Sample records for l-shaped aluminum segments

  1. Rigid shape matching by segmentation averaging.

    PubMed

    Wang, Hongzhi; Oliensis, John

    2010-04-01

    We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.

  2. Figure-ground segmentation based on class-independent shape priors

    NASA Astrophysics Data System (ADS)

    Li, Yang; Liu, Yang; Liu, Guojun; Guo, Maozu

    2018-01-01

    We propose a method to generate figure-ground segmentation by incorporating shape priors into the graph-cuts algorithm. Given an image, we first obtain a linear representation of an image and then apply directional chamfer matching to generate class-independent, nonparametric shape priors, which provide shape clues for the graph-cuts algorithm. We then enforce shape priors in a graph-cuts energy function to produce object segmentation. In contrast to previous segmentation methods, the proposed method shares shape knowledge for different semantic classes and does not require class-specific model training. Therefore, the approach obtains high-quality segmentation for objects. We experimentally validate that the proposed method outperforms previous approaches using the challenging PASCAL VOC 2010/2012 and Berkeley (BSD300) segmentation datasets.

  3. Integrating shape into an interactive segmentation framework

    NASA Astrophysics Data System (ADS)

    Kamalakannan, S.; Bryant, B.; Sari-Sarraf, H.; Long, R.; Antani, S.; Thoma, G.

    2013-02-01

    This paper presents a novel interactive annotation toolbox which extends a well-known user-steered segmentation framework, namely Intelligent Scissors (IS). IS, posed as a shortest path problem, is essentially driven by lower level image based features. All the higher level knowledge about the problem domain is obtained from the user through mouse clicks. The proposed work integrates one higher level feature, namely shape up to a rigid transform, into the IS framework, thus reducing the burden on the user and the subjectivity involved in the annotation procedure, especially during instances of occlusions, broken edges, noise and spurious boundaries. The above mentioned scenarios are commonplace in medical image annotation applications and, hence, such a tool will be of immense help to the medical community. As a first step, an offline training procedure is performed in which a mean shape and the corresponding shape variance is computed by registering training shapes up to a rigid transform in a level-set framework. The user starts the interactive segmentation procedure by providing a training segment, which is a part of the target boundary. A partial shape matching scheme based on a scale-invariant curvature signature is employed in order to extract shape correspondences and subsequently predict the shape of the unsegmented target boundary. A `zone of confidence' is generated for the predicted boundary to accommodate shape variations. The method is evaluated on segmentation of digital chest x-ray images for lung annotation which is a crucial step in developing algorithms for screening Tuberculosis.

  4. A segmentation editing framework based on shape change statistics

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Vicory, Jared; Styner, Martin; Pizer, Stephen

    2017-02-01

    Segmentation is a key task in medical image analysis because its accuracy significantly affects successive steps. Automatic segmentation methods often produce inadequate segmentations, which require the user to manually edit the produced segmentation slice by slice. Because editing is time-consuming, an editing tool that enables the user to produce accurate segmentations by only drawing a sparse set of contours would be needed. This paper describes such a framework as applied to a single object. Constrained by the additional information enabled by the manually segmented contours, the proposed framework utilizes object shape statistics to transform the failed automatic segmentation to a more accurate version. Instead of modeling the object shape, the proposed framework utilizes shape change statistics that were generated to capture the object deformation from the failed automatic segmentation to its corresponding correct segmentation. An optimization procedure was used to minimize an energy function that consists of two terms, an external contour match term and an internal shape change regularity term. The high accuracy of the proposed segmentation editing approach was confirmed by testing it on a simulated data set based on 10 in-vivo infant magnetic resonance brain data sets using four similarity metrics. Segmentation results indicated that our method can provide efficient and adequately accurate segmentations (Dice segmentation accuracy increase of 10%), with very sparse contours (only 10%), which is promising in greatly decreasing the work expected from the user.

  5. Image segmentation using joint spatial-intensity-shape features: application to CT lung nodule segmentation

    NASA Astrophysics Data System (ADS)

    Ye, Xujiong; Siddique, Musib; Douiri, Abdel; Beddoe, Gareth; Slabaugh, Greg

    2009-02-01

    Automatic segmentation of medical images is a challenging problem due to the complexity and variability of human anatomy, poor contrast of the object being segmented, and noise resulting from the image acquisition process. This paper presents a novel feature-guided method for the segmentation of 3D medical lesions. The proposed algorithm combines 1) a volumetric shape feature (shape index) based on high-order partial derivatives; 2) mean shift clustering in a joint spatial-intensity-shape (JSIS) feature space; and 3) a modified expectation-maximization (MEM) algorithm on the mean shift mode map to merge the neighboring regions (modes). In such a scenario, the volumetric shape feature is integrated into the process of the segmentation algorithm. The joint spatial-intensity-shape features provide rich information for the segmentation of the anatomic structures or lesions (tumors). The proposed method has been evaluated on a clinical dataset of thoracic CT scans that contains 68 nodules. A volume overlap ratio between each segmented nodule and the ground truth annotation is calculated. Using the proposed method, the mean overlap ratio over all the nodules is 0.80. On visual inspection and using a quantitative evaluation, the experimental results demonstrate the potential of the proposed method. It can properly segment a variety of nodules including juxta-vascular and juxta-pleural nodules, which are challenging for conventional methods due to the high similarity of intensities between the nodules and their adjacent tissues. This approach could also be applied to lesion segmentation in other anatomies, such as polyps in the colon.

  6. An improved graph cut segmentation method for cervical lymph nodes on sonograms and its relationship with node's shape assessment.

    PubMed

    Zhang, Junhua; Wang, Yuanyuan; Shi, Xinling

    2009-12-01

    A modified graph cut was proposed under the elliptical shape constraint to segment cervical lymph nodes on sonograms, and its effect on the measurement of short axis to long axis ratio (S/L) was investigated by using the relative ultimate measurement accuracy (RUMA). Under the same user inputs, the proposed algorithm successfully segmented all 60 sonograms tested, while the traditional graph cut failed. The mean RUMA resulted from the developed method was comparable to that resulted from the manual segmentation. Results indicated that utilizing the elliptical shape prior could appreciably improve the graph cut for nodes segmentation, and the proposed method satisfied the accuracy requirement of S/L measurement.

  7. Shape-driven 3D segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2006-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details.

  8. Shape-Driven 3D Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2013-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875

  9. A Bayesian Approach for Image Segmentation with Shape Priors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hang; Yang, Qing; Parvin, Bahram

    2008-06-20

    Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentationmore » through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.« less

  10. Multi-object segmentation using coupled nonparametric shape and relative pose priors

    NASA Astrophysics Data System (ADS)

    Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep

    2009-02-01

    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.

  11. Fast approximation for joint optimization of segmentation, shape, and location priors, and its application in gallbladder segmentation.

    PubMed

    Saito, Atsushi; Nawano, Shigeru; Shimizu, Akinobu

    2017-05-01

    This paper addresses joint optimization for segmentation and shape priors, including translation, to overcome inter-subject variability in the location of an organ. Because a simple extension of the previous exact optimization method is too computationally complex, we propose a fast approximation for optimization. The effectiveness of the proposed approximation is validated in the context of gallbladder segmentation from a non-contrast computed tomography (CT) volume. After spatial standardization and estimation of the posterior probability of the target organ, simultaneous optimization of the segmentation, shape, and location priors is performed using a branch-and-bound method. Fast approximation is achieved by combining sampling in the eigenshape space to reduce the number of shape priors and an efficient computational technique for evaluating the lower bound. Performance was evaluated using threefold cross-validation of 27 CT volumes. Optimization in terms of translation of the shape prior significantly improved segmentation performance. The proposed method achieved a result of 0.623 on the Jaccard index in gallbladder segmentation, which is comparable to that of state-of-the-art methods. The computational efficiency of the algorithm is confirmed to be good enough to allow execution on a personal computer. Joint optimization of the segmentation, shape, and location priors was proposed, and it proved to be effective in gallbladder segmentation with high computational efficiency.

  12. Multiscale 3-D shape representation and segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2007-04-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of

  13. Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron

    2013-01-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of

  14. Optimal Multiple Surface Segmentation With Shape and Context Priors

    PubMed Central

    Bai, Junjie; Garvin, Mona K.; Sonka, Milan; Buatti, John M.; Wu, Xiaodong

    2014-01-01

    Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors. PMID:23193309

  15. Automatic liver segmentation in computed tomography using general-purpose shape modeling methods.

    PubMed

    Spinczyk, Dominik; Krasoń, Agata

    2018-05-29

    Liver segmentation in computed tomography is required in many clinical applications. The segmentation methods used can be classified according to a number of criteria. One important criterion for method selection is the shape representation of the segmented organ. The aim of the work is automatic liver segmentation using general purpose shape modeling methods. As part of the research, methods based on shape information at various levels of advancement were used. The single atlas based segmentation method was used as the simplest shape-based method. This method is derived from a single atlas using the deformable free-form deformation of the control point curves. Subsequently, the classic and modified Active Shape Model (ASM) was used, using medium body shape models. As the most advanced and main method generalized statistical shape models, Gaussian Process Morphable Models was used, which are based on multi-dimensional Gaussian distributions of the shape deformation field. Mutual information and sum os square distance were used as similarity measures. The poorest results were obtained for the single atlas method. For the ASM method in 10 analyzed cases for seven test images, the Dice coefficient was above 55[Formula: see text], of which for three of them the coefficient was over 70[Formula: see text], which placed the method in second place. The best results were obtained for the method of generalized statistical distribution of the deformation field. The DICE coefficient for this method was 88.5[Formula: see text] CONCLUSIONS: This value of 88.5 [Formula: see text] Dice coefficient can be explained by the use of general-purpose shape modeling methods with a large variance of the shape of the modeled object-the liver and limitations on the size of our training data set, which was limited to 10 cases. The obtained results in presented fully automatic method are comparable with dedicated methods for liver segmentation. In addition, the deforamtion features of the

  16. Interactive lesion segmentation with shape priors from offline and online learning.

    PubMed

    Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C

    2012-09-01

    In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.

  17. Shape regularized active contour based on dynamic programming for anatomical structure segmentation

    NASA Astrophysics Data System (ADS)

    Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra

    2005-04-01

    We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar

  18. Interactive surface correction for 3D shape based segmentation

    NASA Astrophysics Data System (ADS)

    Schwarz, Tobias; Heimann, Tobias; Tetzlaff, Ralf; Rau, Anne-Mareike; Wolf, Ivo; Meinzer, Hans-Peter

    2008-03-01

    Statistical shape models have become a fast and robust method for segmentation of anatomical structures in medical image volumes. In clinical practice, however, pathological cases and image artifacts can lead to local deviations of the detected contour from the true object boundary. These deviations have to be corrected manually. We present an intuitively applicable solution for surface interaction based on Gaussian deformation kernels. The method is evaluated by two radiological experts on segmentations of the liver in contrast-enhanced CT images and of the left heart ventricle (LV) in MRI data. For both applications, five datasets are segmented automatically using deformable shape models, and the resulting surfaces are corrected manually. The interactive correction step improves the average surface distance against ground truth from 2.43mm to 2.17mm for the liver, and from 2.71mm to 1.34mm for the LV. We expect this method to raise the acceptance of automatic segmentation methods in clinical application.

  19. Image segmentation with a novel regularized composite shape prior based on surrogate study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulatedmore » in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.« less

  20. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.

    PubMed

    Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki

    2014-03-01

    Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.

  1. Improvement and Extension of Shape Evaluation Criteria in Multi-Scale Image Segmentation

    NASA Astrophysics Data System (ADS)

    Sakamoto, M.; Honda, Y.; Kondo, A.

    2016-06-01

    From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region's shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape's diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape's reproducibility.

  2. Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.

    PubMed

    Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-02-11

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.

  3. Marginal shape deep learning: applications to pediatric lung field segmentation

    NASA Astrophysics Data System (ADS)

    Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovany; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-02-01

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, local- ization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0:927 using only the four highest modes of variation (compared to 0:888 with classical ASM1 (p-value=0:01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.

  4. Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation

    PubMed Central

    Mansoor, Awais; Cerrolaza, Juan J.; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-01-01

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects. PMID:28592911

  5. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  6. Disjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation.

    PubMed

    Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga

    2015-10-01

    The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. Active shape and appearance models require landmark points and assume unimodal shape and appearance distributions. Level set based shape priors are limited to global shape similarity. In this paper, we present a novel shape and appearance priors for image segmentation based on an implicit parametric shape representation called disjunctive normal shape model (DNSM). DNSM is formed by disjunction of conjunctions of half-spaces defined by discriminants. We learn shape and appearance statistics at varying spatial scales using nonparametric density estimation. Our method can generate a rich set of shape variations by locally combining training shapes. Additionally, by studying the intensity and texture statistics around each discriminant of our shape model, we construct a local appearance probability map. Experiments carried out on both medical and natural image datasets show the potential of the proposed method.

  7. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths

    PubMed Central

    Zhang, Dawei; Giese, Melissa L.; Prukop, Stacy L.; Grunlan, Melissa A.

    2012-01-01

    Thermoresponsive shape memory polymers (SMPs) are stimuli-responsive materials that return to their permanent shape from a temporary shape in response to heating. The design of new SMPs which obtain a broader range of properties including mechanical behavior is critical to realize their potential in biomedical as well as industrial and aerospace applications. To tailor the properties of SMPs, “AB networks” comprised of two distinct polymer components have been investigated but are overwhelmingly limited to those in which both components are organic. In this present work, we prepared inorganic-organic SMPs comprised of inorganic polydimethyl-siloxane (PDMS) segments of varying lengths and organic poly(ε-caprolactone) (PCL) segments. PDMS has a particularly low Tg (−125 °C) which makes it a particularly effective soft segment to tailor the mechanical properties of PCL-based SMPs. The SMPs were prepared via the rapid photocure of solutions of diacrylated PCL40-block-PDMSm-block-PCL40 macromers (m = 20, 37, 66 and 130). The resulting inorganic-organic SMP networks exhibited excellent shape fixity and recovery. By changing the PDMS segment length, the thermal, mechanical, and surface properties were systematically altered. PMID:22904597

  8. In vitro toxicity analysis of nanoscale aluminum: Particle size and shape effects

    NASA Astrophysics Data System (ADS)

    Palazuelos Jorganes, Maria

    2007-12-01

    Nanostructured materials promise to revolutionize many key areas of science and technology. As our ability to manipulate matter at the nanoscale increases, there is a need to assess the effects of these materials on human health and the environment. Materials at the nanoscale are interesting and useful because they possess properties that are different from the equivalent bulk or molecular scale. These same properties can make toxicological profiles very different from those of the same materials on a different scale. There is a rising consensus that toxicity analysis of nanomaterials should start from a thorough physicochemical characterization of the materials under investigation in order to be able to establish a proper correlation between the nanoparticles characteristics and their effects and behavior in physiological environments. This research is a clear example of the necessity of comprehensive studies when investigating the toxicity of nanomaterials. Aluminum nanoparticles are being extensively used for their very unique energetic properties. These materials offer a very promising market that is fostering many startup companies which are expected to consolidate on strong technological positions. Aluminum is generally recognized as a non-toxic material to humans and it is widely used for applications which imply direct human contact. The effect of aluminum nanoparticles in human health is still an unknown. My research consisted of an in vitro toxicity screening of aluminum materials from nano to micron size, including spherical irregularly shaped particles. Several issues relating to size, shape, detection and characterization of nanoparticles in the different environments relevant to in vitro toxicity analysis were addressed and suitable protocols were developed. Lung human epithelial cells were exposed to different concentrations of these materials and the effects were analyzed by means of various toxicity tests. Some of the materials investigated caused

  9. Brain blood vessel segmentation using line-shaped profiles

    NASA Astrophysics Data System (ADS)

    Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried

    2013-11-01

    Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.

  10. Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Charpiat, Guillaume; Brucker, Ludovic; Menze, Bjoern H.

    2014-01-01

    We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures.

  11. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.

    PubMed

    Guo, Shengwen; Fei, Baowei

    2009-03-27

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  12. A minimal path searching approach for active shape model (ASM)-based segmentation of the lung

    NASA Astrophysics Data System (ADS)

    Guo, Shengwen; Fei, Baowei

    2009-02-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  13. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung

    PubMed Central

    Guo, Shengwen; Fei, Baowei

    2013-01-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs. PMID:24386531

  14. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  15. Image segmentation using local shape and gray-level appearance models

    NASA Astrophysics Data System (ADS)

    Seghers, Dieter; Loeckx, Dirk; Maes, Frederik; Suetens, Paul

    2006-03-01

    A new generic model-based segmentation scheme is presented, which can be trained from examples akin to the Active Shape Model (ASM) approach in order to acquire knowledge about the shape to be segmented and about the gray-level appearance of the object in the image. Because in the ASM approach the intensity and shape models are typically applied alternately during optimizing as first an optimal target location is selected for each landmark separately based on local gray-level appearance information only to which the shape model is fitted subsequently, the ASM may be misled in case of wrongly selected landmark locations. Instead, the proposed approach optimizes for shape and intensity characteristics simultaneously. Local gray-level appearance information at the landmark points extracted from feature images is used to automatically detect a number of plausible candidate locations for each landmark. The shape information is described by multiple landmark-specific statistical models that capture local dependencies between adjacent landmarks on the shape. The shape and intensity models are combined in a single cost function that is optimized non-iteratively using dynamic programming which allows to find the optimal landmark positions using combined shape and intensity information, without the need for initialization.

  16. Whole vertebral bone segmentation method with a statistical intensity-shape model based approach

    NASA Astrophysics Data System (ADS)

    Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer

    2011-03-01

    An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.

  17. Abdomen and spinal cord segmentation with augmented active shape models.

    PubMed

    Xu, Zhoubing; Conrad, Benjamin N; Baucom, Rebeccah B; Smith, Seth A; Poulose, Benjamin K; Landman, Bennett A

    2016-07-01

    Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC.

  18. Abdomen and spinal cord segmentation with augmented active shape models

    PubMed Central

    Xu, Zhoubing; Conrad, Benjamin N.; Baucom, Rebeccah B.; Smith, Seth A.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-01-01

    Abstract. Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC. PMID:27610400

  19. Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors

    NASA Astrophysics Data System (ADS)

    Gloger, Oliver; Tönnies, Klaus; Bülow, Robin; Völzke, Henry

    2017-07-01

    To develop the first fully automated 3D spleen segmentation framework derived from T1-weighted magnetic resonance (MR) imaging data and to verify its performance for spleen delineation and volumetry. This approach considers the issue of low contrast between spleen and adjacent tissue in non-contrast-enhanced MR images. Native T1-weighted MR volume data was performed on a 1.5 T MR system in an epidemiological study. We analyzed random subsamples of MR examinations without pathologies to develop and verify the spleen segmentation framework. The framework is modularized to include different kinds of prior knowledge into the segmentation pipeline. Classification by support vector machines differentiates between five different shape types in computed foreground probability maps and recognizes characteristic spleen regions in axial slices of MR volume data. A spleen-shape space generated by training produces subject-specific prior shape knowledge that is then incorporated into a final 3D level set segmentation method. Individually adapted shape-driven forces as well as image-driven forces resulting from refined foreground probability maps steer the level set successfully to the segment the spleen. The framework achieves promising segmentation results with mean Dice coefficients of nearly 0.91 and low volumetric mean errors of 6.3%. The presented spleen segmentation approach can delineate spleen tissue in native MR volume data. Several kinds of prior shape knowledge including subject-specific 3D prior shape knowledge can be used to guide segmentation processes achieving promising results.

  20. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    PubMed

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-04

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fast automated segmentation of multiple objects via spatially weighted shape learning

    NASA Astrophysics Data System (ADS)

    Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-01

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  2. Fast automated segmentation of multiple objects via spatially weighted shape learning.

    PubMed

    Chandra, Shekhar S; Dowling, Jason A; Greer, Peter B; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-21

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice's similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  3. Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics.

    PubMed

    Shi, Y; Qi, F; Xue, Z; Chen, L; Ito, K; Matsuo, H; Shen, D

    2008-04-01

    This paper presents a new deformable model using both population-based and patient-specific shape statistics to segment lung fields from serial chest radiographs. There are two novelties in the proposed deformable model. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel. Second, the deformable contour is constrained by both population-based and patient-specific shape statistics, and it yields more robust and accurate segmentation of lung fields for serial chest radiographs. In particular, for segmenting the initial time-point images, the population-based shape statistics is used to constrain the deformable contour; as more subsequent images of the same patient are acquired, the patient-specific shape statistics online collected from the previous segmentation results gradually takes more roles. Thus, this patient-specific shape statistics is updated each time when a new segmentation result is obtained, and it is further used to refine the segmentation results of all the available time-point images. Experimental results show that the proposed method is more robust and accurate than other active shape models in segmenting the lung fields from serial chest radiographs.

  4. A shape prior-based MRF model for 3D masseter muscle segmentation

    NASA Astrophysics Data System (ADS)

    Majeed, Tahir; Fundana, Ketut; Lüthi, Marcel; Beinemann, Jörg; Cattin, Philippe

    2012-02-01

    Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using the graph-cut incorporating additional 3D shape priors in CT datasets, which is robust to noise; artifacts; and shape deformations. The main contribution of this paper is in translating the 3D shape knowledge into both unary and pairwise potentials of the Markov Random Field (MRF). The segmentation task is casted as a Maximum-A-Posteriori (MAP) estimation of the MRF. Graph-cut is then used to obtain the global minimum which results in the segmentation of the masseter muscle. The method is tested on 21 CT datasets of the masseter muscle, which are noisy with almost all possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental fillings and dental implants. We show that the proposed technique produces clinically acceptable results to the challenging problem of muscle segmentation, and further provide a quantitative and qualitative comparison with other methods. We statistically show that adding additional shape prior into both unary and pairwise potentials can increase the robustness of the proposed method in noisy datasets.

  5. Characterization of the L4-L5-S1 motion segment using the stepwise reduction method.

    PubMed

    Jaramillo, Héctor Enrique; Puttlitz, Christian M; McGilvray, Kirk; García, José J

    2016-05-03

    The two aims of this study were to generate data for a more accurate calibration of finite element models including the L5-S1 segment, and to find mechanical differences between the L4-L5 and L5-S1 segments. Then, the range of motion (ROM) and facet forces for the L4-S1 segment were measured using the stepwise reduction method. This consists of sequentially testing and reducing each segment in nine stages by cutting the ligaments, facet capsules, and removing the nucleus. Five L4-S1 human segments (median: 65 years, range: 53-84 years, SD=11.0 years) were loaded under a maximum pure moment of 8Nm. The ROM was measured using stereo-photogrammetry via tracking of three markers and the facet contact forces (CF) were measured using a Tekscan system. The ROM for the L4-L5 segment and all stages showed good agreement with published data. The major differences in ROM between the L4-L5 and L5-S1 segments were found for lateral bending and all stages, for which the L4-L5 ROM was about 1.5-3 times higher than that of the L5-S1 segment, consistent with L5-S1 facet CF about 1.3 to 4 times higher than those measured for the L4-L5 segment. For the other movements and few stages, the L4-L5 ROM was significantly lower that of the L5-S1 segment. ROM and CF provide important baseline data for more accurate calibration of FE models and to understand the role that their structures play in lower lumbar spine mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Segmentation of optic disc and optic cup in retinal fundus images using shape regression.

    PubMed

    Sedai, Suman; Roy, Pallab K; Mahapatra, Dwarikanath; Garnavi, Rahil

    2016-08-01

    Glaucoma is one of the leading cause of blindness. The manual examination of optic cup and disc is a standard procedure used for detecting glaucoma. This paper presents a fully automatic regression based method which accurately segments optic cup and disc in retinal colour fundus image. First, we roughly segment optic disc using circular hough transform. The approximated optic disc is then used to compute the initial optic disc and cup shapes. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape of the optic cup and disc from a given initial shape. Gradient boosted regression trees are employed to learn each regressor in the cascade. A novel data augmentation approach is proposed to improve the regressors performance by generating synthetic training data. The proposed optic cup and disc segmentation method is applied on an image set of 50 patients and demonstrate high segmentation accuracy for optic cup and disc with dice metric of 0.95 and 0.85 respectively. Comparative study shows that our proposed method outperforms state of the art optic cup and disc segmentation methods.

  7. Form, shape and function: segmented blood flow in the choriocapillaris

    PubMed Central

    Zouache, M. A.; Eames, I.; Klettner, C. A.; Luthert, P. J.

    2016-01-01

    The development of fluid transport systems was a key event in the evolution of animals and plants. While within vertebrates branched geometries predominate, the choriocapillaris, which is the microvascular bed that is responsible for the maintenance of the outer retina, has evolved a planar topology. Here we examine the flow and mass transfer properties associated with this unusual geometry. We show that as a result of the form of the choriocapillaris, the blood flow is decomposed into a tessellation of functional vascular segments of various shapes delineated by separation surfaces across which there is no flow, and in the vicinity of which the transport of passive substances is diffusion-limited. The shape of each functional segment is determined by the distribution of arterioles and venules and their respective relative flow rates. We also show that, remarkably, the mass exchange with the outer retina is a function of the shape of each functional segment. In addition to introducing a novel framework in which the structure and function of the metabolite delivery system to the outer retina may be investigated in health and disease, the present work provides a general characterisation of the flow and transfers in multipole Hele-Shaw configurations. PMID:27779198

  8. Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes

    NASA Astrophysics Data System (ADS)

    Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.

  9. Segmentation of deformable organs from medical images using particle swarm optimization and nonlinear shape priors

    NASA Astrophysics Data System (ADS)

    Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi

    2010-03-01

    In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.

  10. Statistical shape (ASM) and appearance (AAM) models for the segmentation of the cerebellum in fetal ultrasound

    NASA Astrophysics Data System (ADS)

    Reyes López, Misael; Arámbula Cosío, Fernando

    2017-11-01

    The cerebellum is an important structure to determine the gestational age of the fetus, moreover most of the abnormalities it presents are related to growth disorders. In this work, we present the results of the segmentation of the fetal cerebellum applying statistical shape and appearance models. Both models were tested on ultrasound images of the fetal brain taken from 23 pregnant women, between 18 and 24 gestational weeks. The accuracy results obtained on 11 ultrasound images show a mean Hausdorff distance of 6.08 mm between the manual segmentation and the segmentation using active shape model, and a mean Hausdorff distance of 7.54 mm between the manual segmentation and the segmentation using active appearance model. The reported results demonstrate that the active shape model is more robust in the segmentation of the fetal cerebellum in ultrasound images.

  11. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  12. Gas Forming a V-Shape Aluminum Sheet into a Trough of Saddle-Contour

    NASA Astrophysics Data System (ADS)

    Lee, Shyong; Lan, Hsien-Chin; Lee, Jye; Wang, Jian-Yih; Huang, J. C.; Chu, Chun Lin

    2012-11-01

    A sheet metal trough of aluminum alloys is manufactured by gas-forming process at 500 °C. The product with slope walls is of ~1.2 m long and ~260 mm opening width, comprising two conical sinks at two ends. The depth of one sink apex is ~350 mm, which results in the depth/width ratio reaching 1.4. To form such a complex shape with high aspect ratio, a pre-form of V-shape groove is prepared prior to the gas-forming work. When this double concave trough is turned upside down, the convex contour resembles the back of a twin hump camel. The formability of this configuration depends on the gas pressurization rate profile, the working temperature, material's micro-structure, as well as pre-form design. The latter point is demonstrated by comparing two aluminum alloys, AA5182 and SP5083, with nearly same compositions but very different grain sizes.

  13. Adapting Active Shape Models for 3D segmentation of tubular structures in medical images.

    PubMed

    de Bruijne, Marleen; van Ginneken, Bram; Viergever, Max A; Niessen, Wiro J

    2003-07-01

    Active Shape Models (ASM) have proven to be an effective approach for image segmentation. In some applications, however, the linear model of gray level appearance around a contour that is used in ASM is not sufficient for accurate boundary localization. Furthermore, the statistical shape model may be too restricted if the training set is limited. This paper describes modifications to both the shape and the appearance model of the original ASM formulation. Shape model flexibility is increased, for tubular objects, by modeling the axis deformation independent of the cross-sectional deformation, and by adding supplementary cylindrical deformation modes. Furthermore, a novel appearance modeling scheme that effectively deals with a highly varying background is developed. In contrast with the conventional ASM approach, the new appearance model is trained on both boundary and non-boundary points, and the probability that a given point belongs to the boundary is estimated non-parametrically. The methods are evaluated on the complex task of segmenting thrombus in abdominal aortic aneurysms (AAA). Shape approximation errors were successfully reduced using the two shape model extensions. Segmentation using the new appearance model significantly outperformed the original ASM scheme; average volume errors are 5.1% and 45% respectively.

  14. Left ventricle segmentation via two-layer level sets with circular shape constraint.

    PubMed

    Yang, Cong; Wu, Weiguo; Su, Yuanqi; Zhang, Shaoxiang

    2017-05-01

    This paper proposes a circular shape constraint and a novel two-layer level set method for the segmentation of the left ventricle (LV) from short-axis magnetic resonance images without training any shape models. Since the shape of LV throughout the apex-base axis is close to a ring shape, we propose a circle fitting term in the level set framework to detect the endocardium. The circle fitting term imposes a penalty on the evolving contour from its fitting circle, and thereby handles quite well with issues in LV segmentation, especially the presence of outflow track in basal slices and the intensity overlap between TPM and the myocardium. To extract the whole myocardium, the circle fitting term is incorporated into two-layer level set method. The endocardium and epicardium are respectively represented by two specified level contours of the level set function, which are evolved by an edge-based and a region-based active contour model. The proposed method has been quantitatively validated on the public data set from MICCAI 2009 challenge on the LV segmentation. Experimental results and comparisons with state-of-the-art demonstrate the accuracy and robustness of our method. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Correction tool for Active Shape Model based lumbar muscle segmentation.

    PubMed

    Valenzuela, Waldo; Ferguson, Stephen J; Ignasiak, Dominika; Diserens, Gaelle; Vermathen, Peter; Boesch, Chris; Reyes, Mauricio

    2015-08-01

    In the clinical environment, accuracy and speed of the image segmentation process plays a key role in the analysis of pathological regions. Despite advances in anatomic image segmentation, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a low number of interactions, and a user-independent solution. In this work we present a new interactive correction method for correcting the image segmentation. Given an initial segmentation and the original image, our tool provides a 2D/3D environment, that enables 3D shape correction through simple 2D interactions. Our scheme is based on direct manipulation of free form deformation adapted to a 2D environment. This approach enables an intuitive and natural correction of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle segmentation from Magnetic Resonance Images. Experimental results show that full segmentation correction could be performed within an average correction time of 6±4 minutes and an average of 68±37 number of interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.03.

  16. Geometric shapes inversion method of space targets by ISAR image segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  17. Monitoring the Softening of Aluminum-Alloy V95ochT2 Shapes by a Nondestructive Method

    NASA Astrophysics Data System (ADS)

    Shigapov, A. I.; Klimova, T. A.; Il'inkova, T. A.

    2015-09-01

    Correlation relations between the strength and the electrical conductivity of aluminum shapes are determined. The properties of alloy V95ochT2 are studied after different temperature-and-time actions. It is shown that the "dark spots" appearing on the surface of such shapes can be evaluated by a nondestructive eddy-current method.

  18. Shape complexes: the intersection of label orderings and star convexity constraints in continuous max-flow medical image segmentation

    PubMed Central

    Baxter, John S. H.; Inoue, Jiro; Drangova, Maria; Peters, Terry M.

    2016-01-01

    Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of “shape complexes,” which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems. PMID:28018937

  19. Cochlea segmentation using iterated random walks with shape prior

    NASA Astrophysics Data System (ADS)

    Ruiz Pujadas, Esmeralda; Kjer, Hans Martin; Vera, Sergio; Ceresa, Mario; González Ballester, Miguel Ángel

    2016-03-01

    Cochlear implants can restore hearing to deaf or partially deaf patients. In order to plan the intervention, a model from high resolution µCT images is to be built from accurate cochlea segmentations and then, adapted to a patient-specific model. Thus, a precise segmentation is required to build such a model. We propose a new framework for segmentation of µCT cochlear images using random walks where a region term is combined with a distance shape prior weighted by a confidence map to adjust its influence according to the strength of the image contour. Then, the region term can take advantage of the high contrast between the background and foreground and the distance prior guides the segmentation to the exterior of the cochlea as well as to less contrasted regions inside the cochlea. Finally, a refinement is performed preserving the topology using a topological method and an error control map to prevent boundary leakage. We tested the proposed approach with 10 datasets and compared it with the latest techniques with random walks and priors. The experiments suggest that this method gives promising results for cochlea segmentation.

  20. Shape priors for segmentation of the cervix region within uterine cervix images

    NASA Astrophysics Data System (ADS)

    Lotenberg, Shelly; Gordon, Shiri; Greenspan, Hayit

    2008-03-01

    The work focuses on a unique medical repository of digital Uterine Cervix images ("Cervigrams") collected by the National Cancer Institute (NCI), National Institute of Health, in longitudinal multi-year studies. NCI together with the National Library of Medicine is developing a unique web-based database of the digitized cervix images to study the evolution of lesions related to cervical cancer. Tools are needed for the automated analysis of the cervigram content to support the cancer research. In recent works, a multi-stage automated system for segmenting and labeling regions of medical and anatomical interest within the cervigrams was developed. The current paper concentrates on incorporating prior-shape information in the cervix region segmentation task. In accordance with the fact that human experts mark the cervix region as circular or elliptical, two shape models (and corresponding methods) are suggested. The shape models are embedded within an active contour framework that relies on image features. Experiments indicate that incorporation of the prior shape information augments previous results.

  1. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    NASA Astrophysics Data System (ADS)

    Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.

    2017-02-01

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.

  2. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  3. Segmentation of risk structures for otologic surgery using the Probabilistic Active Shape Model (PASM)

    NASA Astrophysics Data System (ADS)

    Becker, Meike; Kirschner, Matthias; Sakas, Georgios

    2014-03-01

    Our research project investigates a multi-port approach for minimally-invasive otologic surgery. For planning such a surgery, an accurate segmentation of the risk structures is crucial. However, the segmentation of these risk structures is a challenging task: The anatomical structures are very small and some have a complex shape, low contrast and vary both in shape and appearance. Therefore, prior knowledge is needed which is why we apply model-based approaches. In the present work, we use the Probabilistic Active Shape Model (PASM), which is a more flexible and specific variant of the Active Shape Model (ASM), to segment the following risk structures: cochlea, semicircular canals, facial nerve, chorda tympani, ossicles, internal auditory canal, external auditory canal and internal carotid artery. For the evaluation we trained and tested the algorithm on 42 computed tomography data sets using leave-one-out tests. Visual assessment of the results shows in general a good agreement of manual and algorithmic segmentations. Further, we achieve a good Average Symmetric Surface Distance while the maximum error is comparatively large due to low contrast at start and end points. Last, we compare the PASM to the standard ASM and show that the PASM leads to a higher accuracy.

  4. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.

    PubMed

    Karimi, Davood; Samei, Golnoosh; Kesch, Claudia; Nir, Guy; Salcudean, Septimiu E

    2018-05-15

    Most of the existing convolutional neural network (CNN)-based medical image segmentation methods are based on methods that have originally been developed for segmentation of natural images. Therefore, they largely ignore the differences between the two domains, such as the smaller degree of variability in the shape and appearance of the target volume and the smaller amounts of training data in medical applications. We propose a CNN-based method for prostate segmentation in MRI that employs statistical shape models to address these issues. Our CNN predicts the location of the prostate center and the parameters of the shape model, which determine the position of prostate surface keypoints. To train such a large model for segmentation of 3D images using small data (1) we adopt a stage-wise training strategy by first training the network to predict the prostate center and subsequently adding modules for predicting the parameters of the shape model and prostate rotation, (2) we propose a data augmentation method whereby the training images and their prostate surface keypoints are deformed according to the displacements computed based on the shape model, and (3) we employ various regularization techniques. Our proposed method achieves a Dice score of 0.88, which is obtained by using both elastic-net and spectral dropout for regularization. Compared with a standard CNN-based method, our method shows significantly better segmentation performance on the prostate base and apex. Our experiments also show that data augmentation using the shape model significantly improves the segmentation results. Prior knowledge about the shape of the target organ can improve the performance of CNN-based segmentation methods, especially where image features are not sufficient for a precise segmentation. Statistical shape models can also be employed to synthesize additional training data that can ease the training of large CNNs.

  5. A shape-based segmentation method for mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen

    2013-07-01

    Segmentation of mobile laser point clouds of urban scenes into objects is an important step for post-processing (e.g., interpretation) of point clouds. Point clouds of urban scenes contain numerous objects with significant size variability, complex and incomplete structures, and holes or variable point densities, raising great challenges for the segmentation of mobile laser point clouds. This paper addresses these challenges by proposing a shape-based segmentation method. The proposed method first calculates the optimal neighborhood size of each point to derive the geometric features associated with it, and then classifies the point clouds according to geometric features using support vector machines (SVMs). Second, a set of rules are defined to segment the classified point clouds, and a similarity criterion for segments is proposed to overcome over-segmentation. Finally, the segmentation output is merged based on topological connectivity into a meaningful geometrical abstraction. The proposed method has been tested on point clouds of two urban scenes obtained by different mobile laser scanners. The results show that the proposed method segments large-scale mobile laser point clouds with good accuracy and computationally effective time cost, and that it segments pole-like objects particularly well.

  6. {l_angle}110{r_angle} dendrite growth in aluminum feathery grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, S.; Rappaz, M.; Jarry, P.

    1998-11-01

    Automatic indexing of electron backscattered diffraction patterns, scanning electron microscopy, and optical microscopy observations have been carried out on aluminum-magnesium-silicon, aluminum-copper, and aluminum-silicon alloys directionally solidified or semicontinuously cast using the direct chill casting process. From these combined observations, it is shown that the feathery grains are made of {l_angle}110{r_angle} primary dendrite trunks (e.g., [011{bar 1}]) split in their centers by a coherent (111) twin plane. The average spacing of the dendrite trunks in the twin plane (about 10 to 20 {micro}m) is typically one order of magnitude smaller than that separating successive rows of trunks (or twin planes). Themore » [011{bar 1}] orientation of these trunks is close to the thermal gradient direction (typically within 15 deg)--a feature probably resulting from a growth competition mechanism similar to that occurring during normal <100> columnar dendrite growth. On both sides of these trunks, secondary dendrite arms also grow along {l_angle}110{r_angle} directions. Their impingement creates wavy noncoherent twin boundaries between the coherent twin planes. In the twin plane, evidence is shown that {l_angle}110{r_angle} branching mechanisms lead to the propagation of the twinned regions, to the regular arrangement of the primary dendrite trunks along a [{bar 2}11] direction, and to coherent planar twin boundaries. From these observations, it is concluded that the feathery grains are probably the result of a change from a normal <100> to a {l_angle}110{r_angle} surface tension/attachment kinetics anisotropy growth mode. Finally, the proposed mechanisms of leathery grain growth are further supported by the observation of {l_angle}110{r_angle} dendrite growth morphologies in thin aluminum-zinc coatings.« less

  7. A Regions of Confidence Based Approach to Enhance Segmentation with Shape Priors.

    PubMed

    Appia, Vikram V; Ganapathy, Balaji; Abufadel, Amer; Yezzi, Anthony; Faber, Tracy

    2010-01-18

    We propose an improved region based segmentation model with shape priors that uses labels of confidence/interest to exclude the influence of certain regions in the image that may not provide useful information for segmentation. These could be regions in the image which are expected to have weak, missing or corrupt edges or they could be regions in the image which the user is not interested in segmenting, but are part of the object being segmented. In the training datasets, along with the manual segmentations we also generate an auxiliary map indicating these regions of low confidence/interest. Since, all the training images are acquired under similar conditions, we can train our algorithm to estimate these regions as well. Based on this training we will generate a map which indicates the regions in the image that are likely to contain no useful information for segmentation. We then use a parametric model to represent the segmenting curve as a combination of shape priors obtained by representing the training data as a collection of signed distance functions. We evolve an objective energy functional to evolve the global parameters that are used to represent the curve. We vary the influence each pixel has on the evolution of these parameters based on the confidence/interest label. When we use these labels to indicate the regions with low confidence; the regions containing accurate edges will have a dominant role in the evolution of the curve and the segmentation in the low confidence regions will be approximated based on the training data. Since our model evolves global parameters, it improves the segmentation even in the regions with accurate edges. This is because we eliminate the influence of the low confidence regions which may mislead the final segmentation. Similarly when we use the labels to indicate the regions which are not of importance, we will get a better segmentation of the object in the regions we are interested in.

  8. Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.

  9. Aircraft Segmentation in SAR Images Based on Improved Active Shape Model

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Xiong, B.; Kuang, G.

    2018-04-01

    In SAR image interpretation, aircrafts are the important targets arousing much attention. However, it is far from easy to segment an aircraft from the background completely and precisely in SAR images. Because of the complex structure, different kinds of electromagnetic scattering take place on the aircraft surfaces. As a result, aircraft targets usually appear to be inhomogeneous and disconnected. It is a good idea to extract an aircraft target by the active shape model (ASM), since combination of the geometric information controls variations of the shape during the contour evolution. However, linear dimensionality reduction, used in classic ACM, makes the model rigid. It brings much trouble to segment different types of aircrafts. Aiming at this problem, an improved ACM based on ISOMAP is proposed in this paper. ISOMAP algorithm is used to extract the shape information of the training set and make the model flexible enough to deal with different aircrafts. The experiments based on real SAR data shows that the proposed method achieves obvious improvement in accuracy.

  10. Shape based segmentation of MRIs of the bones in the knee using phase and intensity information

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Bourgeat, Pierrick; Crozier, Stuart; Ourselin, Sébastien

    2007-03-01

    The segmentation of the bones from MR images is useful for performing subsequent segmentation and quantitative measurements of cartilage tissue. In this paper, we present a shape based segmentation scheme for the bones that uses texture features derived from the phase and intensity information in the complex MR image. The phase can provide additional information about the tissue interfaces, but due to the phase unwrapping problem, this information is usually discarded. By using a Gabor filter bank on the complex MR image, texture features (including phase) can be extracted without requiring phase unwrapping. These texture features are then analyzed using a support vector machine classifier to obtain probability tissue matches. The segmentation of the bone is fully automatic and performed using a 3D active shape model based approach driven using gradient and texture information. The 3D active shape model is automatically initialized using a robust affine registration. The approach is validated using a database of 18 FLASH MR images that are manually segmented, with an average segmentation overlap (Dice similarity coefficient) of 0.92 compared to 0.9 obtained using the classifier only.

  11. SU-E-I-87: Automated Liver Segmentation Method for CBCT Dataset by Combining Sparse Shape Composition and Probabilistic Atlas Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dengwang; Liu, Li; Chen, Jinhu

    2014-06-01

    Purpose: The aiming of this study was to extract liver structures for daily Cone beam CT (CBCT) images automatically. Methods: Datasets were collected from 50 intravenous contrast planning CT images, which were regarded as training dataset for probabilistic atlas and shape prior model construction. Firstly, probabilistic atlas and shape prior model based on sparse shape composition (SSC) were constructed by iterative deformable registration. Secondly, the artifacts and noise were removed from the daily CBCT image by an edge-preserving filtering using total variation with L1 norm (TV-L1). Furthermore, the initial liver region was obtained by registering the incoming CBCT image withmore » the atlas utilizing edge-preserving deformable registration with multi-scale strategy, and then the initial liver region was converted to surface meshing which was registered with the shape model where the major variation of specific patient was modeled by sparse vectors. At the last stage, the shape and intensity information were incorporated into joint probabilistic model, and finally the liver structure was extracted by maximum a posteriori segmentation.Regarding the construction process, firstly the manually segmented contours were converted into meshes, and then arbitrary patient data was chosen as reference image to register with the rest of training datasets by deformable registration algorithm for constructing probabilistic atlas and prior shape model. To improve the efficiency of proposed method, the initial probabilistic atlas was used as reference image to register with other patient data for iterative construction for removing bias caused by arbitrary selection. Results: The experiment validated the accuracy of the segmentation results quantitatively by comparing with the manually ones. The volumetric overlap percentage between the automatically generated liver contours and the ground truth were on an average 88%–95% for CBCT images. Conclusion: The experiment

  12. A semiautomatic segmentation method for prostate in CT images using local texture classification and statistical shape modeling.

    PubMed

    Shahedi, Maysam; Halicek, Martin; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei

    2018-06-01

    Prostate segmentation in computed tomography (CT) images is useful for treatment planning and procedure guidance such as external beam radiotherapy and brachytherapy. However, because of the low, soft tissue contrast of CT images, manual segmentation of the prostate is a time-consuming task with high interobserver variation. In this study, we proposed a semiautomated, three-dimensional (3D) segmentation for prostate CT images using shape and texture analysis and we evaluated the method against manual reference segmentations. The prostate gland usually has a globular shape with a smoothly curved surface, and its shape could be accurately modeled or reconstructed having a limited number of well-distributed surface points. In a training dataset, using the prostate gland centroid point as the origin of a coordination system, we defined an intersubject correspondence between the prostate surface points based on the spherical coordinates. We applied this correspondence to generate a point distribution model for prostate shape using principal component analysis and to study the local texture difference between prostate and nonprostate tissue close to the different prostate surface subregions. We used the learned shape and texture characteristics of the prostate in CT images and then combined them with user inputs to segment a new image. We trained our segmentation algorithm using 23 CT images and tested the algorithm on two sets of 10 nonbrachytherapy and 37 postlow dose rate brachytherapy CT images. We used a set of error metrics to evaluate the segmentation results using two experts' manual reference segmentations. For both nonbrachytherapy and post-brachytherapy image sets, the average measured Dice similarity coefficient (DSC) was 88% and the average mean absolute distance (MAD) was 1.9 mm. The average measured differences between the two experts on both datasets were 92% (DSC) and 1.1 mm (MAD). The proposed, semiautomatic segmentation algorithm showed a fast

  13. Random walks with shape prior for cochlea segmentation in ex vivo μCT.

    PubMed

    Ruiz Pujadas, Esmeralda; Kjer, Hans Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel Angel

    2016-09-01

    Cochlear implantation is a safe and effective surgical procedure to restore hearing in deaf patients. However, the level of restoration achieved may vary due to differences in anatomy, implant type and surgical access. In order to reduce the variability of the surgical outcomes, we previously proposed the use of a high-resolution model built from [Formula: see text] images and then adapted to patient-specific clinical CT scans. As the accuracy of the model is dependent on the precision of the original segmentation, it is extremely important to have accurate [Formula: see text] segmentation algorithms. We propose a new framework for cochlea segmentation in ex vivo [Formula: see text] images using random walks where a distance-based shape prior is combined with a region term estimated by a Gaussian mixture model. The prior is also weighted by a confidence map to adjust its influence according to the strength of the image contour. Random walks is performed iteratively, and the prior mask is aligned in every iteration. We tested the proposed approach in ten [Formula: see text] data sets and compared it with other random walks-based segmentation techniques such as guided random walks (Eslami et al. in Med Image Anal 17(2):236-253, 2013) and constrained random walks (Li et al. in Advances in image and video technology. Springer, Berlin, pp 215-226, 2012). Our approach demonstrated higher accuracy results due to the probability density model constituted by the region term and shape prior information weighed by a confidence map. The weighted combination of the distance-based shape prior with a region term into random walks provides accurate segmentations of the cochlea. The experiments suggest that the proposed approach is robust for cochlea segmentation.

  14. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the

  15. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2015-12-01

    This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape-location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape-location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. Copyright © 2015

  16. Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.

    PubMed

    McIntosh, Chris; Hamarneh, Ghassan

    2012-01-01

    We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.

  17. Numerical Study of Variation of Mechanical Properties of a Binary Aluminum Alloy with Respect to Its Grain Shapes

    PubMed Central

    Sharifi, Hamid; Larouche, Daniel

    2014-01-01

    To study the variation of the mechanical behavior of binary aluminum copper alloys with respect to their microstructure, a numerical simulation of their granular structure was carried out. The microstructures are created by a repeated inclusion of some predefined basic grain shapes into a representative volume element until reaching a given volume percentage of the α-phase. Depending on the grain orientations, the coalescence of the grains can be performed. Different granular microstructures are created by using different basic grain shapes. Selecting a suitable set of basic grain shapes, the modeled microstructure exhibits a realistic aluminum alloy microstructure which can be adapted to a particular cooling condition. Our granular models are automatically converted to a finite element model. The effect of grain shapes and sizes on the variation of elastic modulus and plasticity of such a heterogeneous domain was investigated. Our results show that for a given α-phase fraction having different grain shapes and sizes, the elastic moduli and yield stresses are almost the same but the ultimate stress and elongation are more affected. Besides, we realized that the distribution of the θ phases inside the α phases is more important than the grain shape itself. PMID:28788607

  18. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Baochun; Huang, Cheng; Zhou, Shoujun

    Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-levelmore » active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic

  19. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.

    PubMed

    He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang

    2016-05-01

    A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver

  20. Knee cartilage segmentation using active shape models and local binary patterns

    NASA Astrophysics Data System (ADS)

    González, Germán.; Escalante-Ramírez, Boris

    2014-05-01

    Segmentation of knee cartilage has been useful for opportune diagnosis and treatment of osteoarthritis (OA). This paper presents a semiautomatic segmentation technique based on Active Shape Models (ASM) combined with Local Binary Patterns (LBP) and its approaches to describe the surrounding texture of femoral cartilage. The proposed technique is tested on a 16-image database of different patients and it is validated through Leave- One-Out method. We compare different segmentation techniques: ASM-LBP, ASM-medianLBP, and ASM proposed by Cootes. The ASM-LBP approaches are tested with different ratios to decide which of them describes the cartilage texture better. The results show that ASM-medianLBP has better performance than ASM-LBP and ASM. Furthermore, we add a routine which improves the robustness versus two principal problems: oversegmentation and initialization.

  1. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, James A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.

  2. Segmentation and pulse shape discrimination techniques for rejecting background in germanium detectors

    NASA Technical Reports Server (NTRS)

    Roth, J.; Primbsch, J. H.; Lin, R. P.

    1984-01-01

    The possibility of rejecting the internal beta-decay background in coaxial germanium detectors by distinguishing between the multi-site energy losses characteristic of photons and the single-site energy losses of electrons in the range 0.2 - 2 MeV is examined. The photon transport was modeled with a Monte Carlo routine. Background rejection by both multiple segmentation and pulse shape discrimination techniques is investigated. The efficiency of a six 1 cm-thick segment coaxial detector operating in coincidence mode alone is compared to that of a two-segment (1 cm and 5 cm) detector employing both front-rear coincidence and PSD in the rear segment to isolate photon events. Both techniques can provide at least 95 percent rejection of single-site events while accepting at least 80 percent of the multi-site events above 500 keV.

  3. Automatic Cell Segmentation Using a Shape-Classification Model in Immunohistochemically Stained Cytological Images

    NASA Astrophysics Data System (ADS)

    Shah, Shishir

    This paper presents a segmentation method for detecting cells in immunohistochemically stained cytological images. A two-phase approach to segmentation is used where an unsupervised clustering approach coupled with cluster merging based on a fitness function is used as the first phase to obtain a first approximation of the cell locations. A joint segmentation-classification approach incorporating ellipse as a shape model is used as the second phase to detect the final cell contour. The segmentation model estimates a multivariate density function of low-level image features from training samples and uses it as a measure of how likely each image pixel is to be a cell. This estimate is constrained by the zero level set, which is obtained as a solution to an implicit representation of an ellipse. Results of segmentation are presented and compared to ground truth measurements.

  4. Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI.

    PubMed

    Ahmed, Shaheen; Iftekharuddin, Khan M; Vossough, Arastoo

    2011-03-01

    Our previous works suggest that fractal texture feature is useful to detect pediatric brain tumor in multimodal MRI. In this study, we systematically investigate efficacy of using several different image features such as intensity, fractal texture, and level-set shape in segmentation of posterior-fossa (PF) tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques, respectively, to discriminate tumor regions from normal tissue in multimodal brain MRI. We further study the selective fusion of these features for improved PF tumor segmentation. Our result suggests that Kullback-Leibler divergence measure for feature ranking and selection and the expectation maximization algorithm for feature fusion and tumor segmentation offer the best results for the patient data in this study. We show that for T1 and fluid attenuation inversion recovery (FLAIR) MRI modalities, the best PF tumor segmentation is obtained using the texture feature such as multifractional Brownian motion (mBm) while that for T2 MRI is obtained by fusing level-set shape with intensity features. In multimodality fused MRI (T1, T2, and FLAIR), mBm feature offers the best PF tumor segmentation performance. We use different similarity metrics to evaluate quality and robustness of these selected features for PF tumor segmentation in MRI for ten pediatric patients.

  5. Production of aluminum-lithium near net shape extruded cylinders

    NASA Technical Reports Server (NTRS)

    Hartley, Paula J.

    1995-01-01

    In the late 1980's, under funding from the Advanced Launch System Program, numerous near net shape technologies were investigated as a means for producing high quality, low cost Aluminum-Lithium (Al-Li) hardware. Once such option was to extrude near net shape barrel panels instead of producing panels by machining thick plate into a final tee-stiffened configuration (which produced up to 90% scrap). This method offers a reduction in the volume of scrap and consequently reduces the buy-to-fly cost. Investigation into this technology continued under Shuttle-C funding where four Al alloys 2219, 2195, 2096, and RX 818 were extruded. Presented herein are the results of that program. Each alloy was successfully extruded at Wyman Gordon, opened and flattened at Ticorm, and solution heat treated and stretched at Reynolds Metals Company. The first two processes were quite successful while the stretching process did offer some challenges. Due to the configuration of the panels and the stretch press set-up, it was difficult to induce a consistent percentage of cold work throughout the length and width of each panel. The effects of this variation will be assessed in the test program to be conducted at a future date.

  6. The column strength of aluminum alloy 75S-T extruded shapes

    NASA Technical Reports Server (NTRS)

    Holt, Marshall; Leary, J R

    1946-01-01

    Because the tensile strength and tensile yield strength of alloy 75S-T are appreciably higher than those of the materials used in the tests leading to the use of the straight-line column curve, it appeared advisable to establish the curve of column strength by test rather than by extrapolation of relations determined empirically in the earlier tests. The object of this investigation was to determine the curve of column strength for extruded aluminum alloy 75S-T. In addition to three extruded shapes, a rolled-and-drawn round rod was included. Specimens of various lengths covering the range of effective slenderness ratios up to about 100 were tested.

  7. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, J.A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.

  8. Shock wave interaction with L-shaped structures

    NASA Astrophysics Data System (ADS)

    Miller, Richard C.

    1993-12-01

    This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.

  9. Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT.

    PubMed

    Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren

    2015-12-01

    To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.

  10. Segmentation and tracking of lung nodules via graph-cuts incorporating shape prior and motion from 4D CT.

    PubMed

    Cha, Jungwon; Farhangi, Mohammad Mehdi; Dunlap, Neal; Amini, Amir A

    2018-01-01

    We have developed a robust tool for performing volumetric and temporal analysis of nodules from respiratory gated four-dimensional (4D) CT. The method could prove useful in IMRT of lung cancer. We modified the conventional graph-cuts method by adding an adaptive shape prior as well as motion information within a signed distance function representation to permit more accurate and automated segmentation and tracking of lung nodules in 4D CT data. Active shape models (ASM) with signed distance function were used to capture the shape prior information, preventing unwanted surrounding tissues from becoming part of the segmented object. The optical flow method was used to estimate the local motion and to extend three-dimensional (3D) segmentation to 4D by warping a prior shape model through time. The algorithm has been applied to segmentation of well-circumscribed, vascularized, and juxtapleural lung nodules from respiratory gated CT data. In all cases, 4D segmentation and tracking for five phases of high-resolution CT data took approximately 10 min on a PC workstation with AMD Phenom II and 32 GB of memory. The method was trained based on 500 breath-held 3D CT data from the LIDC data base and was tested on 17 4D lung nodule CT datasets consisting of 85 volumetric frames. The validation tests resulted in an average Dice Similarity Coefficient (DSC) = 0.68 for all test data. An important by-product of the method is quantitative volume measurement from 4D CT from end-inspiration to end-expiration which will also have important diagnostic value. The algorithm performs robust segmentation of lung nodules from 4D CT data. Signed distance ASM provides the shape prior information which based on the iterative graph-cuts framework is adaptively refined to best fit the input data, preventing unwanted surrounding tissue from merging with the segmented object. © 2017 American Association of Physicists in Medicine.

  11. Segmentation of prostate boundaries from ultrasound images using statistical shape model.

    PubMed

    Shen, Dinggang; Zhan, Yiqiang; Davatzikos, Christos

    2003-04-01

    This paper presents a statistical shape model for the automatic prostate segmentation in transrectal ultrasound images. A Gabor filter bank is first used to characterize the prostate boundaries in ultrasound images in both multiple scales and multiple orientations. The Gabor features are further reconstructed to be invariant to the rotation of the ultrasound probe and incorporated in the prostate model as image attributes for guiding the deformable segmentation. A hierarchical deformation strategy is then employed, in which the model adaptively focuses on the similarity of different Gabor features at different deformation stages using a multiresolution technique, i.e., coarse features first and fine features later. A number of successful experiments validate the algorithm.

  12. Regional shape-based feature space for segmenting biomedical images using neural networks

    NASA Astrophysics Data System (ADS)

    Sundaramoorthy, Gopal; Hoford, John D.; Hoffman, Eric A.

    1993-07-01

    In biomedical images, structure of interest, particularly the soft tissue structures, such as the heart, airways, bronchial and arterial trees often have grey-scale and textural characteristics similar to other structures in the image, making it difficult to segment them using only gray- scale and texture information. However, these objects can be visually recognized by their unique shapes and sizes. In this paper we discuss, what we believe to be, a novel, simple scheme for extracting features based on regional shapes. To test the effectiveness of these features for image segmentation (classification), we use an artificial neural network and a statistical cluster analysis technique. The proposed shape-based feature extraction algorithm computes regional shape vectors (RSVs) for all pixels that meet a certain threshold criteria. The distance from each such pixel to a boundary is computed in 8 directions (or in 26 directions for a 3-D image). Together, these 8 (or 26) values represent the pixel's (or voxel's) RSV. All RSVs from an image are used to train a multi-layered perceptron neural network which uses these features to 'learn' a suitable classification strategy. To clearly distinguish the desired object from other objects within an image, several examples from inside and outside the desired object are used for training. Several examples are presented to illustrate the strengths and weaknesses of our algorithm. Both synthetic and actual biomedical images are considered. Future extensions to this algorithm are also discussed.

  13. Automatic 3D kidney segmentation based on shape constrained GC-OAAM

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua

    2011-03-01

    The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.

  14. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.

    PubMed

    Schietroma, Cataldo; Parain, Karine; Estivalet, Amrit; Aghaie, Asadollah; Boutet de Monvel, Jacques; Picaud, Serge; Sahel, José-Alain; Perron, Muriel; El-Amraoui, Aziz; Petit, Christine

    2017-06-05

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis , these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23 , encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. © 2017 Schietroma et al.

  15. Segmentation-based L-filtering of speckle noise in ultrasonic images

    NASA Astrophysics Data System (ADS)

    Kofidis, Eleftherios; Theodoridis, Sergios; Kotropoulos, Constantine L.; Pitas, Ioannis

    1994-05-01

    We introduce segmentation-based L-filters, that is, filtering processes combining segmentation and (nonadaptive) optimum L-filtering, and use them for the suppression of speckle noise in ultrasonic (US) images. With the aid of a suitable modification of the learning vector quantizer self-organizing neural network, the image is segmented in regions of approximately homogeneous first-order statistics. For each such region a minimum mean-squared error L- filter is designed on the basis of a multiplicative noise model by using the histogram of grey values as an estimate of the parent distribution of the noisy observations and a suitable estimate of the original signal in the corresponding region. Thus, we obtain a bank of L-filters that are corresponding to and are operating on different image regions. Simulation results on a simulated US B-mode image of a tissue mimicking phantom are presented which verify the superiority of the proposed method as compared to a number of conventional filtering strategies in terms of a suitably defined signal-to-noise ratio measure and detection theoretic performance measures.

  16. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    PubMed

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  17. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    PubMed Central

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  18. New developments in aluminum for aircraft and automobiles

    NASA Technical Reports Server (NTRS)

    Petit, Jocelyn I.

    1994-01-01

    A common bond for the aircraft and automobile industry is the need for cost-efficient, lightweight structures such as provided by aluminum based materials. The topics are presented in viewgraph form and cover the following: new developments in aluminum for aircraft and automobiles; forces shaping future automotive materials needs; aluminum strength/weakness versus competitive materials; evolution of aluminum aerospace alloys; forces shaping future aircraft materials needs; fiber/metal structural laminates; and property requirements for jetliner and military transport applications.

  19. Serum aluminum levels in dialysis patients after sclerotherapy of internal hemorrhoids with aluminum potassium sulfate and tannic acid.

    PubMed

    Tsunoda, Akira; Nakagi, Masafumi; Kano, Nobuyasu; Mizutani, Masahiko; Yamaguchi, Kenji

    2014-12-01

    Aluminum potassium sulfate and tannic acid (ALTA) is an effective sclerosing agent for internal hemorrhoids. However, it is contraindicated for patients with chronic renal failure on dialysis, because the aluminum in ALTA can cause aluminum encephalopathy when it is not excreted effectively. We conducted this study to measure the serum aluminum concentrations and observe for symptoms relating to aluminum encephalopathy in dialysis patients after ALTA therapy. Ten dialysis patients underwent ALTA therapy for hemorrhoids. We measured their serum aluminum concentrations and observed them for possible symptoms of aluminum encephalopathy. The total injection volume of ALTA solution was 31 mL (24-37). The median serum aluminum concentration before ALTA therapy was 9 μg/L, which increased to 741, 377, and 103 μg/L, respectively, 1 h, 1 day, and 1 week after ALTA therapy. These levels decreased rapidly, to 33 μg/L by 1 month and 11 μg/L by 3 months after ALTA therapy. No patient suffered symptoms related to aluminum encephalopathy. Although the aluminum concentrations increased temporarily after ALTA therapy, dialysis patients with levels below 150 μg/L by 1 week and thereafter are considered to be at low risk of the development of aluminum encephalopathy.

  20. Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    León, Madeleine; Escalante-Ramirez, Boris

    2013-11-01

    Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16- MRI of knee and tested with leave-one-out method.

  1. Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model

    PubMed Central

    Yang, Xin; Jin, Jiaoying; Xu, Mengling; Wu, Huihui; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2013-01-01

    Carotid atherosclerosis is a major reason of stroke, a leading cause of death and disability. In this paper, a segmentation method based on Active Shape Model (ASM) is developed and evaluated to outline common carotid artery (CCA) for carotid atherosclerosis computer-aided evaluation and diagnosis. The proposed method is used to segment both media-adventitia-boundary (MAB) and lumen-intima-boundary (LIB) on transverse views slices from three-dimensional ultrasound (3D US) images. The data set consists of sixty-eight, 17 × 2 × 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80 mg atorvastatin and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. Manually outlined boundaries by expert are adopted as the ground truth for evaluation. For the MAB and LIB segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 94.4% ± 3.2% and 92.8% ± 3.3%, mean absolute distances (MAD) of 0.26 ± 0.18 mm and 0.33 ± 0.21 mm, and maximum absolute distances (MAXD) of 0.75 ± 0.46 mm and 0.84 ± 0.39 mm. It took 4.3 ± 0.5 mins to segment single 3D US images, while it took 11.7 ± 1.2 mins for manual segmentation. The method would promote the translation of carotid 3D US to clinical care for the monitoring of the atherosclerotic disease progression and regression. PMID:23533535

  2. Computer aided segmentation of kidneys using locally shape constrained deformable models on CT images

    NASA Astrophysics Data System (ADS)

    Erdt, Marius; Sakas, Georgios

    2010-03-01

    This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.

  3. A probability tracking approach to segmentation of ultrasound prostate images using weak shape priors

    NASA Astrophysics Data System (ADS)

    Xu, Robert S.; Michailovich, Oleg V.; Solovey, Igor; Salama, Magdy M. A.

    2010-03-01

    Prostate specific antigen density is an established parameter for indicating the likelihood of prostate cancer. To this end, the size and volume of the gland have become pivotal quantities used by clinicians during the standard cancer screening process. As an alternative to manual palpation, an increasing number of volume estimation methods are based on the imagery data of the prostate. The necessity to process large volumes of such data requires automatic segmentation algorithms, which can accurately and reliably identify the true prostate region. In particular, transrectal ultrasound (TRUS) imaging has become a standard means of assessing the prostate due to its safe nature and high benefit-to-cost ratio. Unfortunately, modern TRUS images are still plagued by many ultrasound imaging artifacts such as speckle noise and shadowing, which results in relatively low contrast and reduced SNR of the acquired images. Consequently, many modern segmentation methods incorporate prior knowledge about the prostate geometry to enhance traditional segmentation techniques. In this paper, a novel approach to the problem of TRUS segmentation, particularly the definition of the prostate shape prior, is presented. The proposed approach is based on the concept of distribution tracking, which provides a unified framework for tracking both photometric and morphological features of the prostate. In particular, the tracking of morphological features defines a novel type of "weak" shape priors. The latter acts as a regularization force, which minimally bias the segmentation procedure, while rendering the final estimate stable and robust. The value of the proposed methodology is demonstrated in a series of experiments.

  4. Segmentation of anterior cruciate ligament in knee MR images using graph cuts with patient-specific shape constraints and label refinement.

    PubMed

    Lee, Hansang; Hong, Helen; Kim, Junmo

    2014-12-01

    We propose a graph-cut-based segmentation method for the anterior cruciate ligament (ACL) in knee MRI with a novel shape prior and label refinement. As the initial seeds for graph cuts, candidates for the ACL and the background are extracted from knee MRI roughly by means of adaptive thresholding with Gaussian mixture model fitting. The extracted ACL candidate is segmented iteratively by graph cuts with patient-specific shape constraints. Two shape constraints termed fence and neighbor costs are suggested such that the graph cuts prevent any leakage into adjacent regions with similar intensity. The segmented ACL label is refined by means of superpixel classification. Superpixel classification makes the segmented label propagate into missing inhomogeneous regions inside the ACL. In the experiments, the proposed method segmented the ACL with Dice similarity coefficient of 66.47±7.97%, average surface distance of 2.247±0.869, and root mean squared error of 3.538±1.633, which increased the accuracy by 14.8%, 40.3%, and 37.6% from the Boykov model, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lymph node segmentation on CT images by a shape model guided deformable surface methodh

    NASA Astrophysics Data System (ADS)

    Maleike, Daniel; Fabel, Michael; Tetzlaff, Ralf; von Tengg-Kobligk, Hendrik; Heimann, Tobias; Meinzer, Hans-Peter; Wolf, Ivo

    2008-03-01

    With many tumor entities, quantitative assessment of lymph node growth over time is important to make therapy choices or to evaluate new therapies. The clinical standard is to document diameters on transversal slices, which is not the best measure for a volume. We present a new algorithm to segment (metastatic) lymph nodes and evaluate the algorithm with 29 lymph nodes in clinical CT images. The algorithm is based on a deformable surface search, which uses statistical shape models to restrict free deformation. To model lymph nodes, we construct an ellipsoid shape model, which strives for a surface with strong gradients and user-defined gray values. The algorithm is integrated into an application, which also allows interactive correction of the segmentation results. The evaluation shows that the algorithm gives good results in the majority of cases and is comparable to time-consuming manual segmentation. The median volume error was 10.1% of the reference volume before and 6.1% after manual correction. Integrated into an application, it is possible to perform lymph node volumetry for a whole patient within the 10 to 15 minutes time limit imposed by clinical routine.

  6. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  7. Cold spraying of aluminum bronze on profiled submillimeter cermet structures formed by laser cladding

    NASA Astrophysics Data System (ADS)

    Ryashin, N. S.; Malikov, A. G.; Shikalov, V. S.; Gulyaev, I. P.; Kuchumov, B. M.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.

    2017-10-01

    The paper presents results of the cold spraying of aluminum bronze coatings on substrates profiled with WC/Ni tracks obtained by laser cladding. Reinforcing cermet frames shaped as grids with varied mesh sizes were clad on stainless steel substrates using a CO2 laser machine "Siberia" (ITAM SB RAS, Russia). As a result, surfaces/substrates with heterogeneous shape, composition, and mechanical properties were obtained. Aluminum bronze coatings were deposited from 5lF-NS powder (Oerlikon Metco, Switzerland) on those substrates using cold spraying equipment (ITAM SB RAS). Data of profiling, microstructure diagnostics, EDS analysis, and mechanical tests of obtained composites is reported. Surface relief of the sprayed coatings dependence on substrate structure has been demonstrated.

  8. The Case for the L-Shaped Classroom.

    ERIC Educational Resources Information Center

    Dyck, James A.

    1994-01-01

    Classroom shape is an important variable in educational quality. The traditional squat rectangle may be counterproductive to the learning process. The fat L-shaped classroom, compared to H, X, and T shapes, offers good separation, is more compact, and provides good visibility and ease of movement for the teacher. It has excellent nesting…

  9. Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment

    PubMed Central

    Parain, Karine; Aghaie, Asadollah; Picaud, Serge

    2017-01-01

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. PMID:28495838

  10. Technology for High Pure Aluminum Oxide Production from Aluminum Scrap

    NASA Astrophysics Data System (ADS)

    Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2017-10-01

    In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.

  11. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.

    PubMed

    Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G

    2017-01-01

    Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys." In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson

  12. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin

    PubMed Central

    Ghanta, Sindhu; Jordan, Michael I.; Kose, Kivanc; Brooks, Dana H.; Rajadhyaksha, Milind; Dy, Jennifer G.

    2016-01-01

    Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped “peaks and valleys”. In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process

  13. Attention and L2 Learners' Segmentation of Complex Sentences

    ERIC Educational Resources Information Center

    Hagiwara, Akiko

    2010-01-01

    The main objective of the current study is to investigate L2 Japanese learners' ability to segment complex sentences from aural input. Elementary- and early intermediate-level L2 learners in general have not developed the ability to use syntactic cues to interpret the meaning of sentences they hear. In the case of Japanese, recognition of…

  14. Segmentation-free image processing and analysis of precipitate shapes in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Bales, Ben; Pollock, Tresa; Petzold, Linda

    2017-06-01

    Segmentation based image analysis techniques are routinely employed for quantitative analysis of complex microstructures containing two or more phases. The primary advantage of these approaches is that spatial information on the distribution of phases is retained, enabling subjective judgements of the quality of the segmentation and subsequent analysis process. The downside is that computing micrograph segmentations with data from morphologically complex microstructures gathered with error-prone detectors is challenging and, if no special care is taken, the artifacts of the segmentation will make any subsequent analysis and conclusions uncertain. In this paper we demonstrate, using a two phase nickel-base superalloy microstructure as a model system, a new methodology for analysis of precipitate shapes using a segmentation-free approach based on the histogram of oriented gradients feature descriptor, a classic tool in image analysis. The benefits of this methodology for analysis of microstructure in two and three-dimensions are demonstrated.

  15. Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector

    PubMed Central

    Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar

    2014-01-01

    Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798

  16. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    PubMed

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  17. The aluminum smelting process.

    PubMed

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  18. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  19. Dissolution Kinetics of Spheroidal-Shaped Precipitates in Age-Hardenable Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Anjabin, Nozar; Salehi, Majid Seyed

    2018-05-01

    As a first attempt, a mathematical model is proposed to predict the dissolution kinetics of non-spherical secondary phase precipitates during solution heat treatment of age-hardenable aluminum alloys. The model uses general spheroidal geometry to describe the dissolution process of the alloys containing needle/disc-shaped particles with different size distributions in a finite matrix. It is found that as the aspect ratio deviates from unity, the dissolution rate is accelerated. Also, the dissolution rate of the particles in the alloy containing the particle size distribution is lower than that of mono-sized particles system. The modeling results for dissolution of θ' precipitates in an Al-Cu alloy are compared with experiments, and a good agreement was found between the modeling and the experimental results. The proposed model can be applied to different isothermal and non-isothermal annealing conditions.

  20. Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

    NASA Astrophysics Data System (ADS)

    Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas

    2010-03-01

    Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.

  1. Fast, shape-directed, landmark-based deep gray matter segmentation for quantification of iron deposition

    NASA Astrophysics Data System (ADS)

    Ekin, Ahmet; Jasinschi, Radu; van der Grond, Jeroen; van Buchem, Mark A.; van Muiswinkel, Arianne

    2006-03-01

    This paper introduces image processing methods to automatically detect the 3D volume-of-interest (VOI) and 2D region-of-interest (ROI) for deep gray matter organs (thalamus, globus pallidus, putamen, and caudate nucleus) of patients with suspected iron deposition from MR dual echo images. Prior to the VOI and ROI detection, cerebrospinal fluid (CSF) region is segmented by a clustering algorithm. For the segmentation, we automatically determine the cluster centers with the mean shift algorithm that can quickly identify the modes of a distribution. After the identification of the modes, we employ the K-Harmonic means clustering algorithm to segment the volumetric MR data into CSF and non-CSF. Having the CSF mask and observing that the frontal lobe of the lateral ventricle has more consistent shape accross age and pathological abnormalities, we propose a shape-directed landmark detection algorithm to detect the VOI in a speedy manner. The proposed landmark detection algorithm utilizes a novel shape model of the front lobe of the lateral ventricle for the slices where thalamus, globus pallidus, putamen, and caudate nucleus are expected to appear. After this step, for each slice in the VOI, we use horizontal and vertical projections of the CSF map to detect the approximate locations of the relevant organs to define the ROI. We demonstrate the robustness of the proposed VOI and ROI localization algorithms to pathologies, including severe amounts of iron accumulation as well as white matter lesions, and anatomical variations. The proposed algorithms achieved very high detection accuracy, 100% in the VOI detection , over a large set of a challenging MR dataset.

  2. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats.

    PubMed

    Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan

    2018-06-01

    Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.

  3. Pancreas and cyst segmentation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  4. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  5. Shape-Constrained Segmentation Approach for Arctic Multiyear Sea Ice Floe Analysis

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Brucker, Ludovic; Ivanoff, Alvaro; Tilton, James C.

    2013-01-01

    The melting of sea ice is correlated to increases in sea surface temperature and associated climatic changes. Therefore, it is important to investigate how rapidly sea ice floes melt. For this purpose, a new Tempo Seg method for multi temporal segmentation of multi year ice floes is proposed. The microwave radiometer is used to track the position of an ice floe. Then,a time series of MODIS images are created with the ice floe in the image center. A Tempo Seg method is performed to segment these images into two regions: Floe and Background.First, morphological feature extraction is applied. Then, the central image pixel is marked as Floe, and shape-constrained best merge region growing is performed. The resulting tworegionmap is post-filtered by applying morphological operators.We have successfully tested our method on a set of MODIS images and estimated the area of a sea ice floe as afunction of time.

  6. The Role of Coseismic Coulomb Stress Changes in Shaping the Hard Link Between Normal Fault Segments

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.

    2018-01-01

    The mechanism and evolution of fault linkage is important in the growth and development of large faults. Here we investigate the role of coseismic stress changes in shaping the hard links between parallel normal fault segments (or faults), by comparing numerical models of the Coulomb stress change from simulated earthquakes on two en echelon fault segments to natural observations of hard-linked fault geometry. We consider three simplified linking fault geometries: (1) fault bend, (2) breached relay ramp, and (3) strike-slip transform fault. We consider scenarios where either one or both segments rupture and vary the distance between segment tips. Fault bends and breached relay ramps are favored where segments underlap or when the strike-perpendicular distance between overlapping segments is less than 20% of their total length, matching all 14 documented examples. Transform fault linkage geometries are preferred when overlapping segments are laterally offset at larger distances. Few transform faults exist in continental extensional settings, and our model suggests that propagating faults or fault segments may first link through fault bends or breached ramps before reaching sufficient overlap for a transform fault to develop. Our results suggest that Coulomb stresses arising from multisegment ruptures or repeated earthquakes are consistent with natural observations of the geometry of hard links between parallel normal fault segments.

  7. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Method of manufacturing a large-area segmented photovoltaic module

    DOEpatents

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  9. GC-ASM: Synergistic Integration of Graph-Cut and Active Shape Model Strategies for Medical Image Segmentation

    PubMed Central

    Chen, Xinjian; Udupa, Jayaram K.; Alavi, Abass; Torigian, Drew A.

    2013-01-01

    Image segmentation methods may be classified into two categories: purely image based and model based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function is proposed which effectively integrates the ASM shape information into the GC framework. The proposed method consists of two phases: model building and segmentation. In the model building phase, the ASM model is built and the parameters of the GC are estimated. The segmentation phase consists of two main steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmentation result which also provides the shape information for the GC method. For delineation, an iterative GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdominal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of TPVF > 96%, FPVF < 0.6% can be achieved via GC-ASM for different objects, modalities, and body regions. (b) GC-ASM improves over ASM in its accuracy and precision to search region. (c) GC-ASM requires far fewer landmarks (about 1/3 of ASM) than ASM. (d) GC-ASM achieves full automation in the segmentation step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One disadvantage of GC-ASM is its increased computational expense owing to the iterative nature of the algorithm. PMID:23585712

  10. GC-ASM: Synergistic Integration of Graph-Cut and Active Shape Model Strategies for Medical Image Segmentation.

    PubMed

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2013-05-01

    Image segmentation methods may be classified into two categories: purely image based and model based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function is proposed which effectively integrates the ASM shape information into the GC framework. The proposed method consists of two phases: model building and segmentation. In the model building phase, the ASM model is built and the parameters of the GC are estimated. The segmentation phase consists of two main steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmentation result which also provides the shape information for the GC method. For delineation, an iterative GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdominal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of TPVF > 96%, FPVF < 0.6% can be achieved via GC-ASM for different objects, modalities, and body regions. (b) GC-ASM improves over ASM in its accuracy and precision to search region. (c) GC-ASM requires far fewer landmarks (about 1/3 of ASM) than ASM. (d) GC-ASM achieves full automation in the segmentation step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One disadvantage of GC-ASM is its increased computational expense owing to the iterative nature of the algorithm.

  11. Novel Insights on Hantavirus Evolution: The Dichotomy in Evolutionary Pressures Acting on Different Hantavirus Segments.

    PubMed

    Sankar, Sathish; Upadhyay, Mohita; Ramamurthy, Mageshbabu; Vadivel, Kumaran; Sagadevan, Kalaiselvan; Nandagopal, Balaji; Vivekanandan, Perumal; Sridharan, Gopalan

    2015-01-01

    Hantaviruses are important emerging zoonotic pathogens. The current understanding of hantavirus evolution is complicated by the lack of consensus on co-divergence of hantaviruses with their animal hosts. In addition, hantaviruses have long-term associations with their reservoir hosts. Analyzing the relative abundance of dinucleotides may shed new light on hantavirus evolution. We studied the relative abundance of dinucleotides and the evolutionary pressures shaping different hantavirus segments. A total of 118 sequences were analyzed; this includes 51 sequences of the S segment, 43 sequences of the M segment and 23 sequences of the L segment. The relative abundance of dinucleotides, effective codon number (ENC), codon usage biases were analyzed. Standard methods were used to investigate the relative roles of mutational pressure and translational selection on the three hantavirus segments. All three segments of hantaviruses are CpG depleted. Mutational pressure is the predominant evolutionary force leading to CpG depletion among hantaviruses. Interestingly, the S segment of hantaviruses is GpU depleted and in contrast to CpG depletion, the depletion of GpU dinucleotides from the S segment is driven by translational selection. Our findings also suggest that mutational pressure is the primary evolutionary pressure acting on the S and the M segments of hantaviruses. While translational selection plays a key role in shaping the evolution of the L segment. Our findings highlight how different evolutionary pressures may contribute disproportionally to the evolution of the three hantavirus segments. These findings provide new insights on the current understanding of hantavirus evolution. There is a dichotomy among evolutionary pressures shaping a) the relative abundance of different dinucleotides in hantavirus genomes b) the evolution of the three hantavirus segments.

  12. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  13. Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, James C., E-mail: jross@bwh.harvard.edu; Surgical Planning Lab, Brigham and Women's Hospital, Boston, Massachusetts 02215; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Boston, Massachusetts 02126

    2013-12-15

    Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and amore » novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The

  14. Dielectric tuned circular dichroism of L-shaped plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Qu, Yu; Zhang, Zhidong; Fu, Tong; Wang, Gang; Wang, Tiankun; Wang, Mingyan; Bai, Yu; Zhang, Zhongyue

    2017-12-01

    In this paper, a dielectric layer is introduced to tune circular dichroism (CD) of chiral plasmonic metasurfaces. The dielectric layer is used to control the optical phase of electric diploes in Born-Kuhn configurations. To prove our assumption, an L-shaped plasmonic metasurface consisting of two metallic slices is prepared by glancing angle deposition, and then an SiO2 slice is deposited on one arm of the L-shaped metasurface. Experimental results reveal that CD of the L-shaped plasmonic metasurface can be tuned by the thickness of the SiO2 slice. These findings not only contribute to a better understanding of the CD physical mechanism, but also can be used in nanophotonic metasurfaces because of the concise fabrication process.

  15. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  16. Geometry segmentation of voxelized representations of heterogeneous microstructures using betweenness centrality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Rui; Singh, Sudhanshu S.; Chawla, Nikhilesh

    2016-08-15

    We present a robust method for automating removal of “segregation artifacts” in segmented tomographic images of three-dimensional heterogeneous microstructures. The objective of this method is to accurately identify and separate discrete features in composite materials where limitations in imaging resolution lead to spurious connections near close contacts. The method utilizes betweenness centrality, a measure of the importance of a node in the connectivity of a graph network, to identify voxels that create artificial bridges between otherwise distinct geometric features. To facilitate automation of the algorithm, we develop a relative centrality metric to allow for the selection of a threshold criterionmore » that is not sensitive to inclusion size or shape. As a demonstration of the effectiveness of the algorithm, we report on the segmentation of a 3D reconstruction of a SiC particle reinforced aluminum alloy, imaged by X-ray synchrotron tomography.« less

  17. Isomap transform for segmenting human body shapes.

    PubMed

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis.

  18. Calcium citrate without aluminum antacids does not cause aluminum retention in patients with functioning kidneys

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.

    1993-01-01

    It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an

  19. Segmentation of clustered cells in negative phase contrast images with integrated light intensity and cell shape information.

    PubMed

    Wang, Y; Wang, C; Zhang, Z

    2018-05-01

    Automated cell segmentation plays a key role in characterisations of cell behaviours for both biology research and clinical practices. Currently, the segmentation of clustered cells still remains as a challenge and is the main reason for false segmentation. In this study, the emphasis was put on the segmentation of clustered cells in negative phase contrast images. A new method was proposed to combine both light intensity and cell shape information through the construction of grey-weighted distance transform (GWDT) within preliminarily segmented areas. With the constructed GWDT, the clustered cells can be detected and then separated with a modified region skeleton-based method. Moreover, a contour expansion operation was applied to get optimised detection of cell boundaries. In this paper, the working principle and detailed procedure of the proposed method are described, followed by the evaluation of the method on clustered cell segmentation. Results show that the proposed method achieves an improved performance in clustered cell segmentation compared with other methods, with 85.8% and 97.16% accuracy rate for clustered cells and all cells, respectively. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Net Shape Spin Formed Cryogenic Aluminum Lithium Cryogenic Tank Domes for Lower Cost Higher Performance Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Hoffman, Eric; Domack, Marcia; Brewster, Jeb; Russell, Carolyn

    2013-01-01

    With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.

  1. Emerging S-shaped curves in congenital scoliosis after hemivertebra resection and short segmental fusion.

    PubMed

    Yang, Xi; Song, Yueming; Liu, Limin; Zhou, Chunguang; Zhou, Zhongjie; Wang, Lei; Wang, Liang

    2016-10-01

    Posterior hemivertebra resection with short fusion has gradually become the mainstream treatment for the congenital scoliosis due to single fully segmented hemivertebra. A kind of unexpected emerging S-shaped scoliosis was found secondary to this surgery, and that has not been reported yet. The aim of the present study was to analyze the possible pathogenesis, clinical feature, and treatment of the emerging S-shaped scoliosis after posterior hemivertebra resection and short fusion. This study is a retrospective case series. A total of 128 patients participated. Preoperative and postoperative whole spine radiographs were used to measure the Cobb angle of main curve, compensatory curve, and emerging curves. And the hemivertebra location, the fused segment, the apical and ending vertebrae of postoperative-emerging curve (and preoperative compensatory curves) were assessed. Both the demographics and radiographic data were reviewed. Postoperative-emerging scoliosis was defined as the curve with an increasing angle of 20° and an apical vertebra locating at least two levels away from fusion region. Of the 128 patients, 9 (7%) showed postoperative-emerging S-shaped scoliosis. The mean age was 11.4 years old. The mean main curve was 36.1±14.4° preoperatively and been significantly corrected to 6.9±6.1° (p<.001). No significant difference was found in the main curve, kyphosis, coronal balance, or sagittal balance during follow-up. The emerging scoliosis occurred at 3 months (in four patients) or 6 months (in five patients) after initial surgery with an average angle of 42.6±12.9° at last follow-up. All patients underwent bracing or observation when the S-shaped scoliosis was arising, and four patients underwent a revision surgery because of deformity developing. The emerging S-shaped scoliosis was an extraordinary complication that may be developing from the preoperative compensatory scoliosis and usually occurred at 3-6 months after hemivertebra resection. The

  2. Facile Route to Rare Heterobimetallic Aluminum-Copper and Aluminum-Zinc Selenide Clusters.

    PubMed

    Li, Bin; Li, Jiancheng; Liu, Rui; Zhu, Hongping; Roesky, Herbert W

    2017-03-20

    Heterobimetallic aluminum-copper and aluminum-zinc clusters were prepared from the reaction of LAl(SeH) 2 [1; L = HC(CMeNAr) 2 and Ar = 2,6-iPr 2 C 6 H 3 ] with (MesCu) 4 and ZnEt 2 , respectively. The resulting clusters with the core structures of Al 2 Se 4 Cu 4 and Al 2 Se 4 Zn 3 exhibit unique metal-organic frameworks. This is a novel pathway for the synthesis of aluminum-copper and aluminum-zinc selenides. The products have been characterized by spectroscopic methods and single-crystal X-ray structural characterization.

  3. L-shaped piezoelectric motor--part II: analytical modeling.

    PubMed

    Avirovik, Dragan; Karami, M Amin; Inman, Daniel; Priya, Shashank

    2012-01-01

    This paper develops an analytical model for an L-shaped piezoelectric motor. The motor structure has been described in detail in Part I of this study. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. The emphasis of this paper is on the development of a precise analytical model which can predict the dynamic behavior of the motor based on its geometry. The motor was first modeled mechanically to identify the natural frequencies and mode shapes of the structure. Next, an electromechanical model of the motor was developed to take into account the piezoelectric effect, and dynamics of L-shaped piezoelectric motor were obtained as a function of voltage and frequency. Finally, the analytical model was validated by comparing it to experiment results and the finite element method (FEM). © 2012 IEEE

  4. Piezoelectric energy harvesting from an L-shaped beam-mass structure

    NASA Astrophysics Data System (ADS)

    Erturk, Alper; Renno, Jamil M.; Inman, Daniel J.

    2008-03-01

    Cantilevered piezoelectric harvesters have been extensively considered in the energy harvesting literature. Mostly, a traditional cantilevered beam with one or more piezoceramic layers is located on a vibrating host structure. Motion of the host structure results in vibrations of the harvester beam and that yields an alternating voltage output. As an alternative to classical cantilevered beams, this paper presents a novel harvesting device; a flexible L-shaped beam-mass structure that can be tuned to have a two-to-one internal resonance to a primary resonance ω II ≅ 2ω I which is not possible for classical cantilevers). The L-shaped structure has been well investigated in the literature of nonlinear dynamics since the two-to-one internal resonance, along with the consideration of quadratic nonlinearities, may yield modal energy exchange (for excitation frequency ω≅ ω Ior the so-called saturation phenomenon (for ω≅ω II). As a part of our ongoing research on piezoelectric energy harvesting, we are investigating the possibility of improving the electrical outputs in energy harvesting by employing these features of the L-shaped structure. This paper aims to introduce the idea, describes the important features of the L-shaped harvester configuration and develops a linear distributed parameter model for predicting the electromechanically coupled response. In addition, this work proposes a direct application of the L-shaped piezoelectric energy harvester configuration for use as landing gears in unmanned air vehicle applications.

  5. Efficacy of texture, shape, and intensity features for robust posterior-fossa tumor segmentation in MRI

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Iftekharuddin, K. M.; Ogg, R. J.; Laningham, F. H.

    2009-02-01

    Our previous works suggest that fractal-based texture features are very useful for detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. In this work, we investigate and compare efficacy of our texture features such as fractal and multifractional Brownian motion (mBm), and intensity along with another useful level-set based shape feature in PF tumor segmentation. We study feature selection and ranking using Kullback -Leibler Divergence (KLD) and subsequent tumor segmentation; all in an integrated Expectation Maximization (EM) framework. We study the efficacy of all four features in both multimodality as well as disparate MRI modalities such as T1, T2 and FLAIR. Both KLD feature plots and information theoretic entropy measure suggest that mBm feature offers the maximum separation between tumor and non-tumor tissues in T1 and FLAIR MRI modalities. The same metrics show that intensity feature offers the maximum separation between tumor and non-tumor tissue in T2 MRI modality. The efficacies of these features are further validated in segmenting PF tumor using both single modality and multimodality MRI for six pediatric patients with over 520 real MR images.

  6. "A L C L A D" A New Corrosion Resistant Aluminum Product

    NASA Technical Reports Server (NTRS)

    Dix, E H , Jr

    1927-01-01

    Described here is a new corrosion resistant aluminum product which is markedly superior to the present strong alloys. Its use should result in greatly increased life of a structural part. Alclad is a heat-treated aluminum, copper, manganese, magnesium alloy that has the corrosion resistance of pure metal at the surface and the strength of the strong alloy underneath. Of particular importance is the thorough character of the union between the alloy and the pure aluminum. Preliminary results of salt spray tests (24 weeks of exposure) show changes in tensile strength and elongation of Alclad 17ST, when any occurred, to be so small as to be well within the limits of experimental error. Some surface corrosion of the pure metal had taken place, but not enough to cause the specimens to break through those areas.

  7. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  8. Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images

    NASA Astrophysics Data System (ADS)

    Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei

    2017-02-01

    Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.

  9. Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.

    This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.

  10. Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets.

    PubMed

    Agrawal, Sarika; Sharma, Isha; Prajapati, Bhanu Pratap; Suryawanshi, Rahul Kumar; Kango, Naveen

    2018-07-15

    l-asparaginase from Escherichia coli (l-ASNase) was covalently immobilized on aluminum oxide pellets (AlOPs) using a cross-linking agent, glutaraldehyde. Maximum immobilization yield (85.0%) was obtained after optimizing immobilization parameters using response surface methodology (RSM). Both free and immobilized l-ASNase (AlOP-ASNase) were optimally active at 37°C and pH7.5. However, the bioconjugate exhibited enhanced activity and stability at different pH and temperatures. It had higher affinity (low K m ) and was comparatively more stable in presence of some solvents (ethyl acetate, acetone, acetonitrile), metal ions (Ag + , Zn 2+ ) and β-mercaptoethanol. AlOP-ASNase was reused in a glass column reactor for l-asparagine hydrolysis upto nine successive cycles without any loss in activity. The AlOP-ASNase was effective in lowering l-asparagine level in blanched potato chips indicating its potential use in mitigating acrylamide formation in starchy foods. This cost-effective enzyme preparation had shelf-life of more than 30days and can be effectively used in starch based food industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Influence of fluoride on aluminum toxicity to Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Hamilton, Steven J.; Haines, Terry A.

    1995-01-01

    Atlantic salmon (Salmo salar) alevins were exposed to various aluminum (0–4700 μg/L) and four fluoride (0–500 μg/L) concentrations at two pH values (5.5 and 6.5) for 4- and 30-d periods. In the 4-d tests, aluminum with fluoride was less toxic at pH 6.5 than at pH 5.5, whereas without fluoride, pH had no effect. In the 30-d test, mortality in all treatments was 17–21% at pH 5.5, but only 3–7% at pH 6.5. Fish length and weight after 30 d were reduced in all fluoride–aluminum treatments at pH 5.5, but only in the 200-μg/L aluminum without fluoride treatment at pH 6.5. At pH 5.5 and 6.5 without aluminum, histomorphological examinations revealed no abnormalities in gill tissue. However, in aluminum exposure with no fluoride, gill filaments and secondary lamellae were swollen and thickened. Addition of fluoride at pH 6.5 alleviated some gill damage. At pH 5.5 and 200 μg/L aluminum, addition of 100 μg/L fluoride reduced swelling of gill lamellae, but 200 μg/L fluoride did not reduce swelling. Low fluoride concentrations (< 100 μg/L) may reduce gill morphological damage in fish exposed to aluminum in acidic waters, whereas high fluoride concentrations (> 100 μg/L) may not reduce aluminum-induced effects.

  12. Interactive 3D segmentation of the prostate in magnetic resonance images using shape and local appearance similarity analysis

    NASA Astrophysics Data System (ADS)

    Shahedi, Maysam; Fenster, Aaron; Cool, Derek W.; Romagnoli, Cesare; Ward, Aaron D.

    2013-03-01

    3D segmentation of the prostate in medical images is useful to prostate cancer diagnosis and therapy guidance, but is time-consuming to perform manually. Clinical translation of computer-assisted segmentation algorithms for this purpose requires a comprehensive and complementary set of evaluation metrics that are informative to the clinical end user. We have developed an interactive 3D prostate segmentation method for 1.5T and 3.0T T2-weighted magnetic resonance imaging (T2W MRI) acquired using an endorectal coil. We evaluated our method against manual segmentations of 36 3D images using complementary boundary-based (mean absolute distance; MAD), regional overlap (Dice similarity coefficient; DSC) and volume difference (ΔV) metrics. Our technique is based on inter-subject prostate shape and local boundary appearance similarity. In the training phase, we calculated a point distribution model (PDM) and a set of local mean intensity patches centered on the prostate border to capture shape and appearance variability. To segment an unseen image, we defined a set of rays - one corresponding to each of the mean intensity patches computed in training - emanating from the prostate centre. We used a radial-based search strategy and translated each mean intensity patch along its corresponding ray, selecting as a candidate the boundary point with the highest normalized cross correlation along each ray. These boundary points were then regularized using the PDM. For the whole gland, we measured a mean+/-std MAD of 2.5+/-0.7 mm, DSC of 80+/-4%, and ΔV of 1.1+/-8.8 cc. We also provided an anatomic breakdown of these metrics within the prostatic base, mid-gland, and apex.

  13. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2013-01-01

    The paper addresses the automated segmentation of multiple organs in upper abdominal CT data. We propose a framework of multi-organ segmentation which is adaptable to any imaging conditions without using intensity information in manually traced training data. The features of the framework are as follows: (1) the organ correlation graph (OCG) is introduced, which encodes the spatial correlations among organs inherent in human anatomy; (2) the patient-specific organ shape and location priors obtained using OCG enable the estimation of intensity priors from only target data and optionally a number of untraced CT data of the same imaging condition as the target data. The proposed methods were evaluated through segmentation of eight abdominal organs (liver, spleen, left and right kidney, pancreas, gallbladder, aorta, and inferior vena cava) from 86 CT data obtained by four imaging conditions at two hospitals. The performance was comparable to the state-of-the-art method using intensity priors constructed from manually traced data.

  14. A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs.

    PubMed

    Jaramillo, Hector E; Gómez, Lessby; García, Jose J

    2015-01-01

    With the aim to study disc degeneration and the risk of injury during occupational activities, a new finite element (FE) model of the L4-L5-S1 segment of the human spine was developed based on the anthropometry of a typical Colombian worker. Beginning with medical images, the programs CATIA and SOLIDWORKS were used to generate and assemble the vertebrae and create the soft structures of the segment. The software ABAQUS was used to run the analyses, which included a detailed model calibration using the experimental step-wise reduction data for the L4-L5 component, while the L5-S1 segment was calibrated in the intact condition. The range of motion curves, the intradiscal pressure and the lateral bulging under pure moments were considered for the calibration. As opposed to other FE models that include the L5-S1 disc, the model developed in this study considered the regional variations and anisotropy of the annulus as well as a realistic description of the nucleus geometry, which allowed an improved representation of experimental data during the validation process. Hence, the model can be used to analyze the stress and strain distributions in the L4-L5 and L5-S1 discs of workers performing activities such as lifting and carrying tasks.

  15. Influence of Segmentation of Ring-Shaped NdFeB Magnets with Parallel Magnetization on Cylindrical Actuators

    PubMed Central

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Filho, Aly Ferreira Flores

    2014-01-01

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines. PMID:25051032

  16. Influence of segmentation of ring-shaped NdFeB magnets with parallel magnetization on cylindrical actuators.

    PubMed

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Flores Filho, Aly Ferreira

    2014-07-21

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  17. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter partsmore » have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.« less

  18. Effect of D-ribose-L-cysteine on aluminum induced testicular damage in male Sprague-Dawley rats.

    PubMed

    Falana, Benedict; Adeleke, Opeyemi; Orenolu, Mulikat; Osinubi, Abraham; Oyewopo, Adeoye

    2017-06-01

    This study investigated the effects of D-ribose and L-cysteine on aluminum-induced testicular damage in male Sprague-Dawley rats. A total number of thirty-five (35) adult male Sprague-Dawley rats were divided into four groups (AD). Group A (comprised five (5) rats) was designated the Control Group that received Physiological Saline; while groups B, C, and D (comprised ten (10) rats) were given 75 mg/kg, 150 mg/kg and 300 mg/kg of body weight of aluminum chloride respectively for 39 days. At day 40, the aluminum-treated groups were subdivided into sub-groups (B1, C1, D1) comprising of five (5) rats each, and 30 mg/kg body weight of Riboceine were administered for twenty (20) days. Groups B, C and D remained on the normal dosage of aluminum chloride for three more weeks (59 days). Andrological parameters (Sperm count, motility, morphology and testosterone) in the aluminum-treated Groups B and C showed no significant difference in their mean values when compared with their control counterparts, whereas there was a significant reduction in the andrological parameters in Group D rats when compared with the Control animals. Histoarchitecture of the testes "stain with H&E" of Group A, B and C rats appeared normal while Group D rats showed testicular damages with several abnormal seminiferous tubules with incomplete maturation of germinal cell layers and absence of spermatozoa in their lumen; Leydig cells appear hyperplastic. Group B1, C1 and D1 andrological and histological parameters appeared normal. Riboceine treatment significantly attenuates aluminum-induced testicular toxicity in male Sprague-Dawley in rats.

  19. A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes.

    PubMed

    Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando

    2018-05-01

    Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.

  20. Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization.

    PubMed

    Linguraru, Marius George; Pura, John A; Chowdhury, Ananda S; Summers, Ronald M

    2010-01-01

    The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis (CAD) applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of soft tissue. An automated method optimized for medical image data is presented for the simultaneous segmentation of four abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-linear registration. Then 4D erosion using population historic information of contrast-enhanced liver, spleen, and kidneys was applied to multi-phase data to initialize the 4D graph and adapt to patient specific data. CT enhancement information and constraints on shape, from Parzen windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D graph. Comparative results demonstrate the effects of appearance and enhancement, and shape and location on organ segmentation.

  1. Concurrent segmentation of the prostate on MRI and CT via linked statistical shape models for radiotherapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Najeeb; Toth, Robert; Chappelow, Jonathan

    2012-04-15

    Purpose: Prostate gland segmentation is a critical step in prostate radiotherapy planning, where dose plans are typically formulated on CT. Pretreatment MRI is now beginning to be acquired at several medical centers. Delineation of the prostate on MRI is acknowledged as being significantly simpler to perform, compared to delineation on CT. In this work, the authors present a novel framework for building a linked statistical shape model (LSSM), a statistical shape model (SSM) that links the shape variation of a structure of interest (SOI) across multiple imaging modalities. This framework is particularly relevant in scenarios where accurate boundary delineations ofmore » the SOI on one of the modalities may not be readily available, or difficult to obtain, for training a SSM. In this work the authors apply the LSSM in the context of multimodal prostate segmentation for radiotherapy planning, where the prostate is concurrently segmented on MRI and CT. Methods: The framework comprises a number of logically connected steps. The first step utilizes multimodal registration of MRI and CT to map 2D boundary delineations of the prostate from MRI onto corresponding CT images, for a set of training studies. Hence, the scheme obviates the need for expert delineations of the gland on CT for explicitly constructing a SSM for prostate segmentation on CT. The delineations of the prostate gland on MRI and CT allows for 3D reconstruction of the prostate shape which facilitates the building of the LSSM. In order to perform concurrent prostate MRI and CT segmentation using the LSSM, the authors employ a region-based level set approach where the authors deform the evolving prostate boundary to simultaneously fit to MRI and CT images in which voxels are classified to be either part of the prostate or outside the prostate. The classification is facilitated by using a combination of MRI-CT probabilistic spatial atlases and a random forest classifier, driven by gradient and Haar features

  2. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  3. Joint deep shape and appearance learning: application to optic pathway glioma segmentation

    NASA Astrophysics Data System (ADS)

    Mansoor, Awais; Li, Ien; Packer, Roger J.; Avery, Robert A.; Linguraru, Marius George

    2017-03-01

    Automated tissue characterization is one of the major applications of computer-aided diagnosis systems. Deep learning techniques have recently demonstrated impressive performance for the image patch-based tissue characterization. However, existing patch-based tissue classification techniques struggle to exploit the useful shape information. Local and global shape knowledge such as the regional boundary changes, diameter, and volumetrics can be useful in classifying the tissues especially in scenarios where the appearance signature does not provide significant classification information. In this work, we present a deep neural network-based method for the automated segmentation of the tumors referred to as optic pathway gliomas (OPG) located within the anterior visual pathway (AVP; optic nerve, chiasm or tracts) using joint shape and appearance learning. Voxel intensity values of commonly used MRI sequences are generally not indicative of OPG. To be considered an OPG, current clinical practice dictates that some portion of AVP must demonstrate shape enlargement. The method proposed in this work integrates multiple sequence magnetic resonance image (T1, T2, and FLAIR) along with local boundary changes to train a deep neural network. For training and evaluation purposes, we used a dataset of multiple sequence MRI obtained from 20 subjects (10 controls, 10 NF1+OPG). To our best knowledge, this is the first deep representation learning-based approach designed to merge shape and multi-channel appearance data for the glioma detection. In our experiments, mean misclassification errors of 2:39% and 0:48% were observed respectively for glioma and control patches extracted from the AVP. Moreover, an overall dice similarity coefficient of 0:87+/-0:13 (0:93+/-0:06 for healthy tissue, 0:78+/-0:18 for glioma tissue) demonstrates the potential of the proposed method in the accurate localization and early detection of OPG.

  4. In vivo imaging of coin-shaped lesions in cytomegalovirus corneal endotheliitis by anterior segment optical coherence tomography.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Yamazaki, Natsuko; Sugiyama, Kazuhisa

    2014-12-01

    The aim of this study was to investigate in vivo corneal changes of coin-shaped lesions in cytomegalovirus corneal endotheliitis using anterior segment optical coherence tomography (AS-OCT). Two eyes of 2 patients (69- and 71-year-old men), with polymerase chain reaction-proven CMV corneal endotheliitis presenting coin-shaped lesions, were included in this study. AS-OCT examination was performed on the initial visit and at follow-up visits by paying special attention to the coin-shaped lesions. Selected AS-OCT images of the cornea were evaluated qualitatively for changes in the shape and degree of light reflection. In both cases, coin-shaped lesions were observed at the corneal endothelial surface as clusters of fine precipitates using slit-lamp biomicroscopy. Using AS-OCT, high-resolution images of the putative coin-shaped lesions were successfully obtained in both patients as an irregularly thickened highly reflective endothelial cell layer. After anti-CMV treatment, the coin-shaped lesions were resolved as assessed by slit-lamp biomicroscopy and AS-OCT in both patients. High-resolution AS-OCT provides novel and detailed visual information of coin-shaped lesions in patients with CMV corneal endotheliitis. Visualization of coin-shaped lesions by AS-OCT may be a useful adjunct to the diagnosis and follow-up of CMV corneal endotheliitis.

  5. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  6. Detection of Single Standing Dead Trees from Aerial Color Infrared Imagery by Segmentation with Shape and Intensity Priors

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U.

    2015-03-01

    Standing dead trees, known as snags, are an essential factor in maintaining biodiversity in forest ecosystems. Combined with their role as carbon sinks, this makes for a compelling reason to study their spatial distribution. This paper presents an integrated method to detect and delineate individual dead tree crowns from color infrared aerial imagery. Our approach consists of two steps which incorporate statistical information about prior distributions of both the image intensities and the shapes of the target objects. In the first step, we perform a Gaussian Mixture Model clustering in the pixel color space with priors on the cluster means, obtaining up to 3 components corresponding to dead trees, living trees, and shadows. We then refine the dead tree regions using a level set segmentation method enriched with a generative model of the dead trees' shape distribution as well as a discriminative model of their pixel intensity distribution. The iterative application of the statistical shape template yields the set of delineated dead crowns. The prior information enforces the consistency of the template's shape variation with the shape manifold defined by manually labeled training examples, which makes it possible to separate crowns located in close proximity and prevents the formation of large crown clusters. Also, the statistical information built into the segmentation gives rise to an implicit detection scheme, because the shape template evolves towards an empty contour if not enough evidence for the object is present in the image. We test our method on 3 sample plots from the Bavarian Forest National Park with reference data obtained by manually marking individual dead tree polygons in the images. Our results are scenario-dependent and range from a correctness/completeness of 0.71/0.81 up to 0.77/1, with an average center-of-gravity displacement of 3-5 pixels between the detected and reference polygons.

  7. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  8. Whole abdominal wall segmentation using augmented active shape models (AASM) with multi-atlas label fusion and level set

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-03-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.

  9. Mapping and genomic targeting of the major leaf shape gene (L) in Upland cotton (Gossypium hirsutum L.).

    PubMed

    Andres, Ryan J; Bowman, Daryl T; Kaur, Baljinder; Kuraparthy, Vasu

    2014-01-01

    A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L (o) ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.

  10. The Exploitation of Subphonemic Acoustic Detail in L2 Speech Segmentation

    ERIC Educational Resources Information Center

    Shoemaker, Ellenor

    2014-01-01

    The current study addresses an aspect of second language (L2) phonological acquisition that has received little attention to date--namely, the acquisition of allophonic variation as a word boundary cue. The role of subphonemic variation in the segmentation of speech by native speakers has been indisputably demonstrated; however, the acquisition of…

  11. Design principles for wave plate metasurfaces using plasmonic L-shaped nanoantennas

    NASA Astrophysics Data System (ADS)

    Tahir, Asad A.; Schulz, Sebastian A.; De Leon, Israel; Boyd, Robert W.

    2017-03-01

    Plasmonic L-shaped antennas are an important building block of metasurfaces and have been used to fabricate ultra-thin wave plates. In this work we present principles that can be used to design wave plates at a wavelength of choice and for diverse application requirements using arrays of L-shaped plasmonic antennas. We derive these design principles by studying the behavior of the vast parameter space of these antenna arrays. We show that there are two distinct regimes: a weak inter-particle coupling and a strong inter-particle coupling regime. We describe the behavior of the antenna array in each regime with regards to wave plate functionality, without resorting to approximate theoretical models. Our work is the first to explain these design principles and serves as a guide for designing wave plates for specific application requirements using plasmonic L-shaped antenna arrays.

  12. Study on combined polishing process of aspherical aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Deng, Jinqiu; Peng, Xiaoqiang; Hu, Hao; Ge, Kunpeng

    2017-10-01

    The aluminum mirrors are widely used as important optical components in some vital fields such as astronomical instruments or military installations due to the unique advantages of aluminum alloy. In order to simplify the structure of optical system and improve the performance at the same time, it's a tendency that the optics will be designed to aspherical or other freeform shapes. However, the traditional techniques are falling to have adequate abilities to deal with the increasing demands of aluminum optics. For example, the tool marks leaved on the surface from single point diamond turning (SPDT) has obvious adverse effects to optical system. The deterministic and sub-aperture polishing process has showed the potential to fabricate complex shapes over the few years. But it's still recognized as a problem to polish bare aluminum directly because of its soft surface and active chemical characteristics. Therefore, a combination of magnetorheological finishing (MRF) and small tool polishing (STP) is applied to obtain high performance aluminum optics in this paper. A paraboloid aluminum mirror was polished with this proposed method, and the results showed that the surface texture of the sample is restrained from rms 0.409λ (λ=632.8nm) to rms 0.025λ, and the surface roughness is improved from average Ra 6 7nm to Ra 3 4nm.

  13. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure.

    PubMed

    Lim, Jia Chun; Thevarajoo, Suganthi; Selvaratnam, Chitra; Goh, Kian Mau; Shamsir, Mohd Shahir; Ibrahim, Zaharah; Chong, Chun Shiong

    2017-02-01

    Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L -1 of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The L-Shaped Classroom: A Pattern for Promoting Learning

    ERIC Educational Resources Information Center

    Lippman, Peter C.

    2004-01-01

    There has been little analysis of how the "L" Shape design pattern might influence learning as well as be incorporated into the design of new school facilities. This article: (1) re-examines the "Fat L" (Dyck, 1994) Classroom as a design pattern which supports a range of activity settings; (2) defines activity settings; (3)…

  15. Fatigue Crack-Growth Resistance of Aluminum Alloys Under Spectrum Loading. Volume 2. Aluminum Lithium Alloys.

    DTIC Science & Technology

    1985-12-01

    Effects on Fatigue Crack Propagation in 2024 -T3 Aluminum Alloy ," Eng. Frac. Mech, * Vol. 8, 1976, p. 657...Retardation Behavior of 7075 * and 2024 Aluminum Alloys ," ASTNI STP 631, 1977. 89 hill". .A•, - . 34. Chanani, G.R., "Investigation of Effects of Saltwater...1.0 9,අ &M Ma ki-L6 &Ŗ &- La 06 lin "Ll Ull 1.25 "A Lm Wit Rtlc()FIV WtklLl’-"- ll*A FATIGUE CRACK-GROWTH RESISTANCE OF ALUMINUM ALLOYS

  16. Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates.

    PubMed

    Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai

    2018-04-18

    We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

  17. Global-to-local, shape-based, real and virtual landmarks for shape modeling by recursive boundary subdivision

    NASA Astrophysics Data System (ADS)

    Rueda, Sylvia; Udupa, Jayaram K.

    2011-03-01

    Landmark based statistical object modeling techniques, such as Active Shape Model (ASM), have proven useful in medical image analysis. Identification of the same homologous set of points in a training set of object shapes is the most crucial step in ASM, which has encountered challenges such as (C1) defining and characterizing landmarks; (C2) ensuring homology; (C3) generalizing to n > 2 dimensions; (C4) achieving practical computations. In this paper, we propose a novel global-to-local strategy that attempts to address C3 and C4 directly and works in Rn. The 2D version starts from two initial corresponding points determined in all training shapes via a method α, and subsequently by subdividing the shapes into connected boundary segments by a line determined by these points. A shape analysis method β is applied on each segment to determine a landmark on the segment. This point introduces more pairs of points, the lines defined by which are used to further subdivide the boundary segments. This recursive boundary subdivision (RBS) process continues simultaneously on all training shapes, maintaining synchrony of the level of recursion, and thereby keeping correspondence among generated points automatically by the correspondence of the homologous shape segments in all training shapes. The process terminates when no subdividing lines are left to be considered that indicate (as per method β) that a point can be selected on the associated segment. Examples of α and β are presented based on (a) distance; (b) Principal Component Analysis (PCA); and (c) the novel concept of virtual landmarks.

  18. Tuning Energetic Material Reactivity Using Surface Functionalization of Aluminum Fuels

    DTIC Science & Technology

    2012-10-30

    analysis of three different thermites consisting of aluminum (Al) particles with and without surface functionalization combined with molybdenum...of thermites , aluminum synthesis, aluminum fluoropolymer combustion, acid coatings Keerti S. Kappagantula, Cory Farley, Michelle L. Pantoya, Jillian...Reactivity Using Surface Functionalization of Aluminum Fuels Report Title ABSTRACT Combustion analysis of three different thermites consisting of aluminum (Al

  19. Sparse intervertebral fence composition for 3D cervical vertebra segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yang, Jian; Song, Shuang; Cong, Weijian; Jiao, Peifeng; Song, Hong; Ai, Danni; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Statistical shape models are capable of extracting shape prior information, and are usually utilized to assist the task of segmentation of medical images. However, such models require large training datasets in the case of multi-object structures, and it also is difficult to achieve satisfactory results for complex shapes. This study proposed a novel statistical model for cervical vertebra segmentation, called sparse intervertebral fence composition (SiFC), which can reconstruct the boundary between adjacent vertebrae by modeling intervertebral fences. The complex shape of the cervical spine is replaced by a simple intervertebral fence, which considerably reduces the difficulty of cervical segmentation. The final segmentation results are obtained by using a 3D active contour deformation model without shape constraint, which substantially enhances the recognition capability of the proposed method for objects with complex shapes. The proposed segmentation framework is tested on a dataset with CT images from 20 patients. A quantitative comparison against corresponding reference vertebral segmentation yields an overall mean absolute surface distance of 0.70 mm and a dice similarity index of 95.47% for cervical vertebral segmentation. The experimental results show that the SiFC method achieves competitive cervical vertebral segmentation performances, and completely eliminates inter-process overlap.

  20. The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype

    PubMed Central

    Nishiyama, Shoko; Lokugamage, Nandadeva

    2016-01-01

    ABSTRACT Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by “abortion storms” in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. IMPORTANCE Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature

  1. The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype.

    PubMed

    Nishiyama, Shoko; Lokugamage, Nandadeva; Ikegami, Tetsuro

    2016-01-27

    Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by "abortion storms" in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature sensitivity (ts) of MP-12

  2. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  3. Wavelet bases on the L-shaped domain

    NASA Astrophysics Data System (ADS)

    Jouini, Abdellatif; Lemarié-Rieusset, Pierre Gilles

    2013-07-01

    We present in this paper two elementary constructions of multiresolution analyses on the L-shaped domain D. In the first one, we shall describe a direct method to define an orthonormal multiresolution analysis. In the second one, we use the decomposition method for constructing a biorthogonal multiresolution analysis. These analyses are adapted for the study of the Sobolev spaces Hs(D)(s∈N).

  4. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  5. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  6. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    NASA Astrophysics Data System (ADS)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  7. Active shape models unleashed

    NASA Astrophysics Data System (ADS)

    Kirschner, Matthias; Wesarg, Stefan

    2011-03-01

    Active Shape Models (ASMs) are a popular family of segmentation algorithms which combine local appearance models for boundary detection with a statistical shape model (SSM). They are especially popular in medical imaging due to their ability for fast and accurate segmentation of anatomical structures even in large and noisy 3D images. A well-known limitation of ASMs is that the shape constraints are over-restrictive, because the segmentations are bounded by the Principal Component Analysis (PCA) subspace learned from the training data. To overcome this limitation, we propose a new energy minimization approach which combines an external image energy with an internal shape model energy. Our shape energy uses the Distance From Feature Space (DFFS) concept to allow deviations from the PCA subspace in a theoretically sound and computationally fast way. In contrast to previous approaches, our model does not rely on post-processing with constrained free-form deformation or additional complex local energy models. In addition to the energy minimization approach, we propose a new method for liver detection, a new method for initializing an SSM and an improved k-Nearest Neighbour (kNN)-classifier for boundary detection. Our ASM is evaluated with leave-one-out tests on a data set with 34 tomographic CT scans of the liver and is compared to an ASM with standard shape constraints. The quantitative results of our experiments show that we achieve higher segmentation accuracy with our energy minimization approach than with standard shape constraints.nym

  8. Polymer nanoimprinting using an anodized aluminum mold for structural coloration

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-06-01

    Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.

  9. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma.

    PubMed

    Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach

    2015-07-15

    Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Reconstructing liver shape and position from MR image slices using an active shape model

    NASA Astrophysics Data System (ADS)

    Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas

    2008-03-01

    We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.

  11. Precision forging technology for aluminum alloy

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  12. Dibenzopyrrolo[1,2-a][1,8]naphthyridines: Synthesis and Structural Modification of Fluorescent L-Shaped Heteroarenes.

    PubMed

    Tateno, Kotaro; Ogawa, Rie; Sakamoto, Ryota; Tsuchiya, Mizuho; Kutsumura, Noriki; Otani, Takashi; Ono, Kosuke; Kawai, Hidetoshi; Saito, Takao

    2018-01-19

    The L-shaped, π-extended pentacycle dibenzopyrrolo[1,2-a][1,8]naphthyridine and its derivatives were synthesized using two methods: fully intramolecular [2 + 2 + 2] cycloaddition and oxidative aromatization using substituted carbodiimide and modification of an electron-rich indole ring of an L-shaped skeleton via electrophilic reaction and cross-coupling. These L-shaped compounds emitted fluorescence in high quantum yield. The position of substituents affected the fluorescence color through two different mechanisms, π-conjugation and skeletal distortion, which caused the substituted L-shaped compounds to emit fluorescence in a variety of colors and to exhibit solvato-fluorochromism.

  13. Is visual image segmentation a bottom-up or an interactive process?

    PubMed

    Vecera, S P; Farah, M J

    1997-11-01

    Visual image segmentation is the process by which the visual system groups features that are part of a single shape. Is image segmentation a bottom-up or an interactive process? In Experiments 1 and 2, we presented subjects with two overlapping shapes and asked them to determine whether two probed locations were on the same shape or on different shapes. The availability of top-down support was manipulated by presenting either upright or rotated letters. Subjects were fastest to respond when the shapes corresponded to familiar shapes--the upright letters. In Experiment 3, we used a variant of this segmentation task to rule out the possibility that subjects performed same/different judgments after segmentation and recognition of both letters. Finally, in Experiment 4, we ruled out the possibility that the advantage for upright letters was merely due to faster recognition of upright letters relative to rotated letters. The results suggested that the previous effects were not due to faster recognition of upright letters; stimulus familiarity influenced segmentation per se. The results are discussed in terms of an interactive model of visual image segmentation.

  14. Automatic multi-organ segmentation using learning-based segmentation and level set optimization.

    PubMed

    Kohlberger, Timo; Sofka, Michal; Zhang, Jingdan; Birkbeck, Neil; Wetzl, Jens; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin

    2011-01-01

    We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspondences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10-100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17-2.89 mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40% increase in accuracy.

  15. Shape-specific perceptual learning in a figure-ground segregation task.

    PubMed

    Yi, Do-Joon; Olson, Ingrid R; Chun, Marvin M

    2006-03-01

    What does perceptual experience contribute to figure-ground segregation? To study this question, we trained observers to search for symmetric dot patterns embedded in random dot backgrounds. Training improved shape segmentation, but learning did not completely transfer either to untrained locations or to untrained shapes. Such partial specificity persisted for a month after training. Interestingly, training on shapes in empty backgrounds did not help segmentation of the trained shapes in noisy backgrounds. Our results suggest that perceptual training increases the involvement of early sensory neurons in the segmentation of trained shapes, and that successful segmentation requires perceptual skills beyond shape recognition alone.

  16. Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.

    PubMed

    Yokel, Robert A; Unrine, Jason M

    2017-01-01

    Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with <200 μg/L in plastic container-packaged calcium gluconate. A concern about plastic packaging is leaching of plasticizers, including phthalates, which have the potential to cause endocrine (male reproductive system) disruption and neurotoxicity. Aluminum was quantified in samples collected periodically for more than 2 years from 3 calcium gluconate sources used to prepare parenteral nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.

  17. Colloidal aluminum nanoparticles with tunable localized surface plasmon resonances for energy applications

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Smith, Kenneth; Arinze, Ebuka; Nyirjesy, Gabrielle; Bragg, Arthur; Thon, Susanna

    Localized surface plasmon resonances (LSPRs) of noble metal nanoparticles are of interest for energy applications due to their visible and near infrared wavelength sensitivity. However, application of these materials in optoelectronic devices is limited by their rarity and high cost. Earth-abundant, inexpensive and non-toxic aluminum is a promising alternative material with a plasmon resonance that can also be tuned via size-, shape- and surface-oxide-control. Here, we employ solution-processed methods to synthesize stable colloidal aluminum nanoparticles. We systematically investigate parameters in the synthesis that control size, shape and oxidation of the aluminum nanoparticles and tune their LSPRs over the ultraviolet and visible spectral regions. We optically characterize the nanoparticle solutions and evaluate their potential for future integration into photovoltaic, photocatalytic and photosensing systems.

  18. Segmental heterogeneity in Bcl-2, Bcl-xL and Bax expression in rat tubular epithelium after ischemia-reperfusion.

    PubMed

    Valdés, Francisco; Pásaro, Eduardo; Díaz, Inmaculada; Centeno, Alberto; López, Eduardo; García-Doval, Sandra; González-Roces, Severino; Alba, Alfonso; Laffon, Blanca

    2008-06-01

    Studies in rats with bilateral clamping of renal arteries showed transient Bcl-2, Bcl-xL and Bax expression in renal tubular epithelium following ischemia-reperfusion. However, current data on the preferential localization of specific mRNAs or proteins are limited because gene expression was not analysed at segmental level. This study analyses the mRNA expression of Bcl-2, Bcl-xL and Bax in four segments of proximal and distal tubules localized in the renal cortex and outer medulla in rat kidneys with bilateral renal clamping for 30 min and seven reperfusion times versus control animals without clamp. Proximal convoluted tubule (PCT), distal convoluted tubule (DCT), proximal straight tubule (PST) and medullary thick ascending limb (MTAL) were obtained by manual microdissection. RT-PCR was used to analyse mRNA expression at segmental level. Proximal convoluted tubule and MTAL showed early, persistent and balanced up-regulation of Bcl-2, Bcl-xL and Bax, while PST and DCT revealed only Bcl-2 and Bcl-xL, when only Bax was detected in PST. DCT expressed Bcl-xL initially, and persistent Bcl-2 later. These patterns suggest a heterogeneous apoptosis regulatory response in rat renal tubules after ischemia-reperfusion, independently of cortical or medullary location. This heterogeneity of the expression patterns of Bcl-2 genes could explain the different susceptibility to undergo apoptosis, the different threshold to ischemic damage and the different adaptive capacity to injury among these tubular segments.

  19. Effects of antiperspirant aluminum percent composition and mode of application on mock microcalcifications in mammography.

    PubMed

    Mesurolle, Benoît; Ceccarelli, Joan; Karp, Igor; Sun, Simon; El-Khoury, Mona

    2014-02-01

    Active ingredients in antiperspirants - namely, aluminum-based complexes - can produce radiopaque particles on mammography, mimicking microcalcifications. The present study was designed to investigate whether the appearance of antiperspirant induced radiopaque particles observed on mammograms is dependent on the percentage of aluminum-based complexes in antiperspirants and/or on their mode of application. A total of 43 antiperspirants with aluminum-based complex percentages ranging between 16% and 25% were tested. Each antiperspirant was applied to a single use plastic shield and then placed on an ultrasound gel pad, simulating breast tissue. Two experiments were performed, comparing antiperspirants based on (1) their percentage of aluminum-based complexes (20 antiperspirants) and (2) their mode of applications (solid, gel, and roll-on) (26 antiperspirants). Two experienced, blinded radiologists read images produced in consensus and assessed the appearance of radiopaque particles based on their density and shape. In experiment 1, there was no statistically significant association between the percent aluminum composition of invisible solid antiperspirants and the density or shape of the radiopaque particles (p-values>0.05). In experiment 2, there was a statistically significant association between the shape of the radiopaque particles and the mode of application of the antiperspirant (p-value=0.0015). Our study suggests that the mammographic appearance of the radiopaque antiperspirant particles is not related to their percent composition of aluminum complexes. However, their mode of application appears to influence the shape of radiopaque particles, solid antiperspirants mimicking microcalcifications the most and roll-on antiperspirants the least. Copyright © 2013. Published by Elsevier Ireland Ltd.

  20. Brazilian female crack users show elevated serum aluminum levels.

    PubMed

    Pechansky, Flavio; Kessler, Felix Henrique Paim; Diemen, Lisia von; Bumaguin, Daniela Benzano; Surratt, Hilary L; Inciardi, James A

    2007-03-01

    There is no information in the literature on the impact of crack smoking using crushed aluminum cans as makeshift pipes, a common form of crack use in Brazil. Since aluminum intake is associated with neurological damage, we measured serum aluminum levels in crack smokers. The objective of this study was to ascertain the levels of aluminum in crack users who smoke on makeshift aluminum pipes. 71 female crack smokers, their mean age being 28.0 (+/- 7.7), provided information about their drug use, and had blood samples tested for serum aluminum level. 56 (79%) subjects smoked crack from crushed can pipes, while 15 (21%) smoked from other containers. Fifty-two (73.2%) out of the 71 subjects presented a serum aluminum level of 2 microg/l and 13 (18.3%) had a serum aluminum level of 6 microg/l cut-off point, which is above the reference value. When compared to non-drug users matched by their mean age and gender, they had similar median values and interquartile ranges for serum aluminum level [3 (2-4.6) for crack smokers; 2.9 (1.6-4.1) for controls], but with different means and standard deviations (4.7 +/- 4.9 and 2.9 +/- 1.7, respectively). Crack smokers have high serum aluminum level, but we are unsure of its complete association with aluminum cans. Further studies are needed. If such association is proven true in future research, further issues will be raised in dealing with this important disorder, including proper planning and evaluation of public health policies in this area.

  1. Precursor detonation wave development in ANFO due to aluminum confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understandingmore » and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.« less

  2. Aluminum: New challenges in downstream activities

    NASA Astrophysics Data System (ADS)

    Becker, Miklos N.

    1999-11-01

    During its history, aluminum’s attractive features, such as high strength-to-weight ratio, good electrical mass conductivity, and unique corrosion behavior, have led to a spectacular expansion in its use. The role of aluminum in non-aluminum-based materials is also very important; its contribution to the improvement of magnesium and titanium alloys and to highly complex packaging materials are some of the noteworthy examples. Significant cost reductions on the basic metal production level, near-to-shape fabricating methods, and the well-functioning recycling system are also major contributors to aluminum success. Imminent challenges for the industry are the need for products with very close tolerances on a mass fabricating repetitive basis and just-in-time delivery to original-equipment manufacturers and small users through distributors. A significant part of the challenges remains in the applications area, particularly automotive and aerospace.

  3. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation

    PubMed Central

    Habas, Piotr A.; Kim, Kio; Corbett-Detig, James M.; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. James; Studholme, Colin

    2010-01-01

    Modeling and analysis of MR images of the developing human brain is a challenge due to rapid changes in brain morphology and morphometry. We present an approach to the construction of a spatiotemporal atlas of the fetal brain with temporal models of MR intensity, tissue probability and shape changes. This spatiotemporal model is created from a set of reconstructed MR images of fetal subjects with different gestational ages. Groupwise registration of manual segmentations and voxelwise nonlinear modeling allow us to capture the appearance, disappearance and spatial variation of brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific MR templates and tissue probability maps and use them to initialize automatic tissue delineation in new MR images. The choice of model parameters and the final performance are evaluated using clinical MR scans of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Experimental results indicate that quadratic temporal models can correctly capture growth-related changes in the fetal brain anatomy and provide improvement in accuracy of atlas-based tissue segmentation. PMID:20600970

  4. Correlating shaped charge performance with processing conditions and microstructure of an aluminum alloy 1100 liner enabled by a new method to arrest nascent jet formation

    NASA Astrophysics Data System (ADS)

    Scheid, James Eric

    Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a

  5. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch; Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern; Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manualmore » and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the

  6. [Effects of aluminum on neurobehavioral function and metabolism of monoamine neurotransmitter].

    PubMed

    Yang, H; Zheng, Y; Liang, Y

    1998-03-01

    To evaluate the effects of occupational exposure to aluminum on neurobahavioral function and metabolism of monoamine neurotransmitter. Thirty-three workers exposed to aluminum and 40 controls were studied. Air aluminum concentrations in workplace environment were detected with an atomic absorption spectrophotometer, homovanillic acid (HVA) and vanilylmandellic acid (VMA) in urine and aluminum in serum and urine were detected with high perfolmance liquid chromatography. Neurobehavioral function was tested with Neurobehavioral Core Test Battery recommended by WHO. Geometric time-weighted average of aluminum in workplace environment was 0.95 mg/m3, ranging from 0.31 to 4.12 mg/m3, and urine aluminum levels in workers exposed to aluminum averaged 12.25 micrograms/L, significantly higher than that in controls (5.78 micrograms/L). There was no significant difference in serum aluminum between the exposed and controls. Both urine VMA and HVA levels were higher in the workers exposed to aluminum, and urine VMA level in the exposed was significantly higher than that in controls. There was significant difference in neurobehavioral test, including Santa Ana, digit symbol and Benton tests between the exposed and control workers. It suggests that occupational exposure to low level of aluminum can affect the neurobehavioral function and metabolism of monoamine neurotransmitter.

  7. Segmentation gene expression patterns in Bactrocera dorsalis and related insects: regulation and shape of blastoderm and larval cuticle.

    PubMed

    Suksuwan, Worramin; Cai, Xiaoli; Ngernsiri, Lertluk; Baumgartner, Stefan

    2017-01-01

    The oriental fruit fly, Bactrocera dorsalis, is regarded as a severe pest of fruit production in Asia. Despite its economic importance, only limited information regarding the molecular and developmental biology of this insect is known to date. We provide a detailed analysis of B. dorsalis embryology, as well as the expression patterns of a number of segmentation genes known to act during patterning of Drosophila and compare these to the patterns of other insect families. An anterior shift of the expression of gap genes was detected when compared to Drosophila. This shift was largely restored during the step where the gap genes control expression of the pair-rule genes. We analyzed and compared the shapes of the embryos of insects of different families, B. dorsalis and the blow fly Lucilia sericata with that of the well-characterized Drosophila melanogaster. We found distinct shapes as well as differences in the ratios of the length of the anterior-posterior axis and the dorsal-ventral axis. These features were integrated into a profile of how the expression patterns of the gap gene Krüppel and the pair-rule gene even-skipped were observed along the A-P axis in three insects families. Since significant differences were observed, we discuss how Krüppel controls the even-skipped stripes. Furthermore, we discuss how the position and angles of the segmentation gene stripes differed from other insects. Finally, we analyzed the outcome of the expression patterns of the late acting segment polarity genes in relation to the anlagen of the naked-cuticle and denticle belt area of the B. dorsalis larva.

  8. Deformable segmentation via sparse representation and dictionary learning.

    PubMed

    Zhang, Shaoting; Zhan, Yiqiang; Metaxas, Dimitris N

    2012-10-01

    "Shape" and "appearance", the two pillars of a deformable model, complement each other in object segmentation. In many medical imaging applications, while the low-level appearance information is weak or mis-leading, shape priors play a more important role to guide a correct segmentation, thanks to the strong shape characteristics of biological structures. Recently a novel shape prior modeling method has been proposed based on sparse learning theory. Instead of learning a generative shape model, shape priors are incorporated on-the-fly through the sparse shape composition (SSC). SSC is robust to non-Gaussian errors and still preserves individual shape characteristics even when such characteristics is not statistically significant. Although it seems straightforward to incorporate SSC into a deformable segmentation framework as shape priors, the large-scale sparse optimization of SSC has low runtime efficiency, which cannot satisfy clinical requirements. In this paper, we design two strategies to decrease the computational complexity of SSC, making a robust, accurate and efficient deformable segmentation system. (1) When the shape repository contains a large number of instances, which is often the case in 2D problems, K-SVD is used to learn a more compact but still informative shape dictionary. (2) If the derived shape instance has a large number of vertices, which often appears in 3D problems, an affinity propagation method is used to partition the surface into small sub-regions, on which the sparse shape composition is performed locally. Both strategies dramatically decrease the scale of the sparse optimization problem and hence speed up the algorithm. Our method is applied on a diverse set of biomedical image analysis problems. Compared to the original SSC, these two newly-proposed modules not only significant reduce the computational complexity, but also improve the overall accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Heat and Mass Transfer in an L Shaped Porous Medium

    NASA Astrophysics Data System (ADS)

    Salman Ahmed, N. J.; Azeem; Yunus Khan, T. M.

    2017-08-01

    This article is an extension to the heat transfer in L-shaped porous medium by including the mass diffusion. The heat and mass transfer in the porous domain is represented by three coupled partial differential equations representing the fluid movement, energy transport and mass transport. The equations are converted into algebraic form of equations by the application of finite element method that can be conveniently solved by matrix method. An iterative approach is adopted to solve the coupled equations by setting suitable convergence criterion. The results are discussed in terms of heat transfer characteristics influenced by physical parameters such as buoyancy ratio, Lewis number, Rayleigh number etc. It is found that these physical parameters have significant effect on heat and mass transfer behavior of L-shaped porous medium.

  10. Relationship between aluminum stress and caffeine biosynthesis in suspension cells of Coffea arabica L.

    PubMed

    Pech-Kú, Roberto; Muñoz-Sánchez, J Armando; Monforte-González, Miriam; Vázquez-Flota, Felipe; Rodas-Junco, Beatriz A; González-Mendoza, Víctor M; Hernández-Sotomayor, S M Teresa

    2018-04-01

    Toxicity by aluminum is a growth-limiting factor in plants cultivated in acidic soils. This metal also promotes signal transduction pathways leading to the biosynthesis of defense compounds, including secondary metabolites. In this study, we observed that Coffea arabica L. cells that were kept in the dark did not produce detectable levels of caffeine. However, irradiation with light and supplementation of the culture medium with theobromine were the best conditions for cell maintenance to investigate the role of aluminum in caffeine biosynthesis. The addition of theobromine to the cells did not cause any changes to cell growth and was useful for the bioconversion of theobromine to caffeine. During a short-term AlCl 3 -treatment (500μM) of C. arabica cells kept under light irradiation, increases in the caffeine levels in samples that were recovered from both the cells and culture media were evident. This augmentation coincided with increases in the enzyme activity of caffeine synthase (CS) and the transcript level of the gene encoding this enzyme (CS). Together, these results suggest that actions by Al and theobromine on the same pathway lead to the induction of caffeine biosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Calculation of the X-Ray emission K and L 2,3 bands of metallic magnesium and aluminum with allowance for multielectron effects

    NASA Astrophysics Data System (ADS)

    Ovcharenko, R. E.; Tupitsyn, I. I.; Savinov, E. P.; Voloshina, E. N.; Dedkov, Yu. S.; Shulakov, A. S.

    2014-01-01

    A procedure is proposed to calculate the shape of the characteristic X-ray emission bands of metals with allowance for multielectron effects. The effects of the dynamic screening of a core vacancy by conduction electrons and the Auger effect in the valence band are taken into account. The dynamic screening of a core vacancy, which is known to be called the MND (Mahan-Nozeieres-De Dominics) effect, is taken into account by an ab initio band calculation of crystals using the PAW (projected augmented waves) method. The Auger effect is taken into account by a semiempirical method using the approximation of a quadratic dependence of the level width in the valence band on the difference between the level energy and the Fermi energy. The proposed calculation procedure is used to describe the X-ray emission K and L 2,3 bands of metallic magnesium and aluminum crystals. The calculated spectra agree well with the experimental bands both near the Fermi level and in the low-energy part of the spectra in all cases.

  12. Size- and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOX and SO₂ removal with hydrogen peroxide.

    PubMed

    Ding, Jie; Zhong, Qin; Zhang, Shule; Cai, Wei

    2015-01-01

    A novel, simple, reproducible and low-cost strategy is introduced for the size- and shape-controlled synthesis of iron-aluminum mixed oxide nanoparticles (NIAO(x/y)). The as-synthesized NIAO(x/y) catalyze decomposition of H2O2 yielding highly reactive hydroxyl radicals (OH) for NOX and SO2 removal. 100% SO2 removal is achieved. NIAO(x/y) with Fe/Al molar ratio of 7/3 (NIAO(7/3)) shows the highest NOX removal of nearly 80% at >170°C, whereas much lower NOX removal (<63%) is obtained for NIAO(3/7). The melting of aluminum oxides in NIAO(7/3) promotes the formation of lamellar products, thus improving the specific surface areas and mesoporous distribution, benefiting the production of OH radicals. Furthermore, the NIAO(7/3) leads to the minor increase of points of zero charges (PZC), apparent enhancement of FeOH content and high oxidizing ability of Fe(III), further improving the production of OH radicals. However, the NIAO(3/7) results in the formation of aluminum surface-enriched spherical particles, thus decreasing the surface atomic ratio of iron oxides, decreasing OH radical production. More importantly, the generation of FeOAl causes the decline of active sites. Finally, the catalytic decomposition of H2O2 on NIAO(x/y) is proposed. And the well catalytic stability of NIAO(7/3) is obtained for evaluation of 30 h. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Complete System for Automatic Extraction of Left Ventricular Myocardium From CT Images Using Shape Segmentation and Contour Evolution

    PubMed Central

    Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen

    2014-01-01

    The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531

  14. An acetyl-L-carnitine switch on mitochondrial dysfunction and rescue in the metabolomics study on aluminum oxide nanoparticles.

    PubMed

    Li, Xiaobo; Zhang, Chengcheng; Zhang, Xin; Wang, Shizhi; Meng, Qingtao; Wu, Shenshen; Yang, Hongbao; Xia, Yankai; Chen, Rui

    2016-01-16

    Due to the wide application of engineered aluminum oxide nanoparticles and increased aluminum containing particulate matter suspending in air, exposure of human to nano-scale aluminum oxide nanoparticles (Al2O3 NPs) is becoming inevitable. In the present study, RNA microarray coupled with metabolomics analysis were used to uncover mechanisms underlying cellular responses to Al2O3 NPs and imply the potential rescue. We found that Al2O3 NPs significantly triggered down-regulation of mitochondria-related genes located in complex I, IV and V, which were involved in oxidative phosphorylation and neural degeneration pathways, in human bronchial epithelial (HBE) cells. Subsequent cell- and animal- based assays confirmed that Al2O3 NPs caused mitochondria-dependent apoptosis and oxidative stress either in vitro or in vivo, which were consistent with the trends of gene regulation. To rescue the Al2O3 NPs induced mitochondria dysfunction, disruption of small molecular metabolites of HBE were profiled using metabolomics analysis, which facilitates identification of potential antagonizer or supplement against nanoparticle-involved damages. Supplementation of an antioxidant, acetyl-L-carnitine, completely or partially restored the Al2O3 NPs modulated gene expression levels in mitochondrial complex I, IV and V. It further reduced apoptosis and oxidative damages in both Al2O3 NPs treated HBE cells and animal lung tissues. Thus, our results demonstrate the potential mechanism of respiratory system damages induced by Al2O3 NPs. Meanwhile, based on the metabolomics profiling, application of acetyl-L-carnitine is suggested to ameliorate mitochondria dysfunction associated with Al2O3 NPs.

  15. Training models of anatomic shape variability

    PubMed Central

    Merck, Derek; Tracton, Gregg; Saboo, Rohit; Levy, Joshua; Chaney, Edward; Pizer, Stephen; Joshi, Sarang

    2008-01-01

    Learning probability distributions of the shape of anatomic structures requires fitting shape representations to human expert segmentations from training sets of medical images. The quality of statistical segmentation and registration methods is directly related to the quality of this initial shape fitting, yet the subject is largely overlooked or described in an ad hoc way. This article presents a set of general principles to guide such training. Our novel method is to jointly estimate both the best geometric model for any given image and the shape distribution for the entire population of training images by iteratively relaxing purely geometric constraints in favor of the converging shape probabilities as the fitted objects converge to their target segmentations. The geometric constraints are carefully crafted both to obtain legal, nonself-interpenetrating shapes and to impose the model-to-model correspondences required for useful statistical analysis. The paper closes with example applications of the method to synthetic and real patient CT image sets, including same patient male pelvis and head and neck images, and cross patient kidney and brain images. Finally, we outline how this shape training serves as the basis for our approach to IGRT∕ART. PMID:18777919

  16. SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation.

    PubMed

    Xue, Yuan; Xu, Tao; Zhang, Han; Long, L Rodney; Huang, Xiaolei

    2018-05-03

    Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN's discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L 1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.

  17. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries (Hong Kong) Limited, (collectively, ``Guang Ya Group'') and Zhaoqing New Zhongya Aluminum Co., Ltd., Zhongya Shaped Aluminium (HK) Holding Limited, and Karlton Aluminum...

  18. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  19. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  20. Pore Diameter Dependence and Segmental Dynamics of Poly-Z-L-lysine and Poly-L-alanine Confined in 1D Nanocylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice

    Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.

  1. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Jiantao; Jin, Chenwang, E-mail: jcw76@163.com; Yu, Nan

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concavemore » loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.« less

  2. Re-entry vehicle shape for enhanced performance

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Garcia, Joseph A. (Inventor); Prabhu, Dinesh K. (Inventor)

    2008-01-01

    A convex shell structure for enhanced aerodynamic performance and/or reduced heat transfer requirements for a space vehicle that re-enters an atmosphere. The structure has a fore-body, an aft-body, a longitudinal axis and a transverse cross sectional shape, projected on a plane containing the longitudinal axis, that includes: first and second linear segments, smoothly joined at a first end of each the first and second linear segments to an end of a third linear segment by respective first and second curvilinear segments; and a fourth linear segment, joined to a second end of each of the first and second segments by curvilinear segments, including first and second ellipses having unequal ellipse parameters. The cross sectional shape is non-symmetric about the longitudinal axis. The fourth linear segment can be replaced by a sum of one or more polynomials, trigonometric functions or other functions satisfying certain constraints.

  3. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  4. Orientation effects on the measurement and analysis of critical CTOA in an aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Sutton, M. A.; Dawicke, D. S.; Newman, J. C., Jr.

    1994-01-01

    Fracture tests were conducted on 76.2mm wide, 2.3mm thick middle crack tension (M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested on the T-L orientation and comparisons were made to similar tests conducted in the L-T orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and crack front shape were made as a function of crack extension. A two-dimensional, elastic-plastic finite element analysis was used to simulate the fracture behavior for both orientations. The results indicate that the T-L orientation had a 10 percent lower stress at fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical CTOA in the T-L tests reached a constant value of 4.7 degrees after 2-3mm of crack extension and the L-T tests reached a value of 6 degrees. The fracture surfaces of the T-L specimens were observed to remain flat, while those of the L-T specimens transitioned to a 45 degree slant fracture after about 2-3mm of crack extension. The tunneling behavior of the two orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack front shape while, the L-T specimens were observed to have only a small amount of tunneling once the crack began to grow on the 45 degree slant. The two-dimensional, elastic-plastic finite element analysis was able to simulate the fracture behavior for both the T-L and L-T orientations.

  5. Segmental Pedicle Screw Instrumentation and Fusion Only to L5 in the Surgical Treatment of Flaccid Neuromuscular Scoliosis.

    PubMed

    Takaso, Masashi; Nakazawa, Toshiyuki; Imura, Takayuki; Fukuda, Michinari; Takahashi, Kazuhisa; Ohtori, Seiji

    2018-03-01

    A retrospective cohort study was performed. The purpose of this study was to determine the efficacy and safety of stopping segmental pedicle screw instrumentation constructs at L5 in the treatment of neuromuscular scoliosis. Duchenne muscular dystrophy and spinal muscular atrophy are flaccid neuromuscular disorders in which gradual deterioration is the hallmark and have a lot of characteristics in common despite differences in etiology. Instrumentation and fusion to the sacrum/pelvis has been a mainstay in the surgical treatment of flaccid neuromuscular scoliosis and recommended to correct pelvic obliquity. However, the caudal extent of instrumentation and fusion in the surgical treatment of flaccid neuromuscular scoliosis has remained a matter of considerable debate and there have been few studies on the use of segmental pedicle screw instrumentation for flaccid neuromuscular scoliosis. From 2005 to 2007, a total of 27 consecutive patients with neuromuscular disorders (20 Duchenne muscular dystrophy and 7 spinal muscular atrophy), aged 11 to 17 years, underwent segmental pedicle screw instrumentation and fusion only to L5. Assessment was performed clinically and with radiologic measurements. Minimum 2-year follow-up was required for inclusion in this study. Twenty patients were enrolled in this study. No patient was lost to follow-up. All patients had L5 tilt of less than 15° and a coronal curve with apex L2 or higher preoperatively. Preoperative coronal curve averaged 70° (range: 51°-88°), with a postoperative mean of 15° (range: 5°-25°) and 17° (range: 6°-27°) at the last follow-up. The pelvic obliquity improved from 15° (range: 9°-25°) preoperatively to 5° (range: 3°-8°) postoperatively and 6° (range: 3°-8°) at the last follow-up. The L5 tilt improved from 9° (range: 2°-14°) preoperatively to 2° (range: 0°-4°) postoperatively and 2° (range: 0°-5°) at the last follow-up. Physiologic sagittal plane alignment was recreated after surgery

  6. Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM).

    PubMed

    Wang, Xuehu; Zheng, Yongchang; Gan, Lan; Wang, Xuan; Sang, Xinting; Kong, Xiangfeng; Zhao, Jie

    2017-01-01

    This study proposes a new liver segmentation method based on a sparse a priori statistical shape model (SP-SSM). First, mark points are selected in the liver a priori model and the original image. Then, the a priori shape and its mark points are used to obtain a dictionary for the liver boundary information. Second, the sparse coefficient is calculated based on the correspondence between mark points in the original image and those in the a priori model, and then the sparse statistical model is established by combining the sparse coefficients and the dictionary. Finally, the intensity energy and boundary energy models are built based on the intensity information and the specific boundary information of the original image. Then, the sparse matching constraint model is established based on the sparse coding theory. These models jointly drive the iterative deformation of the sparse statistical model to approximate and accurately extract the liver boundaries. This method can solve the problems of deformation model initialization and a priori method accuracy using the sparse dictionary. The SP-SSM can achieve a mean overlap error of 4.8% and a mean volume difference of 1.8%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 0.8 mm and 1.4 mm, respectively.

  7. Aluminum exposure for one hour decreases vascular reactivity in conductance and resistance arteries in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrícia Medeiros; Escobar, Alyne Goulart

    Aims: Aluminum (Al) is an important environmental contaminant; however, there are not enough evidences of Al-induced cardiovascular dysfunction. We investigated the effects of acute exposure to aluminum chloride (AlCl{sub 3}) on blood pressure, vascular reactivity and oxidative stress. Methods and results: Male Wistar rats were divided into two groups: Untreated: vehicle (ultrapure water, ip) and AlCl{sub 3}: single dose of AlCl{sub 3} (100 mg/kg,ip). Concentration-response curves to phenylephrine in the absence and presence of endothelium, the nitric oxide synthase inhibitor L-NAME, the potassium channel blocker tetraethylammonium, and the NADPH oxidase inhibitor apocynin were performed in segments from aortic and mesentericmore » resistance arteries. NO released was assessed in aorta and reactive oxygen species (ROS), malondialdehyde, non-protein thiol levels, antioxidant capacity and enzymatic antioxidant activities were investigated in plasma, aorta and/or mesenteric arteries. After one hour of AlCl{sub 3} exposure serum Al levels attained 147.7 ± 25.0 μg/L. Al treatment: 1) did not affect blood pressure, heart rate and vasodilator responses induced by acetylcholine or sodium nitroprusside; 2) decreased phenylephrine-induced vasoconstrictor responses; 3) increased endothelial modulation of contractile responses, NO release and vascular ROS production from NADPH oxidase; 4) increased plasmatic, aortic and mesenteric malondialdehyde and ROS production, and 5) decreased antioxidant capacity and affected the antioxidant biomarkers non-protein thiol levels, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymatic activities. Conclusion: AlCl{sub 3}-acute exposure reduces vascular reactivity. This effect is associated with increased NO production, probably acting on K{sup +} channels, which seems to occur as a compensatory mechanism against Al-induced oxidative stress. Our results suggest that Al exerts toxic effects to the

  8. Active Segmentation.

    PubMed

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.

  9. An Approach with Hybrid Segmental Mechanics.

    PubMed

    Mishra, Harsh Ashok; Maurya, Raj Kumar

    2016-06-01

    Present case report provides an insight into the hybrid segmental mechanics with treatment of 13-year-old male, considering the side effects of sole continuous arch wire sliding mechanics. Patient was diagnosed as a case of skeletal class I jaw relationship, low mandibular plane angle, class II molar relation on right and class I molar relation on left side, anterior cross bite, crowding of 12mm in upper, 5mm in lower arch. He also had proclined upper and lower anteriors by 2mm, convex profile and incompetent lips. Total treatment duration was 20 months, during which segmental canine retraction was performed with TMA (Titanium, Molybdenum, Aluminum) 'T' loop retraction spring followed by consolidation of spaces with continuous arch mechanics. Most of the treatment objectives were met with good intraoral and facial results within reasonable framework of time. This approach used traditional twin brackets, which offered the versatility to use continuous arch-wire mechanics, segmental mechanics and hybrid sectional mechanics.

  10. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  11. Phase Diagram of the Al-Ca-Fe-Si System and Its Application for the Design of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.

    2018-05-01

    The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.

  12. Fabrication of micro-patterned aluminum surfaces for low ice adhesion strength

    NASA Astrophysics Data System (ADS)

    Jeon, Jaehyeon; Jang, Hanmin; Chang, Jinho; Lee, Kwan-Soo; Kim, Dong Rip

    2018-05-01

    We report a fabrication method to obtain a low-ice-adhesion aluminum surface by surface texturing using solution etching and subsequent thin-film coating. Specifically, the textured surface has microstructures of a low aspect ratio, that is, with a much smaller height than width. Such microstructures can effectively reduce ice-adhesion strengths by sliding the ice during detachment. Because our method is based on solution etching, it can be applied to curved surfaces with complex shapes for uniformly constructing the morphology of a low-ice-adhesion aluminum surface. Finally, the low-ice-adhesion aluminum surface reduces the ice-adhesion strengths by up to 95%.

  13. Preparation of α-alumina nanoparticles with various shapes via hydrothermal phase transformation under supercritical water conditions

    NASA Astrophysics Data System (ADS)

    Hakuta, Y.; Nagai, N.; Suzuki, Y.-H.; Kodaira, T.; Bando, K. K.; Takashima, H.; Mizukami, F.

    2013-12-01

    Alumina (Al2O3) fine particles are widely used as industrial materials including fillers for metal or plastics, paints, polisher, cosmetics and electric substrates, due to its high hardness, chemical stability, and high thermal conductivity. The performance of those industrial products is closely related to the particle size or shape of the alumina particles used, and thus a new synthetic method to control size, shape, and crystal structure of the aluminum oxide is desired for the improvement of the performance. Hydrothermal phase transformation using various aluminum compounds such as oxide, hydroxide, and salt as a staring material, is known as one of the synthetic methods for producing alumina fine particles; however, the influence about the size and shape of the starting aluminum compounds has been little mentioned, although they strongly affect the size and shape of the final products. In this study, we investigated the influence of the shape, size and crystal structure of the starting aluminum compounds on those of the products, and newly succeeded in the production of rod-like α-Al2O3 nanoparticles from fibrous boehmite nanoparticles using hydrothermal phase transformation under supercritical water conditions.

  14. Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.

    PubMed

    Pitiot, Alain; Toga, Arthur W; Thompson, Paul M

    2002-08-01

    This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of

  15. Occupational exposure to aluminum and its biomonitoring in perspective.

    PubMed

    Riihimäki, Vesa; Aitio, Antero

    2012-11-01

    Exposure to aluminum at work is widespread, and people are exposed to several species of aluminum, which differ markedly as to the kinetics and toxicity. Especially welding of aluminum is widely applied and continuously expanding. Inhalation of fine particles of sparsely soluble aluminum results in the retention of deposited particles in the lungs. From the lungs, aluminum is released to the blood and distributed to bones and the brain, and excreted to urine. Soluble aluminum compounds are not accumulated in the lungs. Neurotoxicity is the critical effect of exposure to sparsely soluble aluminum compounds. Studies on workers exposed to aluminum welding fumes have revealed disturbances of cognitive processes, memory and concentration, and changes in mood and EEG. Early pulmonary effects have been observed among aluminum powder-production workers using high-resolution computed tomography. The primary objective of aluminum biomonitoring (BM) is to help prevent the formation of aluminum burden in the lungs and thereby to prevent harmful accumulation of aluminum in target organs. BM of aluminum can be effectively used for this purpose in the production/use of aluminum powders, aluminum welding, as well as plasma cutting, grinding, polishing and thermal spraying of aluminum. BM of aluminum may also be similarly useful in the smelting of aluminum and probably in the production of corundum. BM can help identify exposed individuals and roughly quantitate transient exposure but cannot predict health effects in the production/use of soluble aluminum salts. For urinary aluminum (U-Al) we propose an action limit of 3 µmol/L, corrected to a relative density of 1.021, in a sample collected preshift after two days without occupational exposure, and without use of aluminum-containing drugs. This value corresponds roughly to 2.3 µmol/g creatinine. Compliance with this limit is expected to protect the worker against the critical effect of aluminum in exposure to sparsely soluble

  16. Experiment and ANSYS simulation analysis for metal aluminum solid and fluid conversion

    NASA Astrophysics Data System (ADS)

    Wang, Y.-Y.; Guo, P.; Wu, Y.; Zhang, Z.-L.; Jiang, S.-M.

    2017-11-01

    In this paper, study on metal aluminum solid and fluid conversion was carried out by using crucible resistance furnace, and observing the phenomenon of metal aluminum solid and fluid conversion. In the experiment, the same shape aluminum block was kept under the same heating rate and heated by the resistance furnace. The experimental results show that the melting point of metal aluminum is between 650°C and 660°C, and after the melting point, the metal aluminum began to melt when it maintained for a long period of time, however, when the temperature is higher than the melting point, the aluminum will melt very quickly. In addition, in ANSYS simulation, the solid aluminum melted completely at 670°C in 5430 seconds, much longer than the actual experiment, it due to the heating rate was faster, not in an ideal experimental environment and there is heat exchange with the outside world and convection, at the same time, the aluminum block may contain impurities, so the actual melting time could be shorter than the simulation. In this paper, it was explored for the liquid and solid conversion in depth, and had a certain actual value.

  17. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.

    PubMed

    Wang, Jinke; Cheng, Yuanzhi; Guo, Changyong; Wang, Yadong; Tamura, Shinichi

    2016-05-01

    Propose a fully automatic 3D segmentation framework to segment liver on challenging cases that contain the low contrast of adjacent organs and the presence of pathologies from abdominal CT images. First, all of the atlases are weighted in the selected training datasets by calculating the similarities between the atlases and the test image to dynamically generate a subject-specific probabilistic atlas for the test image. The most likely liver region of the test image is further determined based on the generated atlas. A rough segmentation is obtained by a maximum a posteriori classification of probability map, and the final liver segmentation is produced by a shape-intensity prior level set in the most likely liver region. Our method is evaluated and demonstrated on 25 test CT datasets from our partner site, and its results are compared with two state-of-the-art liver segmentation methods. Moreover, our performance results on 10 MICCAI test datasets are submitted to the organizers for comparison with the other automatic algorithms. Using the 25 test CT datasets, average symmetric surface distance is [Formula: see text] mm (range 0.62-2.12 mm), root mean square symmetric surface distance error is [Formula: see text] mm (range 0.97-3.01 mm), and maximum symmetric surface distance error is [Formula: see text] mm (range 12.73-26.67 mm) by our method. Our method on 10 MICCAI test data sets ranks 10th in all the 47 automatic algorithms on the site as of July 2015. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our method is a promising tool to improve the efficiency of both techniques. The applicability of the proposed method to some challenging clinical problems and the segmentation of the liver are demonstrated with good results on both quantitative and qualitative experimentations. This study suggests that the proposed framework can be good enough to replace the time-consuming and tedious slice-by-slice manual

  18. Delamination Behavior of L-Shaped Laminated Composites

    NASA Astrophysics Data System (ADS)

    Geleta, Tsinuel N.; Woo, Kyeongsik; Lee, Bongho

    2018-05-01

    We studied the delamination behavior of L-shaped laminated composites numerically and experimentally. In finite-element modeling, cohesive zone modeling was used to simulate the delamination of plies. Cohesive elements were inserted between bulk elements at each interlayer to represent the occurrence of multiple delaminations. The laminated composite models were subjected to several types of loading inducing opening and shearing types of delamination. Numerical results were compared to those in the literature and of experiments conducted in this study. The results were carefully examined to investigate diverse delamination initiation and propagation behaviors. The effect of varying presence and location of pre-crack was also studied.

  19. Prostate segmentation in MR images using discriminant boundary features.

    PubMed

    Yang, Meijuan; Li, Xuelong; Turkbey, Baris; Choyke, Peter L; Yan, Pingkun

    2013-02-01

    Segmentation of the prostate in magnetic resonance image has become more in need for its assistance to diagnosis and surgical planning of prostate carcinoma. Due to the natural variability of anatomical structures, statistical shape model has been widely applied in medical image segmentation. Robust and distinctive local features are critical for statistical shape model to achieve accurate segmentation results. The scale invariant feature transformation (SIFT) has been employed to capture the information of the local patch surrounding the boundary. However, when SIFT feature being used for segmentation, the scale and variance are not specified with the location of the point of interest. To deal with it, the discriminant analysis in machine learning is introduced to measure the distinctiveness of the learned SIFT features for each landmark directly and to make the scale and variance adaptive to the locations. As the gray values and gradients vary significantly over the boundary of the prostate, separate appearance descriptors are built for each landmark and then optimized. After that, a two stage coarse-to-fine segmentation approach is carried out by incorporating the local shape variations. Finally, the experiments on prostate segmentation from MR image are conducted to verify the efficiency of the proposed algorithms.

  20. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    NASA Astrophysics Data System (ADS)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  1. The L0 Regularized Mumford-Shah Model for Bias Correction and Segmentation of Medical Images.

    PubMed

    Duan, Yuping; Chang, Huibin; Huang, Weimin; Zhou, Jiayin; Lu, Zhongkang; Wu, Chunlin

    2015-11-01

    We propose a new variant of the Mumford-Shah model for simultaneous bias correction and segmentation of images with intensity inhomogeneity. First, based on the model of images with intensity inhomogeneity, we introduce an L0 gradient regularizer to model the true intensity and a smooth regularizer to model the bias field. In addition, we derive a new data fidelity using the local intensity properties to allow the bias field to be influenced by its neighborhood. Second, we use a two-stage segmentation method, where the fast alternating direction method is implemented in the first stage for the recovery of true intensity and bias field and a simple thresholding is used in the second stage for segmentation. Different from most of the existing methods for simultaneous bias correction and segmentation, we estimate the bias field and true intensity without fixing either the number of the regions or their values in advance. Our method has been validated on medical images of various modalities with intensity inhomogeneity. Compared with the state-of-art approaches and the well-known brain software tools, our model is fast, accurate, and robust with initializations.

  2. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension.

    PubMed

    Bennett, Charles R; DiAngelo, Denis J; Kelly, Brian P

    2015-01-01

    Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension.

  3. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension

    PubMed Central

    Bennett, Charles R.; DiAngelo, Denis J.

    2015-01-01

    Background Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Methods Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Results Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. Conclusions The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension. PMID:26273551

  4. Automatic Delineation of the Myocardial Wall from CT Images via Shape Segmentation and Variational Region Growing

    PubMed Central

    Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen

    2014-01-01

    Prognosis and diagnosis of cardiac diseases frequently require quantitative evaluation of the ventricle volume, mass, and ejection fraction. The delineation of the myocardial wall is involved in all of these evaluations, which is a challenging task due to large variations in myocardial shapes and image quality. In this work, we present an automatic method for extracting the myocardial wall of the left and right ventricles from cardiac CT images. In the method, the left and right ventricles are located sequentially, in which each ventricle is detected by first identifying the endocardium and then segmenting the epicardium. To this end, the endocardium is localized by utilizing its geometric features obtained on-line from a CT image. After that, a variational region-growing model is employed to extract the epicardium of the ventricles. In particular, the location of the endocardium of the left ventricle is determined via using an active contour model on the blood-pool surface. To localize the right ventricle, the active contour model is applied on a heart surface extracted based on the left ventricle segmentation result. The robustness and accuracy of the proposed approach is demonstrated by experimental results from 33 human and 12 pig CT images. PMID:23744658

  5. Optical Design of Segmented Hexagon Array Solar Mirror

    NASA Technical Reports Server (NTRS)

    Huegele, Vince

    2000-01-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.

  6. Gland segmentation in prostate histopathological images

    PubMed Central

    Singh, Malay; Kalaw, Emarene Mationg; Giron, Danilo Medina; Chong, Kian-Tai; Tan, Chew Lim; Lee, Hwee Kuan

    2017-01-01

    Abstract. Glandular structural features are important for the tumor pathologist in the assessment of cancer malignancy of prostate tissue slides. The varying shapes and sizes of glands combined with the tedious manual observation task can result in inaccurate assessment. There are also discrepancies and low-level agreement among pathologists, especially in cases of Gleason pattern 3 and pattern 4 prostate adenocarcinoma. An automated gland segmentation system can highlight various glandular shapes and structures for further analysis by the pathologist. These objective highlighted patterns can help reduce the assessment variability. We propose an automated gland segmentation system. Forty-three hematoxylin and eosin-stained images were acquired from prostate cancer tissue slides and were manually annotated for gland, lumen, periacinar retraction clefting, and stroma regions. Our automated gland segmentation system was trained using these manual annotations. It identifies these regions using a combination of pixel and object-level classifiers by incorporating local and spatial information for consolidating pixel-level classification results into object-level segmentation. Experimental results show that our method outperforms various texture and gland structure-based gland segmentation algorithms in the literature. Our method has good performance and can be a promising tool to help decrease interobserver variability among pathologists. PMID:28653016

  7. Segmentation of white rat sperm image

    NASA Astrophysics Data System (ADS)

    Bai, Weiguo; Liu, Jianguo; Chen, Guoyuan

    2011-11-01

    The segmentation of sperm image exerts a profound influence in the analysis of sperm morphology, which plays a significant role in the research of animals' infertility and reproduction. To overcome the microscope image's properties of low contrast and highly polluted noise, and to get better segmentation results of sperm image, this paper presents a multi-scale gradient operator combined with a multi-structuring element for the micro-spermatozoa image of white rat, as the multi-scale gradient operator can smooth the noise of an image, while the multi-structuring element can retain more shape details of the sperms. Then, we use the Otsu method to segment the modified gradient image whose gray scale processed is strong in sperms and weak in the background, converting it into a binary sperm image. As the obtained binary image owns impurities that are not similar with sperms in the shape, we choose a form factor to filter those objects whose form factor value is larger than the select critical value, and retain those objects whose not. And then, we can get the final binary image of the segmented sperms. The experiment shows this method's great advantage in the segmentation of the micro-spermatozoa image.

  8. Effects of organic solutes on chemical reactions of aluminum

    USGS Publications Warehouse

    Lind, Carol J.; Hem, John David

    1975-01-01

    Concentrations of organic matter in the general range of 1-10 milligrams per litre organic carbon are common in natural water, and many naturally occurrin7 organic compounds form aluminum complexes. The aluminum concentrations in near-neutral pH solutions may be 10-100 times higher than the values predicted from solubility data if formation of such organic complexes is ignored. The processes of polymerization of aluminum hydroxide and precipitation of gibbsite are inhibited by the presence of the organic flavone compound quercetin in concentrations as low as 10 x -5.3 mole per litre. Quercetin forms a complex, with a probable molar ratio of 1:2 aluminum to quercetin, that has a formation constant (f12) of about 10 12. A complex with a higher aluminum-quercetin ratio also was observed, but this material tends to evolve into a compound of low solubility that removes aluminum from solution. In the presence of both dissolved aluminum and aqueous silica, low concentrations of quercetin improved the yield of crystallized kaolinite and halloysite. Small amounts of well-shaped kaolinite and halloysite crystals were identified by electron microscopy in solutions with pH's in the range 6.5-8.5 after 155 days aging in one experimer t and 481 days aging in a repeated experiment. The bulk of the precipitated material was amorphous to X-rays, and crystalline material was too small a proportion of the total to give identifiable X-ray diffraction peaks. The precipitates had aluminum-silicon ratios near 1, and their solubility corresponded to that found by Hem, Roberson, Lind, and Polzer (1973) for similar aluminosilicate precipitated in the absence of organic solutes. The improved yield of crystalline material obtained in the presence of quercetin probably is the result of the influence of the organic compound on the aluminum hydroxide polymerization process. Natural water containing color imparted by organic material tends to be higher in aluminum than would be predicted by p

  9. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water.

    PubMed

    Freitas, José Henrique Edmilson Souza; de Santana, Keissy Vanderley; do Nascimento, Ana Cláudia Claudina; de Paiva, Sérgio Carvalho; de Moura, Maiara Celine; Coelho, Luana Cassandra Breitenbach Barroso; de Oliveira, Maria Betânia Melo; Paiva, Patrícia Maria Guedes; do Nascimento, Aline Elesbão; Napoleão, Thiago Henrique

    2016-11-01

    Aluminum salts are used as coagulants in water treatment; however, the exposure to residual aluminum has been associated with human brain lesions. The water-soluble Moringa oleifera lectin (WSMoL), which is extracted with distilled water and isolated by chitin chromatography, has coagulant activity and is able to reduce the concentration of metal ions in aqueous solutions. This study evaluated the potential of using aluminum sulfate and WSMoL to reduce the turbidity and toxicity of water from the Cavouco stream located in Recife, Pernambuco, Brazil. The water sample used (called P1) was collected from the stream source, which was found to be strongly polluted based on physicochemical and water quality analyses, as well as ecotoxicity assays with Artemia salina and seeds of Eruca sativa and Lactuca sativa. The assays combining WSMoL and aluminum sulfate were more efficient than those that used these agents separately. Furthermore, the greatest reduction in turbidity (96.8%) was obtained with the treatment using aluminum sulfate followed by WSMoL, compared to when they were applied simultaneously (91.3%). In addition, aluminum sulfate followed by WSMoL treatment resulted in residual aluminum concentration (0.3 mg/L) that was much lower than that recorded after the treatment using only the salt (35.5 mg/L). The ecotoxicity of P1 was also strongly reduced after the treatments. In summary, the combined use of aluminum sulfate and WSMoL was efficient in promoting a strong reduction of turbidity and ecotoxicity of a polluted water sample, without resulting in a high residual aluminum concentration at the conclusion of the treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.

    PubMed

    Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga

    2013-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.

  11. Preload Monitoring of Bolted L-Shaped Lap Joints Using Virtual Time Reversal Method.

    PubMed

    Du, Fei; Xu, Chao; Wu, Guannan; Zhang, Jie

    2018-06-13

    L-shaped bolt lap joints are commonly used in aerospace and civil structures. However, bolt joints are frequently subjected to loosening, and this has a significant effect on the safety and reliability of these structures. Therefore, bolt preload monitoring is very important, especially at the early stage of loosening. In this paper, a virtual time reversal guided wave method is presented to monitor preload of bolted L-shaped lap joints accurately and simply. In this method, a referenced reemitting signal (RRS) is extracted from the bolted structure in fully tightened condition. Then the RRS is utilized as the excitation signal for the bolted structure in loosening states, and the normalized peak amplitude of refocused wave packet is used as the tightness index (TI A ). The proposed method is experimentally validated by L-shaped bolt joints with single and multiple bolts. Moreover, the selections of guided wave frequency and tightness index are also discussed. The results demonstrate that the relationship between TI A and bolt preload is linear. The detection sensitivity is improved significantly compared with time reversal (TR) method, particularly when bolt loosening is at its embryo stage. The results also show that TR method is an effective method for detection of the number of loosening bolts.

  12. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    NASA Astrophysics Data System (ADS)

    Lin, Chao-Chih; Chang, Ya-Chi; Yeh, Hund-Der

    2018-04-01

    Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).

  13. Single-Photon Routing for a L-Shaped Channel

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Hou, Jiao-Jiao; Wu, Chun

    2018-02-01

    We have investigated the transport properties of a single photon scattered by a two-level atom embedded in a L-shaped waveguide, which is made of two one-dimensional (1D) semi-infinite coupled-resonator waveguides (CRWs). Single photons can be directed from one CRW to the other due to spontaneous emission of the atom. The result shows that the spontaneous emission of the TLS still routes single photon from one CRW to the other; the boundary existing makes the probability of finding single photon in a CRW could reach one. Our the scheme is helpful to construct a ring quantum networks.

  14. Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric

    2009-01-01

    The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.

  15. A novel pipeline for adrenal tumour segmentation.

    PubMed

    Koyuncu, Hasan; Ceylan, Rahime; Erdogan, Hasan; Sivri, Mesut

    2018-06-01

    Adrenal tumours occur on adrenal glands surrounded by organs and osteoid. These tumours can be categorized as either functional, non-functional, malign, or benign. Depending on their appearance in the abdomen, adrenal tumours can arise from one adrenal gland (unilateral) or from both adrenal glands (bilateral) and can connect with other organs, including the liver, spleen, pancreas, etc. This connection phenomenon constitutes the most important handicap against adrenal tumour segmentation. Size change, variety of shape, diverse location, and low contrast (similar grey values between the various tissues) are other disadvantages compounding segmentation difficulty. Few studies have considered adrenal tumour segmentation, and no significant improvement has been achieved for unilateral, bilateral, adherent, or noncohesive tumour segmentation. There is also no recognised segmentation pipeline or method for adrenal tumours including different shape, size, or location information. This study proposes an adrenal tumour segmentation (ATUS) pipeline designed to eliminate the above disadvantages for adrenal tumour segmentation. ATUS incorporates a number of image methods, including contrast limited adaptive histogram equalization, split and merge based on quadtree decomposition, mean shift segmentation, large grey level eliminator, and region growing. Performance assessment of ATUS was realised on 32 arterial and portal phase computed tomography images using six metrics: dice, jaccard, sensitivity, specificity, accuracy, and structural similarity index. ATUS achieved remarkable segmentation performance, and was not affected by the discussed handicaps, on particularly adherence to other organs, with success rates of 83.06%, 71.44%, 86.44%, 99.66%, 99.43%, and 98.51% for the metrics, respectively, for images including sufficient contrast uptake. The proposed ATUS system realises detailed adrenal tumour segmentation, and avoids known disadvantages preventing accurate

  16. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    NASA Astrophysics Data System (ADS)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  17. Real-Time Ultrasound Segmentation, Analysis and Visualisation of Deep Cervical Muscle Structure.

    PubMed

    Cunningham, Ryan J; Harding, Peter J; Loram, Ian D

    2017-02-01

    Despite widespread availability of ultrasound and a need for personalised muscle diagnosis (neck/back pain-injury, work related disorder, myopathies, neuropathies), robust, online segmentation of muscles within complex groups remains unsolved by existing methods. For example, Cervical Dystonia (CD) is a prevalent neurological condition causing painful spasticity in one or multiple muscles in the cervical muscle system. Clinicians currently have no method for targeting/monitoring treatment of deep muscles. Automated methods of muscle segmentation would enable clinicians to study, target, and monitor the deep cervical muscles via ultrasound. We have developed a method for segmenting five bilateral cervical muscles and the spine via ultrasound alone, in real-time. Magnetic Resonance Imaging (MRI) and ultrasound data were collected from 22 participants (age: 29.0±6.6, male: 12). To acquire ultrasound muscle segment labels, a novel multimodal registration method was developed, involving MRI image annotation, and shape registration to MRI-matched ultrasound images, via approximation of the tissue deformation. We then applied polynomial regression to transform our annotations and textures into a mean space, before using shape statistics to generate a texture-to-shape dictionary. For segmentation, test images were compared to dictionary textures giving an initial segmentation, and then we used a customized Active Shape Model to refine the fit. Using ultrasound alone, on unseen participants, our technique currently segments a single image in [Formula: see text] to over 86% accuracy (Jaccard index). We propose this approach is applicable generally to segment, extrapolate and visualise deep muscle structure, and analyse statistical features online.

  18. Body burden of aluminum in relation to central nervous system function among metal inert-gas welders.

    PubMed

    Riihimäki, V; Hänninen, H; Akila, R; Kovala, T; Kuosma, E; Paakkulainen, H; Valkonen, S; Engström, B

    2000-04-01

    The relationship between elevated internal aluminum loads and central nervous system function was studied among aluminum welders, and the threshold level for adverse effect was defined. For 65 aluminum welders and 25 current mild steel welders body burden was estimated, and the aluminum concentrations in serum (S-Al) and urine (U-Al) were analyzed with graphite furnace atomic absorption spectrometry with Zeeman background correction. Referents and low-exposure and high-exposure groups were defined according to an aggregated measure of aluminum body burden, the group median S-Al levels being 0.08, 0.14, and 0.46 micromol/l, respectively, and the corresponding values for U-Al being 0.4, 1.8, and 7.1 micromol/l. Central nervous system functions were assessed with a neuropsychological test battery, symptom and mood questionnaires, a visual and quantitative analysis of electroencephalography (EEG), and P3 event-related potentials with pitch and duration paradigms. Subjective symptoms showed exposure-related increases in fatigue, mild depression, and memory and concentration problems. Neuropsychological testing revealed a circumscribed effect of aluminum, mainly in tasks demanding complex attention and the processing of information in the working memory system and in the analysis and recall of abstract visual patterns. The visual EEG analysis revealed pathological findings only for aluminum welders. Mild, diffuse abnormalities were found in 17% of the low-exposure group and 27% of the high-exposure group, and mild to moderate epileptiform abnormalities at a frequency of 7% and 17%, respectively. Both objective neurophysiological and neuropsychological measures and subjective symptomatology indicated mild but unequivocal findings dose-dependently associated with increased aluminum body burden. The study indicates that the body burden threshold for adverse effect approximates an U-Al value of 4-6 micromol/l and an S-Al value of 0.25-0.35 micromol/l among aluminum welders.

  19. Pass-Band Characteristics of an L-Shaped Waveguide in a Diamond Structure Photonic Crystal

    NASA Astrophysics Data System (ADS)

    Chen, Shibin; Ma, Jingcun; Yao, Yunshi; Liu, Xin; Lin, Ping

    2018-06-01

    The conduction characteristics of a L-shaped waveguide in a diamond structure photonic crystal is investigated in this paper. The waveguides were fabricated with titanium dioxide ceramic via 3-D printing and sintering. The effects of the position and size of line defects on the transmission characteristics are first simulated using a finite-difference time-domain method. The simulated results show that, when the length of the rectangular defect equals the lattice constant, multiple extended modes are generated. When the centers of the single unit cell of the diamond structure and the line defect waveguide coincide, higher transmission efficiency in the line defect can be achieved. In addition, the corner of the L-shaped waveguide was optimized to reduce reflection loss at the turning point using the arc transition of the large diameter. Our experimental results indicate that L-shaped waveguides with an optimized photonic band gap structure and high-K materials can produce a pass-band between 13.8 GHz and 14.4 GHz and increase transmission efficiency. The computed results agree with the experimental results. Our results may help the integration of microwave devices in the future and possibly enable new applications of photonic crystals.

  20. Influence of Impurities and Filling Protocol on the Aluminum Fixed Point

    NASA Astrophysics Data System (ADS)

    Renaot, E.; Valin, M. H.; Elgourdou, M.

    2008-06-01

    To improve the uncertainty of the aluminum fixed point, a study was launched by LNE-INM/CNAM in the framework of the EUROMET Project 732 “Toward more accurate temperature fixed points” (Coordinating laboratory: LNE-INM/CNAM, 17 partner countries). A new open cell was filled with aluminum of 99.99995% purity. A French laboratory carried out elemental analysis of the sample using glow discharge-mass spectrometry (GD-MS). The values of the equilibrium distribution coefficient k and of the derivative {δ T_{{l}}/δ ci_{{l}}} of the temperature of the liquidus line with respect to the concentration of impurity i will be obtained through collaboration with a French physical and chemical laboratory. In the past, some aluminum cells were opened after several melts and freezes. The aluminum ingot was sticking to the graphite crucible, indicating that physicochemical reactions had likely occurred between Al and C. To avoid this reaction, an effort was made to draw benefit from the Al2O3 film that appears immediately on the surface of the aluminum ingot when it is exposed to oxygen. The open aluminum cell was tested in different furnaces and with different thermal insulator arrangements inside the fixed-point assembly. The observed drifts of the plateaux were always larger than the expected values. The cell was opened to inspect the aluminum ingot. The ingot was extracted easily, since no sticking to the crucible had occurred. The aluminum showed a very bright surface, but the presence of many “craters” throughout the thickness of the ingot was surprising. In some cases, the thermometer well was even apparent.

  1. Motion compensated shape error concealment.

    PubMed

    Schuster, Guido M; Katsaggelos, Aggelos K

    2006-02-01

    The introduction of Video Objects (VOs) is one of the innovations of MPEG-4. The alpha-plane of a VO defines its shape at a given instance in time and hence determines the boundary of its texture. In packet-based networks, shape, motion, and texture are subject to loss. While there has been considerable attention paid to the concealment of texture and motion errors, little has been done in the field of shape error concealment. In this paper we propose a post-processing shape error concealment technique that uses the motion compensated boundary information of the previously received alpha-plane. The proposed approach is based on matching received boundary segments in the current frame to the boundary in the previous frame. This matching is achieved by finding a maximally smooth motion vector field. After the current boundary segments are matched to the previous boundary, the missing boundary pieces are reconstructed by motion compensation. Experimental results demonstrating the performance of the proposed motion compensated shape error concealment method, and comparing it with the previously proposed weighted side matching method are presented.

  2. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1992-04-01

    Because dynamic instability is not acceptable for any commercial maglev systems, it is important to consider this phenomenon in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study identifies basic stability characteristics and future research needs of maglev systems.

  3. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1994-05-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  4. Dynamic stability of electrodynamic maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1997-01-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on mathematical models and experimental data. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis for motion-dependent magnetic-force-induced instability developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  5. Adaptive striping watershed segmentation method for processing microscopic images of overlapping irregular-shaped and multicentre particles.

    PubMed

    Xiao, X; Bai, B; Xu, N; Wu, K

    2015-04-01

    Oversegmentation is a major drawback of the morphological watershed algorithm. Here, we study and reveal that the oversegmentation is not only because of the irregular shapes of the particle images, which people are familiar with, but also because of some particles, such as ellipses, with more than one centre. A new parameter, the striping level, is introduced and the criterion for striping parameter is built to help find the right markers prior to segmentation. An adaptive striping watershed algorithm is established by applying a procedure, called the marker searching algorithm, to find the markers, which can effectively suppress the oversegmentation. The effectiveness of the proposed method is validated by analysing some typical particle images including the images of gold nanorod ensembles. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  6. A variational approach to liver segmentation using statistics from multiple sources

    NASA Astrophysics Data System (ADS)

    Zheng, Shenhai; Fang, Bin; Li, Laquan; Gao, Mingqi; Wang, Yi

    2018-01-01

    Medical image segmentation plays an important role in digital medical research, and therapy planning and delivery. However, the presence of noise and low contrast renders automatic liver segmentation an extremely challenging task. In this study, we focus on a variational approach to liver segmentation in computed tomography scan volumes in a semiautomatic and slice-by-slice manner. In this method, one slice is selected and its connected component liver region is determined manually to initialize the subsequent automatic segmentation process. From this guiding slice, we execute the proposed method downward to the last one and upward to the first one, respectively. A segmentation energy function is proposed by combining the statistical shape prior, global Gaussian intensity analysis, and enforced local statistical feature under the level set framework. During segmentation, the shape of the liver shape is estimated by minimization of this function. The improved Chan-Vese model is used to refine the shape to capture the long and narrow regions of the liver. The proposed method was verified on two independent public databases, the 3D-IRCADb and the SLIVER07. Among all the tested methods, our method yielded the best volumetric overlap error (VOE) of 6.5 +/- 2.8 % , the best root mean square symmetric surface distance (RMSD) of 2.1 +/- 0.8 mm, the best maximum symmetric surface distance (MSD) of 18.9 +/- 8.3 mm in 3D-IRCADb dataset, and the best average symmetric surface distance (ASD) of 0.8 +/- 0.5 mm, the best RMSD of 1.5 +/- 1.1 mm in SLIVER07 dataset, respectively. The results of the quantitative comparison show that the proposed liver segmentation method achieves competitive segmentation performance with state-of-the-art techniques.

  7. Biomedical image segmentation using geometric deformable models and metaheuristics.

    PubMed

    Mesejo, Pablo; Valsecchi, Andrea; Marrakchi-Kacem, Linda; Cagnoni, Stefano; Damas, Sergio

    2015-07-01

    This paper describes a hybrid level set approach for medical image segmentation. This new geometric deformable model combines region- and edge-based information with the prior shape knowledge introduced using deformable registration. Our proposal consists of two phases: training and test. The former implies the learning of the level set parameters by means of a Genetic Algorithm, while the latter is the proper segmentation, where another metaheuristic, in this case Scatter Search, derives the shape prior. In an experimental comparison, this approach has shown a better performance than a number of state-of-the-art methods when segmenting anatomical structures from different biomedical image modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Effect of aluminum exposure on cognitive function in electrolytic workers and its influential factors].

    PubMed

    Lu, Xiao-ting; Liang, Rui-feng; Jia, Zhi-jian; Wang, Hao; Song, Wen-fei; Li, Qiu-ying; Niu, Qiao

    2013-02-01

    To clarify the effect of aluminum exposure on the cognitive function in electrolytic workers and the prevalence of mild cognitive impairment (MCI) among them by prevalence survey, and to investigate its influential factors. Sixty-six retired workers from the electrolysis workshop of an electrolytic aluminum plant were selected as an aluminum exposure group, while 70 retired workers from a flour mill in the same region were selected as a control group. MCI patients were screened out by Mini-Mental State Examination (MMSE); the blood aluminum level was measured by inductively coupled plasma-mass spectrometry; multivariate statistical analysis was used to investigate the influential factors for MMSE scores and the correlation between blood aluminum level and MCI prevalence. The aluminum exposure group showed a significantly higher blood aluminum level than the control group (25.18 ± 2.65 µg/L vs 9.97 ± 2.83 µg/L, P < 0.01). The total MMSE score of the aluminum exposure group (26.13 ± 2.57) was significantly lower than that of the control group (27.89 ± 1.91) (P < 0.05), particularly the scores on time and place orientation, short-term memory, calculation ability, and language skill (P < 0.05). The detection rate of MCI was significantly higher in the aluminum exposure group (18.2%) than in the control group (5.7%) (P < 0.01). The main influential factors for MMSE scores were gender, age, education level, and blood aluminum level. The logistic regression analysis indicated that the MCI prevalence was significantly correlated with blood aluminum level in the study population (OR = 1.168, P < 0.01). Long-term exposure to aluminum can cause cognitive disorders in electrolytic workers and may be one of the risk factors for MCI. Advanced age, male, low education level, and high blood aluminum level may be high-risk factors for cognitive impairment.

  9. Automatic choroid cells segmentation and counting in fluorescence microscopic image

    NASA Astrophysics Data System (ADS)

    Fei, Jianjun; Zhu, Weifang; Shi, Fei; Xiang, Dehui; Lin, Xiao; Yang, Lei; Chen, Xinjian

    2016-03-01

    In this paper, we proposed a method to automatically segment and count the rhesus choroid-retinal vascular endothelial cells (RF/6A) in fluorescence microscopic images which is based on shape classification, bottleneck detection and accelerated Dijkstra algorithm. The proposed method includes four main steps. First, a thresholding filter and morphological operations are applied to reduce the noise. Second, a shape classifier is used to decide whether a connected component is needed to be segmented. In this step, the AdaBoost classifier is applied with a set of shape features. Third, the bottleneck positions are found based on the contours of the connected components. Finally, the cells segmentation and counting are completed based on the accelerated Dijkstra algorithm with the gradient information between the bottleneck positions. The results show the feasibility and efficiency of the proposed method.

  10. In vivo and in vitro absorption spectrum of disulphonated aluminum phthalocyanine in tumor-bearing mice

    NASA Astrophysics Data System (ADS)

    Cubeddu, Rinaldo; Canti, Gianfranco L.; Pifferi, Antonio; Taroni, Paola; Valentini, Gianluca

    1995-03-01

    The absorption spectrum of disulphonated aluminum phthalocyanine (AlS2Pc) between 650 nm and 695 nm was measured in vivo by means of time-resolved reflectance. The experiments were performed on mice bearing the L1210 leukemia 1, 4, and 7 hr after the i.p. administration of 2.5 mg/kg body weight (b.w.) of AlS2Pc. The absorption peak is centered at 685 nm, red-shifted of 10 - 15 nm with respect to the spectra obtained in solution in various environments. Measurements performed in vitro confirm the results in vivo and seem to suggest that the extracellular environment can cause the shift in the absorption line shape.

  11. Development of Image Segmentation Methods for Intracranial Aneurysms

    PubMed Central

    Qian, Yi; Morgan, Michael

    2013-01-01

    Though providing vital means for the visualization, diagnosis, and quantification of decision-making processes for the treatment of vascular pathologies, vascular segmentation remains a process that continues to be marred by numerous challenges. In this study, we validate eight aneurysms via the use of two existing segmentation methods; the Region Growing Threshold and Chan-Vese model. These methods were evaluated by comparison of the results obtained with a manual segmentation performed. Based upon this validation study, we propose a new Threshold-Based Level Set (TLS) method in order to overcome the existing problems. With divergent methods of segmentation, we discovered that the volumes of the aneurysm models reached a maximum difference of 24%. The local artery anatomical shapes of the aneurysms were likewise found to significantly influence the results of these simulations. In contrast, however, the volume differences calculated via use of the TLS method remained at a relatively low figure, at only around 5%, thereby revealing the existence of inherent limitations in the application of cerebrovascular segmentation. The proposed TLS method holds the potential for utilisation in automatic aneurysm segmentation without the setting of a seed point or intensity threshold. This technique will further enable the segmentation of anatomically complex cerebrovascular shapes, thereby allowing for more accurate and efficient simulations of medical imagery. PMID:23606905

  12. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Huanjun; Zorba, Serkan; Gao Yongli

    2006-12-01

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlO{sub x}/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlO{sub x} interlayer.

  13. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). Published by Elsevier Ltd.

  14. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Gil, J. M.; Rodríguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Mínguez, E.; Sauvan, P.; Angelo, P.; Schott, R.; Dalimier, E.; Mancini, R.

    2008-10-01

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph (λ/Δλ≈6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Lyα, Heβ, Heγ, Lyβ and Lyγ line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  15. Tumor Burden Analysis on Computed Tomography by Automated Liver and Tumor Segmentation

    PubMed Central

    Linguraru, Marius George; Richbourg, William J.; Liu, Jianfei; Watt, Jeremy M.; Pamulapati, Vivek; Wang, Shijun; Summers, Ronald M.

    2013-01-01

    The paper presents the automated computation of hepatic tumor burden from abdominal CT images of diseased populations with images with inconsistent enhancement. The automated segmentation of livers is addressed first. A novel three-dimensional (3D) affine invariant shape parameterization is employed to compare local shape across organs. By generating a regular sampling of the organ's surface, this parameterization can be effectively used to compare features of a set of closed 3D surfaces point-to-point, while avoiding common problems with the parameterization of concave surfaces. From an initial segmentation of the livers, the areas of atypical local shape are determined using training sets. A geodesic active contour corrects locally the segmentations of the livers in abnormal images. Graph cuts segment the hepatic tumors using shape and enhancement constraints. Liver segmentation errors are reduced significantly and all tumors are detected. Finally, support vector machines and feature selection are employed to reduce the number of false tumor detections. The tumor detection true position fraction of 100% is achieved at 2.3 false positives/case and the tumor burden is estimated with 0.9% error. Results from the test data demonstrate the method's robustness to analyze livers from difficult clinical cases to allow the temporal monitoring of patients with hepatic cancer. PMID:22893379

  16. Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride

    DTIC Science & Technology

    2012-01-05

    Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride

  17. Mechanism for Angular Deformation of L-shaped Specimens —Influence of Filling Material and Shrinkage Factor—

    NASA Astrophysics Data System (ADS)

    Furuhashi, Hiroshi; Aoki, Takerou; Okabe, Sayaka; Arai, Tsuyoshi; Seto, Masahiro; Yamabe, Masashi

    L-shape is the important and fundamental shape for injection molded parts. Therefore to reveal the corner angular deformation mechanism of this shape is also valuable for understanding the warpage mechanism of injection molded parts. In this study, we investigated the influence of the filling materials (fiber, talc and not filled) and two kinds of anisotropic shrinkage factors, solidification shrinkage and shrinkage caused by thermal expansion coefficient during cooling, to the angular deformation of L-shaped specimens and the following conclusions were obtained 1) The anisotropic solidification shrinkage of MD/TD and the anisotropic thermal expansion coefficient of MD/TD are considered to cause the angular deformation of L-shaped specimens. But the contribution ratios of these two anisotropies depend on the filling material for plastics. 2) The angular deformation of PP and PBT filled with glass fiber is mainly caused by the anisotropic thermal expansion coefficient and on the other hand, that of PP and PBT without filling material is caused by anisotropic solidification shrinkage. However both anisotropies cause the angular deformation of PP filled with talc. 3) The plate thickness dependence of the angular deformation of PP filled with talc is the singular peculiar phenomenon. The plate thickness dependence of anisotropic solidification shrinkage of this material (it is also singular) is considered to have an important influence on this phenomenon.

  18. Biaxial deformation in high purity aluminum

    DOE PAGES

    Livescu, V.; Bingert, J. F.; Liu, C.; ...

    2015-09-25

    The convergence of multiple characterization tools has been applied to investigate the relationship of microstructure on damage evolution in high purity aluminum. The extremely coarse grain size of the disc-shaped sample provided a quasi-two dimensional structure from which the location of surface-measured features could be inferred. In particular, the role of pre-existing defects on damage growth was accessible due to the presence of casting porosity in the aluminum. Micro tomography, electron backscatter diffraction, and digital image correlation were applied to interrogate the sample in three dimensions. Recently micro-bulge testing apparatus was used to deform the pre-characterized disc of aluminum inmore » biaxial tension, and related analysis techniques were applied to map local strain fields. Subsequent post-mortem characterization of the failed sample was performed to correlate structure to damaged regions. We determined that strain localization and associated damage was most strongly correlated with grain boundary intersections and plastic anisotropy gradients between grains. Pre-existing voids played less of an apparent role than was perhaps initially expected. Finally, these combined techniques provide insight to the mechanism of damage initiation, propagation, and failure, along with a test bed for predictive damage models incorporating anisotropic microstructural effects.« less

  19. Multi-atlas segmentation enables robust multi-contrast MRI spleen segmentation for splenomegaly

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L.; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.

    2017-02-01

    Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≍1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.

  20. Multi-atlas Segmentation Enables Robust Multi-contrast MRI Spleen Segmentation for Splenomegaly.

    PubMed

    Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L; Assad, Albert; Abramson, Richard G; Landman, Bennett A

    2017-02-11

    Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≈1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.

  1. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.

    PubMed

    Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Mulder, Harriët W; Ren, Ben; Kirişli, Hortense A; Metz, Coert; van Burken, Gerard; van Stralen, Marijn; Pluim, Josien P W; van der Steen, Antonius F W; van Walsum, Theo; Bosch, Johannes G

    2015-06-01

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts. We propose to segment all cavities within the TEE view with a multi-cavity active shape model (ASM) in conjunction with a tissue/blood classification based on a gamma mixture model (GMM). 3-D TEE image data of twenty patients were acquired with a Philips X7-2t matrix TEE probe. Tissue probability maps were estimated by a two-class (blood/tissue) GMM. A statistical shape model containing the left ventricle, right ventricle, left atrium, right atrium, and aorta was derived from computed tomography angiography (CTA) segmentations by principal component analysis. ASMs of the whole heart and individual cavities were generated and consecutively fitted to tissue probability maps. First, an average whole-heart model was aligned with the 3-D TEE based on three manually indicated anatomical landmarks. Second, pose and shape of the whole-heart ASM were fitted by a weighted update scheme excluding parts outside of the image sector. Third, pose and shape of ASM for individual heart cavities were initialized by the previous whole heart ASM and updated in a regularized manner to fit the tissue probability maps. The ASM segmentations were validated against manual outlines by two observers and CTA derived segmentations. Dice coefficients and point-to-surface distances were used to determine segmentation accuracy. ASM segmentations were successful in 19 of 20 cases. The median Dice coefficient for all successful segmentations versus the average observer ranged from 90% to 71% compared with an inter-observer range of 95% to 84%. The

  2. Stress-Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys

    DTIC Science & Technology

    1972-01-01

    EFFECTS 01: STRESS) 155 Table 2. Mechanical, Fracture, and Stress Corrosion Properties for Plates of Several Aluminum Alloys --Continued 4f’l14...One of the most effective SCC preventives for high strength aluminum alloys is surface working by shot peening, particularl) when used in combination...Aluminaut uses aluminum alloy anodes to supplement the protection of the pressure hull offered by several layers of polyurethane coating 175). 100 A

  3. Learning Compositional Shape Models of Multiple Distance Metrics by Information Projection.

    PubMed

    Luo, Ping; Lin, Liang; Liu, Xiaobai

    2016-07-01

    This paper presents a novel compositional contour-based shape model by incorporating multiple distance metrics to account for varying shape distortions or deformations. Our approach contains two key steps: 1) contour feature generation and 2) generative model pursuit. For each category, we first densely sample an ensemble of local prototype contour segments from a few positive shape examples and describe each segment using three different types of distance metrics. These metrics are diverse and complementary with each other to capture various shape deformations. We regard the parameterized contour segment plus an additive residual ϵ as a basic subspace, namely, ϵ -ball, in the sense that it represents local shape variance under the certain distance metric. Using these ϵ -balls as features, we then propose a generative learning algorithm to pursue the compositional shape model, which greedily selects the most representative features under the information projection principle. In experiments, we evaluate our model on several public challenging data sets, and demonstrate that the integration of multiple shape distance metrics is capable of dealing various shape deformations, articulations, and background clutter, hence boosting system performance.

  4. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    NASA Astrophysics Data System (ADS)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  5. [Determination of Arsenic in Food Package Aluminum by Ultrasound Assisted Solid Phase Extraction/ICP-AES].

    PubMed

    Qin, Wen-xia; Gong, Qi; Li, Min; Deng, Li-xin; Mo, Li-shu; Li, Yan-lin

    2015-04-01

    Determination of arsenic in pure aluminum by inductively coupled plasma atomic emission spectrometry was interfered by aluminum matrix. The experiment showed that when the mass concentration of Al was greater than or equal to 5 000 times the As in the test solution, the measurement error was greater than 5%. In order to eliminate the interference, strong acid cation exchange fiber (SACEF) was used as solid phase extraction agent to adsorb Al(3+). The extraction conditions included amount of SACEF, extraction time, temperature and pH were investigated. The optimal extraction conditions were that 0.9000 g SACEF was used to extract the aluminum from the sample solution of pH 2.0 at 55 °C for 5 min with the ultrasonic assist, and in this case, the arsenic in the form of arsenic acid was not extracted and left in the solution for the determination. The results showed that after treating 10. 00 mL test solution containing 1.00 µg arsenic and 20.0 mg aluminum, arsenic did not lose. The mass concentration of residual aluminum in the raffinate was about 2,000 times the As, which had not interfered the determination of arsenic. The detection limit (3 s) was 0.027 µg · mL(-1) and quantification limit (10 s) was 0.0091 µg · mL(-1). The proposed method was successfully applied to the separation and determination of arsenic in the synthetic samples, the aluminum cans and the barbecue aluminum foil. Recovery was in the range of 98.3%-105% and RSD (n = 3) was in the range of 0.1%-4.3%. The results showed that the content of arsenic in the aluminum cans and the aluminum barbecue foil was below the limited value of national standard (GB/T 3190-2008).

  6. Focal segmental glomerulosclerosis

    MedlinePlus

    ... Alternative Names Segmental glomerulosclerosis; Focal sclerosis with hyalinosis Images Male urinary system References Appel GB, Radhakrishnan J. Glomerular disorders and nephrotic syndromes In: Goldman L, ...

  7. Machine learning in a graph framework for subcortical segmentation

    NASA Astrophysics Data System (ADS)

    Guo, Zhihui; Kashyap, Satyananda; Sonka, Milan; Oguz, Ipek

    2017-02-01

    Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 +/- 0.03) and the putamen (0.89 +/- 0.03).

  8. Oriented active shape models.

    PubMed

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  9. Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André

    2018-02-01

    An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.

  10. Aluminum and Other Coatings for the Passivation of Tritium Storage Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, W.; Korinko, P.

    Using a highly sensitive residual gas analyzer, the off-gassing of hydrogen, water, and hydrocarbons from surface-treated storage vessels containing deuterium was measured. The experimental storage vessels were compared to a low-off-gassing, electro-polished 304L canister. Alternative vessels were made out of aluminum, or were coatings on 304L steel. Coatings included powder pack aluminide, electro-plated aluminum, powder pack chromide, dense electro-plated chromium, copper plated, and copper plated with 25 and 50 percent nano-diamond. Vessels were loaded with low pressure deuterium to observe exchange with protium or hydrogen as observed with formation of HD and HDO. Off gas of D 2O or possiblemore » CD 4 was observed at mass 20. The main off-gas in all of the studies was H 2. The studies indicated that coatings required significant post-coating treatment to reduce off-gas and enhance the permeation barrier from gases likely added during the coating process. Dense packed aluminum coatings needed heating to drive off water. Electro-plated aluminum, chromium and copper coatings appeared to trap hydrogen from the plating process. Nano-diamond appeared to enhance the exchange rate with hydrogen off gas, and its coating process trapped significant amounts of hydrogen. Aluminum caused more protium exchange than chromium-treated surfaces. Aluminum coatings released more water, but pure aluminum vessels released small amounts of hydrogen, little water, and generally performed well. Chromium coating had residual hydrogen that was difficult to totally outgas but otherwise gave low residuals for water and hydrocarbons. Our studies indicated that simple coating of as received 304L metal will not adequately block hydrogen. The base vessel needs to be carefully out-gassed before applying a coating, and the coating process will likely add additional hydrogen that must be removed. Initial simple bake-out and leak checks up to 350° C for a few hours was found to be inadequate

  11. Region growing using superpixels with learned shape prior

    NASA Astrophysics Data System (ADS)

    Borovec, Jiří; Kybic, Jan; Sugimoto, Akihiro

    2017-11-01

    Region growing is a classical image segmentation method based on hierarchical region aggregation using local similarity rules. Our proposed method differs from classical region growing in three important aspects. First, it works on the level of superpixels instead of pixels, which leads to a substantial speed-up. Second, our method uses learned statistical shape properties that encourage plausible shapes. In particular, we use ray features to describe the object boundary. Third, our method can segment multiple objects and ensure that the segmentations do not overlap. The problem is represented as an energy minimization and is solved either greedily or iteratively using graph cuts. We demonstrate the performance of the proposed method and compare it with alternative approaches on the task of segmenting individual eggs in microscopy images of Drosophila ovaries.

  12. Continuum theory of gene expression waves during vertebrate segmentation.

    PubMed

    Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank

    2015-09-01

    The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.

  13. Continuum theory of gene expression waves during vertebrate segmentation

    PubMed Central

    Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank

    2015-01-01

    Abstract The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time. PMID:28725158

  14. Loblolly pine and slash pine responses to acute aluminum and acid exposures

    Treesearch

    Jaroslaw Nowak; Alexander L. Friend

    2006-01-01

    In response to concerns about aluminum and HCl exposure associated with rocket motor testing and launches, survival and growth of full-sib families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were evaluated in a nursery bed experiment. Each species was exposed to a single soil application of aluminum...

  15. Response to Thermal Exposure of Ball-Milled Aluminum-Borax Powder Blends

    NASA Astrophysics Data System (ADS)

    Birol, Yucel

    2013-04-01

    Aluminum-borax powder mixtures were ball milled and heated above 873 K (600 °C) to produce Al-B master alloys. Ball-milled powder blends reveal interpenetrating layers of deformed aluminum and borax grains that are increasingly refined with increasing milling time. Thermal exposure of the ball-milled powder blends facilitates a series of thermite reactions between these layers. Borax, dehydrated during heating, is reduced by Al, and B thus generated reacts with excess Al to produce AlB2 particles dispersed across the aluminum grains starting at 873 K (600 °C). AlB2 particles start to form along the interface of the aluminum and borax layers. Once nucleated, these particles grow readily to become hexagonal-shaped crystals that traverse the aluminum grains with increasing temperatures as evidenced by the increase in the size as well as in the number of the AlB2 particles. Ball milling for 1 hour suffices to achieve a thermite reaction between borax and aluminum. Ball milling further does not impact the response of the powder blend to thermal exposure. The nucleation-reaction sites are multiplied, however, with increasing milling time and thus insure a higher number of smaller AlB2 particles. The size of the AlB2 platelets may be adjusted with the ball milling time.

  16. Arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears.

    PubMed

    Jung, Sung-Weon; Kim, Dong-Hee; Kang, Seung-Hoon; Lee, Ji-Heon

    2017-07-01

    While a conventional single- or double-row repair technique could be applied for repair of C-shaped tears, a different surgical strategy should be considered for repair of U- or L-shaped tears because they typically have complex patterns with anterior, posterior, or both mobile leaves. This study was performed to examine the outcomes of the modified Mason-Allen technique for footprint restoration in the treatment of large U- or L-shaped rotator cuff tears. Thirty-two patients who underwent an arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears between January 2012 and December 2013 were included in this study. Margin convergence was first performed to reduce the tear gap and tension, and then, an arthroscopic Mason-Allen technique was performed to restore the rotator cuff footprint in a side-to-end repair fashion. All patients were evaluated preoperatively and for a minimum of 2 years of follow-up with a visual analog scale (VAS) for pain, Constant score, and ultrasonography. There was significant improvement in all VAS and Constant scores compared with the preoperative values (P < 0.001). Functional results by Constant scores included 9 cases that were classified as excellent, 11 cases as good, 8 cases as fair, and 2 cases as poor. Binary logistic regression analysis revealed that heavy work, pseudoparalysis, joint space narrowing, fatty degeneration of the SST and IST, and a positive tangent sign were found to significantly correlate with functional outcomes. Multivariable logistic regression analysis revealed that only fatty degeneration of the SST was a risk factor for fair/poor clinical outcomes. Complications occurred in 5 of the 32 patients (15.6 %), and the reoperation rate due to complications was 6.3 % (2 of 32 patients). An arthroscopic modified Mason-Allen technique was sufficient to restore the footprint of the rotator cuff in our data. Overall satisfactory results were achieved in most patients, with the

  17. Deformable L-shaped microwell array for trapping pairs of heterogeneous cells

    NASA Astrophysics Data System (ADS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Kang, AhRan; Takayama, Shuichi; Lee, Sang-Hoon; Park, Joong Yull

    2015-03-01

    To study cell-to-cell interactions, there has been a continuous demand on developing microsystems for trapping pairs of two different cells in microwell arrays. Here, we propose an L-shaped microwell (L-microwell) array that relies on the elasticity of a polydimethylsiloxane (PDMS) substrate for trapping and pairing heterogeneous cells. We designed an L-microwell suitable for trapping single cell in each branch via stretching/releasing the PDMS substrate, and also performed 3D time-dependent diffusion simulations to visualize how cell-secreted molecules diffuse in the L-microwell and communicate with the partner cell. The computational results showed that the secreted molecule first contacted the partner cell after 35 min, and the secreted molecule fully covered the partner cell in 4 h (when referenced to 10% of the secreted molecular concentration). The molecules that diffused to the outside of the L-microwell were significantly diluted by the bulk solution, which prevented unwanted cellular communication between neighboring L-microwells. We produced over 5000 cell pairs in one 2.25 cm2 array with about 30 000 L-microwells. The proposed L-microwell array offers a versatile and convenient cell pairing method to investigate cell-to-cell interactions in, for example, cell fusion, immune reactions, and cancer metastasis.

  18. Experimental study of the seismic performance of L-shaped columns with 500 MPa steel bars.

    PubMed

    Wang, Tiecheng; Liu, Xiao; Zhao, Hailong

    2014-01-01

    Based on tests on six L-shaped RC columns with 500 MPa steel bars, the effect of axial compression ratios and stirrup spacing on failure mode, bearing capacity, displacement, and curvature ductility of the specimens is investigated. Test results show that specimens with lower axial load and large stirrup characteristic value (larger than about 0.35) are better at ductility and seismic performance, while specimens under high axial load or with a small stirrup characteristic value (less than about 0.35) are poorer at ductility; L-shaped columns with 500 MPa steel bars show better bearing capacity and ductility in comparison with specimens with HRB400 steel bars.

  19. Comparative analysis of the L, M, and S RNA segments of Crimean-Congo haemorrhagic fever virus isolates from southern Africa.

    PubMed

    Goedhals, Dominique; Bester, Phillip A; Paweska, Janusz T; Swanepoel, Robert; Burt, Felicity J

    2015-05-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a member of the Bunyaviridae family with a tripartite, negative sense RNA genome. This study used predictive software to analyse the L (large), M (medium), and S (small) segments of 14 southern African CCHFV isolates. The OTU-like cysteine protease domain and the RdRp domain of the L segment are highly conserved among southern African CCHFV isolates. The M segment encodes the structural glycoproteins, GN and GC, and the non-structural glycoproteins which are post-translationally cleaved at highly conserved furin and subtilase SKI-1 cleavage sites. All of the sites previously identified were shown to be conserved among southern African CCHFV isolates. The heavily O-glycosylated N-terminal variable mucin-like domain of the M segment shows the highest sequence variability of the CCHFV proteins. Five transmembrane domains are predicted in the M segment polyprotein resulting in three regions internal to and three regions external to the membrane across the G(N), NS(M) and G(C) glycoproteins. The corroboration of conserved genome domains and sequence identity among geographically diverse isolates may assist in the identification of protein function and pathogenic mechanisms, as well as the identification of potential targets for antiviral therapy and vaccine design. As detailed functional studies are lacking for many of the CCHFV proteins, identification of functional domains by prediction of protein structure, and identification of amino acid level similarity to functionally characterised proteins of related viruses or viruses with similar pathogenic mechanisms are a necessary step for selection of areas for further study. © 2015 Wiley Periodicals, Inc.

  20. Object-oriented approach to the automatic segmentation of bones from pediatric hand radiographs

    NASA Astrophysics Data System (ADS)

    Shim, Hyeonjoon; Liu, Brent J.; Taira, Ricky K.; Hall, Theodore R.

    1997-04-01

    The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The development of this system draws principles from object-oriented design, model- guided analysis, and feedback control. A system architecture called 'the object segmentation machine' was implemented incorporating these design philosophies. The system is aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. These models include object structure models, shape models, 1-D wrist profiles, and gray level histogram models. Shape analysis is performed first by using an arc-length orientation transform to break down a given contour into elementary segments and curves. Then an interpretation tree is used as an inference engine to map known model contour segments to data contour segments obtained from the transform. Spatial and anatomical relationships among contour segments work as constraints from shape model. These constraints aid in generating a list of candidate matches. The candidate match with the highest confidence is chosen to be the current intermediate result. Verification of intermediate results are perform by a feedback control loop.

  1. Chevron formation of the zebrafish muscle segments

    PubMed Central

    Rost, Fabian; Eugster, Christina; Schröter, Christian; Oates, Andrew C.; Brusch, Lutz

    2014-01-01

    The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation. PMID:25267843

  2. Chevron formation of the zebrafish muscle segments.

    PubMed

    Rost, Fabian; Eugster, Christina; Schröter, Christian; Oates, Andrew C; Brusch, Lutz

    2014-11-01

    The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation. © 2014. Published by The Company of Biologists Ltd.

  3. Experimental study of biological effects of leads and aluminum following oral administration.

    PubMed Central

    Krasovskiĭ, G N; Vasukovich, L Y; Chariev, O G

    1979-01-01

    A wide spectrum of the biological effects of lead and aluminum ions is noted during short-term and long-term oral administration to laboratory animals. The general toxic and gonadotoxic effects of these metals during a short-term experiment appeared to be identical, and the correlation of these effects was preserved during chronic experiments. Lead (0.03 mg/l.) and aluminum (0.5 mg/l.) concentrations in water may be dangerous to the health of the population, and hygienic standards are recommended for inclusion in the standard for drinking water quality. PMID:446457

  4. Angle-resolved Auger electron spectra induced by neon ion impact on aluminum

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Aron, P. R.

    1986-01-01

    Auger electron emission from aluminum bombarded with 1 to 5 keV neon ions was studied by angle-resolved electron spectroscopy. The position and shape of the spectral features depended on the incident ion energy, angle of ion incidence, and electron take-off angle with respect to the aluminum surface. These spectral dependencies were interpreted in terms of the Doppler shift given to the Auger electron velocity by the excited atom ejected into the vacuum. For oblique ion incidence it is concluded that a flux of high energy atoms are ejected in a direction close to the projection of the ion beam on the target surface. In addition, a new spectral feature was found and identified as due to Auger emission from excited neon in the aluminum matrix.

  5. Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime

    NASA Astrophysics Data System (ADS)

    Dharma-wardana, M. W. C.

    2016-06-01

    We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.

  6. In vitro propagation of olive (Olea europaea L.) by nodal segmentation of elongated shoots.

    PubMed

    Lambardi, Maurizio; Ozudogru, Elif Aylin; Roncasaglia, Romano

    2013-01-01

    Olive (Olea europaea L.), long-living, ever-green fruit tree of the Old World, has been part of a traditional landscape in the Mediterranean area for centuries. Both the fruits consumed after processing and the oil extracted from the fruits are among the main components of the Mediterranean diet, widely used for salads and cooking, as well as for preserving other food. Documentations show that the ancient use of this beautiful tree also includes lamp fuel production, wool treatment, soap production, medicine, and cosmetics. However, unlike the majority of the fruit species, olive propagation is still a laborious practice. As regards traditional propagation, rooting of cuttings and grafting stem segments onto rootstocks are possible, former being achieved only when the cuttings are collected in specific periods (spring or beginning of autumn), and latter only when skilled grafters are available. In both the cases, performance of the cultivars varies considerably. The regeneration of whole plants from ovules, on the other hand, is used only occasionally. Micropropagation of olive is not easy mainly due to explant oxidation, difficulties in explant disinfection, and labor-oriented establishment of in vitro shoot cultures. However today, the progress in micropropagation technology has made available the complete protocols for several Mediterranean cultivars. This chapter describes a micropropagation protocol based on the segmentation of nodal segments obtained from elongated shoots.

  7. Conditions that influence the accuracy of anthropometric parameter estimation for human body segments using shape-from-silhouette

    NASA Astrophysics Data System (ADS)

    Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.

    2005-01-01

    Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).

  8. Unsteady self-sustained detonation in flake aluminum dust/air mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, S.; Huang, J.; Zhang, Y.

    2017-07-01

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration have been found in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

  9. A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images.

    PubMed

    Janowczyk, Andrew; Doyle, Scott; Gilmore, Hannah; Madabhushi, Anant

    2018-01-01

    Deep learning (DL) has recently been successfully applied to a number of image analysis problems. However, DL approaches tend to be inefficient for segmentation on large image data, such as high-resolution digital pathology slide images. For example, typical breast biopsy images scanned at 40× magnification contain billions of pixels, of which usually only a small percentage belong to the class of interest. For a typical naïve deep learning scheme, parsing through and interrogating all the image pixels would represent hundreds if not thousands of hours of compute time using high performance computing environments. In this paper, we present a resolution adaptive deep hierarchical (RADHicaL) learning scheme wherein DL networks at lower resolutions are leveraged to determine if higher levels of magnification, and thus computation, are necessary to provide precise results. We evaluate our approach on a nuclear segmentation task with a cohort of 141 ER+ breast cancer images and show we can reduce computation time on average by about 85%. Expert annotations of 12,000 nuclei across these 141 images were employed for quantitative evaluation of RADHicaL. A head-to-head comparison with a naïve DL approach, operating solely at the highest magnification, yielded the following performance metrics: .9407 vs .9854 Detection Rate, .8218 vs .8489 F -score, .8061 vs .8364 true positive rate and .8822 vs 0.8932 positive predictive value. Our performance indices compare favourably with state of the art nuclear segmentation approaches for digital pathology images.

  10. L-shaped benzimidazole fluorophores: synthesis, characterization and optical response to bases, acids and anions.

    PubMed

    Lirag, Rio Carlo; Le, Ha T M; Miljanić, Ognjen Š

    2013-05-14

    Nine L-shaped benzimidazole fluorophores have been synthesized, computationally evaluated and spectroscopically characterized. These "half-cruciform" fluorophores respond to bases, acids and anions through changes in fluorescence that vary from moderate to dramatic.

  11. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    DTIC Science & Technology

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT...of both Aluminum Hydride Cluster Anions and Boron Aluminum Hydride Cluster Anions with Oxygen: Anionic Products The anionic products of reactions

  12. Structure of complexes between aluminum chloride and other chlorides, 2: Alkali-(chloroaluminates). Gaseous complexes

    NASA Technical Reports Server (NTRS)

    Hargittai, M.

    1980-01-01

    The structural chemistry of complexes between aluminum chloride and other metal chlorides is important both for practice and theory. Condensed-phase as well as vapor-phase complexes are of interest. Structural information on such complexes is reviewed. The first emphasis is given to the molten state because of its practical importance. Aluminum chloride forms volatile complexes with other metal chlorides and these vapor-phase complexes are dealt with in the second part. Finally, the variations in molecular shape and geometrical parameters are summarized.

  13. Assessment of Multiresolution Segmentation for Extracting Greenhouses from WORLDVIEW-2 Imagery

    NASA Astrophysics Data System (ADS)

    Aguilar, M. A.; Aguilar, F. J.; García Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C.

    2016-06-01

    The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing applications. In this way, object based image analysis (OBIA) approach has been proved as the best option when working with VHR satellite imagery. OBIA considers spectral, geometric, textural and topological attributes associated with meaningful image objects. Thus, the first step of OBIA, referred to as segmentation, is to delineate objects of interest. Determination of an optimal segmentation is crucial for a good performance of the second stage in OBIA, the classification process. The main goal of this work is to assess the multiresolution segmentation algorithm provided by eCognition software for delineating greenhouses from WorldView- 2 multispectral orthoimages. Specifically, the focus is on finding the optimal parameters of the multiresolution segmentation approach (i.e., Scale, Shape and Compactness) for plastic greenhouses. The optimum Scale parameter estimation was based on the idea of local variance of object heterogeneity within a scene (ESP2 tool). Moreover, different segmentation results were attained by using different combinations of Shape and Compactness values. Assessment of segmentation quality based on the discrepancy between reference polygons and corresponding image segments was carried out to identify the optimal setting of multiresolution segmentation parameters. Three discrepancy indices were used: Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR) and Euclidean Distance 2 (ED2).

  14. A study of the initial oxidation of evaporated thin films of aluminum by AES, ELS, and ESD

    NASA Technical Reports Server (NTRS)

    Bujor, M.; Larson, L. A.; Poppa, H.

    1982-01-01

    The room temperature, low pressure, oxidation of evaporated aluminum thin films has been studied by AES, ELS, and ESD. ESD was the most sensitive of the three methods to characterize a clean aluminum surface. Two oxidation stages were distinguished in the 0-3000 L oxygen exposure range. Between 0 and 50 L, the chemisorption of oxygen atoms was characterized by a fast decrease of the 67 eV AES Al peak and the 10 eV surface plasmon peak, and by a simultaneous increase of the oxygen AES and ESD signals. After 50 L, a change in slope in all AES and ESD signal variations was attributed to the slow growth of a thin layer of aluminum oxide, which after 3000 L was still only a few angstroms thick.

  15. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David (Donghang)

    2010-01-01

    Conductive polymer aluminum capacitor (PA capacitor) is an evolution of traditional wet electrolyte aluminum capacitors by replacing liquid electrolyte with a solid, highly conductive polymer. On the other hand, the cathode construction in polymer aluminum capacitors with coating of carbon and silver epoxy for terminal connection is more like a combination of the technique that solid tantalum capacitor utilizes. This evolution and combination result in the development of several competing capacitor construction technologies in manufacturing polymer aluminum capacitors. The driving force of this research on characterization of polymer aluminum capacitors is the rapid progress in IC technology. With the microprocessor speeds exceeding a gigahertz and CPU current demands of 80 amps and more, the demand for capacitors with higher peak current and faster repetition rates bring conducting polymer capacitors to the center o( focus. This is because this type of capacitors has been known for its ultra-low ESR and high capacitance. Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were obtained and tested. The construction analysis of the capacitors revealed three different constructions: conventional rolled foil, the multilayer stacking V-shape, and a dual-layer sandwich structure. The capacitor structure and its impact on the electrical characteristics has been revealed and evaluated. A destructive test with massive current over stress to fail the polymer aluminum capacitors reveals that all polymer aluminum capacitors failed in a benign mode without ignition, combustion, or any other catastrophic failures. The extraordinary low ESR (as low as 3 mOMEGA), superior frequency independence reported for polymer aluminum capacitors have been confirmed. For the applications of polymer aluminum capacitors in space programs, a thermal vacuum cycle test was performed. The results, as expected, show no

  16. Various design approaches to achieve electric field-driven segmented folding actuation of electroactive polymer (EAP) sheets

    NASA Astrophysics Data System (ADS)

    Ahmed, Saad; Hong, Jonathan; Zhang, Wei; Kopatz, Jessica; Ounaies, Zoubeida; Frecker, Mary

    2018-03-01

    Electroactive polymer (EAPs) based technologies have shown promise in areas such as artificial muscles, aerospace, medical and soft robotics. In this work, we demonstrate ways to harness on-demand segmented folding actuation from pure bending of relaxor-ferroelectric P(VDF-TrFE-CTFE) based films, using various design approaches, such as `stiffener' and `notch' based approaches. The in-plane actuation of the P(VDF-TrFE-CTFE) is converted into bending actuation using unimorph configurations, where one passive substrate layer is attached to the active polymer. First, we experimentally show that placement of thin metal strips as stiffener in between active EAPs and passive substrates leads to segmented actuation as opposed to pure bending actuation; stiffeners made of different materials, such as nickel, copper and aluminum, are studied which reveals that a higher Young's modulus favors more pronounced segmented actuation. Second, notched samples are prepared by mounting passive substrate patches of various materials on top of the passive layers of the unimorph EAP actuators. Effect of notch materials, size of the notches and position of the notches on the folding actuation are studied. The motion of the human finger inspires a finger-like biomimetic actuator, which is realized by assigning multiple notches on the structure; finite element analysis (FEA) is also performed using COMSOL Multiphysics software for the notched finger actuator. Finally, a versatile soft-gripper is developed using the notched approach to demonstrate the capability of a properly designed EAP actuator to hold objects of various sizes and shapes.

  17. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  18. Segmentation of the heart and major vascular structures in cardiovascular CT images

    NASA Astrophysics Data System (ADS)

    Peters, J.; Ecabert, O.; Lorenz, C.; von Berg, J.; Walker, M. J.; Ivanc, T. B.; Vembar, M.; Olszewski, M. E.; Weese, J.

    2008-03-01

    Segmentation of organs in medical images can be successfully performed with shape-constrained deformable models. A surface mesh is attracted to detected image boundaries by an external energy, while an internal energy keeps the mesh similar to expected shapes. Complex organs like the heart with its four chambers can be automatically segmented using a suitable shape variablility model based on piecewise affine degrees of freedom. In this paper, we extend the approach to also segment highly variable vascular structures. We introduce a dedicated framework to adapt an extended mesh model to freely bending vessels. This is achieved by subdividing each vessel into (short) tube-shaped segments ("tubelets"). These are assigned to individual similarity transformations for local orientation and scaling. Proper adaptation is achieved by progressively adapting distal vessel parts to the image only after proximal neighbor tubelets have already converged. In addition, each newly activated tubelet inherits the local orientation and scale of the preceeding one. To arrive at a joint segmentation of chambers and vasculature, we extended a previous model comprising endocardial surfaces of the four chambers, the left ventricular epicardium, and a pulmonary artery trunk. Newly added are the aorta (ascending and descending plus arch), superior and inferior vena cava, coronary sinus, and four pulmonary veins. These vessels are organized as stacks of triangulated rings. This mesh configuration is most suitable to define tubelet segments. On 36 CT data sets reconstructed at several cardiac phases from 17 patients, segmentation accuracies of 0.61-0.80mm are obtained for the cardiac chambers. For the visible parts of the newly added great vessels, surface accuracies of 0.47-1.17mm are obtained (larger errors are asscociated with faintly contrasted venous structures).

  19. Radical cystectomy with W-shaped orthotopic ileal neobladder constructed with non-absorbable titanium staples-long term follow-up.

    PubMed

    Kravchick, Sergey; Lobik, Leonid; Paz, Adrian; Stepnov, Eugeny; Ben-Dor, David; Cytron, Shmuel

    2013-01-01

    We retrospectively assessed our experience with the W-shaped orthotopic ileal pouch, which was constructed with non-absorbable titanium staples. For these purpose, we discuss the results of bladder capacity, urinary continence and early and long-term postoperative complications. We included in the study 17 patients who underwent radical cystoprostatectomy followed by construction of an orthotopic W-shaped ileal pouch between October 2000 and November 2009. A 65-70 cm segment of ileum was isolated and prearranged into a W-configuration, leaving two 10 cm intact segments on both sides of the ileal fragment. In our technique we entirely anatomized all adjacent limbs in order to create a sphere-shaped pouch. The ureters were directly anastomized to both intact segments of the ileal division. All our patients underwent pouchscopy 6 months after operation and annually. Mean operative time for neobladder reconstruction and ureteral anastomoses was 87 ± 7.67 minutes. In one patient a leak from the ileo-ileal anastomosis was confirmed on the 3rd day after operation. In 2 cases unilateral stricture of the ureteral-neobladder anastomosis was documented. Staple lines were mostly covered with ileal mucosa after 6 months. The mean functional bladder capacity was 340 ± 27.6 mL and 375 ± 43.4 mL at 6 and 12 months, respectively. First-year daytime and nighttime continence was good and acceptable in 90% and 78% of patients, while it increased to 95% during the 2nd year. The long term follow-up shows that non-absorbable titanium staples can be safely used for creation of an orthotopic ileal neobladder. However, these data should be further validated in a larger series of patients.

  20. Anatomy-aware measurement of segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Tizhoosh, H. R.; Othman, A. A.

    2016-03-01

    Quantifying the accuracy of segmentation and manual delineation of organs, tissue types and tumors in medical images is a necessary measurement that suffers from multiple problems. One major shortcoming of all accuracy measures is that they neglect the anatomical significance or relevance of different zones within a given segment. Hence, existing accuracy metrics measure the overlap of a given segment with a ground-truth without any anatomical discrimination inside the segment. For instance, if we understand the rectal wall or urethral sphincter as anatomical zones, then current accuracy measures ignore their significance when they are applied to assess the quality of the prostate gland segments. In this paper, we propose an anatomy-aware measurement scheme for segmentation accuracy of medical images. The idea is to create a "master gold" based on a consensus shape containing not just the outline of the segment but also the outlines of the internal zones if existent or relevant. To apply this new approach to accuracy measurement, we introduce the anatomy-aware extensions of both Dice coefficient and Jaccard index and investigate their effect using 500 synthetic prostate ultrasound images with 20 different segments for each image. We show that through anatomy-sensitive calculation of segmentation accuracy, namely by considering relevant anatomical zones, not only the measurement of individual users can change but also the ranking of users' segmentation skills may require reordering.

  1. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1992-09-01

    Since the occurrence of dynamic instabilities is not acceptable for any commercial maglev systems, it is important to consider the dynamic instability in the development of all maglev systems. This study is to consider the stability of maglev systems based on experimental data, scoping calculations and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on the guideway which consists of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev system.

  2. The Delayed Fracture of Aluminum Alloys, End of Year Report.

    DTIC Science & Technology

    1982-03-01

    Corrosion Cracking of Maraging Steel ," Corrosion NACE, 1971, vol. 27, no. 10, pp. 429-433. 17. J.C.M. Li, R.A. Oriani, and L.S. Darken: "The...Park, OH, 1974, p. 274. 32. M.V. Hyatt and M.O. Speidel: Chapter 4 of Stress- Corrosion Cracking in High Strength Steels and in Titanium and Aluminum...reverse side it necessary and identify by block number) Aluminum alloys, stress corrosion cracking, oxide film, Auger electron spectroscopy, Mode I

  3. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  4. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  5. Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production

    PubMed Central

    2014-01-01

    Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728

  6. Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation.

    PubMed

    Sari, Mutiara Ayu; Chellam, Shankararaman

    2015-11-15

    Boron uptake from highly saline hydraulic fracturing wastewater by freshly precipitated amorphous Al(OH)3 precipitates is due to ligand exchange and complexation with surface hydroxyl groups. Consequently, aluminum electrocoagulation can be a feasible approach to remove boron from flowback/produced water. Actual hydraulic fracturing wastewater containing ∼120mg/L boron from the Eagle Ford shale play was employed. Electrocoagulation was performed over a range of aluminum dosages (0-1350mg/L), pH 6.4 and 8, and high current densities (20-80mA/cm(2)) using a cylindrical aluminum anode encompassed by a porous cylindrical 316-stainless steel cathode. Direct measurements of boron uptake along with its chemical state and coordination were made using Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-Ray Photoelectron Spectroscopy. Boron removal increased monotonically with aluminum dosage and was higher at pH 8, but remained relatively constant at ⩾20mA/cm(2). Chloride ions induced anodic pitting and super-Faradaic (131% efficiency) aluminum dissolution and their electrooxidation produced free chlorine. ATR-FTIR suggested outer-sphere and inner-sphere complexation of trigonal B(OH)3 with Al(OH)3, which was confirmed by the BO bond shifting toward lower binding energies in XPS. Severe AlO interferences precluded evidence for tetrahedral B(OH)4(-) complexation. No evidence for co-precipitation was obtained. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. An analytical procedure for the determination of aluminum used in antiperspirants on human skin in Franz™ diffusion cell.

    PubMed

    Guillard, Olivier; Fauconneau, Bernard; Favreau, Frédéric; Marrauld, Annie; Pineau, Alain

    2012-04-01

    A local case report of hyperaluminemia (aluminum concentration: 3.88 µmol/L) in a woman using an aluminum-containing antiperspirant for 4 years raises the question of possible transdermal uptake of aluminum salt as a future public health problem. Prior to studying the transdermal uptake of three commercialized cosmetic formulas, an analytical assay of aluminum (Al) in chlorohydrate form (ACH) by Zeeman Electrothermal Atomic Absorption Spectrophotometer (ZEAAS) in a clean room was optimized and validated. This analysis was performed with different media on human skin using a Franz(™) diffusion cell. The detection and quantification limits were set at ≤ 3 µg/L. Precision analysis as within-run (n = 12) and between-run (n = 15-68 days) yield CV ≤ 6%. The high analytic sensitivity (2-3 µg/L) and low variability should allow an in vitro study of the transdermal uptake of ACH.

  8. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    PubMed

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  9. Cellular image segmentation using n-agent cooperative game theory

    NASA Astrophysics Data System (ADS)

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  10. Household Energy Consumption Segmentation Using Hourly Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  11. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    PubMed

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  12. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    PubMed Central

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  13. Determination of stress responses induced by aluminum in maize (Zea mays).

    PubMed

    Vardar, Filiz; Ismailoğlu, Işil; Inan, Deniz; Unal, Meral

    2011-06-01

    To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz yıldızı) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.

  14. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.

    PubMed

    Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo

    2018-06-27

    A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

  15. Synthesis and Characterization of Aluminum-Nanodiamond Composite Powders by High Energy Ball Milling

    DTIC Science & Technology

    2011-12-01

    al , “ Cold - spray processing of high density nanocrystalline aluminum alloy 2009...2980, 1996. [21] L. Ajdelsztajn, et al , “ Cold spray deposition of nanocrystalline aluminum alloys ,” Metallurgical and Materials Transactions, vol...form the coating or deposit [9]. Figure 2. Diagram of a typical cold spray system [9] It has been proven that pure metals or composite powders

  16. Optimal approaches for inline sampling of organisms in ballast water: L-shaped vs. Straight sample probes

    NASA Astrophysics Data System (ADS)

    Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.

    2017-10-01

    Both L-shaped ("L") and straight ("Straight") sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.

  17. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    PubMed

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A peculiar segmented flow microfluidics for isoquercitrin biosynthesis based on coupling of reaction and separation.

    PubMed

    Gong, An; Gu, Shuang-Shuang; Wang, Jun; Sheng, Sheng; Wu, Fu-An

    2015-10-01

    A segmented flow containing a buffer-ionic liquid/solvent in a micro-channel reactor was applied to synthesize isoquercitrin by the hesperidinase-catalyzed selective hydrolysis of rutin, based on a novel system of reaction coupling with separation. Within the developed microchannel reactor with one T-shaped inlet and outlet, the maximum isoquercitrin yield (101.7 ± 2.6%) was achieved in 20 min at 30 °C and 4 μL/min. Compared with a continuous-flow reactor, reaction rate was increased 4-fold due to a glycine-sodium hydroxide:[Bmim][BF4]/glycerol triacetate (1:1, v/v) system that formed a slug flow in microchannel and significantly increased mass transfer rates. The mass transfer coefficient significantly increased and exhibited a linear relationship with the flow rate. Hesperidinase could be efficiently reused at least 5 times, without losing any activity. The bonding mechanism and secondary structure of hesperidinase indicated that hesperidinase had a greater affinity to rutin at a production rate of 4 μL/min in this segmented flow microreactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Porous inorganic-organic shape memory polymers.

    PubMed

    Zhang, Dawei; Burkes, William L; Schoener, Cody A; Grunlan, Melissa A

    2012-06-21

    Thermoresponsive shape memory polymers (SMPs) are a type of stimuli-sensitive materials that switch from a temporary shape back to their permanent shape upon exposure to heat. While the majority of SMPs have been fabricated in the solid form, porous SMP foams exhibit distinct properties and are better suited for certain applications, including some in the biomedical field. Like solid SMPs, SMP foams have been restricted to a limited group of organic polymer systems. In this study, we prepared inorganic-organic SMP foams based on the photochemical cure of a macromer comprised of inorganic polydimethylsiloxane (PDMS) segments and organic poly(ε-caprolactone) (PCL) segments, diacrylated PCL(40)-block-PDMS(37)-block-PCL(40). To achieve tunable pore size with high interconnectivity, the SMP foams were prepared via a refined solvent-casting/particulate-leaching (SCPL) method. By varying design parameters such as degree of salt fusion, macromer concentration in the solvent and salt particle size, the SMP foams with excellent shape memory behavior and tunable pore size, pore morphology, and modulus were obtained.

  20. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... order, published concurrently with this notice. \\3\\ Guang Ya Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries...., Zhongya Shaped Aluminium (HK) Holding Limited and Karlton Aluminum Company Ltd. (collectively ``New...

  1. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.

    PubMed

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka

    2013-04-15

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations <0.02 mg/L were attained by tailoring PACl properties (Ala percentage ≤0.5%, basicity ≥85%). The dissolved residual aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.

    2009-02-01

    We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and

  3. Right ventricle functional parameters estimation in arrhythmogenic right ventricular dysplasia using a robust shape based deformable model.

    PubMed

    Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad

    2014-07-01

    Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed

  4. Detection of bone disease by hybrid SST-watershed x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim

    2001-07-01

    Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.

  5. Development of topologically structured membranes of aluminum oxide

    NASA Astrophysics Data System (ADS)

    Bankova, A.; Videkov, V.; Tzaneva, B.

    2014-05-01

    In recent years, nanomembranes have become one of the most widely used construction material for ultrasensitive and ultrathin applications in micro-electromechanical systems (MEMS) and other sensor structures due to their remarkable mechanical properties. Among these, the mechanical stability is of particular importance. We present an approach to the analysis of the stability of nanostructured anodic aluminum oxide free membranes subjected to mechanical bending. The membranes tested were with a thickness of 500 nm to 15 urn in various topological shapes; we describe the technological schemes of their preparation. Bends were applied to membranes prepared by using a selective process of etching and anodizing. The results of the preparation of the membranes are discussed, together with the influence of the angle of deflection, and the number of bendings. The results obtained can be used in designing MEMS structures and sensors which use nanostructured anodic aluminum oxide.

  6. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  7. Extended Multiscale Image Segmentation for Castellated Wall Management

    NASA Astrophysics Data System (ADS)

    Sakamoto, M.; Tsuguchi, M.; Chhatkuli, S.; Satoh, T.

    2018-05-01

    Castellated walls are positioned as tangible cultural heritage, which require regular maintenance to preserve their original state. For the demolition and repair work of the castellated wall, it is necessary to identify the individual stones constituting the wall. However, conventional approaches using laser scanning or integrated circuits (IC) tags were very time-consuming and cumbersome. Therefore, we herein propose an efficient approach for castellated wall management based on an extended multiscale image segmentation technique. In this approach, individual stone polygons are extracted from the castellated wall image and are associated with a stone management database. First, to improve the performance of the extraction of individual stone polygons having a convex shape, we developed a new shape criterion named convex hull fitness in the image segmentation process and confirmed its effectiveness. Next, we discussed the stone management database and its beneficial utilization in the repair work of castellated walls. Subsequently, we proposed irregular-shape indexes that are helpful for evaluating the stone shape and the stability of the stone arrangement state in castellated walls. Finally, we demonstrated an application of the proposed method for a typical castellated wall in Japan. Consequently, we confirmed that the stone polygons can be extracted with an acceptable level. Further, the condition of the shapes and the layout of the stones could be visually judged with the proposed irregular-shape indexes.

  8. Design Models for Shaping of a Tooth Profile of External Fine-Module Ratchet Teeth

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2016-04-01

    Simulation of the shaping for the fine-module external ratchet teeth at which the contacting surfaces are formed by the straight segments is considered in this paper. The design schemes for shaping of the proposed ratchet teeth by a shaper cutter and a rack are obtained. It is defined that the maximum length of the straight segment of the front edge ratchet teeth will be formed at shaping by a rack cutter. The effect of a module, a gradient angle and a radius of blank circles on the length of the straight segment of the front edge ratchet teeth is investigated.

  9. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    . Advancements of this nonaqueous aluminum plating process have the potential to lead to a novel and competitive commercial aluminum deposition process. In this investigation aluminum electrodeposition from ionic liquid based electrolytes onto steel, copper and magnesium substrates without conversion coatings or strike layers was evaluated in six different ionic liquid based electrolytes in two technical setups. Three of which are commercially available aluminum plating electrolytes, three of which, discussed in literature were created on site by research personnel in the laboratory. The three commercially available electrolytes were: 1-Butyl-3-methylimidazolium chloride ([BMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, 1-Ethyl-3-methylimidazolium chloride ([EMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, and BasionicsTM AL-02, an aluminum plating electrolyte containing [EMIm]Cl * 1.5 AlCl3 with additives from BASF. The three electrolytes created on site were based on the 1-ethyl-3-methylimidazolium chloride ionic liquid with added 1.5 AlCl3 and one with added sodium dodecyl sulfate. Small scale plating tests in a 25-mL plating cell were conducted to provide a comparative analysis of the six different electrolytes considered. From these investigations, two were chosen to be evaluated in a larger 1-liter plating cell; designed and constructed to provide a more realistic evaluation of plating parameters with selected electrolytes to better portray industrial electroplating conditions. The effect of current density (10-40 mA/cm 2), temperature (30-90° Celsius) and plating bath agitation on current efficiency, corrosion resistance by the ASTM B117 method, adhesion, microstructure, and chemical composition (evaluated with energy-dispersive x-ray spectroscopy) of the plated Al-layer was explored in both the 25-mL and 1-L plating cell investigations. In addition development of pre- and post-treatment processes for the metal substrates was attempted. While

  10. Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data

    PubMed Central

    2017-01-01

    Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects. PMID:28984823

  11. Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data.

    PubMed

    Falque, Raphael; Vidal-Calleja, Teresa; Miro, Jaime Valls

    2017-10-06

    Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects.

  12. Fuzzy object models for newborn brain MR image segmentation

    NASA Astrophysics Data System (ADS)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  13. Experimental study on nonlinear vibrating of aluminum foam using electronic speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Fujun; Ma, Yinhang; Tao, Nan; He, Xiaoyuan

    2017-06-01

    Due to its multi properties, including excellent stiffness-to-weight and strength-to-weight ratios, closed-cell aluminum and its alloy foams become candidate materials for use in many high-technology industries, such as the automotive and aerospace industries. For the efficient use of closed-cell foams in structural applications, it is necessary and important to detailly understand their mechanical characteristics. In this paper, the nonlinear vibration responses of the cantilever beams of closed-cell aluminum foams were investigated by use of electronic speckle pattern interferometry (ESPI). The nonlinear resonant mode shapes of testing specimens under harmonic excitation were measured. It is first time to obtain from the experimental results that there exist super-harmonic responses when the cantilever beams of closed-cell aluminum foam were forced to vibrate, which was caused by its specific cellular structures.

  14. Study of nanodispersed aluminum and iron alcosols by photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    An, Vladimir; de Izarra, Charles; Saveliev, Gennady

    2011-06-01

    Nanodispersed aluminum and iron alcosols were prepared by ultrasonic dispersion of nanodispersed aluminum and iron powders in absolute ethanol. The photoacoustic signal (PAS) produced in modulated CO2 laser irradiation (1.026 and 1.096 kHz) of alcosols depends on the nature and method of nanoparticle fabrication and does not depend on their concentration in ethanol (within 1-5 g/l). Chemical interaction between metal nanoparticles and ethanol activated by laser irradiation or/and ultrasound is considered as the cause of the PAS.

  15. Ergonomics Designs of Aluminum Beverage Cans & Bottles

    NASA Astrophysics Data System (ADS)

    Han, Jing; Itoh, Ryouiti; Yamazaki, Koetsu; Nishiyama, Sadao; Shinguryo, Takuro

    2005-08-01

    This paper introduced the finite element analyses into the ergonomics designs to evaluate the human feelings numerically and objectively. Two design examples in developing aluminum beverage cans & bottles are presented. The first example describes a design of the tab of the can with better finger access. A simulation of finger pulling up the tab of the can has been performed and a pain in the finger has been evaluated by using the maximum value of the contact stress of a finger model. The finger access comparison of three kinds of tab ring shape designs showed that the finger access of the tab that may have a larger contact area with finger is better. The second example describes a design of rib-shape embossed bottles for hot vending. Analyses of tactile sensation of heat have been performed and the amount of heat transmitted from hot bottles to finger was used to present the hot touch feeling. Comparison results showed that the hot touch feeling of rib-shape embossed bottles is better than that of cylindrical bottles, and that the shape of the rib also influenced the hot touch feeling.

  16. L-shaped right-to-left crossed-fused renal ectopia with left dysplastic ureter.

    PubMed

    Song, Wei; Yang, Jinrui; Zhu, Liang; Liu, Longfei

    2012-01-01

    Crossed-fused renal ectopia is a relatively rare congenital malformation. Herein, we report a case of L-shaped right- to-left crossed-fused renal ectopia with a left dysplastic ureter in a 5-year-old girl. She underwent a left nephrectomy and the postoperative course was uneventful. Copyright © 2011 S. Karger AG, Basel.

  17. Aluminum structural applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, G.

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology thatmore » is particularly suited to the vehicle and its market.« less

  18. Hippocampus segmentation using locally weighted prior based level set

    NASA Astrophysics Data System (ADS)

    Achuthan, Anusha; Rajeswari, Mandava

    2015-12-01

    Segmentation of hippocampus in the brain is one of a major challenge in medical image segmentation due to its' imaging characteristics, with almost similar intensity between another adjacent gray matter structure, such as amygdala. The intensity similarity has causes the hippocampus to have weak or fuzzy boundaries. With this main challenge being demonstrated by hippocampus, a segmentation method that relies on image information alone may not produce accurate segmentation results. Therefore, it is needed an assimilation of prior information such as shape and spatial information into existing segmentation method to produce the expected segmentation. Previous studies has widely integrated prior information into segmentation methods. However, the prior information has been utilized through a global manner integration, and this does not reflect the real scenario during clinical delineation. Therefore, in this paper, a locally integrated prior information into a level set model is presented. This work utilizes a mean shape model to provide automatic initialization for level set evolution, and has been integrated as prior information into the level set model. The local integration of edge based information and prior information has been implemented through an edge weighting map that decides at voxel level which information need to be observed during a level set evolution. The edge weighting map shows which corresponding voxels having sufficient edge information. Experiments shows that the proposed integration of prior information locally into a conventional edge-based level set model, known as geodesic active contour has shown improvement of 9% in averaged Dice coefficient.

  19. Experimental Study of the Seismic Performance of L-Shaped Columns with 500 MPa Steel Bars

    PubMed Central

    Wang, Tiecheng; Liu, Xiao; Zhao, Hailong

    2014-01-01

    Based on tests on six L-shaped RC columns with 500 MPa steel bars, the effect of axial compression ratios and stirrup spacing on failure mode, bearing capacity, displacement, and curvature ductility of the specimens is investigated. Test results show that specimens with lower axial load and large stirrup characteristic value (larger than about 0.35) are better at ductility and seismic performance, while specimens under high axial load or with a small stirrup characteristic value (less than about 0.35) are poorer at ductility; L-shaped columns with 500 MPa steel bars show better bearing capacity and ductility in comparison with specimens with HRB400 steel bars. PMID:24967420

  20. 3D Clumped Cell Segmentation Using Curvature Based Seeded Watershed.

    PubMed

    Atta-Fosu, Thomas; Guo, Weihong; Jeter, Dana; Mizutani, Claudia M; Stopczynski, Nathan; Sousa-Neves, Rui

    2016-12-01

    Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the 'landscape' using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method.

  1. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  2. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  3. Segmenting root systems in xray computed tomography images using level sets

    USDA-ARS?s Scientific Manuscript database

    The segmentation of plant roots from soil and other growing mediums in xray computed tomography images is needed to effectively study the shapes of roots without excavation. However, segmentation is a challenging problem in this context because the root and non-root regions share similar features. ...

  4. Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations

    PubMed Central

    2016-01-01

    Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT

  5. Preparation of micro/nano-structure superhydrophobic film on aluminum plates using galvanic corrosion method.

    PubMed

    Wu, Ruomei; Chao, Guang Hua; Jiang, Haiyun; Pan, Anqiang; Chen, Hong; Yuan, Zhiqing; Liu, Qilong

    2013-10-01

    A simple and novel approach has been developed to obtain a microporous film with compound nanoparticles on the surface of aluminum alloy substrate using the galvanic corrosion method. The wettability of the surface changes from hydrophilicity to superhydrophobicity after chemical modification with stearic acid (SA). The water contact angle (WCA) and sliding angle (WSA) of superhydrophobic aluminum alloy surface (SAAS) are 154 degrees and 9 degrees, respectively. The roughness of the aluminum substrate increases after the oxidation reaction. The porous aluminum matrix surface is covered with irregularly shaped holes with a mean radius of about 15 microm, similar to the surface papillae of natural Lotus leaf, with villus-like nanoparticles array on pore surfaces. The superhydrophobic property is attributed to this special surface morphology and low surface energy SA. X-ray powder diffraction (XRD) pattern and Energy Dispersive X-Ray Spectroscopy (EDS) spectrum indicate that Al2O3, Al(OH)3 and AIO(OH) has been formed on the surface of aluminum substrate after the oxidation reaction. The Raman spectra indicate that C-H bond from SA and the Al-O are formed on the SAAS. The as-formed SAAS has good stability.

  6. Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models

    PubMed Central

    Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua

    2017-01-01

    In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) < 0.2% can be achieved. (b) The initialization performance can be improved by combining AAM and LW. (c) The multi-object strategy greatly facilitates the initialization. (d) Compared to the traditional 3D AAM method, the pseudo 3D OAAM method achieves comparable performance while running 12 times faster. (e) The performance of proposed method is comparable to the state of the art liver segmentation algorithm. The executable version of 3D shape constrained GC with user interface can be downloaded from website http://xinjianchen.wordpress.com/research/. PMID:22311862

  7. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    PubMed Central

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-01-01

    Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different

  8. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong

    Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integratemore » the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on

  9. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning.

    PubMed

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-01

    Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the

  10. Embedded Shape Memory Alloy Particles for the Self-Sensing of Fatigue Crack Growth in an Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Leser, William Paul

    Future aerospace vehicles will be built using novel materials for mission conditions that are difficult to replicate in a laboratory. Structural health monitoring and condition-based maintenance will be critical to ensure the reliability of such vehicles. A multi-functional aluminum alloy containing embedded shape memory alloy (SMA) particles to detect fatigue crack growth is proposed. The regions of intensified strain near the tip of a growing fatigue crack cause the SMA particles to undergo a solid-to-solid phase transformation from austenite to martensite, releasing a detectable and identifiable acoustic emission (AE) signal that can be used to locate the crack in the affected component. This study investigates the AE response of two SMA systems, Ni-Ti, and Co-Ni-Al. Tensile (Ni-Ti) and compressive (Co-Ni-Al) tests were conducted to study the strain-induced transformation response in both of the alloy systems. It was found that the critical stress for transformation in both SMA systems was easily identified by a burst of AE activity during both transformation and reverse transformation. AE signals from these experiments were collected for use as training data for a Bayesian classifier to be used to identify transformation signals in a Al7050 matrix with embedded SMA particles. The Al/SMA composite was made by vacuum hot pressing SMA powder between aluminum plates. The effect of hot pressing temperature and subsequent heat treatments (solutionizing and peak aging) on the SMA particles was studied. It was found that, at the temperatures required, Co-Ni-Al developed a second phase that restricted the transformation from austenite to martensite, thus rendering it ineffective as a candidate for the embedded particles. Conversely, Ni-Ti did survive the embedding process and it was found that the solutionizing heat treatment applied after hot pressing was the main driver in determining the final transformation temperatures for the Ni-Ti particles. The effect of hot

  11. Prostate malignancy grading using gland-related shape descriptors

    NASA Astrophysics Data System (ADS)

    Braumann, Ulf-Dietrich; Scheibe, Patrick; Loeffler, Markus; Kristiansen, Glen; Wernert, Nicolas

    2014-03-01

    A proof-of-principle study was accomplished assessing the descriptive potential of two simple geometric measures (shape descriptors) applied to sets of segmented glands within images of 125 prostate cancer tissue sections. Respective measures addressing glandular shapes were (i) inverse solidity and (ii) inverse compactness. Using a classifier based on logistic regression, Gleason grades 3 and 4/5 could be differentiated with an accuracy of approx. 95%. Results suggest not only good discriminatory properties, but also robustness against gland segmentation variations. False classifications in part were caused by inadvertent Gleason grade assignments, as a-posteriori re-inspections had turned out.

  12. Plasma and Urinary Aluminum Concentrations in Severely Anemic Geophagous Pregnant Women in the Bas Maroni Region of French Guiana: A Case-Control Study

    PubMed Central

    Lambert, Veronique; Boukhari, Rachida; Nacher, Mathieu; Goullé, Jean-Pierre; Roudier, Estelle; Elguindi, Wael; Laquerrière, Annie; Carles, Gabriel

    2010-01-01

    The clays consumed by geophagous individuals contain large quantities of aluminum, a known neurological and hematological toxin. This is the first study to evaluate the risk of aluminum poisoning in geophagous individuals. Blind determinations of plasma and urinary aluminum concentrations were carried out in 98 anemic geophagous pregnant women and 85 non-anemic non-geophagous pregnant women. Aluminum concentrations were significantly higher (P < 0.0001) in the geophagous anemic women than in the controls, with odds ratios of 6.83 (95% confidence interval [CI] = 2.72–19.31) for plasma concentrations (13.92 ± 14.09 μg/L versus 4.95 ± 7.11 μg/L) and 5.44 (95% CI = 2.17–14.8) for urinary concentrations (92.83 ± 251.21 μg/L versus 12.11 ± 23 μg/L). The ingested clay is the most likely source of this overexposure to aluminum. If confirmed, the clinical consequences of this absorption for pregnant women and their offspring should be explored. PMID:21036845

  13. A neural network approach to lung nodule segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Yaoxiu; Menon, Prahlad G.

    2016-03-01

    Computed tomography (CT) imaging is a sensitive and specific lung cancer screening tool for the high-risk population and shown to be promising for detection of lung cancer. This study proposes an automatic methodology for detecting and segmenting lung nodules from CT images. The proposed methods begin with thorax segmentation, lung extraction and reconstruction of the original shape of the parenchyma using morphology operations. Next, a multi-scale hessian-based vesselness filter is applied to extract lung vasculature in lung. The lung vasculature mask is subtracted from the lung region segmentation mask to extract 3D regions representing candidate pulmonary nodules. Finally, the remaining structures are classified as nodules through shape and intensity features which are together used to train an artificial neural network. Up to 75% sensitivity and 98% specificity was achieved for detection of lung nodules in our testing dataset, with an overall accuracy of 97.62%+/-0.72% using 11 selected features as input to the neural network classifier, based on 4-fold cross-validation studies. Receiver operator characteristics for identifying nodules revealed an area under curve of 0.9476.

  14. Probabilistic segmentation and intensity estimation for microarray images.

    PubMed

    Gottardo, Raphael; Besag, Julian; Stephens, Matthew; Murua, Alejandro

    2006-01-01

    We describe a probabilistic approach to simultaneous image segmentation and intensity estimation for complementary DNA microarray experiments. The approach overcomes several limitations of existing methods. In particular, it (a) uses a flexible Markov random field approach to segmentation that allows for a wider range of spot shapes than existing methods, including relatively common 'doughnut-shaped' spots; (b) models the image directly as background plus hybridization intensity, and estimates the two quantities simultaneously, avoiding the common logical error that estimates of foreground may be less than those of the corresponding background if the two are estimated separately; and (c) uses a probabilistic modeling approach to simultaneously perform segmentation and intensity estimation, and to compute spot quality measures. We describe two approaches to parameter estimation: a fast algorithm, based on the expectation-maximization and the iterated conditional modes algorithms, and a fully Bayesian framework. These approaches produce comparable results, and both appear to offer some advantages over other methods. We use an HIV experiment to compare our approach to two commercial software products: Spot and Arrayvision.

  15. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  16. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  17. Gradient-based reliability maps for ACM-based segmentation of hippocampus.

    PubMed

    Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-04-01

    Automatic segmentation of deep brain structures, such as the hippocampus (HC), in MR images has attracted considerable scientific attention due to the widespread use of MRI and to the principal role of some structures in various mental disorders. In this literature, there exists a substantial amount of work relying on deformable models incorporating prior knowledge about structures' anatomy and shape information. However, shape priors capture global shape characteristics and thus fail to model boundaries of varying properties; HC boundaries present rich, poor, and missing gradient regions. On top of that, shape prior knowledge is blended with image information in the evolution process, through global weighting of the two terms, again neglecting the spatially varying boundary properties, causing segmentation faults. An innovative method is hereby presented that aims to achieve highly accurate HC segmentation in MR images, based on the modeling of boundary properties at each anatomical location and the inclusion of appropriate image information for each of those, within an active contour model framework. Hence, blending of image information and prior knowledge is based on a local weighting map, which mixes gradient information, regional and whole brain statistical information with a multi-atlas-based spatial distribution map of the structure's labels. Experimental results on three different datasets demonstrate the efficacy and accuracy of the proposed method.

  18. Experimental research on the poly-aluminum chloride for treating the Pi River water in winter and summer

    NASA Astrophysics Data System (ADS)

    Jia, Rusheng; Bai, Yulin; Yang, Jie

    2018-02-01

    In the beaker experiments that the disposal of low turbidity water, we observed the influence of some factors, such as the dosage of poly-aluminum chloride coagulant, the pH value of raw water, in disposing the high natural organic matters of low turbidity water in winter and summer. we discussed the removal of residual aluminum and UV254 in summer. The experimental results show that when the turbidity is less than 10 NTU, the optimum dosage are 14.4 mg.L-1 and 8.2 mg.L-1 respectively in winter and summer. No matter in winter or summer, the effect of pH value on coagulation treatment is very significant, the best pH value is about 8.1. In summer, with the increase of dosage of poly-aluminum chloride, residual aluminum increased slowly after decrease, turbidity and UV254 after precipitation is similar removal trend. Finally, according to the current market price of poly-aluminum chloride economic analysis, daily differences in pharmaceutical costs about 1600 yuan in summer and winter in the second water plant in Lu’an.

  19. Design and Optimization of the SPOT Primary Mirror Segment

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason G.; Michaels, Gregory J.

    2005-01-01

    The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit

  20. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages.

    PubMed

    Wagner, Andrew J; Bleckmann, Charles A; Murdock, Richard C; Schrand, Amanda M; Schlager, John J; Hussain, Saber M

    2007-06-28

    Nanomaterials, with dimensions in the 1-100 nm range, possess numerous potential benefits to society. However, there is little characterization of their effects on biological systems, either within the environment or on human health. The present study examines cellular interaction of aluminum oxide and aluminum nanomaterials, including their effect on cell viability and cell phagocytosis, with reference to particle size and the particle's chemical composition. Experiments were performed to characterize initial in vitro cellular effects of rat alveolar macrophages (NR8383) after exposure to aluminum oxide nanoparticles (Al2O3-NP at 30 and 40 nm) and aluminum metal nanoparticles containing a 2-3 nm oxide coat (Al-NP at 50, 80, and 120 nm). Characterization of the nanomaterials, both as received and in situ, was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and/or CytoViva150 Ultra Resolution Imaging (URI)). Particles showed significant agglomeration in cell exposure media using DLS and the URI as compared to primary particle size in TEM. Cell viability assay results indicate a marginal effect on macrophage viability after exposure to Al2O3-NP at doses of 100 microg/mL for 24 h continuous exposure. Al-NP produced significantly reduced viability after 24 h of continuous exposure with doses from 100 to 250 microg/mL. Cell phagocytotic ability was significantly hindered by exposure to 50, 80, or 120 nm Al-NP at 25 microg/mL for 24 h, but the same concentration (25 microg/mL) had no significant effect on the cellular viability. However, no significant effect on phagocytosis was observed with Al2O3-NP. In summary, these results show that Al-NP exhibit greater toxicity and more significantly diminish the phagocytotic ability of macrophages after 24 h of exposure when compared to Al2O3-NP.

  1. A multi-segment soft actuator for biomedical applications based on IPMCs

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Wang, Yanjie; Liu, Jiayu; Luo, Meng; Li, Dichen; Chen, Hualing

    2015-04-01

    With rapid progress of biomedical devices towards miniaturization, flexibility, multifunction and low cost, the restrictions of traditional mechanical structures become particularly apparent, while soft materials become research focus in broad fields. As one of the most attractive soft materials, Ionic Polymer-Metal Composite (IPMC) is widely used as artificial muscles and actuators, with the advantages of low driving-voltage, high efficiency of electromechanical transduction and functional stabilization. In this paper, a new intuitive control method was presented to achieve the omnidirectional bending movements and was applied on a representative actuation structure of a multi-degree-offreedom soft actuator composed of two segments bar-shaped IPMC with a square cross section. Firstly, the bar-shaped IPMCs were fabricated by the solution casting method, reducing plating, autocatalytic plating method and cut into shapes successively. The connectors of the multi-segment IPMC actuator were fabricated by 3D printing. Then, a new control method was introduced to realize the intuitive mapping relationship between the actuator and the joystick manipulator. The control circuit was designed and tested. Finally, the multi-degree-of-freedom actuator of 2 segments bar-shaped IPMCs was implemented and omnidirectional bending movements were achieved, which could be a promising actuator for biomedical applications, such as endoscope, catheterism, laparoscopy and the surgical resection of tumors.

  2. LDR segmented mirror technology assessment study

    NASA Technical Reports Server (NTRS)

    Krim, M.; Russo, J.

    1983-01-01

    In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.

  3. The effect of zinc on the aluminum anode of the aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  4. Stimulatory effects of aluminum on growth of sugar maple seedlings

    Treesearch

    George A. Schier; Carolyn J. McQuattie

    2002-01-01

    To determine the effect of aluminum (Al) on sugar maple (Acer saccharum Marsh.), seedlings were grown in sand irrigated with nutrient solution (pH 3.8) containing 0, 2.5, 5, 10, 20, or 40 mg L-1 Al. Seedling growth was enhanced at 2.5 and 5mgL-1 Al. Although higher levels of Al reduced calcium (Ca) and...

  5. Crystallinity as a tunable switch of poly(L-lactide) shape memory effects.

    PubMed

    Sobota, Michał; Jurczyk, Sebastian; Kwiecień, Michał; Smola-Dmochowska, Anna; Musioł, Marta; Domański, Marian; Janeczek, Henryk; Kawalec, Michał; Kurcok, Piotr

    2017-02-01

    Materials with shape memory effect (SME) have already been widely used in the medical field. The interesting part of this group is represented by double function materials. The bioresorption and SME ability are common in polyesters implants. The first information about vascular stent made of bioresorbable polyester with SME was published in 2000. However, there are not many investigations about SME control of elements in the aspect of material processing. In the present work, the ability to control the shape memory (SM) of bioresorbable and semicrystalline poly(L-lactide) (PLLA) is investigated. The studies are based on the unexpected effect of material orientation which was demonstrated even at low percentage deformation in crystallized mould injected material. The presented studies revealed that the different degrees of crystallinity obtained during processing might be a useful switch to create a tailored SME for a specific application. The prepared samples of variable morphology revealed a possibility to control the value of material stress during permanent shape recovery. The degree of shape recovery of the prepared samples was also controlable. The highest stress value observed during permanent shape recovery reached 10MPa for the sample annealed 60min at 115°C even when the sample was only deformed in 8%. The other significant aspect of this work is to present the problem of slow crystallization of the material during and after processing (cooling rate) as well as the possibility of negative SME change during the shelf life of the fabric. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    NASA Technical Reports Server (NTRS)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  7. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments

    PubMed Central

    Hill, Terence E.; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Slack, Olga A. L.; Ly, Hoai J.; Lokugamage, Nandadeva; Freiberg, Alexander N.

    2015-01-01

    ABSTRACT Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to

  8. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments.

    PubMed

    Ikegami, Tetsuro; Hill, Terence E; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Slack, Olga A L; Ly, Hoai J; Lokugamage, Nandadeva; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other

  9. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    NASA Astrophysics Data System (ADS)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  10. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  11. Spinal cord grey matter segmentation challenge.

    PubMed

    Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien

    2017-05-15

    An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Initiating or blocking locomotion in spinal cats by applying noradrenergic drugs to restricted lumbar spinal segments.

    PubMed

    Marcoux, J; Rossignol, S

    2000-11-15

    After an acute low thoracic spinal transection (T13), cats can be made to walk with the hindlimbs on a treadmill with clonidine, an alpha2-noradrenergic agonist. Because previous studies of neonatal rat spinal cord in vitro suggest that the most important lumbar segments for rhythmogenesis are L1-L2, we investigated the role of various lumbar segments in the initiation of walking movements on a treadmill of adult cats spinalized (T13), 5-6 d earlier. The locomotor activities were evaluated from electromyographic and video recordings. The results show that: (1) localized topical application of clonidine in restricted baths over either the L3-L4 or the L5-L7 segments was sufficient to induce walking movements. Yohimbine, an alpha2-noradrenergic antagonist, could block this locomotion when applied over L3-L4 or L5-L7; (2) microinjections of clonidine in one or two lumbar segments from L3 to L5 could also induce locomotion; (3) after an intravenous injection of clonidine, locomotion was blocked by microinjections of yohimbine in segments L3, L4, or L5 but not if the injection was in L6; (4) locomotion was also blocked in all cases by additional spinal transections at L3 or L4. These results show that it is possible to initiate walking in the adult spinal cat with a pharmacological stimulation of a restricted number of lumbar segments and also that the integrity of the L3-L4 segments is necessary to sustain the locomotor activity.

  13. A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation

    PubMed Central

    Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218

  14. Camera calibration correction in shape from inconsistent silhouette

    USDA-ARS?s Scientific Manuscript database

    The use of shape from silhouette for reconstruction tasks is plagued by two types of real-world errors: camera calibration error and silhouette segmentation error. When either error is present, we call the problem the Shape from Inconsistent Silhouette (SfIS) problem. In this paper, we show how sm...

  15. Multi-atlas segmentation of the cartilage in knee MR images with sequential volume- and bone-mask-based registrations

    NASA Astrophysics Data System (ADS)

    Lee, Han Sang; Kim, Hyeun A.; Kim, Hyeonjin; Hong, Helen; Yoon, Young Cheol; Kim, Junmo

    2016-03-01

    In spite of its clinical importance in diagnosis of osteoarthritis, segmentation of cartilage in knee MRI remains a challenging task due to its shape variability and low contrast with surrounding soft tissues and synovial fluid. In this paper, we propose a multi-atlas segmentation of cartilage in knee MRI with sequential atlas registrations and locallyweighted voting (LWV). First, bone is segmented by sequential volume- and object-based registrations and LWV. Second, to overcome the shape variability of cartilage, cartilage is segmented by bone-mask-based registration and LWV. In experiments, the proposed method improved the bone segmentation by reducing misclassified bone region, and enhanced the cartilage segmentation by preventing cartilage leakage into surrounding similar intensity region, with the help of sequential registrations and LWV.

  16. The segment polarity network is a robust developmental module

    NASA Astrophysics Data System (ADS)

    von Dassow, George; Meir, Eli; Munro, Edwin M.; Odell, Garrett M.

    2000-07-01

    All insects possess homologous segments, but segment specification differs radically among insect orders. In Drosophila, maternal morphogens control the patterned activation of gap genes, which encode transcriptional regulators that shape the patterned expression of pair-rule genes. This patterning cascade takes place before cellularization. Pair-rule gene products subsequently `imprint' segment polarity genes with reiterated patterns, thus defining the primordial segments. This mechanism must be greatly modified in insect groups in which many segments emerge only after cellularization. In beetles and parasitic wasps, for instance, pair-rule homologues are expressed in patterns consistent with roles during segmentation, but these patterns emerge within cellular fields. In contrast, although in locusts pair-rule homologues may not control segmentation, some segment polarity genes and their interactions are conserved. Perhaps segmentation is modular, with each module autonomously expressing a characteristic intrinsic behaviour in response to transient stimuli. If so, evolution could rearrange inputs to modules without changing their intrinsic behaviours. Here we suggest, using computer simulations, that the Drosophila segment polarity genes constitute such a module, and that this module is resistant to variations in the kinetic constants that govern its behaviour.

  17. Phenotypic characterization of glioblastoma identified through shape descriptors

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2016-03-01

    This paper proposes quantitatively describing the shape of glioblastoma (GBM) tissue phenotypes as a set of shape features derived from segmentations, for the purposes of discriminating between GBM phenotypes and monitoring tumor progression. GBM patients were identified from the Cancer Genome Atlas, and quantitative MR imaging data were obtained from the Cancer Imaging Archive. Three GBM tissue phenotypes are considered including necrosis, active tumor and edema/invasion. Volumetric tissue segmentations are obtained from registered T1˗weighted (T1˗WI) postcontrast and fluid-attenuated inversion recovery (FLAIR) MRI modalities. Shape features are computed from respective tissue phenotype segmentations, and a Kruskal-Wallis test was employed to select features capable of classification with a significance level of p < 0.05. Several classifier models are employed to distinguish phenotypes, where a leave-one-out cross-validation was performed. Eight features were found statistically significant for classifying GBM phenotypes with p <0.05, orientation is uninformative. Quantitative evaluations show the SVM results in the highest classification accuracy of 87.50%, sensitivity of 94.59% and specificity of 92.77%. In summary, the shape descriptors proposed in this work show high performance in predicting GBM tissue phenotypes. They are thus closely linked to morphological characteristics of GBM phenotypes and could potentially be used in a computer assisted labeling system.

  18. Effects of Aluminum Stress on Protective Enzyme Activity in Tie Guanyin leaves

    NASA Astrophysics Data System (ADS)

    Sun, JingWei; Du, NaiChen; Zhang, YunFeng

    2018-01-01

    The experiment was adopted to study the change of SOD, CAT and POD activity of Tie guanyin (new leaf and old leaf blade of different concentrations of aluminum stress; in this paper, 0 (CK), 40, 200, four gradients of 400mg/L concentration of Al3+ in acidic conditions, Tieguanyin tea leaf SOD, cat and POD activity changes. The results showed that high concentrations of aluminum stress on antioxidant enzyme system activity cannot continue to increase; at the same time showed that SOD is sensitive to aluminum toxicity concentration change, its sensitivity is higher than CAT and POD, SOD and CAT activity and the aging and decline of plant There was a positive correlation.

  19. Integrating Compact Constraint and Distance Regularization with Level Set for Hepatocellular Carcinoma (HCC) Segmentation on Computed Tomography (CT) Images

    NASA Astrophysics Data System (ADS)

    Gui, Luying; He, Jian; Qiu, Yudong; Yang, Xiaoping

    2017-01-01

    This paper presents a variational level set approach to segment lesions with compact shapes on medical images. In this study, we investigate to address the problem of segmentation for hepatocellular carcinoma which are usually of various shapes, variable intensities, and weak boundaries. An efficient constraint which is called the isoperimetric constraint to describe the compactness of shapes is applied in this method. In addition, in order to ensure the precise segmentation and stable movement of the level set, a distance regularization is also implemented in the proposed variational framework. Our method is applied to segment various hepatocellular carcinoma regions on Computed Tomography images with promising results. Comparison results also prove that the proposed method is more accurate than other two approaches.

  20. Color image segmentation to detect defects on fresh ham

    NASA Astrophysics Data System (ADS)

    Marty-Mahe, Pascale; Loisel, Philippe; Brossard, Didier

    2003-04-01

    We present in this paper the color segmentation methods that were used to detect appearance defects on 3 dimensional shape of fresh ham. The use of color histograms turned out to be an efficient solution to characterize the healthy skin, but a special care must be taken to choose the color components because of the 3 dimensional shape of ham.

  1. Bayesian segmentation of atrium wall using globally-optimal graph cuts on 3D meshes.

    PubMed

    Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P; Whitaker, Ross T

    2013-01-01

    Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.

  2. Multi-stage learning for robust lung segmentation in challenging CT volumes.

    PubMed

    Sofka, Michal; Wetzl, Jens; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin

    2011-01-01

    Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data.

  3. Fume generation rates for stainless steel, nickel and aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, H.R.

    1996-12-01

    This paper describes a study of the effects of pulsed welding current on fume produced during gas metal arc welding (GMAW) of stainless steel, nickel, and aluminum alloys. This is an extension of earlier studies of mild steel electrode wire. Reduction of welding fume is important because steady current GMAW of stainless steels and nickel alloys may produce fume that exceeds recommended worker exposure limits for some of the fume constituents. Fume generation from aluminum alloy ER5356 was studied because steady current welding with this alloy produces much higher fume generation rates than ER4043 alloy electrode wire. This work showsmore » that pulsed current can reduce GMAW fume generation rates for Er308L, ER310, and ER312 stainless steel, ERNiCr-3 nickel alloy, and ER5356 aluminum-magnesium alloy electrode wires.« less

  4. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  5. Chromosome-anchored QTL conferring aluminum tolerance in hexaploid oat

    USDA-ARS?s Scientific Manuscript database

    Abstract Aluminum (Al) toxicity is a major constraint on crop production in acid soils around the world. Hexaploid oat (Avena sativa L.) possesses signi'cant Al tolerance making it a good candidate for production in these environments. Genetic improvement for Al tolerance in oat has traditionally be...

  6. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  7. Association between serum aluminum levels and cardiothoracic ratio in patients on chronic hemodialysis

    PubMed Central

    Wang, Tzu-Lin; Fang, Yu-Wei; Leu, Jyh-Gang

    2017-01-01

    The cardiothoracic ratio (CTR) and serum aluminum levels are both associated with mortality in hemodialysis patients. However, limited data regarding the association between serum aluminum levels and the CTR have been published to date. Therefore, we aimed to elucidate this association in patients on chronic hemodialysis (CHD). We investigated the association between the serum aluminum level and the CTR in CHD in a retrospective cross-sectional study of 547 Taiwanese patients on CHD. The mean age of patients was 62.5±13.2 years, with a mean hemodialysis time of 7.1±5.2 years. Among the patients, 36.9% were diabetic and 47.9% were male. After natural logarithmic transformation (ln(aluminum)), the serum aluminum level exhibited an independent and linear relationship with the CTR (β: 1.40, 95% confidence interval (CI), 0.6–2.2). A high serum aluminum level (≥6 ng/dL) was significantly associated with a CTR >0.5 in the crude analysis (odds ratio (OR): 2.15, 95% CI, 1.52–3.04) and remained significant after multivariable adjustment (OR: 2.45, 95% CI, 1.63–3.67). Moreover, the ln(aluminum) value was significantly associated with a CTR >0.5 (OR: 1.71, 95%CI, 1.28–2.29) in multivariable analysis, indicating a dose effect of aluminum on cardiomegaly. In conclusion, the serum aluminum level was independently associated with cardiac remodeling (elevated CTR) in patients on CHD. PMID:29261793

  8. The ionization efficiency of aluminum and iron at meteoric velocities

    NASA Astrophysics Data System (ADS)

    DeLuca, Michael; Munsat, Tobin; Thomas, Evan; Sternovsky, Zoltan

    2018-07-01

    The ionization efficiency of aluminum was measured in the laboratory over an extended velocity range of 10.8-73.4 km/s and compared to available models. The measurements were made by shooting submicron-sized aluminum dust particles into an air chamber using the University of Colorado's dust accelerator facility. The ionization efficiency, β, is calculated from the total charge generated in the chamber during the complete ablation of particles of known mass. An array of photomultiplier tubes observed the light production by a subset of particles in the chamber to confirm that a moderate deceleration of the ablating particles occurred at low velocities. This information allows the interpretation of the β measurements to be extended to velocities <20 km/s, with the understanding that the low-velocity β measurements are lower limits. Updated β measurements for iron particles are also reported over an extended velocity range compared to previously published data: 10.5-87.3 km/s. The measurements are fit to functions for the ionization efficiency across the entire velocity range, and a semi-empirical function is presented which matches the shape of the measured β curves for aluminum and iron at both high and low velocities.

  9. Multiscale Experimental and Numerical Approach to the Powder Particle Shape Effect on Al-Al2O3 Coating Build-Up

    NASA Astrophysics Data System (ADS)

    Leger, P. E.; Sennour, M.; Delloro, F.; Borit, F.; Debray, A.; Gaslain, F.; Jeandin, M.; Ducos, M.

    2017-10-01

    Aluminum (Al) powders with spherical and irregular particle shapes were mixed with two alumina (Al2O3) powders with either a spherical or an angular particle shape to achieve high-performance cold-sprayed coatings onto steel. Two effects of the aluminum particle shape were observed. First, coating microstructure observation showed impinging heterogeneity depending on particle shape. Second, particle jet differences depending on particle morphology were shown by velocity maps. From the latter, SEM and XRD, three effects of the alumina particle shape were also shown, i.e., higher in-flight velocity of angular particles, fragmentation of spherical hollow particles and embedding of alumina particles with aluminum. Numerical simulation of particle impacts was developed to study the densification of Al coating due to Al2O3 addition through elucidation of Al-Al2O3 interaction behavior at the scale of the coating. Al/Al and Al/Al2O3 interfaces were investigated using TEM to understand coating strengthening effects due to alumina addition at the scale of the particle. As a whole, Al and Al2O3 particle shape effects were claimed to explain coating mechanical properties, e.g., microhardness and coating-substrate bond strength. This study resulted in specifying criteria to help cold spray users in selecting powders for their applications, to meet economic and technical requirements.

  10. Analysis and Test of Deep Flaws in Thin Sheets of Aluminum and Titanium. Volume 2: Crack Opening Displacement and Stress-Strain Data

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1978-01-01

    Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.

  11. Semantic Image Segmentation with Contextual Hierarchical Models.

    PubMed

    Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-05-01

    Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).

  12. Ergonomics Designs of Aluminum Beverage Cans and Bottles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Jing; Itoh, Ryouiti; Shinguryo, Takuro

    2005-08-05

    This paper introduced the finite element analyses into the ergonomics designs to evaluate the human feelings numerically and objectively. Two design examples in developing aluminum beverage cans and bottles are presented. The first example describes a design of the tab of the can with better finger access. A simulation of finger pulling up the tab of the can has been performed and a pain in the finger has been evaluated by using the maximum value of the contact stress of a finger model. The finger access comparison of three kinds of tab ring shape designs showed that the finger accessmore » of the tab that may have a larger contact area with finger is better. The second example describes a design of rib-shape embossed bottles for hot vending. Analyses of tactile sensation of heat have been performed and the amount of heat transmitted from hot bottles to finger was used to present the hot touch feeling. Comparison results showed that the hot touch feeling of rib-shape embossed bottles is better than that of cylindrical bottles, and that the shape of the rib also influenced the hot touch feeling.« less

  13. Degradation Mechanisms in Aluminum Matrix Composites: Alumina/Aluminum and Boron/Aluminum. Ph.D. Thesis - North Carolina State Univ. at Raleigh

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.

    1981-01-01

    The effects of fabrication and long term thermal exposure (up to 10,000 hours at 590 K) on two types of aluminum matrix composites were examined. An alumina/aluminum composite, was made of continuous alpha Al2O3 fibers in a matrix of commercially pure aluminum alloyed with 2.8% lithium. The mechanical properties of the material, the effect of isothermal exposure, cyclic thermal exposure, and fatigue are presented. Two degradation mechanisms are identified. One was caused by formation of a nonstoichiometric alumina during fabrication, the other by a loss of lithium to a surface reaction during long term thermal exposure. The other composite, boron/aluminum, made of boron fibers in an aluminum matrix, was investigated using five different aluminum alloys for the matrices. The mechanical properties of each material and the effect of isothermal and cyclic thermal exposure are presented. The effects of each alloy constituent on the degradation mechanisms are discussed. The effects of several reactions between alloy constituents and boron fibers on the composite properties are discussed.

  14. The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis mellifera).

    PubMed

    Chicas-Mosier, Ana M; Cooper, Bree A; Melendez, Alexander M; Pérez, Melina; Oskay, Devrim; Abramson, Charles I

    2017-09-01

    Pollinator decline is of international concern because of the economic services these organisms provide. Commonly cited sources of decline are toxicants, habitat fragmentation, and parasites. Toxicant exposure can occur through uptake and distribution from plant tissues and resources such as pollen and nectar. Metals such as aluminum can be distributed to pollinators and other herbivores through this route especially in acidified or mined areas. A free-flying artificial flower patch apparatus was used to understand how two concentrations of aluminum (2mg/L and 20mg/L) may affect the learning, orientation, and foraging behaviors of honey bees (Apis mellifera) in Turkey. The results show that a single dose of aluminum immediately affects the floral decision making of honey bees potentially by altering sucrose perception, increasing activity level, or reducing the likelihood of foraging on safer or uncontaminated resource patches. We conclude that aluminum exposure may be detrimental to foraging behaviors and potentially to other ecologically relevant behaviors. Copyright © 2017. Published by Elsevier Inc.

  15. Current and Future Uses of Aluminum in the Automotive Industry

    NASA Astrophysics Data System (ADS)

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-12-01

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher-strength aluminum materials needed for strength-driven safety-critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225°C. A demonstration part has been developed that is representative of the forming challenges within a current hot-stamped door ring component. This part tooling has been built and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.

  16. Current and Future Uses of Aluminum in the Automotive Industry

    DOE PAGES

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-08-29

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less

  17. Current and Future Uses of Aluminum in the Automotive Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, R. S.; Boettcher, E.; Crawford, D.

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less

  18. Boundary overlap for medical image segmentation evaluation

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina

    2017-03-01

    All medical image segmentation algorithms need to be validated and compared, and yet no evaluation framework is widely accepted within the imaging community. Collections of segmentation results often need to be compared and ranked by their effectiveness. Evaluation measures which are popular in the literature are based on region overlap or boundary distance. None of these are consistent in the way they rank segmentation results: they tend to be sensitive to one or another type of segmentation error (size, location, shape) but no single measure covers all error types. We introduce a new family of measures, with hybrid characteristics. These measures quantify similarity/difference of segmented regions by considering their overlap around the region boundaries. This family is more sensitive than other measures in the literature to combinations of segmentation error types. We compare measure performance on collections of segmentation results sourced from carefully compiled 2D synthetic data, and also on 3D medical image volumes. We show that our new measure: (1) penalises errors successfully, especially those around region boundaries; (2) gives a low similarity score when existing measures disagree, thus avoiding overly inflated scores; and (3) scores segmentation results over a wider range of values. We consider a representative measure from this family and the effect of its only free parameter on error sensitivity, typical value range, and running time.

  19. Fully automatic cervical vertebrae segmentation framework for X-ray images.

    PubMed

    Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg

    2018-04-01

    The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  1. Human body segmentation via data-driven graph cut.

    PubMed

    Li, Shifeng; Lu, Huchuan; Shao, Xingqing

    2014-11-01

    Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.

  2. Segmentation of liver region with tumorous tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Lee, Gobert; Tajima, Tetsuji; Kitagawa, Teruhiko; Kanematsu, Masayuki; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Hoshi, Hiroaki; Nawano, Shigeru; Shinozaki, Kenji

    2007-03-01

    Segmentation of an abnormal liver region based on CT or MR images is a crucial step in surgical planning. However, precisely carrying out this step remains a challenge due to either connectivities of the liver to other organs or the shape, internal texture, and homogeneity of liver that maybe extensively affected in case of liver diseases. Here, we propose a non-density based method for extracting the liver region containing tumor tissues by edge detection processing. False extracted regions are eliminated by a shape analysis method and thresholding processing. If the multi-phased images are available then the overall outcome of segmentation can be improved by subtracting two phase images, and the connectivities can be further eliminated by referring to the intensity on another phase image. Within an edge liver map, tumor candidates are identified by their different gray values relative to the liver. After elimination of the small and nonspherical over-extracted regions, the final liver region integrates the tumor region with the liver tissue. In our experiment, 40 cases of MDCT images were used and the result showed that our fully automatic method for the segmentation of liver region is effective and robust despite the presence of hepatic tumors within the liver.

  3. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams.

    PubMed

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a approximately 450 kV, approximately 400 ns pulse. It was found that 300-400 MW, approximately 250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  4. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  5. Orbital Debris Shape Characterization Project Abstract

    NASA Technical Reports Server (NTRS)

    Pease, Jessie

    2016-01-01

    I have been working on a project to further our understanding of orbital debris by helping create a new dataset previously too complex to be implemented in past orbital debris propagation models. I am doing this by creating documentation and 3D examples and illustrations of the shape categories. Earlier models assumed all orbital debris to be spherical aluminum fragments. My project will help expand our knowledge of shape populations to 6 categories: Straight Needle/Rod/Cylinder, Bent Needle/Rod/Cylinder, Flat Plate, Bent Plate, Nugget/Parallelepiped/Spheroid, and Flexible. The last category, Flexible, is still up for discussion and may be modified. These categories will be used to characterize fragments in the DebriSat experiment.

  6. A low cost, disposable cable-shaped Al-air battery for portable biosensors

    NASA Astrophysics Data System (ADS)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  7. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    PubMed

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  9. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  10. Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT.

    PubMed

    Fu, Huazhu; Xu, Yanwu; Lin, Stephen; Zhang, Xiaoqin; Wong, Damon Wing Kee; Liu, Jiang; Frangi, Alejandro F; Baskaran, Mani; Aung, Tin

    2017-09-01

    Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.

  11. Automatic bone segmentation in knee MR images using a coarse-to-fine strategy

    NASA Astrophysics Data System (ADS)

    Park, Sang Hyun; Lee, Soochahn; Yun, Il Dong; Lee, Sang Uk

    2012-02-01

    Segmentation of bone and cartilage from a three dimensional knee magnetic resonance (MR) image is a crucial element in monitoring and understanding of development and progress of osteoarthritis. Until now, various segmentation methods have been proposed to separate the bone from other tissues, but it still remains challenging problem due to different modality of MR images, low contrast between bone and tissues, and shape irregularity. In this paper, we present a new fully-automatic segmentation method of bone compartments using relevant bone atlases from a training set. To find the relevant bone atlases and obtain the segmentation, a coarse-to-fine strategy is proposed. In the coarse step, the best atlas among the training set and an initial segmentation are simultaneously detected using branch and bound tree search. Since the best atlas in the coarse step is not accurately aligned, all atlases from the training set are aligned to the initial segmentation, and the best aligned atlas is selected in the middle step. Finally, in the fine step, segmentation is conducted as adaptively integrating shape of the best aligned atlas and appearance prior based on characteristics of local regions. For experiment, femur and tibia bones of forty test MR images are segmented by the proposed method using sixty training MR images. Experimental results show that a performance of the segmentation and the registration becomes better as going near the fine step, and the proposed method obtain the comparable performance with the state-of-the-art methods.

  12. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  13. Prediction of Process-Induced Distortions in L-Shaped Composite Profiles Using Path-Dependent Constitutive Law

    NASA Astrophysics Data System (ADS)

    Ding, Anxin; Li, Shuxin; Wang, Jihui; Ni, Aiqing; Sun, Liangliang; Chang, Lei

    2016-10-01

    In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.

  14. Implications of segment mismatch for influenza A virus evolution

    PubMed Central

    White, Maria C.; Lowen, Anice C.

    2018-01-01

    Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity. PMID:29244017

  15. A supervoxel-based segmentation method for prostate MR images

    NASA Astrophysics Data System (ADS)

    Tian, Zhiqiang; Liu, LiZhi; Fei, Baowei

    2015-03-01

    Accurate segmentation of the prostate has many applications in prostate cancer diagnosis and therapy. In this paper, we propose a "Supervoxel" based method for prostate segmentation. The prostate segmentation problem is considered as assigning a label to each supervoxel. An energy function with data and smoothness terms is used to model the labeling process. The data term estimates the likelihood of a supervoxel belongs to the prostate according to a shape feature. The geometric relationship between two neighboring supervoxels is used to construct a smoothness term. A threedimensional (3D) graph cut method is used to minimize the energy function in order to segment the prostate. A 3D level set is then used to get a smooth surface based on the output of the graph cut. The performance of the proposed segmentation algorithm was evaluated with respect to the manual segmentation ground truth. The experimental results on 12 prostate volumes showed that the proposed algorithm yields a mean Dice similarity coefficient of 86.9%+/-3.2%. The segmentation method can be used not only for the prostate but also for other organs.

  16. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    PubMed

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  18. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    PubMed

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  19. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  20. Automatic segmentation of vessels in in-vivo ultrasound scans

    NASA Astrophysics Data System (ADS)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen

    2017-03-01

    Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.

  1. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  2. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  3. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  4. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  5. Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images.

    PubMed

    Nillesen, Maartje M; Lopata, Richard G P; Gerrits, Inge H; Kapusta, Livia; Thijssen, Johan M; de Korte, Chris L

    2008-04-01

    The objective of this study was to investigate the use of speckle statistics as a preprocessing step for segmentation of the myocardium in echocardiographic images. Three-dimensional (3D) and biplane image sequences of the left ventricle of two healthy children and one dog (beagle) were acquired. Pixel-based speckle statistics of manually segmented blood and myocardial regions were investigated by fitting various probability density functions (pdf). The statistics of heart muscle and blood could both be optimally modeled by a K-pdf or Gamma-pdf (Kolmogorov-Smirnov goodness-of-fit test). Scale and shape parameters of both distributions could differentiate between blood and myocardium. Local estimation of these parameters was used to obtain parametric images, where window size was related to speckle size (5 x 2 speckles). Moment-based and maximum-likelihood estimators were used. Scale parameters were still able to differentiate blood from myocardium; however, smoothing of edges of anatomical structures occurred. Estimation of the shape parameter required a larger window size, leading to unacceptable blurring. Using these parameters as an input for segmentation resulted in unreliable segmentation. Adaptive mean squares filtering was then introduced using the moment-based scale parameter (sigma(2)/mu) of the Gamma-pdf to automatically steer the two-dimensional (2D) local filtering process. This method adequately preserved sharpness of the edges. In conclusion, a trade-off between preservation of sharpness of edges and goodness-of-fit when estimating local shape and scale parameters is evident for parametric images. For this reason, adaptive filtering outperforms parametric imaging for the segmentation of echocardiographic images.

  6. 75 FR 73041 - Aluminum Extrusions From the People's Republic of China: Postponement of Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... months. On November 1, 2010, Guang Ya Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries (Hong Kong) Limited..., finding that Guang Ya Group, Zhaoqing New Zhongya Aluminum Co., Ltd., Zhongya Shaped Aluminium (HK...

  7. Enhanced thermal and structural properties of partially phosphorylated polyvinyl alcohol - Aluminum phosphate (PPVA-Alpo4) nanocomposites with aluminium nitrate source

    NASA Astrophysics Data System (ADS)

    Saat, Asmalina Mohamed; Johan, Mohd Rafie

    2017-12-01

    Synthesis of AlPO4 nanocomposite depends on the ratio of aluminum to phosphate, method of synthesis and the source for aluminum and phosphate source used. Variation of phosphate and aluminum source used will form multiple equilibria reactions and affected by ions variability and concentration, stoichiometry, temperature during reaction process and especially the precipitation pH. Aluminum nitrate was used to produce a partially phosphorylated poly vinyl alcohol-aluminum phosphate (PPVA-AlPO4) nanocomposite with various nanoparticle shapes, structural and properties. Synthesis of PPVA-AlPO4 nanocomposite with aluminum nitrate shows enhancement of thermal and structural in comparison with pure PVA and modified PPVA. Thermogravimetric (TGA) analysis shows that the weight residue of PPVA-AlPO4 composite was higher than PPVA and PVA. X-ray diffraction (XRD) pattern of PVA shows a single peak broadening after the addition of phosphoric acid. Meanwhile, XRD pattern of PPVA-AlPO4 demonstrates multiple phases of AlPO4 in the nanocomposite. Field Emission Scanning Electron Microscopy (FESEM) confirmed the existence of multiple geometrical phases and nanosize of spherical particles.

  8. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  9. Scaling Relations for the Thermal Structure of Segmented Oceanic Transform Faults

    NASA Astrophysics Data System (ADS)

    Wolfson-Schwehr, M.; Boettcher, M. S.; Behn, M. D.

    2015-12-01

    Mid-ocean ridge-transform faults (RTFs) are a natural laboratory for studying strike-slip earthquake behavior due to their relatively simple geometry, well-constrained slip rates, and quasi-periodic seismic cycles. However, deficiencies in our understanding of the limited size of the largest RTF earthquakes are due, in part, to not considering the effect of short intra-transform spreading centers (ITSCs) on fault thermal structure. We use COMSOL Multiphysics to run a series of 3D finite element simulations of segmented RTFs with visco-plastic rheology. The models test a range of RTF segment lengths (L = 10-150 km), ITSC offset lengths (O = 1-30 km), and spreading rates (V = 2-14 cm/yr). The lithosphere and upper mantle are approximated as steady-state, incompressible flow. Coulomb failure incorporates brittle processes in the lithosphere, and a temperature-dependent flow law for dislocation creep of olivine activates ductile deformation in the mantle. ITSC offsets as small as 2 km affect the thermal structure underlying many segmented RTFs, reducing the area above the 600˚C isotherm, A600, and thus the size of the largest expected earthquakes, Mc. We develop a scaling relation for the critical ITSC offset length, OC, which significantly reduces the thermal affect of adjacent fault segments of length L1 and L2. OC is defined as the ITSC offset that results in an area loss ratio of R = (Aunbroken - Acombined)/Aunbroken - Adecoupled) = 63%, where Aunbroken = C600(L1+L2)1.5V-0.6 is A600 for an RTF of length L1 + L2; Adecoupled = C600(L11.5+L21.5)V-0.6 is the combined A600 of RTFs of lengths L1 and L2, respectively; and Acombined = Aunbroken exp(-O/ OC) + Adecoupled (1-exp(-O/ OC)). C600 is a constant. We use OC and kinematic fault parameters (L1, L2, O, and V) to develop a scaling relation for the approximate seismogenic area, Aseg, for each segment of a RTF system composed of two fault segments. Finally, we estimate the size of Mc on a fault segment based on Aseg. We

  10. Treatment of oily bilge water by electrocoagulation process using aluminum electrodes

    NASA Astrophysics Data System (ADS)

    Soeprijanto, Perdani, Adela Dea; Nury, Dennis Farina; Pudjiastuti, Lily

    2017-05-01

    Electrocoagulation is electrochemical water and wastewater treatment technology which is the simplest technology using an electrochemical cell where the supply of DC power is applied to the electrodes, made of aluminum metals, and the electrolyte is oily bilge water. The electrocoagulation of oily bilge water was experimentally conducted in a batch system. Aluminum plates with dimensions of 20 cm ×8 cm × 0.2 cm were used for electrodes and mounted vertically with a distance of 4 cm. These electrodes were then connected to the direct current power supply of 10 V and 10 A. The total area of the effective working plate was 160 cm2 when immersed at a depth of 10 cm to the solutions. The results showed that total dissolved Solids (TDS) decreased from 31.2 to 7.54 mg/l and formation of sludge increased up to 12.54 g/l with oil concentration of 50 g/l for 15 min. The largest oil removal of 99.5% was obtained using the initial oil concentration of 55 g/l and the lowest of 96.25% was obtained with the initial oil concentration of 146.04 g/l. A current density of 62.3 mA/cm2 was achieved for a maximum oil removal.

  11. Dynamics of a Two-Link Vehicle in an L-Shaped Corridor Revisited

    NASA Astrophysics Data System (ADS)

    Antonyuk, E. Ya.; Zabuga, A. T.

    2014-03-01

    The kinematics of a two-link mobile robot with three steerable wheels moving in an L-shaped corridor is analyzed. A smooth (with continuous first derivative) path is designed maintaining the optimal maneuverability of the vehicle. The motion of the vehicle along this path is planned. Analytical expressions for the reactions at the contact of the wheels with the ground are given in the general case of motion. The radius of curvature of the programmed path is shown to have a strong influence on the reactions.

  12. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Farjam, Aslan; Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2015-10-01

    In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins' performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.

  13. Automatic segmentation of bones from digital hand radiographs

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Taira, Ricky K.; Shim, Hyeonjoon; Keaton, Patricia

    1995-05-01

    The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The algorithm uses an object-oriented approach comprising several stages beginning with the most general objects to be segmented, such as the outline of the hand from background, and proceeding in a succession of stages to the most specific object, such as a specific phalangeal bone from a digit of the hand. Each stage carries custom operators unique to the needs of that specific stage which will aid in more accurate results. The method is further aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. Shape models, 1-D wrist profiles, as well as an interpretation tree are used to map model and data contour segments. Shape analysis is performed using an arc-length orientation transform. The method is tested on close to 340 phalangeal and epiphyseal objects to be segmented from 17 cases of pediatric hand images obtained from our clinical PACS. Patient age ranges from 2 - 16 years. A pediatric radiologist preliminarily assessed the results of the object contours and were found to be accurate to within 95% for cases with non-fused bones and to within 85% for cases with fused bones. With accurate and robust results, the method can be applied toward areas such as the determination of bone age, the development of a normal hand atlas, and the characterization of many congenital and acquired growth diseases. Furthermore, this method's architecture can be applied to other image segmentation problems.

  14. Pondering the procephalon: the segmental origin of the labrum.

    PubMed

    Haas, M S; Brown, S J; Beeman, R W

    2001-02-01

    With accumulating evidence for the appendicular nature of the labrum, the question of its actual segmental origin remains. Two existing insect head segmentation models, the linear and S-models, are reviewed, and a new model introduced. The L-/Bent-Y model proposes that the labrum is a fusion of the appendage endites of the intercalary segment and that the stomodeum is tightly integrated into this segment. This model appears to explain a wider variety of insect head segmentation phenomena. Embryological, histological, neurological and molecular evidence supporting the new model is reviewed.

  15. Low reflection and field localization over surface plasmon device with subwavelength patterned aluminum film

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Peng, Sha; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    In this paper, we propose a new device composed of patterned sub-wavelength arrays to investigate surface plasmons (SPs) over sub-wavelength metal nano-structures. The device consists of silicon substrate and sub-wavelength patterns fabricated on a layer of aluminum film with nanometer thickness. Each sub-wavelength pattern formed in aluminum film is composed of a basic nano-square and twelve triangles for shaping single nano-pattern, which are uniformly distributed on the four sides of each square. Reflectance spectra and electric field distribution in infrared region are simulated. Numerical simulation results demonstrate that the device can efficiently lower its reflectance in infrared spectrum, and the response frequency can be controlled by only changing the device parameters such as square side length and then triangle vertex angle. Besides, the simulated electric field distribution of the device shows obviously field localization effect at the edges of aluminum film nano-structure. The electric filed around the tips of aluminum triangles is localized into sub-wavelength scale, so as to be beyond the common diffraction limitation. Our work will help to reveal the interesting properties of SPs device, and also bring new prospect of photonic device.

  16. Glioblastoma Segmentation: Comparison of Three Different Software Packages.

    PubMed

    Fyllingen, Even Hovig; Stensjøen, Anne Line; Berntsen, Erik Magnus; Solheim, Ole; Reinertsen, Ingerid

    2016-01-01

    To facilitate a more widespread use of volumetric tumor segmentation in clinical studies, there is an urgent need for reliable, user-friendly segmentation software. The aim of this study was therefore to compare three different software packages for semi-automatic brain tumor segmentation of glioblastoma; namely BrainVoyagerTM QX, ITK-Snap and 3D Slicer, and to make data available for future reference. Pre-operative, contrast enhanced T1-weighted 1.5 or 3 Tesla Magnetic Resonance Imaging (MRI) scans were obtained in 20 consecutive patients who underwent surgery for glioblastoma. MRI scans were segmented twice in each software package by two investigators. Intra-rater, inter-rater and between-software agreement was compared by using differences of means with 95% limits of agreement (LoA), Dice's similarity coefficients (DSC) and Hausdorff distance (HD). Time expenditure of segmentations was measured using a stopwatch. Eighteen tumors were included in the analyses. Inter-rater agreement was highest for BrainVoyager with difference of means of 0.19 mL and 95% LoA from -2.42 mL to 2.81 mL. Between-software agreement and 95% LoA were very similar for the different software packages. Intra-rater, inter-rater and between-software DSC were ≥ 0.93 in all analyses. Time expenditure was approximately 41 min per segmentation in BrainVoyager, and 18 min per segmentation in both 3D Slicer and ITK-Snap. Our main findings were that there is a high agreement within and between the software packages in terms of small intra-rater, inter-rater and between-software differences of means and high Dice's similarity coefficients. Time expenditure was highest for BrainVoyager, but all software packages were relatively time-consuming, which may limit usability in an everyday clinical setting.

  17. Muscle segmentation in time series images of Drosophila metamorphosis.

    PubMed

    Yadav, Kuleesha; Lin, Feng; Wasser, Martin

    2015-01-01

    In order to study genes associated with muscular disorders, we characterize the phenotypic changes in Drosophila muscle cells during metamorphosis caused by genetic perturbations. We collect in vivo images of muscle fibers during remodeling of larval to adult muscles. In this paper, we focus on the new image processing pipeline designed to quantify the changes in shape and size of muscles. We propose a new two-step approach to muscle segmentation in time series images. First, we implement a watershed algorithm to divide the image into edge-preserving regions, and then, we classify these regions into muscle and non-muscle classes on the basis of shape and intensity. The advantage of our method is two-fold: First, better results are obtained because classification of regions is constrained by the shape of muscle cell from previous time point; and secondly, minimal user intervention results in faster processing time. The segmentation results are used to compare the changes in cell size between controls and reduction of the autophagy related gene Atg 9 during Drosophila metamorphosis.

  18. Synthesis and characterization of shape memory poly (epsilon-caprolactone) polyurethane-ureas

    NASA Astrophysics Data System (ADS)

    Ren, Hongfeng

    Shape memory polymers (SMPs) have attracted significant interest in recent times because of their potential applications in a number of areas, such as medical devices and textiles. However, there are some major drawbacks of SMPs, such as their relatively low moduli resulting in small recovery stresses, and their long response times compared with shape memory alloys (SMAs). A suitable recovery stress which comes from the elastic recovery stress generated in the deformation process is critical in some medical devices. To address some of these shortcomings, the work in this dissertation mainly focuses on the design and synthesis of linear shape memory polymers with higher recovery stress. A series of segmented poly (epsilon-caprolactone) polyurethane-ureas (PCLUUs) were prepared from poly (epsilon-caprolactone) (PCL) diol, different dissociates and chain extenders. NMR and FT-IR were used to identify the structure of the synthesized shape memory polyurethane-ureas. Parameters such as soft segment content (molecular weight and content), chain extender and the rigidity of the main chain were investigated to understand the structure-property relationships of the shape memory polymer systems through DSC, DMA, physical property test, etc. Cyclic thermal mechanic tests were applied to measure the shape memory properties which showed that the recovery stress can be improved above 200% simply by modifying the chain extender. Meanwhile, the synthesis process was optimized to be similar to that of Spandex /LYCRA®. Continuous fibers form shape memory polyurethane-ureas were made from a wet spinning process, which indicated excellent spinnability of the polymer solution. Small angle neutron scattering (SANS) was used to study the morphology of the hard segment at different temperatures and stretch rates and found that the monodisperse rigid cylinder model fit the SANS data quite well. From the cylinder model, the radius of the cylinder increased with increasing hard segment

  19. Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.

    2018-03-01

    This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.

  20. Infants' statistical learning: 2- and 5-month-olds' segmentation of continuous visual sequences.

    PubMed

    Slone, Lauren Krogh; Johnson, Scott P

    2015-05-01

    Past research suggests that infants have powerful statistical learning abilities; however, studies of infants' visual statistical learning offer differing accounts of the developmental trajectory of and constraints on this learning. To elucidate this issue, the current study tested the hypothesis that young infants' segmentation of visual sequences depends on redundant statistical cues to segmentation. A sample of 20 2-month-olds and 20 5-month-olds observed a continuous sequence of looming shapes in which unit boundaries were defined by both transitional probability and co-occurrence frequency. Following habituation, only 5-month-olds showed evidence of statistically segmenting the sequence, looking longer to a statistically improbable shape pair than to a probable pair. These results reaffirm the power of statistical learning in infants as young as 5 months but also suggest considerable development of statistical segmentation ability between 2 and 5 months of age. Moreover, the results do not support the idea that infants' ability to segment visual sequences based on transitional probabilities and/or co-occurrence frequencies is functional at the onset of visual experience, as has been suggested previously. Rather, this type of statistical segmentation appears to be constrained by the developmental state of the learner. Factors contributing to the development of statistical segmentation ability during early infancy, including memory and attention, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A web-based procedure for liver segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Yuan, Rong; Luo, Ming; Wang, Luyao; Xie, Qingguo

    2015-03-01

    Liver segmentation in CT images has been acknowledged as a basic and indispensable part in systems of computer aided liver surgery for operation design and risk evaluation. In this paper, we will introduce and implement a web-based procedure for liver segmentation to help radiologists and surgeons get an accurate result efficiently and expediently. Several clinical datasets are used to evaluate the accessibility and the accuracy. This procedure seems a promising approach for extraction of liver volumetry of various shapes. Moreover, it is possible for user to access the segmentation wherever the Internet is available without any specific machine.

  2. Parenteral drug products containing aluminum as an ingredient or a contaminant: Response to Food and Drug Administration notice of intent and request for information. ASCN/A. S. P. E. N. Working Group on Standards for Aluminum Content of Parenteral Nutrition Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-01

    Aluminum remains a significant contaminant of total parenteral nutrition (TPN) solutions and may be elevated in bone, urine, and plasma of infants receiving TPN. Aluminum accumulation in tissues of uremic patients and adult TPN patients has been associated with low-turnover bone disease. Furthermore, aluminum has also been linked with encephalopathy and anemia in uremic patients and with hepatic cholestasis in experimental animals. Because of the toxic effects of aluminum, the Food and Drug Administration (FDA) recently published a notice of intent to set an upper limit of 25 micrograms/L for aluminum in large-volume parenterals and to require manufacturers of small-volumemore » parenterals, such as calcium and phosphate salts, to measure aluminum content and note this content on the package label. The ASCN/A.S.P.E.N. Working Group on Standards for Aluminum Content of Parenteral Nutrition Solutions supports these intentions and further urges the FDA to require that cumulative aluminum intake in terms of safe, unsafe, and toxic quantities of aluminum per kilogram be made known to physicians and pharmacists preparing the TPN solutions, to ensure that manufacturers use appropriate control procedures in aluminum measurements, and to employ a standard unit of aluminum measurement.« less

  3. Structural Damage Detection Using Slopes of Longitudinal Vibration Shapes

    DOE PAGES

    Xu, W.; Zhu, W. D.; Smith, S. A.; ...

    2016-03-18

    While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less

  4. Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal

    NASA Astrophysics Data System (ADS)

    Schempp, Philipp; Cross, Carl Edward; Pittner, Andreas; Rethmeier, Michael

    2013-07-01

    Grain refinement provides an important possibility to enhance the mechanical properties ( e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape ( CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size.

  5. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  6. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  7. Boundary fitting based segmentation of fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Lee, Soonam; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2015-03-01

    Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the proposed method achieves better performance than an active contours based scheme.

  8. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  9. Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C

    NASA Astrophysics Data System (ADS)

    McNamara, Cameron T.

    Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.

  10. Shape sensing methods: Review and experimental comparison on a wing-shaped plate

    NASA Astrophysics Data System (ADS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano

    2018-05-01

    Shape sensing, i.e., the reconstruction of the displacement field of a structure from some discrete surface strain measurements, is a fundamental capability for the structural health management of critical components. In this paper, a review of the shape sensing methodologies available in the open literature and of the different applications is provided. Then, for the first time, an experimental comparative study is presented among the main approaches in order to highlight their relative merits in presence of uncertainties affecting real applications. These approaches are, namely, the inverse Finite Element Method, the Modal Method and Ko's Displacement Theory. A brief description of these methods is followed by the presentation of the experimental test results. A cantilevered, wing-shaped aluminum plate is let deform under its own weight, leading to bending and twisting. Using the experimental strain measurements as input data, the deflection field of the plate is reconstructed using the three aforementioned approaches and compared with the actual measured deflection. The inverse Finite Element Method is proven to be slightly more accurate and particularly attractive because it is versatile with respect to the boundary conditions and it does not require any information about material properties and loading conditions.

  11. Polymorphism in 'L' shaped lipids: structure of N-, O-diacylethanolamines with mixed acyl chains.

    PubMed

    Tarafdar, Pradip K; Swamy, Musti J

    2009-11-01

    Although solid state polymorphism in lipids has been established by spectroscopic and calorimetric studies long ago, only in a few cases crystal structures of different polymorphs of the same compound have been reported, possibly due to difficulties in obtaining high quality single crystals of individual polymorphs. Recent studies show that N-, O-diacylethanolamines (DAEs) can be derived by the O-acylation of the stress-related lipids, the N-acylethanolamines under physiological conditions. In this study, two DAEs with mixed acyl chains, namely N-palmitoyl, O-octanoylethanolamine and N-palmitoyl, O-decanoylethanolamine have been synthesized and their three-dimensional structures were determined. Both the compounds were found to adopt 'L' shaped structures and exist in two polymorphic forms, alpha and beta. In the alpha form a mixed-type chain packing has been observed whereas in the beta form the chain packing is symmetric. Similar polymorphic forms are likely to exist in other 'L' shaped lipids such as 1,3-diacylglycerols and ceramides, where polymorphism has been detected earlier, but three-dimensional structures - which can give precise information about the packing at atomic resolution - have not been reported.

  12. Stable forming conditions and geometrical expansion of L-shape rings in ring rolling process

    NASA Astrophysics Data System (ADS)

    Quagliato, Luca; Berti, Guido A.; Kim, Dongwook; Kim, Naksoo

    2018-05-01

    Based on previous research results concerning the radial-axial ring rolling process of flat rings, this paper details an innovative approach for the determination of the stable forming conditions to successfully simulate the radial ring rolling process of L-shape profiled rings. In addition to that, an analytical model for the estimation of the geometrical expansion of L-shape rings from its initial flat ring preform is proposed and validated by comparing its results with those of numerical simulations. By utilizing the proposed approach, steady forming conditions could be achieved, granting a uniform expansion of the ring throughout the process for all of the six tested cases of rings having the final outer diameter of the flange ranging from 545mm and 1440mm. The validation of the proposed approach allowed concluding that the geometrical expansion of the ring, as estimated by the proposed analytical model, is in good agreement with the results of the numerical simulation, with a maximum error of 2.18%, in the estimation of the ring wall diameter, 1.42% of the ring flange diameter and 1.87% for the estimation of the inner diameter of the ring, respectively.

  13. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  14. Evaluation of low-cost aluminum composites for aircraft engine structural applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Signorelli, R. A.

    1983-01-01

    Panels of discontinuous SiC composites, with several aluminum matrices, were fabricated and evaluated. Modulus, yield strength and tensile strength results indicated that the properties of composites containing SiC whisker, nodule or particulate reinforcements were similar. The modulus of the composites was controlled by the volume percentage of the SiC reinforcement content, while the strength and ductility were controlled by both the reinforcement content and the matrix alloy. The feasibility of fabricating structural shapes by both wire performs and direct casting was demonstrated for Al2O3/Al composites. The feasibility of fabricating high performance composites into structural shapes by low pressure hot molding was demonstrated for B4C-coated B/Al composites.

  15. Methods to Prepare Aluminum Salt-Adjuvanted Vaccines.

    PubMed

    Thakkar, Sachin G; Cui, Zhengrong

    2017-01-01

    Many human vaccines contain certain insoluble aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate as vaccine adjuvants to boost the immunogenicity of the vaccines. Aluminum salts have been used as vaccine adjuvants for decades and have an established, favorable safety profile. However, preparing aluminum salts and aluminum salt-adjuvanted vaccines in a consistent manner remains challenging. This chapter discusses methods to prepare aluminum salts and aluminum salt-adjuvanted vaccines, factors to consider during preparation, and methods to characterize the vaccines after preparation.

  16. A statistical shape model of the human second cervical vertebra.

    PubMed

    Clogenson, Marine; Duff, John M; Luethi, Marcel; Levivier, Marc; Meuli, Reto; Baur, Charles; Henein, Simon

    2015-07-01

    Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.

  17. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    This production route has demonstrated that aluminum alloys with yield strengths in excess of 690 MPa with good elongation (reportedly 8%) are...series of aluminum alloys have poor-to-fair general corrosion resistance and poor-to-good stress corrosion cracking resistance. Wrought 2519...aluminum alloy has good strength, good ballistic performance, good stress corrosion cracking resistance but only fair general corrosion resistance

  18. A deconstruction of the I-M-L commitment segmentation of forest recreationists

    Treesearch

    James D. Absher; Gerard T. Kyle

    2007-01-01

    Previous work has established the general utility of segmenting forest recreationists according to their commitment profiles into Indifferents, Moderates, and Loyalists (IML) groups. Observed differences between these segments suggest that place identity and affect are more central to management than previously thought. This study extends this finding through the use...

  19. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    NASA Astrophysics Data System (ADS)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  20. Iterative deep convolutional encoder-decoder network for medical image segmentation.

    PubMed

    Jung Uk Kim; Hak Gu Kim; Yong Man Ro

    2017-07-01

    In this paper, we propose a novel medical image segmentation using iterative deep learning framework. We have combined an iterative learning approach and an encoder-decoder network to improve segmentation results, which enables to precisely localize the regions of interest (ROIs) including complex shapes or detailed textures of medical images in an iterative manner. The proposed iterative deep convolutional encoder-decoder network consists of two main paths: convolutional encoder path and convolutional decoder path with iterative learning. Experimental results show that the proposed iterative deep learning framework is able to yield excellent medical image segmentation performances for various medical images. The effectiveness of the proposed method has been proved by comparing with other state-of-the-art medical image segmentation methods.

  1. Analysis of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.; Srawley, J. E.

    1977-01-01

    Results of planar boundary collocation analysis are given for ring segment (C-shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5 and ratios of crack length to segment width in the range 0.1 to 0.8.

  2. Analysis of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.; Strawley, J. E.

    1975-01-01

    Results of planar boundary collocation analysis are given for ring segment (C shaped) specimens with radial cracks, subjected to combined forces and couples. Mode I stress intensity factors and crack mouth opening displacements were determined for ratios of outer to inner radius in the range 1.1 to 2.5, and ratios of crack length to segment width in the range 0.1 to 0.8.

  3. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  4. Inferior vena cava segmentation with parameter propagation and graph cut.

    PubMed

    Yan, Zixu; Chen, Feng; Wu, Fa; Kong, Dexing

    2017-09-01

    The inferior vena cava (IVC) is one of the vital veins inside the human body. Accurate segmentation of the IVC from contrast-enhanced CT images is of great importance. This extraction not only helps the physician understand its quantitative features such as blood flow and volume, but also it is helpful during the hepatic preoperative planning. However, manual delineation of the IVC is time-consuming and poorly reproducible. In this paper, we propose a novel method to segment the IVC with minimal user interaction. The proposed method performs the segmentation block by block between user-specified beginning and end masks. At each stage, the proposed method builds the segmentation model based on information from image regional appearances, image boundaries, and a prior shape. The intensity range and the prior shape for this segmentation model are estimated based on the segmentation result from the last block, or from user- specified beginning mask if at first stage. Then, the proposed method minimizes the energy function and generates the segmentation result for current block using graph cut. Finally, a backward tracking step from the end of the IVC is performed if necessary. We have tested our method on 20 clinical datasets and compared our method to three other vessel extraction approaches. The evaluation was performed using three quantitative metrics: the Dice coefficient (Dice), the mean symmetric distance (MSD), and the Hausdorff distance (MaxD). The proposed method has achieved a Dice of [Formula: see text], an MSD of [Formula: see text] mm, and a MaxD of [Formula: see text] mm, respectively, in our experiments. The proposed approach can achieve a sound performance with a relatively low computational cost and a minimal user interaction. The proposed algorithm has high potential to be applied for the clinical applications in the future.

  5. Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure

    PubMed Central

    Pouch, Alison M.; Tian, Sijie; Takabe, Manabu; Wang, Hongzhi; Yuan, Jiefu; Cheung, Albert T.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.; Yushkevich, Paul A.

    2015-01-01

    3D echocardiographic (3DE) imaging is a useful tool for assessing the complex geometry of the aortic valve apparatus. Segmentation of this structure in 3DE images is a challenging task that benefits from shape-guided deformable modeling methods, which enable inter-subject statistical shape comparison. Prior work demonstrates the efficacy of using continuous medial representation (cm-rep) as a shape descriptor for valve leaflets. However, its application to the entire aortic valve apparatus is limited since the structure has a branching medial geometry that cannot be explicitly parameterized in the original cm-rep framework. In this work, we show that the aortic valve apparatus can be accurately segmented using a new branching medial modeling paradigm. The segmentation method achieves a mean boundary displacement of 0.6 ± 0.1 mm (approximately one voxel) relative to manual segmentation on 11 3DE images of normal open aortic valves. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology. PMID:26247062

  6. Development of a method for fabricating metallic matrix composite shapes by a continuous mechanical process

    NASA Technical Reports Server (NTRS)

    Divecha, A. P.

    1974-01-01

    Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.

  7. Cell nuclei and cytoplasm joint segmentation using the sliding band filter.

    PubMed

    Quelhas, Pedro; Marcuzzo, Monica; Mendonça, Ana Maria; Campilho, Aurélio

    2010-08-01

    Microscopy cell image analysis is a fundamental tool for biological research. In particular, multivariate fluorescence microscopy is used to observe different aspects of cells in cultures. It is still common practice to perform analysis tasks by visual inspection of individual cells which is time consuming, exhausting and prone to induce subjective bias. This makes automatic cell image analysis essential for large scale, objective studies of cell cultures. Traditionally the task of automatic cell analysis is approached through the use of image segmentation methods for extraction of cells' locations and shapes. Image segmentation, although fundamental, is neither an easy task in computer vision nor is it robust to image quality changes. This makes image segmentation for cell detection semi-automated requiring frequent tuning of parameters. We introduce a new approach for cell detection and shape estimation in multivariate images based on the sliding band filter (SBF). This filter's design makes it adequate to detect overall convex shapes and as such it performs well for cell detection. Furthermore, the parameters involved are intuitive as they are directly related to the expected cell size. Using the SBF filter we detect cells' nucleus and cytoplasm location and shapes. Based on the assumption that each cell has the same approximate shape center in both nuclei and cytoplasm fluorescence channels, we guide cytoplasm shape estimation by the nuclear detections improving performance and reducing errors. Then we validate cell detection by gathering evidence from nuclei and cytoplasm channels. Additionally, we include overlap correction and shape regularization steps which further improve the estimated cell shapes. The approach is evaluated using two datasets with different types of data: a 20 images benchmark set of simulated cell culture images, containing 1000 simulated cells; a 16 images Drosophila melanogaster Kc167 dataset containing 1255 cells, stained for DNA and

  8. Unsupervised motion-based object segmentation refined by color

    NASA Astrophysics Data System (ADS)

    Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris

    2003-06-01

    for its ability to estimate motion vectors which closely resemble the true motion. BLOCK-BASED MOTION SEGMENTATION As mentioned above we start with a block-resolution segmentation based on motion vectors. The presented method is inspired by the well-known K-means segmentation method te{K-means}. Several other methods (e.g. te{kmeansc}) adapt K-means for connectedness by adding a weighted shape-error. This adds the additional difficulty of finding the correct weights for the shape-parameters. Also, these methods often bias one particular pre-defined shape. The presented method, which we call K-regions, encourages connectedness because only blocks at the edges of segments may be assigned to another segment. This constrains the segmentation method to such a degree that it allows the method to use least squares for the robust fitting of affine motion models for each segment. Contrary to te{parmkm}, the segmentation step still operates on vectors instead of model parameters. To make sure the segmentation is temporally consistent, the segmentation of the previous frame will be used as initialisation for every new frame. We also present a scheme which makes the algorithm independent of the initially chosen amount of segments. COLOUR-BASED INTRA-BLOCK SEGMENTATION The block resolution motion-based segmentation forms the starting point for the pixel resolution segmentation. The pixel resolution segmentation is obtained from the block resolution segmentation by reclassifying pixels only at the edges of clusters. We assume that an edge between two objects can be found in either one of two neighbouring blocks that belong to different clusters. This assumption allows us to do the pixel resolution segmentation on each pair of such neighbouring blocks separately. Because of the local nature of the segmentation, it largely avoids problems with heterogeneously coloured areas. Because no new segments are introduced in this step, it also does not suffer from oversegmentation problems

  9. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  10. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  11. Properties of Shock Hardened 7050 Aluminum Alloy.

    DTIC Science & Technology

    1981-11-12

    AD-ALO 887 NAVAL AIR DEVELOPMENT CENTER WARMINSTER PA AIRCRAFT -ETC F/6 11/6 PROPERTIES OF SHOCK HARDENED 7050 ALUMINUM ALLOT. (UI NOV 81 C E NEU...Systems Technology Directorate NAVAL AIR DEVELOPMENT CENTER Warminster, Pennsylvania 18974 12 NOV 1981 PHASE REPORT AIRTASK NO. WF54591201 :3l’ Work Unit...No. ZMIOI )** >,,, A APPROVED FOR PUBLIC RELEASE;DISTRIBUTION UNLIMITED Prepared forg NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, D.C

  12. Accurate Segmentation of CT Male Pelvic Organs via Regression-based Deformable Models and Multi-task Random Forests

    PubMed Central

    Gao, Yaozong; Shao, Yeqin; Lian, Jun; Wang, Andrew Z.; Chen, Ronald C.

    2016-01-01

    Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well as large variations of shape and appearance of the pelvic organs. Among existing segmentation methods, deformable models are the most popular, as shape prior can be easily incorporated to regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their performance, especially for segmenting organs with large shape variations. In this paper, we propose a novel approach to guide deformable models, thus making them robust against arbitrary initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement from any image voxel to the target organ boundary based on the local patch appearance. This regressor provides a nonlocal external force for each vertex of deformable model, thus overcoming the initialization problem suffered by the traditional deformable models. To learn a reliable displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context model is used to iteratively enforce structural information during voxel-wise prediction. Extensive experiments on 313 planning CT scans of 313 patients show that our method achieves better results than alternative classification or regression based methods, and also several other existing methods in CT pelvic organ segmentation. PMID:26800531

  13. Urea controlled hydrothermal synthesis of ammonium aluminum carbonate hydroxide rods

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhu, Jianfeng; Liu, Hui

    2018-03-01

    In this study, ammonium aluminum carbonate hydroxide (AACH) rods were controllably prepared using the hydrothermal method by manipulating the amount of urea in the reaction system. The experimental results showed that AACH in rod shape was able to be gradually transformed from γ-AlOOH in cluster shape during the molar ratios of urea to Al in the reactants were ranged from 8 to 10, and the yield of AACH has increased accordingly. When the molar ratio of urea to Al reaches 11, pure AACH rods with a diameter of 500 nm and a length of 10 μm approximately was able to be produced. Due to the slow decomposition of urea during the hydrothermal reaction, the nucleation and growth of AACH crystal proceed step by step. Therefore, the crystal can fully grow on each crystal plane and eventually produce a highly crystalline rod-shaped product. The role of urea in controlling the morphology and yield of AACH was also discussed in this paper systematically.

  14. Analysis and characterization of aluminum chlorohydrate oligocations by capillary electrophoresis.

    PubMed

    Ouadah, Nesrine; Moire, Claudine; Kuntz, Jean-François; Brothier, Fabien; Cottet, Hervé

    2017-04-07

    Aluminum chlorohydrates (ACH) are the active ingredients used in most antiperspirant products. ACH is a water soluble aluminum complex which contains several oligomeric polycations of aluminum with degrees of polymerization up to Al 13 or Al 30 . The characterization and quantification of ACH oligo-cations remain a challenging issue of primary interest for developing structure/antiperspirant activity correlations, and for controlling the ACH ingredients. In this work, highly repeatable capillary electrophoresis (CE) separation of A l3 + , Al 13 and Al 30 oligomers contained in ACH samples was obtained at pH 4.8, owing to a careful choice of the background electrolyte counter-ion and chromophore, capillary I.D. and capillary coating. This is the first reported separation of Al 13 and Al 30 oligomers in conditions that are compatible with the aluminum speciation in ACH solution or in conditions of antiperspirant application/formulation. Al 13 and Al 30 effective charge numbers were also determined from the sensitivity of detection in indirect UV detection mode. The relative mass proportion of Al 13 compared to Al 13 +Al 30 could be determined in different aluminum chlorohydrate samples. Due to its simplicity, repeatability/reproducibility, minimal sample preparation and mild analytical conditions, CE appears to be a promising analytical separation technique for the characterization of ACH materials and for the study of structure/antiperspirant activity correlations. Copyright © 2017. Published by Elsevier B.V.

  15. Solid explosive plane-wave lenses pressed-to-shape with dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olinger, B.

    2007-11-01

    Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.

  16. Locally-constrained Boundary Regression for Segmentation of Prostate and Rectum in the Planning CT Images

    PubMed Central

    Shao, Yeqin; Gao, Yaozong; Wang, Qian; Yang, Xin; Shen, Dinggang

    2015-01-01

    Automatic and accurate segmentation of the prostate and rectum in planning CT images is a challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain existence of bowel gas across different patients. Recently, regression forest was adopted for organ deformable segmentation on 2D medical images by training one landmark detector for each point on the shape model. However, it seems impractical for regression forest to guide 3D deformable segmentation as a landmark detector, due to large number of vertices in the 3D shape model as well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In this paper, we propose a novel boundary detection method by exploiting the power of regression forest for prostate and rectum segmentation. The contributions of this paper are as follows: 1) we introduce regression forest as a local boundary regressor to vote the entire boundary of a target organ, which avoids training a large number of landmark detectors and building an accurate 3D vertex correspondence for each landmark detector; 2) an auto-context model is integrated with regression forest to improve the accuracy of the boundary regression; 3) we further combine a deformable segmentation method with the proposed local boundary regressor for the final organ segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image dataset with 70 images from 70 different patients. The experimental results show that our proposed boundary regression method outperforms the conventional boundary classification method in guiding the deformable model for prostate and rectum segmentations. Compared with other state-of-the-art methods, our method also shows a competitive performance. PMID:26439938

  17. Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors

    NASA Technical Reports Server (NTRS)

    Vudler, Vladimir

    2012-01-01

    High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.

  18. Optimal graph based segmentation using flow lines with application to airway wall segmentation.

    PubMed

    Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen

    2011-01-01

    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.

  19. PROPAGATION AND LINKAGE OF OCEANIC RIDGE SEGMENTS.

    USGS Publications Warehouse

    Pollard, David D.; Aydin, Atilla

    1984-01-01

    An investigation was made of spreading ridges and the development of structures that link ridge segments using an analogy between ridges and cracks in elastic plates. The ridge-propagation force and a path factor that controls propagation direction were calculated for echelon ridge segments propagating toward each other. The ridge-propagation force increases as ridge ends approach but then declines sharply as the ends pass, so ridge segments may overlap somewhat. The sign of the path factor changes as ridge ends approach and pass, so the overlapping ridge ends may diverge and then converge following a hook-shaped path. The magnitudes of shear stresses in the plane of the plate and orientations of maximum shear planes between adjacent ridge segments were calculated to study transform faulting. For different loading conditions simulating ridge push, plate pull, and ridge suction, a zone of intense mechanical interaction between adjacent ridge ends in which stresses are concentrated was identified. The magnitudes of mean stresses in the plane of the plate and orientations of principal stress planes were also calculated.

  20. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.).

    PubMed

    Andres, Ryan J; Coneva, Viktoriya; Frank, Margaret H; Tuttle, John R; Samayoa, Luis Fernando; Han, Sang-Won; Kaur, Baljinder; Zhu, Linglong; Fang, Hui; Bowman, Daryl T; Rojas-Pierce, Marcela; Haigler, Candace H; Jones, Don C; Holland, James B; Chitwood, Daniel H; Kuraparthy, Vasu

    2017-01-03

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D 1 ), which is responsible for the major leaf shapes in cotton. The l-D 1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D 1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.