Sample records for l-nitro-arginine methyl ester

  1. Progesterone up-regulates vasodilator effects of calcitonin gene-related peptide in N(G)-nitro-L-arginine methyl ester-induced hypertension.

    PubMed

    Gangula, P R; Wimalawansa, S J; Yallampalli, C

    1997-04-01

    We recently reported that calcitonin gene-related peptide can reverse the hypertension produced by N(G)-nitro-L-arginine methyl ester in pregnant rats. In the current study we investigated whether these vasodilator effects of calcitonin gene-related peptide were progesterone dependent. Calcitonin gene-related peptide or N(G)-nitro-L-arginine methyl ester was infused through osmotic minipumps, either separately or in combination, to groups of five pregnant rats from day 17 of gestation until day 8 post partum or to nonpregnant ovariectomized rats for 8 days. Progesterone was injected during days 1 to 6 post partum and for 6 days after ovariectomy. Systolic blood pressure was measured daily. Animals receiving N(G)-nitro-L-arginine methyl ester exhibited significant elevations of blood pressure during pregnancy and post partum. Coadministration of calcitonin gene-related peptide to these rats reversed the hypertension during pregnancy but not during the postpartum period. At the dose used in this study calcitonin gene-related peptide administered alone was without significant effects on blood pressure. However, it reduced both the mortality and growth restriction of the fetus associated with N(G)-nitro-L-arginine methyl ester in these animals. Calcitonin gene-related peptide reversed the hypertension in N(G)-nitro-L-arginine methyl ester-infused postpartum rats during the periods of progesterone treatment only, and these effects were lost when progesterone treatment was stopped. Neither progesterone nor calcitonin gene-related peptide alone were effective. To further confirm these observations, progesterone effects were tested in ovariectomized adult rats. Similar to the findings in postpartum rats, calcitonin gene-related peptide completely reversed the elevation in blood pressure in N(G)-nitro-L-arginine methyl ester-treated rats receiving progesterone injections. The effects of calcitonin gene-related peptide were apparent only during the progesterone treatment

  2. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    PubMed

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  3. The influence of gastric pentadecapeptide BPC 157 on acute and chronic ethanol administration in mice. The effect of N(G)-nitro-L-arginine methyl ester and L-arginine.

    PubMed

    Boban-Blagaic, Alenka; Blagaic, Vladimir; Romic, Zeljko; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Seiwerth, Sven; Sikiric, Predrag

    2006-01-01

    Alcohol disturbances, NO stimulation (by the NO-precursor L-arginine), and/or NO-synthesis blockade (by N(G)-nitro-L-arginine methyl ester, i.e. L-NAME) were challenged with stable gastric pentadecapeptide BPC 157, which inhibits both acute alcohol intoxication and alcohol withdrawal symptoms. Mice received intraperitoneally (i.p.) BPC 157 (10 microg/kg), L-NAME (10 mg/kg), and L-arginine (400 mg/kg), alone or in combination, 5 minutes before or after acute ethanol (4 g/kg i.p.) intoxication or after 0, 3, or 7 hours of withdrawal after drinking 20% alcohol for 13 days. BPC 157 rapidly opposes the strongest disturbance presentations in acute intoxication (sustained ethanol anesthesia, complete loss of righting reflex, no reaction to external stimuli, hypothermia, 25% mortality) and withdrawal (prominent seizures). NO-agents: Aggravation of acute alcohol intoxication and opposition to withdrawal are common, but the later intervals affected by L-arginine and the action throughout the experiment by L-NAME are distinctive. Given together, L-arginine and L-NAME counteract each other, while either the "L-NAME presentation" (acute intoxication) or the "L-arginine presentation" (withdrawal) predominates. BPC157+NO-agent: In acute intoxication (L-NAME predominating in NO-system functioning to aggravate intoxication), both BPC157+L-NAME and BPC157+L-arginine follow the presentation of L-NAME, but without worsened mortality. In withdrawal (L-arginine predominating in NO-system functioning to oppose disturbance symptoms), BPC157+L-NAME follows the presentation of L-NAME, while BPC 157+L-arginine imitates that of L-arginine. The relationships among pentadecapeptide BPC 157, the NO-system, acute alcohol intoxication, and opposed withdrawal may be important, presenting pentadecapeptide BPC 157 as a suitable alcohol antagonist.

  4. The Nitric Oxide Synthase Inhibitor NG-Nitro-L-Arginine Methyl Ester Diminishes the Immunomodulatory Effects of Parental Arginine in Rats with Subacute Peritonitis

    PubMed Central

    Lo, Hui-Chen; Hung, Ching-Yi; Huang, Fu-Huan; Su, Tzu-Cheng; Lee, Chien-Hsing

    2016-01-01

    The combined treatment of parenteral arginine and the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) have been shown to improve liver function and systemic inflammation in subacute peritonitic rats. Here, we investigated the effects of single and combined parenteral arginine and L-NAME treatments on leukocyte and splenocyte immunity. Male Wistar rats were subjected to cecal punctures and were intravenously given total parenteral nutrition solutions with or without arginine and/or L-NAME supplementations for 7 days. Non-surgical and sham-operated rats with no cecal puncture were given a chow diet and parenteral nutrition, respectively. Parenteral feeding elevated the white blood cell numbers and subacute peritonitis augmented the parenteral nutrition-induced alterations in the loss of body weight gain, splenomegaly, and splenocyte decreases. Parenteral arginine significantly increased the B-leukocyte level, decreased the natural killer T (NKT)-leukocyte and splenocyte levels, alleviated the loss in body weight gain and total and cytotoxic T-splenocyte levels, and attenuated the increases in plasma nitrate/nitrite and interferon-gamma production by T-splenocytes. L-NAME infusion significantly decreased NKT-leukocyte level, tumor-necrosis factor (TNF)-alpha production by T-splenocytes and macrophages, and interferon-gamma production by T-leukocytes, monocytes, and T-splenocytes, as well as increased interleukin-6 production by T-leukocytes and monocytes and nitrate/nitrite production by T-leukocytes. Combined treatment significantly decreased plasma nitrate/nitrite, the NKT-leukocyte level, and TNF-alpha production by T-splenocytes. Parenteral arginine may attenuate immune impairment and L-NAME infusion may augment leukocyte proinflammatory response, eliminate splenocyte proinflammatory and T-helper 1 responses, and diminish arginine-induced immunomodulation in combined treatment in subacute peritonitic rats. PMID:27007815

  5. Duodenocutaneous fistula in rats as a model for "wound healing-therapy" in ulcer healing: the effect of pentadecapeptide BPC 157, L-nitro-arginine methyl ester and L-arginine.

    PubMed

    Skorjanec, S; Kokot, A; Drmic, D; Radic, B; Sever, M; Klicek, R; Kolenc, D; Zenko, A; Lovric Bencic, M; Belosic Halle, Z; Situm, A; Zivanovic Posilovic, G; Masnec, S; Suran, J; Aralica, G; Seiwerth, S; Sikiric, P

    2015-08-01

    While very rarely reported, duodenocutanenous fistula research might alter the duodenal ulcer disease background and therapy. Our research focused on rat duodenocutaneous fistulas, therapy, stable gastric pentadecapeptide BPC 157, an anti-ulcer peptide that healed other fistulas, nitric oxide synthase-substrate L-arginine, and nitric oxide synthase-inhibitor L-nitro-arginine methyl ester (L-NAME). The hypothesis was, duodenal ulcer-healing, like the skin ulcer, using the successful BPC 157, with nitric oxide-system involvement, the "wound healing-therapy", to heal the duodenal ulcer, the fistula-model that recently highlighted gastric and skin ulcer healing. Pressure in the lower esophageal and pyloric sphincters was simultaneously assessed. Duodenocutaneous fistula-rats received BPC 157 (10 μg/kg or 10 ng/kg, intraperitoneally or perorally (in drinking water)), L-NAME (5 mg/kg intraperitoneally), L-arginine (100 mg/kg intraperitoneally) alone and/or together, throughout 21 days. Duodenocutaneous fistula-rats maintained persistent defects, continuous fistula leakage, sphincter failure, mortality rate at 40% until the 4(th) day, all fully counteracted in all BPC 157-rats. The BPC 157-rats experienced rapidly improved complete presentation (maximal volume instilled already at 7(th) day). L-NAME further aggravated the duodenocutaneous fistula-course (mortality at 70% until the 4(th) day); L-arginine was beneficial (no mortality; however, maximal volume instilled not before 21(st) day). L-NAME-worsening was counteracted to the control level with the L-arginine effect, and vice versa, while BPC 157 annulled the L-NAME effects (L-NAME + L-arginine; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157 brought below the level of the control). It is likely that duodenocutaneous fistulas, duodenal/skin defect simultaneous healing, reinstated sphincter function, are a new nitric oxide-system related phenomenon. In conclusion, resolving the duodenocutanenous fistulashealing

  6. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats.

    PubMed

    Paulis, Ludovit; Pechanova, Olga; Zicha, Josef; Krajcirovicova, Kristina; Barta, Andrej; Pelouch, Vaclav; Adamcova, Michaela; Simko, Fedor

    2009-08-01

    Melatonin was shown to reduce blood pressure, enhance nitric oxide availability and scavenge free radicals. There is, however, a shortage of data with respect to the effect of melatonin on pathological left ventricular remodelling associated with haemodynamic overload. We investigated whether melatonin was able to prevent left ventricular hypertrophy (LVH) and fibrosis associated with N(G)-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension. Four groups of male Wistar rats were investigated: control, L-NAME (50 mg/kg per day), melatonin (10 mg/kg per day) and L-NAME plus melatonin. Blood pressure was measured non-invasively each week. After 5 weeks of treatment the animals were killed and nitric oxide synthase (NOS) activity, endothelial and inducible NOS expression, the level of collagenous proteins, hydroxyproline and conjugated dienes in the left ventricle were determined. The administration of L-NAME inhibited NOS activity, increased conjugated dienes concentration, elevated blood pressure and induced LVH and fibrosis (indicated by increased collagenous proteins and hydroxyproline levels). The addition of melatonin to L-NAME treatment failed to prevent the attenuation of NOS activity and the development of LVH and prevented hypertension only partly. The administration of melatonin, however, completely prevented the increase in conjugated dienes concentration and the development of left ventricular fibrosis. NOS expression was not different among experimental groups. Melatonin prevented the development of left ventricular fibrosis and the increase in oxidative load in rats with L-NAME-induced hypertension. The antifibrotic effect of melatonin seems to be independent of its effects on NOS activity and might be linked to its antioxidant properties.

  7. Vascular and antioxidant effects of an aqueous Mentha cordifolia extract in experimental N(G)-nitro-L-arginine methyl ester-induced hypertension.

    PubMed

    Pakdeechote, Poungrat; Prachaney, Parichat; Berkban, Warinee; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Khrisanapant, Wilaiwan; Phirawatthakul, Yada

    2014-01-01

    The effect of an aqueous Mentha cordifolia (MC) extract on the haemodynamic status, vascular remodeling, function, and oxidative status in NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertension was investigated. Male Sprague-Dawley rats were given L-NAME [50 mg/(kg body weight (BW) d)] in their drinking water for 5 weeks and were treated by intragastric administration with the MC extract [200 mg/(kgBWd)] for 2 consecutive weeks. Quercetin [25 mg/(kg BW d)] was used as a positive control. The effects of the MC extract on the haemodynamic status, thoracic aortic wall thickness, and oxidative stress markers were determined, and the vasorelaxant activity of the MC extract was tested in isolated mesenteric vascular beds in rats. Significant increases in the mean arterial pressure (MAP), heart rate (HR), hind limb vascular resistance (HVR), wall thickness, and cross-sectional area of the thoracic aorta, as well as oxidative stress markers were found in the L-NAME-treated group compared to the control (P < 0.05). MAP, HVR, wall thickness, cross-sectional area of the thoracic aorta, plasma malondialdehyde (MDA), and vascular superoxide anion production were significantly reduced in L-NAME hypersensitive rats treated with the MC extract or quercetin. Furthermore, the MC extract induced vasorelaxation in the pre-constricted mesenteric vascular bed with intact and denuded endothelium of normotensive and hypertensive rats. Our results suggest that the MC extract exhibits an antihypertensive effect via its antioxidant capacity, vasodilator property, and reduced vascular remodeling.

  8. Chronic N(G)-nitro-L-arginine methyl ester-induced hypertension : novel molecular adaptation to systolic load in absence of hypertrophy

    NASA Technical Reports Server (NTRS)

    Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.

  9. Effect of N(G)-nitro-L-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model.

    PubMed

    Luo, C C; Chen, H M; Chiu, C H; Lin, J N; Chen, J C

    2001-07-01

    Subclinical intestinal ischemia-reperfusion injury (IRI) causes an increase in mucosal permeability and may represent an early event in the pathogenesis of necrotizing enterocolitis in premature infants. Previous studies suggested that continuous, endogenous formation of nitric oxide (NO) maintains the mucosal integrity of the intestine, thus protecting the gut from injuries from blood-borne toxins and tissue-destructive mediators. This study was undertaken to assess whether the inhibition of NO production causes an increase in intestinal permeability in rats following IRI. Sprague-Dawley rats weighing 200-300 g were divided into 4 groups: (1) untreated group (normal control); (2) ischemia-reperfusion group; (3) early N(G)-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of NO production, treatment group, and (4) late L-NAME treatment group. Transient IRI was induced by 30-min occlusion, followed by reperfusion of the isolated ileal loop. The L-NAME was administered 15 min before and after mesenteric ischemia as a 25-mg/kg bolus. Fluorescein isothiocyanate-dextran (FITC-D) was used to quantitatively assess the alteration in mucosal permeability of the intestine. There was no significant increase in the portal vein FITC-D level among normal controls, ischemia-reperfusion group and late L-NAME-treated group, but there was an approximately 6-fold increase in the early L-NAME treatment group. The pathological features of the intestine following IRI include denudation of the villus epithelium and reduction of villus height, associated with marked inflammatory cell infiltration over the lamina propria. These results suggest that endogenous NO may play a role in the protecting intestinal integrity after IRI. Copyright 2001 S. Karger AG, Basel

  10. Effects of aqueous leaf extract of Tridax procumbens on contractile activity of corpus cavernosum in N-nitro-l-arginine methyl ester-induced hypertensive male rats.

    PubMed

    Salami, Shakiru Ademola; Salahdeen, Hussein Mofomosara; Ugbebor, Evangelshane Chukwudubem; Murtala, Babatunde Adekunle; Raji, Yinusa

    2018-01-01

    This study investigated the effects of aqueous leaf extract of Tridax procumbens (ALETP) on contractile activity of corpus cavernosum in N-nitro-l-arginine methyl ester (l-NAME)-induced hypertensive male rats. Twenty normal, adult male rats (130-150 g) were divided into four groups of five rats each. Group I (control) was given normal saline (0.6 mL/kg) and group II was given l-NAME (40 mg/kg) for 6 weeks. Groups III and IV also received l-NAME (40 mg/kg) for 6 weeks but were further co-treated with 100 and 200 mg/kg of ALETP, respectively, from week 4 to week 6. All treatments were given orally. Strips of corpus cavernosum from each of the four groups were exposed to increasing concentrations of acetylcholine (ACh) and sodium nitroprusside (SNP) (10 -9 -10 -5 mol/L) after contraction with phenylephrine (10 -7  mol/L) to test for a dose-response effect. Response to potassium and calcium was also measured after cumulatively adding potassium and calcium (10-50 mmol/L) to potassium- and calcium-free organ chamber. Isometric contractions were recorded through an Ugo Basile data capsule acquisition system. Mean arterial blood pressure was significantly reduced in the ALETP co-treated group compared to the control and l-NAME-only groups (P < 0.05). Cavernosa strips from ALETP co-treated rats exhibited significant inhibition of contraction in response to phenylephrine, potassium chloride, and calcium chloride (P < 0.05). Relaxation in response to Ach and SNP was also significantly impaired in cavernosa strips from the l-NAME-only treated group (P < 0.05), while ALETP co-treated groups showed enhanced percentage relaxation. ALETP treatment of l-NAME-induced hypertensive rats promotes a relaxant effect on isolated cavernosa strips. ALETP shows potential in correcting erectile dysfunction in hypertension. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  11. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2.

    PubMed

    Jin, Li; Lin, Ming Quan; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Sun, Simei; Kee, Hae Jin; Jeong, Myung Ho

    2017-07-01

    Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.

  12. The effects of bupivacaine, L-nitro-L-arginine-methyl ester, and phenylephrine on cardiovascular adaptations to asphyxia in the preterm fetal lamb.

    PubMed

    Santos, A C; Yun, E M; Bobby, P D; Noble, G; Arthur, G R; Finster, M

    1997-12-01

    The preterm fetal lamb that is exposed to clinically relevant plasma concentrations of lidocaine loses its cardiovascular adaptations to asphyxia, and its condition deteriorates further. Nitric oxide (NO) is an important regulator of vascular tone, and local anesthetics are known to inhibit endothelium-dependent vasodilation. The purpose of the present study was to determine whether the adverse effects of lidocaine noted in the preterm fetal lamb also occur with bupivacaine and whether the inhibition of NO results in effects similar to those of bupivacaine. Thirty-two chronically prepared pregnant sheep were studied at 117-119 days' gestation. Maternal and fetal blood pressure, heart rate, and acid-base state were evaluated. Fetal organ blood flows were determined using 15-microM diameter dye-labeled microspheres. After a control period, mild to moderate asphyxia (fetal PaO2 15 mm Hg) was induced by partial umbilical cord occlusion and maintained throughout the experiment. Ewes in Group I (n = 13) were given a two-step intravenous infusion of bupivacaine for 180 min. Fetuses in Group II (n = 12) received an intravenous injection of L-nitro-L-arginine-methyl ester (L-NAME) (25 mg/kg), and measurements were taken 10 and 30 min after the injection. A third group (Group III) of fetuses (n = 7) were given an intravenous infusion of phenylephrine to mimic the blood pressure increases noted in L-NAME-treated fetuses. At 90 min of stable asphyxia, there was a significant decrease in fetal PaO2 and pHa and an increase in PaCO2 and mean arterial blood pressure. There was also an increase in blood flow to the adrenals, myocardium, and cerebral cortex, whereas blood flow to the placenta decreased. Administration of bupivacaine during asphyxia did not affect the changes in mean arterial blood pressure and acid-base state but did abolish the increases in blood flows to the myocardium and cerebral cortex. Injection of L-NAME to the asphyxiated fetus resulted in an increase in

  13. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    PubMed

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  14. Kinetics and molecular characteristics of arginine transport by Leishmania donovani promastigotes.

    PubMed

    Kandpal, M; Fouce, R B; Pal, A; Guru, P Y; Tekwani, B L

    1995-05-01

    Characteristics of transport of L-arginine were studied in Leishmania donovani promastigotes grown in vitro in a defined medium. The promastigotes exhibited a time-dependent, temperature-sensitive, pH-dependent and saturable uptake of arginine. Metabolic inhibitors caused 81-92% inhibition, indicating that arginine influx in promastigotes is an energy requiring process. The presence of Na+ ions was necessary for full activity. Considerable inhibition was also noticed with valinomycin, gramicidin and amiloride. The transporter seems to involve an -SH group at the active site. The most distinctive feature of the leishmanial transporter was that lysine and ornithine did not show significant competition with arginine transport. Other neutral and acidic amino acids, as well as polyamines were also ineffective. The arginine analogues, viz., nitro-L-arginine methyl ester, N-nitro-L-arginine, aminoguanidine, agmatine and D-arginine were not recognised by the transporter, while N-methyl-L-arginine acetate and phospho-L-arginine showed competition, indicating stereo-specificity of the transporter and recognition of both the guanidino group, as well as the arginine side chain by the transporter. No exchange of intracellular [14C]arginine taken up by the promastigotes was noticed during incubation with 2 or 5 mM arginine in the extracellular medium. Eighty percent of the arginine taken up remained in the trichloroacetic acid-soluble fraction. Pentamidine caused competitive inhibition of arginine transport, exhibiting an IC50 value of 40 microM. Results indicate the presence of a novel distinct arginine transporter in Leishmania promastigotes.

  15. Structural alterations in rat myocardium induced by chronic l-arginine and l-NAME supplementation.

    PubMed

    Hmaid, Amal Abdussalam Ali A; Markelic, Milica; Otasevic, Vesna; Masovic, Sava; Jankovic, Aleksandra; Korac, Bato; Korac, Aleksandra

    2018-03-01

    Structural changes affecting cardiomyocyte function may contribute to the pathophysiological remodeling underlying cardiac function impairment. Recent reports have shown that endogenous nitric oxide (NO) plays an important role in this process. In order to examine the role of NO in cardiomyocyte remodeling, male rats were acclimated to room temperature (22 ± 1 °C) or cold (4 ± 1 °C) and treated with 2.25% l-arginine·HCl or 0.01% l-NAME (N ω -nitro-l-arginine methyl ester)·HCl for 45 days. Untreated groups served as controls. Right heart ventricles were routinely prepared for light microscopic examination. Stereological estimations of volume densities of cardiomyocytes, surrounding blood vessels and connective tissue, as well as the morphometric measurements of cardiomyocyte diameters were performed. Tissue sections were also analyzed for structural alterations. We observed that both l-arginine and l-NAME supplementation induced cardiomyocyte hypertrophy, regardless of ambient temperature. However, cardiomyocyte hypertrophy was associated with fibrosis and extra collagen deposition only in the l-NAME treated group. Taken together, our results suggest that NO has a modulatory role in right heart ventricle remodeling by coordinating hypertrophy of cardiomyocytes and fibrous tissue preventing cardiac fibrosis.

  16. The impact of intrarenal nitric oxide synthase inhibition on renal blood flow and function in mild and severe hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Bellomo, Rinaldo; May, Clive N

    2011-04-01

    In experimental hyperdynamic sepsis, renal function deteriorates despite renal vasodilatation and increased renal blood flow. Because nitric oxide is increased in sepsis and participates in renal blood flow control, we investigated the effects of intrarenal Nω-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, in mild and severe sepsis. Prospective crossover and randomized control interventional studies. University-affiliated research institute. Thirty-two merino ewes. Examination of responses to intrarenal infusion of Nω-nitro-L-arginine methyl ester for 8 hrs in unilaterally nephrectomized normal sheep and in sheep administered Escherichia coli. : In normal sheep, Nω-nitro-L-arginine methyl ester decreased renal blood flow (301 ± 30 to 228 ± 26 mL/min) and creatinine clearance (40.0 ± 5.8 to 31.1 ± 2.8 mL/min), whereas plasma creatinine increased, but fractional excretion of sodium was unchanged. In sheep with nonhypotensive hyperdynamic sepsis, plasma creatinine increased and there were decreases in creatinine clearance (34.5 ± 4.6 to 20.1 ± 3.7 mL/min) and fractional excretion of sodium despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester normalized renal blood flow and increased urine output, but creatinine clearance did not improve and plasma creatinine and fractional excretion of sodium increased. In sheep with severe hypotensive sepsis, creatinine clearance decreased further (31.1 ± 5.4 to 16.0 ± 1.7 mL/min) despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester restored mean arterial pressure and reduced renal blood flow but did not improve plasma creatinine or creatinine clearance. In hyperdynamic sepsis, with or without hypotension, creatinine clearance decreased despite increasing renal blood flow. Intrarenal Nω-nitro-L-arginine methyl ester infusion reduced renal blood flow but did not improve creatinine clearance. These data indicate that septic acute kidney

  17. Spontaneous, L-arginine-induced and spironolactone-induced regression of protein remodeling of the left ventricle in L-NAME-induced hypertension.

    PubMed

    Simko, F; Potácová, A; Pelouch, V; Paulis, L; Matúsková, J; Krajcírovicová, K; Pechánová, O; Adamcová, M

    2007-01-01

    N(G)-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension is associated with protein remodeling of the left ventricle. The aim of the study was to show, whether aldosterone receptor blocker spironolactone and precursor of NO-production L-arginine were able to reverse the protein rebuilding of the left ventricle. Six groups of male Wistar rats were investigated: control 4 (4 weeks placebo), L-NAME (4 weeks L-NAME), spontaneous-regression (4 weeks L-NAME + 3 weeks placebo), spironolactone-regression (4 weeks L-NAME + 3 weeks spironolactone), L-arginine-regression (4 weeks L-NAME + 3 weeks arginine), control 7 (7 weeks placebo). L-NAME administration induced hypertension, hypertrophy of the left ventricle (LV), and the increase of metabolic and contractile as well as soluble and insoluble collagenous protein concentration. The systolic blood pressure and relative weight of the LV decreased in all three groups with regression, while the most prominent attenuation of the LVH was observed after spironolactone treatment. In the spontaneous-regression and L-arginine-regression groups the concentrations of individual proteins were not significantly different from the control value. However, in the spironolactone-regression group the concentration of metabolic, contractile and insoluble collagenous proteins remained significantly increased in comparison with the control group. The persistence of the increased protein concentration in the spironolactone group may be related to the more prominent reduction of myocardial water content by spironolactone.

  18. Celecoxib-induced gastrointestinal, liver and brain lesions in rats, counteraction by BPC 157 or L-arginine, aggravation by L-NAME

    PubMed Central

    Drmic, Domagoj; Kolenc, Danijela; Ilic, Spomenko; Bauk, Lara; Sever, Marko; Zenko Sever, Anita; Luetic, Kresimir; Suran, Jelena; Seiwerth, Sven; Sikiric, Predrag

    2017-01-01

    AIM To counteract/reveal celecoxib-induced toxicity and NO system involvement. METHODS Celecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 μg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter. RESULTS This high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME). CONCLUSION BPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs’ post-surgery application and NO system involvement. PMID:28839430

  19. Celecoxib-induced gastrointestinal, liver and brain lesions in rats, counteraction by BPC 157 or L-arginine, aggravation by L-NAME.

    PubMed

    Drmic, Domagoj; Kolenc, Danijela; Ilic, Spomenko; Bauk, Lara; Sever, Marko; Zenko Sever, Anita; Luetic, Kresimir; Suran, Jelena; Seiwerth, Sven; Sikiric, Predrag

    2017-08-07

    To counteract/reveal celecoxib-induced toxicity and NO system involvement. Celecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 μg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter. This high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME). BPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs' post-surgery application and NO system involvement.

  20. [N(omega)-nitro-L-arginine methyl ester inhibits the up-regulated expression of neuronal nitric oxide synthase/NMDA receptor in the morphine analgesia tolerance rats].

    PubMed

    Yu, Ling; Xue, Fu-Shan; Li, Cheng-Wen; Xu, Ya-Chao; Zhang, Guo-Hua; Liu, Kun-Peng; Liu, Yi; Sun, Hai-Tao

    2006-12-25

    The effect of systemic administration of nonspecific nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine methyl ester, L-NAME) on morphine analgesia tolerance was observed by using the thermal tail-flick method, and the roles of NO and NMDA receptors in morphine analgesia tolerance were evaluated on the basis of the expressions of nNOS mRNA, NR1A mRNA and NR2A mRNA in spinal cord and midbrain. Thirty-six healthy adult Sprague-Dawley rats were randomly divided into six groups (6 rats per group). Group 1, control group, received a subcutaneous (s.c.) injection of normal saline (1 ml); Groups 2, 3, 4, 5 and 6, the treatment groups received s.c. injection of L-NAME 10 mg/kg, L-NAME 20 mg/kg, morphine 10 mg/kg, L-NAME 10 mg/kg + morphine 10 mg/kg, and L-NAME 20 mg/kg + morphine 10 mg/kg, respectively. All rats received s.c. injections twice per day (8:00 and 17:00). The tail-flick latency (TFL) was measured in each rat before the injection as a baseline value, and then TFL at 50 min after the 1st injection every day as the measuring values. The animals (except for groups 2 and 5) were decapitated at 80 min after the last injection on the 8th day. The spinal segments and midbrain were removed for analysis of nNOS mRNA, NR1A mRNA and NR2A mRNA expressions by the RT-PCR method. The results showed that TFL remained unchangeable in group 2 compared with baseline value during the 7-day observation, while increased significantly on the 7th day in group 3. In group 4, TFL was longest on the 1st day, then decreased gradually from the 2nd day to the 6th day, and restored to the baseline value on the 6th day. In group 5, TFL showed a decreasing tendency during the 7-day observation, but was still significantly longer than the baseline value on the 7th day. The changes of TFL obtained in group 6 were similar to those in group 5. The results of RT-PCR showed that as compared with group 1, nNOS mRNA expressions in spinal cord and midbrain were significantly down-regulated in

  1. L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta.

    PubMed

    Wong, Emily S W; Man, Ricky Y K; Ng, Kwok F J; Leung, Susan W S; Vanhoutte, Paul M

    2018-03-01

    The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of

  2. Effects of exercise and L-arginine on ventricular remodeling and oxidative stress.

    PubMed

    Xu, Xiaohua; Zhao, Weiyan; Lao, Shunhua; Wilson, Bryan S; Erikson, John M; Zhang, John Q

    2010-02-01

    Our aim was to characterize the changes in messenger RNA (mRNA) abundance, protein, and activity levels of the enzymatic antioxidants, superoxide dismutase (SOD), glutathione peroxidase, and catalase by exercise training combined with L-arginine after myocardial infarction (MI). L-Arginine (1 g x kg(-1) x d(-1)) and N(G)-nitro-L-arginine methyl ester (L-NAME; 10 mg x kg(-1) x d(-1)) were administered in drinking water for 8 wk. Sprague-Dawley rats were randomized to the following groups: sham-operated control (Sham); MI sedentary (Sed); MI exercise (Ex); MI sedentary + L-arginine (Sed + LA); MI exercise + L-arginine (Ex + LA); MI sedentary + L-NAME (Sed + L-NAME); and MI exercise + L-NAME (Ex + L-NAME). The glutathione peroxidase, catalase, and gp91(phox) mRNA levels were comparable among all the groups. The SOD mRNA level was significantly increased in the Ex group (5.43 +/- 0.87) compared with the Sed group (1.74 +/- 0.29), whereas this effect was pronouncedly down-regulated by the L-NAME intervention (2.51 +/- 1.17, P < 0.05). The protein levels of SOD in the Sed and Ex groups were both significantly decreased with the administration of L-NAME. The protein levels of catalase were significantly higher in the Ex and Ex + LA groups than that in the Sed, Sed + LA, and L-NAME-treated groups. The collagen volume fraction was significantly lowered by the exercise and/or L-arginine treatment when compared with the Sed group. Fractional shortening was significantly preserved in the trained groups compared with their corresponding sedentary groups with or without drug treatments. However, the beneficial effect was not further improved by L-arginine treatment. Our results suggest that exercise training exerts antioxidative effects and attenuates myocardial fibrosis in the MI rats. These improvements, in turn, alleviate cardiac stiffness and preserve post-MI cardiac function. In addition, L-arginine appears to have no additive effect on cardiac function or expression of

  3. Dependence of endotoxin-induced vascular hyporeactivity on extracellular L-arginine.

    PubMed

    Schott, C A; Gray, G A; Stoclet, J C

    1993-01-01

    1. The dependence on extracellular L-arginine of vascular hyporeactivity induced by bacterial lipopolysaccharide (LPS) was studied in vivo in rats infused with LPS and in vitro in endothelium-denuded rat thoracic aortic rings exposed to LPS. 2. Infusion of LPS during 50 min at a dose of 10 mg kg-1 h-1 produced a significant impairment of the pressor effect of noradrenaline, while in tissues collected 60 min after the start of LPS infusion, no significant alteration in either plasma arginine concentration or aortic arginine content was found compared to saline-infused controls (where plasma arginine was 78.5 +/- 7 microM and aortic arginine 394 +/- 124 nmol g-1 tissue). 3. Incubation of isolated, endothelium-denuded aortic rings with LPS (10 micrograms ml-1) in the absence of L-arginine for 4 h at 37 degrees C produced a 6 fold (P < 0.01) rightward shift in the noradrenaline concentration-effect curve compared to polymyxin B (1 micrograms ml-1, a LPS neutralizing agent) and reduced by 15% the maximum observed tension. 4. The presence of L-arginine (100 microM) during the incubation with LPS and throughout the following contraction experiments caused a 15 fold (P < 0.01) increase in the EC50 of noradrenaline and greater depression (45%) of the maximum observed tension compared to polymyxin B-treated controls. Responses in control, non LPS-treated rings were unaffected by the presence of L-arginine. 5. The addition of L-arginine to rings incubated with LPS in the absence of L-arginine and maximally precontracted with noradrenaline (10 microM) induced a dose-dependent relaxation. The EC50 of L-arginine was 8.0+/-0.3mu.6. The reactivity of LPS-treated rings to noradrenaline both in the absence and presence of L-arginine was restored to control levels by N0-nitro-L-arginine methyl ester (L-NAME, 300 mu), an inhibitor of NO production and by methylene blue (3 JAM), an inhibitor of guanylate cyclase.7. Incubation of isolated aortae in the absence of L-arginine did not

  4. Effects of supplemental L-arginine on the intestinal adaptive response after massive small-bowel resection in rats.

    PubMed

    Oztürk, Hayrettin; Dokucu, Ali Ihsan; Yağmur, Yusuf; Sari, Ibrahim

    2002-09-01

    To evaluate whether L-arginine methyl ester (L-Arg) can improve the structure of the small intestine and enhance adaptation in an experimental model of short-bowel syndrome (SBS), 40 Sprague-Dawley rats were divided randomly into four groups of 10 each. In one group only a laparotomy was performed (G1). The remaining 30 rats underwent 90% small-bowel resection (SBR) and formed the three experimental groups: the SBR/untreated group (G2), the SBR/L-NAME-treated group (G3), and the SBR/ L-Arg-treated group (G4). Rats in G2 received no therapeutic treatment. Rats in the SBR/L-NAME and SBR/L-Arg treated groups received N-G-nitro-L-arginine-methyl ester (L-NAME) and L-Arg intraperitoneally for 3 weeks, respectively. The animals were weighed daily. All rats underwent a relaparotomy on day 21 of the experiment. Remnant small bowel was excised and evaluated for villus height and crypt cell mitoses. After the 90% SBR, all animals had from diarrhea and weight loss between the 1st and 6th postoperative days (POD). The body weight of the SBR/L-Arg group showed significant increases at POD 10 and 21 in comparison to the SBR/untreated and SBR/L-NAME groups (P < 0.001). The rats treated with L-Arg had significantly greater villus height and crypt-cell mitoses compared to the other groups (P < 0.0001, P < 0.001). These observations suggest that L-Arg treatment increases villus height and crypt-cell mitoses after massive SBR and may play a considerable role in the mucosal adaptive response in SBS in rats.

  5. [Effects of Nomega-nitro-L-arginine on photoreceptor apoptosis in inherited retinal degeneration of RCS rats].

    PubMed

    Li, Ai-jun; Fang, Jun; Zhu, Xiu-an

    2004-08-18

    To investigate inducible nitric oxide synthase(iNOS) activity of retina and the effects of N(omega)-nitro-L-arginine(N-Arg) on photoreceptor apoptosis in inherited retinal degeneration of Royal College of Surgeons (RCS) rats. iNOS activity was assayed in the whole retinal homogenates of RCS rats and Wistar rats by monitoring the conversion rate of (3)H-arginine to (3)H-citrulline. Intravitreal injection of the NOS inhibitor, N(omega)-nitro-L-arginine(N-Arg), in one lateral eye on postnatal days 17 (P17), P22, P27 and P32 was performed, while the other lateral eye was treated with PBS by intravitreal injection as controls. Then the retinas of the RCS rats were studied by TdT-mediated biotin-dUTP nick-end labeling (TUNEL) for apoptosis on P38. The enzymatic activity of iNOS was elevated in RCS rat retinas on P25. In RCS rats on P38, the percent area of apoptotic photoreceptor nuclei and the thickness of rod and cone layer in the treated group were significantly reduced compared with the controls, while the thickness of outer nuclear layer (ONL) was increased. The inhibitor of NOS might supply a potential medicine for inherited retinal degeneration.

  6. L-arginine and arginine analogues: effects on isolated blood vessels and cultured endothelial cells.

    PubMed Central

    Schmidt, H. H.; Baeblich, S. E.; Zernikow, B. C.; Klein, M. M.; Böhme, E.

    1990-01-01

    1. The present study examined effects of arginine (Arg) and various Arg analogues on the vascular tone of rabbit and rat aortic rings, the release of nitrite from cultured bovine aortic endothelial cells and the metabolism of L-Arg in bovine and porcine endothelial cell homogenates. The respective D-enantiomers or N-alpha-benzoyl-L-arginine ethyl ester did not substitute for L-Arg. 2. In bovine aortic endothelial cells, the release of nitrite was only observed in the presence of L-Arg or L-Arg methyl ester in the cell culture medium. 3. In dialyzed homogenates of porcine and bovine aortic endothelial cells, L-Arg was metabolized independently of NADPH and Ca2+ to yield L-ornithine (L-Orn) and L-citrulline (L-Cit). No concomitant nitrite formation was detected. 4. Pretreatment of rabbit and rat aortic rings with L-canavanine (L-Can) or NG-monomethyl-L-Arg (L-NMMA) inhibited ATP- and acetylcholine-induced relaxations (endothelium-dependent) but not glyceryltrinitrate-induced relaxations (endothelium-independent). 5. In rabbit aortic rings, Arg and monomeric Arg analogues induced endothelium-independent relaxations. L-Arg methyl ester induced an endothelium-independent contraction, and L-NMMA induced a relaxation in the absence of endothelium and a contraction in the presence of endothelium. Polymeric basic amino acids such as poly L-Arg induced endothelium-dependent relaxations (inhibited by L-Can), a subsequent refractoriness to endothelium-dependent vasodilators (not prevented by L-Can) and endothelial cell death.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2282457

  7. The influence of a novel pentadecapeptide, BPC 157, on N(G)-nitro-L-arginine methylester and L-arginine effects on stomach mucosa integrity and blood pressure.

    PubMed

    Sikirić, P; Seiwerth, S; Grabarević, Z; Rucman, R; Petek, M; Jagić, V; Turković, B; Rotkvić, I; Mise, S; Zoricić, I; Konjevoda, P; Perović, D; Jurina, L; Separović, J; Hanzevacki, M; Artuković, B; Bratulić, M; Tisljar, M; Gjurasin, M; Miklić, P; Stancić-Rokotov, D; Slobodnjak, Z; Jelovac, N; Marović, A

    1997-07-30

    The known effects of a novel stomach pentadecapeptide BPC157 (10 microg or 10 ng/kg), namely its salutary activity against ethanol (96%, i.g.)-induced gastric lesions (simultaneously applied i.p.) and in blood pressure maintenance (given i.v.), were investigated in rats challenged with a combination of N(G)-nitro-L-arginine methylester (L-NAME) (5 mg/kg i.v.), a competitive inhibitor of endothelium nitric oxide (NO)-generation and NO precursor, L-arginine (200 mg/kg i.v.) (D-arginine was ineffective). In the gastric lesions assay, NO agents were given 5 min before ethanol injury and BPC 157 medication. Given alone, BPC157 had an antiulcer effect, as did L-arginine, but L-NAME had no effect. L-NAME completely abolished the effect of L-arginine, whereas it only attenuated the effect of BPC 157. After application of the combination of L-NAME + L-arginine, the BPC157 effect was additionally impaired. In blood pressure studies, compared with L-arginine, pentadecapeptide BPC 157 (without effect on basal normal values) had both a mimicking effect (impaired L-NAME-blood pressure increase, when applied prophylactically and decreased already raised L-NAME values, given at the time of the maximal L-NAME-blood pressure increase (i.e., 10 min after L-NAME)) and preventive activity (L-arginine-induced moderate blood pressure decrease was prevented by BPC 157 pretreatment). When BPC 157 was given 10 min after L-NAME + L-arginine combination, which still led to a blood pressure increase, its previously clear effect (noted in L-NAME treated rats) disappeared. In vitro, in gastric mucosa from rat stomach tissue homogenates, BPC 157, given in the same dose (100 microM) as L-arginine, induced a comparable generation of NO. But, BPC 157 effect could not be inhibited by L-NAME, even when L-NAME was given in a tenfold (100 versus 1000 microM) higher dose than that needed for inhibition of the L-arginine effect. NO synthesis was blunted when the pentadecapeptide BPC 157 and L-arginine

  8. Arginine affects appetite via nitric oxide in ducks.

    PubMed

    Wang, C; Hou, S S; Huang, W; Xu, T S; Rong, G H; Xie, M

    2014-08-01

    The objective of the study was to investigate the mechanism by which arginine regulates feed intake in Pekin ducks. In experiment 1, one hundred forty-four 1-d-old male Pekin ducks were randomly allotted to 3 dietary treatments with 6 replicate pens of 8 birds per pen. Birds in each group were fed a corn-corn gluten meal diet containing 0.65, 0.95, and 1.45% arginine. Ducks fed the diet containing 0.65% arginine had lower feed intake and plasma nitric oxide level (P < 0.05) than the other 2 groups. In experiment 2, twenty 11-d-old ducks were allotted to 1 of 2 treatments. After 2 h fasting, birds in the 2 groups were intraperitoneally administrated saline and l-NG-nitro-arginine methyl ester HCl (L-NAME) for 3 d, respectively. Feed intake (P < 0.07) and plasma nitric oxide concentration (P < 0.05) 2 h postinjection in the L-NAME administered group were lower than those of the control group. In conclusion, the study implied that arginine modifies feeding behavior possibly through controlling endogenous synthesis of nitric oxide in Pekin ducks. © Poultry Science Association Inc.

  9. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    PubMed

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  10. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation.

    PubMed

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo

    2016-11-01

    Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.

  11. Regression of left ventricular hypertrophy and aortic remodelling in NO-deficient hypertensive rats: effect of L-arginine and spironolactone.

    PubMed

    Paulis, L; Matuskova, J; Adamcova, M; Pelouch, V; Simko, J; Krajcirovicova, K; Potacova, A; Hulin, I; Janega, P; Pechanova, O; Simko, F

    2008-09-01

    We investigated, whether the substrate for nitric oxide (NO) formation -L-arginine - and the aldosterone receptor antagonist - spironolactone - are able to reverse alterations of the left ventricle (LV) and aorta in N(omega)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Six groups of male adult Wistar rats were investigated: controls after 4 and 7 weeks of experiment, rats treated with L-NAME for 4 weeks and three recovery groups: spontaneous-reversion (4 weeks L-NAME + 3 weeks placebo), spironolactone-induced reversion (4 weeks L-NAME + 3 weeks spironolactone) and L-arginine-induced reversion (4 weeks L-NAME+ 3 weeks L-arginine). Blood pressure was measured by tail-cuff plethysmography. Relative weight of the LV, myocardial fibrosis (based upon histomorphometry and hydroxyproline determination) and conjugated dienes in the LV and aortic cross-sectional area, inner diameter and wall thickness were determined. NO-synthase activity was investigated in the LV and aorta. L-NAME administration induced hypertension, left ventricular hypertrophy (LVH), LV fibrosis, aortic thickening and diminution of NO-synthase activity in the LV and aorta. Reduction in blood pressure and regression of LVH were observed in all recovery groups, yet reduction in LV fibrosis and aortic thickening were not. NO-synthase activity was restored only in the L-arginine and spironolactone group. In our study, the reversion of hypertension and LVH was not dependent on the restoration of NO-synthase activity. Moreover, LV fibrosis and aortic remodelling seem to be more resistant to conditions resulting in regression of LVH. Preserved level of fibrosis in the initial period of LVH regression might result in loss of structural homogeneity and possible functional alterations of the LV.

  12. Tension cost correlates with mechanical and biochemical parameters in different myocardial contractility conditions

    PubMed Central

    Moreira, Cleci M.; Meira, Eduardo F.; Vestena, Luis; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.

    2012-01-01

    OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1) streptozotocin-induced diabetic and control Wistar rats; (2) N-nitro-L-arginine methyl ester (L-NAME) hypertensive and untreated Wistar rats; (3) deoxycorticosterone acetate (DOCA) salt-treated, nephrectomized and salt- and DOCA-treated rats; (4) spontaneous hypertensive rats (SHR) and Wistar Kyoto (WKY) rats; (5) rats with myocardial infarction and sham-operated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes), a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better mechanical

  13. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation

    PubMed Central

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong

    2016-01-01

    Purpose Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Materials and Methods Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. Results SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. NG-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. Conclusion These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions. PMID:27593859

  14. Role of endothelial nitric oxide synthase as a trigger and mediator of isoflurane-induced delayed preconditioning in rabbit myocardium.

    PubMed

    Chiari, Pascal C; Bienengraeber, Martin W; Weihrauch, Dorothee; Krolikowski, John G; Kersten, Judy R; Warltier, David C; Pagel, Paul S

    2005-07-01

    Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Isoflurane significantly (P < 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed

  15. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  16. Involvement of l-arginine-nitric oxide pathway in anxiolytic-like effects of zinc chloride in rats.

    PubMed

    Navabi, Seyedeh Parisa; Eshagh Harooni, Hooman; Moazedi, Ahmad Ali; Khajepour, Lotfolah; Fathinia, Kosar

    2016-10-01

    Zinc is crucial for normal development of the brain, and Zinc deficiency has been shown to associate with neurological disorders (e.g. anxiety) through interactions with several neurotransmitter systems such as nitric oxide (NO). In this regard, our study aimed to evaluate the possible involvement of l-arginine NO pathway on anxiolytic effects of zinc in adult male rats. Zinc chloride at doses of 2.5 and 10mg/kg (intraperitoneal or ip) or saline (1ml/kg, ip) were injected 30min before the anxiety test. Zinc administrated rats (10mg/kg) were pre-treated with intra-CA1 microinjection of l-arginine in sub-effective dose of 1μg/rat (dorsal hippocampus, vehicle: saline1μl/rat). In addition, zinc chloride and NG-nitro-l-arginine methyl ester (l-NAME) were intraperitoneally co-administrated in sub-effective doses of 2.5mg/kg and 80mg/kg, respectively. The percentage of open arm time (OAT%), percentage of open arm entry (OAE%), as measures of anxiety, and total number of arm entries, as measures of locomotor activity, were recorded. Treatment with zinc (10mg/kg) markedly produced an increase in OAT% and OAE% in the Elevated plus maze test (EPM). A decrease of OAT% and OAE% was shown in groups which received zinc (10mg/kg) and l-arginine (1μg/rat) concomitantly as compared to the control group. Moreover, an increase of OAE% was revealed in the group exposed to Zinc (2.5mg/kg) and l-NAME (80mg/kg) co-administration. Although, Two-way ANOVA showed no significant differences of anxiety indices in rats received drug+zinc chloride in compare to the zinc pretreated with saline group. Anxiolytic- like effect of zinc reversed by nitric oxide precursor l-arginine. Additionally, the synergistic effects of l-NAME and ZnCl 2 were shown in the EPM. Thus our findings suggest that at least in part the anxiolytic effects of zinc can be mediated through the nitric oxide system. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Evaluation of nitrate-substituted pseudocholine esters of aspirin as potential nitro-aspirins.

    PubMed

    Gilmer, John F; Moriarty, Louise M; Clancy, John M

    2007-06-01

    Herein we explore some designs for nitro-aspirins, compounds potentially capable of releasing both aspirin and nitric oxide in vivo. A series of nitrate-bearing alkyl esters of aspirin were prepared based on the choline ester template preferred by human plasma butyrylcholinesterase. The degradation kinetics of the compounds were followed in human plasma solution. All compounds underwent hydrolysis rapidly (t(1/2) approximately 1min) but generating exclusively the corresponding nitro-salicylate. The one exception, an N-propyl, N-nitroxyethyl aminoethanol ester produced 9.2% aspirin in molar terms indicating that the nitro-aspirin objective is probably achievable if due cognisance can be paid to the demands of the activating enzyme. Even at this low level of aspirin release, this compound is the most successful nitro-aspirin reported to date in the key human plasma model.

  18. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots.

    PubMed

    Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin

    2015-06-15

    In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Kenaf methyl esters

    USDA-ARS?s Scientific Manuscript database

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  20. 40 CFR 721.4080 - MNNG (N-methyl-N′-nitro-N-nitrosoguanidine).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false MNNG (N-methyl-Nâ²-nitro-N... Specific Chemical Substances § 721.4080 MNNG (N-methyl-N′-nitro-N-nitrosoguanidine). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance MNNG (N-methyl-N′-nitro-N...

  1. 40 CFR 721.4080 - MNNG (N-methyl-N′-nitro-N-nitrosoguanidine).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false MNNG (N-methyl-Nâ²-nitro-N... Specific Chemical Substances § 721.4080 MNNG (N-methyl-N′-nitro-N-nitrosoguanidine). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance MNNG (N-methyl-N′-nitro-N...

  2. Kinetics of the hydrolysis of N-benzoyl-l-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses

    PubMed Central

    Wharton, Christopher W.; Cornish-Bowden, Athel; Brocklehurst, Keith; Crook, Eric M.

    1974-01-01

    1. N-Benzoyl-l-serine methyl ester was synthesized and evaluated as a substrate for bromelain (EC 3.4.22.4) and for papain (EC 3.4.22.2). 2. For the bromelain-catalysed hydrolysis at pH7.0, plots of [S0]/vi (initial substrate concn./initial velocity) versus [S0] are markedly curved, concave downwards. 3. Analysis by lattice nomography of a modifier kinetic mechanism in which the modifier is substrate reveals that concave-down [S0]/vi versus [S0] plots can arise when the ratio of the rate constants that characterize the breakdown of the binary (ES) and ternary (SES) complexes is either less than or greater than 1. In the latter case, there are severe restrictions on the values that may be taken by the ratio of the dissociation constants of the productive and non-productive binary complexes. 4. Concave-down [S0]/vi versus [S0] plots cannot arise from compulsory substrate activation. 5. Computational methods, based on function minimization, for determination of the apparent parameters that characterize a non-compulsory substrate-activated catalysis are described. 6. In an attempt to interpret the catalysis by bromelain of the hydrolysis of N-benzoyl-l-serine methyl ester in terms of substrate activation, the general substrate-activation model was simplified to one in which only one binary ES complex (that which gives rise directly to products) can form. 7. In terms of this model, the bromelain-catalysed hydrolysis of N-benzoyl-l-serine methyl ester at pH7.0, I=0.1 and 25°C is characterized by Km1 (the dissociation constant of ES)=1.22±0.73mm, k (the rate constant for the breakdown of ES to E+products, P)=1.57×10−2±0.32×10−2s−1, Ka2 (the dissociation constant that characterizes the breakdown of SES to ES and S)=0.38±0.06m, and k′ (the rate constant for the breakdown of SES to E+P+S)=0.45±0.04s−1. 8. These parameters are compared with those in the literature that characterize the bromelain-catalysed hydrolysis of α-N-benzoyl-l-arginine ethyl ester and

  3. Effect of agmatine on locus coeruleus neuron activity: possible involvement of nitric oxide

    PubMed Central

    Ruiz-Durántez, Eduardo; Ruiz-Ortega, José A; Pineda, Joseba; Ugedo, Luisa

    2002-01-01

    To investigate whether agmatine (the proposed endogenous ligand for imidazoline receptors) controls locus coeruleus neuron activity and to elucidate its mechanism of action, we used single-unit extracellular recording techniques in anaesthetized rats. Agmatine (10, 20 and 40 μg, i.c.v.) increased in a dose-related manner the firing rate of locus coeruleus neurons (maximal increase: 95±13% at 40 μg). I1-imidazoline receptor ligands stimulate locus coeruleus neuron activity through an indirect mechanism originated in the paragigantocellularis nucleus via excitatory amino acids. However, neither electrolytic lesions of the paragigantocellularis nucleus nor pretreatment with the excitatory amino acid antagonist kynurenic acid (1 μmol, i.c.v.) modified agmatine effect (10 μg, i.c.v.). After agmatine administration (20 μg, i.c.v.), dose-response curves for the effect of clonidine (0.625 – 10 μg kg−1 i.v.) or morphine (0.3 – 4.8 mg kg−1 i.v.) on locus coeruleus neurons were not different from those obtained in the control groups. Pretreatment with the nitric oxide synthase inhibitors Nω-nitro-L-arginine (10 μg, i.c.v.) or Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) but not with the less active stereoisomer Nω-nitro-D-arginine methyl ester (100 μg, i.c.v.) completely blocked agmatine effect (10 and 40 μg, i.c.v.). Similarly, when agmatine (20 pmoles) was applied into the locus coeruleus there was an increase that was blocked by Nω-nitro-L-arginine methyl ester (100 μg, i.c.v.) in the firing rate of the locus coeruleus neurons (maximal increase 53±11% and 14±10% before and after nitric oxide synthase inhibition, respectively). This study demonstrates that agmatine stimulates the firing rate of locus coeruleus neurons via a nitric oxide synthase-dependent mechanism located in this nucleus. PMID:11877321

  4. N-mustard analogs of S-adenosyl-L-methionine as biochemical probes of protein arginine methylation.

    PubMed

    Hymbaugh Bergman, Sarah J; Comstock, Lindsay R

    2015-08-01

    Nucleosomes, the fundamental building blocks of eukaryotic chromatin, undergo post-synthetic modifications and play a major role in the regulation of transcriptional processes. Combinations of these modifications, including methylation, regulate chromatin structure, determining its different functional states and playing a central role in differentiation. The biological significance of cellular methylation, particularly on chromatin, is widely recognized, yet we know little about the mechanisms that link biological methylation events. To characterize and fully understand protein methylation, we describe here novel N-mustard analogs of S-adenosyl-l-methionine (SAM) as biochemical tools to better understand protein arginine methylation events using protein arginine methyltransferase 1 (PRMT1). Specifically, azide- and alkyne-functionalized N-mustard analogs serve as cofactor mimics of SAM and are enzymatically transferred to a model peptide substrate in a PRMT1-dependent fashion. Once incorporated, the resulting alkynes and azides can be modified through chemoselective ligations, including click chemistry and the Staudinger ligation. These results readily demonstrate the feasibility of utilizing N-mustard analogs as biochemical tools to site-specifically label substrates of PRMT1 and serve as an alternative approach to study protein methylation events. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production.

    PubMed

    Long, Jodi H D; Lira, Vitor A; Soltow, Quinlyn A; Betters, Jenna L; Sellman, Jeff E; Criswell, David S

    2006-01-01

    The semi-essential amino acid, L-arginine (L-Arg), is the substrate for endogenous synthesis of nitric oxide, a molecule that is involved in myoblast proliferation and fusion. Since L-Arg supply may limit nitric oxide synthase (NOS) activity in endothelial cells, we examined L-Arg supplementation in differentiating mouse myoblasts and tested the hypothesis that L-Arg exerts direct effects on myoblast fusion via augmentation of endogenous nitric oxide production. C(2)C(12) myoblasts in differentiation media received one of the following treatments for 120 h: 1 mM L-Arg, 0.1 mM N-nitro-L-arginine methyl ester (L-NAME), L-Arg + L-NAME, 10 mM L-Lysine, or no supplement (Control). Cultures were fixed and stained with hematoxylin and eosin for microphotometric image analysis of myotube density, nuclear density, and fusion index (% of total nuclei in myotubes). Endogenous production of nitric oxide during the treatment period peaked between 24 and 48 h. L-Arg amplified nitric oxide production between 0 and 24 h and increased myotube density, total nuclei number, and nuclear fusion index. These L-Arg effects were prevented by the NOS inhibitor, L-NAME. Further, L-Lysine, a competitive inhibitor of L-Arg uptake, repressed nitric oxide production and reduced myotube density and fusion index. In summary, L-Arg augments myotube formation and increases nitric oxide production in a process limited by cellular L-Arg uptake.

  6. Differential effects of low and high dose folic acid on endothelial dysfunction in a murine model of mild hyperhomocysteinaemia.

    PubMed

    Clarke, Zoe L; Moat, Stuart J; Miller, Alastair L; Randall, Michael D; Lewis, Malcolm J; Lang, Derek

    2006-12-03

    The exact mechanism(s) by which hyperhomocysteinaemia promotes vascular disease remains unclear. Moreover, recent evidence suggests that the beneficial effect of folic acid on endothelial function is independent of homocysteine-lowering. In the present study the effect of a low (400 microg/70 kg/day) and high (5 mg/70 kg/day) dose folic acid supplement on endothelium-dependent relaxation in the isolated perfused mesenteric bed of heterozygous cystathionine beta-synthase deficient mice was investigated. Elevated total plasma homocysteine and impaired relaxation responses to methacholine were observed in heterozygous mice. In the presence of N(G)-nitro-L-arginine methyl ester relaxation responses in wild-type tissues were reduced, but in heterozygous tissues were abolished. Clotrimazole and 18alpha-glycyrrhetinic acid, both inhibitors of non-nitric oxide/non-prostanoid-induced endothelium-dependent relaxation, reduced responses to methacholine in wild-type but not heterozygous tissues. The combination of N(G)-nitro-L-arginine methyl ester and either clotrimazole or 18alpha-glycyrrhetinic acid completely inhibited relaxation responses in wild-type tissues. Both low and high dose folic acid increased plasma folate, reduced total plasma homocysteine and reversed endothelial dysfunction in heterozygous mice. A greater increase in plasma folate in the high dose group was accompanied by a more significant effect on endothelial function. In the presence of N(G)-nitro-L-arginine methyl ester, a significant residual relaxation response was evident in tissues from low and high dose folic acid treated heterozygous mice. These data suggest that the impaired mesenteric relaxation in heterozygous mice is largely due to loss of the non-nitric oxide/non-prostanoid component. While low dose folic acid may restore this response in a homocysteine-dependent manner, the higher dose has an additional effect on nitric oxide-mediated relaxation that would appear to be independent of

  7. Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac.

    PubMed

    Lázaro-Ibáñez, G G; Torres-López, J E; Granados-Soto, V

    2001-08-24

    The involvement of nitric oxide (NO), cyclic GMP and ATP-sensitive K(+) channels in the antinociceptive effect of ketorolac was assessed using the formalin test in the rat. Local administration of ketorolac in a formalin-injured paw produced a dose-dependent antinociceptive effect due to a local action, as drug administration in the contralateral paw was ineffective. Pretreatment of the injured paw with N(G)-L-nitro-arginine methyl ester (L-NAME, an NO synthesis inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) or glibenclamide (an ATP-sensitive K(+) channel blocker) prevented ketorolac-induced antinociception. However, pretreatment with saline or N(G)-D-nitro-arginine methyl ester (D-NAME) did not block antinociception. Local administration of S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) was inactive by itself, but increased the effect of ketorolac. The present results suggest that the antinociceptive effect of ketorolac involves activation of the NO-cyclic GMP pathway, followed by an opening of ATP-sensitive K(+) channels at the peripheral level.

  8. Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation

    PubMed Central

    LITT, Michael; QIU, Yi; HUANG, Suming

    2017-01-01

    Synopsis PRMTs (protein arginine N-methyltransferases) specifically modify the arginine residues of key cellular and nuclear proteins as well as histone substrates. Like lysine methylation, transcriptional repression or activation is dependent upon the site and type of arginine methylation on histone tails. Recent discoveries imply that histone arginine methylation is an important modulator of dynamic chromatin regulation and transcriptional controls. However, under the shadow of lysine methylation, the roles of histone arginine methylation have been under-explored. The present review focuses on the roles of histone arginine methylation in the regulation of gene expression, and the interplays between histone arginine methylation, histone acetylation, lysine methylation and chromatin remodelling factors. In addition, we discuss the dynamic regulation of arginine methylation by arginine demethylases, and how dysregulation of PRMTs and their activities are linked to human diseases such as cancer. PMID:19220199

  9. Monitoring nitric oxide (NO) in rat locus coeruleus: differential effects of NO synthase inhibitors.

    PubMed

    Desvignes, C; Robert, F; Vachette, C; Chouvet, G; Cespuglio, R; Renaud, B; Lambás-Señas, L

    1997-04-14

    A porphyrinic microsensor combined with in vivo voltammetry was used to monitor extracellular nitric oxide (NO) in the locus coeruleus (LC) of anaesthetized rats. Administration of N omega-nitro-L-arginine p-nitro-anilide (100 mg/kg, i.p) or 7-nitro indazole (30 mg/kg, i.p.), which both inhibit preferentially neuronal NO synthase (NOS), induced a marked decrease in the NO oxidation peak height. On the other hand, N omega-nitro-L-arginine methyl ester (L-NAME) (200 mg/kg, i.p.), a less selective NOS inhibitor, failed to decrease the NO signal. Moreover, intra LC administration of NMDA, known to activate LC noradrenergic neurones, increased the NO signal. This study demonstrates the usefulness of in vivo voltammetry to monitor basal levels of NO and their changes in the LC. Differential effects of NOS inhibitors show that their central activity need to be assessed through in situ measurement of NO before using these inhibitors as neuropharmacological tools.

  10. Protein arginine methylation: a prominent modification and its demethylation.

    PubMed

    Wesche, Juste; Kühn, Sarah; Kessler, Benedikt M; Salton, Maayan; Wolf, Alexander

    2017-09-01

    Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.

  11. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  12. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  13. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  14. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  15. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  16. Regenerating muscle with arginine methylation

    PubMed Central

    Blanc, Roméo S.; Richard, Stéphane

    2017-01-01

    ABSTRACT Protein arginine methyltransferase (PRMT) is a family of nine proteins catalyzing the methylation of arginine residues. They were recently shown to be essential for proper regeneration of skeletal muscles. However, the mechanisms triggering the methylation event, as well as how the methylated substrates regulate muscle stem cell function and fate decision remain to be determined. This point-of-view will discuss the recent findings on the specific role of PRMT1, CARM1/PRMT4, PRMT5, and PRMT7 in muscle stem cell fate guidance, and shed light on the future challenges which could help defining the therapeutic potential of PRMT inhibitors against muscular disorders and aging. PMID:28301308

  17. Regenerating muscle with arginine methylation.

    PubMed

    Blanc, Roméo S; Richard, Stéphane

    2017-05-27

    Protein arginine methyltransferase (PRMT) is a family of nine proteins catalyzing the methylation of arginine residues. They were recently shown to be essential for proper regeneration of skeletal muscles. However, the mechanisms triggering the methylation event, as well as how the methylated substrates regulate muscle stem cell function and fate decision remain to be determined. This point-of-view will discuss the recent findings on the specific role of PRMT1, CARM1/PRMT4, PRMT5, and PRMT7 in muscle stem cell fate guidance, and shed light on the future challenges which could help defining the therapeutic potential of PRMT inhibitors against muscular disorders and aging.

  18. Protein arginine methylation/demethylation and cancer

    PubMed Central

    Poulard, Coralie; Corbo, Laura; Le Romancer, Muriel

    2016-01-01

    Protein arginine methylation is a common post-translational modification involved in numerous cellular processes including transcription, DNA repair, mRNA splicing and signal transduction. Currently, there are nine known members of the protein arginine methyltransferase (PRMT) family, but only one arginine demethylase has been identified, namely the Jumonji domain-containing 6 (JMJD6). Although its demethylase activity was initially challenged, its dual activity as an arginine demethylase and a lysine hydroxylase is now recognized. Interestingly, a growing number of substrates for arginine methylation and demethylation play key roles in tumorigenesis. Though alterations in the sequence of these enzymes have not been identified in cancer, their overexpression is associated with various cancers, suggesting that they could constitute targets for therapeutic strategies. In this review, we present the recent knowledge of the involvement of PRMTs and JMJD6 in tumorigenesis. PMID:27556302

  19. Effect of caffeine coadministration and of nitric oxide synthesis inhibition on the antinociceptive action of ketorolac.

    PubMed

    López-Muñoz, F J; Castañeda-Hernández, G; Flores-Murrieta, F J; Granados-Soto, V

    1996-07-25

    The effects of caffeine and nitric oxide synthesis inhibition on the antinociceptive action of ketorolac were assessed using the pain-induced functional impairment model in the rat. Nociception was induced by the intra-articular injection of uric acid. Ketorolac, but not caffeine, produced an antinociceptive effect which was reduced by NG nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthesis. Caffeine coadministration potentiated the ketorolac effect. L-NAME induced a dose-dependent reduction of this potentiation. The results suggest the participation of the L-arginine-nitric oxide-cyclic GMP pathway in the caffeine potentiation of ketorolac-induced antinociception.

  20. Protein arginine methylation: Cellular functions and methods of analysis.

    PubMed

    Pahlich, Steffen; Zakaryan, Rouzanna P; Gehring, Heinz

    2006-12-01

    During the last few years, new members of the growing family of protein arginine methyltransferases (PRMTs) have been identified and the role of arginine methylation in manifold cellular processes like signaling, RNA processing, transcription, and subcellular transport has been extensively investigated. In this review, we describe recent methods and findings that have yielded new insights into the cellular functions of arginine-methylated proteins, and we evaluate the currently used procedures for the detection and analysis of arginine methylation.

  1. Thermally reversible gels based on acryloyl- L-proline methyl ester as drug delivery systems

    NASA Astrophysics Data System (ADS)

    Martellini, Flavia; Higa, Olga Z.; Takacs, Erzsebet; Safranj, Agneza; Yoshida, Masaru; Katakai, Ryoichi; Carenza, Mario

    1999-06-01

    Thermally reversible hydrogels were synthesized by radiation-induced copolymerization of acryloyl- L-proline methyl ester with hydrophilic or hydrophobic monomers. The swelling behaviour was found to be affected by a proper balance of the latter. In particular, the transition temperature of the different hydrogels shifted to higher or lower values depending on the presence of hydrophilic or hydrophobic moieties in the polymer chain, respectively. Acetaminophen, an analgesic and antipyretic drug, was entrapped into some hydrogels and a wide range of release rates was obtained according to the nature of the comonomers. A novel thermoresponsive hydrogel was also prepared by radiation polymerization of acryloyl- L-proline methyl ester in the presence of 4-acryloyloxy acetanilide, an acrylic derivative of acetaminophen. Again, the swelling curves showed an inverse function of temperature. It was shown that with this hydrogel bearing the drug covalently attached to the polymer backbone, the hydrolysis process was the rate-determining process of the drug release.

  2. Enteral Arginine Does Not Increase Superior Mesenteric Arterial Blood Flow but Induces Mucosal Growth in Neonatal Pigs123

    PubMed Central

    Puiman, Patrycja J.; Stoll, Barbara; van Goudoever, Johannes B.; Burrin, Douglas G.

    2011-01-01

    Arginine is an essential amino acid in neonates synthesized by gut epithelial cells and a precursor for NO that regulates vasodilatation and blood flow. Arginine supplementation has been shown to improve intestinal integrity in ischemia-reperfusion models and low plasma levels are associated with necrotizing enterocolitis. We hypothesized that enteral arginine is a specific stimulus for neonatal intestinal blood flow and mucosal growth under conditions of total parenteral nutrition (TPN) or partial enteral nutrition (PEN). We first tested the dose dependence and specificity of acute (3 h) enteral arginine infusion on superior mesenteric artery (SMA) blood flow in pigs fed TPN or PEN. We then determined whether chronic (4 d) arginine supplementation of PEN increases mucosal growth and if this was affected by treatment with the NO synthase inhibitor, NG-nitro-l-arginine methyl ester (L-NAME). Acute enteral arginine infusion increased plasma arginine dose dependently in both TPN and PEN groups, but the plasma response was markedly higher (100–250%) in the PEN group than in the TPN group at the 2 highest arginine doses. Baseline SMA blood flow was 90% higher in the PEN (2.37 ± 0.32 L⋅kg−1⋅h−1) pigs than in the TPN pigs (1.23 ± 0.17 L⋅kg−1⋅h−1), but was not affected by acute infusion individually of arginine, citrulline, or other major gut fuels. Chronic dietary arginine supplementation in PEN pigs induced mucosal growth in the intestine, but this effect was not prevented by treatment with L-NAME. Intestinal crypt cell proliferation, protein synthesis, and phosphorylation of mammalian target of rapamycin and p70S6 kinase were not affected by dietary arginine. We conclude that partial enteral feeding, but not acute enteral arginine, increases SMA blood flow in the neonatal pig. Furthermore, supplementing arginine in partial enteral feeding modestly increases intestinal mucosal growth and was NO independent. PMID:21106927

  3. A large blood pressure-raising effect of nitric oxide synthase inhibition in humans

    NASA Technical Reports Server (NTRS)

    Sander, M.; Chavoshan, B.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    In experimental animals, systemic administration of nitric oxide synthase (NOS) inhibitors causes large increases in blood pressure that are in part sympathetically mediated. The aim of this study was to determine the extent to which these conclusions can be extrapolated to humans. In healthy normotensive humans, we measured blood pressure in response to two NOS inhibitors, NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine methyl ester (L-NAME), the latter of which recently became available for use in humans. The major new findings are 3-fold. First, L-NAME produced robust increases in blood pressure that were more than 2 times larger than those previously reported in humans with L-NMMA and approximated those seen in experimental animals. L-NAME (4 mg/kg) raised mean arterial pressure by 24+/-2 mm Hg (n=27, P<0.001), whereas in subjects who received both inhibitors, a 12-fold higher dose of L-NMMA (50 mg/kg) raised mean arterial pressure by 15+/-2 mm Hg (n=4, P<0.05 vs L-NAME). Second, the L-NAME-induced increases in blood pressure were caused specifically by NOS inhibition because they were reversed by L-arginine (200 mg/kg, n=12) but not D-arginine (200 mg/kg, n=6) and because NG-nitro-D-arginine methyl ester (4 mg/kg, n=5) had no effect on blood pressure. Third, in humans, there is an important sympathetic component to the blood pressure-raising effect of NOS inhibition. alpha-Adrenergic blockade with phentolamine (0.2 mg/kg, n=9) attenuated the L-NAME-induced increase in blood pressure by 40% (P<0.05). From these data, we conclude that pharmacological inhibition of NOS causes large increases in blood pressure that are in part sympathetically mediated in humans as well as experimental animals.

  4. Dishevelled3 is a novel arginine methyl transferase substrate.

    PubMed

    Bikkavilli, Rama Kamesh; Avasarala, Sreedevi; Vanscoyk, Michelle; Sechler, Marybeth; Kelley, Nicole; Malbon, Craig C; Winn, Robert A

    2012-01-01

    Dishevelled, a phosphoprotein scaffold, is a central component in all the Wnt-sensitive signaling pathways. In the present study, we report that Dishevelled is post-translationally modified, both in vitro and in vivo, via arginine methylation. We also show protein arginine methyl transferases 1 and 7 as the key enzymes catalyzing Dishevelled methylation. Interestingly, Wnt3a stimulation of F9 teratocarcinoma cells results in reduced Dishevelled methylation. Similarly, the methylation-deficient mutant of Dishevelled, R271K, displayed spontaneous membrane localization and robust activation of Wnt signaling; suggesting that differential methylation of Dishevelled plays an important role in Wnt signaling. Thus arginine methylation is shown to be an important switch in regulation of Dishevelled function and Wnt signaling.

  5. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity

    PubMed Central

    Giani, Jorge F.; Eriguchi, Masahiro; Bernstein, Ellen A.; Katsumata, Makoto; Shen, Xiao Z.; Li, Liang; McDonough, Alicia A.; Fuchs, Sebastien; Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.

    2017-01-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension. PMID:27988209

  6. Venlafaxine prevents morphine antinociceptive tolerance: The role of neuroinflammation and the l-arginine-nitric oxide pathway.

    PubMed

    Mansouri, Mohammad Taghi; Naghizadeh, Bahareh; Ghorbanzadeh, Behnam; Alboghobeish, Soheila; Amirgholami, Neda; Houshmand, Gholamreza; Cauli, Omar

    2018-05-01

    Opioid-induced neuroinflammation and the nitric oxide (NO) signal-transduction pathway are involved in the development of opioid analgesic tolerance. The antidepressant venlafaxine (VLF) modulates NO in nervous tissues, and so we investigated its effect on induced tolerance to morphine, neuroinflammation, and oxidative stress in mice. Tolerance to the analgesic effects of morphine were induced by injecting mice with morphine (50 mg/kg) once a day for three consecutive days; the effect of co-administration of VLF (5 or 40 mg/kg) with morphine was similarly tested in a separate group. To determine if the NO precursor l-arginine hydrochloride (l-arg) or NO are involved in the effects rendered by VLF, animals were pre-treated with l-arg (200 mg/kg), or the NO synthesis inhibitors N(ω)-nitro-l-arginine methyl ester (L-NAME; 30 mg/kg) or aminoguanidine hydrochloride (AG; 100 mg/kg), along with VLF (40 mg/kg) for three days before receiving morphine for another three days. Nociception was assessed with a hot-plate test on the fourth day, and the concentration of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), interleukin-6 (IL-6), interleukin-10, brain-derived neurotrophic factor, NO, and oxidative stress factors such as total thiol, malondialdehyde content, and glutathione peroxidase (GPx) activity in the brain was also determined. Co-administration of VLF with morphine attenuated morphine-induced analgesic tolerance and prevented the upregulation of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), NO, and malondialdehyde in brains of mice with induced morphine tolerance; chronic VLF administration inhibited this decrease in brain-derived neurotrophic factor, total thiol, and GPx levels. Moreover, repeated administration of l-arg before receipt of VLF antagonized the effects induced by VLF, while L-NAME and AG potentiated these effects. VLF attenuates morphine-induced analgesic tolerance, at least partly because of its anti

  7. Time-dependent alterations in serum NO concentration after oral administration of l-arginine, l-NAME, and allopurinol in intestinal ischemia/reperfusion

    PubMed Central

    Yanni, Amalia E; Margaritis, Eleutherios; Liarakos, Nikolaos; Pantopoulou, Alkisti; Poulakou, Maria; Kostakis, Maria; Perrea, Despoina; Kostakis, Alkis

    2008-01-01

    Objective To study the effect of oral administration of a nitric oxide (NO) donor l-arginine (l-Arg), a NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) and an inhibitor of xanthine oxidase, allopurinol (Allo), on serum NO concentration and catalase activity after intestinal ischemia/reperfusion (I/R) in rats. Methods Male Wistar rats received per os l-Arg (800 mg/kg) or l-NAME (50 mg/kg) or Allo (100 mg/kg) 24 hrs, 12 hrs and 1 hr before underwent 1 hr occlusion of superior mesenteric artery followed by 1 hr of reperfusion (l-Arg(IR1), l-NAME(IR1) and Allo(IR1) respectively) or 1 hr occlusion followed by 8 hrs of reperfusion (l-Arg(IR8), l-NAME(IR8) and Allo(IR8) respectively). There was one group underwent 1 hr occlusion (I), a group underwent 1 hr occlusion followed by 1 hr reperfusion (IR1), a group subjected to 1 hr occlusion followed by 8 hrs of reperfusion (IR8) and a last group that served as control (C). Serum NO concentration and catalase activity were measured. Results After 1 hr of reperfusion serum NO concentration was elevated in IR1 and l-Arg(IR1) groups compared with group C but not in l-NAME(IR1) and Allo(IR1) group. Catalase activity was enhanced in l-NAME(IR1) group. Interestingly, serum NO concentration was increased after 8 hrs of reperfusion in all groups (IR8, l-Arg(IR8), l-NAME(IR8) and Allo(IR8)) compared with control while catalase activity did not show significant difference in any group. Conclusions The results of the present study show that NO concentration is elevated in serum after intestinal I/R and the elevation sustained after administration of l-Arg but not after administration of l-NAME or Allo after 1 hr reperfusion. However, after 8 hrs of reperfusion NO concentration was increased in all groups studied, focusing attention on its possible important role in a complicated situation such as intestinal I/R that involves intestine and other organs. Serum catalase activity does not seem to be affected by per os

  8. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages

    PubMed Central

    Xia, Yong; Zweier, Jay L.

    1997-01-01

    Superoxide (O2⨪) and nitric oxide (NO) act to kill invading microbes in phagocytes. In macrophages NO is synthesized by inducible nitric oxide synthase (iNOS, NOS 2) from l-arginine (l-Arg) and oxygen; however, O2⨪ was thought to be produced mainly by NADPH oxidase. Electron paramagnetic resonance (EPR) spin trapping experiments performed in murine macrophages demonstrate a novel pathway of O2⨪ generation. It was observed that depletion of cytosolic l-Arg triggers O2⨪ generation from iNOS. This iNOS-mediated O2⨪ generation was blocked by the NOS inhibitor N-nitro-l-arginine methyl ester or by l-Arg, but not by the noninhibitory enantiomer N-nitro-d-arginine methyl ester. In l-Arg-depleted macrophages iNOS generates both O2⨪ and NO that interact to form the potent oxidant peroxynitrite (ONOO−), which was detected by luminol luminescence and whose formation was blocked by superoxide dismutase, urate, or l-Arg. This iNOS-derived ONOO− resulted in nitrotyrosine formation, and this was inhibited by iNOS blockade. iNOS-mediated O2⨪ and ONOO− increased the antibacterial activity of macrophages. Thus, with reduced l-Arg availability iNOS produces O2⨪ and ONOO− that modulate macrophage function. Due to the existence of l-Arg depletion in inflammation, iNOS-mediated O2⨪ and ONOO− may occur and contribute to cytostatic/cytotoxic actions of macrophages. PMID:9192673

  9. L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice.

    PubMed

    Aji, W; Ravalli, S; Szabolcs, M; Jiang, X C; Sciacca, R R; Michler, R E; Cannon, P J

    1997-01-21

    The potential antiatherosclerotic actions of NO were investigated in four groups of mice (n = 10 per group) lacking functional LDL receptor genes, an animal model of familial hypercholesterolemia. Group 1 was fed a regular chow diet. Groups 2 through 4 were fed a 1.25% high-cholesterol diet. In addition, group 3 received supplemental L-arginine and group 4 received L-arginine and N omega-nitro-L-arginine (L-NA), an inhibitor of NO synthase (NOS). Animals were killed at 6 months; aortas were stained with oil red O for planimetry and with antibodies against constitutive and inducible NOSs. Plasma cholesterol was markedly increased in the animals receiving the high-cholesterol diet. Xanthomas appeared in all mice fed the high-cholesterol diet alone but not in those receiving L-arginine. Aortic atherosclerosis was present in all mice on the high-cholesterol diet. The mean atherosclerotic lesion area was reduced significantly (P < .01) in the cholesterol-fed mice given L-arginine compared with those receiving the high-cholesterol diet alone. The mean atherosclerotic lesion area was significantly larger (P < .01) in cholesterol-fed mice receiving L-arginine + L-NA than in those on the high-cholesterol diet alone. Within the atherosclerotic plaques, endothelial cells immunoreacted for endothelial cell NOS; macrophages, foam cells, and smooth muscle cells immunostained strongly for inducible NOS and nitrotyrosine residues. The data indicate that L-arginine prevents xanthoma formation and reduces atherosclerosis in LDL receptor knockout mice fed a high-cholesterol diet. The abrogation of the beneficial effects of L-arginine by L-NA suggests that the antiatherosclerotic actions of L-arginine are mediated by NOS. The data suggest that L-arginine may be beneficial in familial hypercholesterolemia.

  10. Protein Arginine Methylation in Mammals: Who, What, and Why

    PubMed Central

    Bedford, Mark T.; Clarke, Steven G.

    2012-01-01

    The covalent marking of proteins by methyl group addition to arginine residues can promote their recognition by binding partners or can modulate their biological activity. A small family of gene products that catalyze such methylation reactions in eukaryotes (PRMTs) work in conjunction with a changing cast of associated subunits to recognize distinct cellular substrates. These reactions display many of the attributes of reversible covalent modifications such as protein phosphorylation or protein lysine methylation; however, it is unclear to what extent protein arginine demethylation occurs. Physiological roles for protein arginine methylation have been established in signal transduction, mRNA splicing, transcriptional control, DNA repair, and protein translocation. PMID:19150423

  11. Effect of methylation on the side-chain pKa value of arginine.

    PubMed

    Evich, Marina; Stroeva, Ekaterina; Zheng, Yujun George; Germann, Markus W

    2016-02-01

    Arginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data. The pKa values of monomethylated, symmetrically dimethylated, and asymmetrically dimethylated arginine are similar to the unmodified arginine (14.2 ± 0.4). Although the pKa value has not been significantly affected by methylation, consequences of methylation include changes in charge distribution and steric effects, suggesting alternative mechanisms for recognition. © 2015 The Protein Society.

  12. Changes in cholinergic and nitrergic systems of defunctionalized colons after colostomy in rabbits.

    PubMed

    Moralıoğlu, Serdar; Vural, İsmail Mert; Özen, İbrahim Onur; Öztürk, Gökçe; Sarıoğlu, Yusuf; Başaklar, Abdullah Can

    2017-01-01

    This study was designed to assess smooth muscle function and motility in defunctionalized colonic segments and subsequent changes in pathways responsible for gastrointestinal motility. Two-month-old New Zealand rabbits were randomly allocated into control and study groups. Sigmoid colostomies were performed in the study group. After a 2-month waiting period, colonic segments were harvested in both groups. For the in vitro experiment, the isolated circular muscle strips which were prepared from the harvested distal colon were used. First, contraction responses were detected using KCl and carbachol; relaxation responses were detected using papaverine, sodium nitroprusside, sildenafil, and l-arginine. The neurologic responses of muscle strips to electrical field stimulation (EFS) were evaluated in an environment with guanethidine and indomethacin. EFS studies were then repeated with atropine, Nω-nitro-l-arginine methyl ester, atropine, and Nω-nitro-l-arginine methyl ester-added environments. Although macroscopic atrophy had developed in the distal colonic segment of the colostomy, the contraction and relaxation capacity of the smooth muscle did not change. EFS-induced nitrergic-peptidergic, cholinergic-peptidergic, and noncholinergic nonnitrergic responses significantly decreased at all frequencies (0.5-32 Hz) in the study group compared with those in the control group (P < 0.05). Although the contraction capacity of the smooth muscle was not affected, the motility of the distal colon deteriorated owing to the defective secretion of presynaptic neurotransmitters such as acetylcholine, nitric oxide, and neuropeptides. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The story of protein arginine methylation: characterization, regulation, and function.

    PubMed

    Peng, Chao; Wong, Catherine Cl

    2017-02-01

    Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.

  14. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the 'L-arginine paradox'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Soyoung; Mohan, Srinidi; Fung, Ho-Leung, E-mail: hlfung@buffalo.edu

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Our findings provide a possible solution to the 'L-arginine paradox'. Black-Right-Pointing-Pointer Extracellular L-arginine concentration is the major determinant of NO production. Black-Right-Pointing-Pointer Cellular L-arginine action is limited by cellular ARG transport, not the K{sub m} of NOS. Black-Right-Pointing-Pointer We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of {sup 15}N{sub 4}-ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h.more » To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, {sup 15}N{sub 4}-ARG, dimethylarginines, and L-citrulline by an LC-MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by{sup 15}N-nitrite or estimated {sup 15}N{sub 3}-citrulline concentrations when {sup 15}N{sub 4}-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced {sup 15}N{sub 4}-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by {sup 15}N-nitrite, total nitrite and {sup 15}N{sub 3}-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside

  15. Maintenance of cytosolic calcium is crucial to extend l-arginine therapeutic benefits during continuous dosing.

    PubMed

    Mohan, Srinidi; Harding, Lisa

    2016-10-01

    The therapeutic benefits associated with short-term l-arginine supplementation are lost during continuous dosing. AMP-activated protein kinase (AMPK) functional modulation has been correlated with l-arginine therapeutic effectiveness, and with tolerance development during continuous supplementation. However, the metabolic link that is responsible for AMPK functional modulation during continuous l-arginine exposure is currently not known. To explore this, we incubated HUVECs for 7 days with 100 μmol/L l-arginine, in the presence or absence of other agents; and monitored their effects for eNOS function, and on tolerance sparing effects (viz, cellular glucose accumulation, and oxidative stress). HUVEC co-incubation with 100 μmol/L l-arginine and ≤1200 mg/mL calcium (Ca 2+ ) for 7 days avoided tolerance development, with an at least 1-fold increase in the eNOS and AMPK functional activity; and an 1-fold increase in overall cellular glucose uptake. The overall cellular cytosolic Ca 2+ was below 200 nmol/L, with no change in cellular glucose and superoxide/peroxynitrite (O 2 •- /ONOO - ) level from control. However, tolerance sparing effects of at least 70% decrease in eNOS and AMPK functional response, with an 1-fold reduction in glucose uptake, and at least 2-fold increase in O 2 •- /ONOO - were observed in cells exposed for 7 days to 100 μmol/L l-arginine at Ca 2+ co-incubation concentration of >1200 mg/mL. The >1200 mg/mL Ca2+ co-incubation condition, also improved the overall cellular Ca 2+ to >200 nmol/L. Similar tolerance response was observed in cells co-treated with 100 μmol/L l-arginine and ≤1200 mg/mL Ca 2+ in the presence of Ca 2+ influx inhibitor (20 μmol/L 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra acetic acid), or eNOS activity inhibitor (30 μmol/L l-N G -nitroarginine methyl ester). No tolerance response was seen in cells incubated for 7 days with 100 μmol/L l-arginine and ≤1200 mg/mL Ca 2+ ; even in the presence of the inhibitor for

  16. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil ester...

  17. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

    PubMed Central

    Wharton, Christopher W.

    1974-01-01

    1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742

  18. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters

    PubMed Central

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Colas, Claire; Ucurum, Zöhre; Schlessinger, Avner; Fotiadis, Dimitrios

    2018-01-01

    The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures (Tms) of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg), agmatine, l-arginine methyl ester, and l-arginine amide. The resulting Tms indicated stabilization of AdiC variants upon ligand binding, in which Tms and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5), an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family. PMID:29558430

  19. The effects on plasma L-arginine levels of combined oral L-citrulline and L-arginine supplementation in healthy males.

    PubMed

    Suzuki, Takashi; Morita, Masahiko; Hayashi, Toshio; Kamimura, Ayako

    2017-02-01

    We investigated the effects of combining 1 g of l-citrulline and 1 g of l-arginine as oral supplementation on plasma l-arginine levels in healthy males. Oral l-citrulline plus l-arginine supplementation more efficiently increased plasma l-arginine levels than 2 g of l-citrulline or l-arginine, suggesting that oral l-citrulline and l-arginine increase plasma l-arginine levels more effectively in humans when combined.

  20. Proteomic Identification and Analysis of Arginine-Methylated Proteins of Plasmodium falciparum at Asexual Blood Stages.

    PubMed

    Zeeshan, Mohammad; Kaur, Inderjeet; Joy, Joseph; Saini, Ekta; Paul, Gourab; Kaushik, Abhinav; Dabral, Surbhi; Mohmmed, Asif; Gupta, Dinesh; Malhotra, Pawan

    2017-02-03

    Plasmodium falciparum undergoes a tightly regulated developmental process in human erythrocytes, and recent studies suggest an important regulatory role of post-translational modifications (PTMs). As compared with Plasmodium phosphoproteome, little is known about other PTMs in the parasite. In the present study, we performed a global analysis of asexual blood stages of Plasmodium falciparum to identify arginine-methylated proteins. Using two different methyl arginine-specific antibodies, we immunoprecipitated the arginine-methylated proteins from the stage-specific parasite lysates and identified 843 putative arginine-methylated proteins by LC-MS/MS. Motif analysis of the protein sequences unveiled that the methylation sites are associated with the previously known methylation motifs such as GRx/RGx, RxG, GxxR, or WxxxR. We identified Plasmodium homologues of known arginine-methylated proteins in trypanosomes, yeast, and human. Hydrophilic interaction liquid chromatography (HILIC) was performed on the immunoprecipitates from the trophozoite stage to enrich arginine-methylated peptides. Mass spectrometry analysis of immunoprecipitated and HILIC fractions identified 55 arginine-methylated peptides having 62 methylated arginine sites. Functional classification revealed that the arginine-methylated proteins are involved in RNA metabolism, protein synthesis, intracellular protein trafficking, proteolysis, protein folding, chromatin organization, hemoglobin metabolic process, and several other functions. Summarily, the findings suggest that protein methylation of arginine residues is a widespread phenomenon in Plasmodium, and the PTM may play an important regulatory role in a diverse set of biological pathways, including host-pathogen interactions.

  1. L-Arginine

    MedlinePlus

    ... SAFE when taken by mouth appropriately for a short-term during pregnancy. Not enough is known about using L-arginine long-term in pregnancy or during breast-feeding. Stay on the safe side and avoid use. Children: L-arginine is POSSIBLY SAFE when used by ...

  2. Discovery and mechanistic study of a class of protein arginine methylation inhibitors.

    PubMed

    Feng, You; Li, Mingyong; Wang, Binghe; Zheng, Yujun George

    2010-08-26

    Protein arginine methylation regulates multiple biological processes such as chromatin remodeling and RNA splicing. Malfunction of protein arginine methyltransferases (PRMTs) is correlated with many human diseases. Thus, small molecule inhibitors of protein arginine methylation are of great potential for therapeutic development. Herein, we report a type of compound that blocks PRMT1-mediated arginine methylation at micromolar potency through a unique mechanism. Most of the discovered compounds bear naphthalene and sulfonate groups and are structurally different from typical PRMT substrates, for example, histone H4 and glycine- and arginine-rich sequences. To elucidate the molecular basis of inhibition, we conducted a variety of kinetic and biophysical assays. The combined data reveal that this type of naphthyl-sulfo (NS) molecule directly targets the substrates but not PRMTs for the observed inhibition. We also found that suramin effectively inhibited PRMT1 activity. These findings about novel PRMT inhibitors and their unique inhibition mechanism provide a new way for chemical regulation of protein arginine methylation.

  3. Inhibition of nitric oxide production and the effects of arginine and Lactobacillus administration in an acute liver injury model.

    PubMed

    Adawi, D; Molin, G; Jeppsson, B

    1998-12-01

    To study the effect of inhibiting nitric oxide production and the effects of arginine and lactobacilli administration in an acute liver injury (LI) model. Infectious complications caused by enteric bacteria are common in patients with liver diseases and those who have undergone liver surgery. Increased bacterial translocation has been proposed as one underlying mechanism. Lactobacilli constitute an integral part of the normal gastrointestinal microecology; they are involved in host metabolism and have many beneficial properties. Arginine has numerous roles in cellular metabolism and may be metabolized by lactobacilli in some cases. We have previously shown that rectal administration of Lactobacillus plantarum DSM 9843 (strain 299v), with and without arginine, in an acute LI model significantly reduces the extent of the LI and reduces bacterial translocation. To clarify the pathogenetic mechanisms, we studied the role of nitric oxide in the effects of L. plantarum and arginine in acute LI, as determined by bacterial translocation, ileal, cecal, and colonic nucleotides, RNA, and DNA. Male Sprague-Dawley rats were used. L. plantarum, 2% arginine, and/or N-nitro-L-arginine methyl ester (L-NAME), as appropriate, were administered rectally once daily for 8 days. Acute LI was induced on the eighth day by intraperitoneal injection of D-galactosamine (1.1 g/kg body weight), and samples were collected after 24 hours. Bacterial translocation was evaluated by culture of portal and arterial blood, mesenteric lymph nodes, and liver tissue. Liver enzymes and bilirubin were assayed in the serum. The bacterial load in the cecum and colon was determined. Ileal, cecal, and colonic mucosal nucleotides, RNA, and DNA were evaluated. The levels of liver enzymes and bilirubin were lower in liver-injured rats supplemented with arginine and Lactobacillus, and this effect was abolished by the addition of L-NAME. Inhibition of nitric oxide production (by L-NAME) increased bacterial

  4. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified...

  5. Ameliorated effect of L-arginine supplementation on gingival morphology in cyclosporin-treated rats.

    PubMed

    Fu, E; Tz-Chong, C; Liu, D; Chiu, S C

    2000-11-01

    The role of nitric oxide (NO) in the pathogenesis of cyclosporin (CsA)-induced gingival overgrowth is unknown. The purpose of the present study was to evaluate the effect of NO substrate (L-arginine) and blockade (N-nitro-L-arginine methylester-hydrochloride, L-NAME) on the gingival morphology in CsA-fed rats. Sixty CsA-fed (10 mg/kg/day) male Sprague-Dawley rats were assigned to 3 groups. Animals in 2 experimental groups received L-arginine (1% weight/weight) in rat chowder or L-NAME (50 mg/l) in drinking water, respectively, for 4 weeks. Rats in the control group were fed a normal diet and water. At week 0, 2, and 4, dental stone models were made from the mandibular anterior region and the gingival dimensions (width, depth, and height) were measured. The tail cuff blood pressure and the plasma nitrate level were also measured at week 4 to monitor the effects of L-arginine and L-NAME treatment. No significant difference in the gingival dimensions was noticed at week 0; however, significant differences were observed at weeks 2 and 4, except the buccolingual depth at week 2. While the magnitude of gingival dimensions was large, moderate, and small in control, L-NAME, and L-arginine groups, respectively, we found significantly reduced gingival dimensions in both L-arginine supplement and L-NAME groups. Nevertheless, the reduced gingival overgrowth in the L-NAME treatment group was far less than that in the exogenous NO treatment group. Plasma NO2-/NO3- concentrations were also significantly different; i.e., from the highest to the lowest levels were the L-arginine, CsA control, and L-NAME group, respectively. A significantly increased mean and diastolic blood pressure was found in the L-NAME group compared to the L-arginine group. Gingival morphology in CsA-fed rats was evaluated after NO substrate (L-arginine) and blockade (L-NAME) treatment for 4 weeks. Significantly decreased dimensions were noted in the L-arginine group compared to the CsA group at weeks 2 and 4

  6. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  7. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  8. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  9. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  10. Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia.

    PubMed

    Arami, Masoumeh Kourosh; Zade, Javad Mirnajafi; Komaki, Alireza; Amiri, Mahmood; Mehrpooya, Sara; Jahanshahi, Ali; Jamei, Behnam

    2015-10-01

    Nucleus Raphe Magnus (NRM) that is involved in the regulation of body temperature contains nitric oxide (NO) synthase. Considering the effect of NO on skin blood flow control, in this study, we assessed its thermoregulatory role within the raphe magnus. To this end, tail blood flow of male Wistar rats was measured by laser doppler following the induction of hypothermia. Intra-NRM injection of SNP (exogenous NO donor, 0.1- 0.2 μl, 0.2 nM) increased the blood flow. Similarly, unilateral microinjection of glutamate (0.1- 0.2 μl, 2.3 nM) into the nucleus increased the blood flow. This effect of L-glutamate was reduced by prior intra NRM administration of NO synthase inhibitor N(G)-methyl-L-arginine or N(G)-nitro-L-arginine methyl ester (L-NAME, 0.1 µl, 100 nM). It is concluded that NO modulates the thermoregulatory response of NRM to hypothermia and may interact with excitatory amino acids in central skin blood flow regulation.

  11. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters.

    PubMed

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Colas, Claire; Ucurum, Zöhre; Schlessinger, Avner; Fotiadis, Dimitrios

    2018-03-20

    The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures ( T m s) of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg), agmatine, l-arginine methyl ester, and l-arginine amide. The resulting T m s indicated stabilization of AdiC variants upon ligand binding, in which T m s and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5), an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  12. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  13. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  14. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  15. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  16. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach.

    PubMed

    Salmas, Ramin Ekhteiari; Gulhan, Mehmet Fuat; Durdagi, Serdar; Sahna, Engin; Abdullah, Huda I; Selamoglu, Zeliha

    2017-08-01

    The objective of this study was to evaluate the antioxidant effects of propolis, caffeic acid phenethyl ester (CAPE; active compound in propolis), and pollen on biochemical oxidative stress biomarkers in rat kidney tissue inhibited by N ω -nitro-L-arginine methyl ester (L-NAME). The biomarkers evaluated were paraoxonase (PON1), oxidative stress index (OSI), total antioxidant status (TAS), total oxidant status (TOS), asymmetric dimethylarginine (ADMA), and nuclear factor kappa B (NF-κB). TAS levels and PON1 activity were significantly decreased in kidney tissue samples in the L-NAME-treated group (P < 0.05). The levels of TAS and PONI were higher in the L-NAME plus propolis, CAPE, and pollen groups compared with the L-NAME-treated group. TOS, ADMA, and NF-κB levels were significantly increased in the kidney tissue samples of the L-NAME-treated group (P < 0.05). However, these parameters were significantly lower in the L-NAME plus propolis, CAPE, and pollen groups (P < 0.05) compared with rats administered L-NAME alone (P < 0.05). Furthermore, the binding energy of CAPE within catalytic domain of glutathione reductase (GR) enzyme as well as its inhibitory mechanism was determined using molecular modeling approaches. In conclusion, experimental and theoretical data suggested that oxidative alterations occurring in the kidney tissue of chronic hypertensive rats may be prevented via active compound of propolis, CAPE administration. Copyright © 2017 John Wiley & Sons, Ltd.

  17. N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt, as an inactivator of hepatitis B surface antigen.

    PubMed Central

    Sugimoto, Y; Toyoshima, S

    1979-01-01

    N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt (CAE), exhibited a strong inactivating effect on hepatitis B surface antigen. Concentrations of CAE required for 50 and 100% inactivation of the antigen were 0.01 to 0.025% and 0.025 to 0.05% respectively. CAE completely inactivated hepatitis B surface antigen at the lowest concentration compared with various compounds including about 500 amino acid derivatives, sodium hypochlorite, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, and some detergents. Furthermore, CAE inactivated vaccinia virus, herpes simplex virus, and influenza virus, whereas poliovirus was not inactivated at all. The results suggest that the inactivating effects of CAE are related to interaction with lipid-containing viral envelopes. PMID:228595

  18. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain andmore » examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.« less

  19. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1

    PubMed Central

    Hung, Ming-Lung; Hautbergue, Guillaume M.; Snijders, Ambrosius P. L.; Dickman, Mark J.; Wilson, Stuart A.

    2010-01-01

    The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway. PMID:20129943

  20. Improvement of retinal functions after ischemia with L-arginine and its derivatives.

    PubMed

    Liu, S X; Chiou, G C; Varma, R S

    1995-01-01

    Retinal ischemia was created by occlusion of rat central retinal artery for 30 minutes. The loss of retinal function was indicated by the loss of b-wave of electroretinogram. The recovery of retinal function after reperfusion of central retinal artery was observed with the gradual recovery of b-wave amplitude to approximately 20% of original b-wave amplitude. When L-arginine (RVC-579) was administered at the time of retina ischemia, the b-wave amplitudes recovered up to 64% of original height and were significantly higher than corresponding controls at 120, 180, and 240 min after ischemia. When the derivative of L-arginine, N alpha-benzoyl-L-arginine ethyl ester (RVC-578), was administered, the b-wave recovery was significantly higher than corresponding controls at 90, 120, 180, and 240 min after ischemia; the recovery reached 51% of the original b-wave value. These results indicate that the L-arginine and its lipophilic derivatives could be used for the treatment of ischemic retinopathy. Since L-arginine is a natural amino acid, it is not expected to produce major side effects, if any, and could pave the way for the development of a safer drug to be used in the clinics. Compounds which increase the formation of NO in vivo, dilate blood vessels. Both L-arginine and RVC-578 can be placed in this category. They may improve effects of retinal ischemia by increasing NO production.

  1. Effects of L-arginine pre-treatment in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s diseases in Balb/c mice

    PubMed Central

    Hami, Javad; Hosseini, Mehran; Shahi, Sekineh; Lotfi, Nassim; Talebi, Abolfazl; Afshar, Mohammad

    2015-01-01

    Background: Parkinson’s disease (PD) is a common neurodegenerative disease resulting from the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Increasing evidence demonstrated that mice treated intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) suffered impairments in motor functions associated with disruption of DA neurons in SNc conceivably analogous to those observed in PD. L-arginine has been proposed as a novel neuroprotective agent that plays protective roles in several models of neuronal cellular damage. This study aimed to evaluate the effects of L-arginine on the numerical density of dark neurons (DNs) in the SNc of Balb/c mice subjected to MPTP administration. Methods: In the present study, we demonstrated that repeated treatment with L-arginine (300 mg/kg, i.p.) during 7 consecutive days attenuated the production of DNs in SNc of adult male Balb/c mice infused with a single intranasal administration of MPTP (1 mg/nostril). Results: Pre-treatment with L-arginine significantly decreased the numerical density of DNs in SNc of mice 21 days after intranasal MPTP administration. Conclusion: This investigation provides new insights in experimental models of PD, indicating that L-arginine represents a potential neuroprotective agent for the prevention of DA neuron degeneration in SNc observed in PD patients. PMID:26885338

  2. Global Proteomic Analysis in Trypanosomes Reveals Unique Proteins and Conserved Cellular Processes Impacted by Arginine Methylation

    PubMed Central

    Lott, Kaylen; Li, Jun; Fisk, John C.; Wang, Hao; Aletta, John M.; Qu, Jun; Read, Laurie K.

    2013-01-01

    Arginine methylation is a common posttranslational modification with reported functions in transcription, RNA processing and translation, and DNA repair. Trypanosomes encode five protein arginine methyltransferases, suggesting that arginine methylation exerts widespread impacts on the biology of these organisms. Here, we performed a global proteomic analysis of T. brucei to identify arginine methylated proteins and their sites of modification. Using an approach entailing two-dimensional chromatographic separation, and alternating electron transfer dissociation and collision induced dissociation, we identified 1332 methylarginines in 676 proteins. The resulting data set represents the largest compilation of arginine methylated proteins in any organism to date. Functional classification revealed numerous arginine methylated proteins involved in flagellar function, RNA metabolism, DNA replication and repair, and intracellular protein trafficking. Thus, arginine methylation has the potential to impact aspects of T. brucei gene expression, cell biology, and pathogenesis. Interestingly, pathways with known methylated proteins in higher eukaryotes were identified in this study, but often different components of the pathway were methylated in trypanosomes. Methylarginines were often identified in glycine rich contexts, although exceptions to this rule were detected. Collectively, these data inform on a multitude of aspects of trypanosome biology and serve as a guide for the identification of homologous arginine methylated proteins in higher eukaryotes. PMID:23872088

  3. Arginine reduces Cryptosporidium parvum infection in undernourished suckling mice involving both nitric oxide synthase and arginase

    PubMed Central

    Castro, Ibraim C.; Oliveira, Bruna B.; Slowikowski, Jacek J.; Coutinho, Bruna P.; Siqueira, Francisco Júlio W.S.; Costa, Lourrany B.; Sevilleja, Jesus Emmanuel; Almeida, Camila A.; Lima, Aldo A.M.; Warren, Cirle A.; Oriá, Reinaldo B.; Guerrant, Richard L.

    2011-01-01

    Objective This study investigated the role of L-arginine supplementation to undernourished and Cryptosporidium parvum-infected suckling mice. Methods The following regimens were initiated on the 4th day of life and given subcutaneously daily: either 200mM of L-arginine or PBS for the C. parvum-infected controls. L-arginine-treated mice were grouped to receive either 20mM of NG-nitroarginine-methyl-ester (L-NAME) or PBS. Infected mice received orally 106 excysted-C. parvum oocysts on day 6 and were euthanized on day 14th at the infection peak. Results L-arginine improved weight gain compared to the untreated infected controls. L-NAME profoundly impaired body weight gain as compared to all other groups. Cryptosporidiosis was associated with ileal crypt hyperplasia, villus blunting, and inflammation. L-arginine improved mucosal histology following infection. L-NAME abrogated these arginine-induced improvements. Infected control mice showed an intense arginase expression, which was even greater with L-NAME. L-arginine reduced parasite burden, an effect that was reversed by L-NAME. C. parvum infection increased urine NO3-/NO2- concentration when compared to uninfected controls, which was increased by L-arginine supplementation, an effect that was also reversed by L-NAME. Conclusion These findings show a protective role of L-arginine during C. parvum infection in undernourished mice with involvement of arginase I and nitric oxide synthase enzymatic actions. PMID:22261576

  4. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  5. Computational Study of Symmetric Methylation on Histone Arginine Catalyzed by Protein Arginine Methyltransferase PRMT5 through QM/MM MD and Free Energy Simulations

    DOE PAGES

    Yue, Yufei; CHu, Yuzhuo; Guo, Hong

    2015-01-01

    Protein arginine methyltransferases (PRMTs) catalyze the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to arginine residues. There are three types of PRMTs (I, II and III) that produce different methylation products, including asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and monomethylarginine (MMA). Since these different methylations can lead to different biological consequences, understanding the origin of product specificity of PRMTs is of considerable interest. In this article, the quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations are performed to study SDMA catalyzed by the Type II PRMT5 on the basis of experimental observation that the dimethylated productmore » is generated through a distributive fashion. The simulations have identified some important interactions and proton transfers during the catalysis. Similar to the cases involving Type I PRMTs, a conserved Glu residue (Glu435) in PRMT5 is suggested to function as general base catalyst based on the result of the simulations. Moreover, our results show that PRMT5 has an energetic preference for the first methylation on N-1 followed by the second methylation on a different -guanidino nitrogen of arginine (N-2).The first and second methyl transfers are estimated to have free energy barriers of 19-20 and 18-19 kcal/mol respectively. The computer simulations suggest a distinctive catalytic mechanism of symmetric dimethylation that seems to be different from asymmetric dimethylation.« less

  6. Diminished L-arginine bioavailability in hypertension.

    PubMed

    Moss, Monique B; Brunini, Tatiana M C; Soares De Moura, Roberto; Novaes Malagris, Lúcia E; Roberts, Norman B; Ellory, J Clive; Mann, Giovanni E; Mendes Ribeiro, Antônio C

    2004-10-01

    L-Arginine is the precursor of NO (nitric oxide), a key endogenous mediator involved in endothelium-dependent vascular relaxation and platelet function. Although the concentration of intracellular L-arginine is well above the Km for NO synthesis, in many cells and pathological conditions the transport of L-arginine is essential for NO production (L-arginine paradox). The present study was designed to investigate the modulation of L-arginine/NO pathway in systemic arterial hypertension. Transport of L-arginine into RBCs (red blood cells) and platelets, NOS (NO synthase) activity and amino acid profiles in plasma were analysed in hypertensive patients and in an animal model of hypertension. Influx of L-arginine into RBCs was mediated by the cationic amino acid transport systems y+ and y+L, whereas, in platelets, influx was mediated only via system y+L. Chromatographic analyses revealed higher plasma levels of L-arginine in hypertensive patients (175+/-19 micromol/l) compared with control subjects (137+/-8 micromol/l). L-Arginine transport via system y+L, but not y+, was significantly reduced in RBCs from hypertensive patients (60+/-7 micromol.l(-1).cells(-1).h(-1); n=16) compared with controls (90+/-17 micromol.l(-1).cells(-1).h(-1); n=18). In human platelets, the Vmax for L-arginine transport via system y+L was 86+/-17 pmol.10(9) cells(-1).min(-1) in controls compared with 36+/-9 pmol.10(9) cells(-1).min(-1) in hypertensive patients (n=10; P<0.05). Basal NOS activity was decreased in platelets from hypertensive patients (0.12+/-0.02 pmol/10(8) cells; n=8) compared with controls (0.22+/-0.01 pmol/10(8) cells; n=8; P<0.05). Studies with spontaneously hypertensive rats demonstrated that transport of L-arginine via system y+L was also inhibited in RBCs. Our findings provide the first evidence that hypertension is associated with an inhibition of L-arginine transport via system y+L in both humans and animals, with reduced availability of L-arginine limiting NO synthesis

  7. Arginine Methylation: The Coming of Age.

    PubMed

    Blanc, Roméo S; Richard, Stéphane

    2017-01-05

    Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  9. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  10. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  11. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  12. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  13. Proteomic Analysis of Arginine Methylation Sites in Human Cells Reveals Dynamic Regulation During Transcriptional Arrest*

    PubMed Central

    Sylvestersen, Kathrine B.; Horn, Heiko; Jungmichel, Stephanie; Jensen, Lars J.; Nielsen, Michael L.

    2014-01-01

    The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function, and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein arginine methyltransferases; however, very little is known about which arginine residues become methylated on target substrates. Here we describe a proteomics methodology that combines single-step immunoenrichment of methylated peptides with high-resolution mass spectrometry to identify endogenous arginine mono-methylation (MMA) sites. We thereby identify 1027 site-specific MMA sites on 494 human proteins, discovering numerous novel mono-methylation targets and confirming the majority of currently known MMA substrates. Nuclear RNA-binding proteins involved in RNA processing, RNA localization, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared with the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers strong site-specific regulation of MMA sites during transcriptional arrest. Interestingly, several MMA sites are down-regulated after a few hours of transcriptional arrest. In contrast, the corresponding di-methylation or protein expression levels are not altered, confirming that MMA sites contain regulated functions on their own. Collectively, we present a site-specific MMA data set in human cells and demonstrate for the first time that MMA is a dynamic post-translational modification regulated during transcriptional arrest by a hitherto uncharacterized arginine demethylase. PMID:24563534

  14. Multiple Arginine Residues Are Methylated in Drosophila Mre11 and Required for Survival Following Ionizing Radiation.

    PubMed

    Yuan, Qing; Tian, Ran; Zhao, Haiying; Li, Lijuan; Bi, Xiaolin

    2018-05-31

    Mre11 is a key player for DNA double strand break repair. Previous studies have shown that mammalian Mre11 is methylated at multiple arginines in its C-terminal Glycine-Arginine-Rich motif (GAR) by protein arginine methyltransferase PRMT1. Here, we found that the Drosophila Mre11 is methylated at arginines 559, 563, 565, and 569 in the GAR motif by DART1, the Drosophila homolog of PRMT1. Mre11 interacts with DART1 in S2 cells, and this interaction does not require the GAR motif. Arginines methylated Mre11 localizes exclusively in the nucleus as soluble nuclear protein or chromatin-binding protein. To study the in vivo functions of methylation, we generated the single Arg-Ala and all Arginines mutated flies. We found these mutants were sensitive to ionizing radiation. Furthermore, Arg-Ala mutated flies had no irradiation induced G2/M checkpoint defect in wing disc and eye disc. Thus, we provided evidence that arginines in Drosophila Mre11 are methylated by DART1 methytransferase and flies loss of arginine methylation are sensitive to irradiation. Copyright © 2018 Yuan et al.

  15. Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33

    PubMed Central

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  16. Clipping of arginine-methylated histone tails by JMJD5 and JMJD7

    PubMed Central

    Liu, Haolin; Wang, Chao; Lee, Schuyler; Deng, Yu; Wither, Matthew; Oh, Sangphil; Ning, Fangkun; Dege, Carissa; Zhang, Qianqian; Liu, Xinjian; Johnson, Aaron M.; Zang, Jianye; Janknecht, Ralf; Hansen, Kirk; Marrack, Philippa; Li, Chuan-Yuan; Kappler, John W.; Hagman, James; Zhang, Gongyi

    2017-01-01

    Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cation-dependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones. Furthermore, depletion of JMJD7 in breast cancer cells greatly decreases cell proliferation. The protease activities of JMJD5 and JMJD7 represent a mechanism for removal of histone tails bearing methylated arginine residues and define a potential mechanism of transcription regulation. PMID:28847961

  17. Antioxidative and myocardial protective effects of L-arginine in oxygen radical-induced injury of isolated perfused rat hearts.

    PubMed

    Suessenbacher, Astrid; Lass, Achim; Mayer, Bernd; Brunner, Friedrich

    2002-04-01

    Oxygen-derived free radicals and oxidants (reactive oxygen intermediates, ROI) have been implicated in cardiovascular diseases. The protective role of nitric oxide (NO) against ROI-mediated tissue injury is not resolved. We tested the effects of exogenous NO, L- and D-arginine and a NO synthase inhibitor on electrolysis-induced cardiac injury and the generation of ROI by electrolysis. Superoxide dismutase (SOD) and catalase were used for comparison. Hearts ( n=7) from male rats (350+/-30 g) were perfused in vitro at 10 ml min(-1) g(-1), ROI generated by electrolysis of the perfusion medium (15 mA, 10 s), and cardiac function and the level of isoluminol-derived chemiluminescence in electrolysed perfusion medium documented for 15 min ( n=4). The ROI-induced maximal reduction of left ventricular developed pressure to 55+/-5% of baseline, and a 2.2+/-0.1-fold rise in coronary perfusion pressure 3 min after electrolysis, were prevented by SOD (50 U ml(-1)), catalase (100 U ml(-1)), S-nitroso- N-acetyl- D,L-penicillamine (SNAP, 100 nmol l(-1)); L-arginine (1 mmol l(-1)), N(G)-nitro- L-arginine (L-NNA, 200 micromol l(-1)) or D-arginine (1 mmol l(-1)). The effect of L-arginine was concentration dependent. In all cases, the beneficial effects were closely matched by a near-total reduction of ROI in the perfusion medium.We conclude that, besides mimicking or enhancing NO activity, L-arginine and donor-derived exogenous NO are cardioprotective by reducing ROI-mediated tissue injury. The protective effect of L-NNA and D-arginine implies that the protection results from a direct chemical interaction between the drug and the oxidizing species.

  18. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  19. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    NASA Astrophysics Data System (ADS)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  20. Improved synthetic route to methyl 1-fluoroindan-1-carboxylate (FICA Me ester) and 4-methyl derivatives.

    PubMed

    Koyanagi, Jyunichi; Kamei, Tomoyo; Ishizaki, Miyuki; Nakamura, Hiroshi; Takahashi, Tamiko

    2014-01-01

    An improved synthetic route has been developed for the preparation of methyl 1-fluoroindan-1-carboxylate (FICA Me ester) from 1-indanone. Methyl 4-methyl-1-fluoroindan-1-carboxylate (4-Me-FICA Me ester) was also prepared following the same procedure.

  1. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164.

    PubMed

    Bruns, Hilke; Herrmann, Jennifer; Müller, Rolf; Wang, Hui; Wagner Döbler, Irene; Schulz, Stefan

    2018-01-26

    The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.

  2. Kapok oil methyl esters

    USDA-ARS?s Scientific Manuscript database

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  3. Possible involvement of nitric oxide in pilocarpine induced seminal emission in rats.

    PubMed

    Tomé, A R; da Silva, J C; Souza, A A; Mattos, J P; Vale, M R; Rao, V S

    1999-12-01

    Intraperitoneal injection of pilocarpine (0.75-3.0 mg/kg) caused a dose-related seminal emission in adult male rats. The seminal emission response to 3 mg/kg of pilocarpine was greatly reduced in atropinized (5 and 10 mg/kg, SC) animals, suggesting a cholinomimetic effect. Nw-nitro-L-arginine methyl ester (5, 10, and 20 mg/kg, SC), a nitric oxide synthesis inhibitor, also inhibited the pilocarpine-induced seminal emission, which was reversed by L-arginine (600 mg/kg, SC) or by coinjection of sodium nitroprusside (0.5 mg/kg, SC). Urine analysis for levels of nitric oxide metabolites, nitrate/nitrite (NO3-/NO2-), showed marked alterations in accordance with the drug treatments. The results suggest that nitric oxide mediates the inhibitory neurotransmission responsible for seminal emission in pilocarpine stimulated rats.

  4. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats.

    PubMed

    Calabró, Valeria; Litterio, María C; Fraga, Cesar G; Galleano, Monica; Piotrkowski, Barbara

    2018-06-01

    This study investigated the effects of a quercetin-supplemented diet on the biochemical changes installed in the heart of NO-deficient rats in terms of oxidants production and NO bioavailability determinants. Sprague-Dawley rats were subjected to N ω -nitro-l-arginine methyl ester (l-NAME) treatment (360 mg/L l-NAME in the drinking water, 4 d) with or without supplementation with quercetin (4 g/kg diet). l-NAME administration led to increased blood pressure (BP) (30%), decreased nitric oxide synthase (NOS) activity (50%), and increases in NADPH oxidase (NOX)-dependent superoxide anion production (60%) and p47 phox protein level (65%). The co-administration of quercetin prevented the increase in BP and the activation of NOX but did not modify the decrease in NOS activity caused by l-NAME. In addition, quercetin affected oxidative stress parameters as glutathione oxidation, and the activities of oxidant detoxifying enzymes superoxide dismutase, glutathione peroxidase, and catalase. Thus, quercetin administration counteracts l-NAME effects on NO bioavailability determinants in vivo, essentially through controlling NOX-mediated superoxide anion production. Copyright © 2018. Published by Elsevier Inc.

  5. Hydrogen bond docking site competition in methyl esters

    NASA Astrophysics Data System (ADS)

    Zhao, Hailiang; Tang, Shanshan; Du, Lin

    2017-06-01

    The Osbnd H ⋯ O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119 cm- 1) > TFE-MF (93 cm- 1) > TFE-MTFA (44 cm- 1). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6 kJ mol- 1 for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes.

  6. A role for serotonin in the antidepressant activity of NG-Nitro-L-arginine, in the rat forced swimming test.

    PubMed

    Gigliucci, Valentina; Buckley, Kathleen Niamh; Nunan, John; O'Shea, Karen; Harkin, Andrew

    2010-02-01

    The present study determined regional serotonin (5-HT) synthesis and metabolism changes associated with the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NA) and the influence of 5-HT receptor blockade in the antidepressant-like actions of L-NA in the forced swimming test (FST). Regional effects of L-NA (5,10 and 20mg/kg i.p.) on tryptophan hydroxylase (TPH) activity, the rate limiting enzyme for 5-HT synthesis, were determined by measuring accumulation of the transient intermediate 5-hydoxytryptophan (5-HTP) following in vivo administration of the amino acid decarboxylase inhibitor, NSD 1015 (100mg/kg). L-NA (5-20mg/kg) dose dependently increased 5-HTP accumulation, particularly in the amygdaloid cortex, following exposure to the FST. L-NA also provoked an increase in regional brain 5-HIAA concentrations and in the 5-HIAA:5-HT metabolism ratio. Co-treatment with NSD-1015 failed to consistently modify the antidepressant-like effects of L-NA in the FST. Sub-active doses of L-NA (1mg/kg) and the 5-HT re-uptake inhibitor fluoxetine (2.5mg/kg) acted synergistically to increase swimming in the test. Co-treatment with the non-selective 5-HT receptor antagonist metergoline (1, 2 and 4mg/kg), attenuated the L-NA (20mg/kg)-induced reduction in immobility and increase in swimming behaviours. Metergoline alone however provoked an increase in immobility and reduction in swimming behaviours in the test. A similar response was obtained following co-treatment with the preferential 5-HT(2A) receptor antagonist ketanserin (5mg/kg) and the 5-HT(2C) receptor antagonist RO-430440 (5mg/kg). Co-treatment with the 5-HT(1A) receptor antagonist WAY 100635 (0.3mg/kg) or the 5-HT(1B) receptor antagonist GR 127935 (4mg/kg) failed to influence the antidepressant-like activity of L-NA. Taken together these data provide further support for a role for 5-HT in the antidepressant-like properties of NOS inhibitors. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Photodynamic therapy-induced nitric oxide production in neuronal and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, Vera D.; Uzdensky, Anatoly B.

    2016-10-01

    Nitric oxide (NO) has been recently demonstrated to enhance apoptosis of glial cells induced by photodynamic therapy (PDT), but to protect glial cells from PDT-induced necrosis in the crayfish stretch receptor, a simple neuroglial preparation that consists of a single mechanosensory neuron enveloped by satellite glial cells. We used the NO-sensitive fluorescent probe 4,5-diaminofluorescein diacetate to study the distribution and dynamics of PDT-induced NO production in the mechanosensory neuron and surrounding glial cells. The NO production in the glial envelope was higher than in the neuronal soma axon and dendrites both in control and in experimental conditions. In dark NO generator, DEA NONOate or NO synthase substrate L-arginine hydrochloride significantly increased the NO level in glial cells, whereas NO scavenger 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) or inhibitors of NO synthase L-NG-nitro arginine methyl ester and Nω-nitro-L-arginine decreased it. PDT induced the transient increase in NO production with a maximum at 4 to 7 min after the irradiation start followed by its inhibition at 10 to 40 min. We suggested that PDT stimulated neuronal rather than inducible NO synthase isoform in glial cells, and the produced NO could mediate PDT-induced apoptosis.

  8. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6.

    PubMed

    Poornima, Gopalakrishna; Shah, Shanaya; Vignesh, Venkadasubramanian; Parker, Roy; Rajyaguru, Purusharth I

    2016-11-02

    Regulation of translation plays a critical role in determining mRNA fate. A new role was recently reported for a subset of RGG-motif proteins in repressing translation initiation by binding eIF4G1. However the signaling mechanism(s) that leads to spatial and temporal regulation of repression activity of RGG-motif proteins remains unknown. Here we report the role of arginine methylation in regulation of repression activity of Scd6, a conserved RGG-motif protein. We demonstrate that Scd6 gets arginine methylated at its RGG-motif and Hmt1 plays an important role in its methylation. We identify specific methylated arginine residues in the Scd6 RGG-motif in vivo We provide evidence that methylation augments Scd6 repression activity. Arginine methylation defective (AMD) mutant of Scd6 rescues the growth defect caused by overexpression of Scd6, a feature of translation repressors in general. Live-cell imaging of the AMD mutant revealed that it is defective in inducing formation of stress granules. Live-cell imaging and pull-down results indicate that it fails to bind eIF4G1 efficiently. Consistent with these results, a strain lacking Hmt1 is also defective in Scd6-eIF4G1 interaction. Our results establish that arginine methylation augments Scd6 repression activity by promoting eIF4G1-binding. We propose that arginine methylation of translation repressors with RGG-motif could be a general modulator of their repression activity. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food.

    PubMed

    Thurnhofer, Saskia; Vetter, Walter

    2006-05-03

    Ethyl esters (FAEE) and trideuterium-labeled methyl esters (d3-FAME) of fatty acids were prepared and investigated regarding their suitability as internal standards (IS) for the determination of fatty acids as methyl esters (FAME). On CP-Sil 88, ethyl esters of odd-numbered fatty acids eluted approximately 0.5 min after the respective FAME, and only coelutions with minor FAME were observed. Depending on the problem, one or even many FAEE can be added as IS for the quantification of FAME by both GC-FID and GC-MS. By contrast, d3-FAME coeluted with FAME on the polar GC column, and the use of the former as IS requires application of GC-MS. In the SIM mode, m/z 77 and 90 are suggested for d3-methyl esters of saturated fatty acids, whereas m/z 88 and 101 are recommended for ethyl esters of saturated fatty acids. These m/z values give either no or very low response for FAME and can thus be used for the analysis of FAME in food by GC-MS in the SIM mode. Fatty acids in sunflower oil and mozzarella cheese were quantified using five saturated FAEE as IS. Gravimetric studies showed that the transesterification procedure could be carried out without of loss of fatty acids. GC-EI/MS full scan analysis was suitable for the quantitative determination of all unsaturated fatty acids in both food samples, whereas GC-EI/MS in the SIM mode was particularly valuable for quantifying minor fatty acids. The novel GC-EI/MS/SIM method using fatty acid ethyl esters as internal standards can be used to quantify individual fatty acids only, that is, without determination of all fatty acids (the common 100% method), although this is present. This was demonstrated by the exclusive quantification of selected fatty acids including methyl-branched fatty acids, erucic acid (18:1n-9trans), and polyunsaturated fatty acids in cod liver oil and goat's milk fat.

  10. A general method for N-methylation of amines and nitro compounds with dimethylsulfoxide.

    PubMed

    Jiang, Xue; Wang, Chao; Wei, Yawen; Xue, Dong; Liu, Zhaotie; Xiao, Jianliang

    2014-01-03

    DMSO methylates a broad range of amines in the presence of formic acid, providing a novel, green and practical method for amine methylation. The protocol also allows the one-pot transformation of aromatic nitro compounds into dimethylated amines in the presence of a simple iron catalyst. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. l-Arginine administration attenuates airway inflammation by altering l-arginine metabolism in an NC/Nga mouse model of asthma.

    PubMed

    Zhang, Ran; Kubo, Masayuki; Murakami, Ikuo; Setiawan, Heri; Takemoto, Kei; Inoue, Kiyomi; Fujikura, Yoshihisa; Ogino, Keiki

    2015-05-01

    Changes in l-arginine metabolism, including increased arginase levels and decreased nitric oxide production, are involved in the pathophysiology of asthma. In this study, using an intranasal mite-induced NC/Nga mouse model of asthma, we examined whether administration of l-arginine ameliorated airway hyperresponsiveness and inflammation by altering l-arginine metabolism. Experimental asthma was induced in NC/Nga mice via intranasal administration of mite crude extract (50 µg/day) on 5 consecutive days (days 0-4, sensitization) and on day 11 (challenge). Oral administration of l-arginine (250 mg/kg) was performed twice daily on days 5-10 for prevention or on days 11-13 for therapy. On day 14, we evaluated the inflammatory airway response (airway hyperresponsiveness, the number of cells in the bronchoalveolar lavage fluid, and the changes in pathological inflammation of the lung), arginase expression and activity, l-arginine bioavailability, and the concentration of NOx, the end products of nitric oxide. Treatment with l-arginine ameliorated the mite-induced inflammatory airway response. Furthermore, l-arginine administration attenuated the increases in arginase expression and activity and elevated the NOx levels by enhancing l-arginine bioavailability. These findings indicate that l-arginine administration may contribute to the improvement of asthmatic symptoms by altering l-arginine metabolism.

  12. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    PubMed

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.

    PubMed

    Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B

    2008-06-23

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.

  14. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07.

    PubMed

    Marino, Fabio; Mommen, Geert P M; Jeko, Anita; Meiring, Hugo D; van Gaans-van den Brink, Jacqueline A M; Scheltema, Richard A; van Els, Cécile A C M; Heck, Albert J R

    2017-01-06

    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA peptides have already received attention, arginine methylated HLA class I peptide presentation has not been characterized in detail. In a human B-cell line we detected 149 HLA class I peptides harboring mono- and/or dimethylated arginine residues by mass spectrometry. A striking preference was observed in the presentation of arginine (di)methylated peptides for HLA-B*07 molecules, likely because the binding motifs of this allele resemble consensus sequences recognized by arginine methyl-transferases. Moreover, HLA-B*07-bound peptides preferentially harbored dimethylated groups at the P3 position, thus consecutively to the proline anchor residue. Such a proline-arginine sequence has been associated with the arginine methyl-transferases CARM1 and PRMT5. Making use of the specific neutral losses in fragmentation spectra, we found most of the peptides to be asymmetrically dimethylated, most likely by CARM1. These data expand our knowledge of the processing and presentation of arginine (di)methylated HLA class I peptides and demonstrate that these types of modified peptides can be presented for recognition by T-cells. HLA class I peptides with mono- and dimethylated arginine residues may therefore offer a novel target for immunotherapy.

  15. Plasma l-citrulline concentrations in l-arginine-supplemented healthy dogs.

    PubMed

    Flynn, K M; Kellihan, H B; Trepanier, L A

    2017-08-01

    To determine whether oral l-arginine increases plasma [l-citrulline] in dogs. Eleven healthy staff-owned dogs were used in this study. Dogs (n = 3) were given l-arginine (50mg/kg PO q8h) for 7 days, and plasma [l-arginine] and [l-citrulline] were analyzed by high performance liquid chromatography at baseline (BL), steady state trough, and 0.5, 1, 1.5, 2, 4, 6, and 8 h after final dosing on day 7. Eleven dogs were then treated with 100mg/kg l-arginine PO q8h for 7 days, and [l-arginine] and [l-citrulline] were measured at BL, steady state trough, and at peak 4 hrs after dosing (T4 hrs). - Plasma [l-arginine] and [l-citrulline] peaked at T4 hrs on the 50mg/kg dosage. Target outcome, modeled after human study results, of a doubling of [l-arginine] and a 25-30% increase in [l-citrulline] from BL were not reached. After the 100mg/kg dosage, plasma [l-arginine] increased from a BL median of 160.1 μM (range, 100.2-231.4 μM) to a peak of 417.4 μM (206.5-807.3 μM) at T4 hrs, and plasma [l-citrulline] increased from a BL median of 87.8 μM (59.1-117.1 μM) to peak of 102.2 μM (47.4-192.6 μM) at T4 hrs. Ten of eleven dogs showed a doubling of plasma [l-arginine] and 4/11 dogs achieved 25-30% or greater increases in plasma [l-citrulline]. No adverse effects on heart rate or blood pressure were noted. - Oral l-arginine dosage of 100mg/kg q8h doubles plasma [l-arginine] in healthy dogs, but conversion to l-citrulline is quite variable. Further evaluation of this dosage regimen in dogs with pulmonary hypertension is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  17. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-α glycyrrhetinic acid

    PubMed Central

    Taylor, Hannah J; Chaytor, Andrew T; Evans, W Howard; Griffith, Tudor M

    1998-01-01

    The gap junction inhibitor 18-α-glycyrrhetinic acid (α-GA, 100 μM) attenuated endothelium-dependent relaxations to acetylcholine and cyclopiazonic acid by ∼20% in rings of pre-constricted rabbit iliac artery. The nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 300 μM) inhibited relaxations to both agents by ∼65% and these were further attenuated by α-GA to <10% of control. In endothelium-denuded preparations, relaxations to sodium nitroprusside were not affected by α-GA. Heterocellular gap junctional communication may therefore account for nitric oxide-independent relaxations evoked both by receptor-dependent and -independent mechanisms in rabbit iliac artery. PMID:9776336

  18. Magnolol inhibits colonic motility through down-regulation of voltage-sensitive L-type Ca2+ channels of colonic smooth muscle cells in rats.

    PubMed

    Zhang, Man; Zang, Kai-Hong; Luo, Jia-Lie; Leung, Fung-Ping; Huang, Yu; Lin, Cheng-Yuan; Yang, Zhi-Jun; Lu, Ai-Ping; Tang, Xu-Dong; Xu, Hong-Xi; Sung, Joseph Jao-yiu; Bian, Zhao-Xiang

    2013-11-15

    This study aimed to investigate the effect of magnolol (5,5'-diallyl-2,2'-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca(2+) currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3-100 μM). In the presence of Bay K8644 (100 nM), magnolol (10-100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-L-arginine methyl ester (L-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3-100 μM) inhibited the L-type Ca(2+) currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca(2+) channel activity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. KSHV encoded ORF59 modulates histone arginine methylation of the viral genome to promote viral reactivation

    PubMed Central

    McDowell-Sargent, Maria; Uppal, Timsy; Purushothaman, Pravinkumar

    2017-01-01

    Kaposi’s sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into ‘open’ chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone

  20. KSHV encoded ORF59 modulates histone arginine methylation of the viral genome to promote viral reactivation.

    PubMed

    Strahan, Roxanne C; McDowell-Sargent, Maria; Uppal, Timsy; Purushothaman, Pravinkumar; Verma, Subhash C

    2017-07-01

    Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone

  1. Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: Involvement of L-arginine/nitric oxide pathway.

    PubMed

    Bahremand, Arash; Ziai, Pouya; Khodadad, Tina Kabiri; Payandemehr, Borna; Rahimian, Reza; Ghasemi, Abbas; Ghasemi, Mehdi; Hedayat, Tina; Dehpour, Ahmad Reza

    2010-07-01

    After nearly 60years, lithium is still the mainstay in the treatment of mood disorders. In addition to its antimanic and antidepressant effects, lithium also has anticonvulsant properties. Similar to lithium, agmatine plays a protective role in the central nervous system against seizures and has been reported to enhance the effect of different antiepileptic agents. Moreover, both agmatine and lithium have modulatory effects on the L-arginine/nitric oxide pathway. This study was designed to investigate: (1) whether agmatine and lithium exert a synergistic effect against clonic seizures induced by pentylenetetrazole and (2) whether or not this synergistic effect is mediated through inhibition of the L-arginine/nitric oxide pathway. In our study, acute administration of a single potent dose of lithium chloride (30mg/kg ip) increased seizure threshold, whereas pretreatment with a low and independently noneffective dose of agmatine (3mg/kg) potentiated a subeffective dose of lithium (10mg/kg). N(G)-L-arginine methyl ester (L-NAME, nonspecific nitric oxide synthase inhibitor) at 1 and 5mg/kg and 7-nitroindazole (7-NI, preferential neuronal nitric oxide synthase inhibitor) at 15 and 30mg/kg augmented the anticonvulsant effect of the noneffective combination of lithium (10mg/kg ip) and agmatine (1mg/kg), whereas several doses (20 and 40mg/kg) of aminoguanidine (inducible nitric oxide synthase inhibitor) failed to alter the seizure threshold of the same combination. Furthermore, pretreatment with independently noneffective doses (30 and 60mg/kg) of L-arginine (substrate for nitric oxide synthase) inhibited the potentiating effect of agmatine (3mg/kg) on lithium (10mg/kg). Our findings demonstrate that agmatine and lithium chloride have synergistic anticonvulsant properties that may be mediated through the L-arginine/nitric oxide pathway. In addition, the role of constitutive nitric oxide synthase versus inducible nitric oxide synthase is prominent in this phenomenon

  2. Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 on Gastrointestinal, Liver, and Brain Lesions, Failed Anastomosis, and Intestinal Adaptation Deterioration in 24 Hour-Short-Bowel Rats.

    PubMed

    Lojo, Nermin; Rasic, Zarko; Zenko Sever, Anita; Kolenc, Danijela; Vukusic, Darko; Drmic, Domagoj; Zoricic, Ivan; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag

    2016-01-01

    Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and

  3. Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 on Gastrointestinal, Liver, and Brain Lesions, Failed Anastomosis, and Intestinal Adaptation Deterioration in 24 Hour-Short-Bowel Rats

    PubMed Central

    Lojo, Nermin; Rasic, Zarko; Zenko Sever, Anita; Kolenc, Danijela; Vukusic, Darko; Drmic, Domagoj; Zoricic, Ivan; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag

    2016-01-01

    Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and

  4. Anaerobic biodegradation of methyl esters by Acetobacterium woodii and Eubacterium limosum

    USGS Publications Warehouse

    Liu, Shi; Suflita, Joseph M.

    1994-01-01

    The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.

  5. Temperature-enhanced alumina HPLC method for the analysis of wax esters, sterol esters, and methyl esters.

    PubMed

    Moreau, Robert A; Kohout, Karen; Singh, Vijay

    2002-12-01

    Previous attempts at separating nonpolar lipid esters (including wax esters, sterol esters, and methyl esters) have achieved only limited success. Among the several normal-phase methods tested, a single recent report of a method employing an alumina column at 30 degrees C with a binary gradient system was the most promising. In the current study, modification of the alumina method by increasing the column temperature to 75 degrees C improved the separation of standards of wax esters and sterol esters. Elevated column temperature also enhanced the separation of FAME with differing degrees of unsaturation. Evidence was also presented to indicate that the method similarly separated phytosterol esters, based on their levels of unsaturation. With the increased interest in phytosterol- and phytostanol-ester enriched functional foods, this method should provide a technique to characterize and compare these products.

  6. Inhibition of the L-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine in rats in the forced swimming test.

    PubMed

    Zhang, Guang-Fen; Wang, Nan; Shi, Jin-Yun; Xu, Shi-Xia; Li, Xiao-Min; Ji, Mu-Huo; Zuo, Zhi-Yi; Zhou, Zhi-Qiang; Yang, Jian-Jun

    2013-09-01

    Converging evidence shows that the acute administration of a sub-anaesthetic dose ketamine produces fast-acting and robust antidepressant properties in patients suffering from major depressive disorder. However, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the role of the L-arginine-nitric oxide pathway in the antidepressant effects of ketamine in rats performing the forced swimming test (FST). Ketamine (10 mg/kg) significantly decreased immobility times in the FST and the activities of total nitric oxide synthases (T-NOS), inducible NOS (iNOS), and endothelial NOS (eNOS) in the rat hippocampus. Interestingly, the plasma activities of T-NOS, iNOS, and eNOS increased after administration of ketamine. Furthermore, the activities of neuronal NOS (nNOS) did not change significantly in either the hippocampus or plasma after ketamine administration. The antidepressant effects of ketamine were prevented by pre-treatment with l-arginine (750 mg/kg). Pre-treatment with the NOS inhibitor L-NG-nitroarginine methyl ester at a sub-antidepressant dose of 50 mg/kg and ketamine at a sub-antidepressant dose of 3 mg/kg reduced immobility time in the FST compared to treatment with either drug alone. None of the drugs affected crossing and rearing scores in the open field test. These results suggest that the L-arginine-nitric oxide pathway is involved in the antidepressant effects of ketamine observed in rats in the FST and this involvement is characterised by the inhibition of brain T-NOS, iNOS, and eNOS activities. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Effects of short term and long term Extremely Low Frequency Magnetic Field on depressive disorder in mice: Involvement of nitric oxide pathway.

    PubMed

    Madjid Ansari, Alireza; Farzampour, Shahrokh; Sadr, Ali; Shekarchi, Babak; Majidzadeh-A, Keivan

    2016-02-01

    Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50 Hz, single 2h and 2 weeks 2h a day). Locomotor behavior was assessed by using open-field test (OFT) followed by FST to evaluate the immobility time. Accordingly, NΩ-nitro-l-arginine methyl ester 30 mg/kg was used to exert anti-depressant like effect. According to the results, short term exposure did not alter the immobility time, whereas long term exposure significantly reduces immobility time (p<0.01). However, it was revealed that the locomotion did not differ among all experimental groups. Short term exposure reversed the anti-depressant like effect resulting from 30 mg/kg of NΩ-nitro-l-arginine methyl ester (p<0.01). It has been concluded that long term exposure could alter the depressive disorder in mice, whereas short term exposure has no significant effect. Also, reversing the anti-depressant activity of L-NAME indicates a probable increase in the brain nitric oxide. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Coronary responses to endothelin-1 and acetylcholine during partial coronary ischaemia and reperfusion in anaesthetized goats.

    PubMed

    Martínez, Maria Angeles; Fernández, Nuria; Monge, Luis; García-Villalón, Angel Luis; Sanz, Elena; Diéguez, Godofredo

    2002-08-01

    To examine coronary reactivity to acetylcholine and endothelin-1 (ET-1) during partial ischaemia and reperfusion, flow in the left circumflex coronary artery was measured electromagnetically, and coronary partial ischaemia was induced by stenosis of this artery in anaesthetized goats. In eight animals not treated with N(G)-nitro-l-arginine methyl ester (l-NAME), coronary stenosis reduced coronary flow by 45%, mean arterial pressure by 16% and coronary vascular conductance by 34%. During this ischaemia, coronary vasodilatation to acetylcholine (0.003-0.1 microg) and sodium nitroprusside (SNP; 1-10 microg) was markedly reduced, and coronary vasoconstriction to ET-1 (0.01-0.3 nmol) was attenuated. After 30 min of reperfusion, coronary flow, mean arterial pressure and coronary vascular conductance remained decreased, and the effects of acetylcholine, SNP and ET-1 were as in control animals. In six goats treated with N(G)-nitro-l-arginine methyl ester, coronary stenosis reduced coronary flow by 26% and coronary vascular conductance by 24%, but did not affect mean arterial pressure. During this ischaemia, coronary vasodilatation to acetylcholine and SNP was also markedly reduced, but vasoconstriction to ET-1 was unaffected. After 30 min of reperfusion, coronary flow and coronary vascular conductance remained decreased and mean arterial pressure was normal; in addition, the effects of acetylcholine were lower, those of SNP were similar and those of ET-1 were higher than in control animals. Therefore partial ischaemia reduces the coronary vasodilator reserve and blunts coronary vasoconstriction to ET-1, and reperfusion does not alter the endothelium-dependent and -independent coronary vasodilatation or vasoconstriction to ET-1.

  9. L-Leucyl-L-Leucine Methyl Ester Treatment of Canine Marrow and Peripheral Blood Cells: Inhibition of Proliferative Responses with Maintenance of the Capacity for Autologous Marrow Engraftment

    DTIC Science & Technology

    1988-11-01

    Copyright 0 198 by The Winiams & Wilkins Co. Printed in U.S.A. L-LEUCYL-L-LEUCINE METHYL ESTER TREATMENT OF CANINE MARROW AND PERIPHERAL BLOOD CELLS...Reearch CeThs eatetle, Washington 9%104 tInaiyuba on o canine UMrrowt and peripher hi Recently, Thiele and Lipsky have described adipeptide nionon clear...that marrow iincubation with Leu-Leu. Leu-Leu-OMe is a feasible method to deplete canine marrows of aloreactive and cytotoxic T cells prior to OMe

  10. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...

  11. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  12. Metabolic engineering of Corynebacterium glutamicum for L-arginine production.

    PubMed

    Park, Seok Hyun; Kim, Hyun Uk; Kim, Tae Yong; Park, Jun Seok; Kim, Suok-Su; Lee, Sang Yup

    2014-08-05

    L-arginine is an important amino acid for diverse industrial and health product applications. Here we report the development of metabolically engineered Corynebacterium glutamicum ATCC 21831 for the production of L-arginine. Random mutagenesis is first performed to increase the tolerance of C. glutamicum to L-arginine analogues, followed by systems metabolic engineering for further strain improvement, involving removal of regulatory repressors of arginine operon, optimization of NADPH level, disruption of L-glutamate exporter to increase L-arginine precursor and flux optimization of rate-limiting L-arginine biosynthetic reactions. Fed-batch fermentation of the final strain in 5 l and large-scale 1,500 l bioreactors allows production of 92.5 and 81.2 g l(-1) of L-arginine with the yields of 0.40 and 0.35 g L-arginine per gram carbon source (glucose plus sucrose), respectively. The systems metabolic engineering strategy described here will be useful for engineering Corynebacteria strains for the industrial production of L-arginine and related products.

  13. Effects of adenosine monophosphate used in combination with L-arginine on female rabbit corpus cavernosum tissue.

    PubMed

    Stücker, Olivier; Pons, Catherine; Neuzillet, Yann; Laemmel, Elisabeth; Lebret, Thierry

    2014-04-01

    Sexual dysfunction is significantly more prevalent in women than in men. However, to date, no satisfactory oral treatment is yet available. The aim of this study was to study the effects of adenosine monophosphate (AMP) alone or its combination with L-Arginine on the relaxation of the female rabbit corpus cavernosum. Cylinder strips from the corporal body of the excised clitoris from female New Zealand White rabbits were incubated in Krebs solution. Phenylephrine (PE) precontraction was achieved, then the drugs AMP and L-Arginine were administered either independently or in sequential combinations to the strips under precontracted conditions. Contraction percentages were compared. When precontraction was induced by PE 8 μM or 20 μM, AMP was shown to induce relaxation up to 25% in a dose-dependent manner. The relaxation induced by L-Arginine reached 15.6% at 5.10(-4) M vs. 16.5% at AMP 5.10(-4) M under the same experimental conditions. Nitric oxide (NO) synthase inhibitor N-nitro-L-arginine strongly inhibited the relaxing effect provoked by AMP, suggesting that the action mechanism of this nucleotide is related to the NO pathway. The combination of L-Arginine at 5.10(-4) M with AMP at different doses ranging from 5.10(-4) M to 10(-3) M significantly amplified the relaxing response up to 40.7% and 58%, respectively. Our results demonstrate that AMP induces a relaxing effect on the female rabbit corpora. They also show that L-Arginine and AMP can potentiate each other and that a synergistic effect can be obtained by their combined use. Because only slight differences exist between both sexes in response to NO donors and/or nucleotide purines or in their use together, it is very likely that close biochemical mechanisms, although not to the same degree and not quite similar, are involved in the engorgement of the penis and the clitoris of New Zealand White rabbits. Stücker O, Pons C, Neuzillet Y, Laemmel E, and Lebret T. Original research-sexual medicine: Effects of

  14. Studies on the in vitro and in vivo hydrolysis and intramolecular aminolysis of L-aspartyl-l-phenylalanine methyl ester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouvette, R.E.

    The disposition and metabolism of L-aspartyl-L-(/sup 14/C-phenyl) alanine methyl ester (/sup 14/C-APM) was studied in male Sprague-Dawley rats after a single intragastric injection. Plasma levels of /sup 14/C-activity increased slowly within the first four hours after a 5 ..mu..Ci dose. Within 2 hours after injection 90% of the /sup 14/C-activity observed in the plasma was incorporated into precipitated proteins. HPLC analysis of the deproteinated plasma showed the /sup 14/C-activity present to be in the form of phenylalanine Disposition studies of /sup 14/C-APM 4 hours after a single intragastric dose showed the highest organs of /sup 14/C-accumulation to be the blood,more » liver, stomach, and small intestine. The molecular form of the /sup 14/C-activity in the tissues was not determined.« less

  15. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes

    PubMed Central

    Yu, Hong-Ren; Tsai, Ching-Chang; Chang, Ling-Sai; Huang, Hsin-Chun; Cheng, Hsin-Hsin; Wang, Jiu-Yao; Sheen, Jiunn-Ming; Kuo, Ho-Chang; Hsieh, Kai-Sheng; Huang, Ying-Hsien; Yang, Kuender D.; Hsu, Te-Yao

    2017-01-01

    A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL)-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs) function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs) produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs) by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency. PMID:28487700

  16. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  17. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons.

    PubMed

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla

    2017-11-01

    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evidence against nitrergic neuromodulation in the rat vas deferens.

    PubMed

    Ventura, S; Burnstock, G

    1997-09-03

    Electrical field stimulation (60 V, 1 ms, single pulses or 20 s trains of 1-10 Hz) of the nerve terminals within the rat vas deferens produced biphasic contractions in preparations oriented to measure either longitudinal or circular muscle contractions. In confirmation of earlier reports, these contractions were blocked by tetrodotoxin (1 microM). The initial fast purinergic contraction was dominant in prostatic halves of the vas deferens while the second slower noradrenergic contraction was greater in epididymal halves. Although previous studies have shown nitric oxide synthase immuno-positive nerves in the vas deferens, electrical field stimulation-induced contractions were unaffected by L-arginine, sodium nitroprusside, N-nitro-L-arginine methyl ester (L-NAME) or superoxide dismutase in concentrations up to I mM. In concentrations above 1 mM, L-NAME reduced the size of the field stimulation-induced contractions but this effect could not be reversed by either L-arginine or sodium nitroprusside. Furthermore, L-arginine, sodium nitroprusside and L-NAME did not affect the contractions induced by exogenous application of noradrenaline (10 microM), ATP (1 mM) or BaCl2 (1-10 mM). We conclude that nitric oxide does not act as a neuromodulator in isolated preparations of rat vas deferens.

  19. Efficient and scalable synthesis of bardoxolone methyl (cddo-methyl ester).

    PubMed

    Fu, Liangfeng; Gribble, Gordon W

    2013-04-05

    Bardoxolone methyl (2-cyano-3,12-dioxooleane-1,9(11)-dien-28-oic acid methyl ester; CDDO-Me) (1), a synthetic oleanane triterpenoid with highly potent anti-inflammatory activity (levels below 1 nM), has completed a successful phase I clinical trial for the treatment of cancer and a successful phase II trial for the treatment of chronic kidney disease in type 2 diabetes patients. Our synthesis of bardoxolone methyl (1) proceeds in ∼50% overall yield in five steps from oleanolic acid (2), requires only one to two chromatographic purifications, and can provide gram quantities of 1.

  20. Efficiency of cardioplegic solutions containing L-arginine and L-aspartic acid.

    PubMed

    Pisarenko, O I; Shul'zhenko, V S; Studneva, I M

    2006-04-01

    In experiments on rats we studied the effects of cardioplegic solutions with L-aspartic acid or L-arginine on functional recovery and metabolism of isolated working heart after 40-min normothermal global ischemia and 30-min reperfusion. After reperfusion of the hearts preventively protected with cardioplegic solution containing L-aspartic acid or L-arginine, coronary flow decreased in comparison with the initial values. As a component of cardioplegic solution, L-arginine was less efficient in recovery of contractility and cardiac output of the hearts in comparison with L-aspartic acid. In hearts protected with L-aspartic acid, the postischemic levels of ATP and phosphocreatine were significantly higher, and the level of lactate was significantly lower than in hearts protected with L-arginine. In comparison with L-arginine, L-aspartic acid is a more efficient component of cardioplegic solution in protection of the heart from metabolic and functional damages caused by global ischemia and reperfusion.

  1. Pulmonary Hypertension in Lambs Transfused with Stored Blood is Prevented by Breathing Nitric Oxide

    PubMed Central

    Baron, David M.; Yu, Binglan; Lei, Chong; Bagchi, Aranya; Beloiartsev, Arkadi; Stowell, Christopher P.; Steinbicker, Andrea U.; Malhotra, Rajeev; Bloch, Kenneth D.; Zapol, Warren M.

    2012-01-01

    Background During extended storage, erythrocytes undergo functional changes. These changes reduce the viability of erythrocytes leading to release of oxyhemoglobin, a potent scavenger of nitric oxide. We hypothesized that transfusion of ovine packed erythrocytes (PRBC) stored for prolonged periods would induce pulmonary vasoconstriction in lambs, and that reduced vascular nitric oxide concentrations would increase this vasoconstrictor effect. Methods We developed a model of autologous stored blood transfusion in lambs (n=36). Leukoreduced blood was stored for either 2 days (fresh PRBC) or 40 days (stored PRBC). Fresh or stored PRBC were transfused into donors instrumented for awake hemodynamic measurements. Hemodynamic effects of PRBC transfusion were also studied after infusion of NG-nitro-L-arginine methyl-ester (25 mg/kg) or during inhalation of nitric oxide (80 ppm). Results Cell-free hemoglobin levels were higher in the supernatant of stored PRBC than in supernatant of fresh PRBC (Mean±SD, 148±20 versus 41±13 mg/dl, respectively, P<0.001). Pulmonary artery pressure during transfusion of stored PRBC transiently increased from 13±1 to 18±1 mmHg (P<0.001) and was associated with increased plasma hemoglobin concentrations. NG-nitro-L-arginine methyl-ester potentiated the increase in pulmonary arterial pressure induced by transfusing stored PRBC, whereas inhalation of nitric oxide prevented the vasoconstrictor response. Conclusions Our results suggest that patients with reduced vascular nitric oxide levels due to endothelial dysfunction may be more susceptible to adverse effects of transfusing blood stored for prolonged periods. These patients might benefit from transfusion of fresh PRBC, when available, or inhaled nitric oxide supplementation to prevent the pulmonary hypertension associated with transfusion of stored PRBC. PMID:22293717

  2. Effect of nitro-L-arginine on electrical and mechanical responses to acetylcholine in the superior mesenteric artery from stroke-prone hypertensive rat

    PubMed Central

    Ghisdal, Philippe; Godfraind, Théophile; Morel, Nicole

    1999-01-01

    High salt diet is known to aggravate the vascular pathology in spontaneously hypertensive stroke-prone rats (SHR-SP). The aim of the present study was to assess the involvement of endothelial dysfunction in this effect. Contractile tension and membrane potential were simultaneously recorded in superior mesenteric artery rings of untreated and NaCl-loaded (1% NaCl in the drinking water) SHR-SP and normotensive Wistar Kyoto rats (WKY).In unstimulated artery, hyperpolarization evoked by acetylcholine was not different in WKY and in NaCl-loaded WKY; it was reduced in SHR-SP and further reduced in NaCl-loaded SHR-SP. Hyperpolarization was unaffected by Nω-nitro-L-arginine (L-NA) but was abolished in high-KCl solution.In noradrenaline-stimulated artery, ACh-evoked hyperpolarization and relaxation were not different in WKY and in SHR-SP. NaCl-treatment did not affect the responses to ACh in WKY but decreased maximum relaxation in SHR-SP from 93±2% to 72±7% of the contraction. In WKY, in NaCl-loaded WKY and in SHR-SP, L-NA similarly shifted the concentration-relaxation curve to ACh to the right and depressed its maximum but L-NA did not affect the hyperpolarization to ACh. In NaCl-loaded SHR-SP, L-NA blunted the effects of ACh on membrane potential and on contraction.The NO donor SNAP abolished the depolarization and the contraction evoked by noradrenaline with the same potency in WKY and in untreated SHR-SP but was more potent in NaCl-loaded SHR-SP.In KCl-contracted arteries the relaxations to ACh were not different in WKY and SHR-SP but NaCl-loaded SHR-SP were more sensitive to ACh.The results showed that NaCl-rich diet markedly reduced the L-NA-resistant responses to ACh and increased the sensitivity to NO in SHR-SP. PMID:10602331

  3. Convenient synthesis of 6-nor-9,10-dihydrolysergic acid methyl ester.

    PubMed

    Crider, A M; Grubb, R; Bachmann, K A; Rawat, A K

    1981-12-01

    6-Nor-9,10-dihydrolysergic acid methyl ester (IV) was prepared by demethylation of 9,10-dihydrolysergic acid methyl ester (II) with 2,2,2-trichloroethyl chloroformate, followed by reduction of the intermediate carbamate (III) with zinc in acetic acid. The 6-ethyl-V and 6-n-propyl-VI derivatives were prepared by alkylation of IV with the appropriate halide. All of the ergoline derivatives were evaluated for stereotyped behavior in rats, with 6-nor-6-ethyl-9,10-dihydrolysergic acid methyl ester (V) being active but much less potent than apomorphine. Compound VI was evaluated for its effect on blood pressure; at a dose of 30 mg/kg ip, it significantly lowered, diastolic pressure in normotensive rats.

  4. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  5. Intricate Effects of α-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4.

    PubMed

    Fulton, Melody D; Zhang, Jing; He, Maomao; Ho, Meng-Chiao; Zheng, Y George

    2017-07-18

    Chemical modifications of the DNA and nucleosomal histones tightly control the gene transcription program in eukaryotic cells. The "histone code" hypothesis proposes that the frequency, combination, and location of post-translational modifications (PTMs) of the core histones compose a complex network of epigenetic regulation. Currently, there are at least 23 different types and >450 histone PTMs that have been discovered, and the PTMs of lysine and arginine residues account for a crucial part of the histone code. Although significant progress has been achieved in recent years, the molecular basis for the histone code is far from being fully understood. In this study, we investigated how naturally occurring N-terminal acetylation and PTMs of histone H4 lysine-5 (H4K5) affect arginine-3 methylation catalyzed by both type I and type II PRMTs at the biochemical level. Our studies found that acylations of H4K5 resulted in decreased levels of arginine methylation by PRMT1, PRMT3, and PRMT8. In contrast, PRMT5 exhibits an increased rate of arginine methylation upon H4K5 acetylation, propionylation, and crotonylation, but not upon H4K5 methylation, butyrylation, or 2-hydroxyisobutyrylation. Methylation of H4K5 did not affect arginine methylation by PRMT1 or PRMT5. There was a small increase in the rate of arginine methylation by PRMT8. Strikingly, a marked increase in the rate of arginine methylation was observed for PRMT3. Finally, N-terminal acetylation reduced the rate of arginine methylation by PRMT3 but had little influence on PRMT1, -5, and -8 activity. These results together highlight the underlying mechanistic differences in substrate recognition among different PRMTs and pave the way for the elucidation of the complex interplay of histone modifications.

  6. Inhibition of nitric oxide synthase abrogates lipopolysaccharides-induced up-regulation of L-arginine uptake in rat alveolar macrophages

    PubMed Central

    Hammermann, Rainer; Stichnote, Christina; Closs, Ellen Ildicho; Nawrath, Hermann; Racké, Kurt

    2001-01-01

    It was tested whether the inducible nitric oxide synthase (iNOS) pathway might be involved in lipopolysaccharides-(LPS)-induced up-regulation of L-arginine transport in rat alveolar macrophages (AMΦ). AMΦ were cultured in absence or presence of LPS. Nitrite accumulation was determined in culture media and cells were used to study [3H]-L-arginine uptake or to isolate RNA for RT – PCR. Culture in presence of LPS (1 μg ml−1, 20 h) caused 11 fold increase of nitrite accumulation and 2.5 fold increase of [3H]-L-arginine uptake. The inducible NO synthase (iNOS) inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT) present alone during culture had only marginal effects on [3H]-L-arginine uptake. However, AMT present during culture additionally to LPS, suppressed LPS-induced nitrite accumulation and LPS-stimulated [3H]-L-arginine uptake in the same concentration-dependent manner. AMT present only for the last 30 min of the culture period had similar effects on [3H]-L-arginine uptake. AMT present only during the uptake period also inhibited LPS-stimulated [3H]-L-arginine uptake, but with lower potency. The inhibitory effect of AMT could not be opposed by the NO releasing compound DETA NONOate. LPS caused an up-regulation of the mRNA for the cationic amino acid transporter CAT-2B, and this effect was not affected by AMT. AMT (100 μM) did not affect L-arginine transport studied by electrophysiological techniques in Xenopus laevis oocytes expressing either the human cationic amino acid transporter hCAT-1 or hCAT-2B. In conclusion, iNOS inhibition in rat AMΦ abolished LPS-activated L-arginine uptake. This effect appears to be caused by reduced flow of L-arginine through the iNOS pathway. PMID:11375254

  7. Lysine Methylation of Nuclear Co-repressor Receptor Interacting Protein 140

    PubMed Central

    Huq, MD Mostaqul; Ha, Sung Gil; Barcelona, Helene; Wei, Li-Na

    2009-01-01

    Receptor interacting protein 140 (RIP140) undergoes extensive posttranslational modifications (PTMs), including phosphorylation, acetylation, arginine methylation, and pyridoxylation. PTMs affect its sub-cellular distribution, protein-protein interaction, and biological activity in adipocyte differentiation. Arginine methylation on Arg240, Arg650, and Arg948 suppresses the repressive activity of RIP140. Here we find that endogenous RIP140 in differentiated 3T3-L1 cells is also modified by lysine methylation. Three lysine residues, Lys591, Lys653, and Lys757 are mapped as potential methylation sites by mass spectrometry. Site-directed mutagenesis study shows that lysine methylation enhances its gene repressive activity. Mutation of lysine methylation sites enhances arginine methylation, while mutation on arginine methylation sites has little effect on its lysine methylation, suggesting a relationship between lysine methylation and arginine methylation. Kinetic analysis of PTMs of endogenous RIP140 in differentiated 3T3-L1 cells demonstrates sequential modifications on RIP140, initiated from constitutive lysine methylation, followed by increased arginine methylation later in differentiation. This study reveals a potential hierarchy of modifications, at least for lysine and arginine methylation, which bi-directionally regulate the functionality of a non-histone protein. PMID:19216533

  8. A relative L-arginine deficiency contributes to endothelial dysfunction across the stages of the menopausal transition.

    PubMed

    Klawitter, Jelena; Hildreth, Kerry L; Christians, Uwe; Kohrt, Wendy M; Moreau, Kerrie L

    2017-09-01

    Vascular endothelial function declines across the menopause transition in women. We tested the hypothesis that reduced availability of the endothelial nitric oxide synthase [eNOS] substrate L-arginine is an underlying mechanism to vascular endothelial dysfunction across menopause stages. Endothelial function (brachial artery flow-mediated dilation [FMD]) and plasma markers of L-arginine metabolism (citrulline, N G -mono-methyl-ւ-arginine [L-NMMA] asymmetric dimethylarginine [ADMA] and N G -N 'G -dimethyl-l-arginine [SDMA]), were measured in 129 women: 36 premenopausal (33 ± 7 years), 16 early- (49 ± 3 years) or 21 late- (50 ± 4 years) perimenopausal, and 21 early- (55 ± 3 years) or 35 late- (61 ± 4 years) postmenopausal. FMD was progressively reduced across menopause stages ( P  < 0.001). Menopause stage was associated with L-arginine concentrations ( P  = 0.012), with higher levels in early postmenopausal compared to early and late perimenopausal women ( P  < 0.05). The methylarginine and eNOS inhibitor L-NMMA was higher in early and late postmenopausal women compared to premenopausal and early and late perimenopausal women (all P  < 0.001), and was inversely correlated with FMD ( r  = -0.30, P  = 0.001). The L-arginine/L-NMMA ratio, a potential biomarker of relative L-arginine levels, was lower in postmenopausal compared to either premenopausal or perimenopausal women (both P  < 0.001), and was positively correlated with FMD ( r  = 0.33, P  < 0.001). There were no differences in plasma citrulline, ADMA or SDMA across groups. These data suggest that a relative L-arginine deficiency may be a mechanism underlying the decline in endothelial function with the menopause transition in women. The relative L-arginine deficiency may be related to elevated levels of the methylarginine L-NMMA, which would compete with L-arginine for eNOS and for intracellular transport, reducing NO biosynthesis. © 2017 The Authors. Physiological

  9. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins.

    PubMed

    Deng, Wankun; Wang, Yongbo; Ma, Lili; Zhang, Ying; Ullah, Shahid; Xue, Yu

    2017-07-01

    Protein methylation is an essential posttranslational modification (PTM) mostly occurs at lysine and arginine residues, and regulates a variety of cellular processes. Owing to the rapid progresses in the large-scale identification of methylation sites, the available data set was dramatically expanded, and more attention has been paid on the identification of specific methylation types of modification residues. Here, we briefly summarized the current progresses in computational prediction of methylation sites, which provided an accurate, rapid and efficient approach in contrast with labor-intensive experiments. We collected 5421 methyllysines and methylarginines in 2592 proteins from the literature, and classified most of the sites into different types. Data analyses demonstrated that different types of methylated proteins were preferentially involved in different biological processes and pathways, whereas a unique sequence preference was observed for each type of methylation sites. Thus, we developed a predictor of GPS-MSP, which can predict mono-, di- and tri-methylation types for specific lysines, and mono-, symmetric di- and asymmetrical di-methylation types for specific arginines. We critically evaluated the performance of GPS-MSP, and compared it with other existing tools. The satisfying results exhibited that the classification of methylation sites into different types for training can considerably improve the prediction accuracy. Taken together, we anticipate that our study provides a new lead for future computational analysis of protein methylation, and the prediction of methylation types of covalently modified lysine and arginine residues can generate more useful information for further experimental manipulation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression

    PubMed Central

    Kim, Hyun-Ji; Jeong, Myong-Ho; Kim, Kyung-Ran; Jung, Chang-Yun; Lee, Seul-Yi; Kim, Hanna; Koh, Jewoo; Vuong, Tuan Anh; Jung, Seungmoon; Yang, Hyunwoo; Park, Su-Kyung; Choi, Dahee; Kim, Sung Hun; Kang, KyeongJin; Sohn, Jong-Woo; Park, Joo Min; Jeon, Daejong; Koo, Seung-Hoi; Ho, Won-Kyung; Kang, Jong-Sun; Kim, Seong-Tae; Cho, Hana

    2016-01-01

    KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca2+/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures. DOI: http://dx.doi.org/10.7554/eLife.17159.001 PMID:27466704

  11. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    PubMed

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property.

    PubMed

    Davoodbasha, MubarakAli; Edachery, Baldev; Nooruddin, Thajuddin; Lee, Sang-Yul; Kim, Jung-Wan

    2018-02-01

    Fatty acid methyl esters (FAME) derived from lipids of microalgae is known to have wide bio-functional materials including antimicrobials. FAME is an ideal super-curator and superior anti-pathogenic. The present study evaluated the efficiency of FAME extracted from microalgae Scenedesmus intermedius as an antimicrobial agent against Gram positive (Staphylococcus aureus, Streptococcus mutans, and Bacillus cereus) Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and Fungi (Aspergillus parasiticus and Candida albicans). The minimal inhibitory concentration (MIC) for the gram negative bacteria was determined as 12-24 μg mL -1 , whereas MIC for gram positive bacteria was 24-48 μg mL -1 . MIC for the fungi was as high as 60-192 μg mL -1 . The FAME profiles determined by gas chromatography showed 18 methyl esters. Among them, pharmacologically active FAME such as palmitic acid methyl ester (C16:0) was detected at high percentage (23.08%), which accounted for the bioactivity. FAME obtained in this study exhibited a strong antimicrobial activity at the lowest MIC than those of recent reports. This result clearly indicated that FAME of S. intermedius has a strong antimicrobial and antioxidant property and that could be used as an effective resource against microbial diseases. Copyright © 2017. Published by Elsevier Ltd.

  13. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuelmore » supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.« less

  14. The effects of nitric oxide synthase inhibitors on the sedative effect of clonidine.

    PubMed

    Soares de Moura, R; Rios, A A; de Oliveira, L F; Resende, A C; de Lemos Neto, M; Santos, E J; Correia, M L; Tano, T

    2001-11-01

    The mechanism underlying the Niteroi, Rio de Janeiro sedative effect of clonidine, an alpha2-adrenoceptor agonist, remains uncertain. Because activation of alpha2-adrenoceptors induces release of nitric oxide (NO), we tested the hypothesis that the sedative effect of clonidine depends on NO-related mechanisms. The effect of 7-nitro indazole on the sleeping time induced by clonidine was studied in Wistar rats. In addition, we examined the effect of clonidine, alpha-methyldopa, and midazolam on the thiopental-induced sleeping time in rats pretreated with N(G)-nitro-L-arginine-methyl-ester (L-NAME). The sleeping time induced by clonidine was significantly decreased by 7-nitro indazole. Thiopental sleeping time was increased by clonidine, alpha-methyldopa, and midazolam. L-NAME reduced the prolongation effect of clonidine and alpha-methyldopa, but did not alter the effect of midazolam on the thiopental-induced sleeping time. The inhibitory effect of L-NAME on clonidine-dependent prolongation of thiopental-induced sleeping time was reversed by L-arginine. These results suggest that NO-dependent mechanisms are involved in the sedative effect of clonidine. In addition, this effect seems to be specific for the sedative action of alpha2-adrenoceptors agonists. Clonidine, an antihypertensive drug, is also a sedative. This sedative effect, although an adverse event in the treatment of hypertensive patients, can be helpful for sedation of surgical patients. The mechanism of this effect, however, is unknown. In this study, we show that the sedative effect of clonidine is mediated by nitric oxide, because it could be prevented by pretreatment with nitric oxide synthase inhibitors.

  15. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko

    2017-06-09

    Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH 3COOCH 3) and methyl butanoate (CH 3CH 2CH 2COOCH 3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures ofmore » 300 – 1600 K were explored. Decomposition of CH 3COOCH 3 commences at 1000 K and the initial products are (CH 2=C=O and CH 3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH 2=C=O and CH 3OH, CH 3, CH 2=O, H, CO, CO 2) appears. The thermal cracking of CH 3CH 2CH 2COOCH 3 begins at 800 K with the formation of (CH 3CH 2CH=C=O, CH 3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH 3CH 2CH=C=O, CH 3OH, CH 3, CH 2=O, CO, CO 2, CH 3CH=CH 2, CH 2CHCH 2, CH 2=C=CH 2, HCCCH 2, CH 2=C=C=O, CH 2=CH 2, HCΞCH, CH 2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH 2-COOCH 3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH 2 + CO 2 + CH 3) and (RCH 2 + CO + CH 2=O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH 2=C=O + CH 2=O. The thermochemistry of methyl acetate and its fragmentation products have been obtained via the Active Thermochemical Tables (ATcT) approach, resulting in

  16. CFD simulation of fatty acid methyl ester production in bubble column reactor

    NASA Astrophysics Data System (ADS)

    Salleh, N. S. Mohd; Nasir, N. F.

    2017-09-01

    Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.

  17. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio

    NASA Astrophysics Data System (ADS)

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2017-12-01

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  18. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio.

    PubMed

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2018-05-01

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O 2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  19. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio

    NASA Astrophysics Data System (ADS)

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2018-05-01

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  20. L-NAME, a nitric oxide synthase inhibitor, as a potential countermeasure to post-suspension hypotension in rats

    NASA Technical Reports Server (NTRS)

    Bayorh, M. A.; Socci, R. R.; Watts, S.; Wang, M.; Eatman, D.; Emmett, N.; Thierry-Palmer, M.

    2001-01-01

    A large number of astronauts returning from spaceflight experience orthostatic hypotension. This hypotension may be due to overproduction of vasodilatory mediators, such as nitric oxide (NO) and prostaglandins. To evaluate the role of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) as a countermeasure against the post-suspension reduction in mean arterial pressure (MAP), we assessed the cardiovascular responses and vascular reactivity to 7-day 30 degrees tail-suspension and a subsequent 6 hr post-suspension period in conscious rats. After a pre-suspension reading, direct MAP and heart rate (HR) were measured daily and every 2 hrs post-suspension. The NO synthase inhibitor L-NAME (20 mg/kg, i.v.), or saline, were administered after the 7th day reading prior to release from suspension and at 2 and 4 hrs post-suspension. At 6 hrs post-suspension, vascular reactivity was assessed. While MAP did not change during the suspension period, it was reduced post-suspension. Heart rate was not significantly altered. L-NAME administration reversed the post-suspension reduction in MAP. In addition, the baroreflex sensitivity for heart rate was modified by L-NAME. Thus, the post-suspension reduction in MAP may be due to overproduction of NO and altered baroreflex activity.

  1. Loss of RUNX1/AML1 arginine-methylation impairs in peripheral T cell homeostasis

    PubMed Central

    Mizutani, Shinsuke; Yoshida, Tatsushi; Zhao, Xinyang; Nimer, Stephen D.; Taniwaki, Masafumi; Okuda, Tsukasa

    2016-01-01

    Summary RUNX1 (previously termed AML1) is a frequent target of human leukaemia-associated gene aberrations, and it encodes the DNA-binding subunit of the Core-Binding Factor transcription factor complex. RUNX1 expression is essential for the initiation of definitive haematopoiesis, for steady-state thrombopoiesis, and for normal lymphocytes development. Recent studies revealed that protein arginine methyltransferase 1 (PRMT1), which accounts for the majority of the type I PRMT activity in cells, methylates two arginine residues in RUNX1 (R206 and R210), and these modifications inhibit corepressor-binding to RUNX1 thereby enhancing its transcriptional activity. In order to elucidate the biological significance of these methylations, we established novel knock-in mouse lines with non-methylable, double arginine-to-lysine (RTAMR-to-KTAMK) mutations in RUNX1. Homozygous Runx1KTAMK/KTAMK mice are born alive and appear normal during adulthood. However, Runx1KTAMK/KTAMK mice showed a reduction in CD3+ T lymphoid cells and a decrease in CD4+ T cells in peripheral lymphoid organs, in comparison to their wild-type littermates, leading to a reduction in the CD4+ to CD8+ T-cell ratio. These findings suggest that arginine-methylation of RUNX1 in the RTAMR-motif is dispensable for the development of definitive haematopoiesis and for steady-state platelet production, however this modification affects the role of RUNX1 in the maintenance of the peripheral CD4+ T-cell population. PMID:26010396

  2. Pentadecapeptide BPC 157, in clinical trials as a therapy for inflammatory bowel disease (PL14736), is effective in the healing of colocutaneous fistulas in rats: role of the nitric oxide-system.

    PubMed

    Klicek, Robert; Sever, Marko; Radic, Bozo; Drmic, Domagoj; Kocman, Ivan; Zoricic, Ivan; Vuksic, Tihomir; Ivica, Mihovil; Barisic, Ivan; Ilic, Spomenko; Berkopic, Lidija; Vrcic, Hrvoje; Brcic, Luka; Blagaic, Alenka Boban; Coric, Marijana; Brcic, Iva; Rokotov, Dinko Stancic; Anic, Tomislav; Seiwerth, Sven; Sikiric, Predrag

    2008-09-01

    We focused on the therapeutic effect of the stable gastric pentadecapeptide BPC 157 and how its action is related to nitric oxide (NO) in persistent colocutaneous fistula in rats (at 5 cm from anus, colon defect of 5 mm, skin defect of 5 mm); this peptide has been shown to be safe in clinical trials for inflammatory bowel disease (PL14736) and safe for intestinal anstomosis therapy. BPC 157 (10 microg/kg, 10 ng/kg) was applied i) in drinking water until the animals were sacrificed at post-operative day 1, 3, 5, 7, 14, 21, and 28; or ii) once daily intraperitoneally (first application 30 min following surgery, last 24 h before sacrifice) alone or with N(G)-nitro-L-arginine methyl ester (L-NAME) (5 mg/kg), L-arginine (200 mg/kg), and their combinations. Sulphasalazine (50 mg/kg) and 6-alpha-methylprednisolone (1 mg/kg) were given once daily intraperitoneally. BPC 157 accelerated parenterally or perorally the healing of colonic and skin defect, leading to the suitable closure of the fistula, macro/microscopically, biomechanically, and functionally (larger water volume sustained without fistula leaking). L-NAME aggravated the healing failure of colocutaneous fistulas, skin, and colon wounds (L-NAME groups). L-Arginine was effective only with blunted NO generation (L-NAME + L-arginine groups) but not without (L-arginine groups). All of the BPC 157 beneficial effects remained unchanged with blunted NO-generation (L-NAME + BPC 157 groups) and with NO substrate (L-arginine + BPC 157 groups) as well as L-NAME and L-arginine co-administration (L-NAME + L-arginine + BPC 157 groups). Sulphasalazine was only moderately effective, and corticosteroid even had an aggravating effect.

  3. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  4. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  5. Propolis reduces oxidative stress in l-NAME-induced hypertension rats.

    PubMed

    Selamoglu Talas, Zeliha

    2014-03-01

    The inhibition in the synthesis or bioavailability of nitric oxide (NO) has an important role in progress of hypertension. The blocking of nitric oxide synthase activity may cause vasoconstriction with the formation of reactive oxygen species (ROS). Propolis is a resinous substance collected by honey bees from various plants. Propolis has biological and pharmacological properties. The aim of this study was to examine the effect of propolis on catalase (CAT) activity, malondialdehyde (MDA) and NO levels in the testis tissues of hypertensive rats by Nω-nitro-l-arginine methyl ester (l-NAME). Rats have received nitric oxide synthase inhibitor (l-NAME, 40 mg kg(-1) , intraperitoneally) for 15 days to produce hypertension and propolis (200 mg kg(-1) , by gavage) during the last 5 days. MDA level in l-NAME-treated group significantly increased compared with control group (P < 0.01). MDA level of l-NAME + propolis-treated rats significantly reduced (P < 0.01) compared with l-NAME-treated group. CAT activity and NO level significantly reduced (P < 0.01) in l-NAME group compared with control group. There were no statistically significant increases in the CAT activity and NO level of the l-NAME + propolis group compared with the l-NAME-treated group (P > 0.01). These results suggest that propolis changes CAT activity, NO and MDA levels in testis of l-NAME-treated animals, and so it may modulate the antioxidant system. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    USDA-ARS?s Scientific Manuscript database

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  7. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine.

    PubMed

    Steensrud, Tor; Li, Jing; Dai, Xiaojing; Manlhiot, Cedric; Kharbanda, Rajesh K; Tropak, Michael; Redington, Andrew

    2010-11-01

    We have previously shown that remote ischemic preconditioning (rIPC) by transient limb ischemia leads to the release of a circulating factor(s) that induces potent myocardial protection. Intra-arterial injection of adenosine into a limb also leads to cardioprotection, but the mechanism of its signal transduction is poorly understood. Eleven groups of rabbits received saline control or rIPC or adenosine administration with additional pretreatment with the nitric oxide (NO) synthase blocker N(G)-nitro-l-arginine methyl ester, the NO donor S-nitroso-N-acetylpenicillamine, its non-NO-donating derivative N-acetylpenicillamine, or femoral nerve section. Blood was then drawn from each animal, and the dialysate of the plasma was used to perfuse a naïve heart from an untreated donor. Infarct size was measured after 30 min of global ischemia and 120 min reperfusion. When compared with that of the control, mean infarct size was significantly smaller in groups treated with rIPC alone (P < 0.01) and intra-arterial adenosine (P < 0.01). Pretreatment with N(G)-nitro-l-arginine methyl ester or N-acetylpenicillamine did not affect the level of protection induced by rIPC (P = not significant, compared with rIPC alone) or intra-arterial adenosine (P = not significant, compared with intra-arterial adenosine alone), but prior femoral nerve transection or pretreatment with S-nitroso-N-acetylpenicillamine abolished the cardioprotective effect of intra-arterial adenosine and rIPC. Intra-arterial adenosine, like rIPC, releases a blood-borne cardioprotective factor(s) that is dependent on an intact femoral nerve and is inhibited by pretreatment with a NO donor. These results may be important when designing or assessing the results of clinical trials of adenosine or rIPC cardioprotection, where NO donors are used as part of therapy.

  9. L-arginine-induced vasodilation in healthy humans: pharmacokinetic–pharmacodynamic relationship

    PubMed Central

    Bode-Böger, Stefanie M; Böger, Rainer H; Galland, Andrea; Tsikas, Dimitrios; Frölich, Jürgen C

    1998-01-01

    Aims Administration of l-arginine by intravenous infusion or via oral absorption has been shown to induce peripheral vasodilation in humans, and to improve endothelium-dependent vasodilation. We investigated the pharmacokinetics and pharmacokinetic-pharmacodynamic relationship of l-arginine after a single intravenous infusion of 30 g or 6 g, or after a single oral application of 6 g, as compared with the respective placebo, in eight healthy male human subjects. Methods l-arginine levels were determined by h.p.l.c. The vasodilator effects of l-arginine were assessed non-invasively by blood pressure monitoring and impedance cardiography. Urinary nitrate and cyclic GMP excretion rates were measured as non-invasive indicators of endogenous NO production. Results Plasma l-arginine levels increased to (mean±s.e.mean) 6223±407 (range, 5100–7680) and 822±59 (527–955) μmol l−1 after intravenous infusion of 30 g and 6 g l-arginine, respectively, and to 310±152 (118–1219) μmol l−1 after oral ingestion of 6 g l-arginine. Oral bioavailability of l-arginine was 68±9 (51–87)%. Clearance was 544±24 (440–620), 894±164 (470–1190), and 1018±230 (710–2130) ml min−1, and elimination half-life was calculated as 41.6±2.3 (34–55), 59.6±9.1 (24–98), and 79.5±9.3 (50–121) min, respectively, for 30 g i.v., 6 g i.v., and 6 g p.o. of l-arginine. Blood pressure and total peripheral resistance were significantly decreased after intravenous infusion of 30 g l-arginine by 4.4±1.4% and 10.4±3.6%, respectively, but were not significantly changed after oral or intravenous administration of 6 g l-arginine. l-arginine (30 g) also significantly increased urinary nitrate and cyclic GMP excretion rates by 97±28 and 66±20%, respectively. After infusion of 6 g l-arginine, urinary nitrate excretion also significantly increased, (nitrate by 47±12% [P < 0.05], cyclic GMP by 67±47% [P = ns]), although to a lesser and more variable extent than after 30 g of l-arginine

  10. New bis(alkythio) fatty acid methyl esters

    USDA-ARS?s Scientific Manuscript database

    The addition reaction of dimethyl disulfide (DMDS) to mono-unsaturated fatty acid methyl esters is well-known for analytical purposes to determine the position of double bonds by mass spectrometry. In this work, the classical iodine-catalyzed reaction is expanded to other dialkyl disulfides (RSSR), ...

  11. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    PubMed Central

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-01-01

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS. PMID:26938552

  12. Anti-hypertensive effects of the methanol/methylene chloride stem bark extract of Mammea africana in l-NAME-induced hypertensive rats.

    PubMed

    Nguelefack-Mbuyo, P E; Nguelefack, T B; Dongmo, A B; Afkir, S; Azebaze, A G B; Dimo, T; Legssyer, A; Kamanyi, A; Ziyyat, A

    2008-05-22

    The methanol/methylene chloride (CH(3)OH/CH(2)Cl(2)) extract from the stem bark of Mammea africana was showed to possess vasodilating effect in the presence and the absence of N(omega)-nitro-l-arginine methyl ester (l-NAME). The present study was designed to evaluate the effects of the methanol/methylene chloride from the stem bark of Mammea africana. The extract (200 mg/(kg day)) was administered orally in rats treated concurrently with l-NAME (40 mg/(kg day)). l-Arginine (100 mg/(kg day)) and captopril (20 mg/(kg day))were used as positive controls. Bodyweight, systolic arterial blood pressure and heart rate were measured weekly throughout the experiment period (28 days). At the end of treatment, animals were killed and the cardiac mass index evaluated. The aorta was used to evaluate the endothelium-dependant relaxation to carbachol. The aorta contraction induced by noradrenalin was also examined and expressed as a percentage of that induced by KCl. The extract neither affected the body weight nor the heart rate. The extract as captopril completely prevented the development of arterial hypertension. Both the substances failed to restore the endothelium-dependent vascular relaxation and increased the vascular contraction to norepinephrine in relation to KCl contraction. They also significantly reduced the left ventricular hypertrophy induced by l-NAME. These findings are in agreement with the traditional use of Mammea africana in the treatment of arterial hypertension and indicate that it may have a beneficial effect in patients with NO deficiency but will be unable to improve their endothelium-dependent vasorelaxation.

  13. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l-arginine aimed to improve the drug solubility.

    PubMed

    Mennini, Natascia; Maestrelli, Francesca; Cirri, Marzia; Mura, Paola

    2016-09-10

    The influence of l-arginine on the complexing and solubilizing power of randomly-methylated-β-cyclodextrin (RameβCD) towards oxaprozin, a very poorly soluble anti-inflammatory drug, was examined. The interactions between the components were investigated both in solution, by phase-solubility analysis, and in the solid state, by differential scanning calorimetry, FTIR and X-ray powder diffractometry. The morphology of the solid products was examined by Scanning Electron Microscopy. Results of phase-solubility studies indicated that addition of arginine enhanced the RameβCD complexing and solubilizing power of about 3.0 and 4.5 times, respectively, in comparison with the binary complex (both at pH≈6.8). The effect of arginine was not simply additive, but synergistic, being the ternary system solubility higher than the sum of those of the respective drug-CD and drug-arginine binary systems. Solid equimolar ternary systems were prepared by physical mixing, co-grinding, coevaporation and kneading techniques, to explore the effect of the preparation method on the physicochemical properties of the final products. The ternary co-ground product exhibited a dramatic increase in both drug dissolution efficiency and percent dissolved at 60min, whose values (83.6 and 97.1, respectively) were about 3 times higher than the sum of those given by the respective drug-CD and drug-aminoacid binary systems. Therefore, the ternary co-ground system with arginine and RameβCD appears as a very valuable product for the development of new more effective delivery systems of oxaprozin, with improved safety and bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The role of inducible nitric oxide synthase in vascular hyporeactivity of endotoxin-treated and portal hypertensive rats.

    PubMed

    Heinemann, A; Stauber, R E

    1995-05-04

    The involvement of the inducible nitric oxide (NO) synthase in the vascular hyporeactivity in portal vein-ligated rats was assessed in isolated perfused mesenteric arterial beds. Aminoguanidine, a selective inhibitor of the inducible NO synthase, restored the pressor responses to methoxamine in arteries of endotoxin-treated rats, but was ineffective in hyporeactive portal vein-ligated vessels. NG-Nitro-L-arginine methyl ester enhanced the responsiveness both in portal vein-ligated and sham-operated rats, without changing the difference between the two groups. These results not only indicate that the inducible NO synthase is not involved in the hyporeactivity to methoxamine in mesenteric arteries of portal hypertensive rats, but also suggest a role for factors other than NO.

  15. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.

    PubMed

    Li, Ping-Chia; Shaw, Chen-Fu; Kuo, Tin-Fan; Chien, Chiang-Ting

    2005-04-18

    The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.

  16. Dietary supplementation of tiger nut alters biochemical parameters relevant to erectile function in l-NAME treated rats.

    PubMed

    Olabiyi, Ayodeji A; Carvalho, Fabiano B; Bottari, Nathieli B; Lopes, Thauan F; da Costa, Pauline; Stefanelo, Naiara; Morsch, Vera M; Akindahunsi, Afolabi A; Oboh, Ganiyu; Schetinger, Maria Rosa

    2018-07-01

    Tiger nut tubers have been reportedly used for the treatment of erectile dysfunction (ED) in folk medicine without scientific basis. Hence, this study evaluated the effect of tiger nut on erectile dysfunction by assessing biochemical parameters relevant to ED in male rats by nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) treatment. Rats were divided into five groups (n = 10) each: Control group; l-NAME plus basal diet; l-NAME plus Sildenafil citrate; diet supplemented processed tiger nut (20%) plus l-NAME;diet supplemented raw tiger nut (20%) plus l-NAME. l-NAME pre-treatment (40 mg/kg/day) lasted for 14 days. Arginase, acetycholinesterase (AChE) and adenosine deaminase (ADA) activities as well as nitric oxide levels (NO) in serum, brain and penile tissue were measured. l-NAME increased the activity of arginase, AChE and ADA and reduced NO levels. However, dietary supplementation with tiger nut caused a reduction on the activities of the above enzymes and up regulated nitric oxide levels when compared to the control group. The effect of tiger nut supplemented diet may be said to prevent alterations of the activities of the enzymes relevant in erectile function. Quercetin was revealed to be the most active component of tiger nut tuber by HPLC finger printing. Copyright © 2018. Published by Elsevier Ltd.

  17. Spironolactone differently influences remodeling of the left ventricle and aorta in L-NAME-induced hypertension.

    PubMed

    Simko, F; Matúsková, J; Lupták, I; Pincíková, T; Krajcírovicová, K; Stvrtina, S; Pomsár, J; Pelouch, V; Paulis, L; Pechánová, O

    2007-01-01

    Aldosterone receptor antagonist, spironolactone, has been shown to prevent remodeling of the heart in several models of left ventricular hypertrophy. The aim of the present study was to determine whether the treatment with spironolactone can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) and aortic remodeling in N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Four groups of rats were investigated: control, spironolactone (200 mg/kg), L-NAME (40 mg/kg) and L-NAME + spironolactone (in corresponding dosage). Animals were studied after 5 weeks of treatment. The decrease of NO-synthase activity in the LV and kidney was associated with the development of hypertension and LV hypertrophy, with increased DNA concentration in the LV, and remodeling of the aorta in the L-NAME group. Spironolactone prevented the inhibition of NO-synthase activity in the LV and kidney and partially attenuated hypertension and LVH development and the increase in DNA concentration. However, remodeling of the aorta was not prevented by spironolactone treatment. We conclude that the aldosterone receptor antagonist spironolactone improved nitric oxide production and partially prevented hypertension and LVH development without preventing hypertrophy of the aorta in NO-deficient hypertension. The reactive growth of the heart and aorta seems to be controlled by different mechanisms in L-NAME-induced hypertension.

  18. Safety of long-term dietary supplementation with L-arginine in pigs.

    PubMed

    Hu, Shengdi; Li, Xilong; Rezaei, Reza; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2015-05-01

    This study was conducted with a swine model to determine the safety of long-term dietary supplementation with L-arginine-HCl or L-arginine free base. Beginning at 30 days of age, pigs were fed a corn- and soybean meal-based diet (31.5 g/kg body weight/day) supplemented with 0, 1.21, 1.81 or 2.42 % L-arginine-HCl (Experiment 1) or with 0, 1, 1.5 or 2 % L-arginine (Experiment 2). The supplemental doses of 0, 1, 1.5, and 2 % L-arginine provided pigs with 0, 315, 473, and 630 mg L-arginine/kg body weight/day, respectively, which were equivalent to 0, 286, 430, and 573 mg L-arginine/kg body weight/day, respectively, in humans. At 121 days of age (91 days after initiation of supplementation), blood samples were obtained from the jugular vein of pigs at 1 and 4 h after feeding for hematological and clinical chemistry tests. Dietary supplementation with L-arginine increased plasma concentrations of arginine, ornithine, proline, albumin and reticulocytes, while reducing plasma concentrations of ammonia, free fatty acids, triglyceride, cholesterol, and neutrophils. L-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Other variables in standard hematology and clinical chemistry tests, serum concentrations of insulin, growth hormone and insulin-like growth factor-I did not differ among all the groups of pigs. These results indicate that dietary supplementation with L-arginine (up to 630 mg/kg body weight/day) is safe in pigs for at least 91 days. Our findings help guide clinical studies to determine the safety of long-term oral administration of L-arginine to humans.

  19. Effect of arginine methylation on the RNA recognition and cellular uptake of Tat-derived peptides.

    PubMed

    Li, Jhe-Hao; Chiu, Wen-Chieh; Yao, Yun-Chiao; Cheng, Richard P

    2015-05-01

    Arginine (Arg) methylation is a common post-translational modification that regulates gene expression and viral infection. The HIV-1 Tat protein is an essential regulatory protein for HIV proliferation, and is methylated in the cell. The basic region (residues 47-57) of the Tat protein contains six Arg residues, and is responsible for two biological functions: RNA recognition and cellular uptake. In this study, we explore the effect of three different methylation states at each Arg residue in Tat-derived peptides on the two biological functions. The Tat-derived peptides were synthesized by solid phase peptide synthesis. TAR RNA binding of the peptides was assessed by electrophoresis mobility shift assays. The cellular uptake of the peptides into Jurkat cells was determined by flow cytometry. Our results showed that RNA recognition was affected by both methylation state and position. In particular, asymmetric dimethylation at position 53 decreased TAR RNA binding affinity significantly, but unexpectedly less so upon asymmetric dimethylation at position 52. The RNA binding affinity even slightly increased upon methylation at some of the flanking Arg residues. Upon Arg methylation, the cellular uptake of Tat-derived peptides mostly decreased. Interestingly, cellular uptake of Tat-derived peptides with a single asymmetrically dimethylated Arg residue was similar to the native all Arg peptide (at 120 μM). Based on our results, TAR RNA binding apparently required both guanidinium terminal NH groups on Arg53, whereas cellular uptake apparently required guanidinium terminal NH₂ groups instead. These results should provide insight into how nature uses arginine methylation to regulate different biological functions, and should be useful for the development of functional molecules with methylated arginines. Copyright © 2015. Published by Elsevier Ltd.

  20. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  1. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  2. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  3. Decreased serum L-arginine and L-citrulline levels in major depression.

    PubMed

    Hess, S; Baker, G; Gyenes, G; Tsuyuki, R; Newman, S; Le Melledo, Jean-Michel

    2017-11-01

    It has been suggested that endothelial dysfunction caused by a decreased endothelial production of nitric oxide (NO) may contribute to the consistently observed increased risk of developing cardiovascular disease (CVD) in physically healthy patients suffering from major depression (MD). NO is a gas synthesized from Larginine (a conditionally essential amino acid) and oxygen by endothelial nitric oxide synthase (eNOS). The end products of NO production include both NO and L-citrulline. NO is rapidly reduced to the anions nitrite and nitrate, classically referred to as NO metabolites. Their measurement has been used as a surrogate measurement for endothelial NO production. We and others have shown decreased levels of NO metabolites in the serum of MD patients. The mechanism of this decreased production of NO by the endothelium has not yet been elucidated. The purpose of this study is to assess serum levels of L-arginine and L-citrulline in patients with MD. Levels of L-arginine and L-citrulline were measured in 35 unmedicated physically healthy MD patients and 36 healthy controls (HCs). L-arginine and L-citrulline concentrations were significantly lower in MD patients than in healthy controls (L-arginine, 73.54 + 21.53 μmol/L and 84.89 + 25.16, p = 0.04 μmol/L and L-citrulline 31.58 + 6.05 μmol/L and 35.19 + 6.85 μmol/L, p = 0.03, respectively). The decrease in L-arginine levels in MD patients is a possible explanation for the decrease in NO metabolites in MD patients and therefore may contribute, through endothelial dysfunction, to the increased CV risk associated with MD.

  4. L-Arginine in the treatment of valproate overdose - five clinical cases.

    PubMed

    Schrettl, Verena; Felgenhauer, Norbert; Rabe, Christian; Fernando, Malkanthi; Eyer, Florian

    2017-04-01

    Valproic acid and its metabolites - particularly valproyl-CoA - are inhibitors of the enzyme N-acetylglutamate synthetase. The amino acid l-arginine can stimulate N-acetylglutamate synthetase activity and could be potentially used therapeutically to correct hyperammonemia caused by valproate therapy or overdose. Severely valproic-acid-poisoned patients are usually treated with l-carnitine or hemodialysis in order to decrease hyperammonemia. We herein report of five cases, in which l-arginine was administered. Observational study on five cases. Patients with hyperammonemia (i.e., ammonia 80 > μg/dL) and symptoms consistent with valproate overdose (i.e., drowsiness, coma) were selected for treatment with l-arginine. Data was collected retrospectively. l-Arginine decreased ammonia levels in a close temporal relation (case I ammonia in EDTA-plasma [μg/dL] decreased from 381 to 39; case II from 281 to 50; case III from 669 to 74; case IV from 447 to 56; case V from 202 to 60). In cases I and II, hemodialysis was performed and l-carnitine was given before the administration of l-arginine. In case III, hemodialysis was performed after the administration of l-arginine was already started. In cases IV and V, treatment with l-arginine was the sole measure to decrease ammonia levels in plasma. The results suggest that l-arginine may be beneficial in selected cases of valproate overdose complicated by hyperammonemia. l-Arginine could extend our conventional treatment options for valproic acid overdose.

  5. Biallelic expression of the L-arginine:glycine amidinotransferase gene with different methylation status between male and female primordial germ cells in chickens.

    PubMed

    Jang, H J; Lee, M O; Kim, S; Kim, T H; Kim, S K; Song, G; Womack, J E; Han, J Y

    2013-03-01

    The basic functions of DNA methylation include in gene silencing by methylation of specific gene promoters, defense of the host genome from retrovirus, and transcriptional suppression of transgenes. In addition, genomic imprinting, by which certain genes are expressed in a parent-of-origin-specific manner, has been observed in a wide range of plants and animals and has been associated with differential methylation. However, imprinting phenomena of DNA methylation effects have not been revealed in chickens. To analyze whether genomic imprinting occurs in chickens, methyl-DNA immunoprecipitation array analysis was applied across the entire genome of germ cells in early chick embryos. A differentially methylated region (DMR) was detected in the eighth intron of the l-arginine:glycine amidinotransferase (GATM) gene. When the DMR in GATM was analyzed by bisulfite sequencing, the methylation in male primordial germ cells (PGC) of 6-d-old embryos was higher than that in female PGC (57.5 vs. 35.0%). At 8 d, the DMR methylation of GATM in male PGC was 3.7-fold higher than that in female PGC (65.0 vs. 17.5%). Subsequently, to investigate mono- or biallelic expression of the GATM gene during embryo development, we found 2 indel sequences (GTTTAATGC and CAAAAA) within the GATM 3'-untranslated region in Korean Oge (KO) and White Leghorn (WL) chickens. When individual WL and KO chickens were genotyped for indel sequences, 3 allele combinations (homozygous insertion, homozygous deletion, and heterozygotes) were detected in both breeds using a gel shift assay and high-resolution melt assay. The deletion allele was predominant in KO, whereas the insertion allele was predominant in WL. Heterozygous animals were evenly distributed in both breeds (P < 0.01). Despite the different methylation status between male and female PGC, the GATM gene conclusively displayed biallelic expression in PGC as well as somatic embryonic, extraembryonic, and adult chicken tissues.

  6. Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation.

    PubMed

    Infantino, Simona; Light, Amanda; O'Donnell, Kristy; Bryant, Vanessa; Avery, Danielle T; Elliott, Michael; Tangye, Stuart G; Belz, Gabrielle; Mackay, Fabienne; Richard, Stephane; Tarlinton, David

    2017-10-12

    Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in mammalian cells, regulating many important functions including cell signalling, proliferation and differentiation. Here we show the role of PRMT1 in B-cell activation and differentiation. PRMT1 expression and activity in human and mouse peripheral B cells increases in response to in vitro or in vivo activation. Deletion of the Prmt1 gene in mature B cells establishes that although the frequency and phenotype of peripheral B cell subsets seem unaffected, immune responses to T-cell-dependent and -independent antigens are substantially reduced. In vitro activation of Prmt1-deficient B cells with a variety of mitogens results in diminished proliferation, differentiation and survival, effects that are correlated with altered signal transduction from the B cell receptor. Thus PRMT1 activity in B cells is required for correct execution of multiple processes that in turn are necessary for humoral immunity.PRMT1 is an arginine methyltransferase involved in a variety of cell functions. Here the authors delete PRMT1 specifically in mature B cells to show the importance of arginine methylation for B cell proliferation, differentiation and survival, and thereby for humoral immunity.

  7. Differential effects of arginine methylation on diastolic dysfunction and disease progression in patients with chronic systolic heart failure

    PubMed Central

    Wilson Tang, Wai Hong; Tong, Wilson; Shrestha, Kevin; Wang, Zeneng; Levison, Bruce S.; Delfraino, Brian; Hu, Bo; Troughton, Richard W.; Klein, Allan L.; Hazen, Stanley L.

    2008-01-01

    Aims To investigate the association of arginine methylation with myocardial function and prognosis in chronic systolic heart failure patients. Methods and results Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), as well as N-mono-methylarginine (MMA) and methyl-lysine, were simultaneously measured by tandem mass spectrometry in 132 patients with chronic systolic heart failure with echocardiographic evaluation and follow-up. Increasing ADMA and SDMA levels were associated with elevated natriuretic peptide levels (both P < 0.001), and increasing SDMA levels were associated with worsening renal function (P < 0.001). Higher plasma levels of methylated arginine metabolites (but not methyl-lysine) were associated with the presence of left ventricular (LV) diastolic dysfunction (E/septal E′, Spearman's r = 0.31–0.36, P < 0.001). Patients taking beta-blockers had lower ADMA levels than those not taking beta-blockers [0.42 (0.33, 0.50) vs. 0.51 (0.40, 0.58), P < 0.001]. Only increasing ADMA levels were associated with advanced right ventricular (RV) systolic dysfunction. Elevated ADMA levels remained a consistent independent predictor of adverse clinical events (hazard ratio = 1.64, 95% CI: 1.20–2.22, P = 0.002). Conclusion In chronic systolic heart failure, accumulation of methylated arginine metabolites is associated with the presence of LV diastolic dysfunction. Among the methylated derivatives of arginine, ADMA provides the strongest independent prediction of disease progression and adverse long-term outcomes. PMID:18687662

  8. Role of L-arginine in the pathogenesis and treatment of renal disease.

    PubMed

    Cherla, Gautam; Jaimes, Edgar A

    2004-10-01

    L-arginine is a semi essential amino acid and also a substrate for the synthesis of nitric oxide (NO), polyamines, and agmatine. These L-arginine metabolites may participate in the pathogenesis of renal disease and constitute the rationale for manipulating L-arginine metabolism as a strategy to ameliorate kidney disease. Modification of dietary L-arginine intake in experimental models of kidney diseases has been shown to have both beneficial as well as deleterious effects depending on the specific model studied. L-arginine supplementation in animal models of glomerulonephritis has been shown to be detrimental, probably by increasing the production of NO from increased local expression of inducible NO synthase (iNOS). L-arginine supplementation does not modify the course of renal disease in humans with chronic glomerular diseases. However, beneficial effects of L-arginine supplementation have been reported in several models of chronic kidney disease including renal ablation, ureteral obstruction, nephropathy secondary to diabetes, and salt-sensitive hypertension. L-arginine is reduced in preeclampsia and recent experimental studies indicate that L-arginine supplementation may be beneficial in attenuating the symptoms of preeclampsia. Administration of exogenous L-arginine has been shown to be protective in ischemic acute renal failure. In summary, the role of L-arginine in the pathogenesis and treatment of renal disease is not completely understood and remains to be established.

  9. The sex differences in nature of vascular endothelial stress: nitrergic mechanisms

    NASA Astrophysics Data System (ADS)

    Sindeev, Sergey; Gekaluyk, Artem; Ulanova, Maria; Agranovich, Ilana; Sharref, Ali Esmat; Semyachkina-Glushkovskaya, Oxana

    2016-04-01

    Here we studied the role of nitric oxide in cardiovascular regulation in male and female hypertensive rats under normal and stress conditions. We found that the severity of hypertension in females was lower than in males. Hypertensive females demonstrated more favorable pattern of cardiovascular responses to stress. Nitric oxide blockade by NG-nitro-L-arginine methyl ester (L-NAME) increased the mean arterial pressure and decreased the heart rate more effectively in females than in males. During stress, L-NAME modified the stress-induced cardiovascular responses more significantly in female compared with male groups. Our data show that hypertensive females demonstrated the more effective nitric oxide control of cardiovascular activity under normal and especially stress conditions than male groups. This sex differences may be important mechanism underlying greater in females vs. males stress-resistance of cardiovascular system and hypertension formation.

  10. Effects of nitric oxide on red blood cell deformability.

    PubMed

    Bor-Kucukatay, Melek; Wenby, Rosalinda B; Meiselman, Herbert J; Baskurt, Oguz K

    2003-05-01

    In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability.

  11. A novel mass spectrometry-based method for simultaneous determination of asymmetric and symmetric dimethylarginine, l-arginine and l-citrulline optimized for LC-MS-TOF and LC-MS/MS.

    PubMed

    Wiśniewski, Jerzy; Fleszar, Mariusz G; Piechowicz, Joanna; Krzystek-Korpacka, Małgorzata; Chachaj, Angelika; Szuba, Andrzej; Lorenc-Kukula, Katarzyna; Masłowski, Leszek; Witkiewicz, Wojciech; Gamian, Andrzej

    2017-11-01

    Nitric oxide (NO) is a regulatory molecule involved in many biological processes. NO is produced by nitric oxide synthase by conversion of l-arginine to l-citrulline. l-Arginine methylated derivatives, asymmetric and symmetric dimethylarginines (asymmetric dimethylarginine, ADMA, and symmetric dimethylarginine, SDMA), regulate l-arginine availability and the activity of nitric oxide synthase. As such, they have been frequently investigated as potential biomarkers in pathologies associated with dysfunctions in NO synthesis. Here, we present a new multistep analytical methodology based on liquid chromatography combined with mass spectrometry for the accurate identification of l-arginine, l-citrulline, ADMA and SDMA. Compounds are measured as stable 2,3,4,5,6-pentafluorobenzoyl chloride derivatives, which allows for simultaneous analysis of all compounds through chromatographic separation of ADMA and SDMA using a reverse-phase column. Serum aliquots (100 μL) were spiked with isotope-labeled internal standards and sodium carbonate buffer. The derivatization process was carried out at 25°C for 10 minu using pentafluorobenzoyl chloride as derivatization reagent. Calibration demonstrated good linearity (R 2  = 0.9966-0.9986) for all derivatized compounds. Good accuracy (94.67-99.91%) and precision (1.92-11.8%) were observed for the quality control samples. The applicability of the method was evaluated in a cohort of angiological patients and healthy volunteers. The method discerned significantly lower l-arginine and l-citrulline in angiologic patients. This robust and fast LC-ESI-MS method may be a useful tool in quantitative analysis of l-arginine, ADMA, SDMA and l-citrulline. Copyright © 2017 John Wiley & Sons, Ltd.

  12. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation.

    PubMed

    Misawa, Naoki; Hosoya, Takahiro; Yoshida, Shuhei; Sugimoto, Osamu; Yamada-Kato, Tomoe; Kumazawa, Shigenori

    2018-02-26

    To investigate the compounds present in wasabi leaves (Wasabia japonica Matsumura) that inhibit the adipocyte differentiation, activity-guided fractionation was performed on these leaves. 5-Hydroxyferulic acid methyl ester (1: 5-HFA ester), one of the phenylpropanoids, was isolated from wasabi leaves as a compound that inhibits the adipocyte differentiation. Compound 1 suppressed the intracellular lipid accumulation of 3T3-L1 cells without significant cytotoxicity. Gene expression analysis revealed that 1 suppressed the mRNA expression of 2 master regulators of adipocyte differentiation, PPARγ and C/EBPα. Furthermore, 1 downregulated the expression of adipogenesis-related genes, GLUT4, LPL, SREBP-1c, ACC, and FAS. Protein expression analysis revealed that 1 suppressed PPARγ protein expression. Moreover, to investigate the relationship between the structure and activity of inhibiting the adipocyte differentiation, we synthesized 12 kinds of phenylpropanoid analog. Comparison of the activity among 1 and its analogs suggested that the compound containing the substructure that possess a common functional group at the ortho position such as a catechol group exhibits the activity of inhibiting the adipocyte differentiation. Taken together, our findings suggest that 1 from wasabi leaves inhibits adipocyte differentiation via the downregulation of PPARγ. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    NASA Astrophysics Data System (ADS)

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  14. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis.

    PubMed

    Hirao, Yoshinori; Mihara, Yasuhiro; Kira, Ikuo; Abe, Isao; Yokozeki, Kenzo

    2013-01-01

    An enzymatic production method for synthesizing L-alanyl-L-glutamine (Ala-Gln) from L-alanine methyl ester hydrochloride (AlaOMe) and L-glutamine (Gln) was developed in this study. The cultivation conditions for an Escherichia coli strain overexpressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis AJ 2458 (SAET) and reaction conditions for Ala-Gln production were optimized. A high cell density culture broth prepared by fed-batch cultivation showed 440 units/mL of Ala-Gln-producing activity. In addition, an Ala-Gln-producing reaction using intact E. coli cells overexpressing SAET under optimum conditions was conducted. A total Ala-Gln yield of 69.7 g/L was produced in 40 min. The molar yield was 67% against both AlaOMe and Gln.

  15. Methyl esters (biodiesel) from Pachyrhizus erosus seed oil

    USDA-ARS?s Scientific Manuscript database

    The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...

  16. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum.

    PubMed

    Guo, Jing; Man, Zaiwei; Rao, Zhiming; Xu, Meijuan; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2017-03-01

    There are four nitrogen atoms in L-arginine molecule and the nitrogen content is 32.1%. By now, metabolic engineering for L-arginine production strain improvement was focused on carbon flux optimization. In previous work, we obtained an L-arginine-producing Corynebacterium crenatum SDNN403 (ARG) through screening and mutation breeding. In this paper, a strain engineering strategy focusing on nitrogen supply and ammonium assimilation for L-arginine production was performed. Firstly, the effects of nitrogen atom donor (L-glutamate, L-glutamine and L-aspartate) addition on L-arginine production of ARG were studied, and the addition of L-glutamine and L-aspartate was beneficial for L-arginine production. Then, the glutamine synthetase gene glnA and aspartase gene aspA from E. coli were overexpressed in ARG for increasing the L-glutamine and L-aspartate synthesis, and the L-arginine production was effectively increased. In addition, the L-glutamate supply re-emerged as a limiting factor for L-arginine biosynthesis. Finally, the glutamate dehydrogenase gene gdh was co-overexpressed for further enhancement of L-arginine production. The final strain could produce 53.2 g l -1 of L-arginine, which was increased by 41.5% compared to ARG in fed-batch fermentation.

  17. Influence of L-arginine during bovine in vitro fertilization.

    PubMed

    Silva, Thiago Velasco Guimarães; da Silva, Bruno Baraúna; de Sá, André Luiz Alves; da Costa, Nathalia Nogueira; Sampaio, Rafael Vilar; Cordeiro, Marcela da Silva; Santana, Priscila Di Paula Bessa; Adona, Paulo Roberto; Santos, Simone do Socorro Damasceno; Miranda, Moysés dos Santos; Ohashi, Otávio Mitio

    2014-12-01

    The objective of this work was to evaluate the effect of using L-arginine during in vitro fertilization (IVF) on in vitro embryonic development using Bos taurus and Bos indicus semen. Effect of different concentrations (0, 1, 10 and 50 mM) of L-arginine, added to the IVF medium, was evaluated on the fertilization rate at 18 h post-fertilization (hpf), NO3(-)/NO2(-) production during IVF by the Griess colorimetric method (30 hpf), cleavage and blastocyst rates (on Day 2 and Day 7 of culture, respectively) and total blastocyst cell number (Day 7 of culture). The results reveal that the addition of 50 mM L-arginine to IVF medium, with either Bos taurus or Bos indicus spermatozoa, decreased the cleavage rate and blastocyst rate compared to the control group. Other concentrations did not affect embryo production. However, 1 mM L-arginine with Bos indicus semen increased the proportion of hatched blastocysts. These results indicate that high L-arginine concentrations may exhibit toxic effects on bovine gametes during in vitro fertilization.

  18. Evidence that spinal segmental nitric oxide mediates tachyphylaxis to peripheral local anesthetic nerve block.

    PubMed

    Wang, C; Sholas, M G; Berde, C B; DiCanzio, J; Zurakowski, D; Wilder, R T

    2001-09-01

    Tachyphylaxis to sciatic nerve blockade in rats correlates with hyperalgesia. Spinal inhibition of nitric oxide synthase with N(G)nitro-L-arginine methyl ester (L-NAME) has been shown to prevent hyperalgesia. Given systemically, L-NAME also prevents tachyphylaxis. The action of L-NAME in preventing tachyphylaxis therefore may be mediated at spinal sites. We compared systemic versus intrathecal potency of L-NAME in modulating tachyphylaxis to sciatic nerve block. Rats were prepared with intrathecal catheters. Three sequential sciatic nerve blocks were placed. Duration of block of thermal nocifensive, proprioceptive and motor responses was recorded. We compared spinal versus systemic dose-response to L-NAME, and examined effects of intrathecal arginine on tachyphylaxis. An additional group of rats underwent testing after T10 spinal cord transection. In these rats duration of sciatic nerve block was assessed by determining the heat-induced flexion withdrawal reflex. L-NAME was 25-fold more potent in preventing tachyphylaxis given intrathecally than intraperitoneally. Intrathecal arginine augmented tachyphylaxis. Spinalized rats exhibited tachyphylaxis to sciatic block. The increased potency of intrathecal versus systemic L-NAME suggests a spinal site of action in inhibiting tachyphylaxis. Descending pathways are not necessary for the development of tachyphylaxis since it occurs even after T10 spinal cord transection. Thus tachyphylaxis, like hyperalgesia, is mediated at least in part by a spinal site of action.

  19. Modeling Study of the Low-Temperature Oxidation of Large Methyl Esters from C11 to C19

    PubMed Central

    Herbinet, Olivier; Biet, Joffrey; Hakka, Mohammed Hichem; Warth, Valérie; Glaude, Pierre Alexandre; Nicolle, André; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the low temperature oxidation of large saturated methyl esters really representative of those found in biodiesel fuels has been investigated. Models have been developed for these species and then detailed kinetic mechanisms have been automatically generated using a new extended version of software EXGAS, which includes reactions specific to the chemistry of esters. A model generated for a binary mixture of n-decane and methyl palmitate was used to simulate experimental results obtained in a jet-stirred reactor for this fuel. This model predicts very well the reactivity of the fuel and the mole fraction profiles of most reaction products. This work also shows that a model for a middle size methyl ester such as methyl decanoate predicts fairly well the reactivity and the mole fractions of most species with a substantial decrease in computational time. Large n-alkanes such as n-hexadecane are also good surrogates for reproducing the reactivity of methyl esters, with an important gain in computational time, but they cannot account for the formation of specific products such as unsaturated esters or cyclic ethers with an ester function. PMID:23814504

  20. Plasma Homocysteine and Asymmetrical Dimethyl-l-Arginine (ADMA) and Whole Blood DNA Methylation in Early and Neovascular Age-Related Macular Degeneration: A Pilot Study.

    PubMed

    Pinna, Antonio; Zinellu, Angelo; Tendas, Donatella; Blasetti, Francesco; Carru, Ciriaco; Castiglia, Paolo

    2016-01-01

    To compare the plasma levels of homocysteine and asymmetrical dimethyl-l-arginine (ADMA) and the degree of whole blood DNA methylation in patients with early and neovascular age-related macular degeneration (AMD) and in controls without maculopathy of any sort. This observational case-control pilot study included 39 early AMD patients, 27 neovascular AMD patients and 132 sex- and age-matched controls without maculopathy. Plasma homocysteine and ADMA concentrations and the degree of whole blood DNA methylation were measured. Quantitative variables were compared by Student's t-test or Mann-Whitney test. Logistic regression models were used to investigate the significance of the association between early or wet AMD and some variables. There were no significant differences in mean plasma homocysteine and ADMA concentrations and in the degree of whole blood DNA methylation between patients with early or neovascular AMD and their controls. Similarly, logistic regression analysis disclosed that plasma homocysteine and ADMA levels were not associated with an increased risk for early or neovascular AMD. We failed to demonstrate an association between early or neovascular AMD and increased plasma homocysteine and/or ADMA. Results also suggest that the degree of whole blood DNA methylation is not a marker of AMD.

  1. Protective effects on vascular endothelial cell in N'-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani.

    PubMed

    Li, Yunlun; Yang, Wenqing; Zhu, Qingjun; Yang, Jinguo; Wang, Zhen

    2015-08-01

    Endothelial dysfunction is closely associated with hypertension. Protection of vascular endothelial cell is the key to prevention and treatment of hypertension. Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid, isolated from traditional Chinese medicine Uncaria rbyncbopbylla and Semen Raphani respectively, exhibit properties of anti-hypertension and protection of blood vessels. In the present study, we observed the protective effect of the combined use of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid to the vascular endothelial cell in N'-nitro-L-arginine-induced hypertensive rats and investigate the preliminary mechanism. Blood pressure was detected by non-invasive rats tail method to observe the anti-hypertension effect of drugs. Scanning electron microscopy was used to observe the integrity or shedding state of vascular endothelial cell. The amount of circulating endothelial cells and CD54 and CD62P expression on circulating endothelial cells were tested to evaluate the endothelium function. In this study, we found that the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility can effectively lower the blood pressure, improve the structural integrity of vascular endothelium, and significantly reduce the number of circulating endothelial cells. Furthermore, the mean fluorescence intensity of CD54 and CD62P expressed showed decrease after the intervention of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility. In conclusion, the combination of effective components of the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid demonstrated good antihypertension effect and vascular endothelium protective effect. The preliminary mechanism of the protective effect may attribute to relieve the overall low-grade inflammation.

  2. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    PubMed Central

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  3. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  4. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  5. Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization.

    PubMed

    Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián

    2005-02-23

    Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.

  6. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    USDA-ARS?s Scientific Manuscript database

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  7. l-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway

    PubMed Central

    Yu, Hong-Ren; Kuo, Ho-Chang; Huang, Li-Tung; Chen, Chih-Cheng; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Huang, Hsin-Chun; Yang, Kuender D; Ou, Chia-Yo; Hsu, Te-Yao

    2014-01-01

    In cases of arginine depletion, lymphocyte proliferation, cytokine production and CD3ζ chain expression are all diminished. In addition to myeloid suppressor cells, polymorphonuclear cells (PMN) also exert T-cell immune suppressive effects through arginase-induced l-arginine depletion, especially during pregnancy. In this study, we investigated how arginase/l-arginine modulates neonatal lymphocyte proliferation. Results showed that the neonatal plasma l-arginine level was lower than in adults (48·1 ± 11·3 versus 86·5 ± 14·6 μm; P = 0·003). Neonatal PMN had a greater abundance of arginase I protein than adult PMN. Both transcriptional regulation and post-transcriptional regulation were responsible for the higher arginase I expression of neonatal PMN. Exogenous l-arginine enhanced neonate lymphocyte proliferation but not that of adult cells. The RNA-binding protein HuR was important but was not the only modulation factor in l-arginine-regulated neonatal T-cell proliferation. l-Arginine-mediated neonatal lymphocyte proliferation could not be blocked by interleukin-2 receptor blocking antibodies. These results suggest that the altered arginase/l-arginine cascade may be one of the mechanisms that contribute to altered neonatal immune responses. Exogenous l-arginine could enhance neonate lymphocyte proliferation through an interleukin-2-independent pathway. PMID:24697328

  8. Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunatkari, A. L., E-mail: ashok.sunatkari@rediffmail.com; Talwatkar, S. S.; Tamgadge, Y. S.

    2016-05-06

    We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.

  9. Role of the anterior region of the third ventricle in the cardiovascular responses produced by systemic injection of a nitric oxide synthase inhibitor

    NASA Technical Reports Server (NTRS)

    Lewis, S. J.; Whalen, E. J.; Beltz, T. G.; Johnson, A. K.

    1999-01-01

    This study examined whether a prior electrolytic lesion of the tissue surrounding the anteroventral third ventricle (AV3V) would affect the increase in mean arterial blood pressure (MAP) and the fall in heart rate (HR) produced by systemic injection of the nitric oxide synthesis (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 25 micromol/kg, i.v.) in conscious rats. L-NAME produced a smaller increase in MAP in AV3V-lesion than in sham-lesion rats (+19+/-3 vs. +40+/-3 mmHg, respectively; P<0.05). In contrast, L-NAME produced similar falls in HR in the AV3V-lesion and sham-lesion rats (-103+/-15 vs. -97+/-8 bpm, respectively; P<0.05). These findings demonstrate that the L-NAME-induced pressor response is dependent upon the integrity of the AV3V region, whereas the L-NAME-induced bradycardia is not. Copyright 1999 Elsevier Science B. V.

  10. Identification of the methylation preference region in heterogeneous nuclear ribonucleoprotein K by protein arginine methyltransferase 1 and its implication in regulating nuclear/cytoplasmic distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yuan-I; Hsu, Sheng-Chieh; Chau, Gar-Yang

    2011-01-21

    Research highlights: {yields} Verifying by direct methylation assay the substrate sites of PRMT1 in the hnRNP K protein. {yields} Identifying the preferred PMRT1 methylation regions in hnRNP K by kinetic analysis. {yields} Linking methylation in regulating nuclear localization of hnRNP K. -- Abstract: Protein arginine methylation plays crucial roles in numerous cellular processes. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein participating in a variety of cellular functions including transcription and RNA processing. HnRNP K is methylated at multiple sites in the glycine- and arginine-rich (RGG) motif. Using various RGG domain deletion mutants of hnRNP K as substrates,more » here we show by direct methylation assay that protein arginine methyltransferase 1 (PRMT1) methylated preferentially in a.a. 280-307 of the RGG motif. Kinetic analysis revealed that deletion of a.a. 280-307, but not a.a. 308-327, significantly inhibited rate of methylation. Importantly, nuclear localization of hnRNP K was significantly impaired in mutant hnRNP K lacking the PRMT1 methylation region or upon pharmacological inhibition of methylation. Together our results identify preferred PRMT1 methylation sequences of hnRNP K by direct methylation assay and implicate a role of arginine methylation in regulating intracellular distribution of hnRNP K.« less

  11. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  12. Antihypertensive Effects of Roselle-Olive Combination in L-NAME-Induced Hypertensive Rats

    PubMed Central

    Hessin, Alyaa F.; Abdelbaset, Marwan; Ogaly, Hanan A.; Abd-Elsalam, Reham M.; Hassan, Salah M.

    2017-01-01

    This study aimed to evaluate the antihypertensive efficacy of a new combination therapy of Hibiscus sabdariffa and Olea europaea extracts (2 : 1; Roselle-Olive), using N(G)-nitro-L-arginine-methyl ester- (L-NAME-) induced hypertensive model. Rats received L-NAME (50 mg/kg/day, orally) for 4 weeks. Concurrent treatment with Roselle-Olive (500, 250, and 125 mg/kg/day for 4 weeks) resulted in a dose-dependent decrease in both systolic and diastolic blood pressure, reversed the L-NAME-induced suppression in serum nitric oxide (NO), and improved liver and kidney markers, lipid profile, and oxidative status. Furthermore, Roselle-Olive significantly lowered the elevated angiotensin-converting enzyme activity (ACE) and showed a marked genoprotective effect against oxidative DNA damage in hypertensive rats. Roselle-Olive ameliorated kidney and heart lesions and reduced aortic media thickness. Real-time PCR and immunohistochemistry showed an enhanced endothelial nitric oxide synthase (eNOS) gene and protein expression in both heart and kidney of Roselle-Olive-treated rats. To conclude, our data revealed that Roselle-Olive is an effective combination in which H. sabdariffa and O. europaea synergistically act to control hypertension. These effects are likely to be mediated by antioxidant and genoprotective actions, ACE inhibition, and eNOS upregulation by Roselle-Olive constituents. These findings provide evidences that Roselle-Olive combination affords efficient antihypertensive effect with a broad end-organ protective influence. PMID:29201276

  13. Antihypertensive Effects of Roselle-Olive Combination in L-NAME-Induced Hypertensive Rats.

    PubMed

    Abdel-Rahman, Rehab F; Hessin, Alyaa F; Abdelbaset, Marwan; Ogaly, Hanan A; Abd-Elsalam, Reham M; Hassan, Salah M

    2017-01-01

    This study aimed to evaluate the antihypertensive efficacy of a new combination therapy of Hibiscus sabdariffa and Olea europaea extracts (2 : 1; Roselle-Olive), using N(G)-nitro-L-arginine-methyl ester- (L-NAME-) induced hypertensive model. Rats received L-NAME (50 mg/kg/day, orally) for 4 weeks. Concurrent treatment with Roselle-Olive (500, 250, and 125 mg/kg/day for 4 weeks) resulted in a dose-dependent decrease in both systolic and diastolic blood pressure, reversed the L-NAME-induced suppression in serum nitric oxide (NO), and improved liver and kidney markers, lipid profile, and oxidative status. Furthermore, Roselle-Olive significantly lowered the elevated angiotensin-converting enzyme activity (ACE) and showed a marked genoprotective effect against oxidative DNA damage in hypertensive rats. Roselle-Olive ameliorated kidney and heart lesions and reduced aortic media thickness. Real-time PCR and immunohistochemistry showed an enhanced endothelial nitric oxide synthase (eNOS) gene and protein expression in both heart and kidney of Roselle-Olive-treated rats. To conclude, our data revealed that Roselle-Olive is an effective combination in which H. sabdariffa and O. europaea synergistically act to control hypertension. These effects are likely to be mediated by antioxidant and genoprotective actions, ACE inhibition, and eNOS upregulation by Roselle-Olive constituents. These findings provide evidences that Roselle-Olive combination affords efficient antihypertensive effect with a broad end-organ protective influence.

  14. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    PubMed

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    PubMed

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Construction of chiral ligand exchange capillary electrochromatography for d,l-amino acids enantioseparation and its application in glutaminase kinetics study.

    PubMed

    Zhao, Liping; Qiao, Juan; Zhang, Ke; Li, Dan; Zhang, Hongyi; Qi, Li

    2018-05-04

    A chiral ligand exchange capillary electrochromatography (CLE-CEC) protocol was designed and implemented for d,l-amino acids enantioseparation with poly(maleic anhydride-styrene-methacryloyl-l-arginine methyl ester) as the coating. The block copolymer was synthesized through the reversible addition fragmentation chain transfer reaction. In the constructed CLE-CEC system, poly (methacryloyl-l-arginine methyl ester) moiety of the block copolymer played the role as the immobilized chiral ligand and Zn (II) was used as the central ion. Key factors, including pH of buffer solution, ratio of Zn (II) to ligands, the mass ratio of monomers in the block copolymer, which affect the enantioresolution were investigated. Comparing with the bare capillary, the CLE-CEC enantioresolution was enhanced greatly with the coating one. 5 Pairs of d,l-amino acids enantiomers obtained baseline separation with 5 pairs partly separated. The mechanism of enhancement enantioresolution of the developed CLE-CEC system was explored briefly. Further, good linearities were achieved in the range of 25.0 μM-5.0 mM for quantitative analysis of d-glutamine (r 2  = 0.997) and l-glutamine (r 2  = 0.991). Moreover, the proposed CLE-CEC assay was successfully applied in the kinetics study of glutaminase by using l-glutamine as the substrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Plasma L-arginine levels distinguish pulmonary arterial hypertension from left ventricular systolic dysfunction.

    PubMed

    Sandqvist, Anna; Schneede, Jörn; Kylhammar, David; Henrohn, Dan; Lundgren, Jakob; Hedeland, Mikael; Bondesson, Ulf; Rådegran, Göran; Wikström, Gerhard

    2018-03-01

    Pulmonary arterial hypertension (PAH) is a life-threatening condition, characterized by an imbalance of vasoactive substances and remodeling of pulmonary vasculature. Nitric oxide, formed from L-arginine, is essential for homeostasis and smooth muscle cell relaxation in PAH. Our aim was to compare plasma concentrations of L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) in PAH compared to left ventricular systolic dysfunction (LVSD) and healthy subjects. This was an observational, multicenter study comparing 21 patients with PAH to 14 patients with LVSD and 27 healthy subjects. Physical examinations were obtained and blood samples were collected. Plasma levels of ADMA, SDMA, L-arginine, L-ornithine, and L-citrulline were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma levels of ADMA and SDMA were higher, whereas L-arginine and L-arginine/ADMA ratio were lower in PAH patients compared to healthy subjects (p < 0.001). Patients with PAH also had lower levels of L-arginine than patients with LVSD (p < 0.05). L-Arginine correlated to 6 min walking distance (6MWD) (r s  = 0.58, p = 0.006) and L-arginine/ADMA correlated to WHO functional class (r s  = -0.46, p = 0.043) in PAH. In conclusion, L-arginine levels were significantly lower in treatment naïve PAH patients compared to patients with LVSD. Furthermore, L-arginine correlated with 6MWD in PAH. L-arginine may provide useful information in differentiating PAH from LVSD.

  18. New Insights into the Methodology of L-Arginine-Induced Acute Pancreatitis

    PubMed Central

    Kui, Balázs; Balla, Zsolt; Vasas, Béla; Végh, Eszter T.; Pallagi, Petra; Kormányos, Eszter S.; Venglovecz, Viktória; Iványi, Béla; Takács, Tamás; Hegyi, Péter; Rakonczay, Zoltán

    2015-01-01

    Animal models are ideal to study the pathomechanism and therapy of acute pancreatitis (AP). The use of L-arginine-induced AP model is nowadays becoming increasingly popular in mice. However, carefully looking through the literature, marked differences in disease severity could be observed. In fact, while setting up the L-arginine (2×4 g/kg i.p.)-induced AP model in BALB/c mice, we found a relatively low rate (around 15%) of pancreatic necrosis, whereas others have detected much higher rates (up to 55%). We suspected that this may be due to differences between mouse strains. We administered various concentrations (5–30%, pH = 7.4) and doses (2×4, 3×3, or 4×2.5 g/kg) of L-arginine-HCl in BALB/c, FVB/n and C57BL/6 mice. The potential gender-specific effect of L-arginine was investigated in C57BL/6 mice. The fate of mice in response to the i.p. injections of L arginine followed one of three courses. Some mice (1) developed severe AP or (2) remained AP-free by 72 h, whereas others (3) had to be euthanized (to avoid their death, which was caused by the high dose of L-arginine and not AP) within 12 h., In FVB/n and C57BL/6 mice, the pancreatic necrosis rate (about 50%) was significantly higher than that observed in BALB/c mice using 2×4 g/kg 10% L–arginine, but euthanasia was necessary in a large proportion of animals, The i.p. injection of lower L-arginine concentrations (e.g. 5–8%) in case of the 2×4 g/kg dose, or other L-arginine doses (3×3 or 4×2.5 g/kg, 10%) were better for inducing AP. We could not detect any significant differences between the AP severity of male and female mice. Taken together, when setting up the L-arginine-induced AP model, there are several important factors that are worth consideration such as the dose and concentration of the administered L arginine-HCl solution and also the strain of mice. PMID:25688985

  19. L-arginine as dietary supplement for improving microvascular function.

    PubMed

    Melik, Ziva; Zaletel, Polona; Virtic, Tina; Cankar, Ksenija

    2017-01-01

    Reduced availability of nitric oxide leads to dysfunction of endothelium which plays an important role in the development of cardiovascular diseases. The aim of the present study was to determine whether the dietary supplement L-arginine improves the endothelial function of microvessels by increasing nitric oxide production. We undertook experiments on 51 healthy male volunteers, divided into 4 groups based on their age and physical activity since regular physical activity itself increases endothelium-dependent vasodilation. The skin laser Doppler flux was measured in the microvessels before and after the ingestion of L-arginine (0.9 g). The endothelium-dependent vasodilation was assessed by acetylcholine iontophoresis and the endothelium-independent vasodilation by sodium nitroprusside iontophoresis. In addition, we measured endothelium-dependent and endothelium-independent vasodilation in 81 healthy subjects divided into four age groups. After the ingestion of L-arginine, the endothelium-dependent vasodilation in the young trained subjects increased (paired t-test, p < 0.05), while in the other groups it remained the same. There were no differences in the endothelium-independent vasodilation after ingestion of L-arginine. With aging endothelium-independent vasodilation decreased while endothelium-dependent vasodilation remained mainly unchanged. Obtained results demonstrated that a single dose of L-arginine influences endothelium-dependent vasodilation predominantly in young, trained individuals.

  20. Nitric oxide synthase and soluble guanylate cyclase are involved in spinal cord wind-up activity of monoarthritic, but not of normal rats.

    PubMed

    Laurido, Claudio; Hernández, Alejandro; Constandil, Luis; Pelissier, Teresa

    2003-11-27

    While increasing evidence points to a role for the nitric oxide (NO)/cyclic guanosine 3,5-monophosphate (GMPc) cascade in hyperalgesia and allodynia, participation of the NO/GMPc pathway in synaptic processing in the spinal cord, i.e. wind-up activity, is less clear. We studied the effects of intrathecal administration of Nomega-nitro-L-arginine methyl ester (L-NAME) and methylene blue, inhibitors of NO synthase and guanylate cyclase respectively, on wind-up activity developed in a C-fiber reflex response paradigm. 5, 10 and 20 microg i.t. of L-NAME or methylene blue did not modify spinal wind-up in normal rats, while a dose-dependent inhibition of wind-up was observed in monoarthritic rats. Results suggest that the NO/GMPc pathway plays a non-significant role in wind-up activity evoked in normal animals, while it may be essential in chronic pain processing.

  1. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    PubMed Central

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  2. Mechanism of allosteric inhibition of N-acetyl-L-glutamate synthase by L-arginine.

    PubMed

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2009-02-20

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by approximately 10 A and decreases its height by approximately 20A(.) AAK dimers move 5A outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by approximately 4 degrees . The NAT domains rotate approximately 109 degrees relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  3. Does L-arginine induce intestinal adaptation by epithelial growth factor?

    PubMed

    Camli, Alparslan; Barlas, Meral; Yagmurlu, Aydin

    2005-01-01

    To evaluate whether L-Arginine has an effect on endogenous epidermal growth factor secretion and intestinal adaptation in massive small bowel resection an experimental study was performed. Fourteen albino Wistar rats weighing 250-300 g were used for the study. After performing 50% small bowel resection and anastomosis the rats were randomly divided into two groups. The first group received 500 mg/kg/day of L-Arginine intraperitoneally for 14 days just after the surgical procedure. The control group received isotonic saline instead. Body weight measurement was preformed daily. At the end of the second postoperative week all rats underwent relaparotomy. Small bowel was resected for histopathological examination. Levels of epidermal growth factor were measured by enzyme-linked immunosorbent assay in serum, saliva, and urine at the end of second postoperative week in both groups. The weight gain was higher in the L-Arginine treated group (P < 0.05). Serum, saliva and urinary epidermal growth factor levels were significantly higher at the end of the second week compared to the control group (P < 0.05). The villus height was higher on histopathological examination in L-Arginine treated group compared to the control group (P < 0.05). L-Arginine resulted in a better intestinal adaptation after massive bowel resection. The high levels of epidermal growth factor in body fluids of L-Arginine treated rats could be the explanation for this effect.

  4. Subacute Zinc Administration and L-NAME Caused an Increase of NO, Zinc, Lipoperoxidation, and Caspase-3 during a Cerebral Hypoxia-Ischemia Process in the Rat

    PubMed Central

    Blanco-Alvarez, Victor Manuel; Lopez-Moreno, Patricia; Soto-Rodriguez, Guadalupe; Martinez-Fong, Daniel; Rubio, Hector; Gonzalez-Barrios, Juan Antonio; Piña-Leyva, Celia; Torres-Soto, Maricela; Gomez-Villalobos, María de Jesus; Hernandez-Baltazar, Daniel; Eguibar, José Ramon; Ugarte, Araceli; Cebada, Jorge

    2013-01-01

    Zinc or L-NAME administration has been shown to be protector agents, decreasing oxidative stress and cell death. However, the treatment with zinc and L-NAME by intraperitoneal injection has not been studied. The aim of our work was to study the effect of zinc and L-NAME administration on nitrosative stress and cell death. Male Wistar rats were treated with ZnCl2 (2.5 mg/kg each 24 h, for 4 days) and N-ω-nitro-L-arginine-methyl ester (L-NAME, 10 mg/kg) on the day 5 (1 hour before a common carotid-artery occlusion (CCAO)). The temporoparietal cortex and hippocampus were dissected, and zinc, nitrites, and lipoperoxidation were assayed at different times. Cell death was assayed by histopathology using hematoxylin-eosin staining and caspase-3 active by immunostaining. The subacute administration of zinc before CCAO decreases the levels of zinc, nitrites, lipoperoxidation, and cell death in the late phase of the ischemia. L-NAME administration in the rats treated with zinc showed an increase of zinc levels in the early phase and increase of zinc, nitrites, and lipoperoxidation levels, cell death by necrosis, and the apoptosis in the late phase. These results suggest that the use of these two therapeutic strategies increased the injury caused by the CCAO, unlike the alone administration of zinc. PMID:23997853

  5. Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats.

    PubMed

    Moretto, Johnny; Guglielmetti, Anne-Sophie; Tournier-Nappey, Maude; Martin, Hélène; Prigent-Tessier, Anne; Marie, Christine; Demougeot, Céline

    2017-04-01

    While ageing is frequently associated with l-arginine deficiency, clinical and experimental studies provided controversial data on the interest of a chronic l-arginine supplementation with beneficial, no or even deleterious effects. It was hypothesized that these discrepancies might relate to a deviation of l-arginine metabolism towards production of l-ornithine rather than nitric oxide as a result of age-induced increase in arginase activity. This study investigated the effect of ageing on arginase activity/expression in target tissues and determined whether l-arginine supplementation modulated the effect of ageing on arginase activity. Arginase activity and expression were measured in the heart, vessel, brain, lung, kidney and liver in young rats (3-months old) and aged Wistar rats (22-24-months-old) with or without l-arginine supplementation (2.25% in drinking water for 6weeks). Plasma levels of l-arginine and l-ornithine were quantified in order to calculate the plasma l-arginine/l-ornithine ratio, considered as a reflection of arginase activity. Cardiovascular parameters (blood pressure, heart rate) and aortic vascular reactivity were also studied. Ageing dramatically reduced plasma l-arginine and l-arginine/l-ornithine ratio, decreased liver and kidney arginase activities but did not change activities in other tissues. l-Arginine supplementation normalized plasma l-arginine and l-arginine/l-ornithine ratio, improved endothelial function and decreased systolic blood pressure. These effects were associated with decreased arginase activity in aorta along with no change in the other tissues except in the lung in which activity was increased. A strong mismatch was therefore observed between arginase activity and expression in analyzed tissues. The present study reveals that ageing selectively changes arginase activity in clearance tissues, but does not support a role of the arginase pathway in the potential deleterious effect of the l-arginine supplementation in

  6. Neuroprotective Efficacy of Mitochondrial Antioxidant MitoQ in Suppressing Peroxynitrite-Mediated Mitochondrial Dysfunction Inflicted by Lead Toxicity in the Rat Brain.

    PubMed

    Maiti, Arpan Kumar; Saha, Nimai Chandra; More, Sunil S; Panigrahi, Ashish Kumar; Paul, Goutam

    2017-04-01

    Lead (Pb) is one of the most pollutant metals that accumulate in the brain mitochondria disrupting mitochondrial structure and function. Though oxidative stress mediated by reactive oxygen species remains the most accepted mechanism of Pb neurotoxicity, some reports suggest the involvement of nitric oxide ( • NO) and reactive nitrogen species in Pb-induced neurotoxicity. But the impact of Pb neurotoxicity on mitochondrial respiratory enzyme complexes remains unknown with no relevant report highlighting the involvement of peroxynitrite (ONOO - ) in it. Herein, we investigated these effects in in vivo rat model by oral application of MitoQ, a known mitochondria-specific antioxidant with ONOO - scavenging activity. Interestingly, MitoQ efficiently alleviated ONOO - -mediated mitochondrial complexes II, III and IV inhibition, increased mitochondrial ATP production and restored mitochondrial membrane potential. MitoQ lowered enhanced caspases 3 and 9 activities upon Pb exposure and also suppressed synaptosomal lipid peroxidation and protein oxidation accompanied by diminution of nitrite production and protein-bound 3-nitrotyrosine. To ascertain our in vivo findings on mitochondrial dysfunction, we carried out similar experiments in the presence of different antioxidants and free radical scavengers in the in vitro SHSY5Y cell line model. MitoQ provided better protection compared to mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase suggesting the predominant involvement of ONOO - compared to • NO and O 2 •- . However, dimethylsulphoxide and catalase failed to provide protection signifying the noninvolvement of • OH and H 2 O 2 in the process. The better protection provided by MitoQ in SHSY5Y cells can be attributed to the fact that MitoQ targets mitochondria whereas mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase are known to target mainly cytoplasm and not mitochondria. Taken together the results

  7. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation.

    PubMed

    Ghareib, Salah A; El-Bassossy, Hany M; Elberry, Ahmed A; Azhar, Ahmad; Watson, Malcolm L; Banjar, Zainy Mohammed

    2015-01-01

    The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg(-1)), and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3-3 μM) on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE). To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride (100 μM), guanylate cyclase inhibitor methylene blue (5 μM), calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM), and cyclooxygenase inhibitor indomethacin (5 μM) were added 30 minutes before assessing the direct vasorelaxant effect of 6-gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3-10 μM) alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-l-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially

  8. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation

    PubMed Central

    Ghareib, Salah A; El-Bassossy, Hany M; Elberry, Ahmed A; Azhar, Ahmad; Watson, Malcolm L; Banjar, Zainy Mohammed

    2015-01-01

    The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg−1), and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3–3 μM) on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE). To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride (100 μM), guanylate cyclase inhibitor methylene blue (5 μM), calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM), and cyclooxygenase inhibitor indomethacin (5 μM) were added 30 minutes before assessing the direct vasorelaxant effect of 6-gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3–10 μM) alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-l-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially

  9. Pentadecapeptide BPC 157 Reduces Bleeding and Thrombocytopenia after Amputation in Rats Treated with Heparin, Warfarin, L-NAME and L-Arginine.

    PubMed

    Stupnisek, Mirjana; Kokot, Antonio; Drmic, Domagoj; Hrelec Patrlj, Masa; Zenko Sever, Anita; Kolenc, Danijela; Radic, Bozo; Suran, Jelena; Bojic, Davor; Vcev, Aleksandar; Seiwerth, Sven; Sikiric, Predrag

    2015-01-01

    BPC 157 is a stable gastric pentadecapeptide recently implicated with a role in hemostasis. While NO is largely implicated in hemostatic mechanisms, in tail-amputation-models under heparin- and warfarin-administration, both the NO-synthase (NOS)-blocker, L-NAME (prothrombotic) and the NOS-substrate L-arginine (antithrombotic), were little investigated. Objective. To investigate the effect of L-NAME and L-arginine on hemostatic parameters, and to reveal the effects of BPC 157 on the L-NAME- and L-arginine-induced hemostatic actions under different pathological condition: tail amputation without or with anticoagulants, heparin or warfarin. Tail amputation, and/or i.v.-heparin (10 mg/kg), i.g.-warfarin (1.5 mg/kg/day for 3 days) were used in rats. Treatment includes BPC 157, L-NAME, L-arginine, per se and their combination. After (tail) amputation, with or without i.v.-heparin or i.g.-warfarin, BPC 157 (10 μg/kg, 10 ng/kg, i.p., i.v. (heparin), 10 μg/kg i.g. (warfarin)) always reduced bleeding time and/or haemorrhage and counteracted thrombocytopenia. As for L-NAME and/or L-arginine, we noted: L-arginine (100 mg/kg i.p.)-rats: more bleeding, less/no thrombocytopenia; L-NAME (5 mg/kg i.p.)-rats: less bleeding (amputation only), but present thrombocytopenia; L-NAME+L-arginine-rats also exhibited thrombocytopenia: L-NAME counteracted L-arginine-increased bleeding, L-arginine did not counteract L-NAME-thrombocytopenia. All animals receiving BPC 157 in addition (BPC 157 μg+L-NAME; BPC 157 μg+L-arginine, BPC 157 μg+L-NAME+L-arginine), exhibited decreased haemorrhage and markedly counteracted thrombocytopenia. L-NAME (thrombocytopenia), L-arginine (increased haemorrhage) counteraction and BPC 157 (decreased haemorrhage, counteracted thrombocytopenia) with rescue against two different anticoagulants, implicate a BPC 157 modulatory and balancing role with rescued NO-hemostatic mechanisms.

  10. Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension.

    PubMed

    Sollinger, Daniel; Eißler, Ruth; Lorenz, Steffen; Strand, Susanne; Chmielewski, Stefan; Aoqui, Cristiane; Schmaderer, Christoph; Bluyssen, Hans; Zicha, Josef; Witzke, Oliver; Scherer, Elias; Lutz, Jens; Heemann, Uwe; Baumann, Marcus

    2014-03-01

    Recent publications have shed new light on the role of the adaptive and innate immune system in the pathogenesis of hypertension. However, there are limited data whether receptors of the innate immune system may influence blood pressure. Toll-like receptor 4 (TLR4), a pattern recognition receptor, is a key component of the innate immune system, which is activated by exogenous and endogenous ligands. Hypertension is associated with end-organ damage and thus might lead to the release of damage-associated molecular patterns (DAMPs), which are endogenous activators of TLR4 receptors. The present study aimed to elucidate whether TLR4 signalling is able to modulate vascular contractility in an experimental model of hypertension thus contributing to blood pressure regulation. NG-nitro-l-arginine methyl ester (l-NAME)-induced hypertension was blunted in TLR4(-/-) when compared with wild-type mice. Treatment with l-NAME was associated with a release of DAMPs, leading to reactive oxygen species production of smooth muscle cells in a TLR4-dependent manner. As oxidative stress leads to an impaired function of the NO-sGC-cyclic GMP (cGMP) pathway, we were able to demonstrate that TLR4(-/-) was protected from sGC inactivation. Consequently, arterial contractility was reduced in TLR4(-/-). Cell damage-associated TLR4 signalling might act as a direct mediator of vascular contractility providing a molecular link between inflammation and hypertension.

  11. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2'-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2'-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...

  12. Arginine methylation of translocated in liposarcoma (TLS) inhibits its binding to long noncoding RNA, abrogating TLS-mediated repression of CBP/p300 activity.

    PubMed

    Cui, Wei; Yoneda, Ryoma; Ueda, Naomi; Kurokawa, Riki

    2018-05-21

    Translocated in liposarcoma (TLS) is an RNA-binding protein and a transcription-regulatory sensor of DNA damage. TLS binds promoter-associated noncoding RNA (pncRNA) and inhibits histone acetyltransferase (HAT) activity of CREB-binding protein (CBP)/E1A-binding protein P300 (p300) on the cyclin D1 (CCND1) gene. Although post-translational modifications of TLS, such as arginine methylation, are known to regulate TLS's nucleocytoplasmic shuttling and assembly in stress granules, its interactions with RNAs remain poorly characterized. Herein, using various biochemical assays, we confirmed the earlier observations that TLS is methylated by protein arginine methyltransferase 1 (PRMT1) in vitro. The arginine methylation of TLS disrupted binding to pncRNA and also prevented binding of TLS to and inhibition of CBP/p300. This result indicated that arginine methylation of TLS abrogates both binding to pncRNA and TLS-mediated inhibition of CBP/p300 HAT activities. We also report that an arginine residue within the Arg-Gly-Gly domain of TLS, Arg-476, serves as the major determinant for binding to pncRNA. Either methylation or mutation of Arg-476 of TLS significantly decreased pncRNA binding and thereby prevented a pncRNA-induced allosteric alteration in TLS that is required for its interaction with CBP/p300. Moreover, unlike wildtype TLS, an R476A TLS mutant did not inhibit CCND1 promoter activity in luciferase reporter assays. Taken together, we propose the hypothesis that arginine methylation of TLS regulates both TLS-nucleic acid and TLS-protein interactions and thereby participates in transcriptional regulation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    PubMed

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. The interaction of central nitrergic and GABAergic systems on food intake in neonatal layer-type chicks.

    PubMed

    Mokhtarpouriani, Kasra; Zendehdel, Morteza; Jonaidi, Hossein; Babapour, Vahab; Shayan, Parviz

    2016-05-01

    Most physiological behaviors such as food intake are controlled by the hypothalamus and its nuclei. It has been demonstrated that injection of the paraventricular nucleus of the hypothalamus with nitric oxide (NO) donors elicited changes in the concentration of some amino acids, including GABA. Also, central nitrergic and GABAergic systems are known to provide inputs to the paraventricular nucleus and are involved in food intake control. Therefore, the present study examines the probable interaction of central nitrergic and GABAergic systems on food intake in neonatal layer-type chicks. The results of this study showed that intracerebroventricular (ICV) injection of L-arginine (400 and 800 nmol), as a NO donor, significantly decreased food intake (P < 0.001), but ICV injection of Nω-Nitro-L-arginine methyl ester (L-NAME) (200 and 400 nmol), a NO synthesis inhibitor, increased food intake (P < 0.001). In addition, the orexigenic effect of gaboxadol (0.2 µg), a GABAA agonist, was significantly attenuated in ICV co-injection of L-arginine (200 nmol) and gaboxadol (0.2 µg) (P < 0.001), but it was significantly amplified in ICV co-injection of L-NAME (100 nmol) and gaboxadol (0.2 µg) (P < 0.001). On the other hand, the orexigenic effect of baclofen (0.2 µg), a GABAB agonist, did not change in ICV co-injection of L-arginine (200 nmol) or L-NAME (100 nmol) with baclofen (0.2 µg) (P > 0.05). Also, the hypophagic effect of L-arginine (800 nmol) was significantly amplified in ICV co-injection of picrotoxin (0.5 µg), a GABAA antagonist, or CGP54626 (21 ng), a GABAB antagonist, with L-arginine (800 nmol) (P < 0.001). These results probably suggest an interaction of central nitrergic and GABAergic systems on food intake in neonatal layer-type chicks and GABAA receptors play a major role in this interaction.

  15. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAKmore » domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.« less

  16. Esophagogastric anastomosis in rats: Improved healing by BPC 157 and L-arginine, aggravated by L-NAME

    PubMed Central

    Djakovic, Zeljko; Djakovic, Ivka; Cesarec, Vedran; Madzarac, Goran; Becejac, Tomislav; Zukanovic, Goran; Drmic, Domagoj; Batelja, Lovorka; Zenko Sever, Anita; Kolenc, Danijela; Pajtak, Alen; Knez, Nikica; Japjec, Mladen; Luetic, Kresimir; Stancic-Rokotov, Dinko; Seiwerth, Sven; Sikiric, Predrag

    2016-01-01

    AIM To cure typically life-threatening esophagogastric anastomosis in rats, lacking anastomosis healing and sphincter function rescue, in particular. METHODS Because we assume esophagogastric fistulas represent a particular NO-system disability, we attempt to identify the benefits of anti-ulcer stable gastric pentadecapeptide BPC 157, which was in trials for ulcerative colitis and currently for multiple sclerosis, in rats with esophagocutaneous fistulas. Previously, BPC 157 therapies have promoted the healing of intestinal anastomosis and fistulas, and esophagitis and gastric lesions, along with rescued sphincter function. Additionally, BPC 157 particularly interacts with the NO-system. In the 4 d after esophagogastric anastomosis creation, rats received medication (/kg intraperitoneally once daily: BPC 157 (10 μg, 10 ng), L-NAME (5 mg), or L-arginine (100 mg) alone and/or combined or BPC 157 (10 μg, 10 ng) in drinking water). For rats underwent esophagogastric anastomosis, daily assessment included progressive stomach damage (sum of the longest diameters, mm), esophagitis (scored 0-5), weak anastomosis (mL H2O before leak), low pressure in esophagus at anastomosis and in the pyloric sphincter (cm H2O), progressive weight loss (g) and mortality. Immediate effect assessed blood vessels disappearance (scored 0-5) at the stomach surface immediately after anastomosis creation. RESULTS BPC 157 (all regimens) fully counteracted the perilous disease course from the very beginning (i.e., with the BPC 157 bath, blood vessels remained present at the gastric surface after anastomosis creation) and eliminated mortality. Additionally, BPC 157 treatment in combination with L-NAME nullified any effect of L-NAME that otherwise intensified the regular course. Consistently, with worsening (with L-NAME administration) and amelioration (with L-arginine), either L-arginine amelioration prevails (attenuated esophageal and gastric lesions) or they counteract each other (L-NAME + L-arginine

  17. Esophagogastric anastomosis in rats: Improved healing by BPC 157 and L-arginine, aggravated by L-NAME.

    PubMed

    Djakovic, Zeljko; Djakovic, Ivka; Cesarec, Vedran; Madzarac, Goran; Becejac, Tomislav; Zukanovic, Goran; Drmic, Domagoj; Batelja, Lovorka; Zenko Sever, Anita; Kolenc, Danijela; Pajtak, Alen; Knez, Nikica; Japjec, Mladen; Luetic, Kresimir; Stancic-Rokotov, Dinko; Seiwerth, Sven; Sikiric, Predrag

    2016-11-07

    To cure typically life-threatening esophagogastric anastomosis in rats, lacking anastomosis healing and sphincter function rescue, in particular. Because we assume esophagogastric fistulas represent a particular NO-system disability, we attempt to identify the benefits of anti-ulcer stable gastric pentadecapeptide BPC 157, which was in trials for ulcerative colitis and currently for multiple sclerosis, in rats with esophagocutaneous fistulas. Previously, BPC 157 therapies have promoted the healing of intestinal anastomosis and fistulas, and esophagitis and gastric lesions, along with rescued sphincter function. Additionally, BPC 157 particularly interacts with the NO-system. In the 4 d after esophagogastric anastomosis creation, rats received medication (/kg intraperitoneally once daily: BPC 157 (10 μg, 10 ng), L-NAME (5 mg), or L-arginine (100 mg) alone and/or combined or BPC 157 (10 μg, 10 ng) in drinking water). For rats underwent esophagogastric anastomosis, daily assessment included progressive stomach damage (sum of the longest diameters, mm), esophagitis (scored 0-5), weak anastomosis (mL H 2 O before leak), low pressure in esophagus at anastomosis and in the pyloric sphincter (cm H 2 O), progressive weight loss (g) and mortality. Immediate effect assessed blood vessels disappearance (scored 0-5) at the stomach surface immediately after anastomosis creation. BPC 157 (all regimens) fully counteracted the perilous disease course from the very beginning ( i.e ., with the BPC 157 bath, blood vessels remained present at the gastric surface after anastomosis creation) and eliminated mortality. Additionally, BPC 157 treatment in combination with L-NAME nullified any effect of L-NAME that otherwise intensified the regular course. Consistently, with worsening (with L-NAME administration) and amelioration (with L-arginine), either L-arginine amelioration prevails (attenuated esophageal and gastric lesions) or they counteract each other (L-NAME + L-arginine); with

  18. Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats.

    PubMed

    Kao, Shang Jyh; Peng, Tai-Chu; Lee, Ru Ping; Hsu, Kang; Chen, Chao-Fuh; Hung, Yu-Kuen; Wang, David; Chen, Hsing I

    2003-01-01

    Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R. Copyright 2003 National Science Council, ROC and S. Karger AG, Basel

  19. l-Arginine is a Radioprotector for Hematopoietic Progenitor Cells

    PubMed Central

    Pearce, Linda L.; Zheng, Xichen; Martinez-Bosch, Sandra; Kerr, Patrick P.; Khlangwiset, Pornsri; Epperly, Michael W.; Fink, Mitchell P.; Greenberger, Joel S.; Peterson, Jim

    2012-01-01

    l-Arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation (137Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with l-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of l-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). l-Arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production. PMID:22175298

  20. Mapping arginine methylation in the human body and cardiac disease.

    PubMed

    Onwuli, Donatus O; Rigau-Roca, Laura; Cawthorne, Chris; Beltran-Alvarez, Pedro

    2017-01-01

    Arginine methylation (ArgMe) is one of the most ubiquitous PTMs, and hundreds of proteins undergo ArgMe in, for example, brain. However, the scope of ArgMe in many tissues, including the heart, is currently underexplored. Here, we aimed to (i) identify proteins undergoing ArgMe in human organs, and (ii) expose the relevance of ArgMe in cardiac disease. The publicly available proteomic data is used to search for ArgMe in 13 human tissues. To induce H9c2 cardiac-like cell hypertrophy glucose is used. The results show that ArgMe is mainly tissue-specific; nevertheless, the authors suggest an embryonic origin of core ArgMe events. In the heart, 103 mostly novel ArgMe sites in 58 nonhistone proteins are found. The authors provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. The pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose is provided. The work calls for in-depth investigation of ArgMe in normal and diseased tissues using methods including clinical proteomics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preinduction of heat shock protein 70 protects mice against post-infection irritable bowel syndrome via NF-κB and NOS/NO signaling pathways.

    PubMed

    Zhou, Xuchun; Dong, Liwei; Yang, Bo; He, Zhoutao; Chen, Yiyao; Deng, Taozhi; Huang, Baili; Lan, Cheng

    2015-12-01

    This study aimed to investigate the protective effects of preinduction of heat shock protein 70 (HSP70) on Trichinella spiralis infection-induced post-infectious irritable bowel syndrome (PI-IBS) in mice. Trichinella spiralis infection significantly reduced HSP70 abundance, ileal villus height and crypt depth, expression of tight junctions, serum lysine and arginine concentrations, and ileal SCL7A6 and SCL7A7 mRNA levels, induced inflammatory response, and activated NF-κB signaling pathway. Meanwhile, the heat treatment upregulated HSP70 expression, and then reversed intestinal dysfunction and inflammatory response. Preinduction of HSP70 enhanced serum arginine and intestinal SCL7A7 expression and inhibited NF-κB activation compared with PI-IBS model. Treatment with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) and N-nitro-L-arginine methyl ester hydrochloride (L-NAME, a nitric oxide synthase inhibitor, NOS) further demonstrated that preinduction of HSP70 might inhibit NF-κB and activated NOS/nitric oxide (NO) signaling pathways. In conclusion, preinduction of HSP70 by heat treatment may confer beneficial effects on Trichinella spiralis infection-induced PI-IBS in mice, and the protective effect of HSP70 may be associated with inhibition of NF-κB and stimulation of NOS/NO signaling pathways.

  2. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2â²-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2â²-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...

  3. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2â²-(1,2-diazenediyl)bis[2-methylbutanenitrile]- and 2,2â²-(1,2-diazenediyl)bis[2-methylpropanenitrile]-initiated. 721.10326...

  4. Pentadecapeptide BPC 157 Reduces Bleeding and Thrombocytopenia after Amputation in Rats Treated with Heparin, Warfarin, L-NAME and L-Arginine

    PubMed Central

    Stupnisek, Mirjana; Kokot, Antonio; Drmic, Domagoj; Hrelec Patrlj, Masa; Zenko Sever, Anita; Kolenc, Danijela; Radic, Bozo; Suran, Jelena; Bojic, Davor; Vcev, Aleksandar; Seiwerth, Sven; Sikiric, Predrag

    2015-01-01

    Background BPC 157 is a stable gastric pentadecapeptide recently implicated with a role in hemostasis. While NO is largely implicated in hemostatic mechanisms, in tail-amputation-models under heparin- and warfarin-administration, both the NO-synthase (NOS)-blocker, L-NAME (prothrombotic) and the NOS-substrate L-arginine (antithrombotic), were little investigated. Objective. To investigate the effect of L-NAME and L-arginine on hemostatic parameters, and to reveal the effects of BPC 157 on the L-NAME- and L-arginine-induced hemostatic actions under different pathological condition: tail amputation without or with anticoagulants, heparin or warfarin. Methods Tail amputation, and/or i.v.-heparin (10 mg/kg), i.g.-warfarin (1.5 mg/kg/day for 3 days) were used in rats. Treatment includes BPC 157, L-NAME, L-arginine, per se and their combination. Results After (tail) amputation, with or without i.v.-heparin or i.g.-warfarin, BPC 157 (10 μg/kg, 10 ng/kg, i.p., i.v. (heparin), 10 μg/kg i.g. (warfarin)) always reduced bleeding time and/or haemorrhage and counteracted thrombocytopenia. As for L-NAME and/or L-arginine, we noted: L-arginine (100 mg/kg i.p.)–rats: more bleeding, less/no thrombocytopenia; L-NAME (5 mg/kg i.p.)-rats: less bleeding (amputation only), but present thrombocytopenia; L-NAME+L-arginine-rats also exhibited thrombocytopenia: L-NAME counteracted L-arginine-increased bleeding, L-arginine did not counteract L-NAME-thrombocytopenia. All animals receiving BPC 157 in addition (BPC 157μg+L-NAME; BPC 157μg+L-arginine, BPC 157μg+L-NAME+L-arginine), exhibited decreased haemorrhage and markedly counteracted thrombocytopenia. Conclusions L-NAME (thrombocytopenia), L-arginine (increased haemorrhage) counteraction and BPC 157 (decreased haemorrhage, counteracted thrombocytopenia) with rescue against two different anticoagulants, implicate a BPC 157 modulatory and balancing role with rescued NO-hemostatic mechanisms. PMID:25897838

  5. Effects of L-arginine on solubilization and purification of plant membrane proteins.

    PubMed

    Arakawa, Junji; Uegaki, Masamichi; Ishimizu, Takeshi

    2011-11-01

    Biochemical analysis of membrane proteins is problematic at the level of solubilization and/or purification because of their hydrophobic nature. Here, we developed methods for efficient solubilization and purification of membrane proteins using L-arginine. The addition of 100 mM of basic amino acids (L-arginine, L-lysine, and L-ornithine) to a detergent-containing solubilization buffer enhanced solubilization (by 2.6-4.3 fold) of a model membrane protein-polygalacturonic acid synthase. Of all the amino acids, arginine was the most effective additive for solubilization of this membrane protein. Arginine addition also resulted in the best solubilization of other plant membrane proteins. Next, we examined the effects of arginine on purification of a model membrane protein. In anion-exchange chromatography, the addition of arginine to the loading and elution buffers resulted in a greater recovery of a membrane protein. In ultrafiltration, the addition of arginine to a protein solution significantly improved the recovery of a membrane protein. These results were thought to be due to the properties of arginine that prevent aggregation of hydrophobic proteins. Taken together, the results of our study showed that arginine is useful for solubilization and purification of aggregate-prone membrane proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. A 13C NMR study of the structure of four cinnamic acids and their methyl esters

    NASA Astrophysics Data System (ADS)

    Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.

    2001-09-01

    The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.

  7. Histone Arginine Methylation by PRMT7 Controls Germinal Center Formation via Regulating Bcl6 Transcription.

    PubMed

    Ying, Zhengzhou; Mei, Mei; Zhang, Peizhun; Liu, Chunyi; He, Huacheng; Gao, Fei; Bao, Shilai

    2015-08-15

    B cells are the center of humoral immunity and produce Abs to protect against foreign Ags. B cell defects lead to diseases such as leukemia and lymphomas. Histone arginine methylation is important for regulating gene activation and silencing in cells. Although the process commonly exists in mammalian cells, its roles in B cells are unknown. To explore the effects of aberrant histone arginine methylation on B cells, we generated mice with a B cell-specific knockout of PRMT7, a member of the methyltransferases that mediate arginine methylation of histones. In this article, we showed that the loss of PRMT7 led to decreased mature marginal zone B cells and increased follicular B cells and promoted germinal center formation after immunization. Furthermore, mice lacking PRMT7 expression in B cells secreted low levels of IgG1 and IgA. Abnormal expression of germinal center genes (i.e., Bcl6, Prdm1, and Irf4) was detected in conditional knockout mice. By overexpressing PRMT7 in the Raji and A20 cell lines derived from B cell lymphomas, we validated the fact that PRMT7 negatively regulated Bcl6 expression. Using chromatin immunoprecipitation-PCR, we found that PRMT7 could recruit H4R3me1 and symmetric H4R3me2 to the Bcl6 promoter. These results provide evidence for the important roles played by PRMT7 in germinal center formation. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions.

    PubMed

    Qamar, Seema; Wang, GuoZhen; Randle, Suzanne J; Ruggeri, Francesco Simone; Varela, Juan A; Lin, Julie Qiaojin; Phillips, Emma C; Miyashita, Akinori; Williams, Declan; Ströhl, Florian; Meadows, William; Ferry, Rodylyn; Dardov, Victoria J; Tartaglia, Gian G; Farrer, Lindsay A; Kaminski Schierle, Gabriele S; Kaminski, Clemens F; Holt, Christine E; Fraser, Paul E; Schmitt-Ulms, Gerold; Klenerman, David; Knowles, Tuomas; Vendruscolo, Michele; St George-Hyslop, Peter

    2018-04-19

    Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Vapor movement of the synthetic auxin herbicides, aminocyclopyrachlor and its methyl ester under laboratory and enclosed chamber environments

    USDA-ARS?s Scientific Manuscript database

    Aminocyclopyrachlor (DPX MAT28) a newly discovered synthetic auxin herbicide and its methyl ester (DPX KJM44) appear to control a number of perennial broadleaf weeds. The potential volatility of this new herbicide and its methyl ester were determined under laboratory conditions and were also compar...

  10. Different effect of l-NAME treatment on susceptibility to decompression sickness in male and female rats.

    PubMed

    Mazur, Aleksandra; Buzzacott, Peter; Lambrechts, Kate; Wang, Qiong; Belhomme, Marc; Theron, Michael; Popov, Georgi; Distefano, Giovanni; Guerrero, Francois

    2014-11-01

    Vascular bubble formation results from supersaturation during inadequate decompression contributes to endothelial injuries, which form the basis for the development of decompression sickness (DCS). Risk factors for DCS include increased age, weight-fat mass, decreased maximal oxygen uptake, chronic diseases, dehydration, and nitric oxide (NO) bioavailability. Production of NO is often affected by diving and its expression-activity varies between the genders. Little is known about the influence of sex on the risk of DCS. To study this relationship we used an animal model of Nω-nitro-l-arginine methyl ester (l-NAME) to induce decreased NO production. Male and female rats with diverse ages and weights were divided into 2 groups: treated with l-NAME (in tap water; 0.05 mg·mL(-1) for 7 days) and a control group. To control the distribution of nitrogen among tissues, 2 different compression-decompression protocols were used. Results showed that l-NAME was significantly associated with increased DCS in female rats (p = 0.039) only. Weight was significant for both sexes (p = 0.01). The protocol with the highest estimated tissue pressures in the slower compartments was 2.6 times more likely to produce DCS than the protocol with the highest estimated tissue pressures in faster compartments. The outcome of this study had significantly different susceptibility to DCS after l-NAME treatment between the sexes, while l-NAME per se had no effect on the likelihood of DCS. The analysis also showed that for the appearance of DCS, the most significant factors were type of protocol and weight.

  11. Asymmetric arginine dimethylation of heterogeneous nuclear ribonucleoprotein K by protein-arginine methyltransferase 1 inhibits its interaction with c-Src.

    PubMed

    Ostareck-Lederer, Antje; Ostareck, Dirk H; Rucknagel, Karl P; Schierhorn, Angelika; Moritz, Bodo; Huttelmaier, Stefan; Flach, Nadine; Handoko, Lusy; Wahle, Elmar

    2006-04-21

    Arginine methylation is a post-translational modification found in many RNA-binding proteins. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) from HeLa cells was shown, by mass spectrometry and Edman degradation, to contain asymmetric N(G),N(G)-dimethylarginine at five positions in its amino acid sequence (Arg256, Arg258, Arg268, Arg296, and Arg299). Whereas these five residues were quantitatively modified, Arg303 was asymmetrically dimethylated in <33% of hnRNP K and Arg287 was monomethylated in <10% of the protein. All other arginine residues were unmethylated. Protein-arginine methyltransferase 1 was identified as the only enzyme methylating hnRNP K in vitro and in vivo. An hnRNP K variant in which the five quantitatively modified arginine residues had been substituted was not methylated. Methylation of arginine residues by protein-arginine methyltransferase 1 did not influence the RNA-binding activity, the translation inhibitory function, or the cellular localization of hnRNP K but reduced the interaction of hnRNP K with the tyrosine kinase c-Src. This led to an inhibition of c-Src activation and hnRNP K phosphorylation. These findings support the role of arginine methylation in the regulation of protein-protein interactions.

  12. Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil

    NASA Astrophysics Data System (ADS)

    Sriatun; Darmawan, Adi; Sriyanti; Cahyani, Wuri; Widyandari, Hendri

    2018-05-01

    The using of zeolite/magnetite composite as a catalyst for the synthesis of methyl esters (MES) of cooking oil has been performed. In this study the natural magnetite was extracted from the iron sand of Semarang marina beach and milled by high energy Milling (HEM) with ball: magnetite ratio: 1:1. The composites prepared from natural zeolite and natural magnetite with zeolite: magnetite ratio 1:1; 2:1; 3:1 and 4:1. Preparation of methyl ester was catalyzed by composite of zeolite/magnetite through transeserification reaction, it was studied on variation of catalyst concentration (w/v) 1%, 3%, 5% and 10% to feed volume. The reaction product are mixture of methyl Oleic (MES), methyl Palmitic (MES) and methyl Stearic (MES). Character product of this research include density, viscosity, acid number and iodine number has fulfilled to SNI standard 7182: 2015.

  13. Ultrasonic assisted synthesis of adenosine triphosphate capped manganese-doped ZnS quantum dots for selective room temperature phosphorescence detection of arginine and methylated arginine in urine based on supramolecular Mg(2+)-adenosine triphosphate-arginine ternary system.

    PubMed

    Ren, Hu-Bo; Yan, Xiu-Ping

    2012-08-15

    An ultrasonic assisted approach was developed for rapid synthesis of highly water soluble phosphorescent adenosine triphosphate (ATP)-capped Mn-doped ZnS QDs. The prepared ATP-capped Mn-doped ZnS QDs allow selective phosphorescent detection of arginine and methylated arginine based on the specific recognition nature of supramolecular Mg(2+)-ATP-arginine ternary system in combination with the phosphorescence property of Mn-doped ZnS QDs. The developed QD based probe gives excellent selectivity and reproducibility (1.7% relative standard deviation for 11 replicate detections of 10 μM arginine) and low detection limit (3 s, 0.23 μM), and favors biological applications due to the effective elimination of interference from scattering light and autofluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site.

    PubMed

    Muddukrishna, Bhavana; Jackson, Christopher A; Yu, Michael C

    2017-06-01

    Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery. Published by Elsevier B.V.

  15. Rabbit aortic endothelial dysfunction by low-density lipoprotein is attenuated by L-arginine, L-ascorbate and pyridoxine

    PubMed Central

    Ji, Yong; Han, Yi; Diao, Jianxin; Huang, Yan; Chen, Qi; Ferro, Albert

    2003-01-01

    We investigated the relative effectiveness of L-arginine, L-ascorbate and pyridoxine in preventing the impairment of endothelium-mediated vasorelaxation induced by native low-density lipoprotein (nLDL) from healthy subjects, oxidised LDL (oxLDL, formed by oxidation of nLDL) or nLDL from type II diabetic patients (dLDL). Rabbit aortic rings were exposed to nLDL, dLDL or oxLDL (50–200 mg protein l−1), or corresponding vehicle, following which they were constricted with noradrenaline 10−6 M; concentration–relaxation curves were determined to acetylcholine (ACh), A23187, or sodium nitroprusside (NP), in the absence or presence of L-arginine (10−5–10−3 M), L-ascorbate (10−5–10−3 M) and pyridoxine (0.5–2.0 mM). nLDL, dLDL and oxLDL all inhibited relaxant responses to ACh and A23187, but not to NP, in a concentration-dependent manner (oxLDL>dLDL>nLDL). In the presence of all LDL preparations, L-arginine, L-ascorbate or pyridoxine each improved ACh and A23187 responses, although none completely normalised endothelium-dependent relaxations. The maximal effect of L-arginine occurred at 10−4 M. The combination of L-arginine 10−4 M, L-ascorbate 10−5 M and pyridoxine 2.0 mM was equally effective as L-arginine 10−4 M alone. Our results confirm that nLDL, dLDL and oxLDL exert inhibitory effects on endothelium dependent, but not endothelium independent, relaxation of rabbit aorta. ACh and A23187 responses in the presence of any LDL species can be ameliorated by supplementation with L-arginine, L-ascorbate or pyridoxine, either singly or in combination, with no agent or combination proving superior to L-arginine alone. Nevertheless, ACh and A23187 responses are not completely normalised with such supplements, suggesting that there also exists a component of LDL-induced inhibition of endothelium-mediated vasorelaxation that is independent of the nitric oxide system. PMID:14597596

  16. Malate and Aspartate Increase L-Arginine and Nitric Oxide and Attenuate Hypertension.

    PubMed

    Hou, Entai; Sun, Na; Zhang, Fuchang; Zhao, Chenyang; Usa, Kristie; Liang, Mingyu; Tian, Zhongmin

    2017-05-23

    Fumarase catalyzes the interconversion of fumarate and L-malate in the tricarboxylic acid cycle. The Dahl salt-sensitive (SS) rat, a model of salt-sensitive hypertension, exhibits fumarase insufficiencies. To investigate the mechanism mediating the effect of fumarase-related metabolites on hypertension, we considered the pathway in which L-malate can be converted to oxaloacetate, aspartate, argininosuccinate, and L-arginine, the substrate of nitric oxide (NO) synthase. The levels of aspartate, citrulline, L-arginine, and NO were significantly decreased in the kidneys of SS rats compared to salt-insensitive consomic SS.13 BN rats. Knockdown of fumarase in human kidney cells and vascular endothelial cells resulted in decreased levels of malate, aspartate, L-arginine, and NO. Supplementation of aspartate or malate increased renal levels of L-arginine and NO and attenuated hypertension in SS rats. These findings reveal a multi-step metabolic pathway important for hypertension in which malate and aspartate may modulate blood pressure by altering levels of L-arginine and NO. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Regulation of post-translational protein arginine methylation during HeLa cell cycle.

    PubMed

    Kim, Chongtae; Lim, Yongchul; Yoo, Byong Chul; Won, Nam Hee; Kim, Sangduk; Kim, Gieun

    2010-09-01

    Post-translational arginine methylation which modifies protein-arginyl residues by protein arginine methyltransferase (PRMT) was investigated during synchronized HeLa cell cycle. The lysates of cells synchronized at each stage were subjected to one and/or two dimensional electrophoresis followed by Western immunoblot using against anti-asymmetric-dimethyl-arginine (ASYM24), anti-symmetric-dimethyl-arginine (SYM10), and subclasses of PRMTs, including PRMT1, PRMT3, PRMT4 (CARM1), PRMT5, PRMT6, and PRMT7 antibodies. Proteins with approximate molecular masses of 80 kDa, 68 kDa, and 64 kDa, containing asymmetric-dimethyl-arginine (aDMA) were increased at G0/G1 to G1, which lasted until S phase. In addition, 25 kDa protein of symmetric-dimethyl-arginine (sDMA) was also markedly up-regulated from G0/G1 to G1. The levels of PRMT3, PRMT6 and PRMT7 were concurrently increased during the cell cycle. Two-dimensional gel electrophoresis followed by MALDI-TOF-MS was identified as aDMA-80 kDa and aDMA-68 kDa proteins as heterogeneous nuclear ribonucleoprotein R (hnRNPR), aDMA-64 kDa proteins as cleavage stimulation factor 64 kDa subunit (CstF-64), and sDMA-25 kDa protein as triosephosphate isomerase (TPI). The levels of increased aDMA of hnRNPR were reduced, when HeLa cells were transfected with siRNA for PRMT1, and the aDMA of CstF-64 with siRNA for PRMT3, while depletion of PRMT5 down-regulated sDMA of TPI. Protein arginine dimethylations of hnRNPR, CstF-64, and TPI were regulated during HeLa cell cycle by respective PRMTs. These results suggest that regulation of arginine dimethylation of hnRNPR, CstF-64, and TPI at G0/G1 to G1 are most likely to modulate the cellular growth and proliferation in HeLa cell cycle. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  19. L-Arginine Modulates Glucose and Lipid Metabolism in Obesity and Diabetes.

    PubMed

    Hu, Shengdi; Han, Meng; Rezaei, Arash; Li, Defa; Wu, Guoyao; Ma, Xi

    2017-01-01

    Type 2 diabetes has become a global public health problem affecting approximately 380 million people throughout the world. It can cause many complications and lead to greater mortality. At present, there is no available medicine for effectively preventing diabetes. L-arginine, a functional amino acid, the precursor of nitric oxide, plays a crucial role in maintenance, reproduction, growth, anti-aging and immunity for animals. Growing clinical evidence indicates that dietary L-arginine supplementation can reduce obesity, decrease arterial blood pressure, resist oxidation and normalize endothelial dysfunction to bring about remission of type 2 diabetes. The potential molecular mechanism may play a role in modulating glucose homeostasis, promoting lipolysis, maintaining hormone levels, ameliorating insulin resistance, and fetal programing in early stages. The possible signaling pathway of the beneficial effects of L-arginine likely involves L-arginine-nitric oxide pathway through which cell signal protein can be activated. Accumulating studies have indicated that L-arginine may have potential to prevent and/or relieve type 2 diabetes via restoring insulin sensitivity in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Celecoxib aggravates cardiac apoptosis in L-NAME-induced pressure overload model in rats: Immunohistochemical determination of cardiac caspase-3, Mcl-1, Bax and Bcl-2.

    PubMed

    Mosaad, Sarah M; Zaitone, Sawsan A; Ibrahim, Abdelazim; El-Baz, Amani A; Abo-Elmatty, Dina M; Moustafa, Yasser M

    2017-06-25

    The mechanism of celecoxib cardiovascular adverse events was earlier investigated; yet in-depth investigations are needed to assess the involvement of its pro-apoptotic effect throughout this process. An in-vivo chronic rat model of pressure overload employing Nʷ-nitro-l-arginine methyl ester (L-NAME) was tested at different time intervals to ensure the occurrence of persistent myocardial apoptosis along with pressure overload. Seven groups of male Wistar rats were assigned as (i) distilled water; (ii-iv) L-NAME (60 mg/kg) for 6, 12 or 16 weeks; (v-vii) L-NAME [16 weeks] + celecoxib (25, 50 or 100 mg/kg), from week 13 to week 16. Treatment with L-NAME for 6, 12 or 16 weeks increased systolic blood pressure, serum level of creatine kinase-MB and lactate dehydrogenase. Further, it induced cardiac hypertrophy, detected in terms of greater heart weight index and cardiomyocyte cross-sectional area and produced interstitial and perivascular fibrosis. Moreover, administration of L-NAME increased cardiac immunostaining for activated caspase-3 and Bax/Bcl-2 ratio whereas; immunostaining for Mcl-1 was decreased. Administration of celecoxib (25, 50 or 100 mg/kg) aggravated the L-NAME-induced toxicity. The work results shed the light on the putative pro-apoptotic effect of celecoxib at a risk state of pressure overload comparable to the clinical condition of essential hypertension. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Antihypertensive mechanisms of chronic captopril or N-acetylcysteine treatment in L-NAME hypertensive rats.

    PubMed

    Zicha, Josef; Dobesová, Zdenka; Kunes, Jaroslav

    2006-12-01

    Hypertension due to chronic inhibition of NO synthase (NOS) by Nomega-nitro-L-arginine methyl ester (L-NAME) administration is characterized by both impaired NO-dependent vasodilation and enhanced sympathetic vasoconstriction. The aim of our study was to evaluate changes in the participation of major vasoactive systems in L-NAME-treated rats which were subjected to simultaneous antihypertensive (captopril) or antioxidant (N-acetylcysteine, NAC) treatment. Three-month-old Wistar males treated with L-NAME (60 mg/kg/day) for 5 weeks were compared to rats in which L-NAME treatment was combined with simultaneous chronic administration of captopril or NAC. Basal blood pressure (BP) and its acute responses to consecutive i.v. injections of captopril (10 mg/kg), pentolinium (5 mg/kg), L-NAME (30 mg/kg), tetraethylammonium (TEA, 16 mg/kg) and nitroprusside (NP, 20 microg/kg) were determined in conscious rats at the end of the study. The development of L-NAME hypertension was prevented by captopril treatment, whereas NAC treatment caused only a moderate BP reduction. Captopril treatment normalized the sympathetic BP component and significantly reduced residual BP (measured at full NP-induced vasodilation). In contrast, chronic NAC treatment did not modify the sympathetic BP component or residual BP, but significantly enhanced NO-dependent vasodilation. Neither captopril nor NAC treatment influenced the compensatory increase of TEA-sensitive vasodilation mediated by endothelium-derived hyperpolarizing factor in L-NAME-treated rats. Chronic captopril treatment prevented L-NAME hypertension by lowering of sympathetic tone, whereas chronic NAC treatment attenuated L-NAME hypertension by reduction in the vasodilator deficit due to enhanced NO-dependent vasodilation.

  2. Gene expression network regulated by DNA methylation and microRNA during microcystin-leucine arginine induced malignant transformation in human hepatocyte L02 cells.

    PubMed

    Chen, Hong-Qiang; Zhao, Ji; Li, Yan; He, Li-Xiong; Huang, Yu-Jing; Shu, Wei-Qun; Cao, Jia; Liu, Wen-Bin; Liu, Jin-Yi

    2018-06-01

    Microcystin (MC) is a cyclic heptapeptide compound which could lead to the development of hepatocellular carcinoma. However, the underlying epigenetic regulation mechanism is largely unknown. In this study, microcystin-LR (L: lysine, R: arginine, MC-LR) was used to induce the malignant transformation of human hepatocyte L02 cell line. The profile of gene expression, microRNA (miRNA) and DNA methylation were detected through high-throughput sequencing. Compared with control group, the expression of 826 genes and 187 miRNAs changed significantly in MC-LR treated group. DNA methylation sequencing analysis showed that 2592 CpG sites differentially methylated in promoter or the coding DNA sequence (CDS) of genes, while DNA methyltransferase 3 alpha (DNMT3a) and DNA methyltransferase 3 beta (DNMT3b) were dramatically up-regulated. Functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that significantly changed mRNAs and microRNAs were mainly involved in the formation of cancer, proliferation, invasion, migration and metabolism. MiRNA-mRNA network and mRNA-mRNA network analysis showed that hsa-miR-320a, hsa-miR-331-3p, hsa-miR-26a-5p, hsa-miR-196a-5p, hsa-miR-221-3p, coiled-coil domain containing 180 (CCDC180), melanoma antigen gene family member D1 (MAGED1), membrane spanning 4-domains A7 (MS4A7), hephaestin like 1 (HEPHL1), BH3 (Bcl-2 homology 3)-like motif containing, cell death inducer (BLID), matrix metallopeptidase 13 (MMP13), guanylate binding protein 5 (GBP5), adipogenesis regulatory factor (ADIRF), formin homology 2 domain containing 1 (FHDC1), protein kinase CAMP-dependent type II regulatory subunit beta (PRKAR2B), nodium leak channel, non-selective (NALCN), myosin light chain kinase 3 (MYLK3), epidermal growth factor receptor (EGFR) and zinc finger protein 704 (ZNF704) were key miRNAs and genes in the malignant transformation induced by MC-LR in L02 cells. Moreover, we found that expression of MYLK3, EGFR and ZNF704 were

  3. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng Wei; Oike, Masahiro; Hirakawa, Masakazu

    2005-09-15

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation inmore » response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca{sup 2+} transients and cellular uptake of L-[{sup 3}H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[{sup 3}H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine.« less

  4. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.

    PubMed

    Lubitz, Dorit; Jorge, João M P; Pérez-García, Fernando; Taniguchi, Hironori; Wendisch, Volker F

    2016-10-01

    L-arginine is a semi-essential amino acid with application in cosmetic, pharmaceutical, and food industries. Metabolic engineering strategies have been applied for overproduction of L-arginine by Corynebacterium glutamicum. LysE was the only known L-arginine exporter of this bacterium. However, an L-arginine-producing strain carrying a deletion of lysE still accumulated about 10 mM L-arginine in the growth medium. Overexpression of the putative putrescine and cadaverine export permease gene cgmA was shown to compensate for the lack of lysE with regard to L-arginine export. Moreover, plasmid-borne overexpression of cgmA rescued the toxic effect caused by feeding of the dipeptide Arg-Ala to lysE-deficient C. glutamicum and argO-deficient Escherichia coli strains. Deletion of the repressor gene cgmR improved L-arginine titers by 5 %. Production of L-lysine and L-citrulline was not affected by cgmA overexpression. Taken together, CgmA may function as an export system not only for the diamine putrescine and cadaverine but also for L-arginine. The major export system for L-lysine and L-arginine LysE may also play a role in L-citrulline export since production of L-citrulline was reduced when lysE was deleted and improved by 45 % when lysE was overproduced.

  5. High asymmetric dimethylarginine, symmetric dimethylarginine and L-arginine levels in migraine patients.

    PubMed

    Reyhani, Aylin; Celik, Yahya; Karadag, Hakan; Gunduz, Ozgur; Asil, Talip; Sut, Necdet

    2017-07-01

    Experimental and clinical data strongly suggests that nitric oxide (NO) plays a pivotal role in migraine. This is also supported by studies of migraine induced by substances that release NO. NO is synthesized from L-arginine by endothelial NO synthase (NOS). Asymmetric dimethylarginine (ADMA) is the major endogenous competitive inhibitor of NOS. Symmetric dimethylarginine (SDMA) is an inactive stereoisomer of ADMA. It may reduce NO production by competing with arginine for cellular uptake. The aim of this study was to measure the levels of ADMA, SDMA and L-arginine in migraine patients during the interictal period. One hundred migraine patients and 100 healthy volunteers were recruited. The patients were in the interictal period and classified into two groups as having migraine with aura and migraine without aura. Their serum ADMA, SDMA and L-arginine levels were measured by high-performance liquid chromotography (HPLC) method. ADMA, SDMA and L-arginine levels were significantly higher in migraine patients compared to the control group. But there was no difference between the patients with and without aura. These results suggest that NOS inhibitors and L-arginine/NO pathway plays an important role in migraine pathopysiology.

  6. Effect of Sildenafil on Pre-Eclampsia-Like Mouse Model Induced By L-Name.

    PubMed

    Motta, C; Grosso, C; Zanuzzi, C; Molinero, D; Picco, N; Bellingeri, R; Alustiza, F; Barbeito, C; Vivas, A; Romanini, M C

    2015-08-01

    N(omega)-nitro-L-arginine methyl ester (L-NAME) decreases the vasodilator effect of nitric oxide (NO) and induces pre-eclampsia in mouse. Sildenafil inhibits the degradation of nitric oxide and increases vasodilation. This study aimed to determine the effects of sildenafil citrate on angiogenesis and oxidative stress at the maternal foetal interface on pre-eclampsia-like mouse model induced by L-NAME. Twenty pregnant mice were divided into four groups: (i) vehicle control; (ii) L-NAME; (iii) sildenafil; (4) L-NAME+sildenafil. L-NAME was administered from day 7 of pregnancy and sildenafil from day 8 until day 16; animals were euthanized on day 17. Placental and foetal sizes and weights were measured; lipid peroxide levels and catalase activity in placental homogenates were determined, and placental vascular endothelia were identified by lectin-histochemistry using BSA-I lectin. Western blot analysis was used to determine VEGF expression in placental homogenates. No changes were seen in placental and foetal development in mice with normal pregnancies treated with sildenafil. Treatments with L-NAME reduced significantly the placental weight and average height and decreased the percentage of the endothelial surface. These alterations may be mediated by the reduction of NO levels in trophoblastic cells, due to the inhibitory effect of L-NAME on nitric oxide synthase (NOS) synthesis. This effect was offset by the treatment with sildenafil, with an increase in the percentage of the endothelial surface. In conclusion, our results indicate that treatment with sildenafil on pre-eclampsia mouse model can be used without adverse effects on the concept and its use in the treatment of pre-eclampsia is promising. © 2015 Blackwell Verlag GmbH.

  7. Role of intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the hamster oesophagus

    PubMed Central

    Izumi, Noriaki; Matsuyama, Hayato; Ko, Mifa; Shimizu, Yasutake; Takewaki, Tadashi

    2003-01-01

    Oesophageal peristalsis is controlled by vagal motor neurones, and intrinsic neurones have been identified in the striated muscle oesophagus. However, the effect(s) of intrinsic neurones on vagally mediated contractions of oesophageal striated muscles has not been defined. The present study was designed to investigate the role of intrinsic neurones on vagally evoked contractions of oesophageal striated muscles, using hamster oesophageal strips maintained in an organ bath. Stimulation (30 μs, 20 V) of the vagus nerve trunk produced twitch contractions. Piperine inhibited vagally evoked contractions, while capsaicin and NG-nitro-L-arginine methyl ester (L-NAME) abolished the inhibitory effect of piperine. The effect of L-NAME was reversed by subsequent addition of L-arginine, but not by D-arginine. L-NAME did not have any effect on the vagally mediated contractions and presumed 3H-ACh release. NONOate, a nitric oxide donor, and dibutyryl cyclic GMP inhibited twitch contractions. Inhibition of vagally evoked contractions by piperine and NONOate was fully reversed by ODQ, an inhibitor of guanylate cyclase. Immunohistochemical staining showed immunoreactivity for nitric oxide synthase (NOS) in nerve cell bodies and fibres in the myenteric plexus and the presence of choline acetyltransferase and NOS in the motor endplates. Only a few NOS-immunoreactive portions in the myenteric plexus showed vanilloid receptor 1 (VR1) immunoreactivity. Our results suggest that there is a local neural reflex that involves capsaicin-sensitive neurones, nitrergic myenteric neurones and vagal motor neurones. PMID:12813149

  8. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Ameli, Sanaz; Akhlaghipour, Golnoosh; Dehpour, AhmadReza

    2016-04-01

    Based on clinical studies regarding the beneficial effect of gabapentin in depression, we aimed to evaluate the antidepressant-like properties of gabapentin in mice and also the participation of nitric oxide (NO)/cyclic guanosine monophosphate pathway in this effect. The following drugs were used in this study: gabapentin; N(G)-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase (NOS) inhibitor; 7-nitroindazole, a specific neuronal NOS inhibitor; aminoguanidine, a specific inducible NOS inhibitor; L-arginine, a NO precursor; and sildenafil, a phosphodiestrase inhibitor. Finally, we studied the behavioral effects through the forced swimming test (FST) and the changes of the hippocampus NO level through nitrite assay. The immobility time was significantly reduced after gabapentin administration. Co-administration of non-effective doses of gabapentin and L-NAME or 7-nitroindazole (7-NI) resulted in antidepressant-like effect in FST, while aminoguanidine did not affect the immobility time of gabapentin-treated mice. Furthermore, the antidepressant-like property of gabapentin was prevented by L-arginine or sildenafil. Also, the hippocampal nitrite level was significantly lower in gabapentin-treated mice relative to saline-injected mice, and co-administration of 7-NI with sub-effective gabapentin caused a significant decrease in hippocampal nitrite levels. Our results indicate that the antidepressant-like effect of gabapentin in the mice FST model is mediated at least in part through nitric oxide/cyclic guanosine monophosphate (cGMP) pathway.

  9. Reengineering of the feedback-inhibition enzyme N-acetyl-L-glutamate kinase to enhance L-arginine production in Corynebacterium crenatum.

    PubMed

    Zhang, Jingjing; Xu, Meijuan; Ge, Xiaoxun; Zhang, Xian; Yang, Taowei; Xu, Zhenghong; Rao, Zhiming

    2017-02-01

    N-acetyl-L-glutamate kinase (NAGK) catalyzes the second step of L-arginine biosynthesis and is inhibited by L-arginine in Corynebacterium crenatum. To ascertain the basis for the arginine sensitivity of CcNAGK, residue E19 which located at the entrance of the Arginine-ring was subjected to site-saturated mutagenesis and we successfully illustrated the inhibition-resistant mechanism. Typically, the E19Y mutant displayed the greatest deregulation of L-arginine feedback inhibition. An equally important strategy is to improve the catalytic activity and thermostability of CcNAGK. For further strain improvement, we used site-directed mutagenesis to identify mutations that improve CcNAGK. Results identified variants I74V, F91H and K234T display higher specific activity and thermostability. The L-arginine yield and productivity of the recombinant strain C. crenatum SYPA-EH3 (which possesses a combination of all four mutant sites, E19Y/I74V/F91H/K234T) reached 61.2 and 0.638 g/L/h, respectively, after 96 h in 5 L bioreactor fermentation, an increase of approximately 41.8% compared with the initial strain.

  10. The effects of sildenafil citrate on uterine angiogenic status and serum inflammatory markers in an L-NAME rat model of pre-eclampsia.

    PubMed

    Soobryan, Nerolen; Murugesan, Saravanakumar; Phoswa, Wendy; Gathiram, Prem; Moodley, Jagidesa; Mackraj, Irene

    2017-01-15

    Pre-eclampsia (PE), a hypertensive disorder of pregnancy, is detrimental to both mother and foetus. There is currently no effective treatment, but we have shown that Sildenafil Citrate (SC) improve various foetal outcomes in N ω -nitro-L arginine methyl ester (L-NAME) rat model of PE. Therefore, we aimed to investigate the effects of SC on a uterine angiogenic status and serum inflammatory markers in an L-NAME rat model of PE. One hundred and twenty adult nulliparous pregnant female Sprague-Dawley rats were used for the study. These were divided into five equal groups; the pregnant control, early and late onset PE and respective SC treated animals. Hypertension was manifested by considerably increased systolic blood pressure and placental lipid peroxidative marker (thiobarbituric acid reactive substances) and also we assessed the activities of plasma nitric oxide level, serum inflammatory marker (TGF-β and IFN-γ) and uterine angiogenic status (VEGF and sFlt-1) at two stages of PE. The administration of SC decreased systolic blood pressure, placental lipid peroxidation product and altered uterine angiogenic status; increased plasma nitric oxide levels in an early and late onset L-NAME model of PE. In addition, histological findings of SC treated preeclamptic rat placenta support the biochemical findings of this study. Our findings revealed that SC enhanced plasma NO levels and uterine angiogenic status in an L-NAME model of PE at two gestational stages. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Peripheral NMDA Receptor/NO System Blockage Inhibits Itch Responses Induced by Chloroquine in Mice

    PubMed Central

    Haddadi, Nazgol-Sadat; Foroutan, Arash; Ostadhadi, Sattar; Azimi, Ehsan; Rahimi, Nastaran; Nateghpour, Mehdi; Lerner, Ethan A.; Dehpour, Ahmad Reza

    2017-01-01

    Intradermal administration of chloroquine (CQ) provokes scratching behavior in mice. Chloroquine-induced itch is histamine-independent and we have reported that the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is involved in CQ-induced scratching behavior in mice. Previous studies have demonstrated that activation of N-methyl-d-aspartate receptors (NMDARs) induces NO production. Here we show that NMDAR antagonists significantly decrease CQ-induced scratching in mice while a non-effective dose of an NMDAR agonist potentiates the scratching behavior provoked by sub-effective doses of CQ. In contrast, combined pre-treatment with sub-effective doses of an NMDAR antagonist, MK-801, and the NO synthase inhibitor, L-N-nitro arginine methyl ester (L-NAME), decreases CQ-induced scratching behavior. While intradermal administration of CQ significantly increases the concentration of intradermal nitrite, the end product of NO metabolism, effective doses of intraperitoneal and intradermal MK-801 significantly decrease intradermal nitrite levels. Likewise, administration of an effective dose of L-NAME significantly decreases CQ-induced nitrite production. We conclude that the NMDA/NO pathway in the skin modulates CQ-induced scratching behavior. PMID:28119997

  12. Methyl Ester Production via Heterogeneous Acid-Catalyzed Simultaneous Transesterification and Esterification Reactions

    NASA Astrophysics Data System (ADS)

    Indrayanah, S.; Erwin; Marsih, I. N.; Suprapto; Murwani, I. K.

    2017-05-01

    The heterogeneous acid catalysts (MgF2 and ZnF2) have been used to catalyze the simultaneous transesterification and esterification reactions of crude palm oil (CPO) with methanol. Catalysts were synthesized by sol-gel method (combination of fluorolysis and hydrolysis). The physicochemical, structural, textural, thermal stability of the prepared catalysts was investigated by N2 adsorption-desorption, XRD, FT-IR, SEM and TG/DTG. Both MgF2 and ZnF2 have rutile structures with a different phase. The surface area of ZnF2 is smaller than that of MgF2, but the pore size and volume of ZnF2 are larger than those of MgF2. However, these materials are thermally stable. The performance of the catalysts is determined from the yield of catalysts toward the formation of methyl ester determined based on the product of methyl ester obtained from the reaction. The catalytic activity of ZnF2 is higher than MgF2 amounted to 85.21% and 26.82% with the optimum condition. The high activity of ZnF2 could be attributed to its pore diameter and pore volume but was not correlated with its surface area. The yield of methyl ester decreased along with the increase in molar ratio of methanol/CPO from 85.21 to 80.99 for ZnF2, respectively.

  13. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    NASA Astrophysics Data System (ADS)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  14. Mixture of Arginine, Glutamine, and β-hydroxy-β-methyl Butyrate Enhances the Healing of Ischemic Wounds in Rats.

    PubMed

    Gündoğdu, Rıza Haldun; Temel, Hande; Bozkırlı, Bahadır Osman; Ersoy, Eren; Yazgan, Aylin; Yıldırım, Zuhal

    2017-08-01

    This study investigated the effects of an amino acid mixture containing arginine, glutamine, and β-hydroxy-β-methyl butyrate on secondary healing of ischemic wounds in a rat model (N = 18). After the formation of a bipediculated flap on each rat, 2 full-thickness excisional skin wounds (2 × 2 cm) were created on every flap. The rats were then randomized into the control and treatment groups. Every rat received standardized rat food throughout the study. The rats in the treatment group were administered an extra 200 mg/kg of L-arginine, 200 mg/kg of L-glutamine, and 40 mg/kg of β-hydroxy-β-methyl butyrate per day. Wound sizes were measured on days 0, 4, 10, and 14. The rats were sacrificed, and the wounds were excised for biochemical and histologic examination on the 14th day. As compared with the control group, the treatment group's wound sizes were significantly smaller on days 10 and 14 ( P < .001), as was its inflammatory cell accumulation score ( P = .008). There was no significant difference between the 2 groups in collagen accumulation ( P = .340), granulation tissue maturation ( P = .161), angiogenesis ( P = .387), or reepithelialization ( P = .190) and no significant difference between hydroxyproline concentrations in wounds ( P = .287). This amino acid combination seems to have a positive impact on the secondary healing of experimental ischemic wounds when introduced as a supplement to the standard diet, and the reduction in the inflammatory process appears to play a role in this effect.

  15. Alterations in plasma L-arginine and methylarginines in heart failure and after heart transplantation.

    PubMed

    Lundgren, Jakob; Sandqvist, Anna; Hedeland, Mikael; Bondesson, Ulf; Wikström, Gerhard; Rådegran, Göran

    2018-04-12

    Endothelial function, including the nitric oxide (NO)-pathway, has previously been extensively investigated in heart failure (HF). In contrast, studies are lacking on the NO pathway after heart transplantation (HT). We therefore investigated substances in the NO pathway prior to and after HT in relation to hemodynamic parameters. 12 patients (median age 50.0 yrs, 2 females), heart transplanted between June 2012 and February 2014, evaluated at our hemodynamic lab, at rest, prior to HT, as well as four weeks and six months after HT were included. All patients had normal left ventricular function post-operatively and none had post-operative pulmonary hypertension or acute cellular rejection requiring therapy at the evaluations. Plasma concentrations of ADMA, SDMA, L-Arginine, L-Ornithine and L-Citrulline were analyzed at each evaluation. In comparison to controls, the plasma L-Arginine concentration was low and ADMA high in HF patients, resulting in low L-Arginine/ADMA-ratio pre-HT. Already four weeks after HT L-Arginine was normalized whereas ADMA remained high. Consequently the L-Arginine/ADMA-ratio improved, but did not normalize. The biomarkers remained unchanged at the six-month evaluation and the L-Arginine/ADMA-ratio correlated inversely to pulmonary vascular resistance (PVR) six months post-HT. Plasma L-Arginine concentrations normalize after HT. However, as ADMA is unchanged, the L-Arginine/ADMA-ratio remained low and correlated inversely to PVR. Together these findings suggest that (i) the L-Arginine/ADMA-ratio may be an indicator of pulmonary vascular tone after HT, and that (ii) NO-dependent endothelial function is partly restored after HT. Considering the good postoperative outcome, the biomarker levels may be considered "normal" after HT.

  16. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  17. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    NASA Astrophysics Data System (ADS)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  18. Poly-L-arginine: Enhancing Cytotoxicity and Cellular Uptake of Doxorubicin and Necrotic Cell Death.

    PubMed

    Movafegh, Bahareh; Jalal, Razieh; Mohammadi, Zobeideh; Aldaghi, Seyyede Araste

    2018-04-11

    Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide-acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicin-induced cell death. Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24 h combined treatment of cells with doxorubicin (0.5 μM) and poly-L-arginine (1 μg ml-1) caused a small increase in doxorubicin-induced apoptosis and significant elevated necrosis in DU145 cells as compared to each agent alone. Conlusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferation-inducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Decreased Arteriolar Tetrahydrobiopterin is Linked to Superoxide Generation from Nitric Oxide Synthase in Mice Fed High Salt

    PubMed Central

    Nurkiewicz, Timothy R.; Wu, Guoyao; Li, Peng; Boegehold, Matthew A.

    2012-01-01

    Objective Impaired endothelium-dependent arteriolar dilation in mice fed high salt is due to local oxidation of nitric oxide (NO) by superoxide anion (O2-). We explored the possibility that “uncoupled” endothelial nitric oxide synthase (eNOS) is the source of this O2-. Methods Levels of L-arginine (L-Arg), tetrahydrobiopterin (BH4) and O2- (hydroethidine oxidation) were measured in spinotrapezius muscle arterioles of mice fed normal salt (0.45%, NS) or high salt (4%, HS) diets for 4 weeks, with or without dietary L-Arg supplementation. The contribution of NO to endothelium-dependent dilation was determined from the effect of Nω-nitro-L-arginine methyl ester (L-NAME) on responses to acetylcholine (ACh). Results Arterioles in HS mice had lower [BH4] and higher O2- levels than those in NS mice. ACh further increased arteriolar O2- in HS mice only. L-Arg supplementation prevented the reduction in [BH4] in arterioles of HS mice, and O2- was not elevated in these vessels. Compared to NS mice, arteriolar ACh responses were diminished and insensitive to L-NAME in HS mice, but not in HS mice supplemented with L-Arg. Conclusions These findings suggest that eNOS uncoupling due to low [BH4] is responsible for O2- generation and reduced NO-dependent dilation in arterioles of mice fed a high salt diet. PMID:20163541

  20. Effects of nitric oxide synthase inhibitors, L-NG-nitroarginine and L-NG-nitroarginine methyl ester, on responses to vasodilators of the guinea-pig coronary vasculature.

    PubMed Central

    Vials, A.; Burnstock, G.

    1992-01-01

    1. The effects of L-NG-nitroarginine (L-NOARG) and L-NG-nitroarginine methyl ester (L-NAME) on vasodilatation induced by ATP, substance P, 5-hydroxytryptamine (5-HT), bradykinin and sodium nitroprusside (SNP) were examined in the guinea-pig coronary bed, by use of a Langendorff technique. The effects of these inhibitors of nitric oxide synthesis were assessed on their ability to inhibit both the amplitude and the area of the vasodilator response. 2. The vasodilator responses evoked by low doses of 5-HT (5 x 10(-10)-10(-8) mol) were almost abolished by L-NAME and L-NOARG (both at 10(-5), 3 x 10(-5) and 10(-4) M), although L-NOARG (3 x 10(-5) M) was significantly less potent than L-NAME (3 x 10(-5) M) as an inhibitor of vasodilator responses to 5-HT (5 x 10(-8) mol). 3. The vasodilator responses evoked by substance P (5 x 10(-12)-5 x 10(-9) mol) were reduced in the presence of L-NAME and L-NOARG (both at 10(-5) and 3 x 10(-5) M). The response to substance P was almost abolished by L-NAME and L-NOARG (both at 10(-4) M). 4. The amplitude of the vasodilator responses to ATP (5 x 10(-11) and 5 x 10(-9)-5 x 10(-7) mol) was little affected by either L-NAME or L-NOARG (both at 10(-5), 3 x 10(-5) and 10(-4) M).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1384916

  1. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    PubMed

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  2. L-arginine supplementation enhances exhaled NO, breath condensate VEGF, and headache at 4,342 m.

    PubMed

    Mansoor, Jim K; Morrissey, Brian M; Walby, William F; Yoneda, Ken Y; Juarez, Maya; Kajekar, Radhika; Severinghaus, John W; Eldridge, Marlowe W; Schelegle, Edward S

    2005-01-01

    We examined the effect of dietary supplementation with L-arginine on breath condensate VEGF, exhaled nitric oxide (NO), plasma erythropoietin, symptoms of acute mountain sickness, and respiratory related sensations at 4,342 m through the course of 24 h in seven healthy male subjects. Serum L-arginine levels increased in treated subjects at time 0, 8, and 24 h compared with placebo, indicating the effectiveness of our treatment. L-arginine had no significant effect on overall Lake Louise scores compared with placebo. However, there was a significant increase in headache within the L-arginine treatment group at 12 h compared with time 0, a change not seen in the placebo condition between these two time points. There was a trend (p = 0.087) toward greater exhaled NO and significant increases in breath condensate VEGF with L-arginine treatment, but no L-arginine effect on serum EPO. These results suggest that L-arginine supplementation increases HIF-1 stabilization in the lung, possibly through a NO-dependent pathway. In total, our observations indicate that L-arginine supplementation is not beneficial in the prophylactic treatment of AMS.

  3. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  4. Cardiac-specific overexpression of metallothionein attenuates myocardial remodeling and contractile dysfunction in l-NAME-induced experimental hypertension: Role of autophagy regulation.

    PubMed

    Yang, Lifang; Gao, Jian-Yuan; Ma, Jipeng; Xu, Xihui; Wang, Qiurong; Xiong, Lize; Yang, Jian; Ren, Jun

    2015-09-02

    Hypertension is an independent risk factor for heart disease and is responsible for the increased cardiac morbidity and mortality. Oxidative stress plays a key role in hypertensive heart diseases although the precise mechanism remains unclear. This study was designed to examine the effect of cardiac-specific overexpression of metallothionein, a cysteine-rich antioxidant, on myocardial contractile and intracellular Ca(2+) anomalies in N(G)-nitro-l-arginine methyl ester (l-NAME)-induced experimental hypertension and the mechanism involved with a focus on autophagy. Our results revealed that l-NAME treatment (14 days) led to hypertension and myocardial anomalies evidenced by interstitial fibrosis, cardiomyocyte hypertrophy, increased LV end systolic and diastolic diameters (LVESD and LVEDD) along with suppressed fractional shortening. l-NAME compromised cardiomyocyte contractile and intracellular Ca(2+) properties manifested as depressed peak shortening, maximal velocity of shortening/relengthening, electrically-stimulated rise in intracellular Ca(2+), elevated baseline and peak intracellular Ca(2+). These l-NAME-induced histological and mechanical changes were attenuated or reconciled by metallothionein. Protein levels of autophagy markers LC3B and p62 were decreased and increased, respectively. Autophagy signaling molecules AMPK, TSC2 and ULK1 were inactivated while those of mTOR and p70s6K were activated by l-NAME, the effects of which were ablated by metallothionein. Autophagy induction mimicked whereas autophagy inhibition nullified the beneficial effect of metallothionein against l-NAME. These findings suggested that metallothionein protects against l-NAME-induced myocardial anomalies possibly through restoration of autophagy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Oral L-arginine before resistance exercise blunts growth hormone in strength trained males.

    PubMed

    Forbes, Scott C; Harber, Vicki; Bell, Gordon J

    2014-04-01

    Acute resistance exercise and L-arginine have both been shown to independently elevate plasma growth hormone (GH) concentrations; however, their combined effect is controversial. The purpose was to investigate the combined effects of resistance exercise and L-arginine supplementation on plasma L-arginine, GH, GH secretagogues, and IGF-1 in strength trained participants. Fourteen strength trained males (age: 25 ± 4 y; body mass: 81.4 ± 9.0 kg; height: 179.4 ± 6.9 cm; and training experience: 6.3 ± 3.4 y) participated in a randomized double-blind crossover design (separated by ~7 days). Subjects reported to the laboratory at 08:00 in a fasted state, consumed L-arginine (ARG; 0.075 g·kg-1 body mass) or a placebo (PLA) before performing an acute bout of resistance exercise (3 sets of 8 exercises, 10 repetitions at ~75% 1RM). Blood samples were collected at rest, before exercise, and at 0, 15, 30, and 60 min of rest-recovery. The ARG condition significantly increased plasma L-arginine concentrations (~120%) while no change was detected in the PLA condition. There were no differences between conditions for GH, GH-releasing hormone, ghrelin, or IGF-1 at any time point. GH-inhibiting hormone was significantly lower in the ARG condition. However, integrated area under the curve for GH was blunted in the ARG condition (L-arginine = 288.4 ± 368.7 vs. placebo = 487.9± 482.0 min·ng·mL1, p < .05). L-arginine ingested before resistance exercise significantly elevated plasma L-arginine concentration but attenuated plasma GH in strength trained individuals despite a lower GHIH. Furthermore our data shows that the GH suppression was not due to a GH or IGF-1 induced autonegative feedback loop.

  6. Kidney Mass Reduction Leads to l-Arginine Metabolism-Dependent Blood Pressure Increase in Mice.

    PubMed

    Pillai, Samyuktha Muralidharan; Seebeck, Petra; Fingerhut, Ralph; Huang, Ji; Ming, Xiu-Fen; Yang, Zhihong; Verrey, François

    2018-02-25

    Uninephrectomy (UNX) is performed for various reasons, including kidney cancer or donation. Kidneys being the main site of l-arginine production in the body, we tested whether UNX mediated kidney mass reduction impacts l-arginine metabolism and thereby nitric oxide production and blood pressure regulation in mice. In a first series of experiments, we observed a significant increase in arterial blood pressure 8 days post-UNX in female and not in male mice. Further experimental series were performed in female mice, and the blood pressure increase was confirmed by telemetry. l-citrulline, that is used in the kidney to produce l-arginine, was elevated post-UNX as was also asymmetric dimethylarginine, an inhibitor of nitric oxide synthase that competes with l-arginine and is a marker for renal failure. Interestingly, the UNX-induced blood pressure increase was prevented by supplementation of the diet with 5% of the l-arginine precursor, l-citrulline. Because l-arginine is metabolized in the kidney and other peripheral tissues by arginase-2, we tested whether the lack of this metabolic pathway also compensates for decreased l-arginine production in the kidney and/or for local nitric oxide synthase inhibition and consecutive blood pressure increase. Indeed, upon uninephrectomy, arginase-2 knockout mice (Arg-2 -/- ) neither displayed an increase in asymmetric dimethylarginine and l-citrulline plasma levels nor a significant increase in blood pressure. UNX leads to a small increase in blood pressure that is prevented by l-citrulline supplementation or arginase deficiency, 2 measures that appear to compensate for the impact of kidney mass reduction on l-arginine metabolism. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. Ilex paraguariensis hydroalcoholic extract exerts antidepressant-like and neuroprotective effects: involvement of the NMDA receptor and the L-arginine-NO pathway.

    PubMed

    Ludka, Fabiana K; Tandler, Lori de Fátima; Kuminek, Gislaine; Olescowicz, Gislaine; Jacobsen, Jonatha; Molz, Simone

    2016-06-01

    Ilex paraguariensis St. Hilaire (Aquifoliaceae) is a typical plant from South America. Preclinical studies have reported the effect of I. paraguariensis-based preparations on different alterations in the brain. This study aimed to examine the antidepressant-like and neuroprotective effects of I. paraguariensis hydroalcoholic extract (IpHE). The role of the N-methyl-D-aspartate receptor and the L-arginine-nitric oxide pathway in the IpHE antidepressant-like effect was also evaluated. Using the tail suspension test, we showed that IpHE (0.1-10 mg/kg, orally) exerts an antidepressant-like effect similar to that of ketamine (1 mg/kg, intraperitoneally). The antidepressant-like effect depends on the N-methyl-D-aspartate receptor and L-arginine-nitric oxide pathway modulation as we observed a combinatory effect using subeffective doses of IpHE (0.01 mg/kg, orally) and ketamine (0.1 mg/kg, intraperitoneally) or MK-801 (0.001 mg/kg, intraperitoneally). Also, pretreatment of mice with L-arginine (750 mg/kg, intraperitoneally) abolished the antidepressant-like effect of IpHE. This effect coincides with the neuroprotective effect, given that glutamate toxicity (10 mmol/l) did not decrease cell viability in hippocampal or cortical slices from IpHE-treated mice. The chromatographic profile of IpHE showed the presence of the methylxanthines caffeine and theobromine. Administration of methylxanthines (2.7 µg/kg) in mice produced an antidepressant-like effect, but not neuroprotection. We suggest that methylxanthines are at least in part responsible for the antidepressant-like effect of IpHE; further studies are necessary to determine the biological compounds responsible for the neuroprotective effect.

  8. Effect of L-arginine on the growth of Plasmodium falciparum and immune modulation of host cells.

    PubMed

    Awasthi, Vikky; Chauhan, Rubika; Chattopadhyay, Debprasad; Das, Jyoti

    2017-01-01

    Malaria is a life-threatening disease caused by Plasmodium parasites. The life-cycle of Plasmodium species involves several stages both in mosquito and the vertebrate host. In the erythrocytic stage, Plasmodium resides inside the red blood cells (RBCs), where it meets most of its nutritional requirement by degrad- ing host's haemoglobin. L-arginine is required for growth and division of cells. The present study was aimed to demonstrate the effect of supplementation of different concentrations of L-arginine and L-citrulline on the growth of parasite, and effect of the culture supernatant on the host's peripheral blood mononuclear cells (PBMCs). To examine the effect of supplementation of L-arginine and L-citrulline, Plasmodium falciparum (3D7 strain) was cultured in RPMI 1640, L-arginine deficient RPMI 1640, and in different concentrations of L-arginine, and L-citrulline supplemented in arginine deficient RPMI 1640 medium. To have a holistic view of in vivo cell activation, the PBMCs isolated from healthy human host were cultured in the supernatant collected from P. falciparum culture. Growth of the parasite was greatly enhanced in L-arginine supplemented media and was found to be concentration dependent. However, parasite growth was compromised in L-citrulline supplemented and L-arginine deficient media. The supernatant collected from L-arginine supplemented parasite media (sArg) showed increased FOXP3 and interleukin-10 (IL-10) expression as compared to the supernatant collected from L-citrulline supple- mented parasite media (sCit). The in vitro culture results showed, decreased parasite growth, and decreased expression of programmed cell death-1 (PD-1) (a coinhibitory molecule) and IL-10 in the L-citrulline supplemented media as compared to L-arginine supplemented media. Hence, it was concluded that L-citrulline supplementation would be a better alternative than L-arginine to inhibit the parasite growth.

  9. L-arginine: a new opportunity in the management of clinical derangements in dialysis patients.

    PubMed

    Bellinghieri, Guido; Santoro, Domenico; Mallamace, Agostino; Di Giorgio, Rosa Maria; De Luca, Grazia; Savica, Vincenzo

    2006-07-01

    L-Arginine is an essential amino acid for infants and growing children, as well as for pregnant women. This amino acid is a substrate for at least 5 enzymes identified in mammals, including arginase, arginine-glycine transaminase, kyotorphine synthase, nitric oxide synthase, and arginine decarboxylase. L-arginine is essential for the synthesis of creatine, urea, polyamines, nitric oxide, and agmatine. Arginine may be considered an essential amino acid in sepsis, and its supplementation could be beneficial in this clinical setting by improving microcirculation and protein anabolism. Rats receiving arginine-supplemented parenteral nutrition showed an increased ability to synthesize acute phase proteins when challenged with sepsis. Finally, L-arginine exerts antihypertensive and antiproliferative effects on vascular smooth muscles. It has been shown to reduce systemic blood pressure in some forms of experimental hypertension. Endothelial dysfunction and reduced nitric oxide bioactivity are associated with increased incidence of cardiovascular diseases. A beneficial effect of acute and chronic L-arginine supplementation on endothelial derived nitric oxide production and endothelial function has been shown. In end-stage renal disease patients, the rate of de novo arginine synthesis seemed to be preserved. Our preliminary data on a group of dialysis patients showed that predialysis arginine levels were stable in a normal range during the dialysis session and that hypertensive patients had lower arginine-citrulline ratio than normotensive patients.

  10. l-arginine and l-NMMA for assessing cerebral endothelial dysfunction in ischaemic cerebrovascular disease: A systematic review.

    PubMed

    Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and N G -monomethyl-l-arginine (l-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic stroke or TIA reported both enhanced and impaired EDV to l-arginine. Responses to l-NMMA deviated between subjects with type 2 DM and the elderly. We found only few studies investigating cerebral endothelial responses to l-arginine and l-NMMA in subjects with vascular risk factors or ischaemic cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease. © 2016 John Wiley & Sons Australia, Ltd.

  11. Effects of penicillin on procaine-elicited bursts of potential in central neuron of snail, Achatina fulica.

    PubMed

    Chen, Yi-Hung; Lu, Kuan-Ling; Hsiao, Ru-Wan; Lee, Ya-Ling; Tsai, Hong-Chieh; Lin, Chia Hsien; Tsai, Ming-Cheng

    2008-08-01

    Effects of penicillin on changes in procaine-elicited bursts of potential (BoP) were studied in a central neuron (RP4) of snail, Achatina fulica Ferussac. Procaine elicited BoP in the RP4 neuron while penicillin elicited depolarization of the neuron. Penicillin decreased the BoP elicited by procaine in a concentration-dependent manner. The effect of penicillin on the procaine-elicited BoP was not altered in the preparations treated with ascorbate or L-NAME (N-nitro-L-arginine methyl ester). However, the inhibitory effect of penicillin on the procaine-elicited BoP was enhanced with a decrease in extracellular sodium ion. Sodium ion was one of the important ions contributing to the action potential of the neuron. Two-electrode voltage-clamp studies revealed that penicillin decreased the fast sodium inward current of the neuron. It is concluded that penicillin inhibited the BoP elicited by procaine and sodium ion altered the effect of penicillin on procaine-elicited BoP.

  12. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Treesearch

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  13. Molecular view of the structural reorganization of water in DPPC multilamellar membranes induced by L-cysteine methyl ester

    NASA Astrophysics Data System (ADS)

    Arias, Juan Marcelo; Tuttolomondo, María Eugenia; Díaz, Sonia Beatriz; Altabef, Aida Ben

    2018-03-01

    In order to study the interaction between L-cysteine methyl ester (CM) and multilamellar vesicles (MLV's) of DPPC, an extensive study was made by various techniques such as Infrared and Raman spectroscopy and Differential Scanning Calorimetry (DSC). Our results revealed by the different techniques used that CM interacts with the DPPC in the region of the polar head, specifying with the phosphate groups, replacing water molecules of hydration by modifying the hydration of the polar head. By Infrared spectroscopy and DSC we observed an increase in the main transition temperature (Tm) and a gradual loss of the pre-transition (Tp) with the increase of the molar ratio CM:DPPC. Of the analyzed, we can conclude that the interaction of CM with DPPC alters the degree of hydration of the membrane altering properties of the same as the transition temperature. Moreover, the results of the thiol site behavior in CM interacting in the CM/DPPC complex will be reveal the possibility of unknown functional roles of the lipidic components of the membrane.

  14. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1

    PubMed Central

    Zheng, Shunsheng; Moehlenbrink, Jutta; Lu, Yi-Chien; Zalmas, Lykourgos-Panagiotis; Sagum, Cari A.; Carr, Simon; McGouran, Joanna F.; Alexander, Leila; Fedorov, Oleg; Munro, Shonagh; Kessler, Benedikt; Bedford, Mark T.; Yu, Qiang; La Thangue, Nicholas B.

    2014-01-01

    Summary The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase (PRMT) 1 and symmetric dimethylating PRMT5, and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favours proliferation by antagonising methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN down-regulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity. PMID:24076217

  15. Effect of N-acetylarginine, a metabolite accumulated in hyperargininemia, on parameters of oxidative stress in rats: protective role of vitamins and L-NAME.

    PubMed

    Sasso, Simone; Dalmedico, Leticia; Delwing-Dal Magro, Débora; Wyse, Angela T S; Delwing-de Lima, Daniela

    2014-08-01

    In the present investigation, we initially evaluated the in vitro effect of N-acetylarginine on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content and on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the blood, kidney and liver of rats. Results showed that N-acetylarginine, at a concentration of 5.0 μM, decreased the activity of CAT in erythrocytes, enhanced TBA-RS in the renal cortex, decreased CAT and SOD activities in the renal medulla and decreased CAT and increased SOD and GSH-Px activities in the liver of 60-day-old rats. Furthermore, we tested the influence of the antioxidants, trolox and ascorbic acid, as well as of the N(ω) -nitro-L-arginine methyl ester (L-NAME) on the effects elicited by N-acetylarginine on the parameters tested. Antioxidants and L-NAME prevented most of the alterations caused by N-acetylarginine on the oxidative stress parameters evaluated. Data indicate that oxidative stress induction is probably mediated by the generation of NO and/or ONOO(-) and other free radicals because L-NAME and antioxidants prevented the effects caused by N-acetylarginine in the blood, renal tissues and liver of rats. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by N-acetylarginine. Copyright © 2014 John Wiley & Sons, Ltd.

  16. l-Arginine Pathway Metabolites Predict Need for Intra-operative Shunt During Carotid Endarterectomy.

    PubMed

    Szabo, P; Lantos, J; Nagy, L; Keki, S; Volgyi, E; Menyhei, G; Illes, Z; Molnar, T

    2016-12-01

    Asymmetric dimethylarginine (ADMA) inhibits nitric oxide (NO) synthesis and is a marker of atherosclerosis. This study examined the correlation between pre-operative l-arginine and ADMA concentration during carotid endarterectomy (CEA), and jugular lactate indicating anaerobic cerebral metabolism, jugular S100B reflecting blood-brain barrier integrity, and with factors of surgical intervention. The concentration of l-arginine, ADMA, and symmetric dimethylarginine was measured in blood taken under regional anaesthesia from the radial artery of 55 patients prior to CEA. Blood gas parameters, concentration of lactate, and S100B were also serially measured in blood taken from both the radial artery and the jugular bulb before and after carotid clamping, and after release of the clamp. To estimate anaerobic metabolism, the jugulo-arterial ratio of CO 2 gap/oxygen extraction was calculated. Positive correlation was found between pre-operative ADMA levels and the ratio of jugulo-arterial CO 2 gap/oxygen extraction during clamp and reperfusion (p = .005 and p = .01, respectively). An inverse correlation was found between the pre-operative l-arginine concentration and jugular lactate at each time point (both p = .002). The critical pre-operative level of l-arginine was determined by receiver operator curve analysis. If l-arginine was below the cutoff value of 35 μmol/L, jugular S100B concentration was higher 24 h post-operatively (p = .03), and jugular lactate levels were increased during reperfusion (p = .02). The median pre-operative concentration of l-arginine was lower in patients requiring an intra-operative shunt than in patients without need of shunt (median: 30.3 μmol/L [interquartile range 24.4-34.4 μmol/L] vs. 57.6 μmol/L [interquartile range 42.3-74.5 μmol/L]; p = .002). High pre-operative ADMA concentration predicts poor cerebral perfusion indicated by elevated jugulo-arterial CO 2 gap/oxygen extraction. Low pre-operative l-arginine

  17. [Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].

    PubMed

    Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I

    2016-01-01

    The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.

  18. Preparation of fatty acid methyl esters for gas-liquid chromatography[S

    PubMed Central

    Ichihara, Ken'ichi; Fukubayashi, Yumeto

    2010-01-01

    A convenient method using commercial aqueous concentrated HCl (conc. HCl; 35%, w/w) as an acid catalyst was developed for preparation of fatty acid methyl esters (FAMEs) from sterol esters, triacylglycerols, phospholipids, and FFAs for gas-liquid chromatography (GC). An 8% (w/v) solution of HCl in methanol/water (85:15, v/v) was prepared by diluting 9.7 ml of conc. HCl with 41.5 ml of methanol. Toluene (0.2 ml), methanol (1.5 ml), and the 8% HCl solution (0.3 ml) were added sequentially to the lipid sample. The final HCl concentration was 1.2% (w/v). This solution (2 ml) was incubated at 45°C overnight or heated at 100°C for 1–1.5 h. The amount of FFA formed in the presence of water derived from conc. HCl was estimated to be <1.4%. The yields of FAMEs were >96% for the above lipid classes and were the same as or better than those obtained by saponification/methylation or by acid-catalyzed methanolysis/methylation using commercial anhydrous HCl/methanol. The method developed here could be successfully applied to fatty acid analysis of various lipid samples, including fish oils, vegetable oils, and blood lipids by GC. PMID:19759389

  19. The second case of a young man with L-arginine-induced acute pancreatitis.

    PubMed

    Binet, Quentin; Dufour, Inès; Agneessens, Emmanuel; Debongnie, Jean-Claude; Aouattah, Tarik; Covas, Angélique; Coche, Jean-Charles; De Koninck, Xavier

    2018-04-21

    Dietary supplementation of arginine has been used by numerous world-class athletes and professional bodybuilders over the past 30 years. L-Arginine indeed enhances muscular power and general performance via maintaining ATP level. However, L-arginine is also known to induce acute pancreatitis in murine models. We report the case of young man presenting with upper abdominal pain and increased serum lipase levels. Contrast-enhanced computed tomography confirms a mild acute pancreatitis. Common etiologies have been ruled out and toxicological anamnestic screening reveals the intake of protein powder. This is, to the best of our knowledge, the second case in human of arginine-induced acute pancreatitis. This case report suggests that every patient presenting with acute pancreatitis without obvious etiology should be evaluated for the intake of toxics other than alcohol, including L-arginine.

  20. Mechanisms for Improved Hygroscopicity of L-Arginine Valproate Revealed by X-Ray Single Crystal Structure Analysis.

    PubMed

    Ito, Masataka; Nambu, Kaori; Sakon, Aya; Uekusa, Hidehiro; Yonemochi, Etsuo; Noguchi, Shuji; Terada, Katsuhide

    2017-03-01

    Valproic acid is widely used as an antiepileptic agent. Valproic acid is in liquid phase while sodium valproate is in solid phase at room temperature. Sodium valproate is hard to manufacture because of its hygroscopic and deliquescent properties. To improve these, cocrystal and salt screening for valproic acid was employed in this study. Two solid salt forms, l-arginine valproate and l-lysine valproate, were obtained and characterized. By using dynamic vapor sorption method, the critical relative humidity of sodium valproate, l-arginine valproate, and l-lysine valproate were measured. Critical relative humidity of sodium valproate was 40%, of l-lysine valproate was 60%, and of l-arginine valproate was 70%. Single-crystal X-ray structure determination of l-arginine valproate was employed. l-Lysine valproate was of low diffraction quality, and l-arginine valproate formed a 1:1 salt. Crystal l-arginine valproate has a disorder in the methylene carbon chain that creates 2 conformations. The carboxylate group of valproic acid is connected to the amino group of l-arginine. Crystalline morphologies were calculated from its crystal structure. Adsorption of water molecules to crystal facets was simulated by Material Studio. When comparing adsorption energy per site of these salts, sodium valproate is more capable of adsorption of water molecule than l-arginine valproate. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Endothelial cellular senescence is inhibited by nitric oxide: Implications in atherosclerosis associated with menopause and diabetes

    PubMed Central

    Hayashi, Toshio; Matsui-Hirai, Hisako; Miyazaki-Akita, Asaka; Fukatsu, Akiko; Funami, Jun; Ding, Qun-Fang; Kamalanathan, Sumitra; Hattori, Yuichi; Ignarro, Louis J.; Iguchi, Akihisa

    2006-01-01

    Senescence may contribute to the pathogenesis of atherosclerosis. Although the bioavailability of nitric oxide (NO) is limited in senescence, the effect of NO on senescence and its relationship to cardiovascular risk factors have not been investigated fully. We studied these factors by investigating senescence-associated β-galactosidase (SA-β-gal) and human telomerase activity in human umbilical venous endothelial cells (HUVECs). Treatment with NO donor (Z)-1-[2-(2-aminoethyl)-N-(2-aminoethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) and transfection with endothelial NO synthase (eNOS) into HUVECs each decreased the number of SA-β-gal positive cells and increased telomerase activity. The NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME) abolished the effect of eNOS transfection. The physiological concentration of 17β-estradiol activated hTERT, decreased SA-β-gal-positive cells, and caused cell proliferation. However, ICI 182780, an estrogen receptor-specific antagonist, and l-NAME each inhibited these effects. Finally, we investigated the effect of NO bioavailability on high glucose-promoted cellular senescence of HUVECs. Inhibition by eNOS transfection of this cellular senescence under high glucose conditions was less pronounced. Treatment with l-arginine or l-citrulline of eNOS-transfected cells partially inhibited, and combination of l-arginine and l-citrulline with antioxidants strongly prevented, high glucose-induced cellular senescence. These data demonstrate that NO can prevent endothelial senescence, thereby contributing to the anti-senile action of estrogen. The ingestion of NO-boosting substances, including l-arginine, l-citrulline, and antioxidants, can delay endothelial senescence under high glucose. We suggest that the delay in endothelial senescence through NO and/or eNOS activation may have clinical utility in the treatment of atherosclerosis in the elderly. PMID:17075048

  2. Effects of carvedilol or amlodipine on target organ damage in L-NAME hypertensive rats: their relationship with blood pressure variability.

    PubMed

    Del Mauro, Julieta S; Prince, Paula D; Donato, Martín; Fernandez Machulsky, Nahuel; Morettón, Marcela A; González, Germán E; Bertera, Facundo M; Carranza, Andrea; Gorzalczany, Susana B; Chiappetta, Diego A; Berg, Gabriela; Morales, Celina; Gelpi, Ricardo J; Taira, Carlos A; Höcht, Christian

    2017-04-01

    The aim of the study was to compare the effects of chronic oral treatment with carvedilol or amlodipine on blood pressure, blood pressure variability and target organ damage in N-nitro-l-arginine methyl ester (L-NAME) hypertensive rats. Wistar rats were treated with L-NAME administered in the drinking water for 8 weeks together with oral administration of carvedilol 30 mg/kg (n = 6), amlodipine 10 mg/kg (n = 6), or vehicle (n = 6). At the end of the treatment, echocardiographic evaluation, blood pressure, and short-term variability measurements were performed. Left ventricular and thoracic aortas were removed to assess activity of metalloproteinase 2 and 9 and expression levels of transforming growth factor β, tumor necrosis factor α, and interleukin 6. Histological samples were prepared from both tissues. Carvedilol and amlodipine induced a comparable reduction of systolic and mean arterial pressure and its short-term variability in L-NAME rats. The expression of transforming growth factor β, tumor necrosis factor α, and interleukin 6 decreased in both organs after carvedilol or amlodipine treatment and the activity of metalloproteinase was reduced in aortic tissue. Treatment with carvedilol or amlodipine completely prevented left ventricular collagen deposition and morphometric alterations in aorta. Oral chronic treatment with carvedilol or amlodipine significantly attenuates blood pressure variability and reduces target organ damage and biomarkers of tissue fibrosis and inflammation in L-NAME hypertensive rats. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  3. L-Arginine and Alzheimer's Disease

    PubMed Central

    Yi, Jing; Horky, Laura L.; Friedlich, Avi L.; Shi, Ying; Rogers, Jack T.; Huang, Xudong

    2009-01-01

    Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive neurodegeneration and loss of cognitive and memory functions. Although the exact causes of AD are still unclear, evidence suggests that atherosclerosis, redox stress, inflammation, neurotransmitter dysregulation, and impaired brain energy metabolism may all be associated with AD pathogenesis. Herein, we explore a possible role for L-arginine (L-arg) in AD, taking into consideration known functions for L-arg in atherosclerosis, redox stress and the inflammatory process, regulation of synaptic plasticity and neurogenesis, and modulation of glucose metabolism and insulin activity. L-arg, a precursor of nitric oxide and polyamine, exhibits multiple functions in human health and may play a prominent role in age-related degenerative diseases such as AD. PMID:19079617

  4. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    PubMed

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  5. Hypermagnesemia disturbances in rats, NO-related: pentadecapeptide BPC 157 abrogates, L-NAME and L-arginine worsen.

    PubMed

    Medvidovic-Grubisic, Maria; Stambolija, Vasilije; Kolenc, Danijela; Katancic, Jadranka; Murselovic, Tamara; Plestina-Borjan, Ivna; Strbe, Sanja; Drmic, Domagoj; Barisic, Ivan; Sindic, Aleksandra; Seiwerth, Sven; Sikiric, Predrag

    2017-08-01

    Stable gastric pentadecapeptide BPC 157, administered before a high-dose magnesium injection in rats, might be a useful peptide therapy against magnesium toxicity and the magnesium-induced effect on cell depolarization. Moreover, this might be an NO-system-related effect. Previously, BPC 157 counteracts paralysis, arrhythmias and hyperkalaemia, extreme muscle weakness; parasympathetic and neuromuscular blockade; injured muscle healing and interacts with the NOS-blocker and NOS-substrate effects. Assessment included magnesium sulfate (560 mg/kg intraperitoneally)-induced muscle weakness, muscle and brain lesions, hypermagnesemia, hyperkalaemia, increased serum enzyme values assessed in rats during and at the end of a 30-min period and medication (given intraperitoneally/kg at 15 min before magnesium) [BPC 157 (10 µg, 10 ng), L-NAME (5 mg), L-arginine (100 mg), alone and/or together]. In HEK293 cells, the increasing magnesium concentration from 1 to 5 mM could depolarize the cells at 1.75 ± 0.44 mV. L-NAME + magnesium-rats and L-arginine + magnesium-rats exhibited worsened severe muscle weakness and lesions, brain lesions, hypermagnesemia and serum enzymes values, with emerging hyperkalaemia. However, L-NAME + L-arginine + magnesium-rats exhibited all control values and normokalaemia. BPC 157 abrogated hypermagnesemia and counteracted all of the magnesium-induced disturbances (including those aggravated by L-NAME or L-arginine). Thus, cell depolarization due to increasing magnesium concentration was inhibited in the presence of BPC 157 (1 µM) in vitro. BPC 157 likely counteracts the initial event leading to hypermagnesemia and the life-threatening actions after a magnesium overdose. In contrast, a worsened clinical course, higher hypermagnesemia, and emerging hyperkalaemia might cause both L-NAME and L-arginine to affect the same events adversely. These events were also opposed by BPC 157.

  6. Erythrocytes L-arginine y+ transporter inhibition by N-ethylmaleimide in ice-bath.

    PubMed

    Pinheiro da Costa, Bartira Ercília; de Almeida, Priscilla Barcellos; Conceição, Ioná Rosine; Antonello, Ivan Carlos Ferreira; d'Avila, Domingos O; Poli-de-Figueiredo, Carlos Eduardo

    2010-11-01

    Erythrocytes L: -arginine uptake is conveyed by y+ and y+L membrane transport systems. Pre-incubation with N-ethylmaleimide for 10 min at 37°C inhibits the y+ system. The aim of this study was to determine the ideal pre-incubation temperature in evaluating y+ and y+L systems. Cells were pre-incubated with or without N-ethylmaleimide for 10 min at 4°C and 37°C. L: -Arginine uptake was quantified by radioisotope and standard erythrocytes membrane flux methodology. Results demonstrate that erythrocytes L: -arginine content is depleted by pre-incubation at 37°C for 10 min, thus changing the V (max) measurement. The inhibitory effect of N-ethylmaleimide pre-incubation was temperature independent and already complete after 1 min of incubation. No significant difference in kinetic parameters was detected between cells pre-incubated at 37°C or 4°C, under zero-trans conditions. In conclusion, we suggest that measurement of erythrocytes L: -arginine uptake by y+ and y+L systems could be carried out without N-ethylmaleimide pre-incubation at 37°C.

  7. Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification.

    PubMed

    Ferreira, Soraia; Carvalho, Josué; Valente, Joana F A; Corvo, Marta C; Cabrita, Eurico J; Sousa, Fani; Queiroz, João A; Cruz, Carla

    2015-12-01

    The developments in the use of plasmid DNA (pDNA) in gene therapy and vaccines have motivated the search and improvement of optimized purification processes. In this context, dipeptides l-tyrosine-l-tyrosine and l-tyrosine-l-arginine are synthetized to explore their application as affinity ligands for supercoiled (sc) plasmid DNA (pDNA) purification. The synthesis is based on the protection of N-Boc-l-tyrosine, followed by condensation with l-tyrosine or l-arginine methyl esters in the presence of dicyclohexylcarbodiimide (DCC), which after hydrolysis and acidification give the afforded dipeptides. The supports are then obtained by coupling l-tyrosine, l-tyrosine-l-tyrosine and l-tyrosine-l-arginine to epoxy-activated Sepharose and are characterized by high resolution magic angle spinning (HR-MAS) NMR and Fourier transform infrared spectroscopy (FTIR). Surface plasmon resonance (SPR) biosensor is used to establish the promising ligand to be used in the chromatographic experiments and ascertain experimental conditions. Sc isoform showed the highest affinity to the dipeptides, followed by linear (ln) pDNA, being the open circular (oc) the one that promoted the lowest affinity to l-tyrosine-l-arginine. Saturation transfer difference (STD)-NMR experiments show that the interaction is mainly hydrophobic with the majority of the 5'-mononucleotides, except for 5'-GMP with l-tyrosine-l-arginine Sepharose that is mainly electrostatic. The support l-tyrosine Sepharose used in chromatographic experiments promotes the separation of native pVAX1-LacZ and pcDNA3-FLAG-p53 samples (oc+sc) by decreasing the salt concentration. The results suggest that it is possible to purify different plasmids with the l-tyrosine Sepharose, with slight adjustments in the gradient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Efficacy of Myricetin as an Antioxidant in Methyl Esters of Soybean Oil

    USDA-ARS?s Scientific Manuscript database

    The antioxidant activity of myricetin, a natural flavonol found in fruits and vegetables, was determined in soybean oil methyl esters (SME) and compared with alpha-tocopherol and tert-butylhydroquinone (TBHQ) over a 90 day period employing EN 14112, acid value, and kinematic viscosity methods. Myri...

  9. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  10. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Activation of l-arginine transport by protein kinase C in rabbit, rat and mouse alveolar macrophages

    PubMed Central

    Racké, Kurt; Hey, Claudia; Mössner, Jutta; Hammermann, Rainer; Stichnote, Christina; Wessler, Ignaz

    1998-01-01

    The role of protein kinase C in controlling L-arginine transport in alveolar macrophages was investigated. L-[3H]Arginine uptake in rabbit alveolar macrophages declined by 80 % after 20 h in culture. 4β-Phorbol 12-myristate 13-acetate (PMA), but not 4α-phorbol 12-myristate 13-acetate (α-PMA), present during 20 h culture, enhanced L-[3H]arginine uptake more than 10-fold. Staurosporine and chelerythrine opposed this effect. L-[3H]Arginine uptake was saturable and blockable by L-lysine. After PMA treatment Vmax was increased more than 5-fold and Km was reduced from 0.65 to 0.32 mM. Time course experiments showed that PMA increased L-[3H]arginine uptake almost maximally within 2 h. This short-term effect was not affected by cycloheximide or actinomycin D. L-[3H]Arginine uptake and its stimulation by PMA was also observed in sodium-free medium. L-Leucine (0.1 mM) inhibited L-[3H]arginine uptake by 50 % in sodium-containing medium, but not in sodium-free medium. At 1 mM, L-leucine caused significant inhibition in sodium-free medium also. L-Leucine showed similar effects on PMA-treated cells. N-Ethylmaleimide (200 μm, 10 min) reduced L-[3H]arginine uptake by 70 % in control cells, but had no effect on PMA-treated (20 or 2 h) cells. In alveolar macrophages, multiple transport systems are involved in L-arginine uptake, which is markedly stimulated by protein kinase C, probably by modulation of the activity of already expressed cationic amino acid transporters. PMID:9714862

  12. Soybean biodiesel methyl esters, free glycerin and acid number quantification by 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Coral, Natasha; Rodrigues, Elizabeth; Rumjanek, Victor; Zamian, José Roberto; da Rocha Filho, Geraldo Narciso; da Costa, Carlos Emmerson Ferreira

    2013-02-01

    Production of alternative fuels, such as biodiesel, from transesterification of vegetable oil driven by heterogeneous catalysts is a promising alternative to fossil diesel. However, achieving a successful substitution for a new renewable fuel depends on several quality parameters. (1)H NMR spectroscopy was used to determine the amount of methyl esters, free glycerin and acid number in the transesterification of soybean oil with methanol in the presence of hydrotalcite-type catalyst to produce biodiesel. Reaction parameters, such as temperature and time, were used to evaluate soybean oil methyl esters rate conversion. Temperatures of 100 to 180 °C and times of 20 to 240 min were tested on a 1 : 12 molar ratio soybean oil/methanol reaction. At 180 °C/240 min conditions, a rate of 94.5 wt% of methyl esters was obtained, where free glycerin and free fatty acids were not detected. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Comparative Monomethylarginine Proteomics Suggests that Protein Arginine Methyltransferase 1 (PRMT1) is a Significant Contributor to Arginine Monomethylation in Toxoplasma gondii

    PubMed Central

    Yakubu, Rama R.; Silmon de Monerri, Natalie C.; Nieves, Edward; Kim, Kami; Weiss, Louis M.

    2017-01-01

    Arginine methylation is a common posttranslational modification found on nuclear and cytoplasmic proteins that has roles in transcriptional regulation, RNA metabolism and DNA repair. The protozoan parasite Toxoplasma gondii has a complex life cycle requiring transcriptional plasticity and has unique transcriptional regulatory pathways. Arginine methylation may play an important part in transcriptional regulation and splicing biology in this organism. The T. gondii genome contains five putative protein arginine methyltransferases (PRMTs), of which PRMT1 is important for cell division and growth. In order to better understand the function(s) of the posttranslational modification monomethyl arginine (MMA) in T. gondii, we performed a proteomic analysis of MMA proteins using affinity purification employing anti-MMA specific antibodies followed by mass spectrometry. The arginine monomethylome of T. gondii contains a large number of RNA binding proteins and multiple ApiAP2 transcription factors, suggesting a role for arginine methylation in RNA biology and transcriptional regulation. Surprisingly, 90% of proteins that are arginine monomethylated were detected as being phosphorylated in a previous phosphoproteomics study which raises the possibility of interplay between MMA and phosphorylation in this organism. Supporting this, a number of kinases are also arginine methylated. Because PRMT1 is thought to be a major PRMT in T. gondii, an organism which lacks a MMA-specific PRMT, we applied comparative proteomics to understand how PRMT1 might contribute to the MMA proteome in T. gondii. We identified numerous putative PRMT1 substrates, which include RNA binding proteins, transcriptional regulators (e.g. AP2 transcription factors), and kinases. Together, these data highlight the importance of MMA and PRMT1 in arginine methylation in T. gondii, as a potential regulator of a large number of processes including RNA biology and transcription. PMID:28143887

  14. Continuous light and L-NAME-induced left ventricular remodelling: different protection with melatonin and captopril.

    PubMed

    Simko, Fedor; Pechanova, Olga; Pelouch, Vaclav; Krajcirovicova, Kristina; Celec, Peter; Palffy, Roland; Bednarova, Kristina; Vrankova, Stanislava; Adamcova, Michaela; Paulis, Ludovit

    2010-09-01

    Blood pressure enhancement induced by continuous light exposure represents an attractive but rarely investigated model of experimental hypertension. The aim of this study was to show whether the combination of continuous light (24 h/day) exposure and chronic N-nitro-L-arginine-methyl ester (L-NAME) treatment induces remodelling of the left ventricle and whether captopril or melatonin can modify these potential alterations. Six groups of 3-month-old Wistar rats (nine per group) were treated for 6 weeks: control (untreated), L-NAME (40 mg/kg per day), exposed to continuous light, L-NAME treated and exposed to continuous light (L24), L24 rats treated with either captopril 100 mg/kg per day, or melatonin (10 mg/kg/24 h). Systolic blood pressure (SBP), relative weights of the left ventricle, endothelial nitric oxide synthase (eNOS) and angiotensin-converting enzyme (ACE) expression in tissues, malondialdehyde and advanced oxidation protein product concentrations in the plasma and hydroxyproline levels in collagenous protein fractions were measured. The continuous light and L-NAME treatment led to hypertension, left ventricular hypertrophy (LVH) and fibrosis. An increase in SBP was completely prevented by captopril and partly by melatonin in the L24 group. Both drugs reduced oxidative damage and attenuated enhanced expression of ACE in the myocardium. Neither of the drugs prevented the attenuation of eNOS expression in the combined hypertensive model. Only captopril reduced LVH development in L24, whereas captopril and melatonin reduced left ventricular hydroxyproline concentrations in soluble and insoluble collagen, respectively. The total hydroxyproline concentration was reduced only by melatonin. In hypertension induced by a combination of continuous light and L-NAME treatment, melatonin and captopril protect the heart against pathological left ventricular remodelling differently.

  15. Effect of L-arginine and sildenafil citrate on intrauterine growth restriction fetuses: a meta-analysis.

    PubMed

    Chen, Juncao; Gong, Xiaoyuan; Chen, Pingyang; Luo, Kaiju; Zhang, Xiuquan

    2016-08-16

    Intrauterine growth restriction (IUGR) is associated with perinatal morbidity and mortality. Several clinical trials have reported L-arginine and sildenafil citrate had effect on intrauterine growth restriction fetuses. A meta-analysis of available randomized controlled trials (RCTs) was conducted to investigate the effects of L-arginine and sildenafil citrate on major clinical outcomes of IUGR fetuses. Systematically searched Medline, Embase, the Cochrane Library, and Clinical Trials, references of retrieved articles, and conference proceedings from 1960 to 2015. We included randomized controlled trials assessing the effects of L-arginine and sildenafil citrate on IUGR. Outcomes analyzed were the birth weight, gestational age at labor, Apgar score at 1and 5 min, the ratio of NRDS, the ratio of ICH and neonatal death, etc. Ten trials were included. Nine trials (576 patients) compared L-arginine with either placebo or no intervention. In the L-arginine treatment groups of the L-arginine trials, there was a significant increase in fetal birth weight (SMD 0.41, 95 % CI [0.24,0.58]), gestational age (SMD 0.30, 95 % CI [0.07,0.54]); L-arginine treatment group have a significant reduction in the ratio of neonatal respiratory distress syndrome (P = 0.009), intracranial hemorrhage of fetuses (P = 0.002), but the number of included studies and people on these outcomes are small. As only one trial (41 patients) compared sildenafil citrate with placebo, it was too small for reliable conclusions about possible differential effects could be drawn. The results of this meta-analysis showed that L-arginine increased birth weight and prolonged gestational age at labor of IUGR fetuses. However, further large-scale RCTs are needed to adequately assess the effect of L-arginine and Sildenafil citrate on clinical outcomes, because the number of study may be small.

  16. NO system dependence of atropine-induced mydriasis and L-NAME- and L-arginine-induced miosis: Reversal by the pentadecapeptide BPC 157 in rats and guinea pigs.

    PubMed

    Kokot, Antonio; Zlatar, Mirna; Stupnisek, Mirjana; Drmic, Domagoj; Radic, Radivoje; Vcev, Aleksandar; Seiwerth, Sven; Sikiric, Predrag

    2016-01-15

    We revealed an immediate and hours-lasting particular NO-specific parallel miotic effect of L-NAME and L-arginine in rats and guinea pigs and a stable gastric pentadecapeptide BPC 157 157-particular effect vs. that of atropine-induced mydriasis while examining the NO system role in the normal pupils responses and pupils with atropine-induced mydriasis. We also assessed the responses to BPC 157 and its possible modulation of the changes caused by L-NAME/L-arginine and atropine. We administered locally (two drops/eye) or systemically (intraperitoneally/kg) [BPC 157 (0.4µg/eye; 10µg, 10ng, 10pg/kg), L-NAME (0.1mg/eye; 5mg/kg), and L-arginine (2mg/eye; 100mg/kg) alone and combined] at 3min prior to assessment (normal pupils) or alternatively at maximal 1% atropine-induced mydriasis (30min after two drops were administered to each eye). L-NAME/L-arginine. Normal pupil. L-NAME-miosis and L-arginine-miosis shortened and attenuated each other's responses when combined (L-NAME+L-arginine) (except with guinea pigs treated locally) and were thereby NO-specific. Atropine-pupil. Both L-NAME and L-arginine counteracted atropine-induced mydriasis. With few exceptions, the atropine+L-NAME+L-arginine-animals showed a consistent shift toward the left. BPC 157. Normal pupil. Always, BPC 157 alone (both species; locally; systemically; all regimens) did not affect normal pupils. Despite specific exceptions, BPC 157 distinctively affects L-arginine-miosis (prolongation) and L-NAME-miosis (shortening). When L-arginine and L-NAME were combined (L-NAME+L-arginine+BPC 157), the effect was less pronounced. Atropine-pupil. BPC 157 alone counteracted atropine-induced mydriasis. With few exceptions (when administered with L-NAME or L-arginine or L-NAME+L-arginine), BPC 157 augments their counteracting effects. Thus, along with its l-NAME/L-arginine effects, BPC 157 participates in ocular control, potentially via NO-mediated and cholinergic mechanisms. Copyright © 2015 Elsevier B.V. All

  17. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a.

    PubMed

    Miranda, Tina Branscombe; Webb, Kristofor J; Edberg, Dale D; Reeves, Raymond; Clarke, Steven

    2005-10-28

    The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specifically methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation.

  18. Conversion of beet molasses and cheese whey into fatty acid methyl esters by the yeast Cryptococcus curvatus.

    PubMed

    Takakuwa, Naoya; Saito, Katsuichi

    2010-01-01

    Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.

  19. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  20. Safety Assessment of Methyl Glucose Polyethers and Esters as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of methyl glucose polyethers and esters which function in cosmetics as skin/hair-conditioning agents, surfactants, or viscosity increasing agents. The esters included in this assessment are mono-, di-, or tricarboxyester substituted methyl glucosides, and the polyethers are mixtures of various chain lengths. The Panel reviewed available animal and clinical data, including the molecular weights, log K ow s, and other properties in making its determination of safety on these ingredients. Where there were data gaps, similarities between molecular structures, physicochemical and biological characteristics, and functions and concentrations in cosmetics allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that there likely would be no significant systemic exposure from cosmetic use of these ingredients, and that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. © The Author(s) 2016.

  1. Supplementation with apple enriched with L-arginine may improve metabolic control and survival rate in alloxan-induced diabetic rats.

    PubMed

    Escudero, Andrea; Petzold, Guillermo; Moreno, Jorge; Gonzalez, Marcelo; Junod, Julio; Aguayo, Claudio; Acurio, Jesenia; Escudero, Carlos

    2013-01-01

    Supplementation with L-arginine or fresh food with high content of this amino acid is associated with favorable effects in the metabolic control of diabetes. We aimed to determine whether supplementation with apples enriched with L-arginine offer additional benefits compared to L-arginine by itself in a preclinical study of diabetes. This study combines food-engineer technologies with in vivo and in vitro analysis. In vitro experiments show that cells derived from non-diabetic animals and exposed to high glucose (25 mM, 12 H) and cells isolated from alloxan-induced diabetic animals exhibited a reduction (∼50%) in the L-arginine uptake. This effect was reverted by L-arginine pretreatment (12 H) in both the normal and diabetes-derived cells. In preclinical studies, normoglycemic (n = 25) and diabetic groups (n = 50) were divided into subgroups that received either L-arginine (375 mg/kg per 10 days) or apple enriched with L-arginine or vehicle (control). In a preliminary analysis, supplementation with L-arginine by itself (50%) or apple enriched with L-arginine (100%) improve survival rate in the diabetic group compared to control (0%) at the end of the follow up (17 days). This phenomenon was associated with a partial but sustained high plasma level of L-arginine, as well as plasma concentration of nitrites and insulin in the L-arginine or apple + L-arginine groups after supplementation. Apple + L-arginine supplementation in diabetic animals induced the highest and longest effects in the level of these three markers among the studied groups. Therefore, apple enriched by L-arginine offers more benefits than L-arginine by itself in this preclinical study. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  2. Intrinsic nitric oxide regulates the taste response of the sugar receptor cell in the blowfly, Phormia regina.

    PubMed

    Murata, Yoshihiro; Mashiko, Masashi; Ozaki, Mamiko; Amakawa, Taisaku; Nakamura, Tadashi

    2004-01-01

    The taste organ in insects is a hair-shaped taste sensory unit having four functionally differentiated contact chemoreceptor cells. In the blowfly, Phormia regina, cGMP has been suggested to be a second messenger for the sugar receptor cell. Generally, cGMP is produced by membranous or soluble guanylyl cyclase (sGC), which can be activated by nitric oxide (NO). In the present paper, we electrophysiologically showed that an NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO), an NO donor, 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC 7) or an NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) specifically affected the response in the sugar receptor cell, but not in other receptor cells. PTIO, when introduced into the receptor cells in a sensillum aided by sodium deoxycholate (DOC, pH 7.2), depressed the response of sugar receptor cells to sucrose but did not affect those of the salt or water receptor cells. NOC 7, given extracellularly, latently induced the response of sugar receptor cells; and L-NAME, when introduced into the receptor cells, depressed the response of sugar receptor cells. The results clearly suggest that NO, which may be produced by intrinsic NOS in sugar receptor cells, participates in the transduction cascade of these cells in blowfly.

  3. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.

    PubMed

    Ikeda, Masato; Mitsuhashi, Satoshi; Tanaka, Kenji; Hayashi, Mikiro

    2009-03-01

    Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance

  4. Protective effect of C-peptide on experimentally induced diabetic nephropathy and the possible link between C-peptide and nitric oxide.

    PubMed

    Elbassuoni, Eman A; Aziz, Neven M; El-Tahawy, Nashwa F

    2018-06-01

    Diabetic nephropathy one of the major microvascular diabetic complications. Besides hyperglycemia, other factors contribute to the development of diabetic complications as the proinsulin connecting peptide, C-peptide. We described the role of C-peptide replacement therapy on experimentally induced diabetic nephropathy, and its potential mechanisms of action by studying the role of nitric oxide (NO) as a mediator of C-peptide effects by in vivo modulating its production by N G -nitro-l-arginine methyl ester (L-NAME). Renal injury markers measured were serum urea, creatinine, tumor necrosis factor alpha, and angiotensin II, and malondialdehyde, total antioxidant, Bcl-2, and NO in renal tissue. In conclusion, diabetic induction resulted in islet degenerations and decreased insulin secretion with its metabolic consequences and subsequent renal complications. C-Peptide deficiencies in diabetes might have contributed to the metabolic and renal error, since C-peptide treatment to the diabetic rats completely corrected these errors. The beneficial effects of C-peptide are partially antagonized by L-NAME coadministration, indicating that NO partially mediates C-peptide effects.

  5. Diminished contractile responses of isolated conduit arteries in two rat models of hypertension.

    PubMed

    Zemancíková, Anna; Török, Jozef

    2013-08-31

    Hypertension is accompanied by thickening of arteries, resulting in marked changes in their passive and active mechanical properties. The aim of this study was to demonstrate that the large conduit arteries from hypertensive individuals may not exhibit enhanced contractions in vitro, as is often claimed. Mechanical responses to vasoconstrictor stimuli were measured under isometric conditions using ring arterial segments isolated from spontaneously hypertensive rats, N(omega)-nitro-L-arginine methyl ester (L-NAME)-treated Wistar rats, and untreated Wistar rats serving as normotensive control. We found that thoracic aortas from both types of hypertensive rats had a greater sensitivity but diminished maximal developed tension in response to noradrenaline, when compared with that from normotensive rats. In superior mesenteric arteries, the sensitivity to noradrenaline was similar in all examined rat groups but in L-NAME-treated rats, these arteries exhibited decreased active force when stimulated with high noradrenaline concentrations, or with 100 mM KCl. These results indicate that hypertension leads to specific biomechanical alterations in diverse arterial types which are reflected in different modifications in their contractile properties.

  6. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  7. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  8. Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties

    USDA-ARS?s Scientific Manuscript database

    Sufficient supply of feedstock oils is a major issue facing biodiesel in order to increase the still limited amounts available. In this work, the fatty acid methyl esters, also known as biodiesel, of the seed oil of Melanolepsi multiglandulosa, a member of the Euphorbiaceae family, were prepared and...

  9. Protective effects of folic acid on DNA damage and DNA methylation levels induced by N-methyl- N'-nitro- N-nitrosoguanidine in Kazakh esophageal epithelial cells.

    PubMed

    Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H

    2018-01-01

    The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.

  10. Role of L-arginine in the biological effects of blue light

    NASA Astrophysics Data System (ADS)

    Makela, Anu M.

    2005-11-01

    Arginine, a semi-essential amino acid, and metabolites of arginine exert multiple biological effects. It has been known that arginine causes the release of various hormones such as insulin, glucagon, growth hormone, prolactin, and adrenal catecholamines. Arginine infusion also produces vasodilation, and in the kidney increased plasma flow accompanied by increases in glomerular filtration rate (GFR). Recent studies have showed that blue and red light irradiation in vitro and in vivo can increase production of nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS). These then can modulate the production and secretion of several cytokines and other mediators and play an important role as regulatory mediators in signaling processes which can then modulate the production, mobilization and homing of stem cells. It is proposed that some of the therapeutic effects of light can be considered to be due to the changes in the metabolism of L-arginine. The regulation of L-arginine turnover by the use of light at blue wavelengths between 400nm and 510nm can be the explanation for some of the observed effects of blue light: lowering of blood pressure, pain killing effect, regulating insulin production, anti-inflammatory action, and possible effects on the release and homing of stem cells.

  11. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli

    PubMed Central

    Eggink, Gerrit; Weusthuis, Ruud A.

    2016-01-01

    ABSTRACT The enzyme system AlkBGT from Pseudomonas putida GPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells of Escherichia coli expressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate. In time-lapse conversions with 5 mM NAEE the main product was 9-hydroxy NAEE (3.6 mM), but also 9-oxo NAEE (0.1 mM) and 9-carboxy NAEE (0.6 mM) were formed. AlkBGT also ω-oxidized ethyl, propyl, and butyl esters of fatty acids ranging from C6 to C10. Increasing the length of the alkyl chain improved the ω-oxidation activity of AlkBGT on esters of C6 and C7 fatty acids. From these esters, application of butyl hexanoate resulted in the highest ω-oxidation activity, 82 U/gcdw. Coexpression of AlkL only had a positive effect on ω-functionalization of substrates with a total length of C11 or longer. These findings indicate that AlkBGT(L) can be applied as a biocatalyst for ω-functionalization of ethyl, propyl, and butyl esters of medium-chain fatty acids. IMPORTANCE Fatty acid esters are promising renewable starting materials for the production of ω-hydroxy fatty acid esters (ω-HFAEs). ω-HFAEs can be used to produce sustainable polymers. Chemical conversion of the fatty acid esters to ω-HFAEs is challenging, as it generates by-products and needs harsh reaction conditions. Biocatalytic production is a promising alternative. In this study, biocatalytic conversion of fatty acid esters toward ω-HFAEs was investigated using whole cells. This was achieved with recombinant Escherichia coli cells that produce the AlkBGT enzymes. These enzymes can produce ω-HFAEs from a wide variety of fatty acid esters. Medium-chain-length acids (C

  12. Developmental changes of l-arginine transport at the blood-brain barrier in rats.

    PubMed

    Tachikawa, Masanori; Hirose, Shirou; Akanuma, Shin-Ichi; Matsuyama, Ryo; Hosoya, Ken-Ichi

    2018-05-01

    l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation

    PubMed Central

    Guo, Ailan; Gu, Hongbo; Zhou, Jing; Mulhern, Daniel; Wang, Yi; Lee, Kimberly A.; Yang, Vicky; Aguiar, Mike; Kornhauser, Jon; Jia, Xiaoying; Ren, Jianmin; Beausoleil, Sean A.; Silva, Jeffrey C.; Vemulapalli, Vidyasiri; Bedford, Mark T.; Comb, Michael J.

    2014-01-01

    Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins. PMID:24129315

  14. Protective effect of L-carnitine and L-arginine against busulfan-induced oligospermia in adult rat.

    PubMed

    Abd-Elrazek, A M; Ahmed-Farid, O A H

    2018-02-01

    Busulfan is an anticancer drug caused variety of adverse effects for patients with cancer. But it could cause damage to the male reproductive system as one of its adverse effects. This study aimed to investigate the protective effect of L-carnitine and L-arginine on semen quality, oxidative stress parameters and testes cell energy after busulfan treatment. Adult male rats were divided into four groups: control (Con), busulfan (Bus), busulfan plus L-arginine (Bus + L-arg) and busulfan plus L-carnitine (Bus + L-car). After 28 days, the semen was collected from the epididymis and the testes were assessed. Sperm count, motility and velocity were measured by CASA, and smears were prepared for assessment of sperm morphology. Serum and testes supernatants were separated for DNA metabolites, oxidative stress and cell energy parameters. Testes tissues also subjected for caspase-3. The results showed significant improvement in sperm morphology, motility, velocity and count in the groups treated with L-arginine and L-carnitine and accompanied with an increase in MDA, GSSG and ATP, reduction in GSH, AMP, ADP, NO and 8-OHDG also recorded. These results are supported by caspase-3. Administration of L-arg and L-car attenuated the cytotoxic effects of busulfan by improving semen parameters, reducing oxidative stress and maintaining cell energy. © 2017 Blackwell Verlag GmbH.

  15. Microinjection of l-glutamate into the nucleus ambiguus partially inhibits gastric motility through the NMDA receptor - nitric oxide pathway.

    PubMed

    Sun, Hong-Zhao; Zhao, Shu-Zhen; Ai, Hong-Bin

    2014-06-01

    We have previously reported that both l-glutamate (l-Glu) and nitric oxide (NO) modulate gastric motility in the nucleus ambiguus (NA). The aim of this study is to explore the potential correlation between the l-Glu and NO. A latex balloon connected to a pressure transducer was inserted into the pylorus through the fundus of anesthetized male Wistar rats to continuously record changes in gastric smooth muscle contractile curves. Pretreatment with the NO-synthase inhibitor N-nitro-l-arginine methylester (l-NAME) did not completely abolish the inhibitory effect of l-Glu on gastric motility, but intravenous injection of the ganglionic blocker hexamethonium bromide (Hb) did. By using a specific N-methyl-d-aspartic acid (NMDA) receptor antagonist, we blocked the inhibitory effect of the NO-donor sodium nitroprusside (SNP) on gastric motility. These results suggest that microinjections of l-Glu into the NA inhibits gastric motility by activating the cholinergic preganglionic neurons, partially through the NMDA receptor - NO pathway.

  16. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    PubMed

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  17. Protein Arginine Methylation and Citrullination in Epigenetic Regulation

    PubMed Central

    2015-01-01

    The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581

  18. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms.

    PubMed

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong; Koo, Hyun

    2016-10-01

    l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. Dental caries is one

  19. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms

    PubMed Central

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong

    2016-01-01

    ABSTRACT l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. IMPORTANCE

  20. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    USDA-ARS?s Scientific Manuscript database

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  1. Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties

    USDA-ARS?s Scientific Manuscript database

    The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...

  2. Vascular smooth muscle cell polyploidy and cardiomyocyte hypertrophy due to chronic NOS inhibition in vivo.

    PubMed

    Devlin, A M; Brosnan, M J; Graham, D; Morton, J J; McPhaden, A R; McIntyre, M; Hamilton, C A; Reid, J L; Dominiczak, A F

    1998-01-01

    To assess the vascular and cardiac response to NO (nitric oxide) synthase (NOS) blockade in vivo, Wistar-Kyoto rats (WKY) were treated for 3 wk with NG-nitro-L-arginine methyl ester (L-NAME; 10 mg.kg-1.day-1). L-NAME treatment induced hypertension that was associated with increased plasma renin activity. Flow cytometry cell cycle DNA analysis showed that aortic vascular smooth muscle cells (VSMC) from L-NAME-treated WKY had a significantly higher polyploid population compared with WKY controls. Using organ bath experiments, we have shown that aortic rings from L-NAME-treated WKY have an increased contractile response to phenylephrine and impaired relaxation to carbachol compared with control rings. NOS blockade in vivo caused a significant increase in cardiac and left ventricular hypertrophy. Northern mRNA analysis of the myocardium showed that L-NAME treatment caused reexpression of the fetal skeletal alpha-actin isoform without alterations in collagen type I expression, a pattern indicating true hypertrophy of the cardiomyocytes. These studies provide further insight to confirm that NO deficiency in vivo results in the development of vascular and cardiac hypertrophy.

  3. Augmented endothelial l-arginine transport ameliorates pressure-overload-induced cardiac hypertrophy.

    PubMed

    Rajapakse, Niwanthi W; Johnston, Tamara; Kiriazis, Helen; Chin-Dusting, Jaye P; Du, Xiao-Jun; Kaye, David M

    2015-07-01

    What is the central question of this study? What is the potential role of endothelial NO production via overexpression of the l-arginine transporter, CAT1, as a mitigator of cardiac hypertrophy? What is the main finding and its importance? Augmentation of endothelium-specific l-arginine transport via CAT1 can attenuate pressure-overload-dependent cardiac hypertrophy and fibrosis. Our findings support the conclusion that interventions that improve endothelial l-arginine transport may provide therapeutic utility in the setting of myocardial hypertrophy. Such modifications may be introduced by exercise training or locally delivered gene therapy, but further experimental and clinical studies are required. Endothelial dysfunction has been postulated to play a central role in the development of cardiac hypertrophy, probably as a result of reduced NO bioavailability. We tested the hypothesis that increased endothelial NO production, mediated by increased l-arginine transport, could attenuate pressure-overload-induced cardiac hypertrophy. Echocardiography and blood pressure measurements were performed 15 weeks after transverse aortic constriction (TAC) in wild-type (WT) mice (n = 12) and in mice with endothelium-specific overexpression of the l-arginine transporter, CAT1 (CAT+; n = 12). Transverse aortic constriction induced greater increases in heart weight to body weight ratio in WT (by 47%) than CAT+ mice (by 25%) compared with the respective controls (P ≤ 0.05). Likewise, the increase in left ventricular wall thickness induced by TAC was significantly attenuated in CAT+ mice (P = 0.05). Cardiac collagen type I mRNA expression was greater in WT mice with TAC (by 22%; P = 0.03), but not in CAT+ mice with TAC, compared with the respective controls. Transverse aortic constriction also induced lesser increases in β-myosin heavy chain mRNA expression in CAT+ mice compared with WT (P ≤ 0.05). Left ventricular systolic pressure after TAC was 36 and 39% greater in WT and

  4. The Produce of Methyl Ester from Crude Palm Oil (CPO) Using Heterogene Catalyst Ash of Chicken Bone (CaO) using Ethanol as Solvent

    NASA Astrophysics Data System (ADS)

    Sinaga, M. S.; Fauzi, R.; Turnip, J. R.

    2017-03-01

    Methyl Ester (methyl ester) is generally made by trans esterification using heterogeneous base catalyst. To simplify the separation, the heterogeneous catalyst is used, such as CaO, which in this case was isolated from chicken bones made by softening chicken bones and do calcination process. Some other important variables other than the selection of the catalyst is the catalyst dosage, molar ratio of ethanol to the CPO and the reaction temperature. The best result from this observe is at the molar ratio of ethanol to the CPO is 17: 1, the reaction temperature is 70 ° C and 7% catalyst (w.t) with reaction time for 7 hours at 500 rpm as a constant variable, got 90,052 % purity, so that this result does not get the standard requirements of biodiesel, because of the purity of the biodiesel standard temporary must be achieve > 96.5 %. This study aims to produce methyl ester yield with the influence of the reaction temperature, percent of catalyst and molar ratio of ethanol and CPO. The most influential variable is the temperature of the reaction that gives a significant yield difference of methyl ester produced. It’s been proven by the increasing temperature used will also significantly increase the yield of methyl ester.

  5. Evaluation of growth hormone release in children using arginine and L-dopa in combination.

    PubMed

    Weldon, V V; Gupta, S K; Klingensmith, G; Clarke, W L; Duck, S C; Haymond, M W; Pagliara, A S

    1975-10-01

    L-Dopa in a dose ranging from 125-500 mg and arginine monochloride in a dose of 0.5 gm/kg were given simultaneously to 56 children with short stature (height less than third percentile). Sixteen of these children were subsequently diagnosed as having growth hormone deficiency. The diagnosis of hyposomatotropism was based on clinical findings and on responses to the combination test and to arginine and L-dopa administered as separate tests. All of the remaining 40 children had a normal GH response of greater than 6 ng/ml to the combination test. However, in this group, nine children were identified who responded to the combination test but who failed to respond to arginine and L-dopa in individual tests. The data suggest that a positive response to arginine and L-dopa in combination in children, who do not respond to the usual provocative tests when administered individually, may fail to identify children with partial GH deficiency who would benefit from treatment. The integrated stimulated GH response in the 31 children in whom a normal GH response to all three tests occurred suggests that the effects of L-dopa and arginine are additive.

  6. Cationic amino acid transporter 1-mediated L-arginine transport at the inner blood-retinal barrier.

    PubMed

    Tomi, Masatoshi; Kitade, Naohisa; Hirose, Shirou; Yokota, Noriko; Akanuma, Shin-Ichi; Tachikawa, Masanori; Hosoya, Ken-ichi

    2009-11-01

    The purpose of this study was to identify the transporter mediating l-arginine transport at the inner blood-retinal barrier (BRB). The apparent uptake clearance of [(3)H]L-arginine into the rat retina was found to be 118 microL/(min.g retina), supporting a carrier-mediated influx transport of L-arginine at the BRB. [(3)H]L-arginine uptake by a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2 cells), used as an in vitro model of the inner BRB, was primarily an Na(+)-independent and saturable process with Michaelis-Menten constants of 11.2 microM and 530 microM. This process was inhibited by rat cationic amino acid transporter (CAT) 1-specific small interfering RNA as well as substrates of CATs, L-arginine, L-lysine, and L-ornithine. The expression of cationic amino acid transporter (CAT) 1 mRNA was 25.9- and 796-fold greater than that of CAT3 in TR-iBRB2 and magnetically isolated rat retinal vascular endothelial cells, respectively. The expression of CAT1 protein was detected in TR-iBRB2 cells and immunostaining of CAT1 was observed along the rat retinal capillaries. In conclusion, CAT1 is localized in retinal capillary endothelial cells and at least in part mediates L-arginine transport at the inner BRB. This process seems to be closely involved in visual functions by supplying precursors of biologically important molecules like nitric oxide in the neural retina.

  7. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    PubMed

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. © 2013 The Society for Applied Microbiology.

  8. Evidence that tachykinins relax the guinea-pig trachea via nitric oxide release and by stimulation of a septide-insensitive NK1 receptor.

    PubMed Central

    Figini, M.; Emanueli, C.; Bertrand, C.; Javdan, P.; Geppetti, P.

    1996-01-01

    1. This study investigated the possibility that tachykinins relax the guinea-pig isolated trachea by releasing nitric oxide (NO) from the epithelium. The types of tachykinin receptor mediating both relaxation and contraction of the trachea were also studied. Isometric tension was recorded in isolated tracheal tube preparations precontracted with acetylcholine (10 microM) in which compounds were administered intraluminally in the presence of phosphoramidon and indomethacin (both 1 microM) and the tachykinin NK2 receptor antagonist, SR 48,968 ((S)-N-methyl-N[4-(4-acetyl amino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide), 0.1 microM). 2. In the presence of the inactive enantiomer of an NO-synthase inhibitor, NG-monomethyl-D-arginine (D-NMMA, 100 microM), substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and the selective NK1 receptor agonist, [Sar9, Met(O2)11]-SP, (0.1-10 nM) relaxed tracheal tube preparations. This relaxation was changed into a contraction by pretreatment with the NO-synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 100 microM). The effect of L-NMMA on SP- and [Sar9, Met(O2)11]-SP-induced responses was reversed by L-arginine (L-Arg, 1 mM), but not by D-Arg (1 mM). After removal of the epithelium SP, NKA and NKB and [Sar9, Met(O2)11]-SP (0.1-10 nM) evoked contractile responses in the presence of either L-NMMA (100 microM) or D-NMMA (100 microM). The effects of SP and [Sar9, Met(O2)11]-SP obtained in the presence of another NO-synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) or its inactive enantiomer, NG-nitro-D-arginine methyl ester (D-NAME, 100 microM) were similar to those observed with L-NMMA or D-NMMA, respectively. 3. The selective NK1 receptor agonist, [pGlu6, Pro9]-SP(6-11) (septide, 0.1-10 nM) evoked contractile responses of tracheal tube preparations in the presence of either D-NMMA (100 microM) or L-NMMA (100 microM). The log concentration-response curve to septide obtained in the presence

  9. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

    PubMed Central

    Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep

    2016-01-01

    The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657

  10. Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.

    PubMed

    Boulanger, Marie-Chloé; Miranda, Tina Branscombe; Clarke, Steven; Di Fruscio, Marco; Suter, Beat; Lasko, Paul; Richard, Stéphane

    2004-04-15

    The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.

  11. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a) The...

  12. [l-arginine efficiency in MELAS syndrome. A case report].

    PubMed

    Moutaouakil, F; El Otmani, H; Fadel, H; Sefrioui, F; Slassi, I

    2009-05-01

    Mitochondrial encephalomyopathy lactic acidosis and stoke-like episodes (MELAS) is a rare neurodegenerative disease caused by mutations of mitochondrial DNA. We report the case of a 12-year-old child with MELAS syndrome who presented with recurrent migraine-like headache and sudden blindness suggesting stroke-like episodes. Furthermore, he developed progressive muscular impairment with bilateral hearing loss. Serum lactate and pyruvate levels were elevated and the muscle biopsy showed an aspect of red-ragged fibers with Gomori trichrome. Brain imaging showed calcifications of basal ganglia on the CT scan and a parieto-occipital high signal on diffusion-weighted MRI. A genetic analysis was not performed but the presence of hearing loss in the patient's mother was suggestive of maternal transmission. Stroke-like episodes in the form of migraine-like headache and blindness were the patient's major complaint and did not improve despite analgesic drugs. After oral administration of l-arginine at the dose of 0.4mg/kg per day, stroke-like symptoms totally and rapidly disappeared. The efficiency of l-arginine in stroke-like episodes was initially reported then confirmed in a controlled study. The pathophysiology of stoke-like episodes and the mechanisms underlying the action of l-arginine are discussed.

  13. Fertility of male rats treated with 15(S)-15-methyl prostaglandin F2 alpha methyl ester-containing silastic implants.

    PubMed

    Kimball, F A; Frielink, R D; Porteus, S E

    1978-01-01

    Male Spraque-Dawley rats receiving implants of silicone rubber discs containing 1% or 2% 15(S)-15-methyl prostaglandin F2 alpha methyl ester (15-Me-PGF 2 alpha) or no prostaglandin were tested in successive breeding trials for potency and fertility. One week after implantation, discs containing 1% 15-Me-PGF2 alpha reduced potency and fertility, which returned 2 weeks after implantation. Animals receiving implants of the 2% discs were apparently impotent the 1st week following implantation; potency returned before full fertility returned 11 weeks after implantation.

  14. The effect of pre-eclampsia-like syndrome induced by L-NAME on learning and memory and hippocampal glucocorticoid receptor expression: A rat model.

    PubMed

    Zhu, Hao; Zhu, Weimin; Hu, Rong; Wang, Huijun; Ma, Duan; Li, Xiaotian

    2017-02-01

    We aimed to study the impacts of pre-eclampsia on the cognitive and learning capabilities of adolescent rat offspring and to explore the possible underlying mechanisms at the molecular level. Pregnant rats were subcutaneously injected with saline solution (control) (n = 16) or NG-nitro-L-arginine methyl ester (L-NAME) (n = 16) from the 13th day of gestation until parturition. The brain tissues from fetal rats delivered by cesarean section were examined in both groups with hematoxylin and eosin (H&E) staining. Rats born vaginally in both groups were subjected to the Morris water maze test when 8-week-old and their hippocampi were analyzed for glucocorticoid receptor (GR) expression. A pre-eclampsia-like model was successfully built in pregnant rats by infusion of the NO synthase inhibitor L-NAME, including phenotypes as maternal hypertension and proteinuria, high stillbirth rate, and fetal growth retardation. Neuroepithelial cell proliferation was found in the hippocampus of fetal rats in the L-NAME group. Grown to 8-week-old, the L-NAME group showed significantly longer escape latency than the control group in the beginning as well as in the end of navigation trials. At the same time, the swimming distance achieved by the L-NAME group was significantly longer than that of the control group. Such differences in cognitive and learning capabilities between the two groups were not gender dependent. Besides, the 8-week-old rats in the L-NAME group had increased GR expression in the hippocampus than the control group. Pre-eclampsia would impair cognitive and learning capabilities in adolescent offspring, and the upregulated expression of hippocampal GR may be involved in the underlying mechanisms.

  15. Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use

    NASA Technical Reports Server (NTRS)

    Pizza, F. X.; Hernandez, I. J.; Tidball, J. G.

    1998-01-01

    The objective of this study was to determine the role of nitric oxide in muscle inflammation, fiber necrosis, and apoptosis of inflammatory cells in vivo. The effects of nitric oxide synthase (NOS) inhibition on the concentrations of neutrophils, ED1+ and ED2+ macrophages, apoptotic inflammatory cells, and necrotic muscle fibers in rats subjected to 10 days of hindlimb unloading and 2 days of reloading were determined. Administration of NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the concentrations of neutrophils, ED1+ and ED2+ macrophages, and necrotic fibers in soleus muscle relative to water-treated controls. The concentration of apoptotic inflammatory cells was also significantly lower for L-NAME-treated animals compared with water-treated controls. However, the proportion of the inflammatory cell population that was apoptotic did not differ between L-NAME-treated and control animals, suggesting that L-NAME treatment did not decrease inflammatory cell populations by increasing the frequency of apoptosis. Thus, nitric oxide or one of its intermediates promotes muscle inflammation and fiber necrosis during modified muscle use and plays no more than a minor role in the resolution of muscle inflammation by inducing apoptosis of inflammatory cells.

  16. Upregulation of Cyclooxygenase-2 Expression in Porcine Macula Densa With Chronic Nitric Oxide Synthase Inhibition

    PubMed Central

    Kommareddy, M.; McAllister, R. M.; Ganjam, V. K.; Turk, J. R.; Laughlin, M. Harold

    2012-01-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with NG-nitro-l-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release. PMID:21160023

  17. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition.

    PubMed

    Kommareddy, M; McAllister, R M; Ganjam, V K; Turk, J R; Laughlin, M Harold

    2011-11-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.

  18. L-arginine and vitamin D adjunctive therapies in pulmonary tuberculosis: a randomised, double-blind, placebo-controlled trial.

    PubMed

    Ralph, Anna P; Waramori, Govert; Pontororing, Gysje J; Kenangalem, Enny; Wiguna, Andri; Tjitra, Emiliana; Sandjaja; Lolong, Dina B; Yeo, Tsin W; Chatfield, Mark D; Soemanto, Retno K; Bastian, Ivan; Lumb, Richard; Maguire, Graeme P; Eisman, John; Price, Ric N; Morris, Peter S; Kelly, Paul M; Anstey, Nicholas M

    2013-01-01

    Vitamin D (vitD) and L-arginine have important antimycobacterial effects in humans. Adjunctive therapy with these agents has the potential to improve outcomes in active tuberculosis (TB). In a 4-arm randomised, double-blind, placebo-controlled factorial trial in adults with smear-positive pulmonary tuberculosis (PTB) in Timika, Indonesia, we tested the effect of oral adjunctive vitD 50,000 IU 4-weekly or matching placebo, and L-arginine 6.0 g daily or matching placebo, for 8 weeks, on proportions of participants with negative 4-week sputum culture, and on an 8-week clinical score (weight, FEV1, cough, sputum, haemoptysis). All participants with available endpoints were included in analyses according to the study arm to which they were originally assigned. Adults with new smear-positive PTB were eligible. The trial was registered at ClinicalTrials.gov NCT00677339. 200 participants were enrolled, less than the intended sample size: 50 received L-arginine + active vitD, 49 received L-arginine + placebo vit D, 51 received placebo L-arginine + active vitD and 50 received placebo L-arginine + placebo vitD. According to the factorial model, 99 people received arginine, 101 placebo arginine, 101 vitamin D, 99 placebo vitamin D. Results for the primary endpoints were available in 155 (4-week culture) and 167 (clinical score) participants. Sputum culture conversion was achieved by week 4 in 48/76 (63%) participants in the active L-arginine versus 48/79 (61%) in placebo L-arginine arms (risk difference -3%, 95% CI -19 to 13%), and in 44/75 (59%) in the active vitD versus 52/80 (65%) in the placebo vitD arms (risk difference 7%, 95% CI -9 to 22%). The mean clinical outcome score also did not differ between study arms. There were no effects of the interventions on adverse event rates including hypercalcaemia, or other secondary outcomes. Neither vitD nor L-arginine supplementation, at the doses administered and with the power attained, affected TB outcomes. Clinical

  19. Efficient and Selective N-Methylation of Nitroarenes under Mild Reaction Conditions.

    PubMed

    Pedrajas, Elena; Sorribes, Iván; Guillamón, Eva; Junge, Kathrin; Beller, Matthias; Llusar, Rosa

    2017-09-21

    Herein, we report a straightforward protocol for the preparation of N,N-dimethylated amines from readily available nitro starting materials using formic acid as a renewable C 1 source and silanes as reducing agents. This tandem process is efficiently accomplished in the presence of a cubane-type Mo 3 PtS 4 catalyst. For the preparation of the novel [Mo 3 Pt(PPh 3 )S 4 Cl 3 (dmen) 3 ] + (3 + ) (dmen: N,N'-dimethylethylenediamine) compound we have followed a [3+1] building block strategy starting from the trinuclear [Mo 3 S 4 Cl 3 (dmen) 3 ] + (1 + ) and Pt(PPh 3 ) 4 (2) complexes. The heterobimetallic 3 + cation preserves the main structural features of its 1 + cluster precursor. Interestingly, this catalytic protocol operates at room temperature with high chemoselectivity when the 3 + catalyst co-exists with its trinuclear 1 + precursor. N-heterocyclic arenes, double bonds, ketones, cyanides and ester functional groups are well retained after N-methylation of the corresponding functionalized nitroarenes. In addition, benzylic-type as well as aliphatic nitro compounds can also be methylated following this protocol. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats.

    PubMed

    Rodríguez-Gómez, Isabel; Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2016-03-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might

  1. l-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats

    PubMed Central

    Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2015-01-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might

  2. Proliferative, anti-apoptotic and immune-enhancing effects of L-arginine in culture of skin fibroblasts.

    PubMed

    Kocic, H; Arsic, I; Stankovic, M; Tiodorovic, D; Ciric, V; Kocic, G

    2017-01-01

    Semi-essential amino acid L-arginine may be of fundamental importance in various intracellular and intercellular pathways related to skin repair and wound healing. Our current study was aimed to explore the effect of L-arginine on skin fibroblast (L929) signaling pathways involved in cell proliferation (Akt-pAkt kinase, Erk/pErk1/2 kinase, JNK/pJNK kinase and pStat-1), apoptosis (Bcl2 and Bax) and immune defense (NF-κB and CD26). Significant upregulation of Erk (p<0.011), pErk (p<0.017) and JNK (p<0.002) was documented, while the rise was not significant for pJNK kinase. The Akt/pAkt signaling pathway did not change significantly for the above-mentioned time and dose, while pStat-1 was significantly down regulated (p<0.011). The exposure of skin fibroblasts to L-arginine increased anti-apoptotic Bcl2/Bax stoichiometry ratio (p<0.05), obtained by calculation of their individual quantities. L-arginine was able to elicit NF-κB signaling through the increase of p65 active subunit level (p<0.004), while CD26 surface antigen level was not significantly changed. In conclusion, the exposure of skin fibroblasts to L-arginine may help in maintaining and stimulating skin fibroblast proliferative, anti-apoptotic and immune defense function. Therefore, the proposed L-arginine dose may be used for tissue regeneration application, which would be of importance in regenerative medicine, skin rejuvenation approaches and wound healing.

  3. B16-BL6 melanoma cells release inhibitory factor(s) of active pump activity in isolated lymph vessels.

    PubMed

    Nakaya, K; Mizuno, R; Ohhashi, T

    2001-12-01

    We investigated whether supernatant cultured with melanoma cell lines B16-BL6 and K1735 or the Lewis lung carcinoma cell line (LLC) can regulate lymphatic pump activity with bioassay preparations isolated from murine iliac lymph vessels. B16-BL6 and LLC supernatants caused significant dilation of lymph microvessels with cessation of pump activity. B16-BL6 supernatant produced dose-related cessation of lymphatic pump activity. There was no significant tachyphylaxis in the supernatant-mediated inhibitory response of lymphatic pump activity. Pretreatment with 3 x 10(-5) M N(omega)-nitro-L-arginine methyl ester (L-NAME) or 10(-7) M or 10(-6) M glibenclamide and 5 x 10(-4) M 5-hydroxydecanoic acid caused significant reduction of supernatant-mediated inhibitory responses. Simultaneous treatment with 10(-3) M L-arginine and 3 x 10(-5) M L-NAME significantly lessened L-NAME-induced inhibition of the supernatant-mediated response, suggesting that endogenous nitric oxide (NO) plays important roles in supernatant-mediated inhibitory responses. Chemical treatment dialyzed substances of <1,000 molecular weight (MW), producing complete reduction of the supernatant-mediated response. In contrast, pretreatment with heating or digestion with protease had no significant effect on supernatant-mediated response. These findings suggest that B16-BL6 cells may release nonpeptide substance(s) of <1,000 MW, resulting in significant cessation of lymphatic pump activity via production and release of endogenous NO and activation of mitochondrial ATP-sensitive K(+) channels.

  4. Degradation of cyanidin-3-rutinoside and formation of protocatechuic acid methyl ester in methanol solution by gamma irradiation.

    PubMed

    Lee, Seung Sik; Kim, Tae Hoon; Lee, Eun Mi; Lee, Min Hee; Lee, Ha Yeong; Chung, Byung Yeoup

    2014-08-01

    Anthocyanins are naturally occurring phenolic compounds having broad biological activities including anti-mutagenesis and anti-carcinogenesis. We studied the effects and the degradation mechanisms of the most common type of anthocyanins, cyanidin-3-rutinoside (cya-3-rut), by using gamma ray. Cya-3-rut in methanol (1mg/ml) was exposed to gamma-rays from 1 to 10kGy. We found that the reddish colour of cya-3-rut in methanol disappeared gradually in a dose-dependent manner and effectively disappeared (>97%) at 10kGy of gamma ray. Concomitantly, a new phenolic compound was generated and identified as a protocatechuic acid methyl ester by liquid chromatography, (1)H, and (13)C NMR. The formation of protocatechuic acid methyl ester increased with increasing irradiation and the amount of protocatechuic acid methyl ester formed by decomposition of cya-3-rut (20μg) at 10kGy of gamma ray was 1.95μg. In addition, the radical-scavenging activities were not affected by gamma irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45.

    PubMed

    Friedrich, Susann; Schmidt, Tobias; Schierhorn, Angelika; Lilie, Hauke; Szczepankiewicz, Grit; Bergs, Sandra; Liebert, Uwe G; Golbik, Ralph P; Behrens, Sven-Erik

    2016-10-01

    A prerequisite for the intracellular replication process of the Flavivirus West Nile virus (WNV) is the cyclization of the viral RNA genome, which enables the viral replicase to initiate RNA synthesis. Our earlier studies indicated that the p45 isoform of the cellular AU-rich element binding protein 1 (AUF1) has an RNA chaperone activity, which supports RNA cyclization and viral RNA synthesis by destabilizing a stem structure at the WNV RNA's 3'-end. Here we show that in mammalian cells, AUF1 p45 is consistently modified by arginine methylation of its C terminus. By a combination of different experimental approaches, we can demonstrate that the methyltransferase PRMT1 is necessary and sufficient for AUF1 p45 methylation and that PRMT1 is required for efficient WNV replication. Interestingly, in comparison to the nonmethylated AUF1 p45, the methylated AUF1 p45(aDMA) exhibits a significantly increased affinity to the WNV RNA termini. Further data also revealed that the RNA chaperone activity of AUF1 p45(aDMA) is improved and the methylated protein stimulates viral RNA synthesis considerably more efficiently than the nonmethylated AUF1 p45. In addition to its destabilizing RNA chaperone activity, we identified an RNA annealing activity of AUF1 p45, which is not affected by methylation. Arginine methylation of AUF1 p45 thus represents a specific determinant of its RNA chaperone activity while functioning as a WNV host factor. Our data suggest that the methylation modifies the conformation of AUF1 p45 and in this way affects its RNA binding and restructuring activities. © 2016 Friedrich et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. Tachykinin-independent activity of capsaicin on in-vitro lamb detrusor.

    PubMed

    Tucci, Paolo; Evandri, Maria Grazia; Bolle, Paola

    2002-08-01

    The capsicum alkaloid capsaicin is an afferent fibre exciter. In the vesical bladder, capsaicin acts by releasing peptides stored in afferent fibres. The aim of this work was to verify the activity of capsaicin on in-vitro lamb urinary bladder and to ascertain whether this alkaloid evokes peptide release. Capsaicin relaxed about 80% of the lamb detrusor muscle preparations tested and contracted about 20%. Whereas neurokinin A and substance P antagonists, administered alone or together, left the contractile responses to capsaicin unchanged, atropine and tetrodotoxin totally inhibited contraction. Ruthenium red and indometacin abolished contractions and relaxation. The substance P and neurokinin A antagonists and the NO-synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) left relaxation unchanged; conversely, the calcitonin gene-related peptide antagonist alpha h-CGRP (8-37) abolished this response. These results suggest that capsaicin relaxes lamb detrusor muscle not through tachykinins but by releasing CGRP from afferent fibres. Our observation that indometacin blocks the capsaicin response in in-vitro lamb urinary bladder also suggests a role of prostanoids.

  7. Role of endothelium-derived relaxing factors in adrenomedullin-induced vasodilation in the rat kidney.

    PubMed

    Wangensteen, Rosemary; Quesada, Andrés; Sainz, Juan; Duarte, Juan; Vargas, Félix; Osuna, Antonio

    2002-05-24

    The present study aimed to evaluate the contributions of endothelium-derived hyperpolarizing factor (EDHF), the nitric oxide (NO)-cGMP pathway, and prostaglandins to adrenomedullin-induced vasodilation in isolated rat kidney. Inhibition of the NO-cGMP pathway with N(omega)-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadiazolo-[4,3a]quinoxalin-1-one (ODQ) reduced the maximal vasodilator response to adrenomedullin by approximately 50%. Pretreatment of the vessels with the potassium channel inhibitor, tetraethylammonium or increased extracellular K(+), also decreased the maximal response to adrenomedullin by approximately 50%. The simultaneous administration of blockers of both endothelium-derived relaxing factors had a combined effect that almost suppressed adrenomedullin-induced vasodilation. The administration of indomethacin did not modify the renal response to adrenomedullin. Our results suggest that the vasodilator response to adrenomedullin in the isolated perfused kidney of rats is mediated by EDHF and NO to a similar extent. Our data also provide evidence that prostaglandins play no role in the vasodilator response to adrenomedullin in the renal vasculature.

  8. A Comparison Study: The New Extended Shelf Life Isopropyl Ester PMR Technology versus The Traditional Methyl Ester PMR Approach

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.

    2005-01-01

    Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.

  9. Correlating the cold flow and melting properties of fatty acid methyl ester (FAME) mixtures

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl ester (FAME) mixtures derived from plant oils or animal fats are used to make biodiesel, lubricants, surfactants, plasticizers, ink solvents, paint strippers and other products. Processing requires a precise knowledge of the physico-chemical properties of mixtures with diverse and ...

  10. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  11. Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.

    PubMed

    Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira

    2008-02-22

    It was found that weakly polar columns, routinely used in capillary GC for analyzing sterols, food additives, etc., can also be used for separating fatty acid methyl esters (FAMEs). On these columns, FAMEs elute in the order of their unsaturation. The equivalent chain-length value of methyl 22:6 is below 23.00. This means FAMEs within a carbon chain length, having up to six double bonds, elute before the next (one carbon longer) saturated FAME elutes. Peak identification is easy. Weakly polar columns are compatible in both GC and GC/MS systems.

  12. Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation.

    PubMed

    Xu, Meijuan; Qin, Jingru; Rao, Zhiming; You, Hengyi; Zhang, Xian; Yang, Taowei; Wang, Xiaoyuan; Xu, Zhenghong

    2016-01-19

    Corynebacterium crenatum SYPA 5 is the industrial strain for L-arginine production. Poly-β-hydroxybutyrate (PHB) is a kind of biopolymer stored as bacterial reserve materials for carbon and energy. The introduction of the PHB synthesis pathway into several strains can regulate the global metabolic pathway. In addition, both the pathways of PHB and L-arginine biosynthesis in the cells are NADPH-dependent. NAD kinase could upregulate the NADPH concentration in the bacteria. Thus, it is interesting to investigate how both PHB and NAD kinase affect the L-arginine biosynthesis in C. crenatum SYPA 5. C. crenatum P1 containing PHB synthesis pathway was constructed and cultivated in batch fermentation for 96 h. The enzyme activities of the key enzymes were enhanced comparing to the control strain C. crenatum SYPA 5. More PHB was found in C. crenatum P1, up to 12.7 % of the dry cell weight. Higher growth level and enhanced glucose consumptions were also observed in C. crenatum P1. With respect to the yield of L-arginine, it was 38.54 ± 0.81 g/L, increasing by 20.6 %, comparing to the control under the influence of PHB accumulation. For more NADPH supply, C. crenatum P2 was constructed with overexpression of NAD kinase based on C. crenatum P1. The NADPH concentration was increased in C. crenatum P2 comparing to the control. PHB content reached 15.7 % and 41.11 ± 1.21 g/L L-arginine was obtained in C. crenatum P2, increased by 28.6 %. The transcription levels of key L-arginine synthesis genes, argB, argC, argD and argJ in recombinant C. crenatum increased 1.9-3.0 times compared with the parent strain. Accumulation of PHB by introducing PHB synthesis pathway, together with up-regulation of coenzyme level by overexpressing NAD kinase, enables the recombinant C. crenatum to serve as high-efficiency cell factories in the long-time L-arginine fermentation. Furthermore, batch cultivation of the engineered C. crenatum revealed that it could accumulate both extracellular L-arginine

  13. Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction.

    PubMed

    Ranjbar, Kamal; Rahmani-Nia, Farhad; Shahabpour, Elham

    2016-09-01

    Arteriogenesis is a main defense mechanism to prevent heart and local tissues dysfunction in occlusive artery disease. TGF-β and angiostatin have a pivotal role in arteriogenesis. We tested the hypothesis that aerobic training and l-arginine supplementation promotes cardiac and skeletal muscles arteriogenesis after myocardial infarction (MI) parallel to upregulation of TGF-β and downregulation of angiostatin. For this purpose, 4 weeks after LAD occlusion, 50 male Wistar rats were randomly distributed into five groups: (1) sham surgery without MI (sham, n = 10), (2) control-MI (Con-MI, n = 10), (3) l-arginine-MI (La-MI, n = 10), (4) exercise training-MI (Ex-MI, n = 10), and (5) exercise and l-arginine-MI (Ex + La-MI). Exercise training groups running on a treadmill for 10 weeks with moderate intensity. Rats in the l-arginine-treated groups drank water containing 4 % l-arginine. Arteriolar density with different diameters (11-25, 26-50, 51-75, and 76-150 μm), TGF-β, and angiostatin gene expression were measured in cardiac (area at risk) and skeletal (soleus and gastrocnemius) muscles. Smaller arterioles decreased in cardiac after MI. Aerobic training and l-arginine increased the number of cardiac arterioles with 11-25 and 26-50 μm diameters parallel to TGF-β overexpression. In gastrocnemius muscle, the number of arterioles/mm(2) was only increased in the 11 to 25 μm in response to training with and without l-arginine parallel to angiostatin downregulation. Soleus arteriolar density with different size was not different between experimental groups. Results showed that 10 weeks aerobic exercise training and l-arginine supplementation promotes arteriogenesis of heart and gastrocnemius muscles parallel to overexpression of TGF-β and downregulation of angiostatin in MI rats.

  14. Supplemental Citrulline Is More Efficient Than Arginine in Increasing Systemic Arginine Availability in Mice.

    PubMed

    Agarwal, Umang; Didelija, Inka C; Yuan, Yang; Wang, Xiaoying; Marini, Juan C

    2017-04-01

    Background: Arginine is considered to be an essential amino acid in various (patho)physiologic conditions of high demand. However, dietary arginine supplementation suffers from various drawbacks, including extensive first-pass extraction. Citrulline supplementation may be a better alternative than arginine, because its only fate in vivo is conversion into arginine. Objective: The goal of the present research was to determine the relative efficiency of arginine and citrulline supplementation to improve arginine availability. Methods: Six-week-old C57BL/6J male mice fitted with gastric catheters were adapted to 1 of 7 experimental diets for 2 wk. The basal diet contained 2.5 g l-arginine/kg, whereas the supplemented diets contained an additional 2.5, 7.5, and 12.5 g/kg diet of either l-arginine or l-citrulline. On the final day, after a 3-h food deprivation, mice were continuously infused intragastrically with an elemental diet similar to the dietary treatment, along with l-[ 13 C 6 ]arginine, to determine the splanchnic first-pass metabolism (FPM) of arginine. In addition, tracers were continuously infused intravenously to determine the fluxes and interconversions between citrulline and arginine. Linear regression slopes were compared to determine the relative efficiency of each supplement. Results: Whereas all the supplemented citrulline (105% ± 7% SEM) appeared in plasma and resulted in a marginal increase of 86% in arginine flux, supplemental arginine underwent an ∼70% FPM, indicating that only 30% of the supplemental arginine entered the peripheral circulation. However, supplemental arginine did not increase arginine flux. Both supplements linearly increased ( P < 0.01) plasma arginine concentration from 109 μmol/L for the basal diet to 159 and 214 μmol/L for the highest arginine and citrulline supplementation levels, respectively. However, supplemental citrulline increased arginine concentrations to a greater extent (35%, P < 0.01). Conclusions: Citrulline

  15. Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.

    PubMed Central

    Boulanger, Marie-Chloé; Miranda, Tina Branscombe; Clarke, Steven; Di Fruscio, Marco; Suter, Beat; Lasko, Paul; Richard, Stéphane

    2004-01-01

    The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation. PMID:14705965

  16. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Lanjekar, R. D.; Deshmukh, D.

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  17. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters.

    PubMed

    Lanjekar, R D; Deshmukh, D

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n -heptane, n -dodecane and n -tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n -heptane fuel is closely following diesel spray tip penetration along with that of n -tetradecane and n -dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  18. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    PubMed Central

    Deshmukh, D.

    2018-01-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment. PMID:29515835

  19. Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus.

    PubMed

    de Chávez, Julio Agustín Ruiz; Guzmán, Adrian; Zamora-Gutiérrez, Diana; Mendoza, Germán David; Melgoza, Luz María; Montes, Sergio; Rosales-Torres, Ana María

    2015-08-01

    The aim of the present study was to evaluate the effects of L-arginine-HCl supplementation on ovulation rate, fertility, prolificacy, and serum VEGF concentrations in ewes with synchronized oestrus. Thirty Suffolk ewes with a mean body weight of 45 ± 3 kg and a mean body condition score (BCS) of 2.4 ± 0.28 were synchronized for estrus presentation with a progestin-containing sponge (20 mg Chronogest® CR) for 9 days plus PGF2-α (Lutalyse; Pfizer, USA) on day 7 after the insertion of the sponge. The ewes were divided into two groups; i.e., a control group (n = 15) that was fed on the native pasture (basal diet) and an L-arginine-HCl group (n = 15) that received 7.8 g of rumen-protected L-arginine-HCl from day 5 of the sponge insertion until day 25 after mating plus the basal diet. The L-arginine-HCl was administered daily via an esophageal probe between days 5 and 9 of the synchronization protocol and every third day subsequently. Blood samples were drawn from the jugular vein every 6 days throughout the entire experimental period. The results revealed that the L-arginine-HCl supplementation increased fertility during the synchronized estrus (P = 0.05). However, no effects were observed on the final BCS (P = 0.78), estrus presentation (P = 0.33), multiple ovulations (P = 0.24), prolificacy (P = 0.63), or serum VEGF concentration. In conclusion, L-arginine-HCl supplementation during the period used in this study increased fertility in sheep with synchronized estrus possibly due to improved embryo-fetal survival during early pregnancy.

  20. Analysis of Chemical Signatures of Alkaliphiles using Fatty Acid Methyl Ester Analysis

    PubMed Central

    Sreenivasulu, Basha; Paramageetham, Chinthala; Sreenivasulu, Dasari; Suman, Bukke; Umamahesh, Katike; Babu, Gundala Prasada

    2017-01-01

    Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS) analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl) ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic. PMID:28717333

  1. L-arginine and Vitamin D Adjunctive Therapies in Pulmonary Tuberculosis: A Randomised, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Ralph, Anna P.; Waramori, Govert; Pontororing, Gysje J.; Kenangalem, Enny; Wiguna, Andri; Tjitra, Emiliana; Sandjaja; Lolong, Dina B.; Yeo, Tsin W.; Chatfield, Mark D.; Soemanto, Retno K.; Bastian, Ivan; Lumb, Richard; Maguire, Graeme P.; Eisman, John; Price, Ric N.; Morris, Peter S.; Kelly, Paul M.; Anstey, Nicholas M.

    2013-01-01

    Background Vitamin D (vitD) and L-arginine have important antimycobacterial effects in humans. Adjunctive therapy with these agents has the potential to improve outcomes in active tuberculosis (TB). Methods In a 4-arm randomised, double-blind, placebo-controlled factorial trial in adults with smear-positive pulmonary tuberculosis (PTB) in Timika, Indonesia, we tested the effect of oral adjunctive vitD 50,000 IU 4-weekly or matching placebo, and L-arginine 6.0 g daily or matching placebo, for 8 weeks, on proportions of participants with negative 4-week sputum culture, and on an 8-week clinical score (weight, FEV1, cough, sputum, haemoptysis). All participants with available endpoints were included in analyses according to the study arm to which they were originally assigned. Adults with new smear-positive PTB were eligible. The trial was registered at ClinicalTrials.gov NCT00677339. Results 200 participants were enrolled, less than the intended sample size: 50 received L-arginine + active vitD, 49 received L-arginine + placebo vit D, 51 received placebo L-arginine + active vitD and 50 received placebo L-arginine + placebo vitD. According to the factorial model, 99 people received arginine, 101 placebo arginine, 101 vitamin D, 99 placebo vitamin D. Results for the primary endpoints were available in 155 (4-week culture) and 167 (clinical score) participants. Sputum culture conversion was achieved by week 4 in 48/76 (63%) participants in the active L-arginine versus 48/79 (61%) in placebo L-arginine arms (risk difference −3%, 95% CI −19 to 13%), and in 44/75 (59%) in the active vitD versus 52/80 (65%) in the placebo vitD arms (risk difference 7%, 95% CI −9 to 22%). The mean clinical outcome score also did not differ between study arms. There were no effects of the interventions on adverse event rates including hypercalcaemia, or other secondary outcomes. Conclusion Neither vitD nor L-arginine supplementation, at the doses administered and with the power attained

  2. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus

    PubMed Central

    Abdelillah, Amrouche; Houcine, Benmehdi; Halima, Dalile; Meriem, Chabane sari; Imane, Zaaboub; Eddine, Smahi Djamal; Abdallah, Moussaoui; Daoudi, Chabane sari

    2013-01-01

    Objective The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). Methods The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. Results The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. Conclusions We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field. PMID:23730556

  3. Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia.

    PubMed

    Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J

    2009-01-01

    To investigate the effect of systemic nitric oxide synthase (NOS) inhibition on optic disc oxygen partial pressure (PO(2)) in normoxia and hypercapnia. Intervascular optic disc PO(2) was measured in 12 anesthetized minipigs by using oxygen-sensitive microelectrodes placed <50 microm from the optic disc. PO(2) was measured continuously during 10 minutes under normoxia, hyperoxia (100% O(2)), carbogen breathing (95% O(2), 5% CO(2)), and hypercapnia (increased inhaled CO(2)). Measurements were repeated after intravenous injection of N(omega)-nitro-L-arginine methyl ester (L-NAME) 100 mg/kg. Intravenous L-arginine 100 mg/kg was subsequently given to three animals. Before L-NAME injection, an increase was observed in optic disc PO(2) during hypercapnia (DeltaPO(2) = 3.2 +/- 1.7 mm Hg; 18%; P = 0.001) and carbogen breathing (DeltaPO(2) = 12.8 +/- 5.1 mm Hg; 69%; P < 0.001). Optic disc PO(2) in normoxia remained stable for 30 minutes after L-NAME injection (4% decrease from baseline; P > 0.1), despite a 21% increase of mean arterial pressure. Optic disc PO(2) increase under hypercapnia was blunted after L-NAME injection (DeltaPO(2) = 0.6 +/- 1.1 mm Hg; 3%; P > 0.1), and this effect was reversible by L-arginine. Moreover, L-NAME reduced the response to carbogen by 29% (DeltaPO(2) = 9.1 +/- 4.4 mm Hg; 49%; P = 0.01 versus before L-NAME). The response to hyperoxia was not affected. Whereas systemic NOS inhibition did not affect optic disc PO(2) in normoxia, a blunting effect was noted on the CO(2)-induced optic disc PO(2) increase. Nitric oxide appears to mediate the hypercapnic optic disc PO(2) increase.

  4. Mature coconut water exhibits antidiabetic and antithrombotic potential via L-arginine-nitric oxide pathway in alloxan induced diabetic rats.

    PubMed

    Preetha, Prabhakaran Prabha; Devi, Vishalakshiamma Girija; Rajamohan, Thankappan

    2015-11-01

    The aims of the present study were to assess whether the antidiabetic activity of mature coconut water (MCW) is mediated through L-arginine-nitric oxide pathway in diabetic rats, and to study the effects of MCW on blood coagulation. Diabetes was induced in male Sprague-Dawley rats by injecting them with alloxan (150 mg/kg body weight). MCW (4 mL/100 g body weight) and L-arginine (7.5 mg/100 g body weight) was given orally for 45 days. L-NAME was given at a dose of 0.5 mg/kg body weight. Concentrations of blood glucose, plasma insulin, glycosylated hemoglobin (HbA1c), L-arginine, urine volume and urinary creatinine levels, activity of nitric oxide synthase (NOS), and arginase as well as the abnormalities in hemostasis and thrombosis were measured in all the experimental groups. Treatment with MCW and L-arginine reduced the concentration of blood glucose and HbA1c in diabetic rats. MCW and L-arginine treatment exhibited significant antithrombotic activity in diabetic rats, which was evident from the reduced levels of WBC, platelets, fibrin, and fibrinogen. MCW and L-arginine treatment prolonged the prothrombin time in diabetic rats and reduced the activity of Factor V. In addition to this, the activity of nitric oxide synthase, liver and plasma arginine content, and urinary nitrite were higher in MCW-treated diabetic rats whereas L-NAME treatment inhibited the beneficial effects induced by MCW and arginine. The results clearly indicate that L-arginine is a major factor responsible for the antidiabetic and antithrombotic potential of coconut water, and is mediated through the L-arginine-nitric oxide pathway.

  5. L-arginine enhances immunity to parasitoids in Drosophila melanogaster and increases NO production in lamellocytes.

    PubMed

    Kraaijeveld, Alex R; Elrayes, Naji P; Schuppe, Hansjürgen; Newland, Philip L

    2011-08-01

    Drosophila melanogaster was used as a model system to explore the link between nutrition and immunity, and to investigate the role of nitric oxide (NO) in enhancing immunity following dietary enhancement with L-arginine. First, we show that adding L-arginine to the food medium increases the ability of D. melanogaster larvae to encapsulate the eggs of the parasitoid Asobara tabida. Secondly, we show that the increase in immunity is specific to L-arginine, and not to an enhanced calorific content, and that immunity decreases when larvae are fed food with added L-NAME, an inhibitor of nitric oxide synthase. Finally, we show that parasitised larvae fed L-arginine have increased haemocyte numbers, and that the lamellocytes (haemocytes which play a key role in encapsulation) show evidence of an increased production of NO. These results suggest that NO plays a key role in immunity and that the effect of NO is mostly targeted via the lamellocytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. L-arginine fails to prevent ventricular remodeling and heart failure in the spontaneously hypertensive rat.

    PubMed

    Brooks, Wesley W; Conrad, Chester H; Robinson, Kathleen G; Colucci, Wilson S; Bing, Oscar H L

    2009-02-01

    The effects of long-term oral administration of L-arginine, a substrate for nitric oxide (NO) production, on left ventricular (LV) remodeling, myocardial function and the prevention of heart failure (HF) was compared to the angiotensin-converting enzyme (ACE) inhibitor captopril in a rat model of hypertensive HF (aged spontaneously hypertensive rat (SHR)). SHRs and age-matched normotensive Wistar-Kyoto (WKY) rats were assigned to either no treatment, treatment with L-arginine (7.5 g/l in drinking water) or captopril (1 g/l in drinking water) beginning at 14 months of age, a time when SHRs exhibit stable compensated hypertrophy with no hemodynamic impairment; animals were studied at 23 months of age or at the time of HF. In untreated SHR, relative to WKY, there was significant LV hypertrophy, myocardial fibrosis, and isolated LV muscle performance and response to isoproterenol (ISO) were depressed; and, 7 of 10 SHRs developed HF. Captopril administration to six SHRs attenuated hypertrophy and prevented impaired inotropic responsiveness to ISO, contractile dysfunction, fibrosis, increased passive stiffness, and HF. In contrast, L-arginine administration to SHR increased LV hypertrophy and myocardial fibrosis while cardiac performance was depressed; and 7 of 9 SHRs developed HF. In WKY, L-arginine treatment but not captopril resulted in increased LV weight and the contractile response to ISO was blunted. Neither L-arginine nor captopril treatment of WKY changed fibrosis and HF did not occur. These data demonstrate that in contrast to captopril, long-term treatment with L-arginine exacerbates age-related cardiac hypertrophy, fibrosis, and did not prevent contractile dysfunction or the development of HF in aging SHR.

  7. Long term exposure to L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling

    PubMed Central

    Xiong, Yuyani; Fru, Michael Forbiteh; Yu, Yi; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2014-01-01

    L-arginine supplementation is proposed to improve health status or as adjunct therapy for diseases including cardiovascular diseases. However, controversial results and even detrimental effects of L-arginine supplementation are reported. We investigate potential mechanisms of L-arginine-induced detrimental effects on vascular endothelial cells. Human endothelial cells were exposed to a physiological (0.1 mmol/L) or pharmacological (0.5 mmol/L) concentration of L-arginine for 30 minutes (acute) or 7 days (chronic). The effects of L-arginine supplementation on endothelial senescence phenotype, i.e., levels of senescence-associated beta-galactosidase, expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, eNOS-uncoupling, arginase-II expression/activity, and mTORC1-S6K1 activity were analyzed. While acute L-arginine treatment enhances endothelial NO production accompanied with superoxide production and activation of S6K1 but no up-regulation of arginase-II, chronic L-arginine supplementation causes endothelial senescence, up-regulation of the adhesion molecule expression, and eNOS-uncoupling (decreased NO and enhanced superoxide production), which are associated with S6K1 activation and up-regulation of arginase-II. Silencing either S6K1 or arginase-II inhibits up-regulation/activation of each other, prevents endothelial dysfunction, adhesion molecule expression, and senescence under the chronic L-arginine supplementation condition. These results demonstrate that S6K1 and arginase-II form a positive circuit mediating the detrimental effects of chronic L-arginine supplementation on endothelial cells. PMID:24860943

  8. The presence of African American race predicts improvement in coronary endothelial function after supplementary L-arginine.

    PubMed

    Houghton, Jan L; Philbin, Edward F; Strogatz, David S; Torosoff, Mikhail T; Fein, Steven A; Kuhner, Patricia A; Smith, Vivienne E; Carr, Albert A

    2002-04-17

    The purpose of our study was to determine if the presence of African American ethnicity modulates improvement in coronary vascular endothelial function after supplementary L-arginine. Endothelial dysfunction is an early stage in the development of coronary atherosclerosis and has been implicated in the pathogenesis of hypertension and cardiomyopathy. Amelioration of endothelial dysfunction has been demonstrated in patients with established coronary atherosclerosis or with risk factors in response to infusion of L-arginine, the precursor of nitric oxide. Racial and gender patterns in L-arginine responsiveness have not, heretofore, been studied. Invasive testing of coronary artery and microvascular reactivity in response to graded intracoronary infusions of acetylcholine (ACh) +/- L-arginine was carried out in 33 matched pairs of African American and white subjects with no angiographic coronary artery disease. Pairs were matched for age, gender, indexed left ventricular mass, body mass index and low-density lipoprotein cholesterol. In addition to the matching parameters, there were no significant differences in peak coronary blood flow (CBF) response to intracoronary adenosine or in the peak CBF response to ACh before L-arginine infusion. However, absolute percentile improvement in CBF response to ACh infusion after L-arginine, as compared with before, was significantly greater among African Americans as a group (45 +/- 10% vs. 4 +/- 6%, p = 0.0016) and after partitioning by gender. The mechanism of this increase was mediated through further reduction in coronary microvascular resistance. L-arginine infusion also resulted in greater epicardial dilator response after ACh among African Americans. We conclude that intracoronary infusion of L-arginine provides significantly greater augmentation of endothelium-dependent vascular relaxation in those of African American ethnicity when compared with matched white subjects drawn from a cohort electively referred for coronary

  9. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway.

    PubMed

    Ma, Xi; Han, Meng; Li, Defa; Hu, Shengdi; Gilbreath, Kyler R; Bazer, Fuller W; Wu, Guoyao

    2017-05-01

    L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated   for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 μmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70 S6K and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.

  10. Supplemental Citrulline Is More Efficient Than Arginine in Increasing Systemic Arginine Availability in Mice123

    PubMed Central

    Agarwal, Umang; Didelija, Inka C; Yuan, Yang; Wang, Xiaoying; Marini, Juan C

    2017-01-01

    Background: Arginine is considered to be an essential amino acid in various (patho)physiologic conditions of high demand. However, dietary arginine supplementation suffers from various drawbacks, including extensive first-pass extraction. Citrulline supplementation may be a better alternative than arginine, because its only fate in vivo is conversion into arginine. Objective: The goal of the present research was to determine the relative efficiency of arginine and citrulline supplementation to improve arginine availability. Methods: Six-week-old C57BL/6J male mice fitted with gastric catheters were adapted to 1 of 7 experimental diets for 2 wk. The basal diet contained 2.5 g l-arginine/kg, whereas the supplemented diets contained an additional 2.5, 7.5, and 12.5 g/kg diet of either l-arginine or l-citrulline. On the final day, after a 3-h food deprivation, mice were continuously infused intragastrically with an elemental diet similar to the dietary treatment, along with l-[13C6]arginine, to determine the splanchnic first-pass metabolism (FPM) of arginine. In addition, tracers were continuously infused intravenously to determine the fluxes and interconversions between citrulline and arginine. Linear regression slopes were compared to determine the relative efficiency of each supplement. Results: Whereas all the supplemented citrulline (105% ± 7% SEM) appeared in plasma and resulted in a marginal increase of 86% in arginine flux, supplemental arginine underwent an ∼70% FPM, indicating that only 30% of the supplemental arginine entered the peripheral circulation. However, supplemental arginine did not increase arginine flux. Both supplements linearly increased (P < 0.01) plasma arginine concentration from 109 μmol/L for the basal diet to 159 and 214 μmol/L for the highest arginine and citrulline supplementation levels, respectively. However, supplemental citrulline increased arginine concentrations to a greater extent (35%, P < 0.01). Conclusions: Citrulline

  11. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  12. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  13. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  14. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  15. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  16. Olfactory Perception of Oviposition-Deterring Fatty Acids and Their Methyl Esters by the Asian Corn Borer, Ostrinia furnacalis

    PubMed Central

    Guo, Lei; Qing Li, Guo

    2009-01-01

    Olfactory perception of myristic, palmitic, stearic and oleic acids and their corresponding methyl esters by Asian corn borer moths, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) was investigated. It was found that mated females with both antennae amputated, in contrast to intact females and females with one antenna removed, could not discriminate between simultaneously provided control filter papers and filters treated with a blend of oviposition-deterring fatty acids. Oviposition by mated females exhibited a very marked periodicity, with all egg masses deposited during the scotophase and most egg masses laid before midnight. According to the peak and trough period of oviposition, electroantennogram (EAG) responses from both mated females and males to the four fatty acids and four methyl esters were tested within two two-hour periods from 3 to 5 hours after the start of darkness and from 1 to 3 hours after light onset, respectively. Significant EAG responses above solvent and background were elicited by all test chemicals from females, and by most of the test compounds from males. EAG values of all test chemicals from mated females were not statistically different between the two test periods except for methyl myristate. Conversely, EAG responses from mated males to myristic acid, stearic acid and their methyl esters significantly differed between the two test periods. PMID:20053122

  17. Neurodevelopmental outcomes of premature infants treated with l-arginine for prevention of necrotising enterocolitis.

    PubMed

    Amin, Harish J; Soraisham, Amuchou S; Sauve, Reg S

    2009-04-01

    This study aimed to compare the long-term neurodevelopmental outcomes at 36 months adjusted age in preterm infants (birth weight < or = 1250 gm) who received supplementation with L-arginine during the first 28 days of life with controls. Surviving infants enrolled in a randomised control study of L-arginine supplementation were prospectively followed longitudinally to determine their neurodevelopmental outcomes at 36 months of adjusted age. Neurologic examination and neurodevelopmental assessments were performed by examiners who were unaware of the original treatment assignments. A total of 132 children (95% of survivors) were evaluated at 36 months adjusted age. In the group given L-arginine, 5 of 61 (8.1%) had major neurodevelopmental disabilities, defined as the presence of one or more of cerebral palsy, cognitive delay (cognitive index <70), bilateral blindness or bilateral hearing loss requiring hearing aids as compared with 9 of 71 (12.6%) in the placebo group (relative risk, 0.64; 95 % confidence interval, 0.22-1.82; P= 0.40). There is no increase in neurodevelopmental disability in preterm infants who received L-arginine supplementation.

  18. Improving the Cold Temperature Properties of Tallow-Based Methyl Ester Mixtures Using Fractionation, Blending, and Additives

    NASA Astrophysics Data System (ADS)

    Elwell, Caleb

    Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or

  19. Arginine in the salt-induced peptide formation reaction: enantioselectivity facilitated by glycine, L- and D-histidine.

    PubMed

    Li, Feng; Fitz, Daniel; Fraser, Donald G; Rode, Bernd M

    2010-07-01

    The salt-induced peptide formation reaction has been proposed as a conceivable preliminary to the prebiotic evolution of peptides. In the present paper, the behaviour of arginine is reported for this reaction together with a discussion of the catalytic effects of glycine, and L- and D-histidine. Importantly, the behaviour of the two histidine enantiomers is different. Both histidine enantiomers perform better than glycine in enhancing the yields of arginine dipeptide with L-histidine being more effective than D-histidine. Yields in the presence of histidine are up to 70 times greater than for arginine solutions alone. This compares with 4.2 times higher in the presence of glycine. This difference is most pronounced in the most concentrated (containing 80 mM arginine) reaction solution where arginine has the lowest reactivity. A distinct preference for dimerisation of L-arginine also appears in the 80 mM cases for catalyses of other amino acids. This phenomenon is different from the behaviour of aliphatic amino acids, which display obvious inherent enantioselectivity for the L-stereomers in the SIPF reaction on their own rather than when catalysed by glycine or histidine.

  20. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway.

    PubMed

    Liang, Mingcai; Wang, Zhengxuan; Li, Hui; Cai, Liang; Pan, Jianghao; He, Hongjuan; Wu, Qiong; Tang, Yinzhao; Ma, Jiapei; Yang, Lin

    2018-05-01

    Arginine is a conditionally essential amino acid. To elucidate the influence of l-arginine on the activation of endogenous antioxidant defence, male Wistar rats were orally administered daily with l-arginine at different levels of 25, 50, 100 mg/100 g body weight. After 7 and 14 days feeding, the antioxidative capacities and glutathione (GSH) contents in the plasma and in the liver were uniformly enhanced with the increasing consumption of l-arginine, whereas the oxidative stress was effectively suppressed by l-arginine treatment. After 14 days feeding, the mRNA levels and protein expressions of Keap1 and Cul3 were gradually reduced by increasing l-arginine intake, resulting that the nuclear factor Nrf2 was activated. Upon activation of Nrf2, the expressions of antioxidant responsive element (ARE)-dependent genes and proteins (GCLC, GCLM, GS, GR, GST, GPx, CAT, SOD, NQO1, HO-1) were up-regulated by l-arginine feeding, indicating an upward trend in antioxidant capacity uniformly with the increasing consumption of l-arginine. The present study demonstrates that the supplementation of l-arginine stimulates GSH synthesis and activates Nrf2 pathway, leading to the up-regulation of ARE-driven antioxidant expressions via Nrf2-Keap1 pathway. Results suggest the availability of l-arginine is a critical factor to suppress oxidative stress and induce an endogenous antioxidant response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Modulation of haemostatic function and prevention of experimental thrombosis by red wine in rats: a role for increased nitric oxide production

    PubMed Central

    Wollny, Tomasz; Aiello, Luca; Di Tommaso, Donata; Bellavia, Vincenzo; Rotilio, Domenico; Donati, Maria Benedetta; de Gaetano, Giovanni; Iacoviello, Licia

    1999-01-01

    The effects of ethyl alcohol and wine (red and white) on haemostatic parameters and experimental thrombosis were studied in rats; NO was evaluated as a possible mediator of these effects. We found that red wine (12% alcohol) supplementation (8.4±0.4 ml d−1 in drinking water, for 10 days) induced a marked prolongation of ‘template' bleeding time (BT) (258±13 vs 132±13 s in controls; P<0.001), a decrease in platelet adhesion to fibrillar collagen (11.6±1.0 vs 32.2±1.3%; P<0.01) and a reduction in thrombus weight (1.45±0.33 vs 3.27±0.39 mg; P<0.01). Alcohol-free red wine showed an effect similar to red wine. In contrast, neither ethyl alcohol (12%) nor white wine (12% alcohol) affected these systems. All these effects were also observed after red wine i.v. injection (1 ml kg−1 of 1 : 4 dilution) 15 min before the experiments. The effects of red wine were prevented by the NO inhibitor, Nωnitro-L-arginine-methyl ester (L-NAME). L-arginine, not D-arginine, reversed the effect of L-NAME on red wine infusion. Red wine injection induced a 3 fold increase in total radical-trapping antioxidant parameter values of rat plasma with respect to controls, while white wine and alcohol did not show any effect. Our study provides evidence that red wine modulates primary haemostasis and prevents experimental thrombosis in rats, independently of its alcohol content, by a NO-mediated mechanism. PMID:10401566

  2. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2.

    PubMed

    Qu, Chen; Leung, Susan W S; Vanhoutte, Paul M; Man, Ricky Y K

    2010-08-01

    Acute inhibition of nitric-oxide synthase (NOS) unmasks the release of endothelium-derived contracting factors (EDCFs). The present study investigated whether chronic inhibition of NOS modulates endothelium-dependent contractions. Eighteen-week-old male Sprague-Dawley rats were treated by daily gavage for 6 weeks with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (60 mg/kg) or vehicle (distilled water; 1 ml/kg). Chronic treatment with L-NAME increased arterial blood pressure. Isometric tension was measured in aortic rings with or without endothelium. Endothelium-dependent relaxations to acetylcholine and the calcium ionophore 5-(methylamino)-2-[(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)-ethyl]-1,7-dioxaspiro[5.5]undec-2-yl]methyl]-4-benzoxazolecarboxylic acid (A23187) were reduced in preparations from L-NAME-treated rats. The reduction in relaxation to A23187 was partially reversed by L-arginine (1 mM). In quiescent aortic rings, A23187 caused contractions in the presence of L-NAME and intact endothelium. The A23187-induced contractions were greater in rings from the L-NAME-treated rats than in those from the control group. These contractions were abolished by the cyclooxygenase (COX)-2 inhibitor N-[2-cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS-398) and the thromboxane-prostanoid (TP) receptor antagonist 3-((6R)-6-{[(4-chlorophenyl)sulfonyl]amido}-2-methyl-5,6,7,8-tetrahydronaphthalen-1-yl)propanoate (S18886), but not by the COX-1 inhibitor 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560). Chronic L-NAME treatment reduced the level of nitric oxide in the plasma but increased COX activity in the aortic rings. Western blotting and immunohistochemical staining showed that endothelial NOS expression was reduced in the aortae of the chronic L-NAME-treated group. COX-1 expression was augmented slightly, whereas COX-2 expression was up-regulated markedly. The TP receptor

  3. 1-Methyl-4-(4-nitro­benzo­yl)pyridinium perchlorate

    PubMed Central

    Gruber, Tobias; Eissmann, Frank; Weber, Edwin; Schüürmann, Gerrit

    2011-01-01

    In the main mol­ecule of the title compound, C13H11N2O3 +·ClO4 −, the two aromatic rings are twisted by 56.19 (3)° relative to each other and the nitro group is not coplanar with the benzene ring [36.43 (4)°]. The crystal packing is dominated by infinite aromatic stacks in the a-axis direction. These are formed by the benzene units of the mol­ecule featuring an alternating arrangement, which explains the two different distances of 3.3860 (4) and 3.4907 (4) Å for the aromatic units (these are the perpendicular distances of the centroid of one aromatic ring on the mean plane of the other other aromatic ring). Adjacent stacks are connected by π–π stacking between two pyridinium units [3.5949 (4) Å] and weak C—H⋯O inter­actions. The perchlorate anions are accomodated in the lattice voids connected to the cation via weak C—H⋯O contacts between the O atoms of the anion and various aromatic as well as methyl H atoms. PMID:22059070

  4. Genome-wide association reveals that common genetic variation in the kallikrein-kinin system is associated with serum L-arginine levels.

    PubMed

    Zhang, Weihua; Jernerén, Fredrik; Lehne, Benjamin C; Chen, Ming-Huei; Luben, Robert N; Johnston, Carole; Elshorbagy, Amany; Eppinga, Ruben N; Scott, William R; Adeyeye, Elizabeth; Scott, James; Böger, Rainer H; Khaw, Kay-Tee; van der Harst, Pim; Wareham, Nicholas J; Vasan, Ramachandran S; Chambers, John C; Refsum, Helga; Kooner, Jaspal S

    2016-11-30

    L-arginine is the essential precursor of nitric oxide, and is involved in multiple key physiological processes, including vascular and immune function. The genetic regulation of blood L-arginine levels is largely unknown. We performed a genome-wide association study (GWAS) to identify genetic factors determining serum L-arginine levels, amongst 901 Europeans and 1,394 Indian Asians. We show that common genetic variations at the KLKB1 and F12 loci are strongly associated with serum L-arginine levels. The G allele of single nucleotide polymorphism (SNP) rs71640036 (T/G) in KLKB1 is associated with lower serum L-arginine concentrations (10 µmol/l per allele copy, p=1×10 -24 ), while allele T of rs2545801 (T/C) near the F12 gene is associated with lower serum L-arginine levels (7 µmol/l per allele copy, p=7×10 -12 ). Together these two loci explain 7 % of the total variance in serum L-arginine concentrations. The associations at both loci were replicated in independent cohorts with plasma L-arginine measurements (p<0.004). The two sentinel SNPs are in nearly complete LD with the nonsynonymous SNP rs3733402 at KLKB1 and the 5'-UTR SNP rs1801020 at F12, respectively. SNPs at both loci are associated with blood pressure. Our findings provide new insight into the genetic regulation of L-arginine and its potential relationship with cardiovascular risk.

  5. Vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries in vitro and increased optic disc blood flow in vivo.

    PubMed

    Chuman, Hideki; Sugimoto, Takako; Nao-I, Nobuhisa

    2017-12-01

    This study aimed to clarify the vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries (PCAs) and to investigate changes in optic disc blood flow after an infusion of L-arginine in vivo. Vascular ring segments were mounted on a double myograph system. After obtaining maximal contraction following administration of high-K solution, L-arginine was administrated. Six volunteers received an intravenous drip infusion of 100 ml of L-arginine or saline. Changes in optic disc blood flow were measured by laser speckle flowgraphy. L-arginine relaxed high-K solution-induced contracted rabbit PCAs. Carboxy-PTIO (nitric oxide scavenger) and L-NAME (nitric oxide synthase inhibitor) inhibited L-arginine-induced relaxation in rabbit PCAs. After removal of the endothelium of the rabbit PCAs, L-arginine still relaxed rabbit PCAs. L-arginine relaxed human PCAs, despite the lack of nitric oxide production. In the L-arginine infusion group, the mean blur rate was significantly greater than that of the control group in vivo. L-arginine has both nitric oxide-dependent and independent vasodilatory effect on high K- induced contractions in isolated rabbit and human PCAs. L-arginine increased optic disc blood flow in vivo.

  6. A calcium channel blocker, benidipine, improves cell membrane fluidity in human subjects via a nitric oxide-dependent mechanism. An electron paramagnetic resonance investigation.

    PubMed

    Tsuda, Kazushi; Nishio, Ichiro

    2004-12-01

    Recent studies have revealed that benidipine, a long-acting dihydropyridine-type of calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate the effects of benidipine and NO on the membrane function in human subjects. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. Benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(o)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in normotensive volunteers. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of benidipine was significantly potentiated by the NO donor, S-nitroso-n-acetylpenicillamine, and by the cyclic guanosine 3', 5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by benidipine was counteracted by the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester and asymmetric dimethyl-L-arginine. These results demonstrated that benidipine increased the membrane fluidity of erythrocytes, at least in part, via the NO- and cGMP-dependent mechanism. Furthermore, the data strongly suggest that benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in humans.

  7. Systemic blockage of nitric oxide synthase by L-NAME increases left ventricular systolic pressure, which is not augmented further by Intralipid®.

    PubMed

    Shin, Il-Woo; Hah, Young-Sool; Kim, Cheol; Park, Jungchul; Shin, Heewon; Park, Kyeong-Eon; Ok, Seong-Ho; Lee, Heon-Keun; Chung, Young-Kyun; Shim, Haeng Seon; Lim, Dong Hoon; Sohn, Ju-Tae

    2014-01-01

    Intravenous lipid emulsions (LEs) are effective in the treatment of toxicity associated with various drugs such as local anesthetics and other lipid soluble agents. The goals of this study were to examine the effect of LE on left ventricular hemodynamic variables and systemic blood pressure in an in vivo rat model, and to determine the associated cellular mechanism with a particular focus on nitric oxide. Two LEs (Intralipid(®) 20% and Lipofundin(®) MCT/LCT 20%) or normal saline were administered intravenously in an in vivo rat model following induction of anesthesia by intramuscular injection of tiletamine/zolazepam and xylazine. Left ventricular systolic pressure (LVSP), blood pressure, heart rate, maximum rate of intraventricular pressure increase, and maximum rate of intraventricular pressure decrease were measured before and after intravenous administration of various doses of LEs or normal saline to an in vivo rat with or without pretreatment with the non-specific nitric oxide synthase inhibitor N(ω)-nitro-L-arginine-methyl ester (L-NAME). Administration of Intralipid(®) (3 and 10 ml/kg) increased LVSP and decreased heart rate. Pretreatment with L-NAME (10 mg/kg) increased LSVP and decreased heart rate, whereas subsequent treatment with Intralipid(®) did not significantly alter LVSP. Intralipid(®) (10 ml/kg) increased mean blood pressure and decreased heart rate. The increase in LVSP induced by Lipofundin(®) MCT/LCT was greater than that induced by Intralipid(®). Intralipid(®) (1%) did not significantly alter nitric oxide donor sodium nitroprusside-induced relaxation in endothelium-denuded rat aorta. Taken together, systemic blockage of nitric oxide synthase by L-NAME increases LVSP, which is not augmented further by intralipid(®).

  8. Synthesis and characterization of a thermo-sensitive poly( N-methyl acryloylglycine methyl ester) used as a drug release carrier

    NASA Astrophysics Data System (ADS)

    Deng, Kui-Lin; Zhong, Hai-Bin; Jiao, Yi-Suo; Fan, Ting; Qiao, Xiao; Zhang, Peng-Fei; Ren, Xiao-Bo

    2010-06-01

    In this article, poly( N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers ( N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.

  9. L-arginine availability and arginase activity: Characterization of amino acid permease 3 in Leishmania amazonensis.

    PubMed

    Aoki, Juliana Ide; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Acuña, Stephanie Maia; Fernandes, Juliane Cristina Ribeiro; Vanderlinde, Rubia Heloisa; Sales, Maria Carmen Oliveira de Pinho; Floeter-Winter, Lucile Maria

    2017-10-01

    Leishmania uses the amino acid L-arginine as a substrate for arginase, enzyme that produces urea and ornithine, last precursor of polyamine pathway. This pathway is used by the parasite to replicate and it is essential to establish the infection in the mammalian host. L-arginine is not synthesized by the parasite, so its uptake occurs through the amino acid permease 3 (AAP3). AAP3 is codified by two copies genes (5.1 and 4.7 copies), organized in tandem in the parasite genome. One copy presents the expression regulated by L-arginine availability. RNA-seq data revealed 14 amino acid transporters differentially expressed in the comparison of La-WT vs. La-arg- promastigotes and axenic amastigotes. The 5.1 and 4.7 aap3 transcripts were down-regulated in La-WT promastigotes vs. axenic amastigotes, and in La-WT vs. La-arg- promastigotes. In contrast, transcripts of other transporters were up-regulated in the same comparisons. The amount of 5.1 and 4.7 aap3 mRNA of intracellular amastigotes was also determined in sample preparations from macrophages, obtained from BALB/c and C57BL/6 mice and the human THP-1 lineage infected with La-WT or La-arg-, revealing that the genetic host background is also important. We also determined the aap3 mRNA and AAP3 protein amounts of promastigotes and axenic amastigotes in different environmental growth conditions, varying pH, temperature and L-arginine availability. Interestingly, the increase of temperature increased the AAP3 level in plasma membrane and consequently the L-arginine uptake, independently of pH and L-arginine availability. In addition, we demonstrated that besides the plasma membrane localization, AAP3 was also localized in the glycosome of L. amazonensis promastigotes and axenic amastigotes. In this report, we described the differential transcriptional profiling of amino acids transporters from La-WT and La-arg- promastigotes and axenic amastigotes. We also showed the increased AAP3 levels under amino acid starvation or

  10. The effect of pumpkin (Cucurbita pepo L) seeds and L-arginine supplementation on serum lipid concentrations in atherogenic rats.

    PubMed

    Abuelgassim, Abuelgassim O; Al-showayman, Showayman I A

    2012-01-01

    The present study aimed to examine the effect of pumpkin (Cucurbita pepo L.) seeds supplementation on atherogenic diet-induced atherosclerosis. Rat were divided into two main groups , normal control and atherogenic control rats , each group composed of three subgroups one of them supplemented with 2% arginine in drinking water and the other supplemented with pumpkin seeds in diet at a concentration equivalent to 2% arginine. Supplementation continued for 37 days. Atherogenic rats supplemented with pumpkin seeds showed a significant decrease (p<0.001) in their serum concentrations of total cholesterol and LDL - C as they dropped from 4.89 mmol / L to 2.55 mmol /L and from 3.33 mmol / L to 0.70 mmol / L respectively. Serum concentrations of HDL-C were also significantly elevated in the same group. Although, atherogenic rats supplemented with 2% arginine showed significant increase in serum concentration of HDL-C, no significant changes were observed in their serum concentrations of total cholesterol and LDL-C. Our results showed that treatment of atherogenic rats with pumpkin seeds significantly decreased serum concentrations of TC and LDL-C. Our findings suggest that pumpkin seeds supplementation has a protective effect against atherogenic rats and this protective effect was not attributed to the high arginine concentrations in pumpkin seeds.

  11. Mono- and diiodo-1,2,3-triazoles and their mono nitro derivatives.

    PubMed

    Chand, Deepak; He, Chunlin; Hooper, Joseph P; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-06-21

    4-Iodo-1H-1,2,3-triazole (2) and 4,5-diiodo-1H-1,2,3-triazole (3) were synthesized using an efficient and viable synthetic route. The N-alkylation of 3 resulted in the formation of two tautomers. The N-alkyl-diiodo-triazoles were nitrated with 100% nitric acid to form monoiodo-mononitro-triazoles. The structures of 2-methyl-4,5-diiodo-1,2,3-triazole (5), 1-ethyl-4,5-diiodo-1,2,3-triazole (6), 1-methyl-4-nitro-5-iodo-1,2,3-triazole (8) and 1-ethyl-4-nitro-5-iodo-1,2,3-triazole (10) were confirmed by X-ray crystal analysis. All of the new triazoles were fully characterized via NMR, and infrared spectra, and elemental analyses as well as by their thermal and sensitivity properties. Decomposition products calculated using Cheetah 7 software show that these iodo-nitro triazoles liberate iodine.

  12. Effects of nucleotides adenosine monophosphate and adenosine triphosphate in combination with L-arginine on male rabbit corpus cavernosum tissue.

    PubMed

    Hupertan, V; Neuzillet, Y; Stücker, O; Pons, C; Leammel, E; Lebret, T

    2012-12-01

    Purines and more specifically adenosine monophosphate (AMP) and adenosine triphosphate (ATP) have a strong relaxant effect on smooth muscle cells of the dog, rabbit and human corpus cavernosum, to approximately the same degree as nitric oxide (NO). However, purines are considered as modulators of erectile function rather than key mediators. This suggests that the use of purines combined with NO donors could be effective to treat some specific erectile disorders. The relaxation induced by the combination of l-arginine (Arg), a natural substrate for NO synthase, was assessed with a purine-nucleotide (AMP, ATP) on a rabbit corpus cavernosum model, to determine if these substances could potentiate each other's effect. When a pre-contraction was induced by phenylephrine, AMP alone induced a 43% CC relaxation rate and ATP alone a 26% rate. The relaxation rate induced by Arg was lower in comparison (8% at 5.10(-4) m vs. 25% at AMP 5.10(-4) m and 15% at ATP 5.10(-4) m). NO synthase inhibitor n-nitro-l-arginine did not modify the relaxing effect provoked by AMP suggesting that the mechanism of action of this nucleotide does not involve the NO pathway. The combination of Arg at 5.10(-4) m with either AMP or ATP at different doses ranging from 5.10(-4) to 10(-3) m significantly enhanced the relaxing response reaching rates of 62 and 80% respectively, leading to a synergistic effect. The present data indicate that a 'NO donor' combined with an 'adenosine donor' could be an effective therapeutic approach. © 2012 The Authors. International Journal of Andrology © 2012 European Academy of Andrology.

  13. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  14. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  15. Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway.

    PubMed

    Ostadhadi, Sattar; Imran Khan, Muhammad; Norouzi-Javidan, Abbas; Dehpour, Ahmad-Reza

    2016-07-01

    Pramipexole is a dopamine D2 receptor agonist indicated for treating Parkinson disorder. This study was aimed to investigate the effect of pramipexole in forced swimming test (FST) in mice and the possible involvement of activation of D2 receptors and inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) on this effect. Intraperitoneal administration of pramipexole (1-3mg/kg) reduced the immobility time in the FST similar to fluoxetine (20mg/kg, i.p.). This effect of pramipexole (1mg/kg, i.p.) was ceased when mice were pretreated with haloperidol (0.15mg/kg, i.p,) and sulpiride (5mg/kg, i.p) as D2 receptor antagonists, NMDA (75mg/kg,i.p.), l-arginine (750mg/kg, i.p., a substrate for nitric oxide synthase) or sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor). The administration of MK-801 (0.05mg/kg, i.p., a NMDA receptor antagonist) l-NG-Nitro arginine methyl ester (l-NAME, 10mg/kg, i.p., a non-specific nitric oxide synthase (NOS) inhibitor), 7-nitroindazole (30mg/kg, i.p., a neuronal NOS inhibitor) and methylene blue (10mg/kg, i.p.), an inhibitor of both NOS and soluble guanylyl cyclase (sGC) in combination with the sub-effective dose of pramipexole (0.3mg/kg, i.p.) reduced the immobility. Altogether, our data suggest that the antidepressant-like effect of pramipexole is dependent on the activation of D2 receptor and inhibition of either NMDA receptors and/or NO-cGMP synthesis. These results contribute to the understanding of the mechanisms underlying the antidepressant-like effect of pramipexole and reinforce the role of D2 receptors, NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant mechanism of this agent. Copyright © 2016. Published by Elsevier Masson SAS.

  16. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress

    PubMed Central

    Bolnick, Jay M.; Kilburn, Brian A.; Bolnick, Alan D.; Diamond, Michael P.; Singh, Manvinder; Hertz, Michael; Dai, Jing

    2015-01-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-NG-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. PMID:25431453

  17. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis

    PubMed Central

    Mandal, Abhishek; Das, Sushmita; Kumar, Ajay; Roy, Saptarshi; Verma, Sudha; Ghosh, Ayan Kumar; Singh, Ruby; Abhishek, Kumar; Saini, Savita; Sardar, Abul Hasan; Purkait, Bidyut; Kumar, Ashish; Mandal, Chitra; Das, Pradeep

    2017-01-01

    The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and

  18. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  19. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.

    PubMed

    Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G

    2013-12-27

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.

  20. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPK{sub ERK}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fouda, Mohamed A.; El-Gowelli, Hanan M.; El-Gowilly, Sahar M.

    We have previously reported that estrogen (E2) exacerbates the depressant effect of chronic nicotine on arterial baroreceptor activity in female rats. Here, we tested the hypothesis that this nicotine effect is modulated by nitric oxide synthase (NOS) and/or heme oxygenase (HO) and their downstream soluble guanylate cyclase (sGC)/phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPKs) signaling. We investigated the effects of (i) inhibition or facilitation of NOS or HO on the interaction of nicotine (2 mg/kg/day i.p., 2 weeks) with reflex bradycardic responses to phenylephrine in ovariectomized (OVX) rats treated with E2 or vehicle, and (ii) central pharmacologic inhibition of sGC, PI3K,more » or MAPKs on the interaction. The data showed that the attenuation by nicotine of reflex bradycardia in OVXE2 rats was abolished after treatment with hemin (HO inducer) or L-arginine (NOS substrate). The hemin or L-arginine effect disappeared after inhibition of NOS (Nω-Nitro-L-arginine methyl ester hydrochloride, L-NAME) and HO (zinc protoporphyrin IX, ZnPP), respectively, denoting the interaction between the two enzymatic pathways. E2-receptor blockade (ICI 182,780) reduced baroreflexes in OVXE2 rats but had no effect on baroreflex improvement induced by hemin or L-arginine. Moreover, baroreflex enhancement by hemin was eliminated following intracisternal (i.c.) administration of wortmannin, ODQ, or PD98059 (inhibitors of PI3K, sGC, and extracellular signal-regulated kinases, MAPK{sub ERK}, respectively). In contrast, the hemin effect was preserved after inhibition of MAPK{sub p38} (SB203580) or MAPK{sub JNK} (SP600125). Overall, NOS/HO interruption underlies baroreflex dysfunction caused by nicotine in female rats and the facilitation of NOS/HO-coupled sGC/PI3K/MAPK{sub ERK} signaling might rectify the nicotine effect. - Highlights: • Hemin or L-arginine blunts baroreflex dysfunction caused by nicotine in OVXE2 rats. • NO/CO crosstalk mediates

  1. Esterification and transesterification of greases to fatty acid methyl esters with highly active diphanylammonium salts

    USDA-ARS?s Scientific Manuscript database

    We have conducted an investigation designed to identify alternate catalysts for the production of fatty acid methyl esters (FAME) to be used as biodiesel. Diphenylammonium sulfate (DPAS) and diphenylammonium chloride (DPA-HCl) salts were found to be highly active homogeneous catalysts for the simu...

  2. Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.

    2007-11-01

    The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolicmore » sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented.« less

  3. Beneficial effects of Acer okamotoanum sap on L-NAME-induced hypertension-like symptoms in a rat model.

    PubMed

    Yang, Hyun; Hwang, Inho; Koo, Tae-Hyoung; Ahn, Hyo-Jin; Kim, Sun; Park, Mi-Jin; Choi, Won-Sil; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-02-01

    The sap of Acer okamotoanum has been termed 'bone-benefit-water' in Korea owing to its mineral and sugar content. In particular, the calcium (Ca) and potassium (K) concentrations of the sap of Acer okamotoanum are 40- and 20-times higher, respectively, than commercial spring water. In the present study, we examined whether Acer okamotoanum sap improves or prevents hypertension-like symptoms in a rat model. Male Sprague-Dawley rats (8-weeks-old) were provided commercial spring water supplemented with 25, 50 or 100% Acer okamotoanum sap, 3% potassium ions (K+) or captopril, and treated daily for 2 weeks with NG-nitro-L-arginine methyl ester (L-NAME; 100 mg/kg/day) by subcutaneous injection, in order to induce hypertensive symptoms. Rats were euthanized 6 h following the final injection. To assess the effect of the sap on hypertension-like symptoms, we examined the mean blood pressure (BP), protein levels and localization of endothelial nitric oxide synthase (eNOS) in the descending aorta of the rats. BP levels were significantly lower in hypertensive rats received 25, 50 and 100% sap compared with rats who were administered only commercial spring water. Protein levels of eNOS were repressed in L-NAME-only-treated rats, but were elevated in the descending aorta of rats administered captopril, K+ water and Acer okamotoanum sap (25, 50 and 100%) up to the level of the sham group provided commercial spring water, and then injected with dimethyl sulfoxide for the same period of time. Localized eNOS protein was abundantly expressed in the perivascular descending aorta adipose tissue of the rats. Taken together, these results demonstrated that the sap of Acer okamotoanum ameliorated high BP induced by L-NAME treatment in a rat model.

  4. L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells

    USDA-ARS?s Scientific Manuscript database

    L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at th...

  5. Beyond fatty acid methyl esters: Expanding the renewable carbon profile with alkenones from Isochrysis sp.

    USDA-ARS?s Scientific Manuscript database

    In addition to characteristic fatty acid methyl esters (FAMEs), biodiesel produced from Isochrysis sp. contains a significant amount (14% dry weight) of predominantly C37 and C38 longchain alkenones. These compounds are members of a class of lipids known collectively as polyunsaturated long-chain al...

  6. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...

  7. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography.

    PubMed

    Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W

    2017-12-06

    Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.

  8. A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly(l-arginine)-based nanoparticles.

    PubMed

    Kudo, Shinpei; Nagasaki, Yukio

    2015-11-10

    In the immune system, macrophages in tumor tissue generate nitric oxide (NO), producing versatile effects including apoptosis of tumor cells, because inducible NO synthase (iNOS) in the cytoplasm of a macrophage produces NO using l-arginine as a substrate. Here, we propose novel NO-triggered immune therapeutics based on our newly designed nanoparticle system. We designed a poly(ethylene glycol)-block-poly(l-arginine) (i.e., PEG-b-P(l-Arg)) block copolymer and prepared polyion complex micelles (PEG-b-P(l-Arg)/m) composed of PEG-b-P(l-Arg) and chondroitin sulfate for systemic anticancer immunotherapy. iNOS treatment of PEG-b-P(l-Arg) did not generate NO, but NO molecules were detected after trypsin pretreatment, indicating that hydrolysis of P(l-Arg) to monomeric arginine was taking place in vitro. RAW264.7 macrophages abundantly generated NO from the PEG-b-P(l-Arg)/m in comparison with control micelles; this finding is indicative of robustness of the proposed method. It is interesting to note that systemic administration of PEG-b-P(l-Arg)/m had no noticeable adverse effects and suppressed the tumor growth rate in C26 tumor-bearing mice in a dose-dependent manner. Our newly designed nanoparticle-assisted arginine delivery system seems to hold promise as an NO-mediated anticancer immunotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dietary l-arginine inhibits intestinal Clostridium perfringens colonisation and attenuates intestinal mucosal injury in broiler chickens.

    PubMed

    Zhang, Beibei; Lv, Zengpeng; Li, Huixian; Guo, Shuangshuang; Liu, Dan; Guo, Yuming

    2017-09-01

    We investigated the effects of dietary l-arginine level and feeding duration on the intestinal damage of broilers induced by Clostridium perfringens (CP) in vivo, and the antimicrobial effect of its metabolite nitric oxide (NO) in vitro. The in vivo experiment was designed as a factorial arrangement of three dietary treatments×two challenge statuses. Broilers were fed a basal diet (CON) or a high-arginine diet (ARG) containing 1·87 % l-arginine, or CON for the first 8 d and ARG from days 9 to 28 (CON/ARG). Birds were co-infected with or without Eimeria and CP (EM/CP). EM/CP challenge led to intestinal injury, as evidenced by lower plasma d-xylose concentration (P<0·01), higher paracellular permeability in the ileum (P<0·05) and higher numbers of Escherichia coli (P<0·05) and CP (P<0·001) in caecal digesta; however, this situation could be alleviated by l-arginine supplementation (P<0·05). The intestinal claudin-1 and occludin mRNA expression levels were decreased (P<0·05) following EM/CP challenge; this was reversed by l-arginine supplementation (P<0·05). Moreover, EM/CP challenge up-regulated (P<0·05) claudin-2, interferon-γ (IFN-γ), toll-like receptor 2 and nucleotide-binding oligomerisation domain 1 (NOD1) mRNA expression, and l-arginine supplementation elevated (P<0·05) IFN-γ, IL-10 and NOD1 mRNA expression. In vitro study showed that NO had bacteriostatic activity against CP (P<0·001). In conclusion, l-arginine supplementation could inhibit CP overgrowth and alleviate intestinal mucosal injury by modulating innate immune responses, enhancing barrier function and producing NO.

  10. Synthesis of methyl ester sulfonate surfactant from crude palm oil as an active substance of laundry liquid detergent

    NASA Astrophysics Data System (ADS)

    Slamet, Ibadurrohman, Muhammad; Wulandari, Pangiastika Putri

    2017-11-01

    Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.

  11. L-arginine availability and arginase activity: Characterization of amino acid permease 3 in Leishmania amazonensis

    PubMed Central

    Aoki, Juliana Ide; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Acuña, Stephanie Maia; Fernandes, Juliane Cristina Ribeiro; Vanderlinde, Rubia Heloisa; Sales, Maria Carmen Oliveira de Pinho

    2017-01-01

    Background Leishmania uses the amino acid L-arginine as a substrate for arginase, enzyme that produces urea and ornithine, last precursor of polyamine pathway. This pathway is used by the parasite to replicate and it is essential to establish the infection in the mammalian host. L-arginine is not synthesized by the parasite, so its uptake occurs through the amino acid permease 3 (AAP3). AAP3 is codified by two copies genes (5.1 and 4.7 copies), organized in tandem in the parasite genome. One copy presents the expression regulated by L-arginine availability. Methodology/Principal findings RNA-seq data revealed 14 amino acid transporters differentially expressed in the comparison of La-WT vs. La-arg- promastigotes and axenic amastigotes. The 5.1 and 4.7 aap3 transcripts were down-regulated in La-WT promastigotes vs. axenic amastigotes, and in La-WT vs. La-arg- promastigotes. In contrast, transcripts of other transporters were up-regulated in the same comparisons. The amount of 5.1 and 4.7 aap3 mRNA of intracellular amastigotes was also determined in sample preparations from macrophages, obtained from BALB/c and C57BL/6 mice and the human THP-1 lineage infected with La-WT or La-arg-, revealing that the genetic host background is also important. We also determined the aap3 mRNA and AAP3 protein amounts of promastigotes and axenic amastigotes in different environmental growth conditions, varying pH, temperature and L-arginine availability. Interestingly, the increase of temperature increased the AAP3 level in plasma membrane and consequently the L-arginine uptake, independently of pH and L-arginine availability. In addition, we demonstrated that besides the plasma membrane localization, AAP3 was also localized in the glycosome of L. amazonensis promastigotes and axenic amastigotes. Conclusions/Significance In this report, we described the differential transcriptional profiling of amino acids transporters from La-WT and La-arg- promastigotes and axenic amastigotes. We

  12. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin.

    PubMed

    Jankovic, Aleksandra; Ferreri, Carla; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Stancic, Ana; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2016-11-01

    Setting the correct ratio of superoxide anion (O 2 •- ) and nitric oxide ( • NO) radicals seems to be crucial in restoring disrupted redox signaling in diabetic skin and improvement of • NO physiological action for prevention and treatment of skin injuries in diabetes. In this study we examined the effects of L-arginine and manganese(II)-pentaazamacrocyclic superoxide dismutase (SOD) mimic - M40403 in diabetic rat skin. Following induction of diabetes by alloxan (blood glucose level ≥12 mMol l  -1 ) non-diabetic and diabetic male Mill Hill hybrid hooded rats were divided into three subgroups: (i) control, and receiving: (ii) L-arginine, (iii) M40403. Treatment of diabetic animals started after diabetes induction and lasted for 7 days. Compared to control, lower cutaneous immuno-expression of endothelial NO synthase (eNOS), heme oxygenase 1 (HO1), manganese SOD (MnSOD) and glutathione peroxidase (GSH-Px), in parallel with increased NFE2-related factor 2 (Nrf2) and nitrotyrosine levels characterized diabetic skin. L-arginine and M40403 treatments normalized alloxan-induced increase in nitrotyrosine. This was accompanied by the improvement/restitution of eNOS and HO1 or MnSOD and GSH-Px protein expression levels in diabetic skin following L-arginine, i.e. SOD mimic treatments, respectively. The results indicate that L-arginine and M40403 stabilize redox balance in diabetic skin and suggest the underlying molecular mechanisms. Restitution of skin redox balance by L-arginine and M40403 may represent an effective strategy to ameliorate therapy of diabetic skin.

  13. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    PubMed

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  14. The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling

    PubMed Central

    Likhite, Neah; Jackson, Christopher A.; Liang, Mao-Shih; Krzyzanowski, Michelle C.; Lei, Pedro; Wood, Jordan F.; Birkaya, Barbara; Michaels, Kerry L.; Andreadis, Stelios T.; Clark, Stewart D.; Yu, Michael C.; Ferkey, Denise M.

    2017-01-01

    Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyl-transferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor–mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells. Analysis of prmt-5–deficient worms indicated that methylation promoted the dopamine-mediated modulation of chemosensory and locomotory behaviors in C. elegans through the DOP-3 receptor. In addition to delineating a previously uncharacterized means of regulating GPCR (heterotrimeric guanine nucleotide–binding protein–coupled receptor) signaling, these findings may lead to the development of a new class of pharmacological therapies that modulate GPCR signaling by changing the methylation status of these key proteins. PMID:26554819

  15. The Association of Dietary l-Arginine Intake and Serum Nitric Oxide Metabolites in Adults: A Population-Based Study

    PubMed Central

    Mirmiran, Parvin; Bahadoran, Zahra; Ghasemi, Asghar; Azizi, Fereidoun

    2016-01-01

    This study was conducted to investigate whether regular dietary intake of l-arginine is associated with serum nitrate + nitrite (NOx). In this cross-sectional study, 2771 men and women, who had participated in the third examination of the Tehran Lipid and Glucose Study (2006–2008), were recruited. Demographics, anthropometrics and biochemical variables were evaluated. Dietary data were collected using a validated 168-food item semi-quantitative food frequency questionnaire and dietary intake of l-arginine was calculated. To determine any association between dietary l-arginine and serum NOx, linear regression models with adjustment for potential confounders were used. Mean age of participants (39.2% men) was 45.9 ± 15.9 years. After adjustment for all potential confounding variables, a significant positive association was observed between l-arginine intake and serum NOx concentrations in the fourth quartile of l-arginine (β = 6.63, 95% CI = 4.14, 9.12, p for trend = 0.001), an association stronger in women. Further analysis, stratified by age, body mass index and hypertension status categories, showed a greater association in middle-aged and older adults (β = 9.12, 95% CI = 3.99, 13.6 and β = 12.1, 95% CI = 6.48, 17.7, respectively). l-arginine intakes were also strongly associated with serum NOx levels in overweight and obese subjects in the upper quartile (β = 10.7, 95% CI = 5.43, 16.0 and β = 11.0, 95% CI = 4.29, 17.5); a greater association was also observed between l-arginine intakes and serum NOx in non-hypertensive (HTN) compared to HTN subjects (β = 2.65, 95% CI = 2.1–3.2 vs. β = 1.25, 95% CI = −1.64–4.15). Dietary l-arginine intakes were associated to serum NOx and this association may be affected by sex, age, body mass index, and hypertension status. PMID:27213443

  16. Dietary L-Arginine Intakes and the Risk of Metabolic Syndrome: A 6-Year Follow-Up in Tehran Lipid and Glucose Study.

    PubMed

    Mirmiran, Parvin; Moghadam, Sajjad Khalili; Bahadoran, Zahra; Ghasemi, Asghar; Azizi, Fereidoun

    2017-12-01

    This study was conducted to investigate whether regular dietary intake of L-arginine could affect the occurrence of metabolic syndrome (MetS). Eligible adult men and women (n=1,237), who participated in the Tehran Lipid and Glucose Study, were followed for a median of 6.3 years. Dietary intakes of L-arginine and serum nitrate and nitrite (NOx) concentration were assessed at baseline (2006~2008), and demographics, anthropometrics, and biochemical variables were evaluated at baseline and follow-up examinations. The occurrence of MetS was assessed in relation to total L-arginine, intakes of L-arginine from animal and plant sources, with adjustment of potential confounding variables. Participants who had higher intake of L-arginine also had higher serum NOx at baseline (35.0 vs. 30.5 μmol/L, P <0.05). After 6 years of follow-up, higher intakes of L-arginine from animal sources were accompanied with increased risk of MetS [odd ratios (OR)=1.49, 95% confidence interval (95% CI)=1.02~2.18]. Compared to the lowest, the highest intakes of L-arginine from plant sources were related to significantly reduced risk of MetS (OR=0.58, 95% CI=0.32~0.99). In conclusion, our findings suggest a potentially protective effect of plant derived L-arginine intakes against development of MetS and its phenotypes; moreover, higher intakes of L-arginine from animal sources could be a dietary risk factor for development of metabolic disorders.

  17. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300.

    PubMed

    Tikhanovich, Irina; Zhao, Jie; Bridges, Brian; Kumer, Sean; Roberts, Ben; Weinman, Steven A

    2017-08-11

    Protein arginine methyltransferase 1 (PRMT1) is an essential enzyme controlling about 85% of the total cellular arginine methylation in proteins. We have shown previously that PRMT1 is an important regulator of innate immune responses and that it is required for M2 macrophage differentiation. c-Myc is a transcription factor that is critical in regulating cell proliferation and also regulates the M2 transcriptional program in macrophages. Here, we sought to determine whether c-Myc in myeloid cells is regulated by PRMT1-dependent arginine methylation. We found that PRMT1 activity was necessary for c-Myc binding to the acetyltransferase p300. PRMT1 inhibition decreased p300 recruitment to c-Myc target promoters and increased histone deacetylase 1 (HDAC1) recruitment, thereby decreasing transcription at these sites. Moreover, PRMT1 inhibition blocked c-Myc-mediated induction of several of its target genes, including peroxisome proliferator-activated receptor γ ( PPARG ) and mannose receptor C-type 1 ( MRC1 ), suggesting that PRMT1 is necessary for c-Myc function in M2 macrophage differentiation. Of note, in primary human blood monocytes, p300-c-Myc binding was strongly correlated with PRMT1 expression, and in liver sections, PRMT1, c-Myc, and M2 macrophage levels were strongly correlated with each other. Both PRMT1 levels and M2 macrophage numbers were significantly lower in livers from individuals with a history of spontaneous bacterial peritonitis, known to have defective cellular immunity. In conclusion, our findings demonstrate that PRMT1 is an important regulator of c-Myc function in myeloid cells. PRMT1 loss in individuals with cirrhosis may contribute to their immune defects. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. L-Arginine supplementation improves antioxidant defenses through L-arginine/nitric oxide pathways in exercised rats.

    PubMed

    Shan, Lingling; Wang, Bin; Gao, Guizhen; Cao, Wengen; Zhang, Yunkun

    2013-10-15

    l-Arginine (l-Arg) supplementation has been shown to enhance physical exercise capacity and delay onset of fatigue. This work investigated the potential beneficial mechanism(s) of l-Arg supplementation by examining its effect on the cellular oxidative and nitrosative stress pathways in the exercised rats. Forty-eight rats were randomly divided into six groups: sedentary control; sedentary control with l-Arg treatment; endurance training (daily swimming training for 8 wk) control; endurance training with l-Arg treatment; an exhaustive exercise (one time swimming to fatigue) control; and an exhaustive exercise with l-Arg treatment. l-Arg (500 mg/kg body wt) or saline was given to rats by intragastric administration 1 h before the endurance training and the exhaustive swimming test. Expression levels and activities of the l-Arg/nitric oxide (NO) pathway components and parameters of the oxidative stress and antioxidant defense capacity were investigated in l-Arg-treated and control rats. The result show that the l-Arg supplementation completely reversed the exercise-induced activation of NO synthase and superoxide dismutase, increased l-Arg transport capacity, and increased NO and anti-superoxide anion levels. These data demonstrate that l-Arg supplementation effectively reduces the exercise-induced imbalance between oxidative stress and antioxidant defense capacity, and this modulation is likely mediated through the l-Arg/NO pathways. The findings of this study improved our understanding of how l-Arg supplementation prevents elevations of reactive oxygen species and favorably enhances the antioxidant defense capacity during physical exercise.

  19. Inhibition of arginase in rat and rabbit alveolar macrophages by Nω-hydroxy-D,L-indospicine, effects on L-arginine utilization by nitric oxide synthase

    PubMed Central

    Hey, Claudia; Boucher, Jean-Luc; Vadon-Le Goff, Sandrine; Ketterer, Gabi; Wessler, Ignaz; Racké, Kurt

    1997-01-01

    Alveolar macrophages (AMΦ) exhibit arginase activity and may, in addition, express an inducible form of nitric oxide (NO) synthase (iNOS). Both pathways may compete for the substrate, L-arginine. The present study tested whether two recently described potent inhibitors of liver arginase (Nω-hydroxy-D,L-indospicine and 4-hydroxyamidino-D,L-phenylalanine) might also inhibit arginase in AMΦ and whether inhibition of arginase might affect L-arginine utilization by iNOS. AMΦ obtained by broncho-alveolar lavage of rat and rabbit isolated lungs were disseminated (2.5 or 3×106 cells per well) and allowed to adhere for 2 h. Thereafter, they were either used to study [*H]-L-arginine uptake (37 kBq, 0.1 μM, 2 min) or cultured for 20 h in the absence or presence of bacterial lipopolysaccharide (LPS). Cultured AMΦ were incubated for 1 h with [*H]-L-arginine (37 kBq, 0.1 μM) and the accumulation of [*H]-L-citrulline (NOS activity) and [*H]-L-ornithine (arginase activity) was determined. During 1 h incubation of rabbit AMΦ with [*H]-L-arginine, no [*H]-L-citrulline, but significant amounts of [*H]-L-ornithine (150 d.p.m.×1000) were formed. Nω-hydroxy-D,L-indospicine and 4-hydroxyamidino-D,L-phenylalanine, present during incubation, concentration-dependently reduced [*H]-L-ornithine formation (IC50: 2 and 45 μM, respectively). Nω-hydroxy-D,L-indospicine (up to 100 μM) had no effect on [*H]-L-arginine uptake into rabbit AMΦ, whereas 4-hydroxyamidino-D,L-phenylalanine caused a concentration-dependent inhibition (IC50: 300 μM). Rat AMΦ, cultured in the absence of LPS, formed significant amounts of [*H]-L-citrulline and [*H]-L-ornithine (133 and 212 d.p.m.×1000, respectively) when incubated for 1 h with [*H]-L-arginine. When AMΦ had been cultured in the presence of 0.1 or 1 μg ml−1 LPS, the formation of [*H]-L-citrulline was enhanced by 37±8.3 and 99±12% and that of [*H]-L-ornithine reduced by 21±8.7 and 70±2.5%, respectively

  20. Antidepressant-like effect of atorvastatin in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway.

    PubMed

    Shahsavarian, Arash; Javadi, Shiva; Jahanabadi, Samane; Khoshnoodi, Mina; Shamsaee, Javad; Shafaroodi, Hamed; Mehr, Shahram Ejtemaei; Dehpour, Ahmadreza

    2014-12-15

    Atorvastatin is a synthetic and lipophilic statin which has been reported to have a positive role in reducing depression. The potential antidepressant-like effects of atorvastatin and the possible involvement of peroxisome proliferator-activated receptor gamma (PPAR_γ) and nitric oxide system were determined using forced swimming test (FST) in mice was studied. Atorvastatin (0.01, 0.1 and 1 mg/kg, p.o.) was administered 1 h before FST. To assess the involvement of PPAR_γ in the possible antidepressant effect of atorvastatin, pioglitazone, a PPAR_γ agonist (5 mg/kg), and GW-9662, a specific PPAR_γ antagonist (2 mg/kg), was co-administered with atorvastatin (0.01 mg/kg, p.o.) and then FST was performed. The possible role of nitric oxide pathway was determined by using co-administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p.), and a NO precursor, L-arginine (750 mg/kg, i.p.) with sub-effective doses of atorvastatin and pioglitazone. Immobility time was significantly decreased after atorvastatin administration (0.1 and 1 mg/kg, p.o.). Administration of pioglitazone or L-NAME in combination with the sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) reduced the immobility time in the FST compared to drugs alone, showing the participation of these pathways; while co-administration of non-effective doses of atorvastatin and pioglitazone with GW9662 or L-arginine reversed antidepressant-like effect of atorvastatin in FST. Data from concurrent use of GW9662 and atorvastatin also demonstrated that the antidepressant effect of atorvastatin was significantly reversed by GW9662. The antidepressant-like effect of atorvastatin on mice in the FST is mediated at least in part through PPAR_γ receptors and NO pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Estimation of total rate of formation of nitric oxide in the rat.

    PubMed Central

    Sakinis, A; Wennmalm, A

    1998-01-01

    Nitric oxide (NO) is a powerful mediator with important actions in several organ systems. NO is synthesized during the enzymatic conversion of l-arginine and molecular oxygen to L-citrulline. About 90% of the NO formed is degraded to nitrate. Utilizing this information we have developed a method for assessment of the total rate of formation of NO in the rat. Male Wistar rats were kept in a closed-cage system allowing controlled breathing of a mixture of 18O2 and 16O2 in N2 for up to 5h. Blood samples for mass spectrometric analysis of nitrate residues with varying numbers of 18O atoms incorporated were drawn before and during the exposure to 18O2. By comparing the relative incorporation of 18O into nitrate residues to the 16O2/18O2 ratio in the breathing gas mixture in the cage system it was possible to calculate the absolute rate of NO formation in the animal. The rate of formation of NO in anaesthetized rats ranged from 0.33 to 0.85 micromol.kg-1.h-1. The rate of formation did not differ significantly in rats which were awake during the experiment (range 0.36-0.72 micromol.kg-1.h-1). The L-arginine analogue Nomega-nitro-L-arginine methyl ester (L-NAME) dose-dependently inhibited the formation of NO, at a dose of 100mg/kg by more than 99%. The technique presented allows estimation of the total rate of formation of NO in vivo in rats. Application of the technique may yield important information about the physiological and pathophysiological roles of NO. It may also be utilized to evaluate the effect of pharmacological treatment on NO formation. PMID:9461552

  2. Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets.

    PubMed

    Yao, Kang; Guan, Shu; Li, Tiejun; Huang, Ruilin; Wu, Guoyao; Ruan, Zheng; Yin, Yulong

    2011-03-01

    Oral administration of L-arginine has been reported to prevent gut disease in human infants. However, little is known about the effects of dietary arginine supplementation on intestinal development of weaned piglets. In the present study, twenty 21-d-old castrated piglets with 5·3 (SEM 0·13) kg body weight (BW) were weaned from sows, individually housed and randomly assigned to one of the two maize- and soyabean meal-based diets supplemented with 0 or 1% L-arginine. After consuming the diets for 7 d, six pigs were randomly selected from each group to obtain various tissues. Compared with control pigs, dietary supplementation with 1% L-arginine did not affect feed intake but enhanced (P<0·05) the relative weight of the small intestine (+33 %), daily BW gain (+38 %) and feed efficiency (+28 %). The villus height of the duodenum, jejunum and ileum in arginine-supplemented piglets was 21, 28 and 25% greater (P<0·05) than in the nonsupplemented control group. Arginine supplementation increased (P<0·05) protein levels for vascular endothelial growth factor(VEGF) in duodenal, jejunal and ileal mucosae by 14, 39 and 35 %, respectively. Compared with the control group, dietary supplementation with 1% L-arginine increased (P<0·05) plasma concentrations of arginine and insulin (+36 %), and decreased (P<0·05) plasma concentrations of cortisol (233 %), NH3 (221 %) and urea (219 %). These results indicate that arginine supplementation enhances intestinal growth, development and expression of VEGF in early-weaned pigs fed a maize- and soyabean meal-based diet. The findings may have important implications for neonatal pigs under stressful or diseased conditions.

  3. Optimization of gas chromatographic method for the enantioseparation of arylpropionic non-steroidal anti-inflammatory drug methyl esters.

    PubMed

    Petrović, Marinko; Debeljak, Zeljko; Blazević, Nikola

    2005-09-15

    The gas chromatography (GC) method for enantioseparation of well-known non-steroidal anti-inflammatory drugs ibuprofen, fenoprofen and ketoprofen methyl esters mixture was developed. Best enantioseparation was performed on capillary column with heptakis-(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-beta-cyclodextrin stationary phase and hydrogen used as a carrier gas. Initial temperature, program rate and carrier pressure were optimized to obtain best resolution between enantiomers.

  4. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arjunan, S.; Department of Physics, Presidency College, Chennai 600005; Mohan Kumar, R.

    2008-08-04

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-argininemore » trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal.« less

  5. Lipid oxidation. Part 2. Oxidation products of olive oil methyl esters.

    PubMed

    Pokorný, J; Tài, P; Parízková, H; Smidrkalová, E; El-Tarras, M F; Janícek, G

    1976-01-01

    Olive oil was converted into methyl esters which were autoxidized at 60 degrees C. The composition of oxidized products was determined by the comparison of infrared spectra and NMR spectra of the original and acetylated samples, the sample reduced with potassium iodide and the acetylated reduced sample. Oxidized products were separated by preparative thin layer chromatography on silica gel and characterized by selective detection and by infrared spectrometry of the fractions. The oxidation products consisted of hydroperoxido butyl oleate, substituted hydroperoxides, mono- and disubstituted monomeric derivatives and a small amount of oligomers.

  6. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production.

  7. Possible mechanism of acute effect of ethanol on intestinal IgA expression in rat.

    PubMed

    Budec, Mirela; Koko, Vesna; Todorović, Vera; Marković, Dragana; Postić, Marija; Drndarević, Neda; Spasić, Andelka; Mitrović, Olivera

    2007-06-01

    The purpose of this study was to investigate the possible mechanism of acute effect of ethanol on IgA expression in rat intestine. To this end, adult female Wistar rats showing diestrus day 1 were treated with (a) ethanol (2 or 4 g/kg, i.p.); (b) N omega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of nitric oxide synthase, (30 mg/kg, s.c.) followed by ethanol 3 h later; and (c) L-NAME (30 mg/kg, s.c.) followed by saline 3 h later. Saline-injected and untreated rats were used as controls. The animals were sacrificed 0.5 h after ethanol administration. Intestinal expression of IgA was evaluated by both immunohistochemistry and Western immunoblotting. Morphometric analysis showed that acute ethanol treatment increased the number of IgA-immunoreactive cells in a dose-dependent manner. Pretreatment with L-NAME abolished this action of alcohol. Injection of L-NAME followed by saline had no influence on the number of IgA+cells. The results, obtained by Western immunoblotting, paralleled our immunohistochemical findings. Taken together, these data suggest that acute effect of ethanol on intestinal IgA might be mediated by endogenous nitric oxide.

  8. Blockade of nitric oxide synthesis modulates rat immunoglobulin A.

    PubMed

    Budec, Mirela; Marković, Dragana; Djikić, Dragoslava; Mitrović, Olivera; Drndarević, Neda; Koko, Vesna; Todorović, Vera

    2009-01-01

    Nitric oxide (NO) is known as a regulator of inflammation and immunity. The purpose of this study was to investigate the influence of this signal molecule on the rat immunoglobulin A (IgA) system using Nomega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of NO synthase. The experiments were performed on adult female Wistar rats showing diestrus day 1 that were treated with L-NAME (30 or 50 mg/kg, s.c.). Untreated and saline-injected animals were used as controls. The rats were sacrificed 3 h following L-NAME or saline administration. The concentration of IgA in serum and intestinal extracts was determined by a sandwich enzyme-linked immunosorbent assay. The number of IgA-expressing cells per area unit of Peyer's patches and the intestinal lamina propria was evaluated using stereological analysis. The results showed that L-NAME decreased the level of IgA in serum and elevated its concentration in intestinal extracts. Additionally, the increased number of IgA+ cells was found in the intestinal lamina propria in both experimental groups. Obtained findings imply that endogenous NO may modulate the IgA system in the rat. Copyright 2009 S. Karger AG, Basel.

  9. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. 721.304 Section 721.304 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1...

  10. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    PubMed Central

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  11. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  12. Fatty acid methyl ester profiles of bat wing surface lipids.

    PubMed

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  13. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria

    PubMed Central

    Brussee, Janneke M.; Yeo, Tsin W.; Lampah, Daniel A.; Anstey, Nicholas M.

    2015-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria. PMID:26482311

  14. Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters.

    PubMed

    Khayoon, M S; Olutoye, M A; Hameed, B H

    2012-05-01

    Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The acute effects of a low and high dose of oral L-arginine supplementation in young active males at rest.

    PubMed

    Forbes, Scott C; Bell, Gordon J

    2011-06-01

    L-arginine (2-amino-5-guanidinovaleric acid) is a conditionally essential amino acid. Intravenous (IV) administration of l-arginine invokes a large metabolic (nitrate/nitrite (NO(x))) and hormonal (growth hormone (GH), insulin-like growth factor 1 (IGF-1), and insulin) response; however, research examining oral l-arginine supplementation is conflicting, potentially owing to dose. The purpose of this study was examine a low and high dose of oral l-arginine on blood l-arginine, NO(x), GH, IGF-1, and insulin response. Fourteen physically active males (age: 25 ± 5 years; weight: 78.0 ± 8.5 kg; height: 179.4 ± 4.7 cm) volunteered to be in a randomized, double-blind, repeated-measures study. Following an overnight fast, an IV catheter was placed in a forearm vein and a resting blood sample was drawn at ∼0800 hours. Each subject was then provided 1 of 3 treatment conditions (placebo, low (0.075 g·kg(-1) of body mass), or high (0.15 g·kg(-1) of body mass of l-arginine)). Blood samples were drawn at 30, 60, 90, 120, and 180 min after consumption. l-arginine plasma concentrations significantly increased (p < 0.001) to a similar level at any time point in both the low- and high-dose conditions; there was no change over time in the placebo condition. There was no significant difference between conditions for NO(x), GH, IGF-1, or insulin. Based on these findings, a low dose of l-arginine was just as effective at increasing plasma l-arginine concentrations as a high dose; however, neither dose was able to promote a significant increase in NO(x), GH, IGF-1, or insulin at rest.

  16. Ester carbonyl vibration as a sensitive probe of protein local electric field.

    PubMed

    Pazos, Ileana M; Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-06-10

    The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phase transition and intramolecular hydrogen bonding in nitro derivatives of ortho-hydroxy acetophenones

    NASA Astrophysics Data System (ADS)

    Filarowski, A.; Kochel, A.; Koll, A.; Bator, G.; Mukherjee, S.

    2006-03-01

    The crystal structures of two ortho-hydroxy aryl ketones (5-chloro-3-nitro-2-hydroxyacetophenone, 5-methyl-3-nitro-2-hydroxyacetophenone and the complex 5-chloro-3-nitro-2-hydroxyacetophenone with 2-aminobenzoic acid (anthranilic acid)) were determined by X-ray diffraction. The existence of an intramolecular hydrogen bond of enol character between the hydroxyl and acetyl groups was found by the X-ray method. The enol character was also confirmed by DFT (B3LYP/6-31+G(d,p)) calculations. A phase transition was found at 138 K in 5-chloro-3-nitro-2-hydroxyacetophenone. This phase transition was investigated by differential scanning calorimetry (DSC), dilatometry, and the dielectric method. A study of the nitro-group dynamics in the ortho-hydroxy acetophenones was carried out with DFT (B3LYP/6-31+G(d,p)) calculations.

  18. ORAL DELIVERY OF L-ARGININE STIMULATES PROSTAGLANDIN-DEPENDENT SECRETORY DIARRHEA IN C. PARVUM INFECTED NEONATAL PIGLETS

    PubMed Central

    Gookin, Jody L.; Foster, Derek M.; Coccaro, Maria R.; Stauffer, Stephen H.

    2008-01-01

    Objectives To determine if oral supplementation with L-arginine could augment nitric oxide (NO) synthesis and promote epithelial defense in neonatal piglets infected with C. parvum. Methods Neonatal piglets were fed a liquid milk replacer and on day 3 of age infected or not with 108 C. parvum oocysts and the milk replacer supplemented with L-arginine or L-alanine. Milk consumption, body weight, fecal consistency, and oocyst excretion were recorded daily. On day 3 post-infection, piglets were euthanized, and serum concentration of NO metabolites and histological severity of villous atrophy and epithelial infection were quantified. Sheets of ileal mucosa were mounted in Ussing chambers for measurement of barrier function (transepithelial resistance (TER) and permeability) and short-circuit current (Isc; an indirect measurement of Cl− secretion in this tissue). Results C. parvum infected piglets had large numbers of epithelial parasites, villous atrophy, decreased barrier function, severe watery diarrhea, and failure to gain weight. L-arginine promoted synthesis of NO by infected piglets which was unaccompanied by improvement in severity of infection but rather promoted epithelial chloride secretion and diarrhea. Epithelial secretion by infected mucosa from L-arginine supplemented piglets was fully inhibited by the cyclooxygenase inhibitor indomethacin, indicating that prostaglandin synthesis was responsible for this effect. Conclusions Results of these studies demonstrate that provision of additional NO substrate in the form of L-arginine incites prostaglandin-dependent secretory diarrhea and does not promote epithelial defense or barrier function of C. parvum infected neonatal ileum. PMID:18223372

  19. The synthesis and cell interaction of statistical L-arginine - glycine - L-aspartic acid terpolypeptides.

    PubMed

    Mbizana, Siyasanga; Hlalele, Lebohang; Pfukwa, Rueben; du Toit, Andre; Lumkwana, Dumisile; Loos, Benjamin; Klumperman, Bert

    2018-05-01

    Copolymerizations and terpolymerizations of N-carboxyanhydrides (NCAs) of glycine (Gly), Nδ-carbobenzyloxy-L-ornithine ((Z)-Orn) and β-benzyl-L-aspartate ((Bz)-Asp) were investigated. In situ 1H NMR spectroscopy was used to monitor individual comonomer consumptions during binary and ternary copolymerizations. The six relevant reactivity ratios were determined from copolymerizations of the NCAs of amino acids via nonlinear least squares curve fitting. The reactivity ratios were subsequently used to maximize the occurrence of the Asp-Gly-Orn (DGR') sequence in the terpolymers. Terpolymers with variable probability of occurrence of DGR' were prepared in the lab. Subsequently, the ornithine residues on the terpolymers were converted to L-arginine (R) residues via guanidination reaction after removal of the protecting groups. The resulting DGR terpolymers translate to traditional peptides and proteins with variable RGD content, due to the convention in nomenclature that peptides are depicted from N- to C-terminus, whereas the NCA ring-opening polymerization is conducted from C- to N-terminus. The L-arginine containing terpolymers were evaluated for cell interaction, where it was found that neuronal cells display enhanced adhesion and process formation when plated in the presence of statistical DGR terpolymers.

  20. L-arginine and glycine supplementation in the repair of the irradiated colonic wall of rats.

    PubMed

    de Aguiar Picanço, Etiene; Lopes-Paulo, Francisco; Marques, Ruy G; Diestel, Cristina F; Caetano, Carlos Eduardo R; de Souza, Mônica Vieira Mano; Moscoso, Gabriela Mendes; Pazos, Helena Maria F

    2011-05-01

    Radiotherapy is widely used for cancer treatment but has harmful effects. This study aimed to assess the effects of L-arginine and glycine supplementation on the colon wall of rats submitted to abdominal irradiation. Forty male Wistar rats were randomly divided into four groups: I-healthy, II-irradiated with no amino acid supplementation, III-irradiated and supplemented with L-arginine, and IV-irradiated and supplemented with glycine. The animals received supplementation for 14 days, with irradiation being applied on the eighth day of the experiment. All animals underwent laparotomy on the 15th day for resection of a colonic segment for stereologic analysis. Parametric and nonparametric tests were used for statistical analysis, with the level of significance set at p ≤0.05. Stereologic analysis showed that irradiation induced a reduction of the total volume of the colon wall of group II and III animals compared to healthy controls, but not of group IV animals supplemented with glycine. The mucosal layer of the irradiated animals of all groups was reduced compared to healthy group I animals, but supplementation with L-arginine and glycine was effective in maintaining the epithelial surface of the mucosal layer. The present results suggest that glycine supplementation had a superior effect on the irradiated colon wall compared to L-arginine supplementation since it was able to maintain the thickness of the wall and the epithelial surface of the mucosa, whereas L-arginine maintained the partial volume of the epithelium and the epithelial surface, but not the total volume of the intestinal wall.

  1. Bi-enzyme L-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode.

    PubMed

    Stasyuk, Nataliya; Smutok, Oleh; Gayda, Galina; Vus, Bohdan; Koval'chuk, Yevgen; Gonchar, Mykhailo

    2012-01-01

    A novel L-arginine-selective amperometric bi-enzyme biosensor based on recombinant human arginase I isolated from the gene-engineered strain of methylotrophic yeast Hansenula polymorpha and commercial urease is described. The biosensing layer was placed onto a polyaniline-Nafion composite platinum electrode and covered with a calcium alginate gel. The developed sensor revealed a good selectivity to L-arginine. The sensitivity of the biosensor was 110 ± 1.3 nA/(mM mm(2)) with the apparent Michaelis-Menten constant (K(M)(app)) derived from an L-arginine (L-Arg) calibration curve of 1.27 ± 0.29 mM. A linear concentration range was observed from 0.07 to 0.6mM, a limit of detection being 0.038 mM and a response time - 10s. The developed biosensor demonstrated good storage stability. A laboratory prototype of the proposed amperometric biosensor was applied to the samples of three commercial pharmaceuticals ("Tivortin", "Cytrarginine", "Aminoplazmal 10% E") for L-Arg testing. The obtained L-Arg-content values correlated well with those declared by producers. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. L-Arginine attenuates the ethylene glycol induced urolithiasis in ininephrectomized hypertensive rats: role of KIM-1, NGAL, and NOs.

    PubMed

    Kandhare, Amit D; Patil, Mithun V K; Bodhankar, Subhash L

    2015-05-01

    Ethylene glycol (EG) exposure caused formation of calcium oxalate crystal that led to renal failure, which is associated with higher prevalence of hypertension. L-Arginine is known to have an antioxidant and nephro-protective potential. To evaluate the effect of L-arginine against EG-induced urolithiasis in uninephrectomized hypertensive rats. Uninephrectomized male Wistar rats (180-200 g) were used to induce urinary calculi through oral administration of EG (0.75%) in distilled water. Rats were treated with either distilled water (10 mg/kg, p.o.) or telmisartan (10 mg/kg, p.o.) or Cystone (500 mg/kg, p.o.) or L-arginine (250, 500, and 1000 mg/kg, p.o.) for 28 days. Various hemodynamic, biochemical, molecular, and histological parameters were assessed in kidney and heart. Rats treated with L-arginine (500 and 1000 mg/kg) significantly restored altered relative organ weight, urine output, urine density, urinary pH, and water intake. EG-induced alterations in electrocardiographic (QRS interval, HR, and ST height) and hemodynamic (SBP, DBP, MABP, and LVEDP) abnormalities were significantly restored by L-arginine (500 and 1000 mg/kg) treatment. It also significantly restored alteration in serum and urine biochemical parameters induced by EG. The elevated oxido-nitrosative stress was also significantly decreased by L-arginine (500 and 1000 mg/kg) treatment. It also significantly down-regulated EG-induced up-regulated renal KIM-1, NGAL, eNOS, and iNOs mRNA expressions. Histological aberrations induced in the renal and cardiac tissues were also ameliorated by l-arginine treatment. L-Arginine exerts its nephro- and cardio-protective potential in EG-induced urolithiasis in uninephrectomized hypertensive rats via modulation of KIM-1, NGAL, eNOS, and iNOs mRNA expression.

  3. The effects of sildenafil citrate on urinary podocin and nephrin mRNA expression in an L-NAME model of pre-eclampsia.

    PubMed

    Baijnath, Sooraj; Murugesan, Saravanakumar; Mackraj, Irene; Gathiram, Prem; Moodley, Jagidesa

    2017-03-01

    We investigated the effects of sildenafil citrate (SC) on podocyturia in N ω -nitro-L-arginine methyl ester hydrochloride (L-NAME) model of pre-eclampsia (PE). One hundred and twenty Sprague-Dawley rats (SDR) were divided into five groups like pregnant control (PC), early-onset PE (EOPE), late-onset PE(LOPE), early and late-onset PE with SC-treated groups [EOPE (SC); LOPE (SC)]. PE was induced in SDR by oral administration of L-NAME in drinking water for 4-8 days for EOPE and 8-14 day for LOPE. The blood pressure, urine volume and total urine protein were increased in EOPE and LOPE groups when compared to PC, and all the above parameters decreased in EOPE (SC) and LOPE (SC) groups when compared to EOPE and LOPE groups, respectively. The EOPE and LOPE groups showed an increase in urinary nephrin mRNA and podocin mRNA levels compared to PC group. Increases in serum and renal soluble fms-like tyrosine kinase-1 (sFlt-1) expression levels and decreases in renal vascular endothelial growth factor (VEGF) expression and serum placenta growth factor (PlGF) levels were observed in EOPE and LOPE groups when compared to PC group. In addition, decreases in serum and renal sFlt-1 expression levels and increases in renal VEGF expression and serum PlGF levels were observed in EOPE (SC) and LOPE (SC) groups when compared to EOPE and LOPE groups, respectively. The light microscopy showed that the renal tissue of L-NAME-treated rats had extensive glomerular damage, tubular damage and infiltration by mononuclear cells when compared to PC group. Therefore, SC ameliorated podocyturia through its effects on the antiangiogenic/angiogenic status in this animal model.

  4. Preparation of fatty acid methyl esters from Osage orange (Maclura pomifera) oil and evaluation as biodiesel

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...

  5. Use of MIDI-fatty acid methyl ester analysis to monitor the transmission of Campylobacter during commercial poultry processing.

    PubMed

    Hinton, Arthur; Cason, J A; Hume, Michael E; Ingram, Kimberly D

    2004-08-01

    The presence of Campylobacter spp. on broiler carcasses and in scald water taken from a commercial poultry processing facility was monitored on a monthly basis from January through June. Campylobacter agar, Blaser, was used to enumerate Campylobacter in water samples from a multiple-tank scalder; on prescalded, picked, eviscerated, and chilled carcasses; and on processed carcasses stored at 4 degrees C for 7 or 14 days. The MIDI Sherlock microbial identification system was used to identify Campylobacter-like isolates based on the fatty acid methyl ester profile of the bacteria. The dendrogram program of the Sherlock microbial identification system was used to compare the fatty acid methyl ester profiles of the bacteria and determine the degree of relatedness between the isolates. Findings indicated that no Campylobacter were recovered from carcasses or scald tank water samples collected in January or February, but the pathogen was recovered from samples collected in March, April, May, and June. Processing generally produced a significant (P < 0.05) decrease in the number of Campylobacter recovered from broiler carcasses, and the number of Campylobacter recovered from refrigerated carcasses generally decreased during storage. Significantly (P < 0.05) fewer Campylobacter were recovered from the final tank of the multiple-tank scald system than from the first tank. MIDI similarity index values ranged from 0.104 to 0.928 based on MIDI-fatty acid methyl ester analysis of Campylobacterjejuni and Campylobacter coli isolates. Dendrograms of the fatty acid methyl ester profile of the isolates indicated that poultry flocks may introduce several strains of C. jejuni and C. coli into processing plants. Different populations of the pathogen may be carried into the processing plant by successive broiler flocks, and the same Campylobacter strain may be recovered from different poultry processing operations. However, Campylobacter apparently is unable to colonize equipment in the

  6. Analysis of L-citrulline and L-arginine in Ficus deltoidea leaf extracts by reverse phase high performance liquid chromatography

    PubMed Central

    Shafaei, Armaghan; Aisha, Abdalrahim F. A.; Siddiqui, Mohammad Jamshed Ahmad; Ismail, Zhari

    2015-01-01

    Background: Ficus deltoidea (FD) is one of the native plants widely distributed in several countries in Southeast Asia. Previous studies have shown that FD leaf possess antinociceptive, wound healing and antioxidant properties. These beneficial effects have been attributed to the presence of primary and secondary metabolites such as polyphenols, amino acids and flavonoids. Objective: The aim was to develop a reverse phase high-performance liquid chromatography method with ultraviolet detection that involves precolumn derivatisation with O-phthaladehyde for simultaneous analysis of two amino acids L-citrulline and L-arginine in FD leaf extracts. Materials and Methods: An isocratic elution program consisting of methanol: acetonitrile: Water at 45:45:10 v/v (solvent A) and 0.1 M phosphate buffer pH 7.5 (solvent B) at A: B v/v ratio of 80:20 on Zorbax Eclipse C18 SB-Aq column (250 × 4.6 mm, 5 μm) were used. The flow rate was set at 1 ml/min and detection was carried out at 338 nm with 30 min separation time. Results: Good linearity for L-citrulline and L-arginine was obtained in the range 0.1-1000 μg/ml at R2 ≥ 0.998. The limit of detection and limit of quantification values for both L-citrulline and L-arginine were 1 and 5 μg/ml, respectively. The average of recoveries was in the range 94.94-101.95%, with relative standard deviation (%RSD) less than 3%. Intra- and inter-day precision was in the range 96.36-102.43% with RSD less than 2%. Conclusion: All validation parameters of the developed method indicate the method is reliable and efficient for simultaneous determination of L-citrulline and L-arginine for routine analysis of FD. PMID:25598632

  7. Decreased Reactivity of Skin Microcirculation in Response to l-Arginine in Later-Onset Type 1 Diabetes

    PubMed Central

    Neubauer-Geryk, Jolanta; Kozera, Grzegorz M.; Wolnik, Bogumil; Szczyrba, Sebastian; Nyka, Walenty M.; Bieniaszewski, Leszek

    2013-01-01

    OBJECTIVE The aim of our study was to evaluate the vasodilatory effect of l-arginine infusion on the skin microcirculation and to assess the relationship between this effect and the presence of microangiopathy in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS Capillaroscopy was performed before and after l-arginine infusion in 48 diabetic patients (26 women and 22 men; age, 39.8 ± 6.3 years) and 24 volunteers free of any chronic disease (13 women and 11 men; age, 38.0 ± 6.7 years). The skin microcirculation reactivity, as expressed by the percentage of area covered by capillaries (coverage) and the distance between capillaries (distance), and the relationship between microcirculation reactivity and the presence of microangiopathic complications were assessed. RESULTS The distance before l-arginine infusion was significantly lower in patients than in controls (221 [153–311] vs. 240 [185–356] µm; P = 0.02) and did not differ after l-arginine infusion (223.5 [127–318] vs. 242.5 [181–341] µm; P = 0.27). The difference between the coverage values obtained before and after l-arginine infusion (Δcoverage) was significantly different from zero in the control group but not in the diabetes group. Patients with later onset of diabetes were characterized by decreased skin microcirculation reactivity when compared with patients with earlier onset of diabetes (−1.18 [−5.07 to 11.60] vs. 1.36 [−6.00 to 8.06]; P = 0.02) despite the higher prevalence of retinopathy in patients with earlier onset of diabetes (64% vs. 26%; P = 0.02). CONCLUSIONS Skin microvascular reactivity is impaired in patients with later onset of type 1 diabetes. Capillaroscopy with l-arginine infusion is useful for the identification of skin microangiopathy in type 1 diabetes. PMID:23150282

  8. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Leptin improves membrane fluidity of erythrocytes in humans via a nitric oxide-dependent mechanism--an electron paramagnetic resonance investigation.

    PubMed

    Tsuda, Kazushi; Kimura, Keizo; Nishio, Ichiro

    2002-09-27

    Abnormalities in physical properties of the cell membranes may underlie the defects that are strongly linked to hypertension, stroke, and other cardiovascular diseases. Recently, there has been an indication that leptin, the product of the human obesity gene, actively participates not only in the metabolic regulations but also in the control of cardiovascular functions. In the present study, to assess the role of leptin in the regulation of membrane properties, the effects of leptin on membrane fluidity of erythrocytes in humans are examined. The membrane fluidity of erythrocytes in healthy volunteers by means of an electron paramagnetic resonance (EPR) and spin-labeling method is determined. In an in vitro study, leptin decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in healthy volunteers. The finding indicated that leptin increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of leptin on the membrane fluidity was significantly potentiated by the nitric oxide (NO) donors, L-arginine and S-nitroso-N-acetylpenicillamine (SNAP), and a cyclic guanosine monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by leptin was significantly attenuated in the presence of the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester (L-NAME) and asymmetric dimethyl-L-arginine (ADMA). The results of the present study showed that leptin increased the membrane fluidity and improved the rigidity of cell membranes to some extent via an NO- and cGMP-dependent mechanism. Furthermore, the data also suggest that leptin might have a crucial role in the regulation of rheological behavior of erythrocytes and microcirculation in humans.

  10. Direct methylation procedure for converting fatty amides to fatty acid methyl esters in feed and digesta samples.

    PubMed

    Jenkins, T C; Thies, E J; Mosley, E E

    2001-05-01

    Two direct methylation procedures often used for the analysis of total fatty acids in biological samples were evaluated for their application to samples containing fatty amides. Methylation of 5 mg of oleamide (cis-9-octadecenamide) in a one-step (methanolic HCl for 2 h at 70 degrees C) or a two-step (sodium methoxide for 10 min at 50 degrees C followed by methanolic HCl for 10 min at 80 degrees C) procedure gave 59 and 16% conversions of oleamide to oleic acid, respectively. Oleic acid recovery from oleamide was increased to 100% when the incubation in methanolic HCl was lengthened to 16 h and increased to 103% when the incubation in methoxide was modified to 24 h at 100 degrees C. However, conversion of oleamide to oleic acid in an animal feed sample was incomplete for the modified (24 h) two-step procedure but complete for the modified (16 h) one-step procedure. Unsaturated fatty amides in feed and digesta samples can be converted to fatty acid methyl esters by incubation in methanolic HCl if the time of exposure to the acid catalyst is extended from 2 to 16 h.

  11. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt.

    PubMed

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2011-04-01

    Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous nitric oxide (NO) synthase (NOS) inhibitors asymmetrical dimethylarginine (ADMA) and L-NG-monomethyl arginine (L-NMMA). This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA-independent effects that influence endothelial function. Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in human umbilical vein endothelial cells, we found that DDAH1 acts to promote endothelial cell proliferation, migration, and tube formation by Akt phosphorylation, as well as through the traditional role of degrading ADMA. Incubation of human umbilical vein endothelial cells with the NOS inhibitors l-NG-nitro-arginine methyl ester (L-NAME) or ADMA, the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-2)quinoxalin-1-one, or the cGMP analog 8-(4-Chlorophenylthio)-cGMP had no effect on phosphorylated (p)-Akt(Ser473), indicating that the increase in p-Akt(Ser473) produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase in p-Akt(Ser473). Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. DDAH1 exerts a unique role in activating Akt that affects endothelial function independently of degrading endogenous NOS inhibitors.

  12. Fluoxetine induces vasodilatation of cerebral arterioles by co-modulating NO/muscarinic signalling

    PubMed Central

    Ofek, Keren; Schoknecht, Karl; Melamed-Book, Naomi; Heinemann, Uwe; Friedman, Alon; Soreq, Hermona

    2012-01-01

    Ischaemic stroke patients treated with Selective Serotonin Reuptake Inhibitors (SSRI) show improved motor, cognitive and executive functions, but the underlying mechanism(s) are incompletely understood. Here, we report that cerebral arterioles in the rat brain superfused with therapeutically effective doses of the SSRI fluoxetine showed consistent, dose-dependent vasodilatation (by 1.2 to 1.6-fold), suppressible by muscarinic and nitric oxide synthase (NOS) antagonists [atropine, NG-nitro-l-arginine methyl ester (l-NAME)] but resistant to nicotinic and serotoninergic antagonists (mecamylamine, methylsergide). Fluoxetine administered 10–30 min. following experimental vascular photo-thrombosis increased arterial diameter (1.3–1.6), inducing partial, but lasting reperfusion of the ischaemic brain. In brain endothelial b.End.3 cells, fluoxetine induced rapid muscarinic receptor-dependent increases in intracellular [Ca2+] and promoted albumin- and eNOS-dependent nitric oxide (NO) production and HSP90 interaction. In vitro, fluoxetine suppressed recombinant human acetylcholinesterase (rhAChE) activity only in the presence of albumin. That fluoxetine induces vasodilatation of cerebral arterioles suggests co-promotion of endothelial muscarinic and nitric oxide signalling, facilitated by albumin-dependent inhibition of serum AChE. PMID:22697296

  13. DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino)methyl]phenol

    NASA Astrophysics Data System (ADS)

    Temel, Ersin; Alaşalvar, Can; Gökçe, Halil; Güder, Aytaç; Albayrak, Çiğdem; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan; Dilek, Nefise

    2015-02-01

    We have reported synthesis and characterization of (E)-2-nitro-4-[(phenylimino)methyl]phenol by using X-ray crystallographic method, FT-IR and UV-vis spectroscopies and density functional theory (DFT). Optimized geometry and vibrational frequencies of the title compound in the ground state have been computed by using B3LYP with the 6-311G+(d,p) basis set. HOMO-LUMO energy gap, Non-linear optical properties and NBO analysis of the compound are performed at B3LYP/6-311G+(d,p) level. Additionally, as remarkable properties, antioxidant activity of the title compound (CMPD) has been determined by using different antioxidant test methods i.e. ferric reducing antioxidant power (FRAP), hydrogen peroxide scavenging (HPSA), free radical scavenging (FRSA) and ferrous ion chelating activities (FICA). When compared with standards (BHA, BHT, and α-tocopherol), we have concluded that CPMD has effective FRAP, HPSA, FRSA and FICA.

  14. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery.

    PubMed

    You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun

    2018-05-25

    Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the

  15. The relaxant actions of ethanolic extract of Tridax procumbens (Linn.) on rat corpus cavernosum smooth muscle contraction.

    PubMed

    Salahdeen, Hussein M; Idowu, Gbolahan O; Yemitan, Omoniyi K; Murtala, Babatunde A; Alada, Abdul Rasak A

    2015-03-01

    The effect of Tridax procumbens aqueous ethanolic extract on the rat corpus cavernosum smooth muscles was evaluated in the present study. Corpus cavernosum strips obtained from healthy, young, adult male Wistar albino rats (250-300 g) were precontracted with phenylephrine (10-7 M) or KCl (60 mM) and then treated with various concentrations of T. procumbens extract (0.15-1.05 mg/mL). The change in corpus cavernosum strip tension was recorded. The interactions between T. procumbens extract with acetylcholine and with sodium nitroprusside were also evaluated. The results indicated that corpus cavernosum strips relaxation induced by T. procumbens extract was concentration-dependent and this was significant (p<0.5). Pre-treatment with a nitric oxide synthase (NOS) inhibitor (N(1) nitro-L-arginine-methyl ester, l-NAME), did not completely inhibit the relaxation. However, T. procumbens extract (0.6 mg/mL) significantly (p<0.5) enhanced both acetylcholine- and sodium nitroprusside-induced corpus cavernosum strips relaxation. RESULTS suggest that T. procumbens extract has a concentration-dependent relaxant effect on the isolated rat corpus cavernosum. The mechanism of action of T. procumbens extract is complex. A part of its relaxing effect is mediated directly by the release of NO from endothelium which may improve erectile dysfunction.

  16. Mechanism for substance P-induced relaxation of precontracted airway smooth muscle during development.

    PubMed

    Mhanna, M J; Dreshaj, I A; Haxhiu, M A; Martin, R J

    1999-01-01

    Release of substance P (SP) from sensory nerve endings of the tracheobronchial system modulates airway smooth muscle contraction and may cause relaxation of precontracted airways. We sought to elucidate the effect of postnatal maturation on SP-induced relaxation of precontracted airways and determine the roles of endogenously generated nitric oxide (NO) and prostaglandins (PGs). Cylindrical airway segments were isolated from the midtrachea of rats at four different ages, 1, 2, and 4 wk and 3 mo, and contracted to 50-75% of the maximum response induced by bethanechol. SP was then administered in the absence and presence of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the PG inhibitor indomethacin, or both. Relaxation of airways with SP decreased significantly with advancing postnatal age. SP-induced tracheal relaxation was consistently attenuated by pretreatment with L-NAME, indomethacin, or both. In a different group of animals, L-NAME significantly attenuated the relaxant response of airways to PGE2 exposure, but indomethacin had no significant effect on the relaxant response to exogenous NO. We conclude that SP induces a relaxant effect on precontracted airway smooth muscle, which decreases with advancing age and is mediated via SP-induced release of NO and/or PG.

  17. The difference in the effect of glutamate and NO synthase inhibitor on free calcium concentration and Na+, K+-ATPase activity in synaptosomes from various brain regions.

    PubMed

    Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Leont'ev, V G

    1999-09-01

    The significant increase of free calcium concentration ([Ca2+]i) was found in rat cerebral cortex synaptosomes and hippocampal crude synaptosomal fraction after their exposure to glutamate. But no change of [Ca2+]i was revealed in cerebellar synaptosomes, the slight increase of [Ca2+]i in striatal synaptosomes was not significant. The presence of Ng-nitro-L-arginine methyl ester (L-NAME) in the incubation medium practically prevented the increase of [Ca2+]i initiated by glutamate in cerebral cortex synaptosomes, but not in hippocampal ones. The significant diminution of [Ca2+]i in the presence of this inhibitor was shown in striatal synaptosomes exposed to glutamate. Na+,K+-ATPase activity is significantly lower in cerebral cortex, striatal and hippocampal synaptosomes exposed to glutamate. L-NAME prevented the inactivation of this enzyme by glutamate. In cerebellar synaptosomes the tendency to the decrease of enzymatic activity in the presence of L-NAME was on the contrary noticed. Thus, the data obtained provide evidence of the protective effect of NO synthase inhibitor in brain cortex and striatal synaptosomes, but not in cerebellar synaptosomes. Synaptosomes appear to be an adequate model to study the regional differences in the mechanism of toxic effect of excitatory amino acids.

  18. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-05

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Gas Phase Dissociation Behavior of Acyl-Arginine Peptides.

    PubMed

    McGee, William M; McLuckey, Scott A

    2013-11-15

    The gas phase dissociation behavior of peptides containing acyl-arginine residues is investigated. These acylations are generated via a combination of ion/ion reactions between arginine-containing peptides and N -hydroxysuccinimide (NHS) esters and subsequent tandem mass spectrometry (MS/MS). Three main dissociation pathways of acylated arginine, labeled Paths 1-3, have been identified and are dependent on the acyl groups. Path 1 involves the acyl-arginine undergoing deguanidination, resulting in the loss of the acyl group and dissociation of the guanidine to generate an ornithine residue. This pathway generates selective cleavage sites based on the recently discussed "ornithine effect". Path 2 involves the coordinated losses of H 2 O and NH 3 from the acyl-arginine side chain while maintaining the acylation. We propose that Path 2 is initiated via cyclization of the δ-nitrogen of arginine and the C-terminal carbonyl carbon, resulting in rapid rearrangement from the acyl-arginine side chain and the neutral losses. Path 3 occurs when the acyl group contains α-hydrogens and is observed as a rearrangement to regenerate unmodified arginine while the acylation is lost as a ketene.

  20. The light-induced reduction of horizontal cell receptive field size in the goldfish retina involves nitric oxide.

    PubMed

    Daniels, Bryan A; Baldridge, William H

    2011-03-01

    Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size. Copyright © Cambridge University Press, 2011