exclusively, the L-lactide prepared from this form can be used for making polymers with good fiber-forming properties. We have not currently achieved the exclusive production of L-lactate in our efforts. However, markets in films and structural shapes are available for polymers and copolymers prepared from the mixed D,L-lactide forms that result from processing the D,L-lactic acid obtained from fermentation such as that occurring naturally in sugar beet wastewater. These materials are slowly biodegraded to harmless compounds in the environment, and they burn with a clean blue flame when incinerated. These materials represent excellent opportunities for utilization of the D,L-lactic mixture produced from natural fermentation of the ACS flume water. Esters can be converted into a lactide, and the alcohol released from the ester can be recycled with no net consumption of the alcohol. Lactide intermediates could be produced locally and shipped to polymer producers elsewhere. The polymer and copolymer markets are extremely large, and the role of lactides in these markets is continuously expanding. The overall process can be readily integrated into existing factory wastewater operations. There are several environmental benefits that would be realized at the factories with incorporation of the lactate recovery process. The process reduces the organic loading to the existing wastewater treatment system that should result in enhanced operability with respect to both solids handling and treated-water quality. A higher-quality treated water will also help reduce odor levels from holding ponds. Several water reuse opportunities are probable, depending on the quality of treated water from the FT process.« less

  10. Microbial toxicity of methyl tert-butyl ether (MTBE) determined with fluorescent and luminescent bioassays.

    PubMed

    Roslev, Peter; Lentz, Trine; Hesselsoe, Martin

    2015-02-01

    The inhibitory effects of the fuel additive methyl tert-butyl ether (MTBE) and potential degradation products tert-butanol (TBA) and formaldehyde was examined using mixed microbial biomass, and six strains of bioluminescent bacteria and yeast. The purpose was to assess microbial toxicity with quantitative bioluminescent and fluorescent endpoints, and to identify sensitive proxies suitable for monitoring MTBE contamination. Bioluminescent Aliivibrio fischeri DSM 7151 (formerly Vibrio fischeri) appeared highly sensitive to MTBE exposure, and was a superior test organisms compared to lux-tagged Escherichia coli DH5α, Pseudomonas fluorescens DF57-40E7 and Saccharomyces cerevisiae BLYR. EC10 and EC50 for acute MTBE toxicity in A. fischeri were 1.1 and 10.9 mg L(-1), respectively. Long term (24h) MTBE exposure resulted in EC10 values of 0.01 mg L(-1). TBA was significantly less toxic with EC10 and EC50 for acute and chronic toxicity >1000 mg L(-1). Inhibition of bioluminescence was generally a more sensitive endpoint for MTBE toxicity than measuring intracellular ATP levels and heterotrophic CO2 assimilation. A weak estrogenic response was detected for MTBE at concentrations ⩾ 3.7 g L(-1) using an estrogen inducible bioluminescent yeast strain (S. cerevisiae BLYES). Microbial hydrolytic enzyme activity in groundwater was affected by MTBE with EC10 values of 0.5-787 mg L(-1), and EC50 values of 59-3073 for alkaline phosphatase, arylsulfatase, beta-1,4-glucanase, N-acetyl-beta-d-glucosaminidase, and leucine-aminopeptidase. Microbial alkaline phosphatase and beta-1,4-glucanase activity were most sensitive to MTBE exposure with EC50 ⩽ 64.8 mg L(-1). The study suggests that bioassays with luminescent A. fischeri, and fluorescent assays targeting hydrolytic enzyme activity are good candidates for monitoring microbial MTBE toxicity in contaminated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  12. Analysis of methyloxime derivatives of intact esters of testosterone and boldenone in equine plasma using ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Gray, Bobby P; Teale, Phil; Pearce, Clive M

    2011-04-01

    Analysis of equine plasma samples to detect the abuse of anabolic steroids can be complicated when the parent steroid is endogenous to the animal. Anabolic steroids are usually administered intramuscularly as synthetic esters and therefore detection of the exogenous esters provides unequivocal proof of illegal administration. An ultra high performance liquid chromatography tandem mass spectrometric (UPLC-MSMS) method for the analysis of esters of testosterone (propionate, phenylpropionate, isocaproate, and decanoate) and boldenone (undecylenate) in equine plasma has been developed. Esters were extracted from equine plasma using a mixture of hexane and ethyl acetate and treated with methoxyamine hydrochloride to form methyloxime derivatives. Metenolone enanthate was used as an internal standard. After chromatographic separation, the derivatized steroid esters were quantified using selected reaction monitoring (SRM). The limit of detection for all of the steroid esters, based on a signal to noise ratio (S/N) of 3:1, was 1-3 pg/mL. The lower limit of quantification (LLOQ) for the all of the steroid esters was 5 pg/mL when 2 mL of plasma was extracted. Recovery of the steroid esters was 85-97% for all esters except for testosterone decanoate which was recovered at 62%. The intra-day coefficient of variation (CV) for the analysis of plasma quality control (QC) samples was less than 9.2% at 40 pg/mL and less than 6.0% at 400 pg/mL. The developed assay was used to successfully confirm the presence of intact testosterone esters in equine plasma samples following intramuscular injection of Durateston® (mixed testosterone esters). Copyright © 2011 John Wiley & Sons, Ltd.

  13. Endurance Exercise Attenuates Postprandial Whole-Body Leucine Balance in Trained Men.

    PubMed

    Mazzulla, Michael; Parel, Justin T; Beals, Joseph W; VAN Vliet, Stephan; Abou Sawan, Sidney; West, Daniel W D; Paluska, Scott A; Ulanov, Alexander V; Moore, Daniel R; Burd, Nicholas A

    2017-12-01

    Endurance exercise increases indices of small intestinal damage and leucine oxidation, which may attenuate dietary amino acid appearance and postprandial leucine balance during postexercise recovery. Therefore, the purpose of this study was to examine the effect of an acute bout of endurance exercise on postprandial leucine kinetics and net leucine balance. In a crossover design, seven trained young men (age = 25.6 ± 2.3 yr; V˙O2peak = 61.4 ± 2.9 mL·kg·min; mean ± SEM) received a primed constant infusion of L-[1-C]leucine before and after ingesting a mixed macronutrient meal containing 18 g whole egg protein intrinsically labeled with L-[5,5,5-H3]leucine, 17 g fat, and 60 g carbohydrate at rest and after 60 min of treadmill running at 70% V˙O2peak. Plasma intestinal fatty acid binding protein concentrations and leucine oxidation both increased (P < 0.01) to peaks that were ~2.5-fold above baseline values during exercise with a concomitant decrease (P < 0.01) in nonoxidative leucine disposal. Meal ingestion attenuated (P < 0.01) endogenous leucine rates of appearance at rest and after exercise. There were no differences (both, P > 0.05) in dietary leucine appearance rates or in the amount of dietary protein-derived leucine that appeared into circulation over the 5-h postprandial period at rest and after exercise (62% ± 2% and 63% ± 2%, respectively). Leucine balance over the 5-h postprandial period was positive (P < 0.01) in both conditions but was negative (P < 0.01) during the exercise trial after accounting for exercise-induced leucine oxidation. We demonstrate that endurance exercise does not modulate dietary leucine availability from a mixed meal but attenuates postprandial whole-body leucine balance in trained young men.

  14. Spontaneous, L-arginine-induced and spironolactone-induced regression of protein remodeling of the left ventricle in L-NAME-induced hypertension.

    PubMed

    Simko, F; Potácová, A; Pelouch, V; Paulis, L; Matúsková, J; Krajcírovicová, K; Pechánová, O; Adamcová, M

    2007-01-01

    N(G)-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension is associated with protein remodeling of the left ventricle. The aim of the study was to show, whether aldosterone receptor blocker spironolactone and precursor of NO-production L-arginine were able to reverse the protein rebuilding of the left ventricle. Six groups of male Wistar rats were investigated: control 4 (4 weeks placebo), L-NAME (4 weeks L-NAME), spontaneous-regression (4 weeks L-NAME + 3 weeks placebo), spironolactone-regression (4 weeks L-NAME + 3 weeks spironolactone), L-arginine-regression (4 weeks L-NAME + 3 weeks arginine), control 7 (7 weeks placebo). L-NAME administration induced hypertension, hypertrophy of the left ventricle (LV), and the increase of metabolic and contractile as well as soluble and insoluble collagenous protein concentration. The systolic blood pressure and relative weight of the LV decreased in all three groups with regression, while the most prominent attenuation of the LVH was observed after spironolactone treatment. In the spontaneous-regression and L-arginine-regression groups the concentrations of individual proteins were not significantly different from the control value. However, in the spironolactone-regression group the concentration of metabolic, contractile and insoluble collagenous proteins remained significantly increased in comparison with the control group. The persistence of the increased protein concentration in the spironolactone group may be related to the more prominent reduction of myocardial water content by spironolactone.

  15. Nitric oxide production contributes to Bacillus anthracis edema toxin-associated arterial hypotension and lethality: ex vivo and in vivo studies in the rat

    PubMed Central

    Li, Yan; Cui, Xizhong; Xu, Wanying; Ohanjanian, Lernik; Sampath-Kumar, Hanish; Suffredini, Dante; Moayeri, Mahtab; Leppla, Stephen; Fitz, Yvonne

    2016-01-01

    We showed previously that Bacillus anthracis edema toxin (ET), comprised of protective antigen (PA) and edema factor (EF), inhibits phenylephrine (PE)-induced contraction in rat aortic rings and these effects are diminished in endothelial-denuded rings. Therefore, employing rat aortic ring and in vivo models, we tested the hypothesis that nitric oxide (NO) contributes to ET's arterial effects. Compared with rings challenged with PA alone, ET (PA + EF) reduced PE-stimulated maximal contractile force (MCF) and increased the PE concentration producing 50% MCF (EC50) (P < 0.0001). Compared with placebo, l-nitro-arginine methyl-ester (l-NAME), an NO synthase (NOS) inhibitor, reduced ET's effects on MCF and EC50 in patterns that approached or were significant (P = 0.06 and 0.03, respectively). In animals challenged with 24-h ET infusions, l-NAME (0.5 or 1.0 mg·kg−1·h−1) coadministration increased survival to 17 of 28 animals (60.7%) compared with 4 of 27 (14.8%) given placebo (P = 0.01). Animals receiving l-NAME but no ET all survived. Compared with PBS challenge, ET increased NO levels at 24 h and l-NAME decreased these increases (P < 0.0001). ET infusion decreased mean arterial blood pressure (MAP) in placebo and l-NAME-treated animals (P < 0.0001) but l-NAME reduced decreases in MAP with ET from 9 to 24 h (P = 0.03 for the time interaction). S-methyl-l-thiocitrulline, a selective neuronal NOS inhibitor, had effects in rings and, at a high dose in vivo models, comparable to l-NAME, whereas N′-[3-(aminomethyl)benzyl]-acetimidamide, a selective inducible NOS inhibitor, did not. NO production contributes to ET's arterial relaxant, hypotensive, and lethal effects in the rat. PMID:27448553

  16. Five new triterpene saponins, polygalasaponins XXVIII-XXXII from the root of Polygala japonica Houtt.

    PubMed

    Zhang, D; Miyase, T; Kuroyanagi, M; Umehara, K; Ueno, A

    1996-04-01

    Five new oleanane-type saponins, polygalasaponins XXVIII-XXXII, along with one known saponin, polygalasaponin XXIV, and one known acylated sucrose, tenuifoliside C, were isolated from the root of Polygala japonica. The structures of these new compounds were elucidated as 3-O-beta-D-glucopyranosyl pesenegenin 28-O-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamnopyranosyl (1-->2)-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-beta-D-galactopyranosyl (1-->5)-beta-D-apiofuranosyl (1-->4)-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamno-pyranosyl (1-->2)-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-beta-D-galactopyranosyl (1-->4)-beta-D-xylopyranosyl (1-->4)-alpha-L-rhamnopyranosyl (1-->2)-[4-O-p-methoxycinnamoyl]-[beta-D-glucopyranosyl (1-->3)]-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl presenegenin 28-O-alpha-L-arabinopyranosyl (1-->3)-beta-D-xylopyranosyl (1-->4)-[beta-D-apiofuranosyl (1-->3)]-alpha-L-rhamnopyranosyl (1-->2)-[4-O-3,4,5-trimethoxycinnamoyl]-beta-D-fucopyranosyl ester, 3-O-beta-D-glucopyranosyl persenegenin 28-O-alpha-L-arabinopyranosyl (1-->3)-beta-D-xylopyranosyl (1-->4)-[beta-D-apiofuranosyl (1-->3)-alpha-L-rhamnopyranosyl (1-->2)-[4-O-p-methoxycinnamoyl]-[alpha-L-rhamnopyranosyl (1-->3)-beta-D-fucopyranosyl ester, respectively, on the basis of spectroscopic and chemical evidence.

  17. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    PubMed

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae.

  18. N-Acetyl-D- and L-esters of 5'-AMP hydrolyze at different rates

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)

    1993-01-01

    Studies of the properties of aminoacyl derivatives of 5'-AMP are aimed at understanding the origin of the process of protein synthesis. Aminoacyl (2',3') esters of 5'-AMP can serve as models of the 3'-terminus of aminoacyl tRNA. We report here on the relative rates of hydrolysis of Ac-D- and L-Phe AMP esters as a function of pH. At all pHs above 3, the rate constant of hydrolysis of the Ac-L-Phe ester is 1.7 to 2.1 times that of Ac-D-Phe ester. The D-isomer seems partially protected from hydrolysis by a stronger association with the adenine ring of the 5'-AMP.

  19. Acute depletion of plasma glutamine increases leucine oxidation in prednisone-treated humans

    PubMed Central

    Le Bacquer, Olivier; Mauras, Nelly; Welch, Susan; Haymond, Morey; Darmaun, Dominique

    2007-01-01

    Background, aims & methods To determine whether depletion in plasma glutamine worsens the catabolic response to corticosteroids, 7 healthy volunteers received oral prednisone for 6 days on 2 separate occasions, at least 2 weeks apart, and in random order. On the 6th day of each treatment course, they received 5h intravenous infusions of L-[1-14C]-leucine and L-[1-13C]-glutamine in the postabsorptive state 1) under baseline conditions (prednisone only day), and 2) after 24h of treatment with phenylbutyrate (prednisone+phenylbutyrate day), a glutamine chelating agent. Results Phenylbutyrate treatment was associated with 1) an ≈15% decline in plasma glutamine concentration (627±39 vs. 530±31 μmol.L-1; P<0.05), 2) no change in leucine appearance rate, an index of protein breakdown (124±9 vs. 128±9 μmol.kg-1.h-1; NS) nor in non oxidative leucine disposal, an index of whole body protein synthesis (94±9 vs. 91±7 μmol.kg -1.h-1; NS); and 3) a ≈25% rise in leucine oxidation (30±1 vs. 38±2 μmol.kg-1.h-1, P<0.05), despite an ≈25% decline (p<0.05) in leucine concentration. Conclusions In a model of mild, stress-induced protein catabolism, depletion of plasma glutamine per se may worsen branched chain amino acid and protein wasting. PMID:17097772

  20. Endothelium-Dependent and -Independent Vasodilator Effects of Dimethyl Sulfoxide in Rat Aorta.

    PubMed

    Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa

    2016-01-01

    This study examined the mechanism of vasorelaxation induced by dimethyl sulfoxide (DMSO) in endothelium-intact and -denuded rat aorta. DMSO (0.1-3%) inhibited phenylephrine (PE, 1 μmol/l)-induced contraction in a dose-dependent manner. However, this relaxation was lower in the absence of the endothelium. Increase in DMSO-induced relaxation in the presence of the endothelium was attenuated by preincubation in L-NG-nitroarginine methyl ester (L-NAME, 100 μmol/l) and by the removal of the endothelium. In the aorta with endothelium, DMSO (3%) and CCh (3 μmol/l) increased cGMP contents, significantly and L-NAME (100 μmol/l) inhibited the DMSO-induced increases of cGMP. In fura 2-loaded endothelium-denuded aorta, cumulative application of DMSO (1-3%) inhibited PE-induced muscle tension; however, this application did not affect the [Ca2+]i level. In PE-precontracted endothelium-denuded aorta, relaxation responses to fasudil were significantly less in the presence of DMSO compared to the control. These results suggest that DMSO causes relaxation by increasing the cGMP content in correlation with the release of NO from endothelial cells and by decreasing the Ca2+ sensitivity of contractile elements partly via inhibiting Rho-kinase in rat aorta. © 2016 S. Karger AG, Basel.

  1. Evidence against nitrergic neuromodulation in the rat vas deferens.

    PubMed

    Ventura, S; Burnstock, G

    1997-09-03

    Electrical field stimulation (60 V, 1 ms, single pulses or 20 s trains of 1-10 Hz) of the nerve terminals within the rat vas deferens produced biphasic contractions in preparations oriented to measure either longitudinal or circular muscle contractions. In confirmation of earlier reports, these contractions were blocked by tetrodotoxin (1 microM). The initial fast purinergic contraction was dominant in prostatic halves of the vas deferens while the second slower noradrenergic contraction was greater in epididymal halves. Although previous studies have shown nitric oxide synthase immuno-positive nerves in the vas deferens, electrical field stimulation-induced contractions were unaffected by L-arginine, sodium nitroprusside, N-nitro-L-arginine methyl ester (L-NAME) or superoxide dismutase in concentrations up to I mM. In concentrations above 1 mM, L-NAME reduced the size of the field stimulation-induced contractions but this effect could not be reversed by either L-arginine or sodium nitroprusside. Furthermore, L-arginine, sodium nitroprusside and L-NAME did not affect the contractions induced by exogenous application of noradrenaline (10 microM), ATP (1 mM) or BaCl2 (1-10 mM). We conclude that nitric oxide does not act as a neuromodulator in isolated preparations of rat vas deferens.

  2. Fanconi Anemia complementation group C protein in metabolic disorders.

    PubMed

    Nepal, Manoj; Ma, Chi; Xie, Guoxiang; Jia, Wei; Fei, Peiwen

    2018-06-21

    Given importance of 22-Fanconi Anemia (FA) proteins together to act in a signaling pathway in preventing deleterious clinical symptoms, e.g. severe bone marrow failure, congenital defects, an early onset of aging and cancer, studies on each FA protein become increasingly attractive. However, an unbiased and systematic investigation of cellular effects resulting from each FA protein is missing. Here, we report roles of FA complementation C group protein (FANCC) in the protection from metabolic disorders. This study was prompted by the diabetes-prone feature displayed in FANCC knockout mice, which is not typically shown in patients with FA. We found that in cells expressing FANCC at different levels, there are representative alterations in metabolites associated with aging (glycine, citrulline, ornithine, L-asparagine, L-tyrosine, L-arginine, L-glutamine, L-leucine, L-isoleucine, L-valine, L-proline and L-alanine), Diabetes Mellitus (DM) (carbon monoxide, collagens, fatty acids, D-glucose, fumaric acid, 2-oxoglutaric acid, C3), inflammation (inosine, L-arginine, L-isoleucine, L-leucine, L-lysine, L-phenylalanine, hypoxanthine, L-methionine), and cancer ( L-methionine, sphingomyelin, acetyl-L-carnitine, L-aspartic acid, L-glutamic acid, niacinamide, phospho-rylethanolamine). We also found that FANCC can act in an FA-pathway-independent manner in tumor suppression. Collectively, featured-metabolic alterations are readouts of functional mechanisms underlying reduced tumorigenicity driven by FANCC, demonstrating close links among cancer, aging, inflammation and DM.

  3. Dietary supplementation of tiger nut alters biochemical parameters relevant to erectile function in l-NAME treated rats.

    PubMed

    Olabiyi, Ayodeji A; Carvalho, Fabiano B; Bottari, Nathieli B; Lopes, Thauan F; da Costa, Pauline; Stefanelo, Naiara; Morsch, Vera M; Akindahunsi, Afolabi A; Oboh, Ganiyu; Schetinger, Maria Rosa

    2018-07-01

    Tiger nut tubers have been reportedly used for the treatment of erectile dysfunction (ED) in folk medicine without scientific basis. Hence, this study evaluated the effect of tiger nut on erectile dysfunction by assessing biochemical parameters relevant to ED in male rats by nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) treatment. Rats were divided into five groups (n = 10) each: Control group; l-NAME plus basal diet; l-NAME plus Sildenafil citrate; diet supplemented processed tiger nut (20%) plus l-NAME;diet supplemented raw tiger nut (20%) plus l-NAME. l-NAME pre-treatment (40 mg/kg/day) lasted for 14 days. Arginase, acetycholinesterase (AChE) and adenosine deaminase (ADA) activities as well as nitric oxide levels (NO) in serum, brain and penile tissue were measured. l-NAME increased the activity of arginase, AChE and ADA and reduced NO levels. However, dietary supplementation with tiger nut caused a reduction on the activities of the above enzymes and up regulated nitric oxide levels when compared to the control group. The effect of tiger nut supplemented diet may be said to prevent alterations of the activities of the enzymes relevant in erectile function. Quercetin was revealed to be the most active component of tiger nut tuber by HPLC finger printing. Copyright © 2018. Published by Elsevier Ltd.

  4. Effect of losartan, an angiotensin II type 1 receptor antagonist on cardiac autonomic functions of rats during acute and chronic inhibition of nitric oxide synthesis.

    PubMed

    Chaswal, M; Das, S; Prasad, J; Katyal, A; Mishra, A K; Fahim, M

    2012-01-01

    We studied the effect of losartan on baroreflex sensitivity (BRS) and heart rate variability (HRV) of adult Wistar rats during acute and chronic inhibition of nitric oxide synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME). Chronic L-NAME administration (50 mg/kg per day for 7 days, orally through gavage) increased mean arterial pressure (MAP), heart rate but significantly decreased BRS. In addition, a significant fall of standard deviation of normal RR intervals, total spectral power, high frequency spectral power and a rise of low frequency to high frequency (LF: HF) ratio was seen. Acute L-NAME administration (30 mg/kg, i.v. bolus dose) also raised MAP and impaired HRV but it was associated with augmented BRS for bradycardia reflex. Losartan treatment (10 mg/kg, i.v.) in both acute and chronic L-NAME treated rats, decreased MAP but the difference was not significant. On the other hand, losartan administration normalized depressed BRS for bradycardia reflex and significantly reduced LF to HF ratio in chronic L-NAME treated rats. But this improvement was not observed in acute L-NAME group. These results indicate importance of mechanisms other than renin-angiotensin system in the pressor response of both acute as well as chronic L-NAME. However, autonomic dysregulation especially following chronic L-NAME appears to be partly angiotensin dependent.

  5. Antagonism of hypervitaminosis A-induced anterior neural tube closure defects with a methyl-donor deficiency in murine whole-embryo culture.

    PubMed

    Santos-Guzmán, Jesús; Arnhold, Thomas; Nau, Heinz; Wagner, Conrad; Fahr, Sharon H; Mao, Gloria E; Caudill, Marie A; Wang, Jennie C; Henning, Susanne M; Swendseid, Marian E; Collins, Michael D

    2003-11-01

    The interaction of a dietary excess of vitamin A (retinoid) and deficiency of methyl-donor compounds was examined in murine early-organogenesis embryonic development. Female mice were fed one of six diets from the time of vaginal plug detection until gestational d 8.0, when embryos were removed and grown in whole embryo culture for 46 h, using serum from rats fed the same diet for 36 d as the culture medium. The six diets were either methyl-donor deficient (designated -FCM: devoid of folic acid, choline and supplemental L-methionine, but having methionine as a component of the protein portion of the diet) or methyl-donor sufficient (designated +FCM: containing folic acid, choline and L-methionine supplementation), in combination with one of three concentrations of retinyl palmitate (0.016, 0.416 or 4.016 g/kg diet). The high dose of retinyl palmitate induced a failure of anterior neuropore closure and hypoplasia of the visceral arches, both of which were significantly ameliorated by simultaneous administration of the methyl-donor-deficient diet. The primary acidic retinoid detected in the rat serum was 9,13-di-cis-retinoic acid, although we hypothesize that teratogenic retinoids were formed by embryonic biotransformation of the retinyl esters to toxic metabolites. Biochemical measurements of metabolites in relevant pathways were performed. We propose that the amelioration of these malformations may be used to determine biochemical pathways critical for retinoid teratogenesis.

  6. Phytochemical and biological investigations of Elaeodendron schlechteranum.

    PubMed

    Maregesi, Sheila M; Hermans, Nina; Dhooghe, Liene; Cimanga, Kanyanga; Ferreira, Daneel; Pannecouque, Christophe; Vanden Berghe, Dirk A; Cos, Paul; Maes, Louis; Vlietinck, Arnold J; Apers, Sandra; Pieters, Luc

    2010-06-16

    Elaeodendron schlechteranum (Loes.) Loes. is a shrub or tree belonging to the family Celastraceae. In Tanzania, in addition to ethnopharmacological claims in treating various non-infectious diseases, the root and stem bark powder is applied on septic wounds, and the leaf paste is used for treatment of boils and carbuncles. The aim of this study was to identify the putative active constituents of the plant. Dried and powdered root bark was extracted and subjected to bioassay-guided fractionation, based on antibacterial, antiparasitic and anti-HIV activity. Isolated compounds were identified by spectroscopic methods, and evaluated for biological activity. Bioassay-guided isolation led to the identification of tingenin B (22beta-hydroxytingenone) as the main antibacterial constituent. It was active against Bacillus cereus, Staphylococcus aureus and Escherichia coli (IC(50)<0.25 microg/mL). Furthermore, antiparasitic activity was observed against Trypanosoma cruzi (IC(50)<0.25 microg/mL), Trypanosoma brucei (<0.25 microg/mL), Leishmania infantum (0.51 microg/mL), and Plasmodium falciparum (0.36 microg/mL). Tingenin B was highly cytotoxic to MRC-5 cells (CC(50) 0.45 microg/mL), indicating a poor selectivity. Two inactive triterpenes, 3beta,29-dihydroxyglutin-5-ene and cangoronine methyl ester were also obtained. Phytochemical investigation of the anti-HIV active fractions led to the isolation and identification of three phenolic compounds, namely 4'-O-methylepigallocatechin, 4'-O-methylgallocatechin, and a new procyanidin dimer, i.e. 4',4'''-di-O-methyl-prodelphinidin B(4) or 4'-O-methylgallocatechin-(4alpha-->8)-4'-O-methylepigallocatechin. However, none of these showed anti-HIV activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    PubMed Central

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  8. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    PubMed

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  9. Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production.

    PubMed

    García-Silvera, Edgar Edurman; Martínez-Morales, Fernando; Bertrand, Brandt; Morales-Guzmán, Daniel; Rosas-Galván, Nashbly Sarela; León-Rodríguez, Renato; Trejo-Hernández, María R

    2018-03-01

    In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 2 2 factorial design, the lipase production increased 1.55-fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X-100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6-10) and temperatures (5-55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box-Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  10. Ultrasound assisted production of fatty acid methyl esters from transesterification of triglycerides with methanol in the presence of KOH catalyst: optimization, mechanism and kinetics.

    PubMed

    Thanh, Le Tu; Okitsu, Kenji; Maeda, Yasuaki; Bandow, Hiroshi

    2014-03-01

    Ultrasound assisted transesterification of triglycerides (TG) with methanol in the presence of KOH catalyst was investigated, where the changes in the reactants and products (diglycerides (DG), monoglycerides (MG), fatty acid methyl esters (FAME) and glycerin (GL)) concentrations were discussed to understand the reaction mechanism and kinetics under ultrasound irradiation. The optimum reaction condition for the FAME production was the concentration of KOH 1.0 wt.%, molar ratio of TG to methanol of 1:6, and irradiation time of 25 min. The rate constants during the TG transesterification with methanol into GL and FAME were estimated by a curve fitting method with simulated curves to the obtained experimental results. The rate constants of [Formula: see text] were estimated to be 0.21, 0.008, 0.23, 0.005, 0.14 and 0.001 L mol(-1)min(-1), respectively. The rate determining step for the TG transesterification with methanol into GL and FAME was the reaction of MG with methanol into GL and FAME. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes.

    PubMed

    Chang, Shu-Wei; Huang, Myron; Hsieh, Yu-Hsun; Luo, Ying-Ting; Wu, Tsung-Ta; Tsai, Chia-Wen; Chen, Chin-Shuh; Shaw, Jei-Fu

    2014-07-15

    In this study, the catalytic efficiency of four recombinant CRL (Candida rugosa lipase) isozymes (LIP1-LIP4) towards the production of fatty acid methyl ester (FAME) was compared and evaluated as an alternative green method for industrial applications. The results indicated that the recombinant C. rugosa LIP1 enzyme exhibited the highest catalytic efficiency for FAME production compared to the recombinant C. rugosa LIP2-LIP4 enzymes. The optimal conditions were as follows: pH 7.0, methanol/soybean oil molar ratio: 3/1, enzyme amount: 2U (1.6 μL), reaction temperature: 20°C, 22 h of reaction time, and 3 times of methanol addition (1 mol/6h), and resulted in 61.5 ± 1.5 wt.% of FAME conversion. The reaction product contained also 10 wt.% of DAG with a ratio of 1,3-DAG to 1,2-DAG of approximately 4:6, and can be potentially used in industrial applications as a food emulsifier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Prolinimines: N-Amino-l-Pro-methyl Ester (Hydrazine) Schiff Bases from a Fish Gastrointestinal Tract-Derived Fungus, Trichoderma sp. CMB-F563.

    PubMed

    Mohamed, Osama G; Khalil, Zeinab G; Capon, Robert J

    2018-01-19

    A rice cultivation of a fish gastrointestinal tract-derived fungus, Trichoderma sp. CMB-F563, yielded natural products incorporating a rare hydrazine moiety, embedded within a Schiff base. Structures inclusive of absolute configurations were assigned to prolinimines A-D (1-4) on the basis of detailed spectroscopic and C 3 Marfey's analysis, as well as biosynthetic considerations, biomimetic total synthesis, and chemical transformations. Of note, monomeric 1 proved to be acid labile and, during isolation, underwent quantitative transformation to dimeric 3 and trimeric 4. Prolinimines are only the second reported natural products incorporating an N-amino-Pro residue, the first to include l-Pro, the first to occur as Schiff bases, and the first to be isolated from a microorganism.

  13. Conformational flexibility of aspartame.

    PubMed

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. © 2016 Wiley Periodicals, Inc.

  14. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production.

    PubMed

    Deeba, Farha; Pruthi, Vikas; Negi, Yuvraj S

    2016-08-01

    Paper mill sludge (PMS) was assessed as cheap renewable lignocellulosic biomass for lipid production by the oleaginous yeast Cryptococcus vishniaccii (MTCC 232). The sonicated paper mill sludge extract (PMSE) exhibited enhanced lipid yield and lipid content 7.8±0.57g/l, 53.40% in comparison to 5.5±0.8g/l, 40.44% glucose synthetic medium, respectively. The accumulated triglycerides (TAG) inside the lipid droplets (LDs) were converted to biodiesel by transesterification and thoroughly characterized using GC-MS technique. The fatty acid methyl ester (FAME) profile obtained reveals elevated content of oleic acid followed by palmitic acid, linoleic acid and stearic acid with improved oxidative stability related to biodiesel quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Enzymatic catalysis of formation of Z-aspartame in ionic liquid - An alternative to enzymatic catalysis in organic solvents.

    PubMed

    Erbeldinger, M; Mesiano, A J; Russell, A J

    2000-01-01

    We present the first report of enzymatic catalysis in an ionic liquid. The virtually nonexistent vapor pressure makes ionic liquids an exciting new alternative for enzyme-catalyzed syntheses in environmentally friendly environments. Z-aspartame was synthesized in a thermolysin-catalyzed reaction of carbobenzoxy-L-aspartate and L-phenylalanine methyl ester hydrochloride in 1-butyl-3-methylimidazolium hexafluorophosphate (BP6). Ionic liquids such as BP6 are thermally stable and have a remarkable range of temperatures over which they remain liquid (300 degrees C). With an initial rate of 1.2 +/- 0.1 nmol min(-)(1) mg(-)(1), we observed a competitive rate in comparison to that of enzymatic synthesis in organic solvent. Additionally, the enzyme exhibits outstanding stability, which would normally require immobilization.

  16. Oxytocin binding sites in bovine mammary tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressinmore » binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.« less

  17. Examining the critical roles of human CB2 receptor residues Valine 3.32 (113) and Leucine 5.41 (192) in ligand recognition and downstream signaling activities.

    PubMed

    Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun

    2014-09-26

    We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Determination of β-hydroxy-β-methylbutyrate concentration and enrichment in human plasma using chemical ionization gas chromatography tandem mass spectrometry.

    PubMed

    Walker, Dillon K; Thaden, John J; Wierzchowska-McNew, Agata; Engelen, Marielle P K J; Deutz, Nicolaas E P

    2017-01-01

    Our objective was to develop a quick and simplified method for the determination of β-Hydroxy-β-methylbutyrate (HMB) and ɑ-ketoisocaproic acid (KIC) concentrations and enrichments by GC/MS/MS to determine the turnover rate of HMB in humans. In experiment 1, we provided a pulse of L-[5,5,5- 2 H 3 ]leucine to younger adults in the postabsorptive state then collected blood samples over a 4h time period. In experiment 2, we provided a pulse of [3,4,methyl- 13 C 3 ]HMB to older adults in the postabsorptive state then collected blood samples over a 3h time period. Plasma concentrations of KIC and HMB and MPE of KIC and HMB were determined by GC/MS/MS. Plasma enrichment of leucine was determined by LC/MS/MS. To determine plasma enrichment of [5,5,5- 2 H 3 ]HMB and [3,4,methyl- 13 C 3 ]HMB, samples were derivatized using pentafluorobenzyl bromide and analyzed using chemical ionization mode. The final methods used included multiple reaction monitoring of transitions 117.3>59.3 for M+0 and 120.3>59.3 for M+3. In experiment 1, peak MPE of Leu peaked at 9.76% generating a peak MPE of KIC at 2.67% and a peak HMB MPE of 0.3%. In experiment 2, the rate of appearance for HMB was  0.66μmol/kg ffm/h. We calculated that production of HMB in humans accounts for 0.66% of total leucine turnover. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. 24-Hour protein, arginine and citrulline metabolism in fed critically ill children – a stable isotope tracer study

    PubMed Central

    de Betue, Carlijn T.I.; Garcia Casal, Xiomara C.; van Waardenburg, Dick A.; Schexnayder, Stephen M.; Joosten, Koen F.M.; Deutz, Nicolaas E.P.; Engelen, Marielle P.K.J.

    2017-01-01

    Background & aims The reference method to study protein and arginine metabolism in critically ill children is measuring plasma amino acid appearances with stable isotopes during a short (4–8h) time period and extrapolate results to 24-hour. However, 24-hour measurements may be variable due to critical illness related factors and a circadian rhythm could be present. Since only short duration stable isotope studies in critically ill children have been conducted before, the aim of this study was to investigate 24-hour appearance of specific amino acids representing protein and arginine metabolism, with stable isotope techniques in continuously fed critically ill children. Methods In eight critically ill children, admitted to the pediatric (n=4) or cardiovascular (n=4) intensive care unit, aged 0–10 years, receiving continuous (par)enteral nutrition with protein intake 1.0–3.7 g/kg/day, a 24-hour stable isotope tracer protocol was carried out. L-[ring-2H5]-phenylalanine, L-[3,3-2H2]-tyrosine, L-[5,5,5-2H3]-leucine, L-[guanido-15N2]-arginine and L-[5-13C-3,3,4,4-2H4]-citrulline were infused intravenously and L-[15N]-phenylalanine and L-[1-13C]leucine enterally. Arterial blood was sampled every hour. Results Coefficients of variation, representing intra-individual variability, of the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline were high, on average 14–19% for intravenous tracers and 23–26% for enteral tracers. No evident circadian rhythm was present. The pattern and overall 24-hour level of whole body protein balance differed per individual. Conclusions In continuously fed stable critically ill children, the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline show high variability. This should be kept in mind when performing stable isotope studies in this population. There was no apparent circadian rhythm. PMID:28089618

  20. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  1. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  2. Propolis reduces oxidative stress in l-NAME-induced hypertension rats.

    PubMed

    Selamoglu Talas, Zeliha

    2014-03-01

    The inhibition in the synthesis or bioavailability of nitric oxide (NO) has an important role in progress of hypertension. The blocking of nitric oxide synthase activity may cause vasoconstriction with the formation of reactive oxygen species (ROS). Propolis is a resinous substance collected by honey bees from various plants. Propolis has biological and pharmacological properties. The aim of this study was to examine the effect of propolis on catalase (CAT) activity, malondialdehyde (MDA) and NO levels in the testis tissues of hypertensive rats by Nω-nitro-l-arginine methyl ester (l-NAME). Rats have received nitric oxide synthase inhibitor (l-NAME, 40 mg kg(-1) , intraperitoneally) for 15 days to produce hypertension and propolis (200 mg kg(-1) , by gavage) during the last 5 days. MDA level in l-NAME-treated group significantly increased compared with control group (P < 0.01). MDA level of l-NAME + propolis-treated rats significantly reduced (P < 0.01) compared with l-NAME-treated group. CAT activity and NO level significantly reduced (P < 0.01) in l-NAME group compared with control group. There were no statistically significant increases in the CAT activity and NO level of the l-NAME + propolis group compared with the l-NAME-treated group (P > 0.01). These results suggest that propolis changes CAT activity, NO and MDA levels in testis of l-NAME-treated animals, and so it may modulate the antioxidant system. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Gene expression network regulated by DNA methylation and microRNA during microcystin-leucine arginine induced malignant transformation in human hepatocyte L02 cells.

    PubMed

    Chen, Hong-Qiang; Zhao, Ji; Li, Yan; He, Li-Xiong; Huang, Yu-Jing; Shu, Wei-Qun; Cao, Jia; Liu, Wen-Bin; Liu, Jin-Yi

    2018-06-01

    Microcystin (MC) is a cyclic heptapeptide compound which could lead to the development of hepatocellular carcinoma. However, the underlying epigenetic regulation mechanism is largely unknown. In this study, microcystin-LR (L: lysine, R: arginine, MC-LR) was used to induce the malignant transformation of human hepatocyte L02 cell line. The profile of gene expression, microRNA (miRNA) and DNA methylation were detected through high-throughput sequencing. Compared with control group, the expression of 826 genes and 187 miRNAs changed significantly in MC-LR treated group. DNA methylation sequencing analysis showed that 2592 CpG sites differentially methylated in promoter or the coding DNA sequence (CDS) of genes, while DNA methyltransferase 3 alpha (DNMT3a) and DNA methyltransferase 3 beta (DNMT3b) were dramatically up-regulated. Functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that significantly changed mRNAs and microRNAs were mainly involved in the formation of cancer, proliferation, invasion, migration and metabolism. MiRNA-mRNA network and mRNA-mRNA network analysis showed that hsa-miR-320a, hsa-miR-331-3p, hsa-miR-26a-5p, hsa-miR-196a-5p, hsa-miR-221-3p, coiled-coil domain containing 180 (CCDC180), melanoma antigen gene family member D1 (MAGED1), membrane spanning 4-domains A7 (MS4A7), hephaestin like 1 (HEPHL1), BH3 (Bcl-2 homology 3)-like motif containing, cell death inducer (BLID), matrix metallopeptidase 13 (MMP13), guanylate binding protein 5 (GBP5), adipogenesis regulatory factor (ADIRF), formin homology 2 domain containing 1 (FHDC1), protein kinase CAMP-dependent type II regulatory subunit beta (PRKAR2B), nodium leak channel, non-selective (NALCN), myosin light chain kinase 3 (MYLK3), epidermal growth factor receptor (EGFR) and zinc finger protein 704 (ZNF704) were key miRNAs and genes in the malignant transformation induced by MC-LR in L02 cells. Moreover, we found that expression of MYLK3, EGFR and ZNF704 were regulated by DNA methylation and miRNAs, and these genes affected the cell cycle and cell division. Our study suggested that characteristic gene alterations regulated by DNA methylation and miRNA could play an important role in environmental MC-LR induced hepatic carcinogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Switching catalysis from hydrolysis to perhydrolysis in P. fluorescens esterase

    PubMed Central

    Yin, De Lu (Tyler); Bernhardt, Peter; Morley, Krista L.; Jiang, Yun; Cheeseman, Jeremy D.; Purpero, Vincent; Schrag, Joseph D.; Kazlauskas, Romas J.

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis – the reversible formation of per-acids from carboxylic acids and hydrogen peroxide. Recently we showed that a single amino acid substitution in the alcohol binding pocket - L29P - in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. Angew. Chem. Intl. Ed. 2005, 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two x-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active-site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of ε-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction – hydrolysis of peracetic acid to acetic acid and hydrogen peroxide – occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed two fold higher kcat, but Km also increased so the specificity constant, kcat/Km, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate), but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of ε-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties, but binds ε-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones. PMID:20112920

  5. Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin.

    PubMed

    Lau, W F; Tabernero, L; Sack, J S; Iwanowicz, E J

    1995-08-01

    A novel series of retro-binding tripeptide thrombin active-site inhibitors was recently developed (Iwanowicz, E. I. et al. J. Med. Chem. 1994, 37, 2111(1)). It was hypothesized that the binding mode for these inhibitors is similar to that of the first three N-terminal residues of hirudin. This binding hypothesis was subsequently verified when the crystal structure of a member of this series, BMS-183,507 (N-[N-[N-[4-(Aminoiminomethyl)amino[-1-oxobutyl]-L- phenylalanyl]-L-allo-threonyl]-L-phenylalanine, methyl ester), was determined (Taberno, L.J. Mol. Biol. 1995, 246, 14). The methodology for developing the binding models of these inhibitors, the structure-activity relationships (SAR) and modeling studies that led to the elucidation of the proposed binding mode is described. The crystal structure of BMS-183,507/human alpha-thrombin is compared with the crystal structure of hirudin/human alpha-thrombin (Rydel, T.J. et al. Science 1990, 249,227; Rydel, T.J. et al. J. Mol Biol. 1991, 221, 583; Grutter, M.G. et al. EMBO J. 1990, 9, 2361) and with the computational binding model of BMS-183,507.

  6. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds.

    PubMed

    Rocha, Maria Valderez Ponte; de Matos, Leonardo José Brandão Lima; Lima, Larissa Pinto de; Figueiredo, Pablo Marciano da Silva; Lucena, Izabelly Larissa; Fernandes, Fabiano André Narciso; Gonçalves, Luciana Rocha Barros

    2014-09-01

    This study evaluates the production of biodiesel and ethanol from spent coffee grounds (SCG). The extraction of oil from SCG, biodiesel production and ethanol production processes were studied. The liquid-to-solid ratio and temperature were evaluated in the ultrasound-assisted extraction of the oil from SCG. The highest yield (12%) was obtained using 4 mL g(-1) liquid-to-solid ratio at 60°C for 45 min. The process to produce biodiesel showed a yield of 97% into fatty acid methyl esters (FAME). The highest glucose yield (192 mg g SCG(-1)) was obtained by hydrolysis with 0.4 mol L(-1) sulfuric acid at 121°C for 15 min. The hydrolysate was used as fermentation medium for ethanol production by Saccharomyces cerevisiae obtaining 19.0 g L(-1) at 10h of process of ethanol with a yield of ethanol and productivity of 0.50 g g(-1) and 1.90 g L(-1)h(-1), respectively. Spent coffee grounds were considered a potential feedstock for biodiesel and ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost.

  8. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.

    PubMed Central

    Creelman, R A; Tierney, M L; Mullet, J E

    1992-01-01

    Jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are plant lipid derivatives that resemble mammalian eicosanoids in structure and biosynthesis. These compounds are proposed to play a role in plant wound and pathogen responses. Here we report the quantitative determination of JA/MeJA in planta by a procedure based on the use of [13C,2H3]MeJA as an internal standard. Wounded soybean (Glycine max [L] Merr. cv. Williams) stems rapidly accumulated MeJA and JA. Addition of MeJA to soybean suspension cultures also increased mRNA levels for three wound-responsive genes (chalcone synthase, vegetative storage protein, and proline-rich cell wall protein) suggesting a role for MeJA/JA in the mediation of several changes in gene expression associated with the plants' response to wounding. Images PMID:1594598

  9. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    PubMed Central

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  10. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    PubMed

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  11. Triterpene glycosides from the tubers of Anemone coronaria.

    PubMed

    Mimaki, Yoshihiro; Watanabe, Kazuki; Matsuo, Yukiko; Sakagami, Hiroshi

    2009-07-01

    Six new triterpene glycosides (1-6), together with 11 known ones (7-17), have been isolated from a glycoside-enriched fraction prepared from the tubers of Anemone coronaria L. (Ranunculaceae). On the basis of extensive spectroscopic analysis, including 2D NMR data, and the results of hydrolytic cleavage, the structures of 1-6 were determined to be 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta,23-dihydroxyolean-12-en-28-oic acid (1), 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-O-[beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid (2), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (3), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta,23-dihydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (4), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta-hydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (5), and 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-18-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (6), respectively. Furthermore, the isolated compounds were evaluated for their cytotoxic activity against HSC-2 cells.

  12. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid.

    PubMed Central

    Burstein, Y; Kantour, F; Schechter, I

    1976-01-01

    Analyses of amino-acid sequences of the total cell-free products programmed by the mRNA of MOPC-104E gamma light (L)-chain show that over 95% of the products have sequences of a distinct protein that correspond to the L-chain precursor. In this precursor an extra piece is coupled to the NH2-terminus of the mature L-chain. Analyses of products labeled with [3H]alanine, [3H]leucine, and [3H]proline demonstrate that the extra piece is composed of at least 18 residues. Analyses of [35S]methione-labeled product indicate that the extra piece may contain an additional NH2-terminal methionine, which is detected in about 10% of the molecules. Partial recovery of the NJ2-terminal methionine (alanine, leucine, and proline are recovered in yields close to theoretical, greater than 95%) suggests that it is the initiator methionine, which is known to be short lived in eukaryotes due to rapid hydrolysis. Thus, the extra piece seems to be 19 residues in length, and it contains one methionine at the NH2-terminus, three alanines at positions 2, 12, and 17, and five leucines at positions 6, 8, 10, 11, and 13. The close gathering of leucine residues, as well as their abundance (26%), suggest that the extra piece would be quite hydrophobic. Hydrophobicity seems to be a general property of the extra piece, since similar clusters of leucine were found in the precursors of 3 KL-chains (Burstein, Y. & Schechter, I. (1976) Biochem. J. 157, 145-151). The NH2-terminus of the mature MOPC-104E gamma L-chain is blocked by pyroglutamic acid. The fact that in the precursor a peptide segment precedes this NH2-terminus establishes that pyroglutamic acid is not the initiator residue for synthesis of the L-chain. Apparently, the pyroglutamic acid is formed by cyclization of glutamic acid or glutamine during cleavage of the extra piece to yield the mature L-chain. Images PMID:822420

  13. Role of specific activators of intestinal amino acid transport in Bombyx mori larval growth and nutrition.

    PubMed

    Leonardi, M G; Casartelli, M; Fiandra, L; Parenti, P; Giordana, B

    2001-12-01

    Nutrient absorption and its modulation are critical for animal growth. In this paper, we demonstrate that leucine methyl ester (Leu-OMe) can greatly increase the activity of the transport system responsible for the absorption of most essential amino acids in the larval midgut of the silkworm Bombyx mori. We investigated leucine uptake activation by Leu-OMe in brush border membrane vesicles and in the apical membrane of epithelial cells in the midgut incubated in vitro. Moreover, the addition of this strong activator of amino acid absorption to diet significantly affected larval growth. Silkworms fed on artificial diet supplemented with Leu-OMe reached maximum body weight 12-18 h before control larvae, and produced cocoon shells up to 20% heavier than those of controls. The activation of amino acid absorption plays an essential role in larval development so that larval growth and cocoon production similar to controls reared on an artificial diet with 25% of dry mulberry leaf powder were observed in silkworms fed on an artificial diet with only 5% of mulberry powder. Arch. Copyright 2001 Wiley-Liss, Inc.

  14. Dynamics of mTORC1 activation in response to amino acids

    PubMed Central

    Manifava, Maria; Smith, Matthew; Rotondo, Sergio; Walker, Simon; Niewczas, Izabella; Zoncu, Roberto; Clark, Jonathan; Ktistakis, Nicholas T

    2016-01-01

    Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere. DOI: http://dx.doi.org/10.7554/eLife.19960.001 PMID:27725083

  15. Triphenyltin derivatives of sulfanylcarboxylic esters.

    PubMed

    Casas, José S; Couce, María D; Sánchez, Agustín; Seoane, Rafael; Sordo, José; Perez-Estévez, Antonio; Vázquez-López, Ezequiel

    2018-03-01

    The reaction of 3-(aryl)-2-sulfanylpropenoic acids [H 2 xspa; x: p=3-phenyl-, f=3-(2-furyl)-, t=3-(2-thienyl)-] with methanol or ethanol gave the corresponding methyl (Hxspme) or ethyl (Hxspee) esters. The reaction of these esters (HL) with triphenyltin(IV) hydroxide gave compounds of the type [SnPh 3 L], which were isolated and characterized as solids by elemental analysis, IR spectroscopy and mass spectrometry and in solution by multinuclear ( 1 H, 13 C and 119 Sn) NMR spectroscopy. The structures of [SnPh 3 (pspme)], [SnPh 3 (fspme)] and [SnPh 3 (fspee)] were determined by X-ray diffractometry and the antimicrobial activity against E. coli, S. aureus, B. subtilis, P. aeruginosa, Resistant P. aeruginosa (a strain resistant to 'carbapenem'), and C. albicans was tested and the in vitro cytotoxic activity against the HeLa-229, A2780 and A2780cis cell lines was determined for all compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  17. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  18. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  19. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  20. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  1. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  2. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified...

  3. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  4. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  5. Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use

    NASA Technical Reports Server (NTRS)

    Pizza, F. X.; Hernandez, I. J.; Tidball, J. G.

    1998-01-01

    The objective of this study was to determine the role of nitric oxide in muscle inflammation, fiber necrosis, and apoptosis of inflammatory cells in vivo. The effects of nitric oxide synthase (NOS) inhibition on the concentrations of neutrophils, ED1+ and ED2+ macrophages, apoptotic inflammatory cells, and necrotic muscle fibers in rats subjected to 10 days of hindlimb unloading and 2 days of reloading were determined. Administration of NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the concentrations of neutrophils, ED1+ and ED2+ macrophages, and necrotic fibers in soleus muscle relative to water-treated controls. The concentration of apoptotic inflammatory cells was also significantly lower for L-NAME-treated animals compared with water-treated controls. However, the proportion of the inflammatory cell population that was apoptotic did not differ between L-NAME-treated and control animals, suggesting that L-NAME treatment did not decrease inflammatory cell populations by increasing the frequency of apoptosis. Thus, nitric oxide or one of its intermediates promotes muscle inflammation and fiber necrosis during modified muscle use and plays no more than a minor role in the resolution of muscle inflammation by inducing apoptosis of inflammatory cells.

  6. Upregulation of Cyclooxygenase-2 Expression in Porcine Macula Densa With Chronic Nitric Oxide Synthase Inhibition

    PubMed Central

    Kommareddy, M.; McAllister, R. M.; Ganjam, V. K.; Turk, J. R.; Laughlin, M. Harold

    2012-01-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with NG-nitro-l-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release. PMID:21160023

  7. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition.

    PubMed

    Kommareddy, M; McAllister, R M; Ganjam, V K; Turk, J R; Laughlin, M Harold

    2011-11-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.

  8. In-tube extraction for the determination of the main volatile compounds in Physalis peruviana L.

    PubMed

    Kupska, Magdalena; Jeleń, Henryk H

    2017-01-01

    An analytical procedure based on in-tube extraction followed by gas chromatography with mass spectrometry has been developed for the analysis of 24 of the main volatile components in cape gooseberry (Physalis peruviana L.) samples. According to their chemical structure, the compounds were organized into different groups: one hydrocarbon, one aldehyde, four alcohols, four esters, and 14 monoterpenes. By single-factor experiments, incubation temperature, incubation time, extraction volume, extraction strokes, extraction speed, desorption temperature, and desorption speed were determined as 60°C, 20 min, 1000 μL, 20, 50:50 μL/s, 280°C, 100 μL/s, respectively. Quantitative analysis using authentic standards and external calibration curves was performed. The limit of detection and limit of quantification for the analytical procedure were calculated. Results shown the benzaldehyde, ethyl butanoate, 2-methyl-1-butanol, 1-hexanol, 1-butanol, α-terpineol, and terpinen-4-ol were the most abundant volatile compounds in analyzed fruits (68.6-585 μg/kg). The obtained data may contribute to qualify cape gooseberry to the group of superfruits and, therefore, increase its popularity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Blockade of nitric oxide synthesis modulates rat immunoglobulin A.

    PubMed

    Budec, Mirela; Marković, Dragana; Djikić, Dragoslava; Mitrović, Olivera; Drndarević, Neda; Koko, Vesna; Todorović, Vera

    2009-01-01

    Nitric oxide (NO) is known as a regulator of inflammation and immunity. The purpose of this study was to investigate the influence of this signal molecule on the rat immunoglobulin A (IgA) system using Nomega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of NO synthase. The experiments were performed on adult female Wistar rats showing diestrus day 1 that were treated with L-NAME (30 or 50 mg/kg, s.c.). Untreated and saline-injected animals were used as controls. The rats were sacrificed 3 h following L-NAME or saline administration. The concentration of IgA in serum and intestinal extracts was determined by a sandwich enzyme-linked immunosorbent assay. The number of IgA-expressing cells per area unit of Peyer's patches and the intestinal lamina propria was evaluated using stereological analysis. The results showed that L-NAME decreased the level of IgA in serum and elevated its concentration in intestinal extracts. Additionally, the increased number of IgA+ cells was found in the intestinal lamina propria in both experimental groups. Obtained findings imply that endogenous NO may modulate the IgA system in the rat. Copyright 2009 S. Karger AG, Basel.

  10. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    NASA Astrophysics Data System (ADS)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and unsaturated esters, which have been observed in methyl ester's oxidation products. The oxidation of methyl stearate, methyl oleate and methyl linoleate produces 16, 28 and 34 types of carbonyl compounds, respectively. The unsaturated methyl ester forms more carbonyl compounds compared to the saturated methyl ester, which indicates the formation of carbonyl compounds might be more related to the unsaturated carbon bond rather than the methyl ester group. Good agreement between results for total carbon (TC) generally has been found, but the organic and elemental carbon (OC and EC) fractions determined by different methods often disagree. Lack of reference materials has impeded progress on method standardization and understanding method biases. As part of this dissertation, uniform carbon distribution for the filter sets is prepared by using a simply aerosol generation and collection method. The relative standard deviations for the mean TC, OC, and EC results reported by the seven laboratories were below 10%, 11% and 12% (respectively). The method of filter generation is generally applicable and reproducible. Depending on the application, different filter loadings and types of OC materials can be employed. Matched filter sets prepared by this approach can be used for determining the accuracy of various OC-EC methods and thereby contribute to method standardization.

  11. Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification.

    PubMed

    Ferreira, Soraia; Carvalho, Josué; Valente, Joana F A; Corvo, Marta C; Cabrita, Eurico J; Sousa, Fani; Queiroz, João A; Cruz, Carla

    2015-12-01

    The developments in the use of plasmid DNA (pDNA) in gene therapy and vaccines have motivated the search and improvement of optimized purification processes. In this context, dipeptides l-tyrosine-l-tyrosine and l-tyrosine-l-arginine are synthetized to explore their application as affinity ligands for supercoiled (sc) plasmid DNA (pDNA) purification. The synthesis is based on the protection of N-Boc-l-tyrosine, followed by condensation with l-tyrosine or l-arginine methyl esters in the presence of dicyclohexylcarbodiimide (DCC), which after hydrolysis and acidification give the afforded dipeptides. The supports are then obtained by coupling l-tyrosine, l-tyrosine-l-tyrosine and l-tyrosine-l-arginine to epoxy-activated Sepharose and are characterized by high resolution magic angle spinning (HR-MAS) NMR and Fourier transform infrared spectroscopy (FTIR). Surface plasmon resonance (SPR) biosensor is used to establish the promising ligand to be used in the chromatographic experiments and ascertain experimental conditions. Sc isoform showed the highest affinity to the dipeptides, followed by linear (ln) pDNA, being the open circular (oc) the one that promoted the lowest affinity to l-tyrosine-l-arginine. Saturation transfer difference (STD)-NMR experiments show that the interaction is mainly hydrophobic with the majority of the 5'-mononucleotides, except for 5'-GMP with l-tyrosine-l-arginine Sepharose that is mainly electrostatic. The support l-tyrosine Sepharose used in chromatographic experiments promotes the separation of native pVAX1-LacZ and pcDNA3-FLAG-p53 samples (oc+sc) by decreasing the salt concentration. The results suggest that it is possible to purify different plasmids with the l-tyrosine Sepharose, with slight adjustments in the gradient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    PubMed

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  13. Determination of the tolerable upper intake level of leucine in acute dietary studies in young men.

    PubMed

    Elango, Rajavel; Chapman, Karen; Rafii, Mahroukh; Ball, Ronald O; Pencharz, Paul B

    2012-10-01

    Leucine has been suggested to improve athletic performance. Therefore, the branched-chain amino acids (BCAAs), especially leucine, are popular as dietary supplements in strength-training athletes; however, the intake of leucine in excess of requirements raises concerns regarding adverse effects. Currently, the tolerable upper intake level (UL) for leucine is unknown. The objective of the current study was to determine the UL for leucine in adult men under acute dietary conditions. Five healthy adults (20-35 y) each received graded stepwise increases in leucine intakes of 50, 150, 250, 500, 750, 1000, and 1250 mg · kg⁻¹ · d⁻¹, which corresponded to the Estimated Average Requirement (EAR) and the EAR ×3, ×5, ×10, ×15, ×20, and ×25 in a total of 29 studies. The UL of leucine was identified by the measurement of plasma and urinary biochemical variables and changes in leucine oxidation by using l-[1-¹³C]-leucine. A significant increase in blood ammonia concentrations above normal values, plasma leucine concentrations, and urinary leucine excretion were observed with leucine intakes >500 mg · kg⁻¹ · d⁻¹. The oxidation of l-[1-¹³C]-leucine expressed as label tracer oxidation in breath (F¹³CO₂), leucine oxidation, and α-ketoisocaproic acid (KIC) oxidation led to different results: a plateau in F¹³CO₂ observed after 500 mg · kg⁻¹ · d⁻¹, no clear plateau observed in leucine oxidation, and KIC oxidation appearing to plateau after 750 mg · kg⁻¹ · d⁻¹. On the basis of plasma and urinary variables, the UL for leucine in healthy adult men can be suggested at 500 mg · kg⁻¹ · d⁻¹ or ~35 g/d as a cautious estimate under acute dietary conditions.

  14. Decreased Arteriolar Tetrahydrobiopterin is Linked to Superoxide Generation from Nitric Oxide Synthase in Mice Fed High Salt

    PubMed Central

    Nurkiewicz, Timothy R.; Wu, Guoyao; Li, Peng; Boegehold, Matthew A.

    2012-01-01

    Objective Impaired endothelium-dependent arteriolar dilation in mice fed high salt is due to local oxidation of nitric oxide (NO) by superoxide anion (O2-). We explored the possibility that “uncoupled” endothelial nitric oxide synthase (eNOS) is the source of this O2-. Methods Levels of L-arginine (L-Arg), tetrahydrobiopterin (BH4) and O2- (hydroethidine oxidation) were measured in spinotrapezius muscle arterioles of mice fed normal salt (0.45%, NS) or high salt (4%, HS) diets for 4 weeks, with or without dietary L-Arg supplementation. The contribution of NO to endothelium-dependent dilation was determined from the effect of Nω-nitro-L-arginine methyl ester (L-NAME) on responses to acetylcholine (ACh). Results Arterioles in HS mice had lower [BH4] and higher O2- levels than those in NS mice. ACh further increased arteriolar O2- in HS mice only. L-Arg supplementation prevented the reduction in [BH4] in arterioles of HS mice, and O2- was not elevated in these vessels. Compared to NS mice, arteriolar ACh responses were diminished and insensitive to L-NAME in HS mice, but not in HS mice supplemented with L-Arg. Conclusions These findings suggest that eNOS uncoupling due to low [BH4] is responsible for O2- generation and reduced NO-dependent dilation in arterioles of mice fed a high salt diet. PMID:20163541

  15. Evidence that spinal segmental nitric oxide mediates tachyphylaxis to peripheral local anesthetic nerve block.

    PubMed

    Wang, C; Sholas, M G; Berde, C B; DiCanzio, J; Zurakowski, D; Wilder, R T

    2001-09-01

    Tachyphylaxis to sciatic nerve blockade in rats correlates with hyperalgesia. Spinal inhibition of nitric oxide synthase with N(G)nitro-L-arginine methyl ester (L-NAME) has been shown to prevent hyperalgesia. Given systemically, L-NAME also prevents tachyphylaxis. The action of L-NAME in preventing tachyphylaxis therefore may be mediated at spinal sites. We compared systemic versus intrathecal potency of L-NAME in modulating tachyphylaxis to sciatic nerve block. Rats were prepared with intrathecal catheters. Three sequential sciatic nerve blocks were placed. Duration of block of thermal nocifensive, proprioceptive and motor responses was recorded. We compared spinal versus systemic dose-response to L-NAME, and examined effects of intrathecal arginine on tachyphylaxis. An additional group of rats underwent testing after T10 spinal cord transection. In these rats duration of sciatic nerve block was assessed by determining the heat-induced flexion withdrawal reflex. L-NAME was 25-fold more potent in preventing tachyphylaxis given intrathecally than intraperitoneally. Intrathecal arginine augmented tachyphylaxis. Spinalized rats exhibited tachyphylaxis to sciatic block. The increased potency of intrathecal versus systemic L-NAME suggests a spinal site of action in inhibiting tachyphylaxis. Descending pathways are not necessary for the development of tachyphylaxis since it occurs even after T10 spinal cord transection. Thus tachyphylaxis, like hyperalgesia, is mediated at least in part by a spinal site of action.

  16. Glucocorticoid-induced Leucine Zipper (GILZ) and Long GILZ Inhibit Myogenic Differentiation and Mediate Anti-myogenic Effects of Glucocorticoids*

    PubMed Central

    Bruscoli, Stefano; Donato, Valerio; Velardi, Enrico; Di Sante, Moises; Migliorati, Graziella; Donato, Rosario; Riccardi, Carlo

    2010-01-01

    Myogenesis is a process whereby myoblasts differentiate and fuse into multinucleated myotubes, the precursors of myofibers. Various signals and factors modulate this process, and glucocorticoids (GCs) are important regulators of skeletal muscle metabolism. We show that glucocorticoid-induced leucine zipper (GILZ), a GC-induced gene, and the newly identified isoform long GILZ (L-GILZ) are expressed in skeletal muscle tissue and in C2C12 myoblasts where GILZ/L-GILZ maximum expression occurs during the first few days in differentiation medium. Moreover, we observed that GC treatment of myoblasts, which increased GILZ/L-GILZ expression, resulted in reduced myotube formation, whereas GILZ and L-GILZ silencing dampened GC effects. Inhibition of differentiation caused by GILZ/L-GILZ overexpression correlated with inhibition of MyoD function and reduced expression of myogenin. Notably, results indicate that GILZ and L-GILZ bind and regulate MyoD/HDAC1 transcriptional activity, thus mediating the anti-myogenic effect of GCs. PMID:20124407

  17. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils.

    PubMed

    Philips, M R; Pillinger, M H; Staud, R; Volker, C; Rosenfeld, M G; Weissmann, G; Stock, J B

    1993-02-12

    In human neutrophils, as in other cell types, Ras-related guanosine triphosphate-binding proteins are directed toward their regulatory targets in membranes by a series of posttranslational modifications that include methyl esterification of a carboxyl-terminal prenylcysteine residue. In intact cells and in a reconstituted in vitro system, the amount of carboxyl methylation of Ras-related proteins increased in response to the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (FMLP). Activation of Ras-related proteins by guanosine-5'-O-(3-thiotriphosphate) had a similar effect and induced translocation of p22rac2 from cytosol to plasma membrane. Inhibitors of prenylcysteine carboxyl methylation effectively blocked neutrophil responses to FMLP. These findings suggest a direct link between receptor-mediated signal transduction and the carboxyl methylation of Ras-related proteins.

  18. Excessive S-Adenosyl-L-Methionine-Dependent Methylation Increases Levels of Methanol, Formaldehyde and Formic Acid in Rat Brain Striatal Homogenates: Possible role in S-adenosyl-L-methionine-induced Parkinson’s disease-like disorders

    PubMed Central

    Lee, Eun-Sook; Chen, Hongtao; Hardman, Chadwick; Simm, Anthony; Charlton, Clivel

    2009-01-01

    Aims Excessive methylation may be a precipitating factor for Parkinson’s disease (PD) since S-adenosylmethionine (SAM), the endogenous methyl donor, induces PD-like changes when injected into the rat brain. The hydrolysis of the methyl ester bond of the methylated proteins produces methanol. Since methanol is oxidized into formaldehyde, and formaldehyde into formic acid in the body, we investigated the effects of SAM on the production of methanol, formaldehyde and formic acid in rat brain striatal homogenates and the toxicity of these products in PC12 cells. Main methods radio-enzymatic and colorimetric assays, cell viability, Western blot. Key findings SAM increased the formation of methanol, formaldehyde and formic acid in a concentration and time-dependent manner. Concentrations of [3H-methyl]-SAM at 0.17, 0.33, 0.67 and 1.34 nM produced 3.8, 8.0, 18.3 and 34.4 fmol/mg protein/h of [3H] methanol in rat striatal homogenates, respectively. SAM also significantly generated formaldehyde and formic acid in striatal homogenates. Formaldehyde was the most toxic metabolite to differentiated PC12 pheochromocytoma cells in cell culture studies, indicating that formaldehyde formed endogenously may contribute to neuronal damage in excessive methylation conditions. Subtoxic concentration of formaldehyde decreased the expression of tyrosine hydroxylase, the limiting factor in dopamine synthesis. Formaldehyde was more toxic to catecholaminergic PC12 cells than C6 glioma cells, indicating that neurons are more vulnerable to formaldehyde than glia cells. Significance We suggest that excessive carboxylmethylation of proteins might be involved in the SAM-induced PD-like changes and in the aging process via the toxic effects of formaldehyde. PMID:18930743

  19. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    PubMed Central

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  20. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    PubMed

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  1. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarilymore » at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.« less

  2. Four new triterpenoid glycosides from the seed residue of Hippophae rhamnoides subsp. sinensis.

    PubMed

    Chen, Chao; Gao, Wen; Cheng, Liang; Shao, Yan; Kong, De-Yun

    2014-01-01

    Four new triterpenoid saponins (1-4) were isolated from the seed residue of Hippophae rhamnoides subsp. sinensis, named 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl-(1 → 3)]-[α-L-rhamnopyranosyl-(1 → 2)]-α-L-arabinopyranosyl-13-ene-19-one-28-oic acid 28-O-β-D-glucopyranosyl ester (1), 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl-(1 → 3)]-[α-L-rhamnopyranosyl-(1 → 2)]-α-L-arabinopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-D-glucopyranosyl ester (2), 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl-(1 → 3)]-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-glucopyranosyl-13-ene-19-one-28-oic acid 28-O-β-D-glucopyranosyl ester (3), and 3-O-[β-D-glucopyranosyl(1 → 2)-β-D-glucopyranosyl-(1 → 3)]-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-glucopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-D-glucopyranosyl ester (4), and their structures were elucidated on the basis of spectroscopic and chemical methods.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja

    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-richmore » motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.« less

  4. Monitoring nitric oxide (NO) in rat locus coeruleus: differential effects of NO synthase inhibitors.

    PubMed

    Desvignes, C; Robert, F; Vachette, C; Chouvet, G; Cespuglio, R; Renaud, B; Lambás-Señas, L

    1997-04-14

    A porphyrinic microsensor combined with in vivo voltammetry was used to monitor extracellular nitric oxide (NO) in the locus coeruleus (LC) of anaesthetized rats. Administration of N omega-nitro-L-arginine p-nitro-anilide (100 mg/kg, i.p) or 7-nitro indazole (30 mg/kg, i.p.), which both inhibit preferentially neuronal NO synthase (NOS), induced a marked decrease in the NO oxidation peak height. On the other hand, N omega-nitro-L-arginine methyl ester (L-NAME) (200 mg/kg, i.p.), a less selective NOS inhibitor, failed to decrease the NO signal. Moreover, intra LC administration of NMDA, known to activate LC noradrenergic neurones, increased the NO signal. This study demonstrates the usefulness of in vivo voltammetry to monitor basal levels of NO and their changes in the LC. Differential effects of NOS inhibitors show that their central activity need to be assessed through in situ measurement of NO before using these inhibitors as neuropharmacological tools.

  5. Nitric oxide synthase and soluble guanylate cyclase are involved in spinal cord wind-up activity of monoarthritic, but not of normal rats.

    PubMed

    Laurido, Claudio; Hernández, Alejandro; Constandil, Luis; Pelissier, Teresa

    2003-11-27

    While increasing evidence points to a role for the nitric oxide (NO)/cyclic guanosine 3,5-monophosphate (GMPc) cascade in hyperalgesia and allodynia, participation of the NO/GMPc pathway in synaptic processing in the spinal cord, i.e. wind-up activity, is less clear. We studied the effects of intrathecal administration of Nomega-nitro-L-arginine methyl ester (L-NAME) and methylene blue, inhibitors of NO synthase and guanylate cyclase respectively, on wind-up activity developed in a C-fiber reflex response paradigm. 5, 10 and 20 microg i.t. of L-NAME or methylene blue did not modify spinal wind-up in normal rats, while a dose-dependent inhibition of wind-up was observed in monoarthritic rats. Results suggest that the NO/GMPc pathway plays a non-significant role in wind-up activity evoked in normal animals, while it may be essential in chronic pain processing.

  6. Fatty acid composition of Juniperus species (Juniperus section) native to Turkey.

    PubMed

    Güvenç, Aysegül; Küçükboyaci, Nurgün; Gören, Ahmet Ceyhan

    2012-07-01

    Fatty acid compositions of seeds of five taxa of the Juniperus section of the genus Juniperus L. (Cupressaceae), i. e. J. drupacea Lab., J. communis L. var. communis, J. communis var. saxatilis Pall., J. oxycedrus L. subsp. oxycedrus, and J. oxycedrus subsp. macrocarpa (Sibth. & Sm.) Ball, were investigated. Methyl ester derivatized fatty acids of the lipophylic extracts of the five species were comparatively analyzed by capillary gas chromatography-mass spectrometry (GC-MS). Juniperus taxa showed uniform fatty acid patterns, among which linoleic (25.8 - 32.5%), pinolenic (11.9 - 24.1%) and oleic acids (12.4 - 17.2%) were determined to be the main fractions in the seed oils. Juniperonic acid was found to be remarkably high in J. communis var. saxatilis (11.4%), J. oxycedrus subsp. oxycedrus (10.4%), and J. communis var. communis (10.1%). To the best of our knowledge, the present work discloses the first report on the fatty acid compositions of seeds of this Juniperus section grown in Turkey.

  7. Kinetics and mechanism of the condensation of pyridoxal hydrochloride with L-tryptophan and D-tryptophan, and the chemical transformation of their products

    NASA Astrophysics Data System (ADS)

    Pishchugin, F. V.; Tuleberdiev, I. T.

    2017-10-01

    The kinetics and mechanism of interaction between pyridoxal and L-tryptophan, D-tryptophan, and their derivatives are studied. It is found that condensation reactions proceed via three kinetically distinguishable stages: (1) the rapid intraplanar addition of the NH2 groups of the amino acids to pyridoxal with the formation of amino alcohols; (2) the rotational isomerism of amino alcohol fragments with their subsequent dehydration and the formation of a Schiff base with a specific configuration; (3) the abstraction of α-hydrogen in the product of condensation of pyridoxal with L-tryptophan, or the abstraction of CO2 in the product of condensation of pyridoxal with D-tryptophan with the formation of quinoid structures, hydrolysis of which results in the preparation of pyridoxamine and keto acid or pyridoxal and tryptamine, respectively. Schiff bases resistant to further chemical transformations are formed in the reaction with tryptophan methyl ester.

  8. Ionic liquid supported on an electrodeposited polycarbazole film for the headspace solid-phase microextraction and gas chromatography determination of aromatic esters.

    PubMed

    Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao

    2015-05-01

    A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.

    PubMed

    Li, Ping-Chia; Shaw, Chen-Fu; Kuo, Tin-Fan; Chien, Chiang-Ting

    2005-04-18

    The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.

  10. L-NAME, a nitric oxide synthase inhibitor, as a potential countermeasure to post-suspension hypotension in rats

    NASA Technical Reports Server (NTRS)

    Bayorh, M. A.; Socci, R. R.; Watts, S.; Wang, M.; Eatman, D.; Emmett, N.; Thierry-Palmer, M.

    2001-01-01

    A large number of astronauts returning from spaceflight experience orthostatic hypotension. This hypotension may be due to overproduction of vasodilatory mediators, such as nitric oxide (NO) and prostaglandins. To evaluate the role of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) as a countermeasure against the post-suspension reduction in mean arterial pressure (MAP), we assessed the cardiovascular responses and vascular reactivity to 7-day 30 degrees tail-suspension and a subsequent 6 hr post-suspension period in conscious rats. After a pre-suspension reading, direct MAP and heart rate (HR) were measured daily and every 2 hrs post-suspension. The NO synthase inhibitor L-NAME (20 mg/kg, i.v.), or saline, were administered after the 7th day reading prior to release from suspension and at 2 and 4 hrs post-suspension. At 6 hrs post-suspension, vascular reactivity was assessed. While MAP did not change during the suspension period, it was reduced post-suspension. Heart rate was not significantly altered. L-NAME administration reversed the post-suspension reduction in MAP. In addition, the baroreflex sensitivity for heart rate was modified by L-NAME. Thus, the post-suspension reduction in MAP may be due to overproduction of NO and altered baroreflex activity.

  11. An acute study on the relative gastro-intestinal absorption of a novel form of calcium ascorbate.

    PubMed

    Bush, M J; Verlangieri, A J

    1987-07-01

    Several functions of L-ascorbic acid (vitamin C) have been suggested in addition to its role in the prevention of scurvy. Consequently, a controversy has arisen over the daily intake of the vitamin which will afford maximum benefits. Rapid cellular uptake and delayed renal excretion of ascorbic acid would be conducive to providing optimum cellular concentration for biochemical activity. ESTER-C (patent pending), a complex consisting of L-ascorbic acid and Ca++, has been recently developed by Inter-Cal Corporation (421 Miller Road, Prescott, AZ 86301). It has been proposed that the structure of ESTER-C may render it more readily absorbed and less rapidly excreted than the acid or salt form of the vitamin. To test this hypothesis, ESTER-C and L-ascorbic acid were administered to two groups of rats. Blood was sampled at 20, 40, 80, 160 and 240 minutes and plasma analyzed for ascorbic acid. As urine appeared in collection cups, it was tested qualitatively for the presence of ascorbic acid. The plasma concentration of ascorbic acid was higher in ESTER-C treated rats at 20, 40 and 80 minutes than in rats given L-ascorbic acid. Ascorbic acid was detected in the urine of animals administered ESTER-C later than in those treated with L-ascorbic acid. These results support the hypothesis that ESTER-C is absorbed more readily and excreted less rapidly than L-ascorbic acid.

  12. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    PubMed

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent K D , 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Improved synthetic route to methyl 1-fluoroindan-1-carboxylate (FICA Me ester) and 4-methyl derivatives.

    PubMed

    Koyanagi, Jyunichi; Kamei, Tomoyo; Ishizaki, Miyuki; Nakamura, Hiroshi; Takahashi, Tamiko

    2014-01-01

    An improved synthetic route has been developed for the preparation of methyl 1-fluoroindan-1-carboxylate (FICA Me ester) from 1-indanone. Methyl 4-methyl-1-fluoroindan-1-carboxylate (4-Me-FICA Me ester) was also prepared following the same procedure.

  14. Synthesis of novel ganglioside GM4 analogues containing N-deacetylated and lactamized sialic acid: probes for searching new ligand structures for human L-selectin.

    PubMed

    Otsubo, N; Ishida, H; Kiso, M

    2001-01-15

    Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.

  15. Inhibitory effects of patchouli alcohol on stress-induced diarrhea-predominant irritable bowel syndrome

    PubMed Central

    Zhou, Tian-Ran; Huang, Jing-Jing; Huang, Zi-Tong; Cao, Hong-Ying; Tan, Bo

    2018-01-01

    AIM To elucidate the mechanism of patchouli alcohol (PA) in treatment of rat models of diarrhea-predominant irritable bowel syndrome (IBS-D). METHODS We studied the effects of PA on colonic spontaneous motility using its cumulative log concentration (3 × 10−7 mol/L to 1 × 10−4 mol/L). We then determined the responses of the proximal and distal colon segments of rats to the following stimuli: (1) carbachol (1 × 10−9 mol/L to 1 × 10−5 mol/L); (2) neurotransmitter antagonists including Nω-nitro-L-arginine methyl ester hydrochloride (10 μmol/L) and (1R*, 2S*)-4-[2-Iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol dihydrogen phosphate ester tetraammonium salt (1 μmol/L); (3) agonist α,β-methyleneadenosine 5′-triphosphate trisodium salt (100 μmol/L); and (4) single KCl doses (120 mmol/L). The effects of blockers against antagonist responses were also assessed by pretreatment with PA (100 μmol/L) for 1 min. Electrical-field stimulation (40 V, 2-30 Hz, 0.5 ms pulse duration, and 10 s) was performed to observe nonadrenergic, noncholinergic neurotransmitter release in IBS-D rat colon. The ATP level of Kreb’s solution was also determined. RESULTS PA exerted a concentration-dependent inhibitory effect on the spontaneous contraction of the colonic longitudinal smooth muscle, and the half maximal effective concentration (EC50) was 41.9 μmol/L. In comparison with the KCl-treated IBS-D group, the contractile response (mg contractions) in the PA + KCl-treated IBS-D group (11.87 ± 3.34) was significantly decreased in the peak tension (P < 0.01). Compared with CCh-treated IBS-D rat colon, the cholinergic contractile response of IBS-D rat colonic smooth muscle (EC50 = 0.94 μmol/L) was significantly decreased by PA (EC50 = 37.43 μmol/L) (P < 0.05). Lack of nitrergic neurotransmitter release in stress-induced IBS-D rats showed contraction effects on colonic smooth muscle. Pretreatment with PA resulted in inhibitory effect on L-NAME-induced (10 μmol/L) contraction (P < 0.05). ATP might not be the main neurotransmitter involved in inhibitory effects of PA in the colonic relaxation of stress-induced IBS-D rats. CONCLUSION PA application may serve as a new therapeutic approach for IBS-D. PMID:29456408

  16. Possible involvement of nitric oxide in pilocarpine induced seminal emission in rats.

    PubMed

    Tomé, A R; da Silva, J C; Souza, A A; Mattos, J P; Vale, M R; Rao, V S

    1999-12-01

    Intraperitoneal injection of pilocarpine (0.75-3.0 mg/kg) caused a dose-related seminal emission in adult male rats. The seminal emission response to 3 mg/kg of pilocarpine was greatly reduced in atropinized (5 and 10 mg/kg, SC) animals, suggesting a cholinomimetic effect. Nw-nitro-L-arginine methyl ester (5, 10, and 20 mg/kg, SC), a nitric oxide synthesis inhibitor, also inhibited the pilocarpine-induced seminal emission, which was reversed by L-arginine (600 mg/kg, SC) or by coinjection of sodium nitroprusside (0.5 mg/kg, SC). Urine analysis for levels of nitric oxide metabolites, nitrate/nitrite (NO3-/NO2-), showed marked alterations in accordance with the drug treatments. The results suggest that nitric oxide mediates the inhibitory neurotransmission responsible for seminal emission in pilocarpine stimulated rats.

  17. Microbial distribution in the Environmental Control and Life Support System water recovery test conducted at NASA, MSFC

    NASA Technical Reports Server (NTRS)

    Gauthier, J. J.; Roman, M. C.; Kilgore, B. A.; Huff, T. L.; Obenhuber, D. C.; Terrell, D. W.; Wilson, M. E.; Jackson, N. E.

    1991-01-01

    NASA/MSFC is developing a physical/chemical treatment system to reclaim wastewater for reuse on Space Station Freedom (SSF). Integrated testing of hygiene and potable water subsystems assessed the capability to reclaim water to SSF specifications. The test was conducted from May through July 1990 with a total of 47 days of system test operation. Water samples were analyzed using standard cultural methods employing membrane filtration and spread plate techniques and epifluorescence microscopy. Fatty acid methyl ester and biochemical profiles were used for microbial identification. Analysis of waste and product water produced by the subsystems demonstrated the effective reduction of viable microbial populations greater than 8.0E + 06 colony forming units (CFU) per 100 mL to an average of 5 CFU/100 mL prior to distribution into storage tanks.

  18. Pentadecapeptide BPC 157, in clinical trials as a therapy for inflammatory bowel disease (PL14736), is effective in the healing of colocutaneous fistulas in rats: role of the nitric oxide-system.

    PubMed

    Klicek, Robert; Sever, Marko; Radic, Bozo; Drmic, Domagoj; Kocman, Ivan; Zoricic, Ivan; Vuksic, Tihomir; Ivica, Mihovil; Barisic, Ivan; Ilic, Spomenko; Berkopic, Lidija; Vrcic, Hrvoje; Brcic, Luka; Blagaic, Alenka Boban; Coric, Marijana; Brcic, Iva; Rokotov, Dinko Stancic; Anic, Tomislav; Seiwerth, Sven; Sikiric, Predrag

    2008-09-01

    We focused on the therapeutic effect of the stable gastric pentadecapeptide BPC 157 and how its action is related to nitric oxide (NO) in persistent colocutaneous fistula in rats (at 5 cm from anus, colon defect of 5 mm, skin defect of 5 mm); this peptide has been shown to be safe in clinical trials for inflammatory bowel disease (PL14736) and safe for intestinal anstomosis therapy. BPC 157 (10 microg/kg, 10 ng/kg) was applied i) in drinking water until the animals were sacrificed at post-operative day 1, 3, 5, 7, 14, 21, and 28; or ii) once daily intraperitoneally (first application 30 min following surgery, last 24 h before sacrifice) alone or with N(G)-nitro-L-arginine methyl ester (L-NAME) (5 mg/kg), L-arginine (200 mg/kg), and their combinations. Sulphasalazine (50 mg/kg) and 6-alpha-methylprednisolone (1 mg/kg) were given once daily intraperitoneally. BPC 157 accelerated parenterally or perorally the healing of colonic and skin defect, leading to the suitable closure of the fistula, macro/microscopically, biomechanically, and functionally (larger water volume sustained without fistula leaking). L-NAME aggravated the healing failure of colocutaneous fistulas, skin, and colon wounds (L-NAME groups). L-Arginine was effective only with blunted NO generation (L-NAME + L-arginine groups) but not without (L-arginine groups). All of the BPC 157 beneficial effects remained unchanged with blunted NO-generation (L-NAME + BPC 157 groups) and with NO substrate (L-arginine + BPC 157 groups) as well as L-NAME and L-arginine co-administration (L-NAME + L-arginine + BPC 157 groups). Sulphasalazine was only moderately effective, and corticosteroid even had an aggravating effect.

  19. Spironolactone differently influences remodeling of the left ventricle and aorta in L-NAME-induced hypertension.

    PubMed

    Simko, F; Matúsková, J; Lupták, I; Pincíková, T; Krajcírovicová, K; Stvrtina, S; Pomsár, J; Pelouch, V; Paulis, L; Pechánová, O

    2007-01-01

    Aldosterone receptor antagonist, spironolactone, has been shown to prevent remodeling of the heart in several models of left ventricular hypertrophy. The aim of the present study was to determine whether the treatment with spironolactone can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) and aortic remodeling in N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Four groups of rats were investigated: control, spironolactone (200 mg/kg), L-NAME (40 mg/kg) and L-NAME + spironolactone (in corresponding dosage). Animals were studied after 5 weeks of treatment. The decrease of NO-synthase activity in the LV and kidney was associated with the development of hypertension and LV hypertrophy, with increased DNA concentration in the LV, and remodeling of the aorta in the L-NAME group. Spironolactone prevented the inhibition of NO-synthase activity in the LV and kidney and partially attenuated hypertension and LVH development and the increase in DNA concentration. However, remodeling of the aorta was not prevented by spironolactone treatment. We conclude that the aldosterone receptor antagonist spironolactone improved nitric oxide production and partially prevented hypertension and LVH development without preventing hypertrophy of the aorta in NO-deficient hypertension. The reactive growth of the heart and aorta seems to be controlled by different mechanisms in L-NAME-induced hypertension.

  20. Preparation of amino acid nanoparticles at varying saturation conditions in an aerosol flow reactor

    NASA Astrophysics Data System (ADS)

    Raula, Janne; Lehtimäki, Matti; Karppinen, Maarit; Antopolsky, Maxim; Jiang, Hua; Rahikkala, Antti; Kauppinen, Esko I.

    2012-07-01

    Nanoparticle formation of five amino acids, glycine, l-proline, l-valine, l-phenylalanine, and l-leucine was studied. The aim was to explore factors determining nanoparticle formation and crystallinity. The amino acid nanoparticles have been prepared at different saturation conditions in the aerosol reactor. In a condensed state, the particles were formed by droplet drying. The raise in temperature induced the sublimation of amino acids from the aerosol particles. The amino acid vapor was condensed by physical vapor deposition in a rapid cooling process. The diffusion coefficients and nucleation rates of amino acids have been calculated to understand particle formation. Upon the vapor deposition, amino acids formed crystalline nanoparticles except in the case l-phenylalanine according to X-ray diffraction. The crystal polymorph of glycine in the nanoparticles depended on the applied reactor temperature. The preference of crystallographic orientation varied in both the particle formations from condensed and vapor phase. l-Valine, l-phenylalanine, and l-leucine formed leafy-looking particles. These results could be utilized in the fabrication of nano-sized asperities on drug particle surfaces to reduce forces between particles and accordingly increase particle dispersion in dry powder inhalers.

  1. An analytical method for trifluoroacetic Acid in water and air samples using headspace gas chromatographic determination of the methyl ester.

    PubMed

    Zehavi, D; Seiber, J N

    1996-10-01

    An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA.

  2. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins.

    PubMed

    Tugarinov, Vitali; Venditti, Vincenzo; Marius Clore, G

    2014-01-01

    A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

  3. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  4. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  5. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation.

    PubMed

    Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing

    2014-07-01

    Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.

  6. Identification of Esters as Novel Aggregation Pheromone Components Produced by the Male Powder-Post Beetle, Lyctus africanus Lesne (Coleoptera: Lyctinae).

    PubMed

    Kartika, Titik; Shimizu, Nobuhiro; Yoshimura, Tsuyoshi

    2015-01-01

    Lyctus africanus is a cosmopolitan powder-post beetle that is considered one of the major pests threatening timber and timber products. Because infestations of this beetle are inconspicuous, damage is difficult to detect and identification is often delayed. We identified the chemical compounds involved in the aggregation behavior of L. africanus using preparations of crude hexanic extracts from male and female beetles (ME and FE, respectively). Both male and female beetles showed significant preferences for ME, which was found to contain three esters. FE was ignored by both the sexes. Further bioassay confirmed the role of esters in the aggregation behavior of L. africanus. Three esters were identified as 2-propyl dodecanoate, 3-pentyl dodecanoate, and 3-pentyl tetradecanoate. Further behavioral bioassays revealed 3-pentyl dodecanoate to play the main role in the aggregation behavior of female L. africanus beetles. However, significantly more beetles aggregated on a paper disk treated with a blend of the three esters than on a paper disk treated with a single ester. This is the first report on pheromone identification in L. africanus; in addition, the study for the first time presents 3-pentyl dodecanoate as an insect pheromone.

  7. Antihypertensive mechanisms of chronic captopril or N-acetylcysteine treatment in L-NAME hypertensive rats.

    PubMed

    Zicha, Josef; Dobesová, Zdenka; Kunes, Jaroslav

    2006-12-01

    Hypertension due to chronic inhibition of NO synthase (NOS) by Nomega-nitro-L-arginine methyl ester (L-NAME) administration is characterized by both impaired NO-dependent vasodilation and enhanced sympathetic vasoconstriction. The aim of our study was to evaluate changes in the participation of major vasoactive systems in L-NAME-treated rats which were subjected to simultaneous antihypertensive (captopril) or antioxidant (N-acetylcysteine, NAC) treatment. Three-month-old Wistar males treated with L-NAME (60 mg/kg/day) for 5 weeks were compared to rats in which L-NAME treatment was combined with simultaneous chronic administration of captopril or NAC. Basal blood pressure (BP) and its acute responses to consecutive i.v. injections of captopril (10 mg/kg), pentolinium (5 mg/kg), L-NAME (30 mg/kg), tetraethylammonium (TEA, 16 mg/kg) and nitroprusside (NP, 20 microg/kg) were determined in conscious rats at the end of the study. The development of L-NAME hypertension was prevented by captopril treatment, whereas NAC treatment caused only a moderate BP reduction. Captopril treatment normalized the sympathetic BP component and significantly reduced residual BP (measured at full NP-induced vasodilation). In contrast, chronic NAC treatment did not modify the sympathetic BP component or residual BP, but significantly enhanced NO-dependent vasodilation. Neither captopril nor NAC treatment influenced the compensatory increase of TEA-sensitive vasodilation mediated by endothelium-derived hyperpolarizing factor in L-NAME-treated rats. Chronic captopril treatment prevented L-NAME hypertension by lowering of sympathetic tone, whereas chronic NAC treatment attenuated L-NAME hypertension by reduction in the vasodilator deficit due to enhanced NO-dependent vasodilation.

  8. A practical derivatization LC/MS approach for determination of trace level alkyl sulfonates and dialkyl sulfates genotoxic impurities in drug substances.

    PubMed

    An, Jianguo; Sun, Mingjiang; Bai, Lin; Chen, Ted; Liu, David Q; Kord, Alireza

    2008-11-04

    Derivatization LC/MS methodology has been developed for the determination of a group of commonly encountered alkyl esters of sulfonates or sulfates in drug substances at low ppm levels. This general method uses trimethylamine as the derivatizing reagent for ethyl/propyl/isopropyl esters and triethylamine for methyl esters. The resulting quaternary ammonium derivatization products are highly polar (ionic) and can be retained by a hydrophilic interaction liquid chromatography (HILIC) column and readily separated from the main interfering active pharmaceutical ingredient (API) peak that is usually present at very high concentration. The method gives excellent sensitivity for all the alkyl esters at typical target analyte level of 1-2 ppm when the API samples were prepared at 5mg/mL. The recoveries at 1-2 ppm were generally above 85% for all the alkyl esters in the various APIs tested. The injection precisions of the lowest concentration standards were excellent with R.S.D.=0.4-4%. A linear range for concentrations from 0.2 to 20 ppm has been established with R(2)>or=0.99. This general method has been tested in a number of API matrices and used successfully for determination of alkyl sulfonates or dialkyl sulfates in support of API batch releases at GlaxoSmithKline.

  9. Development and validation of a gas chromatography/ion trap-mass spectrometry method for simultaneous quantification of cocaine and its metabolites benzoylecgonine and norcocaine: application to the study of cocaine metabolism in human primary cultured renal cells.

    PubMed

    Valente, Maria João; Carvalho, Félix; Bastos, M Lourdes; Carvalho, Márcia; de Pinho, Paula Guedes

    2010-11-15

    Acute renal failure is a common finding in cocaine abusers. While cocaine metabolism may contribute to its nephrotoxic mechanisms, its pharmacokinetics in kidney cells is hitherto to be clarified. Primary cultures of human proximal tubular cells (HPTCs) provide a well-characterized in vitro model, phenotypically representative of HPTCs in vivo. Thus, the present work describes the first sensitive gas chromatography/ion trap-mass spectrometry (GC/IT-MS) method for measurement of cocaine and its metabolites benzoylecgonine (BE) and norcocaine (NCOC) using a primary culture of HPTCs as cellular matrix, following solid phase extraction (SPE) and derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). The application of this methodology also enables the identification of two other cocaine metabolites: ecgonine methyl ester (EME) and anhydroecgonine methyl ester (AEME). The validation of the method was performed through the evaluation of selectivity, linearity, precision and accuracy, limit of detection (LOD), and limit of quantification (LOQ). Its applicability was demonstrated through the quantification of cocaine, BE and NCOC in primary cultured HPTCs after incubation, at physiological conditions, with 1 mM cocaine for 72 h. The developed GC/IT-MS method was found to be linear (r² > 0.99). The intra-day precision varied between 3.6% and 13.5% and the values of accuracy between 92.7% and 111.9%. The LOD values for cocaine, BE and NCOC were 0.97±0.09, 0.40±0.04 and 20.89±1.81 ng/mL, respectively, and 3.24±0.30, 1.34±0.14 and 69.62±6.05 ng/mL as LOQ values. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. PD-1 (PDCD1) Promoter Methylation Is a Prognostic Factor in Patients With Diffuse Lower-Grade Gliomas Harboring Isocitrate Dehydrogenase (IDH) Mutations.

    PubMed

    Röver, Lea Kristin; Gevensleben, Heidrun; Dietrich, Jörn; Bootz, Friedrich; Landsberg, Jennifer; Goltz, Diane; Dietrich, Dimo

    2018-02-01

    Immune checkpoints are important targets for immunotherapies. However, knowledge on the epigenetic modification of immune checkpoint genes is sparse. In the present study, we investigated promoter methylation of CTLA4, PD-L1, PD-L2, and PD-1 in diffuse lower-grade gliomas (LGG) harboring isocitrate dehydrogenase (IDH) mutations with regard to mRNA expression levels, clinicopathological parameters, previously established methylation subtypes, immune cell infiltrates, and survival in a cohort of 419 patients with IDH-mutated LGG provided by The Cancer Genome Atlas. PD-L1, PD-L2, and CTLA-4 mRNA expression levels showed a significant inverse correlation with promoter methylation (PD-L1: p=0.005; PD-L2: p<0.001; CTLA-4: p<0.001). Furthermore, immune checkpoint methylation was significantly associated with age (PD-L2: p=0.003; PD-1: p=0.015), molecular alterations, i.e. MGMT methylation (PD-L1: p<0.001; PD-L2: p<0.001), ATRX mutations (PD-L2: p<0.001, PD-1: p=0.001), and TERT mutations (PD-L1: p=0.035, PD-L2: p<0.001, PD-1: p<0.001, CTLA4: p<0.001) as well as methylation subgroups and immune cell infiltrates. In multivariate Cox proportional hazard analysis, PD-1 methylation qualified as strong prognostic factor (HR=0.51 [0.34-0.76], p=0.001). Our findings suggest an epigenetic regulation of immune checkpoint genes via DNA methylation in LGG. PD-1 methylation may assist the identification of patients that might benefit from an alternative treatment, particularly in the context of emerging immunotherapies. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. 24-Hour protein, arginine and citrulline metabolism in fed critically ill children - A stable isotope tracer study.

    PubMed

    de Betue, Carlijn T I; Garcia Casal, Xiomara C; van Waardenburg, Dick A; Schexnayder, Stephen M; Joosten, Koen F M; Deutz, Nicolaas E P; Engelen, Marielle P K J

    2017-06-01

    The reference method to study protein and arginine metabolism in critically ill children is measuring plasma amino acid appearances with stable isotopes during a short (4-8 h) time period and extrapolate results to 24-h. However, 24-h measurements may be variable due to critical illness related factors and a circadian rhythm could be present. Since only short duration stable isotope studies in critically ill children have been conducted before, the aim of this study was to investigate 24-h appearance of specific amino acids representing protein and arginine metabolism, with stable isotope techniques in continuously fed critically ill children. In eight critically ill children, admitted to the pediatric (n = 4) or cardiovascular (n = 4) intensive care unit, aged 0-10 years, receiving continuous (par)enteral nutrition with protein intake 1.0-3.7 g/kg/day, a 24-h stable isotope tracer protocol was carried out. L-[ring- 2 H 5 ]-phenylalanine, L-[3,3- 2 H 2 ]-tyrosine, L-[5,5,5- 2 H 3 ]-leucine, L-[guanido- 15 N 2 ]-arginine and L-[5- 13 C-3,3,4,4- 2 H 4 ]-citrulline were infused intravenously and L-[ 15 N]-phenylalanine and L-[1- 13 C]leucine enterally. Arterial blood was sampled every hour. Coefficients of variation, representing intra-individual variability, of the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline were high, on average 14-19% for intravenous tracers and 23-26% for enteral tracers. No evident circadian rhythm was present. The pattern and overall 24-h level of whole body protein balance differed per individual. In continuously fed stable critically ill children, the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline show high variability. This should be kept in mind when performing stable isotope studies in this population. There was no apparent circadian rhythm. NCT01511354 on clinicaltrials.gov. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations.

    PubMed

    Molina, Carlos; Kaialy, Waseem; Chen, Qiao; Commandeur, Daniel; Nokhodchi, Ali

    2017-12-19

    Spray-drying allows to modify the physicochemical/mechanical properties of particles along with their morphology. In the present study, L -leucine with varying concentrations (0.1, 0.5, 1, 5, and 10% w/v) were incorporated into lactose monohydrate solution for spray-drying to enhance the aerosolization performance of dry powder inhalers containing spray-dried lactose-leucine and salbutamol sulfate. The prepared spray-dried lactose-leucine carriers were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), Fourier transform infrared spectroscopy (interaction at molecular level), and in vitro aerosolization performance (deposition). The results showed that the efficacy of salbutamol sulfate's aerosolization performance was, in part, due to the introduction of L -leucine in the carrier, prior to being spray-dried, accounting for an increase in the fine particle fraction (FPF) of salbutamol sulfate from spray-dried lactose-leucine (0.5% leucine) in comparison to all other carriers. It was shown that all of the spray-dried carriers were spherical in their morphology with some agglomerates and contained a mixture of amorphous, α-lactose, and β-lactose. It was also interesting to note that spray-dried lactose-leucine particles were agglomerated during the spray-drying process to make coarse particles (volume mean diameter of 79 to 87 μm) suitable as a carrier in DPI formulations.

  13. Rotational Spectrum of the Methyl Salicylate-Water Complex: the Missing Conformer and the Tunneling Motions

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.

  14. Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties.

    PubMed

    Bwambok, David K; Marwani, Hadi M; Fernand, Vivian E; Fakayode, Sayo O; Lowry, Mark; Negulescu, Ioan; Strongin, Robert M; Warner, Isiah M

    2008-02-01

    We report the synthesis and characterization of amino acid ester based chiral ionic liquids, derived from L- and D-alanine tert butyl ester chloride. The synthesis was accomplished via an anion metathesis reaction between commercially available L- and D-alanine tert butyl ester chloride using a variety of counterions such as lithium bis (trifluoromethane) sulfonimide, silver nitrate, silver lactate, and silver tetrafluoroborate. Both enantiomeric forms were obtained as confirmed by bands of opposite sign in the circular dichroism spectra. The L- and D-alanine tert butyl ester bis (trifluoromethane) sulfonimide were obtained as liquids at room temperature and intriguingly exhibited the highest thermal stability (up to 263 degrees C). In addition, the ionic liquids demonstrated enantiomeric recognition ability as evidenced by splitting of racemic Mosher's sodium salt signal using a liquid state (19)F nuclear magnetic resonance (NMR) and fluorescence spectroscopy. The L- and D-alanine tert butyl ester chloride resulted in solid salts with nitrate, lactate, and tetrafluoroborate anions. This illustrates the previously observed tunability of ionic liquid synthesis, resulting in ionic liquids of varying properties as a function of varying the anion.

  15. Tandem mass spectrometric analysis of aspergillus niger pectin methylesterase: mode of action on fully methyl-esterified oligogalacturonates.

    PubMed

    Kester, H C; Benen, J A; Visser, J; Warren, M E; Orlando, R; Bergmann, C; Magaud, D; Anker, D; Doutheau, A

    2000-03-01

    The substrate specificity and the mode of action of Aspergillus niger pectin methylesterase (PME) was determined using both fully methyl-esterified oligogalacturonates with degrees of polymerization (DP) 2-6 and chemically synthesized monomethyl trigalacturonates. The enzymic activity on the different substrates and a preliminary characterization of the reaction products were performed by using high-performance anion-exchange chromatography at neutral pH. Electrospray ionization tandem MS (ESI-MS/MS) was used to localize the methyl esters on the (18)O-labelled reaction products during the course of the enzymic reaction. A. niger PME is able to hydrolyse the methyl esters of fully methyl-esterified oligogalacturonates with DP 2, and preferentially hydrolyses the methyl esters located on the internal galacturonate residues, followed by hydrolysis of the methyl esters towards the reducing end. This PME is unable to hydrolyse the methyl ester of the galacturonate moiety at the non-reducing end.

  16. NMDA channel gating is influenced by a tryptophan residue in the M2 domain but calcium permeation is not altered.

    PubMed Central

    Buck, D P; Howitt, S M; Clements, J D

    2000-01-01

    N-Methyl-D-aspartate (NMDA) receptors are susceptible to open-channel block by dizolcipine (MK-801), ketamine and Mg(2+) and are permeable to Ca(2+). It is thought that a tryptophan residue in the second membrane-associated domain (M2) may form part of the binding site for open-channel blockers and contribute to Ca(2+) permeability. We tested this hypothesis using recombinant wild-type and mutant NMDA receptors expressed in HEK-293 cells. The tryptophan was mutated to a leucine (W-5L) in both the NMDAR1 and NMDAR2A subunits. MK-801 and ketamine progressively inhibited currents evoked by glutamate, and the rate of inhibition was increased by the W-5L mutation. An increase in open channel probability accounted for the acceleration. Fluctuation analysis of the glutamate-evoked current revealed that the NMDAR1 W-5L mutation increased channel mean open time, providing further evidence for an alteration in gating. However, the equilibrium affinities of Mg(2+) and ketamine were largely unaffected by the W-5L mutation, and Ca(2+) permeability was not decreased. Therefore, the M2 tryptophan residue of the NMDA channel is not involved in Ca(2+) permeation or the binding of open-channel blockers, but plays an important role in channel gating. PMID:11053122

  17. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters

    PubMed Central

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Colas, Claire; Ucurum, Zöhre; Schlessinger, Avner; Fotiadis, Dimitrios

    2018-01-01

    The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures (Tms) of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg), agmatine, l-arginine methyl ester, and l-arginine amide. The resulting Tms indicated stabilization of AdiC variants upon ligand binding, in which Tms and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5), an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family. PMID:29558430

  18. [Vasodilator effect mediated by nitric oxide of the Zea mays L (andean purple corn) hydroalcoholic extract in aortic rings of rat].

    PubMed

    Moreno-Loaiza, Oscar; Paz-Aliaga, Azael

    2010-01-01

    To evaluate the vasodilator response of the hydroalcoholic extract of Zea mays L. (Andean purple corn) and to determine if this response is mediated by nitric oxide (NO). We obtained an extract by maceration for eight days of Andean purple corn cobs in 70% ethanol and subsequent concentration of the product. Thoracic aortic rings were evaluated in an isolated organ chamber, bathed with Krebs-Hensleit solution (KH), and vasomotor activity was recorded with an isometric tension transducer. Basal contraction was produced with 120 mM KCl and then, we proceeded to determinate the vasodilator effect of 3 doses of the extract: 0.1, 0.5, and 1.0 mg/mL. We used L-NG-Nitroarginin methyl ester (L-NAME) to verify that the vasodilation depends on nitric oxide sinteasa (NOs). Then we compared the inhibition of vascular contraction after incubation for 30 minutes, with purple corn extract and captopril 10-5 M. We observed a reduction in maximum contraction (100%) to 85.25 ± 2.60%, 77.76 ± 3.23%, and 73.3 ± 4.87% for doses of 0.1, 0.5 and 1,0 mg/mL respectively. The vasodilation was inhibited by prior incubation with L-NAME. Andean purple corn extract did not inhibit vascular contraction as captopril did (reduction to 75.27 ± 8.61%). The hydroalcoholic extract of Zea mays L produces NO dependent vasodilation.

  19. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters.

    PubMed

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Colas, Claire; Ucurum, Zöhre; Schlessinger, Avner; Fotiadis, Dimitrios

    2018-03-20

    The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures ( T m s) of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg), agmatine, l-arginine methyl ester, and l-arginine amide. The resulting T m s indicated stabilization of AdiC variants upon ligand binding, in which T m s and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5), an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  20. Celecoxib aggravates cardiac apoptosis in L-NAME-induced pressure overload model in rats: Immunohistochemical determination of cardiac caspase-3, Mcl-1, Bax and Bcl-2.

    PubMed

    Mosaad, Sarah M; Zaitone, Sawsan A; Ibrahim, Abdelazim; El-Baz, Amani A; Abo-Elmatty, Dina M; Moustafa, Yasser M

    2017-06-25

    The mechanism of celecoxib cardiovascular adverse events was earlier investigated; yet in-depth investigations are needed to assess the involvement of its pro-apoptotic effect throughout this process. An in-vivo chronic rat model of pressure overload employing Nʷ-nitro-l-arginine methyl ester (L-NAME) was tested at different time intervals to ensure the occurrence of persistent myocardial apoptosis along with pressure overload. Seven groups of male Wistar rats were assigned as (i) distilled water; (ii-iv) L-NAME (60 mg/kg) for 6, 12 or 16 weeks; (v-vii) L-NAME [16 weeks] + celecoxib (25, 50 or 100 mg/kg), from week 13 to week 16. Treatment with L-NAME for 6, 12 or 16 weeks increased systolic blood pressure, serum level of creatine kinase-MB and lactate dehydrogenase. Further, it induced cardiac hypertrophy, detected in terms of greater heart weight index and cardiomyocyte cross-sectional area and produced interstitial and perivascular fibrosis. Moreover, administration of L-NAME increased cardiac immunostaining for activated caspase-3 and Bax/Bcl-2 ratio whereas; immunostaining for Mcl-1 was decreased. Administration of celecoxib (25, 50 or 100 mg/kg) aggravated the L-NAME-induced toxicity. The work results shed the light on the putative pro-apoptotic effect of celecoxib at a risk state of pressure overload comparable to the clinical condition of essential hypertension. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L.

    PubMed

    Chandrasekaran, M; Senthilkumar, A; Venkatesalu, V

    2011-07-01

    The fatty acid methyl esters (FAME extract) from Sesuvium (S.) portulacastrum was studied for its fatty acid composition and antimicrobial activity against human pathogenic microorganisms. The gas chromatographic analysis of FAME extract revealed the presence of palmitic acid with the highest relative percentage (31.18%), followed by oleic acid (21.15%), linolenic acid (14.18%) linoleic acid (10.63%), myristic acid (6.91%) and behenic acid (2.42%). The saturated fatty acids were higher than the unsaturated fatty acids. FAME extract showed the highest antibacterial and anticandidal activities and moderate antifungal activity against the tested microorganisms. The highest mean zone of inhibition (16.3 mm) and the lowest MIC (0.25 mg/ml) and MBC (0.5 mg/ml) values were recorded against Bacillus subtilis. The lowest mean zone of inhibition (8.8 mm) and the highest MIC (8 mg/ml) and MFC (16 mg/ml) values were recorded against Aspergillus fumigatus and Aspergillus niger. The results of the present study justify the use of S. portulacastrum in traditional medicine and the FAME extract can be used as a potential antimicrobial agent against the tested human pathogenic microorganisms.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penning, T.D.

    The enone, 2,2-diemthyl-3a..beta.., 6a..beta..-dihydro-4H-cyclopenta-1,3-dioxol-4-one, has been synthesized in six steps from cyclopentadiene, resolved using sulfoximine chemistry, and converted into (-)-prostaglandin E/sub 2/ methyl ester in three steps. Introduction of the optically pure omega side-chain using a conjugate addition of a stabilized organocopper reagent, followed by direct alkylation of the enolate with the ..cap alpha.. side-chain allylic iodide in the presence of hexamethylphosphoramide, afforded a trans, vicinally disubstituted cyclopentanone. Deprotection of the C-15 alcohol, followed by aluminum amalgam reduction of the C-10/oxygen bond, provided (-)-PGE/sub 2/ methyl ester in 47% overall yield from the enone. In an extension of previously describedmore » work, 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide, prepared from l-ephedrine and thiophosphoryl chloride, was used to determine the enantiomeric excess of chiral alcohols in conjunction with /sup 31/P NMR. Chiral primary and secondary alcohols added quantitatively to the phospholidine to give diastereomers which could be analyzed by /sup 31/P NMR and HPLC. A number of other phosphorus heterocycles were also explored as potential chiral derivatizing reagents.« less

  3. Rapid tachyphylaxis to hemodynamic effects of PACAP-27 after inhibition of nitric oxide synthesis

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Travis, M. D.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The vasodilator effects of pituitary adenylate cyclase-activating polypeptide (PACAP)-27 are subject to tachyphylaxis in rats treated with the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). We examined whether this tachyphylaxis could be prevented by administration of the putative endothelium-derived nitrosyl factor S-nitroso-L-cysteine (L-SNC) and whether L-SNC may exert its effects via increases in cGMP levels in vascular smooth muscle. Five doses of PACAP-27 (2 nmol/kg iv) produced pronounced vasodilator responses in saline-treated rats. These responses were not subject to tachyphylaxis. The first injection of PACAP-27 (2 nmol/kg iv) in L-NAME-treated (50 micromol/kg iv) rats produced vasodilator responses similar to those in saline-treated rats, whereas subsequent injections produced progressively smaller responses. The injection of L-SNC (1,200 nmol/kg iv) before each injection of PACAP-27 prevented tachyphylaxis to the Gs protein-coupled receptor agonist in L-NAME-treated rats, whereas equihypotensive doses of the NO donor sodium nitroprusside (100 micrograms/kg iv) did not. The injection of the membrane-permeant cGMP analog 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (8-CPT-cGMP; 30 micromol/kg iv) to L-NAME-treated rats restored resting hemodynamic values to pre-L-NAME levels but did not prevent the development of tachyphylaxis to PACAP-27. These results suggest that nitrosyl factors prevent the development of tachyphylaxis to the hemodynamic actions of PACAP-27. These nitrosyl factors may act independently of their ability to generate cGMP in vascular smooth muscle.

  4. A combination of genistein and magnesium enhances the vasodilatory effect via an eNOS pathway and BK(Ca) current amplification.

    PubMed

    Sun, Lina; Hou, Yunlong; Zhao, Tingting; Zhou, Shanshan; Wang, Xiaoran; Zhang, Liming; Yu, Guichun

    2015-04-01

    The phytoestrogen genistein (GST) and magnesium have been independently shown to regulate vascular tone; however, their individual vasodilatory effects are limited. The aim of this study was to examine the combined effects of GST plus magnesium on vascular tone in mesenteric arteries. The effects of pretreatment with GST (0-200 μmol/L), MgCl2 (0-4.8 mmol/L) and GST plus MgCl2 on 10 μmol/L phenylephrine (PE) precontracted mesenteric arteries in rats were assessed by measuring isometric force. BK(Ca) currents were detected by the patch clamp method. GST caused concentration- and partial endothelium-dependent relaxation. Magnesium resulted in dual adjustment of vascular tone. Magnesium-free solution eliminated the vasodilatation of GST in both endothelium-intact and denuded rings. GST (50 μmol/L) plus magnesium (4.8 mmol/L) caused stronger relaxation in both endothelium-intact and denuded rings. Pretreatment with the nitric oxide synthase (NOS) inhibitor L-N-nitroarginine methyl ester (L-NAME, 100 μmol/L) significantly inhibited the effects of GST, high magnesium, and the combination of GST and magnesium. BK(Ca) currents were amplified to a greater extent when GST (50 μmol/L) was combined with 4.8 versus 1.2 mmol/L Mg(2+). Our data suggest that GST plus magnesium provides enhanced vasodilatory effects in rat mesenteric arteries compared with that observed when either is used separately, which was related to an eNOS pathway and BK(Ca) current amplification.

  5. Leptin and leucine synergistically regulate protein metabolism in C2C12 myotubes and mouse skeletal muscles.

    PubMed

    Mao, Xiangbing; Zeng, Xiangfang; Huang, Zhimin; Wang, Junjun; Qiao, Shiyan

    2013-07-28

    Leucine and leptin play important roles in regulating protein synthesis and degradation in skeletal muscles in vitro and in vivo. However, the objective of the present study was to determine whether leptin and leucine function synergistically in regulating protein metabolism of skeletal muscles. In the in vitro experiment, C2C12 myotubes were cultured for 2 h in the presence of 5 mm-leucine and/or 50 ng/ml of leptin. In the in vivo experiment, C57BL/6 and ob/ob mice were randomly assigned to be fed a non-purified diet supplemented with 3 % L-leucine or 2·04 % L-alanine (isonitrogenous control) for 14 d. Ob/ob mice were injected intraperitoneally with sterile PBS or recombinant mouse leptin (0·1 μg/g body weight) for 14 d. In C57BL/6 mice, dietary leucine supplementation increased (P< 0·05) plasma leptin, leptin receptor expression and protein synthesis in skeletal muscles, but reduced (P< 0·05) plasma urea and protein degradation in skeletal muscles. Dietary leucine supplementation and leptin injection increased the relative weight of the gastrocnemius and soleus muscles in ob/ob mice. Moreover, leucine and leptin treatments stimulated (P< 0·05) protein synthesis and inhibited (P< 0·05) protein degradation in C2C12 myotubes and skeletal muscles of ob/ob mice. There were interactions (P< 0·05) between the leucine and leptin treatments with regard to protein metabolism in C2C12 myotubes and soleus muscles of ob/ob mice but not in the gastrocnemius muscles of ob/ob mice. Collectively, these results suggest that leptin and leucine synergistically regulate protein metabolism in skeletal muscles both in vitro and in vivo.

  6. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris.

    PubMed

    Driessen, A J; Hellingwerf, K J; Konings, W N

    1987-09-15

    The energetics of neutral and branched chain amino acid transport by membrane vesicles from Streptococcus cremoris have been studied with a novel model system in which beef heart mitochondrial cytochrome c oxidase functions as a proton-motive force (delta p) generating system. In the presence of reduced cytochrome c, a large delta p was generated with a maximum value at pH 6.0. Apparent H+/amino acid stoichiometries (napp) have been determined at external pH values between 5.5 and 8.0 from the steady state levels of accumulation and the delta p. For L-leucine napp (0.8) was nearly independent of the pH. For L-alanine and L-serine napp decreased from 0.9-1.0 at pH 5.5 to 0-0.2 at pH 8.0. The napp for the different amino acids decreased with increasing external amino acid concentration. At pH 6.0, first order rate constants for amino acid exit (kex) under steady state conditions for L-leucine, L-alanine, and L-serine were 1.1-1.3, 0.084, and 0.053 min-1, respectively. From the pH dependence of kex it is concluded that amino acid exit in steady state is the sum of two processes, pH-dependent carrier-mediated amino acid exit and pH-independent passive diffusion (external leak). The first order rate constant for passive diffusion increased with increasing hydrophobicity of the side chain of the amino acids. As a result of these processes the kinetic steady state attained is less than the amino acid accumulation ratio predicted by thermodynamic equilibrium. The napp determined from the steady state accumulation represents, therefore, a lower limit. It is concluded that the mechanistic stoichiometry (n) for L-leucine, L-alanine, and L-serine transport most likely equals 1.

  7. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.

    PubMed

    Aluri, Rajendra; Jayakannan, Manickam

    2017-01-09

    New classes of enzymatic-biodegradable amphiphilic poly(ester-urethane)s were designed and developed from l-tyrosine amino acid resources and their self-assembled nanoparticles were employed as multiple drug delivery vehicles in cancer therapy. The amine and carboxylic acid functional groups in l-tyrosine were converted into dual functional ester-urethane monomers and they were subjected to solvent free melt polycondensation with hydrophilic polyethylene glycols to produce comb-type poly(ester-urethane)s. The phenolic unit in the l-tyrosine was anchored with hydrophobic alkyl side chain to bring appropriate amphiphilicity in the polymer geometry to self-assemble them as stable nanoscaffolds in aqueous medium. The topology of the polymer was found to play a major role on the glass transition, crystallinity, and viscoelastic rheological properties of l-tyrosine poly(ester-urethane)s. The amphiphilic polymers were self-assembled as 200 ± 10 nm nanoparticles and they exhibited excellent encapsulation capabilities for anticancer drugs such as doxorubicin (DOX) and camptothecin (CPT). In vitro drug release studies revealed that the drug-loaded l-tyrosine nanoparticles were stable at extracellular conditions and they underwent enzymatic-biodegradation exclusively at the intracellular level to release the drugs. Cytotoxicity studies in the cervical cancer (HeLa) and normal WT-MEFs cell lines revealed that the nascent l-tyrosine nanoparticles were nontoxic, whereas the CPT and DOX drug-loaded polymer nanoparticles exhibited excellent cell killing in cancer cells. Confocal microscopic imaging confirmed the cellular internalization of drug-loaded nanoparticles. The drugs were taken up by the cells much higher quantity while delivering them from l-tyrosine nanoparticle platform compared to their free state. Flow cytometry analysis showed that the DOX-loaded polymer nanoscaffolds internalized the drugs 8-10× higher compared to free DOX. Both the synthesis of new classes of poly(ester-urethane)s via melt polycondensation approach and the enzyme-responsive drug delivery concept were accomplished for the first time. Thus, the present investigation is expected to open up new opportunities for l-tyrosine polymeric materials in biomaterial and thermoplastic applications.

  8. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  9. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  10. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  11. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  12. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  13. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  14. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production.

  15. A modern view of phenylalanine ammonia lyase.

    PubMed

    MacDonald, M Jason; D'Cunha, Godwin B

    2007-06-01

    Phenylalanine ammonia lyase (PAL; E.C.4.3.1.5), which catalyses the biotransformation of L-phenylalanine to trans-cinnamic acid and ammonia, was first described in 1961 by Koukol and Conn. Since its discovery, much knowledge has been gathered with reference to the enzyme's catabolic role in microorganisms and its importance in the phenyl propanoid pathway of plants. The 3-dimensional structure of the enzyme has been characterized using X-ray crystallography. This has led to a greater understanding of the mechanism of PAL-catalyzed reactions, including the discovery of a recently described cofactor, 3,5-dihydro-5-methyldiene-4H-imidazol-4-one. In the past 3 decades, PAL has gained considerable significance in several clinical, industrial, and biotechnological applications. The reversal of the normal physiological reaction can be effectively employed in the production of optically pure L-phenylalanine, which is a precursor of the noncalorific sweetener aspartame (L-phenylalanyl-L-aspartyl methyl ester). The enzyme's natural ability to break down L-phenylalanine makes PAL a reliable treatment for the genetic condition phenylketonuria. In this mini-review, we discuss prominent details relating to the physiological role of PAL, the mechanism of catalysis, methods of determination and purification, enzyme kinetics, and enzyme activity in nonaqueous media. Two topics of current study on PAL, molecular biology and crystal structure, are also discussed.

  16. Possible mechanism of acute effect of ethanol on intestinal IgA expression in rat.

    PubMed

    Budec, Mirela; Koko, Vesna; Todorović, Vera; Marković, Dragana; Postić, Marija; Drndarević, Neda; Spasić, Andelka; Mitrović, Olivera

    2007-06-01

    The purpose of this study was to investigate the possible mechanism of acute effect of ethanol on IgA expression in rat intestine. To this end, adult female Wistar rats showing diestrus day 1 were treated with (a) ethanol (2 or 4 g/kg, i.p.); (b) N omega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of nitric oxide synthase, (30 mg/kg, s.c.) followed by ethanol 3 h later; and (c) L-NAME (30 mg/kg, s.c.) followed by saline 3 h later. Saline-injected and untreated rats were used as controls. The animals were sacrificed 0.5 h after ethanol administration. Intestinal expression of IgA was evaluated by both immunohistochemistry and Western immunoblotting. Morphometric analysis showed that acute ethanol treatment increased the number of IgA-immunoreactive cells in a dose-dependent manner. Pretreatment with L-NAME abolished this action of alcohol. Injection of L-NAME followed by saline had no influence on the number of IgA+cells. The results, obtained by Western immunoblotting, paralleled our immunohistochemical findings. Taken together, these data suggest that acute effect of ethanol on intestinal IgA might be mediated by endogenous nitric oxide.

  17. Tannin Degradation by a Novel Tannase Enzyme Present in Some Lactobacillus plantarum Strains

    PubMed Central

    Jiménez, Natalia; Esteban-Torres, María; Mancheño, José Miguel; de las Rivas, Blanca

    2014-01-01

    Lactobacillus plantarum is frequently isolated from the fermentation of plant material where tannins are abundant. L. plantarum strains possess tannase activity to degrade plant tannins. An L. plantarum tannase (TanBLp, formerly called TanLp1) was previously identified and biochemically characterized. In this study, we report the identification and characterization of a novel tannase (TanALp). While all 29 L. plantarum strains analyzed in the study possess the tanBLp gene, the gene tanALp was present in only four strains. Upon methyl gallate exposure, the expression of tanBLp was induced, whereas tanALp expression was not affected. TanALp showed only 27% sequence identity to TanBLp, but the residues involved in tannase activity are conserved. Optimum activity for TanALp was observed at 30°C and pH 6 in the presence of Ca2+ ions. TanALp was able to hydrolyze gallate and protocatechuate esters with a short aliphatic alcohol substituent. Moreover, TanALp was able to fully hydrolyze complex gallotannins, such as tannic acid. The presence of the extracellular TanALp tannase in some L. plantarum strains provides them an advantage for the initial degradation of complex tannins present in plant environments. PMID:24610854

  18. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains.

    PubMed

    Jiménez, Natalia; Esteban-Torres, María; Mancheño, José Miguel; de Las Rivas, Blanca; Muñoz, Rosario

    2014-05-01

    Lactobacillus plantarum is frequently isolated from the fermentation of plant material where tannins are abundant. L. plantarum strains possess tannase activity to degrade plant tannins. An L. plantarum tannase (TanBLp, formerly called TanLp1) was previously identified and biochemically characterized. In this study, we report the identification and characterization of a novel tannase (TanALp). While all 29 L. plantarum strains analyzed in the study possess the tanBLp gene, the gene tanALp was present in only four strains. Upon methyl gallate exposure, the expression of tanBLp was induced, whereas tanALp expression was not affected. TanALp showed only 27% sequence identity to TanBLp, but the residues involved in tannase activity are conserved. Optimum activity for TanALp was observed at 30°C and pH 6 in the presence of Ca(2+) ions. TanALp was able to hydrolyze gallate and protocatechuate esters with a short aliphatic alcohol substituent. Moreover, TanALp was able to fully hydrolyze complex gallotannins, such as tannic acid. The presence of the extracellular TanALp tannase in some L. plantarum strains provides them an advantage for the initial degradation of complex tannins present in plant environments.

  19. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity

    PubMed Central

    Giani, Jorge F.; Eriguchi, Masahiro; Bernstein, Ellen A.; Katsumata, Makoto; Shen, Xiao Z.; Li, Liang; McDonough, Alicia A.; Fuchs, Sebastien; Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.

    2017-01-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension. PMID:27988209

  20. Effects of nitric oxide on red blood cell deformability.

    PubMed

    Bor-Kucukatay, Melek; Wenby, Rosalinda B; Meiselman, Herbert J; Baskurt, Oguz K

    2003-05-01

    In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability.

  1. Effects of influent strength on microorganisms in surface flow mesocosm wetlands.

    PubMed

    Tao, Wendong; Hall, Ken J; Ramey, William

    2007-11-01

    To choose an appropriate dilution ratio to treat woodwaste leachate without inhibition on heterotrophic bacteria, microbial ATP concentration and the rates of heterotrophic leucine incorporation and acetate uptake were compared across surface flow mesocosm wetlands fed with different strengths of influent. Abundances of protozoa and respiring bacteria were investigated in two mesocosm wetlands to elucidate the effects of influent strength on heterotrophic bacteria. The strongest influent or the raw leachate did not show a significant inhibitory effect on leucine incorporation and acetate uptake. Instead, leucine incorporation rates by bacteria in water, epiphytic biofilm and sediment were higher in mesocosm wetlands fed with a stronger influent. There were significantly more respiring planktonic bacteria (451 x 10(5) mL(-1)) and fewer nanoflagellates (3.8 x 10(3) mL(-1)) in the mesocosm fed with a strong influent, while fewer respiring planktonic bacteria (38.7 x 10(5)mL(-1)) and more nanoflagellates (15.4 x 10(3) mL(-1)) in the mesocosm fed with a weak influent. The majority of the total microbial ATP was attributed to sedimentary bacteria, of which >96% were inactive. Heterotrophic activity and its distribution among water, epiphytic biofilm and sediment in the mesocosm wetlands were affected by availability of bacterial substrates and grazing pressure of nanoflagellates.

  2. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    PubMed Central

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  3. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.

  4. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.

    PubMed

    Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B

    2008-06-23

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.

  5. Synthesis and oxidation of CpIrIII compounds: functionalization of a Cp methyl group.

    PubMed

    Park-Gehrke, Lisa S; Freudenthal, John; Kaminsky, Werner; Dipasquale, Antonio G; Mayer, James M

    2009-03-21

    [CpIrCl(2)](2) () and new CpIr(III)(L-L)X complexes (L-L = N-O or C-N chelating ligands; X = Cl, I, Me) have been prepared and their reactivity with two-electron chemical oxidants explored. Reaction of with PhI(OAc)(2) in wet solvents yields a new chloro-bridged dimer in which each of the Cp ligands has been singly acetoxylated to form [Cp(OAc)Ir(III)Cl(2)](2) () (Cp(OAc) = eta(5)-C(5)Me(4)CH(2)OAc). Complex and related carboxy- and alkoxy-functionalized Cp(OR) complexes can also be prepared from plus (PhIO)(n) and ROH. [Cp(OAc)Ir(III)Cl(2)](2) () and the methoxy analogue [Cp(OMe)Ir(III)Cl(2)](2) () have been structurally characterized. Treatment of [CpIrCl(2)](2) () with 2-phenylpyridine yields CpIr(III)(ppy)Cl () (ppy = cyclometallated 2-phenylpyridyl) which is readily converted to its iodide and methyl analogues CpIr(III)(ppy)I and CpIr(III)(ppy)Me (). CpIr(III) complexes were also prepared with N-O chelating ligands derived from anthranilic acid (2-aminobenzoic acid) and alpha-aminoisobutyric acid (H(2)NCMe(2)COOH), ligands chosen to be relatively oxidation resistant. These complexes and were reacted with potential two-electron oxidants including PhI(OAc)(2), hexachlorocyclohexadienone (C(6)Cl(6)O), N-fluoro-2,4,6-trimethylpyridinium (Me(3)pyF(+)), [Me(3)O]BF(4) and MeOTf (OTf = triflate, CF(3)SO(3)). Iridium(V) complexes were not observed or implicated in these reactions, despite the similarity of the potential products to known CpIr(V) species. The carbon electrophiles [Me(3)O]BF(4) and MeOTf appear to react preferentially at the N-O ligands, to give methyl esters in some cases. Overall, the results indicate that Cp is not inert under oxidizing conditions and is therefore not a good supporting ligand for oxidizing organometallic complexes.

  6. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    NASA Technical Reports Server (NTRS)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two populations of conductive events, one in the 0.1-0.5 pA range, and one in the 1.0-5.0 pA range, whereas nearly all events caused by poly-L-alanine were in the 0.1-0.5 pA range at an applied voltage of +60 mV. The channel-like activity appeared to switch between conductive and nonconductive states, with most open-times in the range of 50-200 ms. We conclude that hydrophobic polyamino acids produce proton-conducting defects in lipid bilayers that may be used to model functional proton channels in biological membranes.

  7. Regression of left ventricular hypertrophy and aortic remodelling in NO-deficient hypertensive rats: effect of L-arginine and spironolactone.

    PubMed

    Paulis, L; Matuskova, J; Adamcova, M; Pelouch, V; Simko, J; Krajcirovicova, K; Potacova, A; Hulin, I; Janega, P; Pechanova, O; Simko, F

    2008-09-01

    We investigated, whether the substrate for nitric oxide (NO) formation -L-arginine - and the aldosterone receptor antagonist - spironolactone - are able to reverse alterations of the left ventricle (LV) and aorta in N(omega)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Six groups of male adult Wistar rats were investigated: controls after 4 and 7 weeks of experiment, rats treated with L-NAME for 4 weeks and three recovery groups: spontaneous-reversion (4 weeks L-NAME + 3 weeks placebo), spironolactone-induced reversion (4 weeks L-NAME + 3 weeks spironolactone) and L-arginine-induced reversion (4 weeks L-NAME+ 3 weeks L-arginine). Blood pressure was measured by tail-cuff plethysmography. Relative weight of the LV, myocardial fibrosis (based upon histomorphometry and hydroxyproline determination) and conjugated dienes in the LV and aortic cross-sectional area, inner diameter and wall thickness were determined. NO-synthase activity was investigated in the LV and aorta. L-NAME administration induced hypertension, left ventricular hypertrophy (LVH), LV fibrosis, aortic thickening and diminution of NO-synthase activity in the LV and aorta. Reduction in blood pressure and regression of LVH were observed in all recovery groups, yet reduction in LV fibrosis and aortic thickening were not. NO-synthase activity was restored only in the L-arginine and spironolactone group. In our study, the reversion of hypertension and LVH was not dependent on the restoration of NO-synthase activity. Moreover, LV fibrosis and aortic remodelling seem to be more resistant to conditions resulting in regression of LVH. Preserved level of fibrosis in the initial period of LVH regression might result in loss of structural homogeneity and possible functional alterations of the LV.

  8. [Triterpenoid saponins from flower bud of Jasminum officinale var. grandiflorum].

    PubMed

    Zhao, Gui-Qin; Dong, Jun-Xing

    2008-01-01

    To study the chemical constituent bud of the flowers of Jasminum officinale var. grandiflorum. The compounds were isolated and purified by recrystallization and chromatography on silica gel and Sephadex LH - 20 column. Their structures were elucidated on the basis of physicochemical properties and spectral analysis. Six triterpenoid saponins were identified as 3-O-alpha-L-rhamnopyranosyl (1 --> 2)-beta-D-xylopyranosyl- hederagenin-28-O-beta-D-galactopyranosyl (1 --> 6)-beta-D-galactopyranosyl ester (1), hederagenin-3-O-beta-D-glucopyranosyl (1 --> 3)-alpha-L-arabinopyranoside (2), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-oic-O-beta-D-glucopyranosyl ester (3), hederagenin-3-O-beta-D-xylopyranosyl (1 --> 3)-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyranoside (4), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-oic-O-alpha-L-rhamnopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranosyl ester (5), hederagenin-3-O-alpha-L-rhamnopyranosyl (1 --> 2)-alpha-L-arabinopyranoside (6). Compound 1 is a new compound. Compounds 2, 3, 4, 5, 6 were isolated from the genus Jasminum for the first time.

  9. Evidence that tachykinins relax the guinea-pig trachea via nitric oxide release and by stimulation of a septide-insensitive NK1 receptor.

    PubMed Central

    Figini, M.; Emanueli, C.; Bertrand, C.; Javdan, P.; Geppetti, P.

    1996-01-01

    1. This study investigated the possibility that tachykinins relax the guinea-pig isolated trachea by releasing nitric oxide (NO) from the epithelium. The types of tachykinin receptor mediating both relaxation and contraction of the trachea were also studied. Isometric tension was recorded in isolated tracheal tube preparations precontracted with acetylcholine (10 microM) in which compounds were administered intraluminally in the presence of phosphoramidon and indomethacin (both 1 microM) and the tachykinin NK2 receptor antagonist, SR 48,968 ((S)-N-methyl-N[4-(4-acetyl amino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide), 0.1 microM). 2. In the presence of the inactive enantiomer of an NO-synthase inhibitor, NG-monomethyl-D-arginine (D-NMMA, 100 microM), substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and the selective NK1 receptor agonist, [Sar9, Met(O2)11]-SP, (0.1-10 nM) relaxed tracheal tube preparations. This relaxation was changed into a contraction by pretreatment with the NO-synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 100 microM). The effect of L-NMMA on SP- and [Sar9, Met(O2)11]-SP-induced responses was reversed by L-arginine (L-Arg, 1 mM), but not by D-Arg (1 mM). After removal of the epithelium SP, NKA and NKB and [Sar9, Met(O2)11]-SP (0.1-10 nM) evoked contractile responses in the presence of either L-NMMA (100 microM) or D-NMMA (100 microM). The effects of SP and [Sar9, Met(O2)11]-SP obtained in the presence of another NO-synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) or its inactive enantiomer, NG-nitro-D-arginine methyl ester (D-NAME, 100 microM) were similar to those observed with L-NMMA or D-NMMA, respectively. 3. The selective NK1 receptor agonist, [pGlu6, Pro9]-SP(6-11) (septide, 0.1-10 nM) evoked contractile responses of tracheal tube preparations in the presence of either D-NMMA (100 microM) or L-NMMA (100 microM). The log concentration-response curve to septide obtained in the presence of L-NMMA was similar to that obtained in the presence of D-NMMA. [Sar9, Met(O2)11]-SP (0.1-10 nM) relaxed tracheal tube preparations precontracted with septide (1 microM), whereas septide (0.1 nM-1 microM) further contracted tracheal tube preparations precontracted with [Sar9, Met(O2)11]-SP (1 microM). 4. Relaxant and contractile responses evoked by SP, NKA, NKB and by [Sar9, Met(O2)11]-SP (0.1-10 nM) were not affected by a combination of the histamine H1 (pyrilamine, 1 microM) and H2 (cimetidine, 1 microM) receptor antagonists, but were abolished by the tachykinin NK1 receptor antagonist, CP-99,994 ((2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine, 1 microM), though not by its inactive enantiomer CP-100,263 (1 microM). Contractile responses evoked by septide (10 nM and 1 microM) were also abolished by CP-99,994 (1 microM) but not by CP-100,263 (1 microM). 5. These results demonstrate that tachykinins relax guinea-pig tracheal tube preparations by releasing NO via the stimulation of epithelial NK1 receptors by a mechanism independent of histamine release. The NK1 receptor type involved is sensitive to SP, NKA, NKB and [Sar9, Met(O2)11]-SP but not to septide, and is pharmacologically distinct from the NK1 receptor that mediates contraction, which is stimulated by all the agonists, including septide. PMID:8882625

  10. Variability of some diterpene esters in coffee beverages as influenced by brewing procedures.

    PubMed

    Moeenfard, Marzieh; Erny, Guillaume L; Alves, Arminda

    2016-11-01

    Several coffee brews, including classical and commercial beverages, were analyzed for their diterpene esters content (cafestol and kahweol linoleate, oleate, palmitate and stearate) by high performance liquid chromatography with diode array detector (HPLC-DAD) combined with spectral deconvolution. Due to the coelution of cafestol and kahweol esters at 225 nm, HPLC-DAD did not give accurate quantification of cafestol esters. Accordingly, spectral deconvolution was used to deconvolve the co-migrating profiles. Total cafestol and kahweol esters content of classical coffee brews ranged from 5-232 to 2-1016 mg/L, respectively. Commercial blends contained 1-54 mg/L of total cafestol esters and 2-403 mg/L of total kahweol esters. Boiled coffee had the highest diterpene esters content, while filtered and instant brews showed the lowest concentrations. However, individual diterpene esters content was not affected by brewing procedure as in terms of kahweol esters, kahweol palmitate was the main compound in all samples, followed by kahweol linoleate, oleate and stearate. Higher amounts of cafestol palmitate and stearate were also observed compared to cafestol linoleate and cafestol oleate. The ratio of diterpene esters esterified with unsaturated fatty acids to total diterpene esters was considered as measure of their unsaturation in analyzed samples which varied from 47 to 52%. Providing new information regarding the diterpene esters content and their distribution in coffee brews will allow a better use of coffee as a functional beverage.

  11. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    PubMed

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes.

    PubMed

    Bakhshpour, Monireh; Yavuz, Handan; Denizli, Adil

    2018-02-19

    Molecular imprinting technique was used for the preparation of antibiotic and anti-neoplastic chemotherapy drug (mitomycin C) imprinted cryogel membranes (MMC-ICM). The membranes were synthezied by using metal ion coordination interactions with N-methacryloyl-(l)-histidine methyl ester (MAH) functional monomer and template molecules (i.e. MMC). The 2-hydroxyethyl methacrylate (HEMA) monomer and methylene bisacrylamide (MBAAm) crosslinker were used for the preparation of mitomycin C imprinted cryogel membranes by radical suspension polymerization technique. The imprinted cryogel membranes were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and swelling degree measurements. Cytotoxicity of MMC-ICMs was investigated using mouse fibroblast cell line L929. Time-dependent release of MMC was demonstrated within 150 h from cryogel membranes. Cryogels demonstrated very high MMC loading efficiency (70-80%) and sustained MMC release over hours.

  13. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    PubMed

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  14. Gas chromatographic analysis of fatty acid methyl esters of milk fat by an ionic liquid derived from L-phenylalanine as the stationary phase.

    PubMed

    Mendoza, Laura González; González-Álvarez, Jaime; Gonzalo, Carla Fernández; Arias-Abrodo, Pilar; Altava, Belén; Luis, Santiago V; Burguete, Maria Isabel; Gutiérrez-Álvarez, María Dolores

    2015-10-01

    A Gas Chromatography (GC) method has been developed for the separation and characterization of the different fatty acids in anhydrous milk fat (AMF) by means of an ionic liquid stationary phase, characterized by a monocationic imidazolium salt derived from L-phenylalanine. The inner surface of a fused silica capillary column was modified using this ionic liquid functionality and 3-aminopropyldiethoxymethyl silane. This coated GC column, which exhibited good thermal stability (270°C) and good efficiency (2700 plates/m), has been characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the method have been evaluated, obtaining relative standard deviations (RSD) from 0.99% to 4.0% and from 2.8% to 9.2%, respectively. Furthermore, recoveries from 90% and 99% have been achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino.

    PubMed

    Min, Yong Deuk; Yang, Min Cheol; Lee, Kyu Ha; Kim, Kyung Ran; Choi, Sang Un; Lee, Kang Ro

    2006-09-01

    Six protoberberine alkaloids were isolated from the chloroform layer of the rhizome of Coptis japonica Makino (Ranunculaceae). The structures of the isolated compounds were determined to be 6-([1,3]dioxolo[4,5-g]isoquinoline-5-carbonyl)-2,3-dimethoxy-benzoic acid methyl ester (1), oxyberberine (2), 8-oxo-epiberberine (3), 8-oxocoptisine (4), berberine (5) and palmatine (6) by physicochemical and spectroscopic methods. The compound 3 (8-oxo-epiberberine) was first isolated from natural sources. The compounds were tested for cytotoxicity against five tumor cell lines in vitro by SRB method, and also tested for the MDR reversal activities. Compound 4 was of significant P-gp MDR inhibition activity with ED50 value 0.018 microg/mL in MES-SA/DX5 cell and 0.0005 microg/mL in HCT15 cell, respectively.

  16. Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2012-12-01

    Lepidium sativum L. (garden cress) is a fast growing annual herb, native to Egypt and west Asia but widely cultivated in temperate climates throughout the world. L. sativum seed oil (LSO) extracted from plants grown in Tunisia was analyzed to determine whether it has potential as a raw material for biodiesel production. The oil content of the seeds was 26.77%, mainly composed of polyunsaturated (42.23%) and monounsaturated (39.62%) fatty acids. Methyl esters (LSOMEs) were prepared by base-catalyzed transesterification with a conversion rate of 96.8%. The kinematic viscosity (1.92 mm(2)/s), cetane number (49.23), gross heat value (40.45), and other fuel properties were within the limits for biodiesel specified by the ASTM (American Standard for Testing and Materials). This study showed that LSOMEs have the potential to supplement petroleum-based diesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends.

    PubMed

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, BeemKumar

    2017-05-01

    The present work is intended to investigate the emission characteristics of neat cashew nut shell methyl ester (CNSME100) by adding pentanol at two different proportions and compared with the baseline diesel. CNSME100 is prepared by the conventional transesterification process. CNSME100 is chosen due to its non-edible nature. Pentanol is chosen as an additive because of its higher inbuilt oxygen content and surface to volume ratio which reduces the drawbacks of neat CNSME100. Emission characteristics were carried out in single cylinder naturally aspirated CI engine fuelled with neat cashew nut shell methyl ester (CNSME), cashew nut shell methyl ester and pentanol by 10% volume (CNSME90P10), cashew nut shell methyl ester and pentanol by 20% volume (CNSME80P20), and diesel. This work also aims to investigate the feasibility of operating an engine fuelled with neat methyl ester and alcohol blends. Experimental results showed that by blending higher alcohol to neat cashew nut shell methyl ester reduces the emissions significantly. It is also found that the emission from neat methyl ester and pentanol blends is lesser than diesel at all loads.

  18. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  19. Effects of dietary leucine and phenylalanine on pancreas development, enzyme activity, and relative gene expression in milk-fed Holstein dairy calves.

    PubMed

    Cao, Y C; Yang, X J; Guo, L; Zheng, C; Wang, D D; Cai, C J; Liu, S M; Yao, J H

    2018-05-01

    This study aimed to investigate the effect of dietary supplementation with leucine and phenylalanine on pancreas development, enzyme activity, and related gene expression in male Holstein calves. Twenty male Holstein calves [1 d of age, 38 ± 3 kg of body weight (BW)] were randomly assigned to 1 of the following 4 treatment groups with 5 calves in each group: control, leucine supplementation (1.435 g/L of milk), phenylalanine supplementation (0.725 g/L of milk), and leucine and phenylalanine (1.435 + 0.725 g/L of milk). The diets were made isonitrogenous with the inclusion of alanine in each respective treatment. The feeding trial lasted for 8 wk, including 1 wk for adaption and 7 wk for the feeding experiment. Leucine tended to increase the concentration of total pancreatic protein (mg/kg of BW). Phenylalanine increased the concentrations of plasma insulin, cholecystokinin, and pancreatic DNA (mg/g) and the expression of trypsin gene but decreased the pancreatic protein:DNA ratio and tended to decrease the pancreas weight (g/kg of BW). No differences were observed in total pancreatic DNA (mg/pancreas and mg/kg of BW), pancreatic protein (mg/pancreas), or activities of α-amylase, trypsin, and lipase. The relative expression levels of the genes encoding α-amylase and lipase did not differ among the 4 groups. The supplementation of both leucine and phenylalanine showed an interaction on the pancreas weight (g and g/kg of BW) and a tendency of an interaction on the pancreatic protein concentration (mg/g of pancreas and mg/kg of BW) and the plasma glucose concentration. Leucine tended to increase the size of the pancreatic cells, whereas phenylalanine tended to increase the number of pancreatic cells. However, neither AA affected the activities of the pancreatic enzymes of the calves. These results indicate that leucine and phenylalanine supplementation in milk-fed Holstein calves differentially affect pancreatic growth and development. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  1. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  2. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide.

    PubMed Central

    Fry, S C

    1982-01-01

    1. Cell walls from rapidly growing cell suspension cultures of Spinacia oleracea L. contained ferulic acid and p-coumaric acid esterified with a water-insoluble polymer. 2. Prolonged treatment with trypsin did not release may feruloyl esters from dearabinofuranosylated cell walls, and the polymer was also insoluble in phenol/acetic acid/water (2:1:1, w/v/v). 3. Treatment of the cell walls with the fungal hydrolase preparation "Driselase' did liberate low-Mr feruloyl esters. The major esters were 4-O-(6-O-feruloyl-beta-D-galactopyranosyl)-D-galactose and 3?-O-feruloyl-alpha-L-arabinopyranosyl)-L-arabinose. These two esters accounted for about 60% of the cell-wall ferulate. 4. It is concluded that the feruloylation of cell-wall polymers is not a random process, but occurs at very specific sites, probably on the arabinogalactan component of pectin. 5. The possible role of such phenolic substituents in cell-wall architecture and growth is discussed. PMID:7115300

  3. Synthesis of 9,9,9-trideutero-1,4-dihydroxynonane mercapturic acid (d3-DHN-MA), a useful internal standard for DHN-MA urinalysis.

    PubMed

    Chantegrel, B; Deshayes, C; Doutheau, A; Steghens, J P

    2002-10-01

    Racemic 1,4-dihydroxynonane mercapturic acid (DHN-MA) and 9,9,9-trideutero-1,4-dihydroxynonane mercapturic acid (d3-DHN-MA) are synthesized on a 400-mg scale (overall yield approximately 40%) by a two-step sequence involving Michael addition of N-acetyl-L-cysteine to methyl 4-hydroxynon-2(E)-enoate or methyl 9,9,9-trideutero-4-hydroxynon-2 (E)-enoate, followed by reduction of the intermediate adducts with lithium borohydride. The requisite starting methyl esters are obtained, respectively, from heptanal or 7,7,7-trideuteroheptanal and methyl 4-chlorophenylsulfinylacetate via a sulfoxide piperidine and carbonyl reaction described in the literature. The 7,7,7-trideuteroheptanal is easily prepared by classical methods in four steps from 6-bromo-1-hexanol. 13C NMR data indicate that DHN-MA as well as d3-DHN-MA are obtained as mixtures of four diastereomers. Preliminary results show that d3-DHN-MA could be used as an internal standard for mass spectrometric quantification of DHN-MA in human urine.

  4. Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel.

    PubMed

    Khot, Mahesh; Gupta, Rohini; Barve, Kadambari; Zinjarde, Smita; Govindwar, Sanjay; Kumar, Ameeta Ravi

    2015-04-01

    This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

  5. Anaplerotic input is sufficient to induce time-dependent potentiation of insulin release in rat pancreatic islets.

    PubMed

    Gunawardana, Subhadra C; Liu, Yi-Jia; Macdonald, Michael J; Straub, Susanne G; Sharp, Geoffrey W G

    2004-11-01

    Nutrients that induce biphasic insulin release, such as glucose and leucine, provide acetyl-CoA and anaplerotic input in the beta-cell. The first phase of release requires increased ATP production leading to increased intracellular Ca(2+) concentration ([Ca(2+)](i)). The second phase requires increased [Ca(2+)](i) and anaplerosis. There is strong evidence to indicate that the second phase is due to augmentation of Ca(2+)-stimulated release via the K(ATP) channel-independent pathway. To test whether the phenomenon of time-dependent potentiation (TDP) has similar properties to the ATP-sensitive K(+) channel-independent pathway, we monitored the ability of different agents that provide acetyl-CoA and anaplerotic input or both of these inputs to induce TDP. The results show that anaplerotic input is sufficient to induce TDP. Interestingly, among the agents tested, the nonsecretagogue glutamine, the nonhydrolyzable analog of leucine aminobicyclo[2.2.1]heptane-2-carboxylic acid, and succinic acid methyl ester all induced TDP, and all significantly increased alpha-ketoglutarate levels in the islets. In conclusion, anaplerosis that enhances the supply and utilization of alpha-ketoglutarate in the tricarboxylic acid cycle appears to play an essential role in the generation of TDP.

  6. Sensitive change of iso-branched fatty acid (iso-15:0) in Bacillus pumilus PAMC 23174 in response to environmental changes.

    PubMed

    Yi, Da-Hye; Sathiyanarayanan, Ganesan; Seo, Hyung Min; Kim, Jung-Ho; Bhatia, Shashi Kant; Kim, Yun-Gon; Park, Sung-Hee; Jung, Ji-Young; Lee, Yoo Kyung; Yang, Yung-Hun

    2016-01-01

    In this study, the environmental adaptive metabolic processes were investigated using a psychrotrophic polar bacterium Bacillus pumilus PAMC 23174 in response to various temperatures and nutrients, especially in regard to the synthesis of fatty acids. Fatty acid methyl ester analysis was performed using gas chromatography-mass spectrometry and we found that a sensitive changes in iso-branched fatty acid (iso-15:0) synthesis occurred when adjusting the nutritional ratio of branched chain fatty acids (anteiso/iso) with different temperatures, resulting in a change in the balance of anteiso- and iso-form fatty acids. We also observed that this Arctic bacterium preferred amino acid leucine for the synthesis of fatty acids. The increased and decreased synthesis of iso-form fatty acids in response to different temperatures and leucine preference, changes the fatty acid ratio in bacteria, which further affects the membrane fluidity and it is also directly correlated with survival of bacteria in an extreme environment. Hence, this study suggests that B. pumilus PAMC 23174 is a potential model organism for the analysis of the unique ecological adaptations of polar bacteria in changing and the extreme environments.

  7. The Influence of 8-Weeks of Whey Protein and Leucine Supplementation on Physical and Cognitive Performance

    DTIC Science & Technology

    2009-03-01

    used various combinations of valine, leucine and isoleucine . Additionally, previous studies examining the effect of BCAA supplementation on...High Cholesterol (>200 mg/dL) Y N -- High Blood Pressure Y N -- Diabetes Y N - Are you currently taking any medications? Y N

  8. Potential of Macroalgae Ulva lactuca as a Source Feedstock for Biodiesel Production.

    PubMed

    Abd El Baky, Hanaa H; El Baroty, Gamal S

    2017-01-01

    The aim of this study was to investigate the possibility of growing of algae Ulva lactuca L.under different salinity levels coupled with varied KNO3 concentrations (source of N) as a potential source of oil for biodiesel production. U. lactuta was cultured in 10.0% NaCl coupled with either 2.5 g/L (S1+ 1N) or 1.0 g/L KNO3 (S1+ 2N) and in 30.0% NaCl coupled with 2.5 g/L (S2+ 1N) or 1.0 g/L KNO3 (S2+ 2N) nutrient medium. Among all algae cultures, biomass (dry weight) and lipid accumulation (total lipid content, TL) were significantly different (P>0.5%), with various degrees. The TL was increased (8.21% to 15.95%, g/100g) by increasing the NaCl % (from 10% to 30%) coupled with the depletion of KNO3 level (from 2.5% to 1%) in culture medium. High lipid content (15.95%) was obtained in S2+ 2N culture, this lipid showed physical (density, viscosity and average molecular weight) and chemical (iodine, acid, saponification and peroxide values) properties suitable for biodiesel production. The fatty acid methyl esters (FAME, biodiesel) prepared by trans-esterifiction reaction under acidic condition were mainly composed of saturated (50.33%), monounsaturated (MUFA, 36.12%) and polyunsaturated (13.55%) esters. C-18:1 was found to be the main MUFA, representing 25.76% of total FAME. On the other hand, the values of some critical of physiochemical parameter (density, kinematic viscosity, iodine value, acid value and oxidation stability) of biodiesel were found to meet the standards for a high quality biodiesel. Hence, U. lactuta could be serving as a valuable renewable biomass of oil for biodiesel production. There are recent patents also suggesting use of oil of U. lactuta marine biomass for biodiesel production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Microwave Energy Increases Fatty Acid Methyl Ester Yield in Human Whole Blood Due to Increased Sphingomyelin Transesterification.

    PubMed

    Metherel, Adam H; Aristizabal Henao, Juan J; Ciobanu, Flaviu; Taha, Ameer Y; Stark, Ken D

    2015-09-01

    Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield.

  10. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.

    PubMed

    Schrewe, Manfred; Julsing, Mattijs K; Lange, Kerstin; Czarnotta, Eik; Schmid, Andreas; Bühler, Bruno

    2014-09-01

    The oxyfunctionalization of unactivated C−H bonds can selectively and efficiently be catalyzed by oxygenase-containing whole-cell biocatalysts. Recombinant Escherichia coli W3110 containing the alkane monooxygenase AlkBGT and the outer membrane protein AlkL from Pseudomonas putida GPo1 have been shown to efficiently catalyze the terminal oxyfunctionalization of renewable fatty acid methyl esters yielding bifunctional products of interest for polymer synthesis. In this study, AlkBGTL-containing E. coli W3110 is shown to catalyze the multistep conversion of dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to the acid, exhibiting Michaelis-Menten-type kinetics for each reaction step. In two-liquid phase biotransformations, the product formation pattern was found to be controlled by DAME availability. Supplying DAME as bulk organic phase led to accumulation of the terminal alcohol as the predominant product. Limiting DAME availability via application of bis(2-ethylhexyl)phthalate (BEHP) as organic carrier solvent enabled almost exclusive acid accumulation. Furthermore, utilization of BEHP enhanced catalyst stability by reducing toxic effects of substrate and products. A further shift towards the overoxidized products was achieved by co-expression of the gene encoding the alcohol dehydrogenase AlkJ, which was shown to catalyze efficient and irreversible alcohol to aldehyde oxidation in vivo. With DAME as organic phase, the aldehyde accumulated as main product using resting cells containing AlkBGT, AlkL, as well as AlkJ. This study highlights the versatility of whole-cell biocatalysis for synthesis of industrially relevant bifunctional building blocks and demonstrates how integrated reaction and catalyst engineering can be implemented to control product formation patterns in biocatalytic multistep reactions. © 2014 Wiley Periodicals, Inc.

  11. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.

    PubMed

    Silva, Lilian N D; Ribeiro-Neto, José A; Valadares, Jéssica M M; Costa, Mariana M; Lima, Luciana A R S; Grillo, Luciano A M; Cortes, Vanessa F; Santos, Herica L; Alves, Stênio N; Barbosa, Leandro A

    2016-08-01

    Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae.

  12. ANTIFUNGAL POTENTIAL OF LEAF EXTRACTS OF LEGUMINOUS TREES AGAINST SCLEROTIUM ROLFSII.

    PubMed

    Sana, Nighat; Shoaib, Amna; Javaid, Arshad

    2016-01-01

    Sclerotium rolfsii Sacc. is a destructive soil-borne plant pathogen that infects over 500 plant species and causes significant yield losses in many economically important plant species. Synthetic fungicides used to combat the menace also pollute the environment and cause health hazards. In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Two hundred grams dried leaf material of each of the three test plant species were extracted with methanol for two weeks. After filtration, methanol was evaporated on a rotary evaporator. Malt extract broth was used to make various concentrations of the crude methanolic extracts and their antifungal potential was determined by comparing the fungal biomass in various treatments with control. Chemical composition of methanolic leaf extract of A. nilotica subsp. indica was determined through GC-MS analysis. Methanolic leaf extract of A. nilotica subsp. indica showed the highest fungicidal activity. Fungal biomass was decreased by 17-55% due to various concentrations of this extract over control. Different concentrations of P. juliflora reduced fungal biomass by 3-52%. Fourteen compounds were identified in methanolic extract of A. nilotica subsp. indica . 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z,)- (16.59%) was the most abundant compound followed by 1-pentanol, 2 methyl-, acetate (14.80%); hexanedioic acid, dimethyl ester (13.10%) and cyclotriaconta- 1, 7, 16, 22-tetraone (10.28%). This study concludes that methanolic leaf extract of A. nilotica subsp. indica can be used for management of S. rolfsii .

  13. ANTIFUNGAL POTENTIAL OF LEAF EXTRACTS OF LEGUMINOUS TREES AGAINST SCLEROTIUM ROLFSII

    PubMed Central

    Sana, Nighat; Shoaib, Amna; Javaid, Arshad

    2016-01-01

    Background: Sclerotium rolfsii Sacc. is a destructive soil-borne plant pathogen that infects over 500 plant species and causes significant yield losses in many economically important plant species. Synthetic fungicides used to combat the menace also pollute the environment and cause health hazards. In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Materials and Methods: Two hundred grams dried leaf material of each of the three test plant species were extracted with methanol for two weeks. After filtration, methanol was evaporated on a rotary evaporator. Malt extract broth was used to make various concentrations of the crude methanolic extracts and their antifungal potential was determined by comparing the fungal biomass in various treatments with control. Chemical composition of methanolic leaf extract of A. nilotica subsp. indica was determined through GC-MS analysis. Results: Methanolic leaf extract of A. nilotica subsp. indica showed the highest fungicidal activity. Fungal biomass was decreased by 17-55% due to various concentrations of this extract over control. Different concentrations of P. juliflora reduced fungal biomass by 3-52%. Fourteen compounds were identified in methanolic extract of A. nilotica subsp. indica. 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z,)- (16.59%) was the most abundant compound followed by 1-pentanol, 2 methyl-, acetate (14.80%); hexanedioic acid, dimethyl ester (13.10%) and cyclotriaconta- 1, 7, 16, 22-tetraone (10.28%). Conclusion: This study concludes that methanolic leaf extract of A. nilotica subsp. indica can be used for management of S. rolfsii. PMID:28487894

  14. Combination of SEDDS and Preactivated Thiomer Technology: Incorporation of a Preactivated Thiolated Amphiphilic Polymer into Self-Emulsifying Delivery Systems.

    PubMed

    Hetényi, Gergely; Griesser, Janine; Nardin, Isabelle; Bernkop-Schnürch, Andreas

    2017-06-01

    The aim of the study was to create novel mucoadhesive drug delivery systems by incorporating amphiphilic hydrophobically modified, thiolated and preactivated polymers (preactivated thiomers) into self-emulsifying drug delivery systems (SEDDS). L-Cysteine methyl ester was covalently attached to the polymeric backbone of Pemulen TR-2 and preactivated using 2-mercaptonicotinic acid (2-MNA). These thiomers were incorporated in a concentration of 0.3% (w/v) into SEDDS. The size distribution and the zeta potential of the emulsions were evaluated by dynamic light scattering. Mucoadhesive properties of thiomers-SEDDS spiked with FDA (fluorescein diacetate) were examined utilizing rheological measurement, permeation studies and in vitro residence time study on porcine mucosa. Cell viability tests were additionally performed. 734 ± 58 μmol L-Cysteine methyl ester and 562 ± 71 μmol 2-MNA could be attached per gram polymer of Pemulen TR-2. Emulsions exhibited a droplet size range between 180 and 270 nm. Blank SEDDS possessed a zeta potential value between -5.7 and -8.6 mV, whereas thiomers-SEDDS between -14.6 and -17.2 mV. Viscous modulus of thiomer and preactivated thiomer containing SEDDS-mucus mixture was 8-fold and 11-fold increased in comparison to reference. The amount of FDA permeated the mucus layer was 2-fold lower in case of thiomers-SEDDS compared to blank SEDDS. A prolonged residence time was observed for thiomers-SEDDS over 45 min. During cell viability studies no severe toxic effects were detected. The novel developed SEDDS with incorporated thiomers might be a promising tool for mucoadhesive oral drug delivery.

  15. Pulmonary Hypertension in Lambs Transfused with Stored Blood is Prevented by Breathing Nitric Oxide

    PubMed Central

    Baron, David M.; Yu, Binglan; Lei, Chong; Bagchi, Aranya; Beloiartsev, Arkadi; Stowell, Christopher P.; Steinbicker, Andrea U.; Malhotra, Rajeev; Bloch, Kenneth D.; Zapol, Warren M.

    2012-01-01

    Background During extended storage, erythrocytes undergo functional changes. These changes reduce the viability of erythrocytes leading to release of oxyhemoglobin, a potent scavenger of nitric oxide. We hypothesized that transfusion of ovine packed erythrocytes (PRBC) stored for prolonged periods would induce pulmonary vasoconstriction in lambs, and that reduced vascular nitric oxide concentrations would increase this vasoconstrictor effect. Methods We developed a model of autologous stored blood transfusion in lambs (n=36). Leukoreduced blood was stored for either 2 days (fresh PRBC) or 40 days (stored PRBC). Fresh or stored PRBC were transfused into donors instrumented for awake hemodynamic measurements. Hemodynamic effects of PRBC transfusion were also studied after infusion of NG-nitro-L-arginine methyl-ester (25 mg/kg) or during inhalation of nitric oxide (80 ppm). Results Cell-free hemoglobin levels were higher in the supernatant of stored PRBC than in supernatant of fresh PRBC (Mean±SD, 148±20 versus 41±13 mg/dl, respectively, P<0.001). Pulmonary artery pressure during transfusion of stored PRBC transiently increased from 13±1 to 18±1 mmHg (P<0.001) and was associated with increased plasma hemoglobin concentrations. NG-nitro-L-arginine methyl-ester potentiated the increase in pulmonary arterial pressure induced by transfusing stored PRBC, whereas inhalation of nitric oxide prevented the vasoconstrictor response. Conclusions Our results suggest that patients with reduced vascular nitric oxide levels due to endothelial dysfunction may be more susceptible to adverse effects of transfusing blood stored for prolonged periods. These patients might benefit from transfusion of fresh PRBC, when available, or inhaled nitric oxide supplementation to prevent the pulmonary hypertension associated with transfusion of stored PRBC. PMID:22293717

  16. Cinnamon polyphenols attenuate cell swelling and mitochondrial dysfunction following oxygen-glucose deprivation in glial cells.

    PubMed

    Panickar, Kiran S; Polansky, Marilyn M; Anderson, Richard A

    2009-04-01

    Astrocyte swelling is an integral component of cytotoxic brain edema in ischemic injury. While mechanisms underlying astrocyte swelling are likely multifactorial, oxidative stress and mitochondrial dysfunction are hypothesized to contribute to such swelling. We investigated the protective effects of cinnamon polyphenol extract (CPE) that has anti-oxidant and insulin-potentiating effects on cell swelling and depolarization of the inner mitochondrial membrane potential (DeltaPsi(m)) in ischemic injury. C6 glial cells were subjected to oxygen-glucose deprivation (OGD) and cell volume determined using the 3-O-methyl-[3H]-glucose method at 90 min after the end of OGD. When compared with controls, OGD increased cell volume by 34%. This increase was blocked by CPE or insulin but not by blockers of oxidative/nitrosative stress including vitamin E, resveratrol, N-nitro-L-arginine methyl ester (L-NAME) or uric acid. Mitochondrial dysfunction, a key component of ischemic injury, contributes to cell swelling. Changes in DeltaPsi(m) were assessed at the end of OGD with tetramethylrhodamine ethyl ester (TMRE), a potentiometric dye. OGD induced a 39% decline in DeltaPsi(m) and this decline was blocked by CPE as well as insulin. To test the involvement of the mitochondrial permeability transition (mPT), we used Cyclosporin A (CsA), an immunosuppressant and a blocker of the mPT pore. CsA blocked cell swelling and the decline in DeltaPsi(m) but FK506, an immunosuppressant that does not block the mPT, did not. Our results show that CPE reduces OGD-induced cell swelling as well as the decline in DeltaPsi(m) in cultures and some of its protective effects may be through inhibiting the mPT.

  17. The effects of bupivacaine, L-nitro-L-arginine-methyl ester, and phenylephrine on cardiovascular adaptations to asphyxia in the preterm fetal lamb.

    PubMed

    Santos, A C; Yun, E M; Bobby, P D; Noble, G; Arthur, G R; Finster, M

    1997-12-01

    The preterm fetal lamb that is exposed to clinically relevant plasma concentrations of lidocaine loses its cardiovascular adaptations to asphyxia, and its condition deteriorates further. Nitric oxide (NO) is an important regulator of vascular tone, and local anesthetics are known to inhibit endothelium-dependent vasodilation. The purpose of the present study was to determine whether the adverse effects of lidocaine noted in the preterm fetal lamb also occur with bupivacaine and whether the inhibition of NO results in effects similar to those of bupivacaine. Thirty-two chronically prepared pregnant sheep were studied at 117-119 days' gestation. Maternal and fetal blood pressure, heart rate, and acid-base state were evaluated. Fetal organ blood flows were determined using 15-microM diameter dye-labeled microspheres. After a control period, mild to moderate asphyxia (fetal PaO2 15 mm Hg) was induced by partial umbilical cord occlusion and maintained throughout the experiment. Ewes in Group I (n = 13) were given a two-step intravenous infusion of bupivacaine for 180 min. Fetuses in Group II (n = 12) received an intravenous injection of L-nitro-L-arginine-methyl ester (L-NAME) (25 mg/kg), and measurements were taken 10 and 30 min after the injection. A third group (Group III) of fetuses (n = 7) were given an intravenous infusion of phenylephrine to mimic the blood pressure increases noted in L-NAME-treated fetuses. At 90 min of stable asphyxia, there was a significant decrease in fetal PaO2 and pHa and an increase in PaCO2 and mean arterial blood pressure. There was also an increase in blood flow to the adrenals, myocardium, and cerebral cortex, whereas blood flow to the placenta decreased. Administration of bupivacaine during asphyxia did not affect the changes in mean arterial blood pressure and acid-base state but did abolish the increases in blood flows to the myocardium and cerebral cortex. Injection of L-NAME to the asphyxiated fetus resulted in an increase in mean arterial blood pressure above the level noted at 90 min of cord occlusion, and an increase in fetal PaO2 toward control levels. This was accompanied by a reduction in organ blood flows to preasphyxia levels. In asphyxiated Group III fetuses, titration of the phenylephrine infusion to achieve blood pressure increases similar to those noted with L-NAME were also associated with an increase in fetal PaO2. These data indicate that bupivacaine abolishes some of the circulatory adaptations to mild to moderate asphyxia induced by partial cord occlusion in the preterm fetal lamb. It is not clear whether these effects of bupivacaine are due to inhibition of NO. In the preterm fetal lamb, clinically relevant plasma concentrations of bupivacaine achieved by intravenous infusion to the pregnant ewe (80% gestation) abolished some of the fetal cardiovascular adaptations to asphyxia induced by partial umbilical cord occlusion.

  18. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  19. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  20. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    PubMed

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top