Sample records for l-shell sulfur ions

  1. K-shell X-ray transition energies of multi-electron ions of silicon and sulfur

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Brown, G. V.; Hell, N.; Santana, J. A.

    2017-10-01

    Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all the L-shell ions of silicon and sulfur. We present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.

  2. K-shell X-ray transition energies of multi-electron ions of silicon and sulfur

    DOE PAGES

    Beiersdorfer, P.; Brown, G. V.; Hell, N.; ...

    2017-04-20

    Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all themore » L-shell ions of silicon and sulfur. Here, we present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.« less

  3. Yolk-Shelled C@Fe3 O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries.

    PubMed

    He, Jiarui; Luo, Liu; Chen, Yuanfu; Manthiram, Arumugam

    2017-09-01

    Owing to the high theoretical specific capacity (1675 mA h g -1 ) and low cost, lithium-sulfur (Li-S) batteries offer advantages for next-generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li-S batteries. To address such issues, well-designed yolk-shelled carbon@Fe 3 O 4 (YSC@Fe 3 O 4 ) nanoboxes as highly efficient sulfur hosts for Li-S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe 3 O 4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe 3 O 4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe 3 O 4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm -2 ) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal-oxide-based yolk-shelled framework as a high sulfur-loading host for advanced Li-S batteries with superior electrochemical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Measurement of L-shell transitions in M-shell ions in the laboratory and identification in stellar coronae

    DOE PAGES

    Lepson, J. K.; Beiersdorfer, P.; Hell, N.; ...

    2017-04-04

    Based on laboratory data from the Lawrence Livermore EBIT-I electron beam ion trap and calculations using the relativistic multi-reference Møller-Plesset (MRMP) perturbation theory approach, we identify L-shell transitions of M-shell iron ions in emission spectra of the nearby stars Capella and Procyon. In conclusion, these lines are weaker than the well known, prominent lines from Fe XVII. However, they need to be taken into account when modeling the spectra, especially of cool stars.

  5. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries.

    PubMed

    Zhou, Weidong; Xiao, Xingcheng; Cai, Mei; Yang, Li

    2014-09-10

    To better confine the sulfur/polysulfides in the electrode of lithium-sulfur (Li/S) batteries and improve the cycling stability, we developed a double-layered core-shell structure of polymer-coated carbon-sulfur. Carbon-sulfur was first prepared through the impregnation of sulfur into hollow carbon spheres under heat treatment, followed by a coating polymerization to give a double-layered core-shell structure. From the study of scanning transmission electron microscopy (STEM) images, we demonstrated that the sulfur not only successfully penetrated through the porous carbon shell but also aggregated along the inner wall of the carbon shell, which, for the first time, provided visible and convincing evidence that sulfur preferred diffusing into the hollow carbon rather than aggregating in/on the porous wall of the carbon. Taking advantage of this structure, a stable capacity of 900 mA h g(-1) at 0.2 C after 150 cycles and 630 mA h g(-1) at 0.6 C after 600 cycles could be obtained in Li/S batteries. We also demonstrated the feasibility of full cells using the sulfur electrodes to couple with the silicon film electrodes, which exhibited significantly improved cycling stability and efficiency. The remarkable electrochemical performance could be attributed to the desirable confinement of sulfur through the unique double-layered core-shell architectures.

  6. Durable polydopamine-coated porous sulfur core-shell cathode for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Deng, Yuanfu; Xu, Hui; Bai, Zhaowen; Huang, Baoling; Su, Jingyang; Chen, Guohua

    2015-12-01

    Lithium-sulfur batteries show fascinating potential for advanced energy system due to their high specific capacity, low-cost, and environmental benignity. However, their wide applications have been plagued by low coulombic efficiency, fast capacity fading and poor rate performance. Herein, a facile method for preparation of S@PDA (PDA = polydopamine) composites with core-shell structure and good electrochemical performance as well as the First-Principles calculations on the interactions of PDA and polysulfides are reported. Taking the advantages of the core-shell structure with porous sulfur core, the high mechanical flexibility of PDA for accommodating the volumetric variation during the discharge/charge processes, the good lithium ion conductivity and the strong chemical interactions between the nitrogen/oxygen atoms with lone electron pair and lithium polysulfides for alleviating their dissolution, the S@PDA composites exhibit high discharge capacities at different current densities (1048 and 869 mAh g-1 at 0.2 and 0.8 A g-1, respectively) and excellent capacity retention capability. A capacity decay as low as 0.021% per cycle and an average coulombic efficiency of 98.5% is observed over a long-term cycling of 890 cycles at 0.8 A g-1. The S@PDA electrode has great potential as a low-cost cathode in high energy Li-S batteries.

  7. Laboratory Measurements of the K-Shell Transition Energies in L-Shell Ions of Si and S

    NASA Technical Reports Server (NTRS)

    Hell, N.; Brown, G.V.; Wilms, J.; Grinberg, V.; Clementson, J.; Liedahl, D.; Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.; Beiersrdorfer, P.

    2016-01-01

    We have measured the energies of the strongest 1s-2 l (azimuthal quantum number) (l = s, p (s, p are angular momentum states)) transitions in He- through Ne-like silicon and sulfur ions to an accuracy of less than 1 electronvolt using the Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree-Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high-mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high-energy transmission grating has made it possible to measure Doppler shifts of 100 kilometers per second. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's 100 kilometers per second limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. We show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1.

  8. Sulfur containing nanoporous materials, nanoparticles, methods and applications

    DOEpatents

    Archer, Lynden A.; Navaneedhakrishnan, Jayaprakash

    2018-01-30

    Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or "bulk" shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.

  9. Sulfur control in ion-conducting membrane systems

    DOEpatents

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  10. N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzheng; Sun, Kai; Liang, Zhan; Wang, Yanli; Ling, Licheng

    2018-01-01

    N-doped yolk-shell hollow carbon sphere wrapped with reduced graphene oxide (rGO/N-YSHCS) is designed and fabricated as sulfur host for lithium-sulfur batteries. The shuttle effect of polysulfides can be suppressed effectively by the porous yolk-shell structure, graphene layer and N-doping. A good conductivity network is provided for electron transportation through the graphene layer coupled with the unique yolk-shell carbon matrix. Such unique structure offers the synthesized rGO/N-YSHCS/S electrode with a high reversible capacity (800 mAh g-1 at 0.2 C after 100 cycles) and good high-rate capability (636 mAh g-1 at 1 C and 540 mAh g-1 at 2 C).

  11. Laboratory measurements of the K-shell transition energies in L-shell ions of Si and S [Energy measurements of K-shell transitions in L-shell ions of Si and S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hell, Natalie; Brown, G. V.; Wilms, J.

    We have measured the energies of the strongest 1s–2more » $${\\ell }\\ ({\\ell }={\\rm{s}},{\\rm{p}})$$ transitions in He- through Ne-like silicon and sulfur ions to an accuracy of $$\\lt 1\\,\\mathrm{eV}$$ using the Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree–Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high-mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high-energy transmission grating has made it possible to measure Doppler shifts of $$100\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's $$100\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. Finally, we show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1.« less

  12. Laboratory measurements of the K-shell transition energies in L-shell ions of Si and S [Energy measurements of K-shell transitions in L-shell ions of Si and S

    DOE PAGES

    Hell, Natalie; Brown, G. V.; Wilms, J.; ...

    2016-10-04

    We have measured the energies of the strongest 1s–2more » $${\\ell }\\ ({\\ell }={\\rm{s}},{\\rm{p}})$$ transitions in He- through Ne-like silicon and sulfur ions to an accuracy of $$\\lt 1\\,\\mathrm{eV}$$ using the Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree–Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high-mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high-energy transmission grating has made it possible to measure Doppler shifts of $$100\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's $$100\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. Finally, we show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1.« less

  13. Atomic x-ray production by relativistic heavy ions. [Cross sections, K and L shells, ionization 3 and 4. 88 GEV holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protonsmore » and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z/sub 1//sup 2/ for the cross section of the heavy ion with atomic number Z/sub 1/ to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z/sub 2/ of the target of the form (Z/sub 1/ - ..cap alpha..Z/sub 2/)/sup 2/, instead of Z/sub 1//sup 2/, is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology.« less

  14. EMIC waves covering wide L shells: MMS and Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei

    2017-07-01

    During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.

  15. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries.

    PubMed

    Chen, Hongwei; Dong, Weiling; Ge, Jun; Wang, Changhong; Wu, Xiaodong; Lu, Wei; Chen, Liwei

    2013-01-01

    We report the synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique. The S nanoparticles were then coated with conducting poly (3,4-ethylenedioxythiophene) (PEDOT) to form S/PEDOT core/shell nanoparticles. The ultrasmall size of S nanoparticles facilitates the electrical conduction and improves sulfur utilization. The encapsulation of conducting PEDOT shell restricts the polysulfides diffusion, alleviates self-discharging and the shuttle effect, and thus enhances the cycling stability. The resulting S/PEDOT core/shell nanoparticles show initial discharge capacity of 1117 mAh g(-1) and a stable capacity of 930 mAh g(-1) after 50 cycles.

  16. Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries

    PubMed Central

    Chen, Hongwei; Dong, Weiling; Ge, Jun; Wang, Changhong; Wu, Xiaodong; Lu, Wei; Chen, Liwei

    2013-01-01

    We report the synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique. The S nanoparticles were then coated with conducting poly (3,4-ethylenedioxythiophene) (PEDOT) to form S/PEDOT core/shell nanoparticles. The ultrasmall size of S nanoparticles facilitates the electrical conduction and improves sulfur utilization. The encapsulation of conducting PEDOT shell restricts the polysulfides diffusion, alleviates self-discharging and the shuttle effect, and thus enhances the cycling stability. The resulting S/PEDOT core/shell nanoparticles show initial discharge capacity of 1117 mAh g−1 and a stable capacity of 930 mAh g−1 after 50 cycles. PMID:23714786

  17. Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Chen, Hongwei; Dong, Weiling; Ge, Jun; Wang, Changhong; Wu, Xiaodong; Lu, Wei; Chen, Liwei

    2013-05-01

    We report the synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique. The S nanoparticles were then coated with conducting poly (3,4-ethylenedioxythiophene) (PEDOT) to form S/PEDOT core/shell nanoparticles. The ultrasmall size of S nanoparticles facilitates the electrical conduction and improves sulfur utilization. The encapsulation of conducting PEDOT shell restricts the polysulfides diffusion, alleviates self-discharging and the shuttle effect, and thus enhances the cycling stability. The resulting S/PEDOT core/shell nanoparticles show initial discharge capacity of 1117 mAh g-1 and a stable capacity of 930 mAh g-1 after 50 cycles.

  18. L-shell x-ray production cross sections in Nd, Gd, Ho, Yb, Au and Pb for 25-MeV carbon and 32-MeV oxygen ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.

    1984-01-01

    L-shell x-ray production cross sections in /sub 60/Nd, /sub 64/Gd, /sub 67/Ho, /sub 70/Yb, /sub 79/Au and /sub 82/Pb have been measured for incident 25 MeV /sub 6//sup 12/C/sup +q/(q = 4,5,6) and 32 MeV /sub 8//sup 16/O/sup +q/(q = 5,7,8) ions. Measurements were made on targets ranging in thickness from 1 to 100 ..mu..g/cm/sup 2/. Echancement in the L-shell x-ray production cross section for projectiles with one or two K-shell vacancies over those for projectiles with no K-shell vacancies is observed. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L,M,N ... shellsmore » and EC to the K-shell of the projectile have been extracted from the data. Calculations in the first Born approximation are approx. 10 times larger than the data. Predictions of the ECPSSR theory that accounts for the energy-loss, Coulomb deflection, perturbed-stationary state, and relativistic effects are in good agreement with the data for both ions.« less

  19. Multiple outer-shell ionization effect in inner-shell x-ray production by light ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapicki, G.; Mehta, R.; Duggan, J.L.

    1986-11-01

    L-shell x-ray production cross sections by 0.25--2.5-MeV /sub 2//sup 4/He/sup +/ ions in /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd are reported. The data are compared to the first Born approximation and the ECPSSR theory that accounts for the projectile energy loss (E) and Coulomb deflection (C) as well as the perturbed-stationary-state (PSS) and relativistic (R) effects in the treatment of the target L-shell electron. Surprisingly, the first Born approximation appears to converge to the data while the ECPSSR predictions underestimate them in the low-velocity limit. This ismore » explained as the result of improper use of single-hole fluorescence yields. A heuristic formula is proposed to account for multiple ionizations in terms of a classical probability for these phenomena and, after it is applied, the ECPSSR theory of L-shell ionization is found to be in good agreement with the data.« less

  20. Modeling X-Ray Photoionized Plasmas: Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for L-Shell Iron

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Badnell, N. R.; Bartsch, T.; Brandau, C.; Chen, M. H.; Grieser, M.; Gwinner, G.; Hoffknecht, A.; Kahn, S. M.; Linkemann, J.

    2000-01-01

    Iron L-shell ions (Fe XVII to Fe XXIV) play an important role in determining the line emission and thermal and ionization structures of photoionized gases. Existing uncertainties in the theoretical low temperature dielectronic recombination (DR) rate coefficients for these ions significantly affects our ability to model and interpret observations of photoionized plasmas. To help address this issue, we have initiated a laboratory program to produce reliable low temperature DR rates. Here, we present some of our recent results and discuss some of their astrophysical implications.

  1. Radiative lifetimes and transition probabilities for electric-dipole delta n equals zero transitions in highly stripped sulfur ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Elston, S. B.; Griffin, P. M.; Forester, J. P.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.; Hayden, H. C.

    1976-01-01

    The beam-foil time-of-flight method has been used to investigate radiative lifetimes and transition rates involving allowed intrashell transitions within the L shell of highly ionized sulfur. The results for these transitions, which can be particularly correlation-sensitive, are compared with current calculations based upon multiconfigurational models.

  2. Promotional role of Li4Ti5O12 as polysulfide adsorbent and fast Li+ conductor on electrochemical performances of sulfur cathode

    NASA Astrophysics Data System (ADS)

    Zeng, Tianbiao; Hu, Xuebu; Ji, Penghui; Shang, Biao; Peng, Qimeng; Zhang, Yaoyao; Song, Ruiqiang

    2017-08-01

    Lithium-sulfur (Li-S) batteries attract much attention due to its high specific capacity and energy density compared to lithium-ion batteries (LiBs). Herein, a novel composite named as (void/nano-Li4Ti5O12 pieces)@C [(v/n-L)@C] was designed and prepared as a sulfur host. Spinel Li4Ti5O12 here as a multifunctional additive played as polysulfide adsorbent agent and fast Li+ conductor, and carbon shell was designed as electronic conductor, as well as volume barrier to limit the volume expansion caused by sulfur. As-prepared (S/nano-Li4Ti5O12 pieces)@C [(S/n-L)@C] are core-shell spheres, which are about 200 nm in size. Nano-Li4Ti5O12 and sulfur were coated by the outer carbon shell with a thickness of about 20 nm. The experimental results show that electrochemical performances of (S/n-L)@C cathode were enhanced effectively compared to S@C cathode. At 0.5C and 1C, the discharge capacity of (S/n-L)@C was 33.5% and 40.1% higher than that of S@C at 500th cycle. Even at 2C, its capacity reached 600.9 mAh g-1 at 1000th cycle. Li+ conductivity of (S/n-L)@C was one order of magnitude higher than that of S@C, which was reach to 2.55 × 10-8 S cm-1. The experiment results indicate Li4Ti5O12 plays a promotional role on electrochemical performances of sulfur cathode, especially for stable cycling performance and high rate performance.

  3. Ion chromatographic determination of sulfur in fuels

    NASA Technical Reports Server (NTRS)

    Mizisin, C. S.; Kuivinen, D. E.; Otterson, D. A.

    1978-01-01

    The sulfur content of fuels was determined using an ion chromatograph to measure the sulfate produced by a modified Parr bomb oxidation. Standard Reference Materials from the National Bureau of Standards, of approximately 0.2 + or - 0.004% sulfur, were analyzed resulting in a standard deviation no greater than 0.008. The ion chromatographic method can be applied to conventional fuels as well as shale-oil derived fuels. Other acid forming elements, such as fluorine, chlorine and nitrogen could be determined at the same time, provided that these elements have reached a suitable ionic state during the oxidation of the fuel.

  4. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  5. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    DOE PAGES

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    2018-01-15

    Level energies are reported for Si v, Si vi, Si vii, Si viii, Si ix, Si x, Si xi, and Si xii. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si v to 0.04 eV in Si xii. For K-vacancy states, the available values recommendedmore » in the NIST database are limited to Si xii and Si xiii. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. Here, we expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.« less

  6. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    2018-01-01

    Level energies are reported for Si V, Si VI, Si VII, Si VIII, Si IX, Si X, Si XI, and Si XII. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si V to 0.04 eV in Si XII. For K-vacancy states, the available values recommended in the NIST database are limited to Si XII and Si XIII. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. We expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.

  7. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    Level energies are reported for Si v, Si vi, Si vii, Si viii, Si ix, Si x, Si xi, and Si xii. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si v to 0.04 eV in Si xii. For K-vacancy states, the available values recommendedmore » in the NIST database are limited to Si xii and Si xiii. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. Here, we expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.« less

  8. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries.

    PubMed

    Ma, Lianbo; Yuan, Hao; Zhang, Wenjun; Zhu, Guoyin; Wang, Yanrong; Hu, Yi; Zhao, Peiyang; Chen, Renpeng; Chen, Tao; Liu, Jie; Hu, Zheng; Jin, Zhong

    2017-12-13

    Lithium-sulfur (Li-S) batteries hold great promise for the applications of high energy density storage. However, the performances of Li-S batteries are restricted by the low electrical conductivity of sulfur and shuttle effect of intermediate polysulfides. Moreover, the areal loading weights of sulfur in previous studies are usually low (around 1-3 mg cm -2 ) and thus cannot fulfill the requirement for practical deployment. Herein, we report that porous-shell vanadium nitride nanobubbles (VN-NBs) can serve as an efficient sulfur host in Li-S batteries, exhibiting remarkable electrochemical performances even with ultrahigh areal sulfur loading weights (5.4-6.8 mg cm -2 ). The large inner space of VN-NBs can afford a high sulfur content and accommodate the volume expansion, and the high electrical conductivity of VN-NBs ensures the effective utilization and fast redox kinetics of polysulfides. Moreover, VN-NBs present strong chemical affinity/adsorption with polysulfides and thus can efficiently suppress the shuttle effect via both capillary confinement and chemical binding, and promote the fast conversion of polysulfides. Benefiting from the above merits, the Li-S batteries based on sulfur-filled VN-NBs cathodes with 5.4 mg cm -2 sulfur exhibit impressively high areal/specific capacity (5.81 mAh cm -2 ), superior rate capability (632 mAh g -1 at 5.0 C), and long cycling stability.

  9. Ring/Shell Ion Distributions at Geosynchronous Orbit

    NASA Astrophysics Data System (ADS)

    Thomsen, M. F.; Denton, M. H.; Gary, S. P.; Liu, Kaijun; Min, Kyungguk

    2017-12-01

    One year's worth of plasma observations from geosynchronous orbit is examined for ion distributions that may simultaneously be subject to the ion Bernstein (IB) instability (generating fast magnetosonic waves) and the Alfvén cyclotron (AC) instability (generating electromagnetic ion cyclotron waves). Confirming past analyses, distributions with robust ∂fp(v⊥)/∂v⊥ > 0 near v|| = 0, which we denote as "ring/shell" distributions, are commonly found primarily on the dayside of the magnetosphere. A new approach to high-fidelity representation of the observed ring/shell distribution functions in a form readily suited to both analytical moment calculation and linear dispersion analysis is presented, which allows statistical analysis of the ring/shell properties. The ring/shell temperature anisotropy is found to have a clear upper limit that depends on the parallel beta of the ring/shell (β||r) in a manner that is diagnostic of the operation of the AC instability. This upper limit is only reached in the postnoon events, which are primarily produced by the energy- and pitch angle-dependent magnetic drifts of substorm-injected ions. Further, it is primarily the leading edge of such injections, where the distribution is strongly ring-like, that the AC instability appears to be operating. By contrast, the ratio of the ring energy to the Alfvén energy remains well within the range of 0.25-4.0 suitable for IB instability throughout essentially all of the events, except those that occur in denser cold plasma of the outer plasmasphere.

  10. Multi-shell model of ion-induced nucleic acid condensation

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  11. Multi-shell model of ion-induced nucleic acid condensation

    PubMed Central

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Onufriev, Alexey V.

    2016-01-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent “ion

  12. Chemical and spectral behavior of nitric acid in aqueous sulfuric acid solutions: Absorption spectrum and molar absorption coefficient of nitronium ion

    NASA Astrophysics Data System (ADS)

    Ershov, Boris G.; Panich, Nadezhda M.

    2018-01-01

    The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).

  13. Sputtering of sulfur by kiloelectronvolt ions - Application to the magnetospheric plasma interaction with Io

    NASA Technical Reports Server (NTRS)

    Chrisey, D. B.; Johnson, R. E.; Phipps, J. A.; Mcgrath, M. A.; Boring, J. W.

    1987-01-01

    Accurate measurements of the yields, mass spectra, and energy spectra of ejected sulfur are presented based on vapor deposits of sulfur at temperatures and ion energies relevant to the plasma interaction with the surface of Io. The measured sputtering yields are much lower than previous estimates for room temperature sulfur films, but are comparable to previous measurements of low-temperature keV ion sputtering of SO2. Results suggest that if ions reach the surface of Io its atmosphere will have a nonnegligible sulfur component which is primarily S2. Comparison of injection rates determined for sulfur with those for SO2 indicates that injection from sulfur deposits contributes 13 percent to the total mass injection rate of about 2-3 x 10 to the 29th amu/sec.

  14. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, A.; ELI-ALPS, Szeged; Platonov, K.

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  15. Multi-shell model of ion-induced nucleic acid condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derivedmore » from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the

  16. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization.

    PubMed

    Eom, Hyeonjin; Lee, Jaemin; Pichitpajongkit, Aekachan; Amjadi, Morteza; Jeong, Jun-Ho; Lee, Eungsug; Lee, Jung-Yong; Park, Inkyu

    2014-10-29

    Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution.

    PubMed

    Wang, Hui; Yu, Yi-Fei; Chen, Qian-Wang; Cheng, Kai

    2011-01-21

    This communication demonstrates superparamagnetic nanosized particles with a magnetic core and a porous carbon shell (thickness of 11 nm), which can remove 97% of Pb(2+) ions from an acidic aqueous solution at a Pb(2+) ion concentration of 100 mg L(-1). It is suggested that a weak electrostatic force of attraction between the heavy metal ions and the nanoparticles and the heavy metal ions adsorption on the mesopore carbon shell contribute most to the superior removal property.

  18. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    NASA Astrophysics Data System (ADS)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  19. Sulfur in foraminiferal calcite as a potential proxy for seawater carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    van Dijk, I.; de Nooijer, L. J.; Boer, W.; Reichart, G.-J.

    2017-07-01

    Sulfur (S) incorporation in foraminiferal shells is hypothesized to change with carbonate ion concentration [CO32-], due to substitution of sulfate for carbonate ions in the calcite crystal lattice. Hence S/Ca values of foraminiferal carbonate shells are expected to reflect sea water carbonate chemistry. To generate a proxy calibration linking the incorporation of S into foraminiferal calcite to carbonate chemistry, we cultured juvenile clones of the larger benthic species Amphistegina gibbosa and Sorites marginalis over a 350-1200 ppm range of pCO2 values, corresponding to a range in [CO32-] of 93 to 211 μmol/kg. We also investigated the potential effect of salinity on S incorporation by culturing juvenile Amphistegina lessonii over a large salinity gradient (25-45). Results show S/CaCALCITE is not impacted by salinity, but increases with increasing pCO2 (and thus decreasing [CO32-] and pH), indicating S incorporation may be used as a proxy for [CO32-]. Higher S incorporation in high-Mg species S. marginalis suggests a superimposed biomineralization effect on the incorporation of S. Microprobe imaging reveals co-occurring banding of Mg and S in Amphistegina lessonii, which is in line with a strong biological control and might explain higher S incorporation in high Mg species. Provided a species-specific calibration is available, foraminiferal S/Ca values might add a valuable new tool for reconstructing past ocean carbonate chemistry.

  20. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome.

    PubMed

    Ono, Katsuhiko; Jung, Minkyung; Zhang, Tianli; Tsutsuki, Hiroyasu; Sezaki, Hiroshi; Ihara, Hideshi; Wei, Fan-Yan; Tomizawa, Kazuhito; Akaike, Takaaki; Sawa, Tomohiro

    2017-05-01

    Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34 S-labeled L-cysteine from O-acetyl-L-serine and 34 S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur ( 34 S) and nitrogen ( 15 N) atoms was also achieved by performing enzyme reactions with 15 N-labeled L-serine, acetyl-CoA, and 34 S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34 S-labeled N-acetyl-L-cysteine (NAC) by incubating 34 S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34 S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology. Copyright © 2017 Elsevier Inc

  1. Evolution of L -shell photoabsorption of the molecular-ion series Si Hn + (n =1 ,2 ,3 ): Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Kennedy, E. T.; Mosnier, J.-P.; van Kampen, P.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Carniato, S.; Puglisi, A.; Sisourat, N.

    2018-04-01

    We report on complementary laboratory and theoretical investigations of the 2 p photoexcitation cross sections for the molecular-ion series Si Hn + (n =1 ,2 ,3 ) near the L -shell threshold. The experiments used an electron cyclotron resonance (ECR) plasma molecular-ion source coupled with monochromatized synchrotron radiation in a merged-beam configuration. For all three molecular ions, the S i2 + decay channel appeared dominant, suggesting similar electronic and nuclear relaxation patterns involving resonant Auger and dissociation processes, respectively. The total yields of the S i2 + products were recorded and put on absolute cross-section scales by comparison with the spectrum of the S i+ parent atomic ion. Interpretation of the experimental spectra ensued from a comparison with total photoabsorption cross-sectional profiles calculated using ab initio configuration interaction theoretical methods inclusive of vibrational dynamics and contributions from inner-shell excitations in both ground and valence-excited electronic states. The spectra, while broadly similar for all three molecular ions, moved towards lower energies as the number of screening hydrogen atoms increased from one to three. They featured a wide and shallow region below ˜107 eV due to 2 p →σ* transitions to dissociative states, and intense and broadened peaks in the ˜107 -113 -eV region merging into sharp Rydberg series due to 2 p →n δ ,n π transitions converging on the LII ,III limits above ˜113 eV . This overall spectral shape is broadly replicated by theory in each case, but the level of agreement does not extend to individual resonance structures. In addition to the fundamental interest, the work should also prove useful for the understanding and modeling of astronomical and laboratory plasma sources where silicon hydride molecular species play significant roles.

  2. High performance Li-ion sulfur batteries enabled by intercalation chemistry.

    PubMed

    Lv, Dongping; Yan, Pengfei; Shao, Yuyan; Li, Qiuyan; Ferrara, Seth; Pan, Huilin; Graff, Gordon L; Polzin, Bryant; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-09-11

    The unstable interface of lithium metal in high energy density Li sulfur (Li-S) batteries raises concerns of poor cycling, low efficiency and safety issues, which may be addressed by using intercalation types of anode. Herein, a new prototype of Li-ion sulfur battery with high performance has been demonstrated by coupling a graphite anode with a sulfur cathode (2 mA h cm(-2)) after successfully addressing the interface issue of graphite in an ether based electrolyte.

  3. Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Zhang, Xuqing; Xie, Dong; Zhong, Yu; Wang, Donghuang; Wu, Jianbo; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2017-08-04

    Lithium-sulfur batteries (LSBs) are considered to be among the most promising next-generation high-energy batteries. It is a consensus that improving the conductivity of sulfur cathodes and impeding the dissolution of lithium polysulfides are two key accesses to high-performance LSBs. Herein we report a sulfur/carbon black (S/C) cathode modified by self-polymerized polydopamine (pDA) with the assistance of polymerization treatment. The pDA acts as a novel and effective shell on the S/C cathode to stop the shuttle effect of polysulfides. By the synergistic effect of enhanced conductivity and multiple blocking effect for polysulfides, the S/C@pDA electrode exhibits improved electrochemical performances including large specific capacity (1135 mAh g -1 at 0.2 C), high rate capability (533 mAh g -1 at 5 C) and long cyclic life (965 mAh g -1 after 200 cycles). Our smart design strategy may promote the development of high-performance LSBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Advanced Sulfur-Silicon Full Cell Architecture for Lithium Ion Batteries.

    PubMed

    Ye, Rachel; Bell, Jeffrey; Patino, Daisy; Ahmed, Kazi; Ozkan, Mihri; Ozkan, Cengiz S

    2017-12-08

    Lithium-ion batteries are crucial to the future of energy storage. However, the energy density of current lithium-ion batteries is insufficient for future applications. Sulfur cathodes and silicon anodes have garnered a lot of attention in the field due their high capacity potential. Although recent developments in sulfur and silicon electrodes show exciting results in half cell formats, neither electrode can act as a lithium source when put together into a full cell format. Current methods toward incorporating lithium in sulfur-silicon full cells involves prelithiating silicon or using lithium sulfide. These methods however, complicate material processing and creates safety hazards. Herein, we present a novel full cell battery architecture that bypasses the issues associated with current methods. This battery architecture gradually integrates controlled amounts of pure lithium into the system by allowing lithium the access to external circuit. A high specific energy density of 350 Wh/kg after 250 cycles at C/10 was achieved using this method. This work should pave the way for future researches into sulfur-silicon full cells.

  5. Inner-shell photodetachment of transition metal negative ions

    NASA Astrophysics Data System (ADS)

    Dumitriu, Ileana

    This thesis focuses on the study of inner-shell photodetachment of transition metal negative ions, specifically Fe- and Ru- . Experimental investigations have been performed with the aim of gaining new insights into the physics of negative atomic ions and providing valuable absolute cross section data for astrophysics. The experiments were performed using the X-ray radiation from the Advanced Light Source, Lawrence Berkeley National Laboratory, and the merged-beam technique for photoion spectroscopy. Negative ions are a special class of atomic systems very different from neutral atoms and positive ions. The fundamental physics of the interaction of transition metal negative ions with photons is interesting but difficult to analyze in detail because the angular momentum coupling generates a large number of possible terms resulting from the open d shell. Our work reports on the first inner-shell photodetachment studies and absolute cross section measurements for Fe- and Ru -. In the case of Fe-, an important astrophysical abundant element, the inner-shell photodetachment cross section was obtained by measuring the Fe+ and Fe2+ ion production over the photon energy range of 48--72 eV. The absolute cross sections for the production of Fe+ and Fe2+ were measured at four photon energies. Strong shape resonances due to the 3p→3d photoexcitation were measured above the 3p detachment threshold. The production of Ru+, Ru2+, and Ru3+ from Ru- was measured over 30--90 eV photon energy range The absolute photodetachment cross sections of Ru - ([Kr] 4d75s 2) leading to Ru+, Ru2+, and Ru 3+ ion production were measured at three photon energies. Resonance effects were observed due to interference between transitions of the 4 p-electrons to the quasi-bound 4p54d85s 2 states and the 4d→epsilonf continuum. The role of many-particle effects, intershell interaction, and polarization seems much more significant in Ru- than in Fe- photodetachment.

  6. Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation

    NASA Astrophysics Data System (ADS)

    Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.

  7. Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium-Sulfur Battery Cathodes.

    PubMed

    Li, Xiang; Cheng, Xuanbing; Gao, Mingxia; Ren, Dawei; Liu, Yongfeng; Guo, Zhengxiao; Shang, Congxiao; Sun, Lixian; Pan, Hongge

    2017-03-29

    Porous carbon can be tailored to great effect for electrochemical energy storage. In this study, we propose a novel structured spherical carbon with a macrohollow core and a microporous shell derived from a sustainable biomass, amylose, by a multistep pyrolysis route without chemical etching. This hierarchically porous carbon shows a particle distribution of 2-10 μm and a surface area of 672 m 2 g -1 . The structure is an effective host of sulfur for lithium-sulfur battery cathodes, which reduces the dissolution of polysulfides in the electrolyte and offers high electrical conductivity during discharge/charge cycling. The hierarchically porous carbon can hold 48 wt % sulfur in its porous structure. The S@C hybrid shows an initial capacity of 1490 mAh g -1 and retains a capacity of 798 mAh g -1 after 200 cycles at a discharge/charge rate of 0.1 C. A capacity of 487 mAh g -1 is obtained at a rate of 3 C. Both a one-step pyrolysis and a chemical-reagent-assisted pyrolysis are also assessed to obtain porous carbon from amylose, but the obtained carbon shows structures inferior for sulfur cathodes. The multistep pyrolysis and the resulting hierarchically porous carbon offer an effective approach to the engineering of biomass for energy storage. The micrometer-sized spherical S@C hybrid with different sizes is also favorable for high-tap density and hence the volumetric density of the batteries, opening up a wide scope for practical applications.

  8. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-Z target atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoehlker, T.; Ionescu, D.C.; Rymuza, P.

    1998-02-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogenlike and heliumlike bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine-structure splitting of Bi, the excitation cross sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave functions and the magneticmore » interaction are of considerable importance for the K-shell excitation process in high-Z ions such as Bi. The experimental data confirm the result of the complete relativistic calculations, namely, that the magnetic part of the Li{acute e}nard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross section. {copyright} {ital 1998} {ital The American Physical Society}« less

  9. ZnS-Sb2S3@C Core-Double Shell Polyhedron Structure Derived from Metal-Organic Framework as Anodes for High Performance Sodium Ion Batteries.

    PubMed

    Dong, Shihua; Li, Caixia; Ge, Xiaoli; Li, Zhaoqiang; Miao, Xianguang; Yin, Longwei

    2017-06-27

    Taking advantage of zeolitic imidazolate framework (ZIF-8), ZnS-Sb 2 S 3 @C core-double shell polyhedron structure is synthesized through a sulfurization reaction between Zn 2+ dissociated from ZIF-8 and S 2- from thioacetamide (TAA), and subsequently a metal cation exchange process between Zn 2+ and Sb 3+ , in which carbon layer is introduced from polymeric resorcinol-formaldehyde to prevent the collapse of the polyhedron. The polyhedron composite with a ZnS inner-core and Sb 2 S 3 /C double-shell as anode for sodium ion batteries (SIBs) shows us a significantly improved electrochemical performance with stable cycle stability, high Coulombic efficiency and specific capacity. Peculiarly, introducing a carbon shell not only acts as an important protective layer to form a rigid construction and accommodate the volume changes, but also improves the electronic conductivity to optimize the stable cycle performance and the excellent rate property. The architecture composed of ZnS inner core and a complex Sb 2 S 3 /C shell not only facilitates the facile electrolyte infiltration to reduce the Na-ion diffusion length to improve the electrochemical reaction kinetics, but also prevents the structure pulverization caused by Na-ion insertion/extraction. This approach to prepare metal sulfides based on MOFs can be further extended to design other nanostructured systems for high performance energy storage devices.

  10. Dielectronic recombination of the 4p and 4d open sub-shell tungsten ions

    NASA Astrophysics Data System (ADS)

    Li, M. J.; Fu, Y. B.; Zhang, G. D.; Zhang, Y. Z.; Dong, C. Z.; Koike, F.

    2014-04-01

    Dielectronic recombination rate coefficients are given theoretically for several highly charged tungsten ions. As 4p open sub-shell ions, Ga-, Ge-, As-, Br-, Kr-like ions are considered. Rb-like ion is further considered as a 4d open sub-shell ion. Theoretical calculations are carried out using a relativistic atomic code FAC. The effect of configuration interaction is taking into account. Inner-shell electron excitations play a significant role for the dielectronic recombination process. Simple analytical formulae are given for the total rate coefficients by fitting to the presently obtained numerical results.

  11. Multi-shell model of ion-induced nucleic acid condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes in- duced by tri-valent cobalt hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. The duplex aggregation free energy is de- composed into attraction and repulsion components represented by simple analytic expressions. The source of the short-range attraction between NA duplexes in the aggregated phase is the in- teraction of CoHex ions in the overlapping regions of the “external” shells with the oppositely chargedmore » duplexes. The attraction depends on CoHex binding affinity to the “external” shell of nearly neutralized duplex and the number of ions in the shell overlapping volume. For a given NA duplex sequence and structure, these parameters are estimated from molecular dynamics simula- tion. The attraction is opposed by the residual repulsion of nearly neutralized duplexes as well as duplex configurational entropy loss upon aggregation. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA conden- sation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. The model also predicts that longer NA fragments will condense easier than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation, lends support to proposed NA condensation picture based on the multivalent “ion binding shells”.« less

  12. A tandem time–of–flight spectrometer for negative–ion/positive–ion coincidence measurements with soft x-ray excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stråhlman, Christian, E-mail: Christian.Strahlman@maxlab.lu.se; Sankari, Rami; Nyholm, Ralf

    2016-01-15

    We present a newly constructed spectrometer for negative–ion/positive–ion coincidence spectroscopy of gaseous samples. The instrument consists of two time–of–flight ion spectrometers and a magnetic momentum filter for deflection of electrons. The instrument can measure double and triple coincidences between mass–resolved negative and positive ions with high detection efficiency. First results include identification of several negative–ion/positive–ion coincidence channels following inner-shell photoexcitation of sulfur hexafluoride (SF{sub 6})

  13. Spectral and Atomic Physics Analysis of Xenon L-Shell Emission From High Energy Laser Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.

    2016-10-01

    The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  14. Enhanced electrochemical performance of sulfur/polyacrylonitrile composite by carbon coating for lithium/sulfur batteries

    NASA Astrophysics Data System (ADS)

    Peng, Huifen; Wang, Xiaoran; Zhao, Yan; Tan, Taizhe; Mentbayeva, Almagul; Bakenov, Zhumabay; Zhang, Yongguang

    2017-10-01

    A carbon-coated sulfur/polyacrylonitrile (C@S/PAN) core-shell structured composite is successfully prepared via a novel solution processing method. The sulfur/polyacrylonitrile (S/PAN) core particle has a diameter of 100 nm, whereas the carbon shell is about 2 nm thick. The as-prepared C@S/PAN composite shows outstanding electrochemical performance in lithium/sulfur (Li/S) batteries delivering a high initial discharge capacity of 1416 mAh g-1. Furthermore, it exhibits 89% retention of the initial reversible capacity over 200 cycles at a constant current rate of 0.1 C. The improved performance contributed by the unique composition and the core-shell structure, wherein carbon matrix can also withstand the volume change of sulfur during the process of charging and discharging as well as provide channels for electron transport. In addition, polyacrylonitrile (PAN) matrix suppresses the shuttle effect by the covalent bonding between sulfur (S) and carbon (C) in the PAN matrix. [Figure not available: see fulltext.

  15. Recombination of open-f-shell tungsten ions

    NASA Astrophysics Data System (ADS)

    Krantz, C.; Badnell, N. R.; Müller, A.; Schippers, S.; Wolf, A.

    2017-03-01

    We review experimental and theoretical efforts aimed at a detailed understanding of the recombination of electrons with highly charged tungsten ions characterised by an open 4f sub-shell. Highly charged tungsten occurs as a plasma contaminant in ITER-like tokamak experiments, where it acts as an unwanted cooling agent. Modelling of the charge state populations in a plasma requires reliable thermal rate coefficients for charge-changing electron collisions. The electron recombination of medium-charged tungsten species with open 4f sub-shells is especially challenging to compute reliably. Storage-ring experiments have been conducted that yielded recombination rate coefficients at high energy resolution and well-understood systematics. Significant deviations compared to simplified, but prevalent, computational models have been found. A new class of ab initio numerical calculations has been developed that provides reliable predictions of the total plasma recombination rate coefficients for these ions.

  16. High-Energy Electron Shell in ECR Ion Source:

    NASA Astrophysics Data System (ADS)

    Niimura, M. G.; Goto, A.; Yano, Y.

    1997-05-01

    As an injector of cyclotrons and RFQ linacs, ECR ion source (ECRIS) is expected to deliver highly charged ions (HCI) at high beam-current (HBC). Injections of light gases and supplementary electrons have been employed for enhancement of HCI and HBC, respectively. Further amelioration of the performance may be feasible by investigating the hot-electron ring inside an ECRIS. Its existence has been granted because of the MeV of Te observable via X-ray diagnostics. However, its location, acceleration mechanism, and effects on the performance are not well known.We found them by deriving the radially negative potential distribution for an ECRIS from measured endloss-current data. It was evidenced from a hole-burning on the parabolic potential profile (by uniformly distributed warm-electron space charges of 9.5x10^5cm-3) and from a local minimum of the electrostatically-trapped ion distribution. A high-energy electron shell (HEES) was located right on the ECR-radius of 6 cm with shell-halfwidth of 1 cm. Such a thin shell around core plasma can only be generated by the Sadeev-Shapiro or v_phxBz acceleration mechanism that can raise Te up to a relativistic value. Here, v_ph is the phase velocity of ES Bernstein waves propagating backwards against incident microwave and Bz the axial mirror magnetic field. The HEES carries diamagnetic current which reduces the core magnetic pressure, thereby stabilizing the ECR surface against driftwave instabilities similarly to gas-mixing.

  17. Initial measurements of O-ion and He-ion decay rates observed from the Van Allen probes RBSPICE instrument

    PubMed Central

    Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro

    2014-01-01

    H-ion (∼45 keV to ∼600 keV), He-ion (∼65 keV to ∼520 keV), and O-ion (∼140 keV to ∼1130 keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first 9 months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L shells, on the order of ∼0.8 day at L shells of 3–4, and decay more slowly with higher L shell, on the order of ∼1.7 days at L shells of 5–6. Conversely, O-ions decay very rapidly (∼1.5 h) across all L shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher-energy (> 500 keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high-energy O-ion loss rates, which have not been adequately studied in the literature to date. Key Points We report initial observations of ring current ions We show that He-ion decay rates are consistent with theory We show that O-ions with energies greater than 500 keV decay very rapidly PMID:26167435

  18. The first laboratory measurements of sulfur ions sputtering water ice

    NASA Astrophysics Data System (ADS)

    Galli, André; Pommerol, Antoine; Vorburger, Audrey; Wurz, Peter; Tulej, Marek; Scheer, Jürgen; Thomas, Nicolas; Wieser, Martin; Barabash, Stas

    2015-04-01

    The upcoming JUpiter ICy moons Explorer mission to Europa, Ganymede, and Callisto has renewed the interest in the interaction of plasma with an icy surface. In particular, the surface release processes on which exosphere models of icy moons rely should be tested with realistic laboratory experiments. We therefore use an existing laboratory facility for space hardware calibration in vacuum to measure the sputtering of water ice due to hydrogen, oxygen, and sulfur ions at energies from 1 keV to 100 keV. Pressure and temperature are comparable to surface conditions encountered on Jupiter's icy moons. The sputter target is a 1cm deep layer of porous, salty water ice. Our results confirm theoretical predictions that the sputter yield from oxygen and sulfur ions should be similar. Thanks to the modular set-up of our experiment we can add further surface processes relevant for icy moons, such as electron sputtering, sublimation, and photodesorption due to UV light.

  19. Ballistic Simulation Method for Lithium Ion Batteries (BASIMLIB) Using Thick Shell Composites (TSC) in LS-DYNA

    DTIC Science & Technology

    2016-08-04

    BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...Objective • Objective and focus of this work is to develop a – Robust simulation methodology to model lithium - ion based batteries in its module and full...unlimited  Lithium Ion Phosphate (LiFePO4) battery cell, module and pack was modeled in LS-DYNA using both Thin Shell Layer (TSL) and Thick Shell

  20. Production and decay of K -shell hollow krypton in collisions with 52-197-MeV/u bare xenon ions

    NASA Astrophysics Data System (ADS)

    Shao, Caojie; Yu, Deyang; Cai, Xiaohong; Chen, Xi; Ma, Kun; Evslin, Jarah; Xue, Yingli; Wang, Wei; Kozhedub, Yury S.; Lu, Rongchun; Song, Zhangyong; Zhang, Mingwu; Liu, Junliang; Yang, Bian; Guo, Yipan; Zhang, Jianming; Ruan, Fangfang; Wu, Yehong; Zhang, Yuezhao; Dong, Chenzhong; Chen, Ximeng; Yang, Zhihu

    2017-07-01

    X-ray spectra of K -shell hollow krypton atoms produced in single collisions with 52-197-MeV/u X e54 + ions are measured in a heavy-ion storage ring equipped with an internal gas-jet target. Energy shifts of the K α1,2 s , K α1,2 h ,s , and K β1,3 s transitions are obtained. Thus the average number of the spectator L vacancies presented during the x-ray emission is deduced. From the relative intensities of the K α1,2 s and K α1,2 h ,s transitions, the ratio of K -shell hollow krypton to singly K -shell ionized atoms is determined to be 14 %-24 % . In the considered collisions, the K vacancies are mainly created by the direct ionization which cannot be calculated within the perturbation descriptions. The experimental results are compared with a relativistic coupled-channel calculation performed within the independent particle approximation.

  1. Strengthening of the Coordination Shell by Counter Ions in Aqueous Th 4+ Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atta-Fynn, Raymond; Bylaska, Eric J.; de Jong, Wibe A.

    The presence of counter ions in solutions containing highly charged metal cations can trigger processes such as ion-pair formation, hydrogen bond breakages and subsequent reformation, and ligand exchanges. In this work, it is shown how halide (Cl-, Br-) and perchlorate (ClO4-) anions affect the strength of the primary solvent coordination shells around Th4+ using explicit solvent and finite temperature ab initio molecular dynamics modeling methods. The 9-fold solvent geometry was found to be the most stable hydration structure in each aqueous solution. Relative to the dilute aqueous solution, the presence of the counter ions did not significantly alter the geometrymore » of the primary hydration shell. However, the free energy analyses indicated that the 10-fold hydrated states were thermodynamically accessible in dilute and bromide aqueous solutions within 1 kcal/mol. Analysis of the results showed that the hydrogen bond lifetimes were longer and solvent exchange energy barriers were larger in solutions with counter ions in comparison with the solution with no counter ions. This implies that the presence of the counter ions induces a strengthening of the Th4+ hydration shell.« less

  2. Valence and L-shell photoionization of Cl-like argon using R-matrix techniques

    NASA Astrophysics Data System (ADS)

    Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.

    2016-02-01

    Photoionization cross-sections are obtained using the relativistic Dirac Atomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the target wavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.

  3. Investigation of rubidium(I) ion solvation in liquid ammonia using QMCF-MD simulation and NBO analysis of first solvation shell structure.

    PubMed

    Hidayat, Yuniawan; Armunanto, Ria; Pranowo, Harno Dwi

    2018-04-27

    Rb(I) ion solvation in liquid ammonia has been studied by an ab initio quantum mechanical charge field molecular dynamics simulation, and the first solvation shell structure has been analyzed using natural bond orbital. The simulation was performed for an ion and 593 ammonia molecules in a box with a length of 29.03 Å corresponding to a liquid ammonia density of 0.69 g/mL at 235.16 K. The quantum mechanical calculation was carried out for atomic interactions in the radius of 6.4 Å from the ion using LANL2DZ ECP and DZP (Dunning) basis sets for Rb(I) ion and ammonia respectively. The trajectories of the simulation were analyzed in terms of radial, angular, and coordination number distribution functions, vibration, and mean residence time (MRT). Two solvation shell regions are observed for the Rb(I)-N as well as the Rb(I)-H. The maximum distance of Rb(I)-N in the first solvation shell is in accordance with experimental data where a coordination number of 8 is favorable. A non-single coordination number of the first and second shell indicates dynamic solvation structure. It is confirmed by frequent exchange ligand processes observed within a simulation time of 15 ps. The low stabilization energy of donor acceptor ion-ligand interaction with a small Wiberg bond index affirms that the Rb(I)-NH 3 interaction is weak electrostatically.

  4. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  5. Synthesis and characterization of sulfur functionalized graphene oxide nanosheets as efficient sorbent for removal of Pb2+, Cd2+, Ni2+ and Zn2+ ions from aqueous solution: A combined thermodynamic and kinetic studies

    NASA Astrophysics Data System (ADS)

    Pirveysian, Mahtab; Ghiaci, Mehran

    2018-01-01

    A very simple, one pot method was used for preparation of sulfur functionalized graphene oxide (GO-SOxR) with sodium sulfide and water in reflux condition. The elemental analysis data showed high sulfur content up to 15%. EDS and XPS analysis also proved introduction of sulfur element. To make the sorbent more efficient operationally, the GO-SOxR was coated with a mesoporous shell of TiO2 or SiO2. The prepared sorbents were characterized by SEM, TEM, TGA, XPS, XRD, IR and EDS. GO-SOxR@TiO2 and GO-SOxR@SiO2 composites were tested for removal of Pb(II), Cd(II), Ni(II) and Zn(II) as heavy metal ions from aqueous solution in batch method. Adsorption of the heavy metal ions was studied kinetically, and the adsorption capacities of GO-SOxR, GO-SOxR@TiO2, and GO-SOxR@SiO2 were evaluated using equilibrium adsorption isotherms, and compared to other adsorbents used for removal of these heavy metals. Kinetic studies showed that the experimental data was fitted with pseudo second order model. The adsorption capacity of GO was significantly improved by sulfur functionalization and TiO2 coating.

  6. K-shell photoionization of O4 + and O5 + ions: experiment and theory

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Douix, S.; Shorman, M. M. Al; Ghazaly, M. O. A. El; Sakho, I.; Gharaibeh, M. F.

    2017-03-01

    Absolute cross-sections for the K-shell photoionization of Be-like (O4 +) and Li-like (O5 +) atomic oxygen ions were measured for the first time (in their respective K-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/ΔE ≈ 3200 (≈170 meV, full width at half-maximum) was achieved with photon energy from 550 to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterize and identify the strong 1s → 2p resonances for both ions and the weaker 1s → np resonances (n ≥ 3) observed in the K-shell spectra of O4 +.

  7. Excitation of MHD waves upstream of Jupiter by energetic sulfur or oxygen ions

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Wong, H. K.; Eviatar, A.

    1986-01-01

    Large fluxes of heavy ions have been reported upstream of Jupiter's bow shock as Voyager 1 approached the planet (Zwickl et al., 1981; Krimigis et al., 1985). Enhanced low-frequency magnetic wave activity was also observed during the particle events. The fluctuations are left-handed, elliptically polarized in the plasma frame. The spectrum of these fluctuations contains a peak close to the Doppler-shifted resonance frequency of a sulfur or oxygen beam with streaming energy of approximately 30 keV. These fluctuations are also present in the spectrum of the magnitude of the field. It is concluded that the observations result from an instability driven by an energetic beam of either sulfur or oxygen. The wave observations can be described by a heavy ion distribution with both a streaming anisotropy and a temperature anisotropy. This class of heavy ion streaming instabilities may also play a role in wave-particle interactions in the vicinity of comets.

  8. Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke

    2018-03-01

    Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.

  9. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confi ning Sulfur in Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Weidong; Wang, Chong M.; Zhang, Quiglin

    Three types of nitrogen-doped hollow carbon spheres with different pore sized porous shells are prepared to investigate the performance of sulfur confinement. The reason that why no sulfur is observed in previous research is determined and it is successfully demonstrated that the sulfur/polysulfide will overflow the porous carbon during the lithiation process.

  10. Equatorial and Apical Solvent Shells of the UO₂²⁺ Ion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Pat; Bylaska, Eric J.; Schenter, Gregory K.

    2008-03-08

    First principles molecular dynamics simulations of the hydration shells surrounding UO₂²⁺ ions are reported for temperatures near 300 K. Most of the simulations were done with 64 solvating water molecules (22 ps). Simulations with 122 water molecules (9 ps) were also carried out. The hydration structure predicted from the simulations was found to agree very well known results from X-ray data. The average U=O bond length was found to be 1.77Å . The first hydration shell contained five trigonally coordinated water molecules that were equatorially oriented about the O-U-O axis with the hydrogen atoms oriented away from the uranium atom.more » The five waters in the first shell were located at an average distance of 2.44Å (2.46Å - 122 water simulation). The second hydration shell was composed of distinct equatorial and apical regions resulting in a peak in the U-O radial distribution function at 4.59Å. The equatorial second shell contained 10 water molecules hydrogen-bonded to the five first shell molecules. Above and below the UO₂²⁺ ion, the water molecules were found to be significantly less structured. In these apical regions, water molecules were found to sporadically hydrogen bond to the oxygen atoms of the UO₂²⁺; oriented in such way as to have their protons pointed towards the cation. While the number of apical waters varied greatly, an average of 5-6 waters was found in this region. Many water transfers into and out of the equatorial and apical second solvation shells were observed to occur on a picosecond (ps) time scale via dissociative mechanisms. Beyond these shells, the bonding pattern substantially returned to the tetrahedral structure of bulk water.« less

  11. Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study

    PubMed Central

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Xing, Lei; Fahrig, Rebecca

    2015-01-01

    Abstract. Thanks to the current advances in nanoscience, molecular biochemistry, and x-ray detector technology, x-ray fluorescence computed tomography (XFCT) has been considered for molecular imaging of probes containing high atomic number elements, such as gold nanoparticles. The commonly used XFCT imaging performed with K-shell x rays appears to have insufficient imaging sensitivity to detect the low gold concentrations observed in small animal studies. Low energy fluorescence L-shell x rays have exhibited higher signal-to-background ratio and appeared as a promising XFCT mode with greatly enhanced sensitivity. The aim of this work was to experimentally demonstrate the feasibility of L-shell XFCT imaging and to assess its achievable sensitivity. We built an experimental L-shell XFCT imaging system consisting of a miniature x-ray tube and two spectrometers, a silicon drift detector (SDD), and a CdTe detector placed at ±120  deg with respect to the excitation beam. We imaged a 28-mm-diameter water phantom with 4-mm-diameter Eppendorf tubes containing gold solutions with concentrations of 0.06 to 0.1% Au. While all Au vials were detectable in the SDD L-shell XFCT image, none of the vials were visible in the CdTe L-shell XFCT image. The detectability limit of the presented L-shell XFCT SDD imaging setup was 0.007% Au, a concentration observed in small animal studies. PMID:26839910

  12. A nitrogen-doped 3D hierarchical carbon/sulfur composite for advanced lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Huang, Wenlong; Wang, Dongdong; Tian, Jianhua; Shan, Zhongqiang

    2017-07-01

    Hybrid nanostructures containing one-dimensional (1D) carbon nanotubes (CNTs) and three-dimensional (3D) mesoporous carbon sphere have many promising applications due to their unique physical chemical properties. In this study, a novel 3D hierarchical carbon material (MCCNT) composed of mesoporous carbon sphere core and nitrogen rich CNTs shell is successfully prepared via an aerosol spray and subsequent chemical vapor deposition (CVD) processes. Owning to its well defined porous structure and favorable conductive framework, MCCNT is used as a potential sulfur host in lithium sulfur batteries through a classic melt-diffusion method. When cycled at a current density of 0.2 C (1 C = 1675 mA h g-1), it delivers an initial capacity as high as 1438.7 mAh g-1. Even if the current density increase to 1 C, the specific capacity still remain up to 534.6 mAh g-1 after 300 cycles. The enhanced electrochemical performance can be attributed to the hybrid structure of MCCNT, in which, the porous core works as a host to confine sulfur and accommodate volume expansion and the external CNTs provide excellent electron and ion conductive frame work. Furthermore, the in-situ doped nitrogen on the surface of CNTs enables effective trapping of lithium polysulfides, leading to a much-improved cycling performance.

  13. Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation.

    PubMed

    Liu, Jian; Lu, Dongping; Zheng, Jianming; Yan, Pengfei; Wang, Biqiong; Sun, Xueliang; Shao, Yuyan; Wang, Chongmin; Xiao, Jie; Zhang, Ji-Guang; Liu, Jun

    2018-06-25

    Lithium-ion sulfur batteries use nonlithium materials as the anode for extended cycle life. However, polysulfide shuttle reactions still occur on the nonmetal anodes (such as graphite and Si), and result in undesirable low Coulombic efficiency. In this work, we used Al 2 O 3 layers coated by atomic layer deposition (ALD) technique to suppress the shuttle reactions. With the optimal thickness of 2 nm Al 2 O 3 coated on graphite anode, the Coulombic efficiency of the sulfur cathode was improved from 84% to 96% in the first cycle, and from 94% to 97% in the subsequent cycles. As a result, the discharge capacity of the sulfur cathode was increased to 550 mAh g -1 in the 100th cycle, as compared with 440 mAh g -1 when the pristine graphite anode was used. The Al 2 O 3 passivation layer minimizes the formation of insoluble sulfide (Li 2 S 2 , Li 2 S) on the surface of graphite anode and improves the efficiency and capacity retention of the graphite-sulfur batteries. The surface passivation strategy could also be used in other sulfur based battery systems (with Li, Si, and Sn anodes), to minimize side reactions and enable high-performance sulfur batteries.

  14. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance

    NASA Astrophysics Data System (ADS)

    Huang, Xingkang; Shi, Keying; Yang, Joseph; Mao, George; Chen, Junhong

    2017-07-01

    Sulfur cathodes have attracted much attention recently because of their high energy density and power density. However, sulfur possesses very poor electrical conductivity, and lithium polysulfides, resulting from the lithiation of sulfur, are prone to dissolving into electrolytes, which leads to the loss of active materials and poor cyclic performance of the sulfur cathodes. Here we report an MnO2-graphene oxide (GO) double-shelled sulfur (S@MnO2@GO) with improved rate capability and cyclic performance, in which we propose a new reaction using sulfur-reducing KMnO4 to produce MnO2 that covers the surface of the excess sulfur in situ. The resulting MnO2 with honeycomb-like morphology provides excellent voids for storing polysulfides. The outermost GO was assembled to block the open pores of MnO2, thereby minimizing the opportunity for polysulfides to leach into the electrolytes. The GO significantly improved the electrical conductivity of the sulfur cathode, and the S@MnO2@GO exhibited excellent rate capability and long cycle life.

  15. Wavelength Measurements of Ni L-shell Lines between 9 and 15 A

    NASA Astrophysics Data System (ADS)

    Gu, Ming F.; Beiersdorfer, P.; Brown, G. V.; Chen, H.; Thorn, D. B.; Kahn, S. M.

    2006-09-01

    We present accurate wavelength measurements of nikel L-shell X-ray lines resulting from Δ n ≥ 1 transitions (mostly, 2 - 3 transitions) between 9 and 15 Å. We have used the electron beam ion trap, SuperEBIT, at the Lawrence Livermore National Laboratory and a flat field grating spectrometer to record the spectra. Most significant emission lines of Ni XIX -- XXVI in our spectral coverage are identified. The resulting data set provides valuable input in the analyses of high resolution X-ray spectra of stellar coronae sources, including the Sun. This work was performed under the auspices of U.S. DOE contract No. W-7405-Eng-48, and supported by NASA APRA Grant NAG5-5419.

  16. Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes.

    PubMed

    Tan, Guoqiang; Wu, Feng; Yuan, Yifei; Chen, Renjie; Zhao, Teng; Yao, Ying; Qian, Ji; Liu, Jianrui; Ye, Yusheng; Shahbazian-Yassar, Reza; Lu, Jun; Amine, Khalil

    2016-06-03

    Structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core-shell nano-architecture. Cable-like copper oxide/carbon-nitride core-shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays provide abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.

  17. Postcollision interactions in the Auger decay of the Ar L-shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, J.A.R.; Stolte, W.C.; He, Z.X.

    1997-04-01

    The photoionization cross sections for Ar{sup +} through Ar{sup 4+}, produced by the Auger decay of an inner shell 2p hole, have been measured between 242 eV and 253 eV on beamline 9.0.1 and 6.3.2. In this study the authors are interested in near threshold phenomenon involving postcollision interactions (PCI), which are related to the Auger decay of a vacancy in the Ar L-shell. During an Auger decay a postcollision interaction can occur causing the out-going photoelectron to be retarded thus losing a certain amount of energy. If the retardation is sufficiently large the photoelectron will not escape. This resultmore » produces a singly charged ion, which normally would not be present. Such evidence of electron capture by the PCI effect was first shown clearly by Eberhardt et al. and, with higher resolution, in the present work. However, capture of the photoelectron is expected to be 100% exactly at the L{sub 2,3} thresholds. Thus, from the authors results they would have expected the Ar{sup 2+} signal to be zero at threshold, but it was not? The authors can explain this anomoly on the basis that during the Auger decay the photoelectrons are captured into high lying excited states of Ar{sup +}, which subsequently decay through autoionization yielding Ar{sup 2+}. Future work in this area will seek experimental evidence to verify this prediction.« less

  18. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

    PubMed Central

    Juhl, Anika C; Schneider, Artur; Ufer, Boris; Brezesinski, Torsten

    2016-01-01

    Summary Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles. PMID:27826497

  19. New Parameterizations for Neutral and Ion-Induced Sulfuric Acid-Water Particle Formation in Nucleation and Kinetic Regimes

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Merikanto, Joonas; Henschel, Henning; Duplissy, Jonathan; Makkonen, Risto; Ortega, Ismael K.; Vehkamäki, Hanna

    2018-01-01

    We have developed new parameterizations of electrically neutral homogeneous and ion-induced sulfuric acid-water particle formation for large ranges of environmental conditions, based on an improved model that has been validated against a particle formation rate data set produced by Cosmics Leaving OUtdoor Droplets (CLOUD) experiments at European Organization for Nuclear Research (CERN). The model uses a thermodynamically consistent version of the Classical Nucleation Theory normalized using quantum chemical data. Unlike the earlier parameterizations for H2SO4-H2O nucleation, the model is applicable to extreme dry conditions where the one-component sulfuric acid limit is approached. Parameterizations are presented for the critical cluster sulfuric acid mole fraction, the critical cluster radius, the total number of molecules in the critical cluster, and the particle formation rate. If the critical cluster contains only one sulfuric acid molecule, a simple formula for kinetic particle formation can be used: this threshold has also been parameterized. The parameterization for electrically neutral particle formation is valid for the following ranges: temperatures 165-400 K, sulfuric acid concentrations 104-1013 cm-3, and relative humidities 0.001-100%. The ion-induced particle formation parameterization is valid for temperatures 195-400 K, sulfuric acid concentrations 104-1016 cm-3, and relative humidities 10-5-100%. The new parameterizations are thus applicable for the full range of conditions in the Earth's atmosphere relevant for binary sulfuric acid-water particle formation, including both tropospheric and stratospheric conditions. They are also suitable for describing particle formation in the atmosphere of Venus.

  20. Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes

    DOE PAGES

    Tan, Guoqiang; Wu, Feng; Yuan, Yifei; ...

    2016-06-03

    Here, structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core–shell nano-architecture. Cable-like copper oxide/carbon-nitride core–shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays providemore » abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.« less

  1. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois

    In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less

  2. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells

    DOE PAGES

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois; ...

    2018-03-30

    In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less

  3. Three-Dimensional Graphene-Carbon Nanotube-Ni Hierarchical Architecture as a Polysulfide Trap for Lithium-Sulfur Batteries.

    PubMed

    Gnana Kumar, G; Chung, Sheng-Heng; Raj Kumar, T; Manthiram, Arumugam

    2018-06-20

    Despite their high energy density and affordable cost compared to lithium-ion (Li-ion) batteries, lithium-sulfur (Li-S) batteries still endure from slow reaction kinetics and capacity loss induced by the insulating sulfur and severe polysulfide diffusion. To address these issues, we report here nickel nanoparticles filled in vertically grown carbon nanotubes (CNTs) on graphene sheets (graphene-CNT-nickel composite (Gr-CNT-Ni)) that are coated onto a polypropylene separator as a polysulfide trap for the construction of high-loading sulfur cathodes. The hierarchical porous framework of Gr-CNT physically entraps and immobilizes the active material sulfur, while the strong chemical interaction with Ni nanoparticles in Gr-CNT-Ni inhibits polysulfide diffusion. The covalently interconnected electron conduction channels and carbon shell-confined metal active sites provide feasible paths for the continual regeneration of active material during the charge-discharge process. Benefitting from these novel morphological and structural features, the Li-S cell with the Gr-CNT-Ni as a polysulfide trap demonstrates high specific capacity and good cycle life. This work provides new avenues for synergistically combining the advantages of hierarchical porous carbon architectures and metal active sites for the development of high-performance cathodes for Li-S batteries.

  4. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    NASA Astrophysics Data System (ADS)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid

  5. High performance sulfur graphite full cell for next generation sulfur Li-ion battery

    NASA Astrophysics Data System (ADS)

    Wu, Yunwen; Momma, Toshiyuki; Yokoshima, Tokihiko; Nara, Hiroki; Osaka, Tetsuya

    2018-06-01

    Sulfur (S) Li-ion battery which use the metallic Li free anode is deemed as a promising solution to conquer the hazards originating from Li metal. However, stable cycling performance and low production price of the S Li-ion battery still remain challenging. Here, we propose a S-LixC full cell system by paring a S cathode and a pre-lithiated graphite anode which is cheap and commercially available. It shows stable cycling performance with a capacity around 1300 mAh (g-S)-1 at 0.2 C-rate and 1000 mAh (g-S)-1 at 0.5 C-rate. In addition, 0.1% per cycle capacity fading rate with a capacity retention of 880 mAh (g-S)-1 after 400 cycles at 0.2 C-rate has been achieved. The pre-formed solid electrolyte interphase (SEI) layer on the pre-lithaited graphite anode largely contributes to the high capacity performance. Notably, a 10-times-enlarged scale of S-LixC laminate type full cell has been assembled with high capacity performance (around 1000 mAh (g-S)-1) even after high rate cycling.

  6. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  7. Harvesting polysulfides by sealing the sulfur electrode in a composite ion-selective net

    NASA Astrophysics Data System (ADS)

    Chen, Yazhou; Li, Zhong; Li, Xuekui; Zeng, Danli; Xu, Guodong; Zhang, Yunfeng; Sun, Yubao; Ke, Hanzhong; Cheng, Hansong

    2017-11-01

    A cathode was prepared by sealing a carbon supported sulfur electrode inside a composite ion-selective net made of carbon, binder and lithiated ionomer to restrict shuttling of polysulfide anionic species. As a result, the soluble polysulfide anions become unable to escape from the composite ion-selective films due to the electrostatic repulsion between the immobilized single ion conducting ionomers and the polysulfides with no dead angles. Experimentally, lithiated 4,4‧-difluoro bis(benzene sulfonyl)imide and PEG200 were copolymerized to form a polyether based single ion conducting polymer. The ionic conductivity of the blend film made of ionomer and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) at a mass ratio of 1:1 is 0.57 mS cm-1 at room temperature. The battery capacity with the sealed sulfur electrode is 1412 mAh g-1 at 0.5 C, 1041 mAh g-1 at 1.0 C, 873 mAh g-1 at 2.0 C and 614 mAh g-1 at 5.0 C, significantly better than the results with lithiated Nafion especially at high C rates. In addition, a long cycling test at 2 C for 500 cycles gives rise to a stable capacity of 800 mAh g-1. The intrinsic electrostatic repulsion between polysulfide anions and the negatively charged electrolyte film, together with the overall sealed electrode configuration, is responsible for blocking the shuttling of polysulfides effectively.

  8. Updating the Jovian Proton Radiation Environment - 2015

    NASA Technical Reports Server (NTRS)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    Since publication in 1983 by N. Divine and H. Garrett, the Jet Propulsion Laboratory's plasma and radiation models have been the design standard for NASA's missions to Jupiter. These models consist of representations of the cold plasma and electrons, the warm and auroral electrons and protons, and the radiation environment (electron, proton, and heavy ions). To date, however, the high-energy proton model has been limited to an L-shell of 12. With the requirement to compute the effects of the high energy protons and other heavy ions on the proposed Europa mission, the extension of the high energy proton model from approximately 12 L-shell to approximately 50 L-shell has become necessary. In particular, a model of the proton environment over that range is required to estimate radiation effects on the solar arrays for the mission. This study describes both the steps taken to extend the original Divine proton model out to an approximately 50 L-shell and the resulting model developed to accomplish that goal. In addition to hydrogen, the oxygen, sulfur, and helium heavy ion environments have also been added between approximately 6 L-shell and approximately 50 L-shell. Finally, selected examples of the model's predictions are presented to illustrate the uses of the tool.

  9. A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhong; Song, Jongchan; Lee, Hongkyung

    Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interfacemore » of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.« less

  10. Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage.

    PubMed

    Sun, Jin; Lv, Chunxiao; Lv, Fan; Chen, Shuai; Li, Daohao; Guo, Ziqi; Han, Wei; Yang, Dongjiang; Guo, Shaojun

    2017-06-27

    Searching the long-life transition-metal oxide (TMO)-based materials for future lithium-ion batteries (LIBs) is still a great challenge because of the mechanical strain resulting from volume change of TMO anodes during the lithiation/delithiation process. To well address this challenging issue, we demonstrate a controlled method for making the multishelled TMO hollow microfibers with tunable shell numbers to achieve the optimal void for efficient lithium-ion storage. Such a particularly designed void can lead to a short diffusion distance for fast diffusion of Li + ions and also withstand a large volume variation upon cycling, both of which are the key for high-performance LIBs. Triple-shelled TMO hollow microfibers are a quite stable anode material for LIBs with high reversible capacities (NiO: 698.1 mA h g -1 at 1 A g -1 ; Co 3 O 4 : 940.2 mA h g -1 at 1 A g -1 ; Fe 2 O 3 : 997.8 mA h g -1 at 1 A g -1 ), excellent rate capability, and stability. The present work opens a way for rational design of the void of multiple shells in achieving the stable lithium-ion storage through the biomass conversion strategy.

  11. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells

    NASA Astrophysics Data System (ADS)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael

    2018-04-01

    In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered and decreases with increasing L-shell. In this work we construct a numerical model for this coupled (radial and pitch angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.

  12. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  13. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    PubMed

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  14. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)

    2016-10-01

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  15. Near sulfur L-edge X-ray absorption spectra of methanethiol in isolation and adsorbed on a Au(111) surface: a theoretical study using the four-component static exchange approximation.

    PubMed

    Villaume, Sebastien; Ekström, Ulf; Ottosson, Henrik; Norman, Patrick

    2010-06-07

    The relativistic four-component static exchange approach for calculation of near-edge X-ray absorption spectra has been reviewed. Application of the method is made to the Au(111) interface and the adsorption of methanethiol by a study of the near sulfur L-edge spectrum. The binding energies of the sulfur 2p(1/2) and 2p(3/2) sublevels in methanethiol are determined to be split by 1.2 eV due to spin-orbit coupling, and the binding energy of the 2p(3/2) shell is lowered from 169.2 eV for the isolated system to 167.4 and 166.7-166.8 eV for methanethiol in mono- and di-coordinated adsorption sites, respectively (with reference to vacuum). In the near L-edge X-ray absorption fine structure spectrum only the sigma*(S-C) peak at 166 eV remains intact by surface adsorption, whereas transitions of predominantly Rydberg character are largely quenched in the surface spectra. The sigma*(S-H) peak of methanethiol is replaced by low-lying, isolated, sigma*(S-Au) peak(s), where the number of peaks in the latter category and their splittings are characteristic of the local bonding situation of the sulfur.

  16. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  17. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    PubMed

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  18. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent

    1999-11-01

    Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.

  19. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.

    PubMed

    Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo

    2016-09-07

    As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.

  20. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries

    PubMed Central

    Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo

    2016-01-01

    As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications. PMID:27600885

  1. SURFACE REACTIONS OF OXIDES OF SULFUR

    EPA Science Inventory

    Surface reactions of several sulfur-containing molecules have been studied in order to understand the mechanism by which sulfate ions are formed on atmospheric aerosols. At 25C the heterogeneous oxidation of SO2 by NO2 to sulfuric acid and sulfate ions occurred on hydrated silica...

  2. Structure and dynamics of the hydration shells of the Al3+ ion

    NASA Astrophysics Data System (ADS)

    Bylaska, Eric J.; Valiev, Marat; Rustad, James R.; Weare, John H.

    2007-03-01

    First principles simulations of the hydration shells surrounding Al3+ ions are reported for temperatures near 300°C. The predicted six water molecules in the octahedral first hydration shell were found to be trigonally coordinated via hydrogen bonds to 12s shell water molecules in agreement with the putative structure used to analyze the x-ray data, but in disagreement with the results reported from conventional molecular dynamics using two-and three-body potentials. Bond lengths and angles of the water molecules in the first and second hydration shells and the average radii of these shells also agreed very well with the results of the x-ray analysis. Water transfers into and out of the second solvation shell were observed to occur on a picosecond time scale via a dissociative mechanism. Beyond the second shell the bonding pattern substantially returned to the tetrahedral structure of bulk water. Most of the simulations were done with 64 solvating water molecules (20ps). Limited simulations with 128 water molecules (7ps) were also carried out. Results agreed as to the general structure of the solvation region and were essentially the same for the first and second shell. However, there were differences in hydrogen bonding and Al-O radial distribution function in the region just beyond the second shell. At the end of the second shell a nearly zero minimum in the Al-O radial distribution was found for the 128 water system. This minimum is less pronounced minimum found for the 64 water system, which may indicate that sizes larger than 64 may be required to reliably predict behavior in this region.

  3. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries

    PubMed Central

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)

    2016-01-01

    Lithium–sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium–sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles. PMID:27762261

  4. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  5. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  6. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    PubMed

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

  7. A core–shell electrode for dynamically and statically stable Li–S battery chemistry

    DOE PAGES

    Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam

    2016-08-17

    Sulfur is an appealing cathode material for establishing advanced lithium batteries as it offers a high theoretical capacity of 1675 mA h g -1 at low material and operating costs. However, the lithium–sulfur (Li–S) electrochemical cells face several formidable challenges arising from both the materials chemistry (e.g., low electrochemical utilization of sulfur and severe polysulfide diffusion) and battery chemistry (e.g., dynamic and static instability and low sulfur loadings). Here in this study, we present the design of a core–shell cathode with a pure sulfur core shielded within a conductive shell-shaped electrode. The new electrode configuration allows Li–S cells to loadmore » with a high amount of sulfur (sulfur loadings of up to 30 mg cm -2 and sulfur content approaching 70 wt%). The core–shell cathodes demonstrate a superior dynamic and static electrochemical stability in Li–S cells. The high-loading cathodes exhibit (i) a high sulfur utilization of up to 97% at C/20–C/2 rates and (ii) a low self-discharge during long-term cell storage for a three-month rest period and at different cell-storage conditions. Finally, a polysulfide-trap cell configuration is designed to evidence the eliminations of polysulfide diffusion and to investigate the relationship between the electrode configuration and electrochemical characteristics. Finally, the comprehensive analytical results based on the high-loading cathodes suggest that (i) the core–shell cathode is a promising solution for designing highly reversible Li–S cells and (ii) the polysulfide-trap cell configuration is a viable approach to qualitatively evaluating the presence or absence of polysulfide diffusion.« less

  8. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.

    PubMed

    Li, Duo; Han, Fei; Wang, Shuai; Cheng, Fei; Sun, Qiang; Li, Wen-Cui

    2013-03-01

    Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.

  9. [Ion chromatography of L-ascorbic acid, sulfite and thiosulfate using their postcolumn reactions with cerium (IV) and fluorescence detection of cerium (III)].

    PubMed

    Chen, Q; Hu, K; Miura, Y

    1999-09-01

    An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected.

  10. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries.

    PubMed

    Chen, Jia-jia; Zhang, Qian; Shi, Yi-ning; Qin, Lin-lin; Cao, Yong; Zheng, Ming-sen; Dong, Quan-feng

    2012-04-28

    A hierarchical S/MWCNT nanomicrosphere for lithium/sulfur batteries with a high power and energy density as well as an excellent cycle life is introduced. Sulfur was uniformly coated on the surface of functional MWCNTs, which serves as a carbon matrix, to form a typical nanoscale core-shell structure with a sulfur layer of thickness 10-20 nm. Then the nanoscale sulfur intermediate composite was ball-milled to form interwoven and porous sphere architecture with large pores (around 1 μm to 5 μm). Different from most sulfur/carbon materials with micropore and mesopore structure, the micrometre scale S/MWCNT nanomicrosphere with a large pore structure could also exhibit high sulfur utilization and cycle retention. It could maintain a reversible capacity of 1000 mA h g(-1) after 100 cycles at 0.3 A g(-1) current density. And it even remained 780 mA h g(-1) after 200 cycles at 0.5 A g(-1) and 650 mA h g(-1) after 200 cycles at 1 A g(-1), showing a significant cyclability enhancement. It is believed that under the collective effect of hierarchical architecture, as well as the existence of carboxyl functional groups, sulfur/carbon materials with large pores could also exhibit an excellent electrochemical performance. The synthesis process introduced here is simple and broadly applicable, which would not only be beneficial to design new materials for lithium sulfur batteries but can also be extended to many different electrode materials for lithium ion batteries. This journal is © the Owner Societies 2012

  11. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    PubMed Central

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-01-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g−1 at 100 mA g−1 and maintain a high reversible capacity of 772 mAh g−1 without showing obvious decay after 50 cycles. PMID:25944615

  12. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  13. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources.

    PubMed

    Petkov, E E; Safronova, A S; Kantsyrev, V L; Shlyaptseva, V V; Rawat, R S; Tan, K S; Beiersdorfer, P; Hell, N; Brown, G V

    2016-11-01

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

  14. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    DOE PAGES

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; ...

    2016-08-09

    We report that X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with differentmore » electron distribution functions, in order to examine the effects that they have on emission spectra. Finally, to further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.« less

  15. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, E. E., E-mail: emilp@unr.edu; Safronova, A. S.; Kantsyrev, V. L.

    2016-11-15

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions,more » in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.« less

  16. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    DOEpatents

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  17. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    DOEpatents

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  18. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2015-11-11

    Mixed metal sulfide composite microspheres with a yolk-shell structure for sodium-ion batteries are studied. Tin-molybdenum oxide yolk-shell microspheres prepared by a one-pot spray pyrolysis process transform into yolk-shell SnS-MoS2 composite microspheres. The discharge capacities of the yolk-shell and dense-structured SnS-MoS2 composite microspheres for the 100th cycle are 396 and 207 mA h g(-1), and their capacity retentions measured from the second cycle are 89 and 47%, respectively. The yolk-shell SnS-MoS2 composite microspheres with high structural stability during repeated sodium insertion and desertion processes have low charge-transfer resistance even after long-term cycling. The synergetic effect of the yolk-shell structure and uniform mixing of the SnS and MoS2 nanocrystals result in the excellent sodium-ion storage properties of the yolk-shell SnS-MoS2 composite microspheres by improving their structural stability during cycling.

  19. Site-specific characterization of beetle horn shell with micromechanical bending test in focused ion beam system.

    PubMed

    Lee, Hyun-Taek; Kim, Ho-Jin; Kim, Chung-Soo; Gomi, Kenji; Taya, Minoru; Nomura, Shûhei; Ahn, Sung-Hoon

    2017-07-15

    Biological materials are the result of years of evolution and possess a number of efficient features and structures. Researchers have investigated the possibility of designing biomedical structures that take advantage of these structural features. Insect shells, such as beetle shells, are among the most promising types of biological material for biomimetic development. However, due to their intricate geometries and small sizes, it is challenging to measure the mechanical properties of these microscale structures. In this study, we developed an in-situ testing platform for site-specific experiments in a focused ion beam (FIB) system. Multi-axis nano-manipulators and a micro-force sensor were utilized in the testing platform to allow better results in the sample preparation and data acquisition. The entire test protocol, consisting of locating sample, ion beam milling and micro-mechanical bending tests, can be carried out without sample transfer or reattachment. We used our newly devised test platform to evaluate the micromechanical properties and structural features of each separated layer of the beetle horn shell. The Young's modulus of both the exocuticle and endocuticle layers was measured. We carried out a bending test to characterize the layers mechanically. The exocuticle layer bent in a brick-like manner, while the endocuticle layer exhibited a crack blunting effect. This paper proposed an in-situ manipulation/test method in focused ion beam for characterizing micromechanical properties of beetle horn shell. The challenge in precise and accurate fabrication for the samples with complex geometry was overcome by using nano-manipulators having multi-degree of freedom and a micro-gripper. With the aid of this specially designed test platform, bending tests were carried out on cantilever-shaped samples prepared by focused ion beam milling. Structural differences between exocuticle and endocuticle layers of beetle horn shell were explored and the results provided

  20. Dust Plasma Environment between Saturn's Rings and Mimas' L Shell

    NASA Astrophysics Data System (ADS)

    Sittler, E. C., Jr.; Johnson, R. E.

    2015-12-01

    We will present a new analysis of the available data on the extension of Saturn's ring atmosphere into the magnetosphere beyond the A-ring outer edge (Johnson et al. 2006) out to the orbit of Mimas. This is an interesting region in Saturn's magnetosphere containing the F and G rings and penetrated by the E-ring and the Enceladus neutral torus. This analysis will include a comparison of the Cassini Plasma Spectrometer (CAPS) plasma data, Radio and Plasma Wave Spectrometer (RPWS) plasma wave observations, RPWS Langmuir Probe (LP) observations and Cassini Dust Analyzer (CDA). The central focus will be on the dust plasma interactions. Specific attention will be paid to the SOI data for which there are considerable differences between the ion and electron densities (Elrod et al., 2012) while for other close flybys inside Mimas' L shell such differences are less obvious but the electron data appear to be highly variable. Using previous identifications of nm particles (Jones et al., 2010) inferred from CAPS data and micron sized particles that can be detected by CDA (Kempf et al., 2006) and the RPWS plasma wave dust impact signatures (Kurth et al., 2006) we will attempt to infer the full particle size distribution between the A-ring and Mimas. These nm to micron sized particles can accumulate considerable charge and under certain circumstances could account for the radial trend in the ion density described in Elrod et al. (2014) a critical issue in preparation for the Cassini proximal orbits. References: Elrod, M.K., W.-L. Tseng, R.J. Wilson, R.E. Johnson, J. Geophys. Res., 117, A03207, 2012. Elrod, M.K., W-L Tseng, A.K. Woodson, R.E. Johnson, Icarus, 242, 130-137,2014. Johnson, R. E., et al., Icarus, 180, 393-402, 2006. Jones, G. H., et al., Geophys. Res. Lett., 36, L16204, 2009. Kempf, S., U. Beckmann, R. Srama, M. Horanyi, S. Auerd, E. Grun, Planet. Space Sci., 54, 999-1006, 2006. Kurth, W. S., T.F. Averkamp, D.A. Gurnett, Z. Wang, Planet. Space Sci., 54, 988-998, 2006.

  1. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yunyi; Haso, Fadi; Szymanowski, Jennifer E. S.

    2015-11-16

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60-(H2O)n (m≈20 and n≈310) (U60) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestinglymore » high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.« less

  3. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes.

    PubMed

    Hwang, Tae Hoon; Lee, Yong Min; Kong, Byung-Seon; Seo, Jin-Seok; Choi, Jang Wook

    2012-02-08

    Because of its unprecedented theoretical capacity near 4000 mAh/g, which is approximately 10-fold larger compared to those of the current commercial graphite anodes, silicon has been the most promising anode for lithium ion batteries, particularly targeting large-scale energy storage applications including electrical vehicles and utility grids. Nevertheless, Si suffers from its short cycle life as well as the limitation for scalable electrode fabrication. Herein, we develop an electrospinning process to produce core-shell fiber electrodes using a dual nozzle in a scalable manner. In the core-shell fibers, commercially available nanoparticles in the core are wrapped by the carbon shell. The unique core-shell structure resolves various issues of Si anode operations, such as pulverization, vulnerable contacts between Si and carbon conductors, and an unstable sold-electrolyte interphase, thereby exhibiting outstanding cell performance: a gravimetric capacity as high as 1384 mAh/g, a 5 min discharging rate capability while retaining 721 mAh/g, and cycle life of 300 cycles with almost no capacity loss. The electrospun core-shell one-dimensional fibers suggest a new design principle for robust and scalable lithium battery electrodes suffering from volume expansion. © 2011 American Chemical Society

  4. Beyond Yolk–Shell Nanoparticles: Fe 3 O 4 @Fe 3 C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage

    DOE PAGES

    Zhang, Jianan; Wang, Kaixi; Xu, Qun; ...

    2015-02-25

    In order to well address the problems of large volume change and dissolution of Fe 3O 4 nanomaterials during Li + intercalation/extraction, herein we demonstrate a one-step in situ nanospace-confined pyrolysis strategy for robust yolk–shell nanospindles with very sufficient internal void space (VSIVS) for high-rate and long-term lithium ion batteries (LIBs), in which an Fe 3O 4@Fe 3C core@shell nanoparticle is well confined in the compartment of a hollow carbon nanospindle. This structure can not only introduce VSIVS to accommodate volume change of Fe 3O 4 but also afford a dual shell of Fe 3C and carbon to restrict Femore » 3O 4 dissolution, thus providing dual roles for greatly improving the capacity retention. Consequently, Fe 3O 4@Fe 3C–C yolk–shell nanospindles deliver a high reversible capacity of 1128.3 mAh g –1 at even 500 mA g –1, excellent high rate capacity (604.8 mAh g –1 at 2000 mA g –1), and prolonged cycling life (maintaining 1120.2 mAh g –1 at 500 mA g –1 for 100 cycles) for LIBs, which are much better than those of Fe 3O 4@C core@shell nanospindles and Fe 3O 4 nanoparticles. The present Fe 3O 4@Fe 3C–C yolk–shell nanospindles are the most efficient Fe 3O 4-based anode materials ever reported for LIBs.« less

  5. K-Shell Photoionization of Nickel Ions Using R-Matrix

    NASA Technical Reports Server (NTRS)

    Witthoeft, M. C.; Bautista, M. A.; Garcia, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  6. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  7. Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode.

    PubMed

    Lee, Sang-Kyu; Oh, Seung-Min; Park, Eunjun; Scrosati, Bruno; Hassoun, Jusef; Park, Min-Sik; Kim, Young-Jun; Kim, Hansu; Belharouak, Ilias; Sun, Yang-Kook

    2015-05-13

    Lithium-sulfur batteries could become an excellent alternative to replace the currently used lithium-ion batteries due to their higher energy density and lower production cost; however, commercialization of lithium-sulfur batteries has so far been limited due to the cyclability problems associated with both the sulfur cathode and the lithium-metal anode. Herein, we demonstrate a highly reliable lithium-sulfur battery showing cycle performance comparable to that of lithium-ion batteries; our design uses a highly reversible dual-type sulfur cathode (solid sulfur electrode and polysulfide catholyte) and a lithiated Si/SiOx nanosphere anode. Our lithium-sulfur cell shows superior battery performance in terms of high specific capacity, excellent charge-discharge efficiency, and remarkable cycle life, delivering a specific capacity of ∼750 mAh g(-1) over 500 cycles (85% of the initial capacity). These promising behaviors may arise from a synergistic effect of the enhanced electrochemical performance of the newly designed anode and the optimized layout of the cathode.

  8. Iron oxide shell coating on nano silicon prepared from the sand for lithium-ion battery application

    NASA Astrophysics Data System (ADS)

    Furquan, Mohammad; Vijayalakshmi, S.; Mitra, Sagar

    2018-05-01

    Elemental silicon, due to its high specific capacity (4200 mAh g-1) and non-toxicity is expected to be an attractive anode material for Li-ion battery. But its huge expansion volume (> 300 %) during charging of battery, leads to pulverization and cracking in the silicon particles and causes sudden failure of the Li-ion battery. In this work, we have designed yolk-shell type morphology of silicon, prepared from carbon coated silicon nanoparticles soaked in aqueous solution of ferric nitrate and potassium hydroxide. The soaked silicon particles were dried and finally calcined at 800 °C for 30 minutes. The product obtained is deprived of carbon and has a kind of yolk-shell morphology of nano silicon with iron oxide coating (Si@Iron oxide). This material has been tested for half-cell lithium-ion battery configuration. The discharge capacity is found to be ≈ 600 mAh g-1 at a current rate of 1.0 A g-1 for 200 cycles. It has shown a stable performance as anode for Li-ion battery application.

  9. Sulfuric Acid on Europa

    NASA Image and Video Library

    1999-09-30

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer. Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. http://photojournal.jpl.nasa.gov/catalog/PIA02500

  10. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries

    PubMed Central

    Liu, Kai; Liu, Wei; Qiu, Yongcai; Kong, Biao; Sun, Yongming; Chen, Zheng; Zhuo, Denys; Lin, Dingchang; Cui, Yi

    2017-01-01

    Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes. PMID:28097221

  11. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries.

    PubMed

    Liu, Kai; Liu, Wei; Qiu, Yongcai; Kong, Biao; Sun, Yongming; Chen, Zheng; Zhuo, Denys; Lin, Dingchang; Cui, Yi

    2017-01-01

    Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel "smart" nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.

  12. Temperature anisotropy of the Jovian sulfur nebula

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Siscoe, G. L.; Mekler, Y.

    1979-01-01

    The apparent paradox between the reported observation of a 3-eV gyration energy of Jupiter's ionized sulfur nebula and its observed thickness is discussed. An observation of the thickness of the cloud taken nearly edge-on is presented and shown to imply a large bounce-averaged anisotropy of the sulfur in temperature. These observations are used to construct a self-consistent model of the sulfur nebula in which the sulfur ions are injected by Io as ions and remain sufficiently collisionless in the magnetosphere to maintain the anisotropy for a time longer than a characteristic diffusion time. It is also shown that the proton-electron plasma is collisionally thermalized and provides an adequate means of tapping the rotational energy of the planet to provide the power radiated in the sulfur lines.

  13. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide

    DOE PAGES

    Zheng, Dong; Yang, Xuran; Zhang, Xiaoqing; ...

    2015-10-30

    In this study, the polysulfide ions formed during the first reduction wave of sulfur in Li–S battery were determined through both in-situ and ex-situ derivatization of polysulfides. By comparing the cyclic voltammetric results with and without the derivatization reagent (methyl triflate) as well as the in-situ and ex-situ derivatization results under potentiostatic condition, in-situ derivatization was found to be more appropriate than its ex-situ counterpart, since subsequent fast chemical reactions between the polysulfides and sulfur may occur during the timeframe of ex-situ procedures. It was found that the major polysulfide ions formed at the first reduction wave of elemental sulfurmore » were the S 4 2– and S 5 2– species, while the widely accepted reduction products of S 8 2– and S 6 2– for the first reduction wave were in low abundance.« less

  14. 77 FR 45596 - Shell Energy North America (US), L.P. v. California Independent System Operator Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-88 -000] Shell Energy North America (US), L.P. v. California Independent System Operator Corporation; Notice of Complaint Take... (Commission) Rules of Practice and Procedure, 18 CFR 385.206, Shell Energy North America (US), L.P...

  15. Atomic charges of sulfur in ionic liquids: experiments and calculations.

    PubMed

    Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J

    2017-12-14

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

  16. Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.

    Abstract Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstratemore » two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.« less

  17. Production of soft X-ray emitting slow multiply charged ions - Recoil ion spectroscopy

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.; Elston, S. B.; Forester, J. P.; Griffin, P. M.; Pegg, D. J.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Wright, J. J.; Groeneveld, K.-O.

    1977-01-01

    S ions with a mean charge state of about 14+ and Cl ions with a mean charge state of 12+ were used to study Ne L-shell vacancy production. The ions caused copious production of NeII-NeVIII excited states with approximately 10 to the minus 18 sq cm cross sections. The induced recoil velocities might have application to a significantly higher resolution spectroscopy than is possible with beam-foil methods.

  18. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kai; Liu, Wei; Qiu, Yongcai

    Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. Furthermore, during thermal runaway of the lithium-ion battery, the protective polymermore » shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.« less

  19. Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Sensen; Li, Ying; Li, Min

    2018-02-01

    Porous hard carbon with large interlayer distance was fabricated from walnut shells through a facile high-temperature pyrolysis process and investigated as an anode material for sodium-ion batteries (SIBs). The results show that the electrochemical performance is mainly dependent on the pyrolysis temperature. The porous hard carbon, which was carbonized at 1300°C, displays the highest reversible capacity of 230 mAh g-1 at 20 mA g-1 and an excellent cycling stability (96% capacity retained over 200 cycles). The promising electrochemical performances are attributed to the porous structure reducing distances for sodium ion diffusion and expanded interlayer spacing, which is beneficial for sodium reversible insertion/extraction. The excellent electrochemical performance as well as the low-cost and environmental friendliness demonstrates that walnut shell-derived porous hard carbon is a promising anode material candidate for SIBs.

  20. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries

    DOE PAGES

    Liu, Kai; Liu, Wei; Qiu, Yongcai; ...

    2017-01-13

    Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. Furthermore, during thermal runaway of the lithium-ion battery, the protective polymermore » shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.« less

  1. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions.

  2. Advanced spectroscopic analysis of 0.8-1.0-MA Mo x pinches and the influence of plasma electron beams on L-shell spectra of Mo ions.

    PubMed

    Shlyaptseva, A S; Hansen, S B; Kantsyrev, V L; Fedin, D A; Ouart, N; Fournier, K B; Safronova, U I

    2003-02-01

    This paper presents a detailed investigation of the temporal, spatial, and spectroscopic properties of L-shell radiation from 0.8 to 1.0 MA Mo x pinches. Time-resolved measurements of x-ray radiation and both time-gated and time-integrated spectra and pinhole images are presented and analyzed. High-current x pinches are found to have complex spatial and temporal structures. A collisional-radiative kinetic model has been developed and used to interpret L-shell Mo spectra. The model includes the ground state of every ionization stage of Mo and detailed structure for the O-, F-, Ne-, Na-, and Mg-like ionization stages. Hot electron beams generated by current-carrying electrons in the x pinch are modeled by a non-Maxwellian electron distribution function and have significant influence on L-shell spectra. The results of 20 Mo x-pinch shots with wire diameters from 24 to 62 microm have been modeled. Overall, the modeled spectra fit the experimental spectra well and indicate for time-integrated spectra electron densities between 2 x 10(21) and 2 x 10(22) cm(-3), electron temperatures between 700 and 850 eV, and hot electron fractions between 3% and 7%. Time-gated spectra exhibit wide variations in temperature and density of plasma hot spots during the same discharge.

  3. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode

    NASA Astrophysics Data System (ADS)

    Su, Junming; Zhang, Congcong; Chen, Xiang; Liu, Siyang; Huang, Tao; Yu, Aishui

    2018-03-01

    Although silicon is the most promising anode material for Li-ion batteries, large volume expansion during lithiation and delithiation is the main obstacle limiting the commercial application of silicon anodes. There are two ways to alleviate volume expansion and prevent further pulverization of a Si anode: fabrication of a rational nanostructure possessing void spaces and uniform distribution of the conducting sites, without a good balance effect in mitigating the limiting factors and enhancing battery performance. In this paper, we propose a novel nanostructure - a carbon-shell-constrained Si cluster (Si/C shell) with both adequate void space and good distribution of electrical contact sites to guarantee homogeneous lithiation in the initial cycle. Benefiting from the ability to maintain electrical conductivity of the outer carbon shell, even after cluster fragmentation, the Si/C shell synthesized from low-cost commercial Al-Si alloy spheres can deliver 0.03% capacity loss from 100th to 1000th cycles at a current density of 1 A g-1. The Si/C shell sample with the dual functional structure mentioned above can also maintain its own nanostructure during cycling and deliver excellent rate performance. It is a concise and scalable strategy which can simplify the preparation of other alloy anode materials for Li-ion batteries.

  4. New Insights into the X-Ray Spectra of Heliumlike and Neonlike Ions

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Chen, H.; Hey, D.; Osterheld, A. L.; May, M. J.

    2002-01-01

    Recent measurements of the K-shell and L-shell x-ray spectra of highly charged helium- like and neonlike ions are presented that were performed on the Livermore electron beam ion traps and the Princeton tokamaks. These measurements provide new insights into collisional and indirect line formation processes, identifications of forbidden lines, and a new plasma line diagnostic of magnetic field strength.

  5. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte

    DOE PAGES

    Chen, Shuru; Gao, Yue; Yu, Zhaoxin; ...

    2016-11-30

    We present that lithium-sulfur (Li-S) battery is a promising energy storage technology to replace lithium ion batteries for higher energy density and lower cost. Dissolution of lithium polysulfide intermediates in conventional Li-S electrolytes is known as one of the key technical barriers to the development of Li-S, because it promotes redistribution and irreversible deposition of Li 2S, and also forces large amounts of electrolyte to be used, shortening cycling life and driving down cell energy density. Recently, dimethyl disulfide as a functional co-solvent has been demonstrated to show an alternate electrochemical reaction pathway for sulfur cathodes by the formation ofmore » dimethyl polysulfides and lithium organosulfides as intermediates and reduction products. In this work, comprehensive studies show that this new pathway not only provides high capacity but also enables excellent capacity retention through a built-in automatic discharge shutoff mechanism by tuning carbon/sulfur ratio in sulfur cathodes to reduce unfavorable Li 2S formation. Furthermore, this new electrolyte system is also found to enable high capacity of high-sulfur-loading cathodes with low electrolyte/sulfur (E/S) ratios, such as a stable specific capacity of around 1000 mAh g -1 using a low electrolyte amount (i.e, E/S ratio of 5 mL g -1) and highsulfur-loading (4 mg cm -2) cathodes. This electrolyte system almost doubles the capacity obtained with conventional electrolytes under the same harsh conditions. In conclusion, these results highlight the practical potential of this electrolyte system to enable high-energy-density Li-S batteries.« less

  6. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuru; Gao, Yue; Yu, Zhaoxin

    We present that lithium-sulfur (Li-S) battery is a promising energy storage technology to replace lithium ion batteries for higher energy density and lower cost. Dissolution of lithium polysulfide intermediates in conventional Li-S electrolytes is known as one of the key technical barriers to the development of Li-S, because it promotes redistribution and irreversible deposition of Li 2S, and also forces large amounts of electrolyte to be used, shortening cycling life and driving down cell energy density. Recently, dimethyl disulfide as a functional co-solvent has been demonstrated to show an alternate electrochemical reaction pathway for sulfur cathodes by the formation ofmore » dimethyl polysulfides and lithium organosulfides as intermediates and reduction products. In this work, comprehensive studies show that this new pathway not only provides high capacity but also enables excellent capacity retention through a built-in automatic discharge shutoff mechanism by tuning carbon/sulfur ratio in sulfur cathodes to reduce unfavorable Li 2S formation. Furthermore, this new electrolyte system is also found to enable high capacity of high-sulfur-loading cathodes with low electrolyte/sulfur (E/S) ratios, such as a stable specific capacity of around 1000 mAh g -1 using a low electrolyte amount (i.e, E/S ratio of 5 mL g -1) and highsulfur-loading (4 mg cm -2) cathodes. This electrolyte system almost doubles the capacity obtained with conventional electrolytes under the same harsh conditions. In conclusion, these results highlight the practical potential of this electrolyte system to enable high-energy-density Li-S batteries.« less

  7. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes

    DOE PAGES

    Li, Longjun; Pascal, Tod A.; Connell, Justin G.; ...

    2017-12-22

    Polymer binders in battery electrodes may be either active or passive. This distinction depends on whether the polymer influences charge or mass transport in the electrode. Though it is desirable to understand how to tailor the macromolecular design of a polymer to play a passive or active role, design rules are still lacking, as is a framework to assess the divergence in such behaviors. We reveal the molecular-level underpinnings that distinguish an active polyelectrolyte binder designed for lithium-sulfur batteries from a passive alternative. The binder, a cationic polyelectrolyte, is shown to both facilitate lithium-ion transport through its reconfigurable network ofmore » mobile anions and restrict polysulfide diffusion from mesoporous carbon hosts by anion metathesis, which we show is selective for higher oligomers. These attributes then allow cells to be operated for > 100 cycles with excellent rate capability using cathodes with areal sulfur loadings up to 8.1 mg cm -2 .« less

  8. Universal empirical fit to L-shell X-ray production cross sections in ionization by protons

    NASA Astrophysics Data System (ADS)

    Lapicki, G.; Miranda, J.

    2018-01-01

    A compilation published in 2014, with a recent 2017 update, contains 5730 experimental total L-shell X-ray production cross sections (XRPCS). The database covers an energy range from 10 keV to 1 GeV, and targets from 18Ar to 95Am. With only two adjustable parameters, universal fit to these data normalized to XRPCS calculated at proton velocity v1 equal to the electron velocity in the L-shell v2L, is obtained in terms of a single ratio of v1/v2L. This fit reproduces 97% of the compiled XRPCS to within a factor of 2.

  9. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF ratesmore » spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 10 5 and 1 × 10 9cm -3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximumof ~1400 parts per trillion by volume (pptv).We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm -3 s -1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH 3 levels. In conclusion, we compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.« less

  10. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    DOE PAGES

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; ...

    2016-10-27

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF ratesmore » spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 10 5 and 1 × 10 9cm -3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximumof ~1400 parts per trillion by volume (pptv).We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm -3 s -1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH 3 levels. In conclusion, we compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.« less

  11. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Chen, Lin; Liu, Yuzi; Zhang, Fan; Liu, Caihong; Shaw, Leon L

    2015-11-25

    The lithium-sulfur (Li-S) battery is a great alternative to the state-of-the-art lithium ion batteries due to its high energy density. However, low utilization of active materials, the insulating nature of sulfur or lithium sulfide (Li2S), and polysulfide dissolution in organic liquid electrolyte lead to low initial capacity and fast performance degradation. Herein, we propose a facile and viable approach to address these issues. This new approach entails synthesis of Li2S/carbon black (Li2S/CB) cores encapsulated by a nitrogen-doped carbon shell with polyvinylpyrrolidone (PVP) assistance. Combining energy-filtered transmission electron microscopy (EFTEM) elemental mappings, XPS and FTIR measurements, it is confirmed that the as-synthesized material has a structure of a Li2S/CB core with a nitrogen-doped carbon shell (denoted as Li2S/CB@NC). The Li2S/CB@NC cathode yields an exceptionally high initial capacity of 1020 mAh/g based on Li2S mass at 0.1 C with stable Coulombic efficiency of 99.7% over 200 cycles. Also, cycling performance shows the capacity decay per cycle as small as 0.17%. Most importantly, to further understand the materials for battery applications, field emission transmission electron microscopy (FETEM) and elemental mapping tests without exposure to air for Li2S samples in cycled cells are reported. Along with the first ever FETEM and field emission scanning electron microscopy (FESEM) investigations of cycled batteries, Li2S/CB@NC cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing Li2S/CB@NC designed here as an outstanding system for high-performance lithium-sulfur batteries.

  12. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.

    PubMed

    Xu, Wen-Tao; Peng, Hong-Jie; Huang, Jia-Qi; Zhao, Chen-Zi; Cheng, Xin-Bing; Zhang, Qiang

    2015-09-07

    The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  14. Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries.

    PubMed

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Xia, Jing; Wang, Xianyou; Xiang, Kaixiong; Zeng, Peng; Zhang, Yan; Jamil, Sidra

    2018-04-25

    A high sulfur loading cathode is the most crucial component for lithium-sulfur batteries (LSBs) to obtain considerable energy density for commercialization applications. The major challenges associated with high sulfur loading electrodes are poor material utilization caused via the nonconductivity of the charged product (S) and the discharged product (Li 2 S), poor stability arisen from dissolution of lithium polysulfides (LiPSs) into most organic electrolytes and pulverization, and structural damage of the electrode caused by large volumetric expansion. A multifunctional synergistic composite enables ultrahigh sulfur content for advanced LSBs, which comprises the sulfur particle encapsulated with an ion-selective polymer with conductive carbon nanotubes and dispersed around Magnéli phase Ti 4 O 7 (MS-3) by the bottom-up method. The ion-selective polymer provides a physical shield and electrostatic repulsion against the shuttling of polysulfides with negative charge, whereas it can permit the transmission of lithium ion (Li + ) through the polymer membrane, and the carbon nanotubes twined around the sulfur promote electronic conductivity and sulfur utilization as well as strong chemical adsorption of LiPSs by means of Ti 4 O 7 . Because of this hierarchical construction, the cathode possesses a lofty final sulfur loading of 72% and large sulfur areal mass loading of 3.56 mg cm -2 , which displays the large areal specific capacity of 4.22 mA h cm -2 . In the same time, it can provide excellent cyclic performance with the corresponding capacity attenuation ratio of 0.08% per cycle at 0.5 C after 300 cycles. Especially, while sulfur areal mass loading is sharply enhanced to 5.11 mg cm -2 , the MS-3 composite exhibits a large initial areal capacity of 5.04 mA h cm -2 and still keeps a high reversible capacity of 696 mA h g -1 at 300th cycle even at a 1.0 C. The design of high sulfur content cathodes is a viable approach for boosting practical commercialized

  15. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.

    PubMed

    Wu, Feng; Chen, Junzheng; Li, Li; Zhao, Teng; Liu, Zhen; Chen, Renjie

    2013-08-01

    Polypyrrole-polyethylene glycol (PPy/PEG)-modified sulfur/aligned carbon nanotubes (PPy/PEG-S/A-CNTs) were synthesized by using an in situ polymerization method. The ratio of PPy to PEG equaled 31.7:1 after polymerization, and the PEG served as a cation dopant in the polymerization and electrochemical reactions. Elemental analysis, FTIR, Raman spectroscopy, XRD, and electrochemical methods were performed to measure the physicochemical properties of the composite. Elemental analysis demonstrated that the sulfur, PPy, PEG, A-CNT, and chloride content in the synthesized material was 64.6%, 22.1%, 0.7%, 12.1%, and 0.5%, respectively. The thickness of the polymer shell was about 15-25 nm, and FTIR confirmed the successful PPy/PEG synthesis. The cathode exhibited a high initial specific capacity of 1355 mAh g(-1) , and a sulfur usage of 81.1%. The reversible capacity of 924 mAh g(-1) was obtained after 100 cycles, showing a remarkably improved cyclability compared to equivalent systems without PEG doping and without any coatings. PPy/PEG provided an effective electronically conductive network and a stable interface structure for the cathode. Rate performance of the PPy/PEG- S/A-CNT composite was more than double that of the unmodified S/A-CNTs. Remarkably, the battery could work at a very high current density of 8 A g(-1) and reached an initial capacity of 542 mAh g(-1) ; it also retained a capacity of 480 mAh g(-1) after 100 cycles. The addition of PEG as a dopant in the PPy shell contributed to this prominent rate improvement. Lithium ions and electrons were available everywhere on the surfaces of the particles, and thus could greatly improve the electrochemical reaction; PEG is a well-known solvent for lithium salts and a very good lithium-ion catcher. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    NASA Astrophysics Data System (ADS)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  17. Freeze-Dried Sulfur-Graphene Oxide-Carbon Nanotube Nanocomposite for High Sulfur-Loading Lithium/Sulfur Cells.

    PubMed

    Hwa, Yoon; Seo, Hyeon Kook; Yuk, Jong-Min; Cairns, Elton J

    2017-11-08

    The ambient-temperature rechargeable lithium/sulfur (Li/S) cell is a strong candidate for the beyond lithium ion cell since significant progress on developing advanced sulfur electrodes with high sulfur loading has been made. Here we report on a new sulfur electrode active material consisting of a cetyltrimethylammonium bromide-modified sulfur-graphene oxide-carbon nanotube (S-GO-CTA-CNT) nanocomposite prepared by freeze-drying. We show the real-time formation of nanocrystalline lithium sulfide (Li 2 S) at the interface between the S-GO-CTA-CNT nanocomposite and the liquid electrolyte by in situ TEM observation of the reaction. The combination of GO and CNT helps to maintain the structural integrity of the S-GO-CTA-CNT nanocomposite during lithiation/delithiation. A high S loading (11.1 mgS/cm 2 , 75% S) S-GO-CTA-CNT electrode was successfully prepared using a three-dimensional structured Al foam as a substrate and showed good S utilization (1128 mAh/g S corresponding to 12.5 mAh/cm 2 ), even with a very low electrolyte to sulfur weight ratio of 4. Moreover, it was demonstrated that the ionic liquid in the electrolyte improves the Coulombic efficiency and stabilizes the morphology of the Li metal anode.

  18. Coaxial-cable structure composite cathode material with high sulfur loading for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zhang, Zhian; Guo, Zaiping; Zhang, Kai; Lai, Yanqing; Li, Jie

    2015-01-01

    Hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) coaxial-cable structure composite, which is carbonized from HCNF@polydopamine, is prepared as an improved high conductive carbon matrix for encapsulating sulfur as a composite cathode material for lithium-sulfur batteries. The prepared HCNF@NPC-S composite with high sulfur content of approximately 80 wt% shows an obvious coaxial-cable structure with an NPC layer coating on the surface of the linear HCNFs along the length and sulfur homogeneously distributes in the coating layer. This material exhibits much better electrochemical performance than the HCNF-S composite, delivers initial discharge capacity of 982 mAh g-1 and maintains a high capacity retention rate of 63% after 200 cycles at a high current density of 837.5 mA g-1. The significantly enhanced electrochemical performance of the HCNF@NPC-S composite is attributed to the unique coaxial-cable structure, in which the linear HCNF core provides electronic conduction pathways and works as mechanical support, and the NPC shell with nitrogen-doped and porous structure can trap sulfur/polysulfides and provide Li+ conductive pathways.

  19. Chemical Assignment of Structural Isomers of Sulfur-Containing Metabolites in Garlic by Liquid Chromatography-Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry.

    PubMed

    Nakabayashi, Ryo; Sawada, Yuji; Aoyagi, Morihiro; Yamada, Yutaka; Hirai, Masami Yokota; Sakurai, Tetsuya; Kamoi, Takahiro; Rowan, Daryl D; Saito, Kazuki

    2016-02-01

    The chemical assignment of metabolites is crucial to understanding the relation between food composition and biological activity. This study was designed to detect and chemically assign sulfur-containing metabolites by using LC-Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) in Allium plants. Ultrahigh resolution (>250,000 full width at half-maximum) and mass accuracy (<1 mDa) by FTICR-MS allowed us to distinguish ions containing sulfur isotopes ((32)S and (34)S). Putative 69 S-containing monoisotopic ions (S-ions) were extracted from the metabolome data of onion (Allium cepa), green onion (Allium fistulosum), and garlic (Allium sativum) on the basis of theoretical mass differences between (32)S-ions and their (34)S-substituted counterparts and on the natural abundance of (34)S. Eight S-ions were chemically assigned by using the reference data according to the guidelines of the Metabolomics Standards Initiative. Three ions detected in garlic were assigned as derived from the isomers γ-glutamyl-S-1-propenylcysteine and γ-glutamyl-S-2-propenylcysteine and as S-2-propenylmercaptoglutathione on the basis of differences in key product ions identified in reference tandem MS spectra. The ability to discriminate between such geometric isomers will be extremely useful for the chemical assignment of unknown metabolites in MS-based metabolomics. © 2016 American Society for Nutrition.

  20. Long-term relationships between molybdenum and sulfur concentrations in red cedar tree rings. [Juniperus virginana L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyette, R.P.; Cutter, B.E.; Henderson, G.S.

    Molybdenum and S concentrations were determined in growth increments of 13 eastern redcedar (Juniperus virginana L.) trees from the Ozark region of Missouri. Chonologies were constructed, which dated from 1280 to 1960 for Mo, and from 1580 to 1960 for S.A 45% increase in Mo concentrations occurred between 1720 and 1860 when compared with the previous 440 yr. A decline in heartwood Mo concentration, beginning in 1860, is hypothesized to be due to increasing soil sulfate from the atmospheric deposition of S compounds. There was a 65% reduction in Mo concentration concomitant with a 44% increase in S concentrations inmore » redcedar heartwood formed after 1860. Sulfur and Mo concentrations were found to be negatively correlated in serial heartwood increments. Competition between sulfate and molybdate ions in soil solutions are thought to have decreased Mo in recent heartwood growth increments.« less

  1. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.

    PubMed

    Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon

    2013-09-21

    SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.

  2. Design and Synthesis of Spherical Multicomponent Aggregates Composed of Core-Shell, Yolk-Shell, and Hollow Nanospheres and Their Lithium-Ion Storage Performances.

    PubMed

    Park, Gi Dae; Kang, Yun Chan

    2018-03-01

    Micrometer-sized spherical aggregates of Sn and Co components containing core-shell, yolk-shell, hollow nanospheres are synthesized by applying nanoscale Kirkendall diffusion in the large-scale spray drying process. The Sn 2 Co 3 -Co 3 SnC 0.7 -C composite microspheres uniformly dispersed with Sn 2 Co 3 -Co 3 SnC 0.7 mixed nanocrystals are formed by the first-step reduction of spray-dried precursor powders at 900 °C. The second-step oxidation process transforms the Sn 2 Co 3 -Co 3 SnC 0.7 -C composite into the porous microsphere composed of Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 core-shell, Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 yolk-shell, and CoSnO 3 -Co 3 O 4 hollow nanospheres at 300, 400, and 500 °C, respectively. The discharge capacity of the microspheres with Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 core-shell, Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 yolk-shell, and CoSnO 3 -Co 3 O 4 hollow nanospheres for the 200 th cycle at a current density of 1 A g -1 is 1265, 987, and 569 mA h g -1 , respectively. The ultrafine primary nanoparticles with a core-shell structure improve the structural stability of the porous-structured microspheres during repeated lithium insertion and desertion processes. The porous Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 microspheres with core-shell primary nanoparticles show excellent cycling and rate performances as anode materials for lithium-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, G. E., E-mail: kemp10@llnl.gov; Colvin, J. D.; Fournier, K. B.

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facilitymore » (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.« less

  4. Accurate quantitation standards of glutathione via traceable sulfur measurement by inductively coupled plasma optical emission spectrometry and ion chromatography

    PubMed Central

    Rastogi, L.; Dash, K.; Arunachalam, J.

    2013-01-01

    The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the “high performance” methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements. PMID:29403814

  5. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  6. He-Ion Microscopy as a High-Resolution Probe for Complex Quantum Heterostructures in Core-Shell Nanowires.

    PubMed

    Pöpsel, Christian; Becker, Jonathan; Jeon, Nari; Döblinger, Markus; Stettner, Thomas; Gottschalk, Yeanitza Trujillo; Loitsch, Bernhard; Matich, Sonja; Altzschner, Marcus; Holleitner, Alexander W; Finley, Jonathan J; Lauhon, Lincoln J; Koblmüller, Gregor

    2018-06-13

    Core-shell semiconductor nanowires (NW) with internal quantum heterostructures are amongst the most complex nanostructured materials to be explored for assessing the ultimate capabilities of diverse ultrahigh-resolution imaging techniques. To probe the structure and composition of these materials in their native environment with minimal damage and sample preparation calls for high-resolution electron or ion microscopy methods, which have not yet been tested on such classes of ultrasmall quantum nanostructures. Here, we demonstrate that scanning helium ion microscopy (SHeIM) provides a powerful and straightforward method to map quantum heterostructures embedded in complex III-V semiconductor NWs with unique material contrast at ∼1 nm resolution. By probing the cross sections of GaAs-Al(Ga)As core-shell NWs with coaxial GaAs quantum wells as well as short-period GaAs/AlAs superlattice (SL) structures in the shell, the Al-rich and Ga-rich layers are accurately discriminated by their image contrast in excellent agreement with correlated, yet destructive, scanning transmission electron microscopy and atom probe tomography analysis. Most interestingly, quantitative He-ion dose-dependent SHeIM analysis of the ternary AlGaAs shell layers and of compositionally nonuniform GaAs/AlAs SLs reveals distinct alloy composition fluctuations in the form of Al-rich clusters with size distributions between ∼1-10 nm. In the GaAs/AlAs SLs the alloy clustering vanishes with increasing SL-period (>5 nm-GaAs/4 nm-AlAs), providing insights into critical size dimensions for atomic intermixing effects in short-period SLs within a NW geometry. The straightforward SHeIM technique therefore provides unique benefits in imaging the tiniest nanoscale features in topography, structure and composition of a multitude of diverse complex semiconductor nanostructures.

  7. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    PubMed Central

    Huang, Fenglin; Liu, Wenting; Li, Peiying; Ning, Jinxia; Wei, Qufu

    2016-01-01

    A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm) was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle), high porosity (69.77%), and super electrolyte compatibility (497%, electrolyte uptake). It had a higher ionic conductivity (13.897 mS·cm−1) than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1) was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries. PMID:28787873

  8. Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke; Liu, Helen; Gan, Hong

    The Lithium-Sulfur (Li-S) battery is under intensive research in recent years due to its potential to provide higher energy density and lower cost than the current state-of-the-art lithium-ion battery technology. To meet cost target for transportation application, high sulfur loading up to 8 mAh cm -2 is predicted by modeling. In this work, we have investigated the sulfur loading effect on the galvanostatic charge/discharge cycling performance of Li-S cells with theoretical sulfur loading ranging from 0.5 mAh cm -2 to 7.5 mAh cm -2. We found that the low sulfur utilization of electrodes with sulfur loading of > 3.0 mAhmore » cm-2 is due to their inability to deliver capacities at the 2.1V voltage plateau, which corresponds to the conversion of soluble Li 2S 4 to insoluble Li 2S 2/Li 2S. This electrochemical conversion process recovers to deliver the expected sulfur utilization after several activation cycles for electrodes with sulfur loading up to 4.5 mAh cm -2. For electrodes with 7.0 mAh cm -2 loading, no sulfur utilization recovery was observed for 100 cycles. The root cause of this phenomenon is elucidated by SEM/EDS and EIS investigation. Carbon interlayer cell design and low rate discharge activation are demonstrated to be effective mitigation methods.« less

  9. Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery

    DOE PAGES

    Sun, Ke; Liu, Helen; Gan, Hong

    2016-05-01

    The Lithium-Sulfur (Li-S) battery is under intensive research in recent years due to its potential to provide higher energy density and lower cost than the current state-of-the-art lithium-ion battery technology. To meet cost target for transportation application, high sulfur loading up to 8 mAh cm -2 is predicted by modeling. In this work, we have investigated the sulfur loading effect on the galvanostatic charge/discharge cycling performance of Li-S cells with theoretical sulfur loading ranging from 0.5 mAh cm -2 to 7.5 mAh cm -2. We found that the low sulfur utilization of electrodes with sulfur loading of > 3.0 mAhmore » cm-2 is due to their inability to deliver capacities at the 2.1V voltage plateau, which corresponds to the conversion of soluble Li 2S 4 to insoluble Li 2S 2/Li 2S. This electrochemical conversion process recovers to deliver the expected sulfur utilization after several activation cycles for electrodes with sulfur loading up to 4.5 mAh cm -2. For electrodes with 7.0 mAh cm -2 loading, no sulfur utilization recovery was observed for 100 cycles. The root cause of this phenomenon is elucidated by SEM/EDS and EIS investigation. Carbon interlayer cell design and low rate discharge activation are demonstrated to be effective mitigation methods.« less

  10. UV-light-driven prebiotic synthesis of iron-sulfur clusters

    NASA Astrophysics Data System (ADS)

    Bonfio, Claudia; Valer, Luca; Scintilla, Simone; Shah, Sachin; Evans, David J.; Jin, Lin; Szostak, Jack W.; Sasselov, Dimitar D.; Sutherland, John D.; Mansy, Sheref S.

    2017-12-01

    Iron-sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron-sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron-sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe-2S] and [4Fe-4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron-sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron-sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron-sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron-sulfur-cluster-dependent metabolism.

  11. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  12. Functionalized layered double hydroxide with nitrogen and sulfur co-decorated carbondots for highly selective and efficient removal of soft Hg2+ and Ag+ ions.

    PubMed

    Asiabi, Hamid; Yamini, Yadollah; Shamsayei, Maryam; Molaei, Karam; Shamsipur, Mojtaba

    2018-05-28

    A facile composite was fabricated via direct assembly of nitrogen and sulfur co-decorated carbon dots with abundant oxygen-containing functional groups on the surface of the positively charged layered double hydroxide (N,S-CDs-LDH). The novel N,S-CDs-LDH demonstrates highly selective bindings (M-S) and an extremely efficient removal capacity for soft metal ions such as Ag + and Hg 2+ ions. N,S-CDs-LDH displayed a selectivity order of Ag + > Hg 2+ > Cu 2+ > Pb 2+ > Zn 2+ > Cd 2+ for their adsorption. The enormous capacities for Hg 2+ (625.0 mg g -1 ) and Ag + (714.3 mg g -1 ) and very high distribution coefficients (K d ) of 9.9 × 10 6 mL g -1 (C 0  = 20 mg L -1 ) and 2.0 × 10 7 mL g -1 (C 0  = 20 mg L -1 ) for Hg 2+ and Ag + , respectively, place the N,S-CDs-LDH at the top of LDH based materials known for such removal. The adsorption kinetic curves for Hg 2+ and Ag + fitted well with the pseudo-second order model. For Hg 2+ and Ag + , an exceptionally rapid capture with removal ∼100% within 80 min was observed (C ions  = 30 mg L -1 and V/m ratio of 1000). The adsorption isotherms were well described using Langmuir isotherm. The N,S-CDs-LDH was successfully applied to highly efficient removal of Hg 2+ and Ag + from aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao, E-mail: zhoutao@csu.edu.cn

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt andmore » lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.« less

  14. L -subshell ionization of Ce, Nd, and Lu by 4-10-MeV C ions

    NASA Astrophysics Data System (ADS)

    Lapicki, G.; Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.; Sen, P.; Sarkadi, L.; Trautmann, D.

    2005-08-01

    Ll,Lα,Lβ,Lγ,Lγ1+5,Lγ2+3,Lγ4+4' x-ray production cross sections of Ce58 , Nd60 and Lu71 induced by 4-, 6-, 8-, and 10-MeV carbon ions were measured. For Lu, Lγ2+3 is separated from Lγ2+3+6 after revision of the technique of Datz so that Lγ1+5 was used instead of Lγ1 , the Lγ4+4'/Lγ1+5 ratio was corrected for multiple ionization, and uncertainties in Lγ4+4' were incorporated in the fitting process. L -subshell ionization cross sections were extracted as a weighted average from two combinations of these cross sections, {Lα,Lγ1+5,Lγ2+3} and {Lα,Lγ1+5,Lγ} . It is shown that, to within a few percent, the first of these two combinations results in the identical cross sections as this weighted average. Within 10%, permutations of different sets of single-hole atomic parameters yielded the same ionization cross sections. These cross sections are typically within 15% and at most 35% of the cross sections obtained with atomic parameters that were altered in two different ways for multiple ionization. Extracted subshell and total L -shell ionization cross sections as well as Ce and Nd data of Braziewicz are compared with the ECPSSR theory of Brandt and Lapicki that accounts for the energy-loss (E), Coulomb-deflection (C), perturbed-stationary-state (PSS) and relativistic (R) effects. These measurements are also compared with the ECPSSR theory after its corrections—in a separated and united atom (USA) treatment, and for the intrashell (IS) transitions with the factors of Sarkadi and Mukoyama normalized to match L -shell cross section with the sum of L -subshell cross sections—as well as with the similarly improved semiclassical approximation of Trautmann. For Ce and Nd, the agreement of the extracted ionization cross sections with these theories is poor for L1 and good for L2 , L3 , and total L shell ionization. For the L2 subshell, this agreement is better for Ce and Nd than for Lu. The ECPSSR theory corrected for the USA and IS effects is surprisingly

  15. Understanding Sulfur Systematics in Large Igneous Provinces Using Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Novikova, S.; Edmonds, M.; Turchyn, A. V.; Maclennan, J.; Svensen, H.; Frost, D. J.; Yallup, C.

    2013-12-01

    The eruption of the Siberian Traps coincided with perhaps the greatest environmental catastrophe in Earth's history, at the Permo-Triassic boundary. The source and magnitude of the volatile emissions, including sulfur, associated with the eruption remain poorly understood yet were critical in forcing environmental change. Two of the primary questions are how much sulfur gases were emitted during the eruptions and from where they were sourced. Primary melts carry dissolved sulfur from the mantle. Magmas ponding in sills and ascending through dykes may also assimilate sulfur from country rocks, as well as heat the country rocks and generate fluids through contact metamorphism. If the magmas interacted thermally, for prolonged periods, with sulfur-rich country rocks then it is probable that the sulfur budget of these eruptions might have been augmented considerably. This is exactly what we have shown recently for a basaltic sill emplaced in oil shale that fed eruptions of the British Tertiary Province, where surrounding sediments showed extensive desulfurization (Yallup et al. Geoch. Cosmochim. Acta, online, 2013). In the current study sulfur isotopes and trace element abundances are used to discriminate sulfur sources and to model magmatic processes for a suite of Siberian Traps sill and lava samples. Our bulk rock and pyrite geochemical analyses illustrate clearly their high abundance of 34S over 32S. The high 34S/32S has been noted previously and linked to assimilation of sulfur from sediments but may alternatively be inherited from the mantle plume source. With the aim of investigating the sulfur isotopic signature in the melt prior to devolatilization, we use secondary ion mass spectrometry (SIMS), for which a specific set of glass standards was synthesised. In order to understand how sulfur isotopes fractionate during degassing we have also conducted a parallel study of well-characterized tephras from Kilauea Volcano, where sulfur degassing behavior is well

  16. Single-step synthesis of Er3+ and Yb3+ ions doped molybdate/Gd2O3 core-shell nanoparticles for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Kamińska, Izabela; Elbaum, Danek; Sikora, Bożena; Kowalik, Przemysław; Mikulski, Jakub; Felcyn, Zofia; Samol, Piotr; Wojciechowski, Tomasz; Minikayev, Roman; Paszkowicz, Wojciech; Zaleszczyk, Wojciech; Szewczyk, Maciej; Konopka, Anna; Gruzeł, Grzegorz; Pawlyta, Mirosława; Donten, Mikołaj; Ciszak, Kamil; Zajdel, Karolina; Frontczak-Baniewicz, Małgorzata; Stępień, Piotr; Łapiński, Mariusz; Wilczyński, Grzegorz; Fronc, Krzysztof

    2018-01-01

    Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd2O3 doped rare earth ions (erbium, Er3+ and ytterbium, Yb3+) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core-shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ—gadolinium molybdates and ξ—molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb3+-{{{{MoO}}}4}2- (∣2F7/2, 3T2〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd2O3:Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core-shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.

  17. Investigating Sulfur as a Biosignature and Indicator of Habitability at an Arctic Analog to Europa

    NASA Astrophysics Data System (ADS)

    Gleeson, D. F.; Anderson, M. S.; Pappalardo, R. T.; Wright, K. W.; Templeton, A. S.

    2010-03-01

    Sulfur-rich materials on the icy surface of Europa have the potential to contain biosignatures representative of processes occurring within the ice shell or ocean. We explore the biogenicity of sulfur minerals from the surface of an Arctic glacier.

  18. [Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic].

    PubMed

    Xu, Hongxiu; Jiang, Lijing; Li, Shaoneng; Zhong, Tianhua; Lai, Qiliang; Shao, Zongze

    2016-01-04

    To investigate the diversity of culturable sulfur-oxidizing bacteria in hydrothermal vent environments of the South Atlantic, and analyze their characteristics of sulfur oxidation. We enriched and isolated sulfur-oxidizing bacteria from hydrothermal vent samples collected from the South Atlantic. The microbial diversity in enrichment cultures was analyzed using the Denatural Gradient Gel Electrophoresis method. Sulfur-oxidizing characteristics of the isolates was further studied by using ion chromatography. A total of 48 isolates were obtained from the deep-sea hydrothermal vent samples, which belonged to 23 genera and mainly grouped into alpha-Proteobacteria (58.3%), Actinobacteria (22.9%) and gama-Proteobacteria (18.8%). Among them, the genus Thalassospira, Martelella and Microbacterium were dominant. About 60% of the isolates exibited sulfur-oxidizing ability and strain L6M1-5 had a higher sulfur oxidation rate by comparison analysis. The diversity of sulfur-oxidizing bacteria in hydrothermal environments of the South Atlantic was reported for the first time based on culture-dependent methods. The result will help understand the biogechemical process of sulfur compounds in the deep-sea hydrothermal environments.

  19. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.

    PubMed

    Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei; Li, Lu; Pei, Songfeng; Gentle, Ian Ross; Li, Feng; Cheng, Hui-Ming

    2013-06-25

    Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.

  20. Rational Design of Statically and Dynamically Stable Lithium-Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio.

    PubMed

    Chung, Sheng-Heng; Manthiram, Arumugam

    2018-02-01

    The primary challenge with lithium-sulfur battery research is the design of sulfur cathodes that exhibit high electrochemical efficiency and stability while keeping the sulfur content and loading high and the electrolyte/sulfur ratio low. With a systematic investigation, a novel graphene/cotton-carbon cathode is presented here that enables sulfur loading and content as high as 46 mg cm -2 and 70 wt% with an electrolyte/sulfur ratio of as low as only 5. The graphene/cotton-carbon cathodes deliver peak capacities of 926 and 765 mA h g -1 , respectively, at C/10 and C/5 rates, which translate into high areal, gravimetric, and volumetric capacities of, respectively, 43 and 35 mA h cm -2 , 648 and 536 mA h g -1 , and 1067 and 881 mA h cm -3 with a stable cyclability. They also exhibit superior cell-storage capability with 95% capacity-retention, a low self-discharge constant of just 0.0012 per day, and stable poststorage cyclability after storing over a long period of six months. This work demonstrates a viable approach to develop lithium-sulfur batteries with practical energy densities exceeding that of lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intramolecular interactions of L-phenylalanine revealed by inner shell chemical shift

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Wang, Feng

    2009-07-01

    Intramolecular interactions of the functional groups, carboxylic acid, amino, and phenyl in L-phenylalanine have been revealed through inner shell chemical shift. The chemical shift and electronic structures are studied using its derivatives, 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA), through substitutions of the functional groups on the chiral carbon Cα, i.e., carboxylic acid (-COOH) and amino (-NH2) groups. Inner shell ionization spectra of L-phenylalanine are simulated using density functional theory based B3LYP/TZVP and LB94/et-pVQZ models, which achieve excellent agreement with the most recently available synchrotron sourced x-ray photoemission spectroscopy of L-phenylalanine (Elettra, Italy). The present study reveals insight into behavior of the peptide bond (CO-NH) through chemical shift of the C1-Cα-Cβ(-Cγ) chain and intramolecular interactions with phenyl. It is found that the chemical shift of the carbonyl C1(=O) site exhibits an apparently redshift (smaller energy) when interacting with the phenyl aromatic group. Removal of the amino group (-NH2) from L-phenylalanine (which forms PPA) brings this energy on C1 close to that in L-alanine (δ <0.01 eV). Chemical environment of Cα and Cβ exhibits more significant differences in L-alanine than in the aromatic species, indicating that the phenyl group indeed affects the peptide bond in the amino acid fragment. No direct evidences are found that the carbonyl acid and amino group interact with the phenyl ring through conventional hydrogen bonds.

  2. Physical parameters for proton induced K-, L-, and M-shell ionization processes

    NASA Astrophysics Data System (ADS)

    Shehla; Puri, Sanjiv

    2016-10-01

    The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.

  3. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Yan, Pengfei; Luo, Langli

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb2O3 from carbon coated Sb2O3 nanoparticles can accommodate the Sb swelling upon sodiationmore » and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~554 mAh•g-1, good rate capability (315 mhA•g-1 at 10C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~130 Wh•kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0-4.0 V, ~1.5 times energy of full-cells with similar design using hard carbon anodes.« less

  4. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    PubMed

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  5. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    NASA Astrophysics Data System (ADS)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  6. Auxiliary iron-sulfur cofactors in radical SAM enzymes.

    PubMed

    Lanz, Nicholas D; Booker, Squire J

    2015-06-01

    A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a [4Fe-4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in contact with the α-amino and α-carboxylate groups of S-adenosyl-l-methionine (SAM). This binding mode facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, resulting in a reductive cleavage of SAM to methionine and a 5'-deoxyadenosyl radical. The 5'-deoxyadenosyl radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transformations. A subset of radical SAM enzymes contains one or more additional iron-sulfur clusters that are required for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known about the roles of these additional clusters. This review will highlight the most recent advances in the identification and characterization of radical SAM enzymes that harbor auxiliary iron-sulfur clusters. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ion energetics at Saturn's magnetosphere using Cassini/MIMI measurements: A simple model for the energetic ion integral moments

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Paranicas, C.; Roussos, E.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.

    2015-12-01

    We present a composite analysis (H+ and O+) of energetic ion spectra and kappa distribution fits, using combined ion measurements from Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetospheric Measurements System (LEMMS, 0.024 < E < 18 MeV), and the Ion Neutral Camera (INCA, ~5.2 to >220 keV for H+). The modeled expressions of these energetic ion distributions are then used to obtain the four integral particle moments (from zeroth to 3rd moment: n, In, P, IE, i.e. Density, Integral number intensity, Pressure, Integral energy intensity) as well as the characteristic energy (EC=IE/In) of these ions as a function of Local Time and L-Shell. We find that a) protons dominate the energetic ion (>30 keV) integral number and energy intensity at all radial distances (L>5 Rs) and local times, while the H+ and O+ partial pressures and densities are comparable; b) the 12<L<20 Rs region corresponds to a local equatorial acceleration region, where quasi-adiabatic transport of H+ and non-adiabatic acceleration of O+, dominate the ion energetics (compared to the contribution of charge exchange with the Saturnian neutral cloud); c) energetic ion bundles in the 12<L<17 Rs, that -possibly- result from rotating energetic particle blobs shown in previous studies, produce durable signatures (enhancements) in the H+ and O+ pressure, density and temperature; d) energetic ions are depleted inside the orbit of Rhea (~8 Rs), i.e. the energetic ion lifetimes due to charge exchange decrease significantly with decreasing distance in the innermost parts of Saturn's magnetosphere, so that pressure and density drop to minimum inside ~8 Rs. We then utilize a technique to retrieve the equatorial H+ and O+ pressure, density and temperature in Saturn's magnetosphere, using a modified version of the Roelof and Skinner [2000] model in both local time and L-shell. Roelof, E. C., and A. J. Skinner (2000), Space Sci. Rev., 91, 437-459.

  8. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{supmore » 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.« less

  9. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    PubMed

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  10. X-ray transitions studied for decelerated bare and H-like uranium ions at the ESR electron cooler

    NASA Astrophysics Data System (ADS)

    Gumberidze, A.; Stöhlker, Th.; Bednarz, G.; Beyer, H. F.; Bosch, F.; Cai, X.; Hagmann, S.; Klepper, O.; Kozhuharov, C.; Liesen, D.; Ma, X.; Mokler, P. H.; Sierpowski, D.; Stachura, Z.; Steck, M.; Toleikis, S.; Warczak, A.; Zou, Y.

    2003-05-01

    Here we report on X-ray spectra induced by spontaneous capture of free electrons into decelerated bare- and hydrogen-like uranium ions which we measured recently at the cooler section of the ESR storage ring. The most intense lines observed in spectra can be attributed to direct transition of electrons into the K shell of the projectile ions and to characteristic L → K (Lyα) transitions. Radiative recombination lines into the K shell of bare and H-like uranium can be exploited for measuring the two-electron contribution to the ground state binding energy in helium-like uranium. The goal is to probe for high-Z ions bound-state QED corrections which are of the order of α2. Besides the dominant characteristic L → K transitions, the strongly reduced Bremsstrahlung (due to the low cooler voltage applied to the decelerated ions) allowed us to observe for the very first time RR transitions into the L shell as well as the balmer radiation located at the low-energy part of the spectra.

  11. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  12. Measurement of K to L shell vacancy transfer probabilities for the elements 46≤ Z≤55 by photoionization

    NASA Astrophysics Data System (ADS)

    Şimşek, Ö.; Karagöz, D.; Ertugrul, M.

    2003-10-01

    The K to L shell vacancy transfer probabilities for nine elements in the atomic region 46≤ Z≤55 were determined by measuring the L X-ray yields from targets excited by 5.96 and 59.5 keV photons and using the theoretical K and L shell photoionization cross-sections. The L X-rays from different targets were detected with an Ultra-LEGe detector with very thin polymer window. Present experimental results were compared with the semi empirical values tabulated by Rao et al. [Atomic vacancy distributions product by inner shellionization, Phys. Rev. A 5 (1972) 997-1002] and theoretically calculated values using radiative and radiationless transitions. The radiative transitions of these elements were observed from the relativistic Hartree-Slater model, which was proposed by Scofield [Relativistic Hartree-Slater values for K and L shell X-ray emission rates, At. Data Nucl. Data Tables 14 (1974) 121-137]. The radiationless transitions were observed from the Dirac-Hartree-Slater model, which was proposed by Chen et al. [Relativistic radiationless transition probabilities for atomic K- and L-shells, At. Data Nucl. Data Tables 24 (1979) 13-37]. To the best of our knowledge, these vacancy transfer probabilities are reported for the first time.

  13. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries.

    PubMed

    Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin

    2016-03-02

    In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.

  14. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    DOE PAGES

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; ...

    2016-01-25

    In warm target direct-drive inertial confinement fusion implosion experiments performed at the OMEGA laser facility, plastic micro-balloons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. Thesemore » 2-D space-resolved titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400 ± 28 eV, electron number density (N e) = 8.5 × 10 24 ± 2.5 × 10 24 cm –3, and average areal density = 86 ± 7 mg/cm 2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2–9, dominated by l = 2. We extract a target breakup fraction of 7.1 ± 1.5% from our Fourier analysis. Furthermore, a new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5 ±1 μm.« less

  15. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  16. Noncompetitive and Competitive Adsorption of Heavy Metals in Sulfur-Functionalized Ordered Mesoporous Carbon.

    PubMed

    Saha, Dipendu; Barakat, Soukaina; Van Bramer, Scott E; Nelson, Karl A; Hensley, Dale K; Chen, Jihua

    2016-12-14

    In this work, sulfur-functionalized ordered mesoporous carbons were synthesized by activating the soft-templated mesoporous carbons with sulfur bearing salts that simultaneously enhanced the surface area and introduced sulfur functionalities onto the parent carbon surface. XPS analysis showed that sulfur content within the mesoporous carbons were between 8.2% and 12.9%. The sulfur functionalities include C-S, C═S, -COS, and SO x . SEM images confirmed the ordered mesoporosity within the material. The BET surface areas of the sulfur-functionalized ordered mesoporous carbons range from 837 to 2865 m 2 /g with total pore volume of 0.71-2.3 cm 3 /g. The carbon with highest sulfur functionality was examined for aqueous phase adsorption of mercury (as HgCl 2 ), lead (as Pb(NO 3 ) 2 ), cadmium (as CdCl 2 ), and nickel (as NiCl 2 ) ions in both noncompetitive and competitive mode. Under noncompetitive mode and at a pH greater than 7.0 the affinity of sulfur-functionalized carbons toward heavy metals were in the order of Hg > Pb > Cd > Ni. At lower pH, the adsorbent switched its affinity between Pb and Cd. In the noncompetitive mode, Hg and Pb adsorption showed a strong pH dependency whereas Cd and Ni adsorption did not demonstrate a significant influence of pH. The distribution coefficient for noncompetitive adsorption was in the range of 2448-4000 mL/g for Hg, 290-1990 mL/g for Pb, 550-560 mL/g for Cd, and 115-147 for Ni. The kinetics of adsorption suggested a pseudo-second-order model fits better than other models for all the metals. XPS analysis of metal-adsorption carbons suggested that 7-8% of the adsorbed Hg was converted to HgSO 4 , 14% and 2% of Pb was converted to PbSO 4 and PbS/PbO, respectively, and 5% Cd was converted to CdSO 4 . Ni was below the detection limit for XPS. Overall results suggested these carbon materials might be useful for the separation of heavy metals.

  17. Influence of Pb 2+ ions in the H 2 oxidation on Pt catalyzed hydrogen diffusion anodes in sulfuric acid: presence of oscillatory phenomena

    NASA Astrophysics Data System (ADS)

    Expósito, E.; Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Montiel, V.

    The influence of Pb 2+ ions in sulfuric acid medium on the behavior of a platinum catalyzed hydrogen diffusion electrode (HDE) in a filter press reactor has been studied. A voltammetric study of the H 2 oxidation reaction on a polyoriented platinum electrode and a platinum rotating disk electrode (RDE) in presence of lead ions in solution has also been carried out. Potential oscillations were found in galvanostatic experiments of H 2 oxidation using a HDE catalyzed with platinum when Pb 2+ ions are present in solution. This oscillatory phenomenon was also observed when hydrogen oxidation was carried out in presence of Pb 2+ ions using a platinum RDE. The oscillatory behavior observed has been attributed to an adsorption-oxidation-desorption process of lead on the platinum surface. Due to the low solubility of Pb 2+ in sulfuric acid, at high values of coverage, lead is oxidised to insoluble lead sulfate that blocks the Pt surface. The coupling of the dissolution of lead sulfate and the Pb electrochemical adsorption-oxidation processes cause the oscillatory phenomenon.

  18. L-cysteine-capped core/shell/shell quantum dot-graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection.

    PubMed

    Adegoke, Oluwasesan; Forbes, Patricia B C

    2016-01-01

    Environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), become widely distributed in the environment after emission from a range of sources, and they have potential biological effects, including toxicity and carcinogenity. In this work, we have demonstrated the analytical potential of a covalently linked L-cysteine-capped CdSeTe/ZnSe/ZnS core/shell/shell quantum dot (QD)-graphene oxide (GO) nanocomposite fluorescence probe to detect PAH compounds in aqueous solution. Water-soluble L-cysteine-capped CdSeTe/ZnSe/ZnS QDs were synthesized for the first time and were covalently bonded to GO. The fluorescence of the QD-GO nanocomposite was enhanced relative to the unconjugated QDs. Various techniques including TEM, SEM, HRSEM, XRD, Raman, FT-IR, UV/vis and fluorescence spectrophotometry were employed to characterize both the QDs and the QD-GO nanocomposite. Four commonly found priority PAH analytes namely; phenanthrene (Phe), anthracene (Ant), pyrene (Py) and naphthalene (Naph), were tested and it was found that each of the PAH analytes enhanced the fluorescence of the QD-GO probe. Phe was selected for further studies as the PL enhancement was significantly greater for this PAH. A limit of detection (LOD) of 0.19 µg/L was obtained for Phe under optimum conditions, whilst the LOD of Ant, Py and Naph were estimated to be ~0.26 µg/L. The fluorescence detection mechanism is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries

    DOE PAGES

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; ...

    2016-08-08

    The lithium–sulfur (Li–S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature’s ant-nest structure, this study results in a novel Li–S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li–S electrode. The efficient capabilities of the ant-nest structure are adoptedmore » to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. Finally, high cycling stability in the Li–S batteries, for practical applications, has been achieved with up to 3 mg·cm –2 sulfur loading. Li–S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.« less

  20. Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tan, Hsiang; Cho, Hsun-Wei; Wu, Jih-Jen

    2018-06-01

    In this work, ZnSnO3 quantum dots (QDs), instead of commonly used conductive carbon, are grown on the ZnO nanorod (NR) array to construct the binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode on carbon cloth for lithium-ion battery. The ZnO@ZnSnO3 QDs core-shell NR array electrode exhibits excellent lithium storage performance with an improved cycling performance and superior rate capability compared to the ZnO NR array electrode. At a current density of 200 mAg-1, 15.8% capacity loss is acquired in the ZnO@ZnSnO3 QDs core-shell NR array electrode after 110 cycles with capacity retention of 1073 mAhg-1. Significant increases in reversible capacities from 340 to 545 mAhg-1 and from 95 to 390 mAhg-1 at current densities of 1000 and 2000 mAg-1, respectively, are achieved as the ZnO NR arrays are coated with the ZnSnO3 QD shells. The remarkably improved electrochemical performances result from that the configuration of binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode not only facilitates the charge transfer through the solid electrolyte interface and the electronic/ionic conduction boundary as well as lithium ion diffusion but also effectively accommodates the volume change during repeated charge/discharge processes.

  1. Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine.

    PubMed

    Taylor, Meghan; Chapman, Ralph; Beyaert, Ronald; Hernández-Sebastià, Cinta; Marsolais, Frédéric

    2008-07-23

    The contents of sulfur amino acids in seeds of common bean ( Phaseolus vulgaris L.) are suboptimal for nutrition. They accumulate large amounts of a gamma-glutamyl dipeptide of S-methyl-cysteine, a nonprotein amino acid that cannot substitute for methionine or cysteine in the diet. Protein accumulation and amino acid composition were characterized in three genetically related lines integrating a progressive deficiency in major seed storage proteins, phaseolin, phytohemagglutinin, and arcelin. Nitrogen, carbon, and sulfur contents were comparable among the three lines. The contents of S-methyl-cysteine and gamma-glutamyl-S-methyl-cysteine were progressively reduced in the mutants. Sulfur was shifted predominantly to the protein cysteine pool, while total methionine was only slightly elevated. Methionine and cystine contents (mg per g protein) were increased by up to ca. 40%, to levels slightly above FAO guidelines on amino acid requirements for human nutrition. These findings may be useful to improve the nutritional quality of common bean.

  2. Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Berresheim, H.; Andreae, T. W.; Kritz, M. A.; Bates, T. S.

    1988-01-01

    The vertical distributions, in temperate latitudes, of dimethylsulfide (DMS), SO2, radon, methanesulfonate (MSA), nonsea-salt sulfate (nss-sulfate), and aerosol Na(+), NH4(+), and NO(-) ions were determined in samples collected by an aircraft over the northeast Pacific Ocean during May 3-12, 1985. DMS was also determined in surface seawater. It was found that DMS concentrations, both in seawater and in the atmospheric boundary layer, were significantly lower than the values reported previously for subtropical and tropical regions, reflecting the seasonal variability in the temperate North Pacific. The vertical profiles of DMS, MSA, SO2, and nss-sulfate were found to be strongly dependent on the convective stability of the atmosphere and on air mass origin. Biogenic sulfur emissions could account for most of the sulfur budget in the boundary layer, while the long-range transport of continentally derived air masses was mainly responsible for the elevated levels of both SO2 and nss-sulfate in the free troposphere.

  3. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Yan, Pengfei; Luo, Langli

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here in this paper, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb 2O 3 from carbon coated Sb 2O 3 nanoparticlesmore » can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~ 554 mAh g -1, good rate capability (315 mhA g-1 at 10 C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na 0.9[Cu0.22Fe 0.30Mn 0.48]O 2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~ 130 Wh kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0–4.0 V, ~ 1.5 times energy of full-cells with similar design using hard carbon anodes.« less

  4. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    DOE PAGES

    Song, Junhua; Yan, Pengfei; Luo, Langli; ...

    2017-09-04

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here in this paper, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb 2O 3 from carbon coated Sb 2O 3 nanoparticlesmore » can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~ 554 mAh g -1, good rate capability (315 mhA g-1 at 10 C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na 0.9[Cu0.22Fe 0.30Mn 0.48]O 2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~ 130 Wh kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0–4.0 V, ~ 1.5 times energy of full-cells with similar design using hard carbon anodes.« less

  5. Theory of electron capture from a hydrogen-like ion by a bare ion with extensions to inner-shell capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alston, S.G.

    1982-01-01

    A complete systematic derivation is given of a new approximation for the calculation of the cross section for electron capture from a hydrogen-like ion of large nuclear charge Z/sub T/e by a bare ion of charge Z/sub p/e moving with speed v. The amplitude in the wave treatment is obtained through consistent expansion in the small parameters Z/sub p//Z/sub T/ and Z/sub p/e/sup 2//hv; however, the ratio Z/sub T/e/sup 2//hv is not assumed small. Electron-target nucleus interactions are included to all orders and electron-projectile interactions were included consistently to first order so that the theory is called the strong potentialmore » Born (SPB). Following a careful analysis of the approach to the energy shell, an off-shell factor is seen to arise which does not appear in the impulse approximation (IA). The effects of this factor on the capture amplitude are explored. It is shown that, in comparison with the IA, the correct weighting of the target spectrum of intermediate states in the SPB significantly alters the 1s ..-->.. ns cross section and at the same time makes peaking approximations to the amplitude more realistic, even for intermediate velocity Z/sub p/e/sup 2//h<« less

  6. Dual shell-like magnetic clusters containing Ni(II) and Ln(III) (Ln = La, Pr, and Nd) ions.

    PubMed

    Kong, Xiang-Jian; Ren, Yan-Ping; Long, La-Sheng; Zheng, Zhiping; Nichol, Gary; Huang, Rong-Bin; Zheng, Lan-Sun

    2008-04-07

    Dual shell-like nanoscopic magnetic clusters featuring a polynuclear nickel(II) framework encapsulating that of lanthanide ions (Ln = La, Pr, and Nd) were synthesized using Ni(NO3)(2).6H2O, Ln(NO3)(3).6H2O, and iminodiacetic acid (IDA) under hydrothermal conditions. Structurally established by crystallographic studies, these clusters are [La20Ni30(IDA)30(CO3)6(NO3)6(OH)30(H2O)12](CO3)(6).72H2O (1), [Ln20Ni21(C4H5NO4)21(OH)24(C2H2O3)6(C2O4)3(NO3)9(H2O)12](NO3)9.nH2O [C2H2O3 is the alkoxide form of glycolate; Ln = Pr (2), n = 42; Nd (3), n = 50], and {[La4Ni5Na(IDA)5(CO3)(NO3)4(OH)5(H2O)5][CO3].10H2O} infinity (4). Carbonate, oxalate, and glycolate are products of hydrothermal decomposition of IDA. Compositions of these compounds were confirmed by satisfactory elemental analyses. It has been found that the cluster structure is dependent on the identity of the lanthanide ion as well as the starting Ln/Ni/IDA ratio. The cationic cluster of 1 features a core of the Keplerate type with an outer icosidodecahedron of Ni(II) ions encaging a dodecahedral kernel of La(III). Clusters 2 and 3, distinctly different from 1, are isostructural, possessing a core of an outer shell of 21 Ni(II) ions encapsulating an inner shell of 20 Ln(III) ions. Complex 4 is a three-dimensional assembly of cluster building blocks connected by units of Na(NO3)/La(NO3)3; the structure of the building block resembles closely that of 1, with a hydrated La(III) ion internalized in the decanuclear cage being an extra feature. Magnetic studies indicated ferromagnetic interactions in 1, while overall antiferromagnetic interactions were revealed for 2 and 3. The polymeric, three-dimensional cluster network 4 displayed interesting ferrimagnetic interactions.

  7. Generation mechanism of L-value dependence of oxygen flux enhancements during substorms

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.

    2015-12-01

    The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.

  8. Electron-induced chemistry in microhydrated sulfuric acid clusters

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-11-01

    We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.

  9. [Determination a variety of acidic gas in air of workplace by Ion Chromatography].

    PubMed

    Li, Shiyong

    2014-10-01

    To establish a method for determination of a variety of acid gas in the workplace air by Ion Chromatography. (hydrofluoric acid, hydrogen chloride or hydrochloric acid, sulfur anhydride or sulfuric acid, phosphoric acid, oxalic acid). The sample in workplace air was collected by the porous glass plate absorption tube containing 5 ml leacheate. (Sulfuric acid fog, phosphoric acid aerosol microporous membrane after collection, eluted with 5 ml of eluent.) To separated by AS14+AG14 chromatography column, by carbonate (2.0+1.0) mmol/L (Na(2)CO(3)-NaHCO(3)) as eluent, flow rate of 1 ml/min, then analyzed by electrical conductivity detector. The retain time was used for qualitative and the peak area was used for quantitation. The each ion of a variety of acid gas in the air of workplace were excellent in carbonate eluent separation. The linear range of working curve of 0∼20 mg/L. The correlation coefficient r>0.999; lower detection limit of 3.6∼115 µg/L; quantitative limit of 0.012∼0.53 mg/L; acquisition of 15L air were measured, the minimum detection concentration is 0.004 0∼0.13 mg/m(3). The recovery rate is 99.7%∼101.1%. In the sample without mutual interference ions. Samples stored at room temperature for 7 days. The same analysis method, the detection of various acidic gases in the air of workplace, simple operation, good separation effect, high sensitivity, high detection efficiency, easy popularization and application.

  10. Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2 @MoS2 for Enhanced Lithium-Ion Storage.

    PubMed

    Dai, Rui; Zhang, Anqi; Pan, Zhichang; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Hu, Linfeng; Zheng, Gengfeng

    2016-05-01

    Core-shell structured nanohybrids are currently of significant interest due to their synergetic properties and enhanced performances. However, the restriction of lattice mismatch remains a severe obstacle for heterogrowth of various core-shells with two distinct crystal structures. Herein, a controlled synthesis of lattice-mismatched core-shell TiO2 @MoS2 nano-onion heterostructures is successfully developed, using unilamellar Ti0.87 O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2 . The formation of these core-shell nano-onions is attributed to an amorphous layer-induced heterogrowth mechanism. The number of MoS2 layers can be well tuned from few to over ten layers, enabling layer-dependent synergistic effects. The core-shell TiO2 @MoS2 nano-onion heterostructures exhibit significantly enhanced energy storage performance as lithium-ion battery anodes. The approach has also been extended to other lattice-mismatched systems such as TiO2 @MoSe2 , thus suggesting a new strategy for the growth of well-designed lattice-mismatched core-shell structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-02-01

    We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.

  12. Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.

    PubMed

    Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L

    2008-10-08

    Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.

  13. A stable room-temperature sodium-sulfur battery.

    PubMed

    Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha; Choudhury, Snehashis; Lu, Yingying; Tu, Zhengyuan; Ma, Lin; Archer, Lynden A

    2016-06-09

    High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium-sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium-sulfur battery that uses a microporous carbon-sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g(-1)) with 600 mAh g(-1) reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.

  14. Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, X.H., E-mail: drhuangxh@hotmail.com; Zhang, P.; Wu, J.B.

    Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as themore » core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.« less

  15. Sensitivity of ginseng to ozone and sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, J.T.A.; Ormrod, D.P.

    1981-10-01

    American ginseng (Panax quinquefolius L.), was injured by exposure to 20 pphm ozone and/or 50 pphm (v/v) sulfur dioxide for 6 hr daily for 4 days. Ozone induced upper surface leaflet stippling along the veins and interveinally, and sulfur dioxide induced mild chlorosis to irregular necrotic areas. Ginseng was less sensitive to ozone and as sensitive to sulfur dioxide as 'Cherry Belle' radish (Raphanus sativus L.) and 'Bel W-3' tobacco (Nicotiana tabacum L.).

  16. Effects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin

    2017-04-01

    Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g-1 at a current density of 2 A g-1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g-1 at high current densities of 0.5, 2, 5, 10, and 20 A g-1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling.

  17. Effects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes

    PubMed Central

    Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin

    2017-01-01

    Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g−1 at a current density of 2 A g−1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g−1 at high current densities of 0.5, 2, 5, 10, and 20 A g−1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling. PMID:28418001

  18. Clathrate hydrates of oxidants in the ice shell of Europa.

    PubMed

    Hand, Kevin P; Chyba, Christopher F; Carlson, Robert W; Cooper, John F

    2006-06-01

    Europa's icy surface is radiolytically modified by high-energy electrons and ions, and photolytically modified by solar ultraviolet photons. Observations from the Galileo Near Infrared Mapping Spectrometer, ground-based telescopes, the International Ultraviolet Explorer, and the Hubble Space Telescope, along with laboratory experiment results, indicate that the production of oxidants, such as H2O2, O2, CO2, and SO2, is a consequence of the surface radiolytic chemistry. Once created, some of the products may be entrained deeper into the ice shell through impact gardening or other resurfacing processes. The temperature and pressure environments of regions within the europan hydrosphere are expected to permit the formation of mixed clathrate compounds. The formation of carbon dioxide and sulfur dioxide clathrates has been examined in some detail. Here we add to this analysis by considering oxidants produced radiolytically on the surface of Europa. Our results indicate that the bulk ice shell could have a approximately 1.7-7.6% by number contamination of oxidants resulting from radiolysis at the surface. Oxidant-hosting clathrates would consequently make up approximately 12-53% of the ice shell by number relative to ice, if oxidants were entrained throughout. We examine, in brief, the consequences of such contamination on bulk ice shell thickness and find that clathrate formation could lead to substantially thinner ice shells on Europa than otherwise expected. Finally, we propose that double occupancy of clathrate cages by O2 molecules could serve as an explanation for the observation of condensed-phase O2 on Europa. Clathrate-sealed, gas-filled bubbles in the near surface ice could also provide an effective trapping mechanism, though they cannot explain the 5771 A (O2)2 absorption.

  19. Challenges and prospects of lithium-sulfur batteries.

    PubMed

    Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng

    2013-05-21

    Electrical energy storage is one of the most critical needs of 21st century society. Applications that depend on electrical energy storage include portable electronics, electric vehicles, and devices for renewable energy storage from solar and wind. Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. As a result, Li-ion batteries have proven successful in the portable electronics market and will play a significant role in large-scale energy storage. Over the past two decades, Li-ion batteries based on insertion cathodes have reached a cathode capacity of ∼250 mA h g(-1) and an energy density of ∼800 W h kg(-1), which do not meet the requirement of ∼500 km between charges for all-electric vehicles. With a goal of increasing energy density, researchers are pursuing alternative cathode materials such as sulfur and O2 that can offer capacities that exceed those of conventional insertion cathodes, such as LiCoO2 and LiMn2O4, by an order of magnitude (>1500 mA h g(-1)). Sulfur, one of the most abundant elements on earth, is an electrochemically active material that can accept up to two electrons per atom at ∼2.1 V vs Li/Li(+). As a result, sulfur cathode materials have a high theoretical capacity of 1675 mA h g(-1), and lithium-sulfur (Li-S) batteries have a theoretical energy density of ∼2600 W h kg(-1). Unlike conventional insertion cathode materials, sulfur undergoes a series of compositional and structural changes during cycling, which involve soluble polysulfides and insoluble sulfides. As a result, researchers have struggled with the maintenance of a stable electrode structure, full utilization of the active material, and sufficient cycle life with good system efficiency. Although researchers have made significant progress on rechargeable Li-S batteries in the last decade, these cycle life and efficiency problems prevent their use in commercial cells. To overcome these persistent problems, researchers

  20. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE PAGES

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    2016-02-11

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  1. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  2. Irradiation of shell egg on the physicochemical and functional properties of liquid egg white.

    PubMed

    Min, B; Nam, K C; Jo, C; Ahn, D U

    2012-10-01

    This study was aimed at determining the effect of irradiation of shell eggs on the physiochemical and functional properties of liquid egg white during storage. Color and textural parameters of irradiated liquid egg white after cooking were also determined. Shell eggs were irradiated at 0, 2.5, 5, or 10 kGy using a linear accelerator. Egg white was separated from yolk and stored in at 4°C up to 14 d. Viscosity, pH, turbidity, foaming properties, color, and volatile profile of liquid egg white, and color and texture properties of cooked egg white were determined at 0, 7, and 14 d of storage. Irradiation increased the turbidity but decreased viscosity of liquid egg white. Foaming capacity and foam stability were not affected by irradiation at lower dose (2.5 kGy), but were deteriorated at higher doses (≥5.0 kGy) of irradiation. Sulfur-containing volatiles were generated by irradiation and their amounts increased as the irradiation dose increased. However, the sulfur volatiles disappeared during storage under aerobic conditions. Lightness (L* value) and yellowness (b* value) decreased, but greenness (-a* value) increased in cooked egg white in irradiation dose-dependent manners. All textural parameters (hardness, adhesiveness, cohesiveness, chewiness, and resilience) of cooked egg white increased as the irradiation dose increased, but those changes were marginal. Our results indicated that irradiation of shell egg at lower doses (up to 2.5 kGy) had little negative impact on the physiochemical and functional properties of liquid egg white, but can improve the efficiency of egg processing due to its viscosity-lowering effect. Therefore, irradiation of shell eggs at the lower doses has high potential to be used by the egg processing industry to improve the safety of liquid egg without compromising its quality.

  3. Core-shell Li2S@Li3PS4 nanoparticles incorporated into graphene aerogel for lithium-sulfur batteries with low potential barrier and overpotential

    NASA Astrophysics Data System (ADS)

    Jiao, Zheng; Chen, Lu; Si, Jian; Xu, Chuxiong; Jiang, Yong; Zhu, Ying; Yang, Yaqing; Zhao, Bing

    2017-06-01

    Lithium sulfide as a promising cathode material not only have a high theoretical specific capacity, but also can be paired with Li-free anode material to avoid potential safety issues. However, how to prepare high electrochemical performance material is still challenge. Herein, we present a facile way to obtain high crystal quality Li2S nanomaterials with average particle size of about 55 nm and coated with Li3PS4 to form the nano-scaled core-shell Li2S@Li3PS4 composite. Then nano-Li2S@Li3PS4/graphene aerogel is prepared by a simple liquid infiltration-evaporation coating process and used directly as a composite cathode without metal substrate for lithium-sulfur batteries. Electrochemical tests demonstrate that the composite delivers a high discharge capacity of 934.4 mAh g-1 in the initial cycle and retains 485.5 mAh g-1 after 100 cycles at 0.1 C rate. In addition, the composite exhibits much lower potential barrier (∼2.40 V) and overpotential compared with previous reports, indicating that Li2S needs only a little energy to be activated. The excellent electrochemical performances could be attributed to the tiny particle size of Li2S and the superionic conducting Li3PS4 coating layer, which can shorten Li-ion and electron diffusion paths, improve the ionic conductivity, as well as retarding polysulfides dissolution into the electrolyte to some extent.

  4. ISICS2011, an updated version of ISICS: A program for calculation K-, L-, and M-shell cross sections from PWBA and ECPSSR theories using a personal computer

    NASA Astrophysics Data System (ADS)

    Cipolla, Sam J.

    2011-11-01

    In this new version of ISICS, called ISICS2011, a few omissions and incorrect entries in the built-in file of electron binding energies have been corrected; operational situations leading to un-physical behavior have been identified and flagged. New version program summaryProgram title: ISICS2011 Catalogue identifier: ADDS_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6011 No. of bytes in distributed program, including test data, etc.: 130 587 Distribution format: tar.gz Programming language: C Computer: 80486 or higher-level PCs Operating system: WINDOWS XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v4_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1716. Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: General need for higher precision in output format for projectile energies; some built-in binding energies needed correcting; some anomalous results occur due to faulty read-in data or calculated parameters becoming un-physical; erroneous calculations could result for the L and M shells when restricted K-shell options are inadvertently chosen; to achieve general compatibility with ISICSoo, a companion C++ version that is portable to Linux and MacOS platforms, has been submitted for publication in the CPC Program Library approximately at the same time as this present new standalone version of ISICS [1]. Summary of revisions: The format field for

  5. Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuhal Gogebakan; Nevin Selcuk

    In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnutmore » shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.« less

  6. Effects of sulfur loading on the corrosion behaviors of metal lithium anode in lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yamiao; Duan, Xiaobo; Li, Yanbing

    2015-08-15

    Highlights: • The effects of sulfur loading on the corrosion behaviors were investigated systematically. • The corrosion became severer with increasing sulfur loading or cycle times. • The corrosion films are porous and loose and cannot prevent further reaction between lithium and polysulfides. - Abstract: The corrosion behaviors in rechargeable lithium–sulfur batteries come from the reactions between polysulfides and metal lithium anode, and they are significantly influenced by the sulfur loading. While there are limited papers reported on the effects of sulfur loading on the corrosion behaviors. In this paper, the effects have been investigated systematically. The corrosion films consistedmore » of insulating lithium ion conductors are loose and porous, so that the corrosive reactions cannot be hindered. The thickness of the corrosion layers, consequently, increased along with increasing sulfur loading or cycle times. For instance, the thickness of corrosion layers after 50 cycles was 98 μm in the cell with 5 mg sulfur while it reached up to 518 μm when the loading increased to 15 mg. The continuous deposition of corrosion products gave rise to low active materials utilization and poor cycling performance.« less

  7. Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.

    PubMed

    Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G

    2016-12-01

    The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.

  8. Preparation, characterization and luminescence properties of core-shell ternary terbium composites SiO2(600)@Tb(MABA-Si)•L

    NASA Astrophysics Data System (ADS)

    Ma, Yang-Yang; Li, Wen-Xian; Zheng, Yu-Shan; Bao, Jin-Rong; Li, Yi-Lian; Feng, Li-Na; Yang, Kui-Suo; Qiao, Yan; Wu, An-Ping

    2018-03-01

    Two novel core-shell structure ternary terbium composites SiO2(600)@Tb(MABA-Si)·L(L:dipy/phen) nanometre luminescence materials were prepared by ternary terbium complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O shell grafted onto the surface of SiO2 microspheres. And corresponding ternary terbium complexes were synthesized using (CONH(CH2)3Si(OCH2CH3)3)2 (denoted as MABA-Si) as first ligand and L as second ligand coordinated with terbium perchlorate. The as-synthesized products were characterized by means of IR spectra, 1HNMR, element analysis, molar conductivity, SEM and TEM. It was found that the first ligand MABA-Si of terbium ternary complex hydrolysed to generate the Si-OH and the Si-OH condensate with the Si-OH on the surface of SiO2 microspheres; then ligand MABA-Si grafted onto the surface of SiO2 microspheres. The diameter of SiO2 core of SiO2(600)@Tb(MABA-Si)·L was approximately 600 nm. Interestingly, the luminescence properties demonstrate that the two core-shell structure ternary terbium composites SiO2(600)Tb(MABA-Si)·L(dipy/phen) exhibit strong emission intensities, which are 2.49 and 3.35 times higher than that of the corresponding complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O, respectively. Luminescence decay curves show that core-shell structure ternary terbium composites have longer lifetime. Excellent luminescence properties enable the core-shell materials to have potential applications in medicine, industry, luminescent fibres and various biomaterials fields.

  9. Preparation, characterization and luminescence properties of core-shell ternary terbium composites SiO2(600)@Tb(MABA-Si)•L.

    PubMed

    Ma, Yang-Yang; Li, Wen-Xian; Zheng, Yu-Shan; Bao, Jin-Rong; Li, Yi-Lian; Feng, Li-Na; Yang, Kui-Suo; Qiao, Yan; Wu, An-Ping

    2018-03-01

    Two novel core-shell structure ternary terbium composites SiO 2(600) @Tb(MABA-Si)·L(L:dipy/phen) nanometre luminescence materials were prepared by ternary terbium complexes Tb(MABA-Si)·L 2 ·(ClO 4 ) 3 ·2H 2 O shell grafted onto the surface of SiO 2 microspheres. And corresponding ternary terbium complexes were synthesized using (CONH(CH 2 ) 3 Si(OCH 2 CH 3 ) 3 ) 2 (denoted as MABA-Si) as first ligand and L as second ligand coordinated with terbium perchlorate. The as-synthesized products were characterized by means of IR spectra, 1 HNMR, element analysis, molar conductivity, SEM and TEM. It was found that the first ligand MABA-Si of terbium ternary complex hydrolysed to generate the Si-OH and the Si-OH condensate with the Si-OH on the surface of SiO 2 microspheres; then ligand MABA-Si grafted onto the surface of SiO 2 microspheres. The diameter of SiO 2 core of SiO 2(600) @Tb(MABA-Si)·L was approximately 600 nm. Interestingly, the luminescence properties demonstrate that the two core-shell structure ternary terbium composites SiO 2(600) Tb(MABA-Si)·L(dipy/phen) exhibit strong emission intensities, which are 2.49 and 3.35 times higher than that of the corresponding complexes Tb(MABA-Si)·L 2 ·(ClO 4 ) 3 ·2H 2 O, respectively. Luminescence decay curves show that core-shell structure ternary terbium composites have longer lifetime. Excellent luminescence properties enable the core-shell materials to have potential applications in medicine, industry, luminescent fibres and various biomaterials fields.

  10. Preparation, characterization and luminescence properties of core–shell ternary terbium composites SiO2(600)@Tb(MABA-Si)•L

    PubMed Central

    Ma, Yang-Yang; Zheng, Yu-Shan; Bao, Jin-Rong; Li, Yi-Lian; Feng, Li-Na; Yang, Kui-Suo; Qiao, Yan; Wu, An-Ping

    2018-01-01

    Two novel core–shell structure ternary terbium composites SiO2(600)@Tb(MABA-Si)·L(L:dipy/phen) nanometre luminescence materials were prepared by ternary terbium complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O shell grafted onto the surface of SiO2 microspheres. And corresponding ternary terbium complexes were synthesized using (CONH(CH2)3Si(OCH2CH3)3)2 (denoted as MABA-Si) as first ligand and L as second ligand coordinated with terbium perchlorate. The as-synthesized products were characterized by means of IR spectra, 1HNMR, element analysis, molar conductivity, SEM and TEM. It was found that the first ligand MABA-Si of terbium ternary complex hydrolysed to generate the Si–OH and the Si–OH condensate with the Si–OH on the surface of SiO2 microspheres; then ligand MABA-Si grafted onto the surface of SiO2 microspheres. The diameter of SiO2 core of SiO2(600)@Tb(MABA-Si)·L was approximately 600 nm. Interestingly, the luminescence properties demonstrate that the two core–shell structure ternary terbium composites SiO2(600)Tb(MABA-Si)·L(dipy/phen) exhibit strong emission intensities, which are 2.49 and 3.35 times higher than that of the corresponding complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O, respectively. Luminescence decay curves show that core–shell structure ternary terbium composites have longer lifetime. Excellent luminescence properties enable the core–shell materials to have potential applications in medicine, industry, luminescent fibres and various biomaterials fields. PMID:29657773

  11. Coaxial Carbon/MnO2 Hollow Nanofibers as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Ni, Lubin; Zhao, Gangjin; Wang, Yanting; Wu, Zhen; Wang, Wei; Liao, Yunyun; Yang, Guang; Diao, Guowang

    2017-12-14

    Lithium-sulfur (Li-S) batteries have recently attracted a large amount of attention as promising candidates for next-generation high-power energy storage devices because of their high theoretical capacity and energy density. However, the shuttle effect of polysulfides and poor conductivity of sulfur are still vital issues that constrain their specific capacity and cyclic stability. Here, we design coaxial MnO 2 -graphitic carbon hollow nanofibers as sulfur hosts for high-performance lithium-sulfur batteries. The hollow C/MnO 2 coaxial nanofibers are synthesized via electrospinning and carbonization of the carbon nanofibers (CNFs), followed by an in situ redox reaction to grow MnO 2 nanosheets on the surface of CNFs. The inner graphitic carbon layer not only maintains intimate contact with sulfur and outer MnO 2 shell to significantly increase the overall electrical conductivity but also acts as a protective layer to prevent dissolution of polysulfides. The outer MnO 2 nanosheets restrain the shuttle effect greatly through chemisorption and redox reaction. Therefore, the robust S@C/MnO 2 nanofiber cathode delivers an extraordinary rate capability and excellent cycling stability with a capacity decay rate of 0.044 and 0.051 % per cycle after 1000 cycles at 1.0 C and 2.0 C, respectively. Our present work brings forward a new facile and efficient strategy for the functionalization of inorganic metal oxide on graphitic carbons as sulfur hosts for high performance Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Combinatorial synthesis by nature: volatile organic sulfur-containing constituents of Ruta chalepensis L.

    PubMed

    Escher, Sina; Niclass, Yvan; van de Waal, Matthijs; Starkenmann, Christian

    2006-09-01

    Ongoing interest in discovering new natural fragrance and flavor ingredients prompted us to examine a solvent extract of sulfurous-sweaty smelling Ruta chalepensis L. (Rutaceae) plant material more closely. Twenty-one sulfur-containing constituents of similar structures were identified by GC/MS techniques. Amongst them, 14 have never been described to occur in nature. The compounds 1-18 belong to a family of natural flavor and fragrance molecules having a 1,3-positioned O,S moiety in common. The identities of the natural constituents were confirmed by comparison with synthetic reference samples, and the organoleptic properties of the latter were studied. The relative and absolute configurations of the four stereoisomers of 4-methyl-3-sulfanylhexan-1-ol (5) were established by stereoselective synthesis. The natural isomers consisted of a 65 : 35 mixture of (3R,4S)-5 and (3S,4S)-5.

  13. Structural Dependence of the Sulfur Reduction Mechanism in Carbon-Based Cathodes for Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgos, Juan C.; Balbuena, Perla B.; Montoya, Javier A.

    We report lithium-sulfur batteries are promising non-conventional sources of energy due to their high theoretical capacity and energy density. However, the successful implementation of this technology has been hindered due to the low cycling life of the battery, caused by long chain polysulfide shuttling between electrodes during charge/discharge, among other issues. Quantum chemical calculations are used to study the reactivity of sulfur in the porous cathode of lithium-sulfur batteries, and the retention capabilities of porous carbon materials to avoid long chain polysulfide diffusion. Ab initio molecular dynamics (AIMD) simulations are initially employed to evaluate sulfur reduction mechanisms and kinetics, andmore » to identify main reduction products. A porous cathode architecture is modeled through parallel graphene layers with elemental sulfur rings in the interlayer, and filled with 1,3-dioxolane (DOL) organic solvent and lithium ions. AIMD simulations showed fast reduction of elemental sulfur and formation of short chain polysulfide. Furthermore, the effect of dangling carbon bonds of graphene on the reactivity of the cathode was confirmed. Adsorption calculations through density functional theory (DFT) proved the capacity of small pores to retain long polysulfide chains. An analysis of the effect of the specific current on the chemical behavior of sulfur reveals an influence of current on the amount of sulfur utilization and practical specific capacity of the battery. In conclusion, this work illustrates the physical-chemical behavior of the sulfur/polysulfide in the porous cathode system at atomistic level.« less

  14. Structural Dependence of the Sulfur Reduction Mechanism in Carbon-Based Cathodes for Lithium–Sulfur Batteries

    DOE PAGES

    Burgos, Juan C.; Balbuena, Perla B.; Montoya, Javier A.

    2017-08-17

    We report lithium-sulfur batteries are promising non-conventional sources of energy due to their high theoretical capacity and energy density. However, the successful implementation of this technology has been hindered due to the low cycling life of the battery, caused by long chain polysulfide shuttling between electrodes during charge/discharge, among other issues. Quantum chemical calculations are used to study the reactivity of sulfur in the porous cathode of lithium-sulfur batteries, and the retention capabilities of porous carbon materials to avoid long chain polysulfide diffusion. Ab initio molecular dynamics (AIMD) simulations are initially employed to evaluate sulfur reduction mechanisms and kinetics, andmore » to identify main reduction products. A porous cathode architecture is modeled through parallel graphene layers with elemental sulfur rings in the interlayer, and filled with 1,3-dioxolane (DOL) organic solvent and lithium ions. AIMD simulations showed fast reduction of elemental sulfur and formation of short chain polysulfide. Furthermore, the effect of dangling carbon bonds of graphene on the reactivity of the cathode was confirmed. Adsorption calculations through density functional theory (DFT) proved the capacity of small pores to retain long polysulfide chains. An analysis of the effect of the specific current on the chemical behavior of sulfur reveals an influence of current on the amount of sulfur utilization and practical specific capacity of the battery. In conclusion, this work illustrates the physical-chemical behavior of the sulfur/polysulfide in the porous cathode system at atomistic level.« less

  15. Protein-assisted synthesis of double-shelled CaCO3 microcapsules and their mineralization with heavy metal ions.

    PubMed

    Li, Xuan Qi; Feng, Zhiwei; Xia, Yinyan; Zeng, Hua Chun

    2012-02-13

    Calcium carbonate (CaCO(3)) is one of the most abundant and important biominerals in nature. Due to its biocompatibility, biodegradability and nontoxicity, CaCO(3) has been investigated extensively in recent years for various fundamental properties and technological applications. Inspired by basic wall structures of cells, we report a protein-assisted approach to synthesize CaCO(3) into a double-shelled structural configuration. Due to varying reactivities of outer and inner shells, the CaCO(3) microcapsules exhibit different sorption capacities and various resultant structures toward different kinds of heavy metal ions, analogical to biologically controlled mineralization (BCM) processes. Surprisingly, three mineralization modes resembling those found in BCM were found with these bacterium-like "CaCO(3) cells". Our investigation of the cytotoxicity (MTT assay protocol) also indicates that the CaCO(3) microcapsules have almost no cytotoxicity against HepG2 cells, and they might be useful for future application of detoxifying heavy metal ions after further study. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Tanner, Scott D

    2002-04-01

    A method of detection of ultratrace phosphorus and sulfur that uses reaction with O2 in a dynamic reaction cell (DRC) to oxidize S+ and P+ to allow their detection as SO+ and PO+ is described. The method reduces the effect of polyatomic isobaric interferences at m/z = 31 and 32 by detecting P+ and S+ as the product oxide ions that are less interfered. Use of an axial field in the DRC improves transmission of the product oxide ions 4-6 times. With no axial field, detection limits (3sigma, 5-s integration) of 0.20 and 0.52 ng/mL, with background equivalent concentrations of 0.53 and 4.8 ng/mL, respectively, are achieved. At an optimum axial field potential (200 V), the detection limits are 0.06 ng/mL for P and 0.2 ng/mL for S, respectively. The method is used for determining the degree of phosphorylation of beta-casein, and regular and dephosphorylated alpha-caseins at 10-1000 fmol/microL concentration, with 5-10% v/v organic sample matrix (acetonitrile, formic acid, ammonium bicarbonate). The measured degree of phosphorylation for beta-casein (4.9 phosphorus atoms/molecule) and regular alpha-casein (8.8 phoshorus atoms/molecule) are in good agreement with the structural data for the proteins. The P/S ratio for regular alpha-casein (1.58) is in good agreement with the ratio of the number of phosphorylation sites to the number of sulfur-containing amino acid residues cysteine and methionine. The P/S ratio for commercially available dephosphorylated alpha-casein is measured at 0.41 (approximately 26% residual phosphate).

  17. Solar heavy ion Heinrich fluence spectrum at low earth orbit.

    PubMed

    Croley, D R; Spitale, G C

    1998-01-01

    Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.

  18. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying

    2013-12-01

    Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide

  19. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters.

    PubMed

    Huber, Bettina; Herzog, Bastian; Drewes, Jörg E; Koch, Konrad; Müller, Elisabeth

    2016-07-18

    Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). BSA production was determined in laboratory scale systems with mixed and pure cultures, and in-situ with concrete specimens from the digester headspace and sludge zones. The SOB Acidithiobacillus thiooxidans, Thiomonas intermedia, and Thiomonas perometabolis were cultivated and compared to PCR-DGGE results, revealing the presence of additional acidophilic and neutrophilic SOB. Sulfate concentrations of 10-87 mmol/L after 6-21 days of incubation (final pH 1.0-2.0) in mixed cultures, and up to 433 mmol/L after 42 days (final pH <1.0) in pure A. thiooxidans cultures showed huge sulfuric acid production potentials. Additionally, elevated sulfate concentrations in the corroded concrete of the digester headspace in contrast to the concrete of the sludge zone indicated biological sulfur/sulfide oxidation. The presence of SOB and confirmation of their sulfuric acid production under laboratory conditions reveal that these organisms might contribute to BSA corrosion within sludge digesters. Elevated sulfate concentrations on the corroded concrete wall in the digester headspace (compared to the sludge zone) further indicate biological sulfur/sulfide oxidation in-situ. For the first time, SOB presence and activity is directly relatable to BSA corrosion in sludge digesters.

  20. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    PubMed

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  1. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.

  2. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries

    PubMed Central

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-01-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C. PMID:26065407

  3. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  4. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  5. Fossilization of melanosomes via sulfurization.

    PubMed

    McNamara, Maria E; van Dongen, Bart E; Lockyer, Nick P; Bull, Ian D; Orr, Patrick J

    2016-05-01

    Fossil melanin granules (melanosomes) are an important resource for inferring the evolutionary history of colour and its functions in animals. The taphonomy of melanin and melanosomes, however, is incompletely understood. In particular, the chemical processes responsible for melanosome preservation have not been investigated. As a result, the origins of sulfur-bearing compounds in fossil melanosomes are difficult to resolve. This has implications for interpretations of original colour in fossils based on potential sulfur-rich phaeomelanosomes. Here we use pyrolysis gas chromatography mass spectrometry (Py-GCMS), fourier transform infrared spectroscopy (FTIR) and time of flight secondary ion mass spectrometry (ToF-SIMS) to assess the mode of preservation of fossil microstructures, confirmed as melanosomes based on the presence of melanin, preserved in frogs from the Late Miocene Libros biota (NE Spain). Our results reveal a high abundance of organosulfur compounds and non-sulfurized fatty acid methyl esters in both the fossil tissues and host sediment; chemical signatures in the fossil tissues are inconsistent with preservation of phaeomelanin. Our results reflect preservation via the diagenetic incorporation of sulfur, i.e. sulfurization (natural vulcanization), and other polymerization processes. Organosulfur compounds and/or elevated concentrations of sulfur have been reported from melanosomes preserved in various invertebrate and vertebrate fossils and depositional settings, suggesting that preservation through sulfurization is likely to be widespread. Future studies of sulfur-rich fossil melanosomes require that the geochemistry of the host sediment is tested for evidence of sulfurization in order to constrain interpretations of potential phaeomelanosomes and thus of original integumentary colour in fossils.

  6. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clementson, Joel

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied inmore » high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W 55+ through Ne-like W 64+, and intershell transitions in Zn-like W 44+ through Co-like W 47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W 64+ through Li-like W 71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W 6+ could be useful for plasma diagnostics.« less

  7. Empirical calibration of shell chemistry of Cyprideis torosa (Jones, 1850) (Crustacea: Ostracoda)

    NASA Astrophysics Data System (ADS)

    Marco-Barba, J.; Ito, E.; Carbonell, E.; Mesquita-Joanes, F.

    2012-09-01

    Cyprideis torosa is a species of ostracode that inhabits a wide range of aquatic habitats in which its low Alk/Ca requirement is met. Its fossil remains are widely used in palaeoecological studies of coastal environments and inland salt lakes. We collected C. torosa from 20 water bodies near Valencia, Spain. Temperature, chlorophyll a concentration, electrical conductivity, and the concentration of major ions and oxygen isotopes were measured at each site. Between 2 and 20 live individuals of C. torosa were collected per site, their instar stage and sex determined and their shell chemistry (Mg/Ca, Sr/Ca and carbon and oxygen isotope composition) analyzed. Three of these sites were sampled monthly for one year, and ostracode population structure and shell chemistry (20-40 shells) were analyzed. The water chemistry varied widely between sites. TDS (total dissolved solids) ranged from 0.5 to 71.8 g/L but chloride was always the dominant anion. There is a significant positive relationship between ostracode and water δ18O except at high TDS (>20 g/L) when shell δ18O values are lower than expected. No effect of either temperature or water Mg/Ca is observed on the Mg/Ca in the ostracode calcite in waters with Mg/Ca < 6 (molar ratio). Ostracode shell Sr/Ca is strongly and significantly related to water Sr/Ca. δ13C values in C. torosa shells are ˜2‰ lower than observed δ13CDIC. These results provide new and more accurate quantification tools to reconstruct past hydrochemistry from C. torosa shells.

  8. [Development of UPLC-Q-TOF-MS/MS combined with reference herb approach to rapidly screen commercial sulfur-fumigated ginseng].

    PubMed

    Zhou, Shan-Shan; Xu, Jin-Di; Shen, Hong; Liu, Huan-Huan; Li, Song-Lin

    2014-08-01

    An ultra-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) combined with reference herb method was developed to rapidly screen commercial sulfur-fumigated ginseng. Sufur-fumigated ginseng reference herb was prepared using genuine ginseng by conventional procedure. Then the reference sulfur-fumigated ginseng sample was analyzed by UPLC-Q-TOF-MS/MS to identify characteristic marker components. 25-hydroxyl-Re sulfate with higher abundance was se- lected as marker compound from 8 characteristic components identified in sulfur-fumigated ginseng reference herb. The fragmentation of 25-hydroxyl-Re sulfate was extensively investigated, fragment ion m/z 879.44 with higher intensity was chosen as the characteristic ion of sulfur-fumigated ginseng. The response of ion m/z 879. 44 was improved by optimizing the MS conditions so that this ion could be used as the characteristic marker ion for screening purpose in ion extracting screening mode. The established approach was successfully applied to inspect 21 commercial ginseng samples collected from different cities in China It was found that the chemical profiles of 9 samples were similar to that of sulfur-fumigated ginseng reference herb, and the characteristic ion m/z 879. 44 of 25-hydroxyl-Re sulfate was also detected in these samples, suggesting that there were nearly 43% ginseng samples analyzed being sulfur-fumigated. This findng agreed well with the results of sulfur dioxide residues of these 21 commercial ginseng samples determined with the method documented in Chinese Pharmacopeia Compared with the method documented in Chinese Pharmacopeia, the proposed approach is more rapid and specific for screening sulfur-fumigated ginseng. SFDA of China should strengthen the enforcement to prohibit ginseng being sulfur-fumigated, so that ginseng and it preparations could be effectively and safely benefit to the health of human beings.

  9. Preliminary nutritional and biological potential of Artocarpus heterophyllus L. shell powder.

    PubMed

    Sharma, Anubhuti; Gupta, Priti; Verma, A K

    2015-03-01

    Artocarpus heterophyllus shell powder was investigated in terms of its nutritional and biological potential. A thorough examination of shell powder demonstrated its potential as a source of minerals, β carotene and dietary fiber, which were assessed gravimetrically & spectrophotometrically. This showed 3.05 ± 0.19 g 100 g(-1) DW of alkaloids followed by saponins and tannins. Three different extracts; acetone, methanol, & mix solvent were used to evaluate phenolic & flavonoid content, antioxidant & antimicrobial activity, GC/MS screening and quantitative analysis of polyphenols. Among all, the methanol extract showed highest antioxidant activity evaluated by DPPH, FRAP & ABTS assays and was significantly correlated with phenolic and flavonoid contents. Phenolic & flavonoid content was found to be 158 ± 0.34 mg (GAE) and 10.0 ± 0.64 mg (CE) respectively. The results of antimicrobial activity showed that L. monocytogenes was more susceptible to all extracts followed by other microorganisms. Catechin, ascorbic & chlorogenic acids were identified as major polyphenols analyzed by LC-MS/MS. GC/MS analysis showed that it contains a variety of compounds with different therapeutic activities. The study revealed that A. heterophyllus shell is a good source of natural antioxidants & other bioactive compounds and can be used in cosmetics, medicines and functional food application.

  10. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator.

    PubMed

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F; Joh, Han-Ik; Jo, Seong Mu

    2016-11-11

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO 2 ) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB.

  11. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator

    PubMed Central

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F.; Joh, Han-Ik; Jo, Seong Mu

    2016-01-01

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO2) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB. PMID:27833132

  12. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  13. Equatorial distributions of energetic ion moments in Saturn's magnetosphere using Cassini/MIMI measurements

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.

    2016-12-01

    We use kappa distribution fits to combined Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetosphere Measurements System (LEMMS, 0.024 < E < 18 MeV), and Ion Neutral Camera (INCA, 5.2 to >220 keV for H+) proton and singly ionized energetic ion spectra to calculate the >20 keV energetic ion moments inside Saturn's magnetosphere. Using a realistic magnetic field model (Khurana et al. 2007) and data from the entire Cassini mission to date (2004-2016), we map the ion measurements to the equatorial plane and via the modeled kappa distribution spectra we produce the equatorial distributions of all ion integral moments, focusing on partial density, integral intensity, partial pressure, integral energy intensity; as well as the characteristic energy (EC=IE/In), Temperature and κ-index of these ions as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20). A modified version of the semi-empirical Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ pressure, density and temperature in Saturn's magnetosphere in both local time and L-shell. We find that a) although the H+ and O+ partial pressures and densities are nearly comparable, the >20 keV protons have higher number and energy intensities at all radial distances (L>5) and local times; b) the 12

  14. Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Zheng, Jianming; Feng, Shuo

    Lithium sulfur (LiS) batteries are promising alternatives to conventional Li-ion batteries in terms of specific capacity and energy. But, the technical challenges raised from the soluble polysulfide (PS) in organic electrolyte deter their implementation in practical applications. Nanoengineered structure and chemical adsorptive materials hold great promise in mitigating the PS migration problem. We develop a tubular titanium oxide (TiO 2)/reduced graphene oxide (rGO) composite structure (TG) as a sulfur hosting material for constructing better performed LiS batteries. The TG/sulfur cathode (TG/S) is able to deliver ~1200 mAh g -1 specific capacity with stable operation for over 550 cycles. Moreover, themore » TG/S composite cathode shows stable Coulombic efficiencies of over ~95% at various C rates, which are ~10% higher than those of the rGO/sulfur (G/S) counterparts. The superior electrochemical performances of TG/S could be ascribed to the synergistic effects between the conductive rGO support and the physically/chemically absorptive TiO 2, that is, the spatial tubular structure of TiO 2 provides intimate contact and physical confinement for sulfur, while the polar TiO 2 in TG/S shows strong chemical interaction towards the sulfur species.« less

  15. Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries

    DOE PAGES

    Song, Junhua; Zheng, Jianming; Feng, Shuo; ...

    2017-11-20

    Lithium sulfur (LiS) batteries are promising alternatives to conventional Li-ion batteries in terms of specific capacity and energy. But, the technical challenges raised from the soluble polysulfide (PS) in organic electrolyte deter their implementation in practical applications. Nanoengineered structure and chemical adsorptive materials hold great promise in mitigating the PS migration problem. We develop a tubular titanium oxide (TiO 2)/reduced graphene oxide (rGO) composite structure (TG) as a sulfur hosting material for constructing better performed LiS batteries. The TG/sulfur cathode (TG/S) is able to deliver ~1200 mAh g -1 specific capacity with stable operation for over 550 cycles. Moreover, themore » TG/S composite cathode shows stable Coulombic efficiencies of over ~95% at various C rates, which are ~10% higher than those of the rGO/sulfur (G/S) counterparts. The superior electrochemical performances of TG/S could be ascribed to the synergistic effects between the conductive rGO support and the physically/chemically absorptive TiO 2, that is, the spatial tubular structure of TiO 2 provides intimate contact and physical confinement for sulfur, while the polar TiO 2 in TG/S shows strong chemical interaction towards the sulfur species.« less

  16. Estimations of Mo X-pinch plasma parameters on QiangGuang-1 facility by L-shell spectral analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Qiu, Aici; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2013-08-15

    Plasma parameters of molybdenum (Mo) X-pinches on the 1-MA QiangGuang-1 facility were estimated by L-shell spectral analysis. X-ray radiation from X-pinches had a pulsed width of 1 ns, and its spectra in 2–3 keV were measured with a time-integrated X-ray spectrometer. Relative intensities of spectral features were derived by correcting for the spectral sensitivity of the spectrometer. With an open source, atomic code FAC (flexible atomic code), ion structures, and various atomic radiative-collisional rates for O-, F-, Ne-, Na-, Mg-, and Al-like ionization stages were calculated, and synthetic spectra were constructed at given plasma parameters. By fitting the measured spectramore » with the modeled, Mo X-pinch plasmas on the QiangGuang-1 facility had an electron density of about 10{sup 21} cm{sup −3} and the electron temperature of about 1.2 keV.« less

  17. Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors.

    PubMed

    Zhang, Peng; Guan, Bu Yuan; Yu, Le; Lou, Xiong Wen David

    2017-06-12

    Complex metal-organic frameworks used as precursors allow design and construction of various nanostructured functional materials which might not be accessible by other methods. Here, we develop a sequential chemical etching and sulfurization strategy to prepare well-defined double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (RDCs). Yolk-shelled zinc/cobalt-based zeolitic imidazolate framework (Zn/Co-ZIF) RDCs are first synthesized by a controlled chemical etching process, followed by a hydrothermal sulfurization reaction to prepare double-shelled Zn-Co-S RDCs. Moreover, the strategy reported in this work enables easy control of the Zn/Co molar ratio in the obtained double-shelled Zn-Co-S RDCs. Owing to the structural and compositional benefits, the obtained double-shelled Zn-Co-S RDCs exhibit enhanced performance with high specific capacitance (1266 F g -1 at 1 A g -1 ), good rate capability and long-term cycling stability (91 % retention over 10,000 cycles) as a battery-type electrode material for hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    PubMed

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries.

    PubMed

    Sun, Li; Li, Mengya; Jiang, Ying; Kong, Weibang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2014-07-09

    A binder-free nano sulfur-carbon nanotube composite material featured by clusters of sulfur nanocrystals anchored across the superaligned carbon nanotube (SACNT) matrix is fabricated via a facile solution-based method. The conductive SACNT matrix not only avoids self-aggregation and ensures dispersive distribution of the sulfur nanocrystals but also offers three-dimensional continuous electron pathway, provides sufficient porosity in the matrix to benefit electrolyte infiltration, confines the sulfur/polysulfides, and accommodates the volume variations of sulfur during cycling. The nanosized sulfur particles shorten lithium ion diffusion path, and the confinement of sulfur particles in the SACNT network guarantees the stability of structure and electrochemical performance of the composite. The nano S-SACNT composite cathode delivers an initial discharge capacity of 1071 mAh g(-1), a peak capacity of 1088 mAh g(-1), and capacity retention of 85% after 100 cycles with high Coulombic efficiency (∼100%) at 1 C. Moreover, at high current rates the nano S-SACNT composite displays impressive capacities of 1006 mAh g(-1) at 2 C, 960 mAh g(-1) at 5 C, and 879 mAh g(-1) at 10 C.

  20. Analysis of the detailed configuration of hydrated lanthanoid(III) ions in aqueous solution and crystalline salts by using K- and L(3)-edge XANES spectroscopy.

    PubMed

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Persson, Ingmar

    2010-01-11

    The structural properties of the hydrated lanthanoid(III) ions in aqueous solution and in the isostructural trifluoromethanesulfonate salts have been investigated by a quantitative analysis of the X-ray absorption near-edge structure (XANES) spectra at the K- and L(3)-edges. The XANES analysis has provided a clear description of the variation of lanthanoid(III) hydration properties across the series. It was found that all of the lanthanoid(III) hydration complexes retain a tricapped trigonal prism (TTP) geometry, and along the series two of the capping water molecules become less and less strongly bound, before finally, on average, one of them leaves the hydration cluster. This gives rise to an eight-coordinated distorted bicapped trigonal prism with two different Ln--O capping distances for the smallest lanthanoid(III) ions. This systematic study has shown that for lanthanoid compounds more accurate structural information is obtained from the analysis of the L(3)-edge than from K-edge XANES data. Moreover, whereas the second hydration shells provide a detectable contribution to the L(3)-edge XANES spectra of the lighter lanthanoid ions, the K-edge spectra are insensitive to the more distant coordination spheres.

  1. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.

    PubMed

    Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying

    2014-01-21

    Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g(-1) and capacity retention at 70.7% (904 mA h g(-1)) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.

  2. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    NASA Astrophysics Data System (ADS)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  3. Sandwich-like graphene-mesoporous carbon as sulfur host for enhanced lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Tian, Ting; Li, Bin; Zhu, Mengqi; Liu, Jianhua; Li, Songmei

    2017-10-01

    Graphene-mesoporous carbon/sulfur composites (G-MPC/S) were constructed by melt-infiltration of sulfur into graphene-mesoporous carbon which was synthesized by soft template method. The SEM and BET results of the graphene-mesoporous carbon show that the as-prepared sandwich-like G-MPC composites with a unique microporous-mesoporous structure had a high specific surface area of 554.164 m2 · g-1 and an average pore size of about 13 nm. The XRD analysis presents the existence of orthorhombic sulfur in the G-MPC/S composite, which indicates the complete infiltration of sulfur into the pores of the G-MPC. When the graphene-mesoporous carbon/surfur composites (G-MPC/S) with 53.9 wt.% sulfur loading were used as the cathode for lithium-sulfur (Li-S) batteries, it exhibited an outstanding electrochemical performance including excellent initial discharge specific capacity of 1393 mAh · g-1 at 0.1 °C, high cycle stability (731 mAh · g-1 at 200 cycles) and good rate performance (1038 mAh · g-1, 770 mAh · g-1, 518 mAh · g-1 and 377 mAh · g-1 at 0.1 °C, 0.2 °C, 0.5 °C and 1 °C, respectively), which suggested the important role of the G-MPC composite in providing more electrons and ions channels, in addition, the shuttle effect caused by the dissolved polysulfide was also suppressed.

  4. Multiscale detection of sulfur cinquefoil using aerial photography.

    Treesearch

    Bridgett J. Naylor; Bryan A. Endress; Catherine G. Parks

    2005-01-01

    We evaluated the effectiveness of natural color aerial photography as a tool to improve detection, monitoring, and mapping of sulfur cinquefoil (Potentilla recta L.) infestations. Sulfur cinquefoil is an exotic perennial plant invading interior Pacific Northwest rangelands. Because sulfur cinquefoil produces distinctive pale yellow flowers, we...

  5. Visualization of Imbalances in Sulfur Assimilation and Synthesis of Sulfur-Containing Amino Acids at the Single-Cell Level

    PubMed Central

    Hoffmann, Kristina; Grünberger, Alexander; Lausberg, Frank; Bott, Michael

    2013-01-01

    We describe genetically encoded sensors which transmit elevated cytosolic concentrations of O-acetyl serine (OAS) and O-acetyl homoserine (OAH)—intermediates of l-cysteine and l-methionine synthesis—into an optical output. The sensor pSenOAS3 elicits 7.5-fold-increased fluorescence in cultures of a Corynebacterium glutamicum strain that excrete l-cysteine. Determination of the cytosolic OAS concentration revealed an increase to 0.13 mM, whereas the concentration in the reference strain was below the detection limit, indicating that incorporation of assimilatory sulfur is limited in the strain studied. In another strain, overexpression of metX encoding homoserine acetyltransferase resulted in an 8-fold increase in culture fluorescence at a cytosolic OAH concentration of 0.76 mM. We also assayed for consequences of extracellular sulfur supply and observed a graded fluorescence increase at decreasing sulfur concentrations below 400 μM. Overall, this demonstrates the usefulness of the sensors for monitoring intracellular sulfur availability. The sensors also enable monitoring at the single-cell level, and since related and close homologs of the transcription factor used in the constructed sensors are widespread among bacteria, this technology offers a new possibility of assaying in vivo for sulfur limitation and of doing this at the single-cell level. PMID:23995919

  6. Visualization of imbalances in sulfur assimilation and synthesis of sulfur-containing amino acids at the single-cell level.

    PubMed

    Hoffmann, Kristina; Grünberger, Alexander; Lausberg, Frank; Bott, Michael; Eggeling, Lothar

    2013-11-01

    We describe genetically encoded sensors which transmit elevated cytosolic concentrations of O-acetyl serine (OAS) and O-acetyl homoserine (OAH)-intermediates of l-cysteine and l-methionine synthesis-into an optical output. The sensor pSenOAS3 elicits 7.5-fold-increased fluorescence in cultures of a Corynebacterium glutamicum strain that excrete l-cysteine. Determination of the cytosolic OAS concentration revealed an increase to 0.13 mM, whereas the concentration in the reference strain was below the detection limit, indicating that incorporation of assimilatory sulfur is limited in the strain studied. In another strain, overexpression of metX encoding homoserine acetyltransferase resulted in an 8-fold increase in culture fluorescence at a cytosolic OAH concentration of 0.76 mM. We also assayed for consequences of extracellular sulfur supply and observed a graded fluorescence increase at decreasing sulfur concentrations below 400 μM. Overall, this demonstrates the usefulness of the sensors for monitoring intracellular sulfur availability. The sensors also enable monitoring at the single-cell level, and since related and close homologs of the transcription factor used in the constructed sensors are widespread among bacteria, this technology offers a new possibility of assaying in vivo for sulfur limitation and of doing this at the single-cell level.

  7. Stabilizing Lithium-Sulfur Batteries through Control of Sulfur Aggregation and Polysulfide Dissolution.

    PubMed

    Liu, Qian; Zhang, Jianhua; He, Shu-Ang; Zou, Rujia; Xu, Chaoting; Cui, Zhe; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Xu, Kaibing; Hu, Junqing

    2018-04-17

    Lithium-sulfur (Li-S) batteries are investigated intensively as a promising large-scale energy storage system owing to their high theoretical energy density. However, the application of Li-S batteries is prevented by a series of primary problems, including low electronic conductivity, volumetric fluctuation, poor loading of sulfur, and shuttle effect caused by soluble lithium polysulfides. Here, a novel composite structure of sulfur nanoparticles attached to porous-carbon nanotube (p-CNT) encapsulated by hollow MnO 2 nanoflakes film to form p-CNT@Void@MnO 2 /S composite structures is reported. Benefiting from p-CNTs and sponge-like MnO 2 nanoflake film, p-CNT@Void@MnO 2 /S provides highly efficient pathways for the fast electron/ion transfer, fixes sulfur and Li 2 S aggregation efficiently, and prevents polysulfide dissolution during cycling. Besides, the additional void inside p-CNT@Void@MnO 2 /S composite structure provides sufficient free space for the expansion of encapsulated sulfur nanoparticles. The special material composition and structural design of p-CNT@Void@MnO 2 /S composite structure with a high sulfur content endow the composite high capacity, high Coulombic efficiency, and an excellent cycling stability. The capacity of p-CNT@Void@MnO 2 /S electrode is ≈599.1 mA h g -1 for the fourth cycle and ≈526.1 mA h g -1 after 100 cycles, corresponding to a capacity retention of ≈87.8% at a high current density of 1.0 C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  9. Heavy-ion dominance near Cluster perigees

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.

    2015-12-01

    Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.

  10. Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu(2+) ion.

    PubMed

    Kim, J W; Sohn, M H; Kim, D S; Sohn, S M; Kwon, Y S

    2001-08-17

    Production of granular activated carbon by chemical activation has been attempted employing walnut shells as the raw material. The thermal characteristics of walnut shell were investigated by TG/DTA and the adsorption capacity of the produced activated carbon was evaluated using the titration method. As the activation temperature increased, the iodine value increased. However, a temperature higher than 400 degrees C resulted in a thermal degradation, which was substantiated by scanning electron microscopy (SEM) analysis, and the adsorption capacity decreased. Activation longer than 1h at 375 degrees C resulted in the destruction of the microporous structure of activated carbon. The iodine value increased with the increase in the concentration of ZnCl2 solution. However, excessive ZnCl2 in the solution decreased the iodine value. The extent of activation by ZnCl2 was compared with that by CaCl2 activation. Enhanced activation was achieved when walnut shell was activated by ZnCl2. Applicability of the activated carbon as adsorbent was examined for synthetic copper wastewater. Adsorption of copper ion followed the Freundlich model. Thermodynamic aspects of adsorption have been discussed based on experimental results. The adsorption capacity of the produced activated carbon met the conditions for commercialization and was found to be superior to that made from coconut shell.

  11. Biological iron-sulfur storage in a thioferrate-protein nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, Brian J.; Clarkson, Sonya M.; Holden, James F.

    Iron–sulfur clusters are ubiquitous in biology and function in electron transfer and catalysis. We assembled them from iron and cysteine sulfur on protein scaffolds. Iron is typically stored as iron oxyhydroxide, ferrihydrite, encapsulated in 12 nm shells of ferritin, which buffers cellular iron availability. We have characterized IssA, a protein that stores iron and sulfur as thioferrate, an inorganic anionic polymer previously unknown in biology. IssA forms nanoparticles reaching 300 nm in diameter and is the largest natural metalloprotein complex known. It is a member of a widely distributed protein family that includes nitrogenase maturation factors, NifB and NifX. IssAmore » nanoparticles are visible by electron microscopy as electron-dense bodies in the cytoplasm. Purified nanoparticles appear to be generated from 20 nm units containing B 6,400 Fe atoms and B 170 IssA monomers. In support of roles in both iron–sulfur storage and cluster biosynthesis, IssA reconstitutes the [4Fe-4S] cluster in ferredoxin in vitro.« less

  12. Biological iron-sulfur storage in a thioferrate-protein nanoparticle

    DOE PAGES

    Vaccaro, Brian J.; Clarkson, Sonya M.; Holden, James F.; ...

    2017-07-20

    Iron–sulfur clusters are ubiquitous in biology and function in electron transfer and catalysis. We assembled them from iron and cysteine sulfur on protein scaffolds. Iron is typically stored as iron oxyhydroxide, ferrihydrite, encapsulated in 12 nm shells of ferritin, which buffers cellular iron availability. We have characterized IssA, a protein that stores iron and sulfur as thioferrate, an inorganic anionic polymer previously unknown in biology. IssA forms nanoparticles reaching 300 nm in diameter and is the largest natural metalloprotein complex known. It is a member of a widely distributed protein family that includes nitrogenase maturation factors, NifB and NifX. IssAmore » nanoparticles are visible by electron microscopy as electron-dense bodies in the cytoplasm. Purified nanoparticles appear to be generated from 20 nm units containing B 6,400 Fe atoms and B 170 IssA monomers. In support of roles in both iron–sulfur storage and cluster biosynthesis, IssA reconstitutes the [4Fe-4S] cluster in ferredoxin in vitro.« less

  13. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    PubMed

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  14. A nickel-foam@carbon-shell with a pie-like architecture as an efficient polysulfide trap for high-energy Li–S batteries

    DOE PAGES

    Luo, Liu; Chung, Sheng-Heng; Chang, Chi-Hao; ...

    2017-07-06

    A high-loading sulfur cathode is critical for establishing rechargeable lithium–sulfur (Li–S) batteries with the anticipated high energy density. However, its fabrication as well as realizing high electrochemical utilization and stability with high-loading sulfur cathodes is a daunting challenge. Here, we present a new pie-like electrode that consists of an electrocatalytic nickel-foam as a “filling” to adsorb and store polysulfide catholytes and an outer carbon shell as a “crust” for facilitating high-loading sulfur cathodes with superior electrochemical and structural stabilities. The inner electrocatalytic nickel-foam is configured to adsorb polysulfides and facilitate their redox reactions. The intertwined carbon shell assists to shieldmore » the polysulfides within the cathode region of the cell. Both the nickel-foam and the carbon shell have high conductivity and porous space, which serve simultaneously as interconnected current collectors to enhance the redox kinetics and as polysulfide reservoirs to confine the active material. The effectiveness of such a pie-like structure in improving the electrochemical efficiency enables the cathode to host an ultrahigh sulfur loading of 40 mg cm -2 and attain a high areal capacity of over 40 mA h cm -2 at a low electrolyte/sulfur (E/S) ratio of 7. The enhanced cyclability is reflected in a high reversible areal capacity approaching 30 mA h cm -2 at C/5 rate after 100 cycles and excellent rate capability up to 2C rate.« less

  15. A nickel-foam@carbon-shell with a pie-like architecture as an efficient polysulfide trap for high-energy Li–S batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liu; Chung, Sheng-Heng; Chang, Chi-Hao

    A high-loading sulfur cathode is critical for establishing rechargeable lithium–sulfur (Li–S) batteries with the anticipated high energy density. However, its fabrication as well as realizing high electrochemical utilization and stability with high-loading sulfur cathodes is a daunting challenge. Here, we present a new pie-like electrode that consists of an electrocatalytic nickel-foam as a “filling” to adsorb and store polysulfide catholytes and an outer carbon shell as a “crust” for facilitating high-loading sulfur cathodes with superior electrochemical and structural stabilities. The inner electrocatalytic nickel-foam is configured to adsorb polysulfides and facilitate their redox reactions. The intertwined carbon shell assists to shieldmore » the polysulfides within the cathode region of the cell. Both the nickel-foam and the carbon shell have high conductivity and porous space, which serve simultaneously as interconnected current collectors to enhance the redox kinetics and as polysulfide reservoirs to confine the active material. The effectiveness of such a pie-like structure in improving the electrochemical efficiency enables the cathode to host an ultrahigh sulfur loading of 40 mg cm -2 and attain a high areal capacity of over 40 mA h cm -2 at a low electrolyte/sulfur (E/S) ratio of 7. The enhanced cyclability is reflected in a high reversible areal capacity approaching 30 mA h cm -2 at C/5 rate after 100 cycles and excellent rate capability up to 2C rate.« less

  16. A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk-Shell Structured Nanomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Cuo; Tong, Xin; Ai, Yuanfei; Liu, De-Sheng; Yu, Peng; Wu, Jiang; Wang, Zhiming M.

    2018-09-01

    Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have received much attention in energy storage system. In particular, among the great efforts on enhancing the performance of LIBs and SIBs, yolk-shell (YS) structured materials have emerged as a promising strategy toward improving lithium and sodium storage. YS structures possess unique interior void space, large surface area and short diffusion distance, which can solve the problems of volume expansion and aggregation of anode materials, thus enhancing the performance of LIBs and SIBs. In this review, we present a brief overview of recent advances in the novel YS structures of spheres, polyhedrons and rods with controllable morphology and compositions. Enhanced electrochemical performance of LIBs and SIBs based on these novel YS structured anode materials was discussed in detail. [Figure not available: see fulltext.

  17. Chemical Behavior of Sulfur in Minerals and Silicate Glasses Studied Using Inner Shell Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alonso Mori, R.; Paris, E.; Glatzel, P.; Giuli, G.; Scaillet, B.

    2008-12-01

    Understanding the chemical behaviour of sulfur is of fundamental importance in explaining different geological mechanisms ranging from volcano-climatic interactions to the genesis of ore deposits. Understanding how sulphur behaves is also of great economic importance in industrial activities including glass-forming processes and the treatment of vitreous waste material from refuse incineration. The chemical behaviour of sulfur in minerals and glasses has been widely studied via X-ray absorption near edge structure (XANES) spectroscopy, which probes the unoccupied density of states and thus provides information on the oxidation state and local structure of the species under study. However, the XANES spectral shape is influenced by various effects, namely the local symmetry, the ligand type, even up to high coordination spheres, and the valence electron occupation, making it difficult to systematically analyze the different spectral contributions. We use X-ray emission spectroscopy (XES) as a complementary technique to avoid some of the inherent difficulties of XANES analysis, and to extract additional information on the electronic structure. The Kb lines, close to the K-edge, directly yield the p-density of occupied valence states, giving valuable information on the local coordination. We have compared XANES and Kb XES experimental data on sulfur- bearing minerals with ab initio quantum-chemical calculations based on density functional theory (DFT), in order to visualize the molecular orbitals and to extract information about the chemical bonding in these compounds. The S Ka emission lines, which arise from 2p to 1s transitions, are expected to be mostly free from chemical bond effects except for small energy shifts that reflect the valence orbital electron population via screening effects. S Ka shifts can be readily used to determine the speciation of sulfur in silicate glasses. The electronic configuration of the sulfur atoms is obtained by calculating the

  18. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    PubMed Central

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-01-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg−1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors. PMID:24141527

  19. Ion nose spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.

    2016-12-01

    We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+ and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses, and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted by using a steady state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge-exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

  20. Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase

    USDA-ARS?s Scientific Manuscript database

    Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterised with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion ha...

  1. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.

    PubMed

    Peng, Chao; Hamuyuni, Joseph; Wilson, Benjamin P; Lundström, Mari

    2018-06-01

    Recycling of valuable metals from secondary resources such as waste Li-ion batteries (LIBs) has recently attracted significant attention due to the depletion of high-grade natural resources and increasing interest in the circular economy of metals. In this article, the sulfuric acid leaching of industrially produced waste LIBs scraps with 23.6% cobalt (Co), 3.6% lithium (Li) and 6.2% copper (Cu) was investigated. The industrially produced LIBs scraps were shown to provide higher Li and Co leaching extractions compared to dissolution of corresponding amount of pure LiCoO 2 . In addition, with the addition of ascorbic acid as reducing agent, copper extraction showed decrease, opposite to Co and Li. Based on this, we propose a new method for the selective leaching of battery metals Co and Li from the industrially crushed LIBs waste at high solid/liquid ratio (S/L) that leaves impurities like Cu in the solid residue. Using ascorbic acid (C 6 H 8 O 6 ) as reductant, the optimum conditions for LIBs leaching were found to be T = 80 °C, t = 90 min, [H 2 SO 4 ] = 2 M, [C 6 H 8 O 6 ] = 0.11 M and S/L = 200 g/L. This resulted in leaching efficiencies of 95.7% for Li and 93.8% for Co, whereas in contrast, Cu extraction was only 0.7%. Consequently, the proposed leaching method produces a pregnant leach solution (PLS) with high Li (7.0 g/L) and Co (44.4 g/L) concentration as well as a leach residue rich in Cu (up to 12 wt%) that is suitable as a feed fraction for primary or secondary copper production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Method for Derivatization and Detection of Chemical Weapons Convention Related Sulfur Chlorides via Electrophilic Addition with 3-Hexyne.

    PubMed

    Goud, D Raghavender; Pardasani, Deepak; Purohit, Ajay Kumar; Tak, Vijay; Dubey, Devendra Kumar

    2015-07-07

    Sulfur monochloride (S2Cl2) and sulfur dichloride (SCl2) are important precursors of the extremely toxic chemical warfare agent sulfur mustard and classified, respectively, into schedule 3.B.12 and 3.B.13 of the Chemical Weapons Convention (CWC). Hence, their detection and identification is of vital importance for verification of CWC. These chemicals are difficult to detect directly using chromatographic techniques as they decompose and do not elute. Until now, the use of gas chromatographic approaches to follow the derivatized sulfur chlorides is not reported in the literature. The electrophilic addition reaction of sulfur monochloride and sulfur dichloride toward 3-hexyne was explored for the development of a novel derivatization protocol, and the products were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Among various unsaturated reagents like alkenes and alkynes, symmetrical alkyne 3-hexyne was optimized to be the suitable derivatizing agent for these analytes. Acetonitrile was found to be the suitable solvent for the derivatization reaction. The sample preparation protocol for the identification of these analytes from hexane spiked with petrol matrix was also optimized. Liquid-liquid extraction followed by derivatization was employed for the identification of these analytes from petrol matrix. Under the established conditions, the detection and quantification limits are 2.6 μg/mL, 8.6 μg/mL for S2Cl2 and 2.3 μg/mL, 7.7 μg/mL for SCl2, respectively, in selected ion monitoring (SIM) mode. The calibration curve had a linear relationship with y = 0.022x - 0.331 and r(2) = 0.992 for the working range of 10 to 500 μg/mL for S2Cl2 and y = 0.007x - 0.064 and r(2) = 0.991 for the working range of 10 to 100 μg/mL for SCl2, respectively. The intraday RSDs were between 4.80 to 6.41%, 2.73 to 6.44% and interday RSDs were between 2.20 to 7.25% and 2.34 to 5.95% for S2Cl2 and SCl2, respectively.

  3. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode

    NASA Astrophysics Data System (ADS)

    Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-01

    The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g-1 (S) capacity at sulfur loading of 6 ~ 14 mg cm-2, and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg-1 (654 Wh L-1), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application.

  4. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode.

    PubMed

    Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-12

    The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g(-1) (S) capacity at sulfur loading of 6 ~ 14 mg cm(-2), and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg(-1) (654 Wh L(-1)), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application.

  5. Effect of Magnesium Ion on the Zinc Electrodeposition from Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Xie, Gang; Yu, Xiao-Hua; Li, Rong-Xing; Zeng, Gui-Sheng

    2012-02-01

    The effects of Mg2+ ion on the zinc electrodeposition were systematically investigated in sulfuric acid solution through the characterizations of current efficiency (CE), power consumption (PC), deposit morphology, cathodic polarization, and cyclic voltammetry. The results demonstrate that there is no significant influence on CE and PC in the Mg2+ concentration range of 1 to 10 g L-1, but with a drastic decrease of the CE and rapid increase of PC at Mg2+ ion concentration above 15 g L-1. Based on the morphology observation and polarization curves, the presence of Mg2+ ions could also induce the coarse surface on the electrodeposited zinc accompanying the enhancement of the cathodic polarization, which becomes more distinct at a high concentration above 15 g L-1. Furthermore, hydrogen evolution could be promoted with the existence of Mg2+ ions according to cyclic voltammograms.

  6. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    PubMed

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  7. Kinetic Plasma and Turbulent Mix Studies using DT Plastic-shell Implosions with Shell-thickness and Pressure Variations

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Hoffman, N. M.; Schmitt, M. J.; Bradley, P. A.; Kagan, G.; Gales, S.; Horsfield, C. J.; Rubery, M.; Leatherland, A.; Gatu Johnson, M.; Glebov, V.; Seka, W.; Marshall, F.; Stoeckl, C.; Church, J.

    2014-10-01

    Kinetic plasma and turbulent mix effects on inertial confinement fusion have been studied using a series of DT-filled plastic-shell implosions at the OMEGA laser facility. Plastic capsules of 4 different shell thicknesses (7.4, 15, 20, 29 micron) were shot at 2 different fill pressures in order to vary the ion mean free path compared to the size of fuel region (i.e., Knudsen number). We varied the empirical Knudsen number by a factor of 25. Measurements were obtained from the burn-averaged ion temperature and fuel areal density. Preliminary results indicate that as the empirical Knudsen number increases, fusion performances (e.g., neutron yield) increasingly deviate from hydrodynamic simulations unless turbulent mix and ion kinetic terms (e.g., enhanced ion diffusion, viscosity, thermal conduction, as well as Knudsen-layer fusion reactivity reduction) are considered. We are developing two separate simulations: one is a reduced-ion-kinetics model and the other is turbulent mix model. Two simulation results will be compared with the experimental observables.

  8. Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.

    PubMed

    Shyamsunder, Abhinandan; Beichel, Witali; Klose, Petra; Pang, Quan; Scherer, Harald; Hoffmann, Anke; Murphy, Graham K; Krossing, Ingo; Nazar, Linda F

    2017-05-22

    The step-change in gravimetric energy density needed for electrochemical energy storage devices to power unmanned autonomous vehicles, electric vehicles, and enable low-cost clean grid storage is unlikely to be provided by conventional lithium ion batteries. Lithium-sulfur batteries comprising lightweight elements provide a promising alternative, but the associated polysulfide shuttle in typical ether-based electrolytes generates loss in capacity and low coulombic efficiency. The first new electrolyte based on a unique combination of a relatively hydrophobic sulfonamide solvent and a low ion-pairing salt, which inhibits the polysulfide shuttle, is presented. This system behaves as a sparingly solvating electrolyte at slightly elevated temperatures, where it sustains reversible capacities as high as 1200-1500 mAh g -1 over a wide range of current density (2C-C/5, respectively) when paired with a lithium metal anode, with a coulombic efficiency of >99.7 % in the absence of LiNO 3 additive. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Shell Thickness Dependence of Interparticle Energy Transfer in Core-Shell ZnSe/ZnSe Quantum Dots Doping with Europium

    NASA Astrophysics Data System (ADS)

    Liu, Ni; Li, Shuxin; Wang, Caifeng; Li, Jie

    2018-04-01

    Low-toxic core-shell ZnSe:Eu/ZnS quantum dots (QDs) were prepared through two steps in water solution: nucleation doping and epitaxial shell grown. The structural and morphological characteristics of ZnSe/ZnS:Eu QDs with different shell thickness were explored by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results. The characteristic photoluminescence (PL) intensity of Eu ions was enhanced whereas that of band-edge luminescence and defect-related luminescence of ZnSe QDs was decreased with increasing shell thickness. The transformation of PL intensity revealed an efficient energy transfer process between ZnSe and Eu. The PL intensity ratio of Eu ions ( I 613) to ZnSe QDs ( I B ) under different shell thickness was systemically analyzed by PL spectra and time-resolved PL spectra. The obtained results were in agreement with the theory analysis results by the kinetic theory of energy transfer, revealing that energy was transmitted in the form of dipole-electric dipole interaction. This particular method of adjusting luminous via changing the shell thickness can provide valuable insights towards the fundamental understanding and application of QDs in the field of optoelectronics.

  10. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative

  11. K-shell spectroscopy of silicon ions as diagnostic for high electric fields

    NASA Astrophysics Data System (ADS)

    Loetzsch, R.; Jäckel, O.; Höfer, S.; Kämpfer, T.; Polz, J.; Uschmann, I.; Kaluza, M. C.; Förster, E.; Stambulchik, E.; Kroupp, E.; Maron, Y.

    2012-11-01

    We developed a detection scheme, capable of measuring X-ray line shape of tracer ions in μm thick layers at the rear side of a target foil irradiated by ultra intense laser pulses. We performed simulations of the effect of strong electric fields on the K-shell emission of silicon and developed a spectrometer dedicated to record this emission. The combination of a cylindrically bent crystal in von Hámos geometry and a CCD camera with its single photon counting capability allows for a high dynamic range of the instrument and background free spectra. This approach will be used in future experiments to study electric fields of the order of TV/m at high density plasmas close to solid density.

  12. CdTe and EDS HR-PIXE Ta L and M spectra induced by duoplasmatron generated proton and oxygen ion beams

    NASA Astrophysics Data System (ADS)

    Reis, M. A.; Chaves, P. C.

    2018-02-01

    Particle induced X-ray emission (PIXE) is a powerful technique for quantitative analysis because it is non-destructive, multi-elemental (from Na to U), highly sensitive and requires no special sample preparation. Heavy Ions PIXE (HI-PIXE), may represent a further step in versatility but it comes with added complexity of the physical processes involved in X-ray production, which require among other things new software capabilities. In this work, the specific capacities of the DT2 code are used to simulate and fit Ta L- and M-shell spectra obtained during the irradiation of a Ta2O5 thin film deposited upon a polished vitreous graphite substrate, produced in the frame of the Heavy Ions PIXE workpakage of the IAEA Coordinated Research Project F11019 on analytical uses of MeV focused ion beams. Proton and oxygen beams from a duoplasmatron ion source were used, and spectra were collected using both the CdTe and the X-ray Microcalorimeter Spectrometer detectors of the High Resolution High X-ray Energy PIXE (HRHE-PIXE) facility of C2TN. Results obtained from the simulation and the fitting of these spectra are presented and discussed.

  13. Core-shell structure of Miglyol/poly(D,L-lactide)/Poloxamer nanocapsules studied by small-angle neutron scattering.

    PubMed

    Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim

    2005-10-03

    The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.

  14. Growth of Ionic Selectivity Prussian Blue Modified Celgard Separator for High Performance Lithium Sulfur Battery.

    PubMed

    Wu, Xian; Fan, Lishuang; Qiu, Yue; Wang, Maoxu; Cheng, Junhan; Guan, Bin; Guo, Zhikun; Zhang, Naiqing; Sun, Kening

    2018-06-26

    Lithium sulfur batteries have been restricted on their major technical problem of shuttling soluble polysulfides between electrodes, resulting in serious capacity fading. For purpose of develop a high-performance lithium-sulfur battery, we first time utilize a simple growth method to introduce a Prussian blue modified Celgard separator as an ion selective membrane in lithium sulfur batteries. The unique structure of Prussian blue could effectively suppress the shuttle of polysulfides but scarcely affect the transfer ability of lithium ions, which is beneficial to achieve high sulfur conversion efficiency and capacity retention. The lithium sulfur battery with Prussian blue modified Celgard separator reveals an average capacity decaying of only 0.03% per cycle at 1C after 1000 cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and thermal stability of W/WS{sub 2} inorganic fullerene-like nanoparticles with core-shell structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Lianxia; Yang Haibin; Fu Wuyou

    W/WS{sub 2} inorganic fullerene-like (IF) nanoparticles with core-shell structure are synthesized by the reaction of tungsten nanospheres and sulfur at relatively low temperatures (380-600 deg. C) under hydrogen atmosphere, in which tungsten nanospheres were prepared by wire electrical explosion method. Images of transmission electron microscopy and high-resolution transmission electron microscopy show that the composite particles are of core-shell structure with spherical shape and the shell thickness is about 10 nm. X-ray powder diffraction results indicate that the interlayer spacing of IF-WS{sub 2} shell decreases and approaches that of 2H-WS{sub 2} with increasing annealing temperatures, representing an expansion of 3.3-1.6%. Amore » mechanism of IF-WS{sub 2} formation via sulfur diffusion into fullerene nanoparticles is discussed. Thermal analysis shows that the nanoparticles obtained at different temperatures exhibit similar thermal stability and the onset temperature of oxidization is about 410 deg. C. Encapsulating hard tungsten core into IF-WS{sub 2} and the spherical shape of the core-shell structures may enhance their performance in tribological applications.« less

  16. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    USGS Publications Warehouse

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require

  17. Multiple sulfur isotope determination on SO2 gas

    NASA Astrophysics Data System (ADS)

    Halas, Stanislaw; Pienkos, Tomasz

    2017-04-01

    The principal motivation of this study is to apply SO2 gas in the multiple isotope analysis (i.e. simultaneous analysis of sulfur isotope ratios: 33S/32S , 34S/32S and 36S/32S) rather than SF6 gas. SO2 gas can be easily prepared from sulfides (Robinson and Kusakabe 1975) and from sulfates (Halas and Wolacewicz 1981), whilst the preparation of SF6 gas requires the use of a fluorination line (Ono et al. 2006) and a mass spectrometer with enhanced resolving power to resolve isotope peaks 33SF5- from 32SF5- (masses 128 and 127). In the patent application (Halas et al. 2016) we have described a new ion source which can be applied for analysis of gases. The new ion source significantly enhances generation, both positive and negative, ions in comparison to commonly used Nier type. The analyzed gas is admitted from a dual inlet system to the ion source through separate capillaries connected to the pneumatically operated changeover valve as described by Halas (1979). It is important to have SO2 samples well purified from volatiles which eliminates O2 interference at mass 32 peak. A great advantage of the isotope analysis on S+ instead on SO+ or SO2+spectra is that there is no need to keep constant oxygen isotopic composition in the SO2 gas. Usually sulfide and sulfate samples have different oxygen, but it doesn't matter in the case of analysis on S+. The achieved precision (1σ) on positive ion beams was better than 0.1‰ and 0.01‰ for δ36S and δ34S, respectively. Unfortunately δ33S cannot be measured in this way, because of formation of 32SH+ ions which interfere with 33S+. The details of the design of the ion source, vacuum system and electronic controllers are presented in the poster. We thank to Dr. Keith Hackley for donation of an old mass spectrometer to UMCS, on the basis of which we were able to develop the new instrument. This study was supported by NCN project 2013/11/B/ST10/00250. References Hałas S., Pieńkos T., Pelc A., Wójtowicz A. (2016) Patent

  18. N and S co-doped porous carbon spheres prepared using L-cysteine as a dual functional agent for high-performance lithium-sulfur batteries.

    PubMed

    Niu, Shuzhang; Lv, Wei; Zhou, Guangmin; He, Yanbing; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2015-12-28

    Nitrogen and sulfur co-doped porous carbon spheres (NS-PCSs) were prepared using L-cysteine to control the structure and functionalization during the hydrothermal reaction of glucose and the subsequent activation process. As the sulfur hosts in Li-S batteries, NS-PCSs combine strong physical confinement and surface chemical interaction to improve the affinity of polysulfides to the carbon matrix.

  19. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    NASA Astrophysics Data System (ADS)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  20. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity

    PubMed Central

    Li, Sa; Niu, Junjie; Zhao, Yu Cheng; So, Kang Pyo; Wang, Chao; Wang, Chang An; Li, Ju

    2015-01-01

    Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (∼3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g−1 after 500 cycles, with a 3 mg cm−2 loading. At 1 C, the capacity is approximately 1,200 mAh g−1 after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes. PMID:26243004

  1. Thermophilic Carbon-Sulfur-Bond-Targeted Biodesulfurization

    PubMed Central

    Konishi, J.; Ishii, Y.; Onaka, T.; Okumura, K.; Suzuki, M.

    1997-01-01

    Petroleum contains many heterocyclic organosulfur compounds refractory to conventional hydrodesulfurization carried out with chemical catalysts. Among these, dibenzothiophene (DBT) and DBTs bearing alkyl substitutions are representative compounds. Two bacterial strains, which have been identified as Paenibacillus strains and which are capable of efficiently cleaving carbon-sulfur (C--S) bonds in DBT at high temperatures, have been isolated for the first time. Upon attacking DBT and its various methylated derivatives at temperatures up to 60(deg)C, both growing and resting cells of these bacteria can release sulfur atoms as sulfate ions and leave the monohydroxylated hydrocarbon moieties intact. Moreover, when either of these paenibacilli was incubated at 50(deg)C with light gas oil previously processed through hydrodesulfurization, the total sulfur content in the oil phase clearly decreased. PMID:16535672

  2. 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries

    PubMed Central

    Wu, Feng; Li, Jian; Tian, Yafen; Su, Yuefeng; Wang, Jing; Yang, Wen; Li, Ning; Chen, Shi; Bao, Liying

    2015-01-01

    3D coral-like, nitrogen and sulfur co-doped mesoporous carbon has been synthesized by a facile hydrothermal-nanocasting method to house sulfur for Li–S batteries. The primary doped species (pyridinic-N, pyrrolic-N, thiophenic-S and sulfonic-S) enable this carbon matrix to suppress the diffusion of polysulfides, while the interconnected mesoporous carbon network is favourable for rapid transport of both electrons and lithium ions. Based on the synergistic effect of N, S co-doping and the mesoporous conductive pathway, the as-fabricated C/S cathodes yield excellent cycling stability at a current rate of 4 C (1 C = 1675 mA g−1) with only 0.085% capacity decay per cycle for over 250 cycles and ultra-high rate capability (693 mAh g−1 at 10 C rate). These capabilities have rarely been reported before for Li-S batteries. PMID:26288961

  3. Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon

    NASA Astrophysics Data System (ADS)

    Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira

    2018-04-01

    Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.

  4. A parametric shell analysis of the shuttle 51-L SRB AFT field joint

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Bowman, Lynn M.; Hughes, Robert M., IV; Jackson, Brian J.

    1990-01-01

    Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically.

  5. Neoclassical diffusion at low L-shel

    NASA Astrophysics Data System (ADS)

    Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.

    2017-12-01

    At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L<1.25 but Imhof et al showed that the apparent lifetime of >500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have

  6. Unexpected storm-time nightside plasmaspheric density enhancement at low L shell

    NASA Astrophysics Data System (ADS)

    Chu, X.; Bortnik, J.; Denton, R. E.; Yue, C.

    2017-12-01

    We have developed a three-dimensional dynamic electron density (DEN3D) model in the inner magnetosphere using a neural network approach. The DEN3D model can provide spatiotemporal distribution of the electron density at any location and time that spacecraft observations are not available. Given DEN3D's good performance in predicting the structure and dynamic evolution of the plasma density, the salient features of the DEN3D model can be used to gain further insight into the physics. For instance, the DEN3D models can be used to find unusual phenomena that are difficult to detect in observations or simulations. We report, for the first time, an unexpected plasmaspheric density increase at low L shell regions on the nightside during the main phase of a moderate storm during 12-16 October 2004, as opposed to the expected density decrease due to storm-time plasmaspheric erosion. The unexpected density increase is first discovered in the modeled electron density distribution using the DEN3D model, and then validated using in-situ density measurements obtained from the IMAGE satellite. The density increase was likely caused by increased earthward transverse field plasma transport due to enhanced nightside ExB drift, which coincided with enhanced solar wind electric field and substorm activity. This is consistent with the results of physics-based simulation SAMI3 model which show earthward enhanced plasma transport and electron density increase at low L shells during storm main phase.

  7. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.

    PubMed

    Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2016-07-01

    Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. © 2016 Scandinavian Plant Physiology Society.

  8. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    PubMed

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  9. Novel highly ordered core–shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Sonal; Hossain, Mohammad D.; Mayanovic, Robert A.

    2016-10-26

    Core–shell nanoparticles have potential for a wide range of applications due to the tunability of their magnetic, catalytic, electronic, optical, and other physicochemical properties. A frequent drawback in the design of core–shell nanoparticles and nanocrystals is the lack of control over an extensive, disordered, and compositionally distinct interface that occurs due to the dissimilarity of structural and compositional phases of the core and shell. In this work, we demonstrate a new hydrothermal nanophase epitaxy (HNE) technique to synthesize highly structurally ordered α-Cr 2O 3@α-Co 0.38Cr 1.62O 2.92 inverted core–shell nanoparticles (CSNs) with evidence for the nanoscale growth of corundum structuremore » beginning from the core and extending completely into the shell of the CSNs with minimal defects at the interface. The high-resolution TEM results show a sharp interface exhibiting epitaxial atomic registry of shell atoms over highly ordered core atoms. The XPS and Co K-edge XANES analyses indicate the +2 oxidation state of cobalt is incorporated in the shell of the CSNs. Our XPS and EXAFS results are consistent with oxygen vacancy formation in order to maintain charge neutrality upon substitution of the Co 2+ ion for the Cr 3+ ion in the α-Co 0.38Cr 1.62O 2.92 shell. Furthermore, the CSNs exhibit the magnetic exchange bias effect, which is attributed to the exchange anisotropy at the interface made possible by the nanophase epitaxial growth of the α-Co 0.38Cr 1.62O 2.92 shell on the α-Cr 2O 3 core of the nanoparticles. The combination of a well-structured, sharp interface and novel nanophase characteristics is highly desirable for nanostructures having enhanced magnetic properties.« less

  10. Sulfur-Doping Templated Synthesis of Nanoporous Graphitic Nanocages and Its Supported Catalysts for Efficient Methanol Oxidation.

    PubMed

    Sheng, Zhao Min; Hong, Cheng Yang; Dai, Xian You; Chang, Cheng Kang; Chen, Jian Bin; Liu, Yan

    2015-04-01

    We demonstrate a new sulfur (S)-doping templated approach to fabricate highly nanoporous graphitic nanocages (GNCs) by air-oxidizing the templates in the graphitic shells to create nanopores. Sulfur can be introduced, when Fe@C core-shell nanoparticles are prepared and then S-doped GNCs can be obtained by removing their ferrous cores. Due to removing S-template, both the specific surface area (from 540 to 850 m2 g(-1)) and the mesopore volume (from 0.44 to 0.9 cm3 g(-1)) of the graphitic nanocages have sharply risen. Its high specific surface area improves catalyst loading to provide more reaction electro-active sites while its high mesopore volume pro- motes molecule diffusion across the nanocages, making it an excellent material to support Pt/Ru catalysts for direct methanol fuel cells.

  11. Functionalized Ni@SiO2 core/shell magnetic nanoparticles as a chemosensor and adsorbent for Cu2+ ion in drinking water and human blood.

    PubMed

    Park, Minsung; Seo, Sungmin; Lee, Soo Jin; Jung, Jong Hwa

    2010-11-01

    Fluorogenic based nitrobenzofuran-functionalized Ni@SiO(2) core/shell magnetic nanoparticles have been prepared by sol-gel grafting reaction. Their ability to detect and remove metal ions was evaluated by fluorophotometry. The nanoparticles exhibited a high affinity and selectivity for Cu(2+) over competing metal ions. Furthermore, the nanoparticles efficiently removed Cu(2+) in drinking water and human blood.

  12. Enhanced elemental mercury removal from coal-fired flue gas by sulfur-chlorine compounds.

    PubMed

    Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray L; Chang, Shih-Ger; Miller, Charles

    2009-07-15

    Oxidation of Hg(0) with any oxidant or converting itto a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg(0) by gas-phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas-phase reaction between Hg(0) and SCl2 is shown to be more rapid than the gas-phase reaction with chlorine, and the second order rate constant was 9.1 (+/- 0.5) x 10(-18) mL-molecules(-1) x s(-1) at 373 K. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg(0) removal is about 90% with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that coinjection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90% of Hg(0) can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3% of SCl2 or S2Cl2 is used. Mercuric sulfide was identified as one of the principal products of the Hg(0)/SCl2 or Hg(0)/S2Cl2 reactions. Additionally, about 8% of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

  13. Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland)

    NASA Astrophysics Data System (ADS)

    Frege, Carla; Bianchi, Federico; Molteni, Ugo; Tröstl, Jasmin; Junninen, Heikki; Henne, Stephan; Sipilä, Mikko; Herrmann, Erik; Rossi, Michel J.; Kulmala, Markku; Hoyle, Christopher R.; Baltensperger, Urs; Dommen, Josef

    2017-02-01

    The ion composition at high altitude (3454 m a.s.l.) was measured with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF) during a period of 9 months, from August 2013 to April 2014. The negative mass spectra were dominated by the ions of sulfuric, nitric, malonic, and methanesulfonic acid (MSA) as well as SO5-. The most prominent positive ion peaks were from amines. The other cations were mainly organic compounds clustered with a nitrogen-containing ion, which could be either NH4+ or an aminium. Occasionally the positive spectra were characterized by groups of compounds each differing by a methylene group. In the negative spectrum, sulfuric acid was always observed during clear sky conditions following the diurnal cycle of solar irradiation. On many occasions we also saw a high signal of sulfuric acid during nighttime when clusters up to the tetramer were observed. A plausible reason for these events could be evaporation from particles at low relative humidity. A remarkably strong correlation between the signals of SO5- and CH3SO3- was observed for the full measurement period. The presence of these two ions during both the day and the night suggests a non-photochemical channel of formation which is possibly linked to halogen chemistry. Halogenated species, especially Br- and IO3-, were frequently observed in air masses that originated mainly from the Atlantic Ocean and occasionally from continental areas based on back trajectory analyses. We found I2O5 clustered with an ion, a species that was proposed from laboratory and modeling studies. All halogenated ions exhibited an unexpected diurnal behavior with low values during daytime. New particle formation (NPF) events were observed and characterized by (1) highly oxygenated molecules (HOMs) and low sulfuric acid or (2) ammonia-sulfuric acid clusters. We present characteristic spectra for each of these two event types based on 26 nucleation episodes. The mass spectrum of the ammonia-sulfuric

  14. Ion nose spectral structures observed by the Van Allen Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.

    Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less

  15. Ion nose spectral structures observed by the Van Allen Probes

    DOE PAGES

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...

    2016-11-22

    Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less

  16. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  17. The adsorption of rare earth ions using carbonized polydopamine nano shells

    DOE PAGES

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; ...

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less

  18. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  19. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOEpatents

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  20. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  1. Core–shell-structured Li 3V 2(PO 4) 3 –LiVOPO 4 nanocomposites cathode for high-rate and long-life lithium-ion batteries

    DOE PAGES

    Sun, Pingping; Wang, Xiuzhen; Zhu, Kai; ...

    2017-01-13

    A facile strategy has been developed to construct unique core–shell-structured Li 2.7V 2.1(PO 4) 3 nanocomposites with a Li 3V 2(PO 4) 3 core and LiVOPO 4 shell by using nonstoichiometric design and high-energy ball milling (HEBM) treatment. The HEBM treatment supplies enough energy to drive the excess V atoms to the surface to form a V-enriched shell. Such kind of cathode can deliver a high reversible capacity of 131.5 mAhg $-$1 at 0.5 C, which is close to the theoretical capacity (133 mAhg $-$1 in 3.0–4.3 V). Even at 20 C, it still delivers an excellent discharge capacity ofmore » 116.3 mAhg $-$1, and a remarkable capacity of 111.0 mAhg $-$1 after 1000 cycles, corresponding to an ultra-small capacity-loss of 0.0046% per cycle. Finally, the significantly improved high-rate electrochemical performance can be attributed to the active shell of LiVOPO 4, which not only efficiently facilitates the electron and Li + ion transport during cycling processes, but also accommodates more Li+ ions to effectively compensate the capacity loss of the core.« less

  2. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    PubMed Central

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-01-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3–5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications. PMID:28008981

  3. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries.

    PubMed

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E C; Matic, Aleksandar

    2016-12-23

    Societies' increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of "no battery without binder" and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm 2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  4. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  5. Modeling of the L-shell copper X-pinch plasma produced by the compact generator of Ecole polytechnique using pattern recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larour, Jean; Aranchuk, Leonid E.; Danisman, Yusuf

    2016-03-15

    Principal component analysis is applied and compared with the line ratios of special Ne-like transitions for investigating the electron beam effects on the L-shell Cu synthetic spectra. The database for the principal component extraction is created over a non Local Thermodynamic Equilibrium (non-LTE) collisional radiative L-shell Copper model. The extracted principal components are used as a database for Artificial Neural Network in order to estimate the plasma electron temperature, density, and beam fractions from a representative time-integrated spatially resolved L-shell Cu X-pinch plasma spectrum. The spectrum is produced by the explosion of 25-μm Cu wires on a compact LC (40more » kV, 200 kA, and 200 ns) generator. The modeled plasma electron temperatures are about T{sub e} ∼ 150 eV and N{sub e} = 5 × 10{sup 19} cm{sup −3} in the presence of the fraction of the beams with f ∼ 0.05 and a centered energy of ∼10 keV.« less

  6. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries.

    PubMed

    Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A

    2017-05-24

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.

  7. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries

    PubMed Central

    2017-01-01

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201

  8. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Qiang, You; Jiang, Weilin

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite,more » so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.« less

  9. Hierarchical inorganic-organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood

    NASA Astrophysics Data System (ADS)

    Khairy, Mohamed; El-Safty, Sherif A.; Shenashen, Mohamed. A.; Elshehy, Emad A.

    2013-08-01

    The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled

  10. Identification of a Unique Fe-S Cluster Binding Site in a Glycyl-Radical Type Microcompartment Shell Protein

    PubMed Central

    Thompson, Michael C.; Wheatley, Nicole M.; Jorda, Julien; Sawaya, Michael R.; Gidaniyan, Soheil D.; Ahmed, Hoda; Yang, Zhongyu; McCarty, Krystal N.; Whitelegge, Julian P.; Yeates, Todd O.

    2014-01-01

    Recently, progress has been made toward understanding the functional diversity of bacterial microcompartment (MCP) systems, which serve as protein-based metabolic organelles in diverse microbes. New types of MCPs have been identified, including the glycyl-radical propanediol (Grp) MCP. Within these elaborate protein complexes, BMC-domain shell proteins assemble to form a polyhedral barrier that encapsulates the enzymatic contents of the MCP. Interestingly, the Grp MCP contains a number of shell proteins with unusual sequence features. GrpU is one such shell protein, whose amino acid sequence is particularly divergent from other members of the BMC-domain superfamily of proteins that effectively defines all MCPs. Expression, purification, and subsequent characterization of the protein showed, unexpectedly, that it binds an iron-sulfur cluster. We determined X-ray crystal structures of two GrpU orthologs, providing the first structural insight into the homohexameric BMC-domain shell proteins of the Grp system. The X-ray structures of GrpU, both obtained in the apo form, combined with spectroscopic analyses and computational modeling, show that the metal cluster resides in the central pore of the BMC shell protein at a position of broken 6-fold symmetry. The result is a structurally polymorphic iron-sulfur cluster binding site that appears to be unique among metalloproteins studied to date. PMID:25102080

  11. Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure

    DOE PAGES

    Felice, H.; Rochepault, E.; Hafalia, R.; ...

    2014-12-05

    The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in themore » design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.« less

  12. Modeling of O+ ions in the plasmasphere

    NASA Astrophysics Data System (ADS)

    Guiter, S. M.; Moore, T. E.; Khazanov, G. V.

    1995-11-01

    Heavy ion (O+, O++, and N+) density enhancements in the outer plasmasphere have been observed using the retarding ion mass spectrometer instrument on the DE 1 satellite. These are seen at L shells from 2 to 5, with most occurrences in the L=3 to 4 region; the maximum L shell at which these enhancements occur varies inversely with Dst. It is also known that enhancements of O+ and O++ overlie ionospheric electron temperature peaks. It is thought that these enhancements are related to heating of plasmaspheric particles through interactions with ring current ions. This was investigated using a time-dependent one-stream hydrodynamic model for plasmaspheric flows, in which the model flux tube is connected to the ionosphere. The model simultaneously solves the coupled continuity, momentum, and energy equations of a two-ion (H+ and O+) quasi-neutral, currentless plasma. This model is fully interhemispheric and diffusive equilibrium is not assumed; it includes a corotating tilted dipole magnetic field and neutral winds. First, diurnally reproducible results were found assuming only photoelectron heating of thermal electrons. For this case the modeled equatorial O+ density was below 1 cm-3 throughout the day. The O+ results also show significant diurnal variability, with standing shocks developing when production stops and O+ flows downward under the influence of gravity. Numerical tests were done with different levels of electron heating in the plasmasphere; these show that the equatorial O+ density is highly dependent on the assumed electron heating rates. Over the range of integrated plasmaspheric electron heating (along the flux tube) from 8.7 to 280×109 eV/s, the equatorial O+ density goes like the heating raised to the power 2.3.

  13. Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan

    2015-06-01

    Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.

  14. Pitch angle distributions of geomagnetically trapped MeV helium ions during quiet times

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Spjeldvik, W. N.

    1982-01-01

    It is noted that during geomagnetically quiet conditions, energetic radiation belt helium ion fluxes at MeV energies have been found to exhibit characteristic radial profiles and large pitch angle anisotropies. Compiling data from many experiments, a systematic dependence of this anisotropy with helium ion energy is deduced. Provided a certain approximation holds for the observed pitch angle distributions, an empirical relation is deduced involving the helium ion energy. The range of the total ion energy here is 0.59-9 MeV (148-2250 keV per nucleon). These values are obtained for L shells in the range where L is approximately 2 to 5. The results are compared with theoretical expectations, and a qualitative explanation for the observed trend is suggested.

  15. The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case

    NASA Astrophysics Data System (ADS)

    Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.

    2017-01-01

    Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.

  16. Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase.

    PubMed

    Wang, Feng; Wang, Wei; Qu, Jifa; Zhong, Yijun; Tade, Mose O; Shao, Zongping

    2014-10-21

    In this work, a Ni+BaZr(0.4)Ce(0.4)Y(0.2)O(3-δ) (Ni+BZCY) anode with high water storage capability is used to increase the sulfur tolerance of nickel electrocatalysts for solid oxide fuel cells (SOFCs) with an oxygen-ion conducting Sm(0.2)Ce(0.8)O(1.9) (SDC) electrolyte. Attractive power outputs are still obtained for the cell with a Ni+BZCY anode that operates on hydrogen fuels containing 100-1000 ppm of H2S, while for a similar cell with a Ni+SDC anode, it displays a much reduced performance by introducing only 100 ppm of H2S into hydrogen. Operating on a hydrogen fuel containing 100 ppm of H2S at 600 °C and a fixed current density of 200 mA cm(-2), a stable power output of 148 mW cm(-2) is well maintained for a cell with a Ni+BZCY anode within a test period of 700 min, while it was decreased from an initial value of 137 mW cm(-2) to only 81 mW cm(-2) for a similar cell with a Ni+SDC anode after a test period of only 150 min. After the stability test, a loss of the Ni percolating network and reaction between nickel and sulfur appeared over the Ni+SDC anode, but it is not observed for the Ni+BZCY anode. This result highly promises the use of water-storing BZCY as an anode component to improve sulfur tolerance for SOFCs with an oxygen-ion conducting SDC electrolyte.

  17. Target Z dependence of Xe L x-ray emission in heavy ion-atom collision near the Bohr velocity: influence of level matching

    NASA Astrophysics Data System (ADS)

    Ren, Jieru; Zhao, Yongtao; Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Wang, Xing; Xu, Ge; Wang, Yuyu; Liu, Shidong; Yu, Yang; Li, Yongfeng; Zhang, Xiaoan; Xu, Zhongfeng; Xiao, Guoqing

    2013-09-01

    X-ray yields for the projectile L-shell have been measured for collisions between Xe20+ and thick solid targets throughout the periodic table with incident energies near the Bohr velocity. The yields show a very pronounced cyclic dependence on the target atomic number. This result indicates that Xe L x-ray emission intensity is greatly enhanced either in near-symmetric collisions or if the binding energy of the Xe M-shell matches the L- or N-shell binding energy of the target.

  18. Polyelectrolyte Binder for Sulfur Cathode To Improve the Cycle Performance and Discharge Property of Lithium-Sulfur Battery.

    PubMed

    Yang, Zhixiong; Li, Rengui; Deng, ZhengHua

    2018-04-25

    To achieve the higher capacity and the better cycle performance of the lithium-sulfur (L-S) batteries, a copolymer electrolyte prepared via emulsifier-free emulsion polymerization was used as the binder for the sulfur cathode in this study. This polyelectrolyte binder has uniform dispersion and good Li + conductivity in the cathode that can improve the kinetics of sulfur electrochemical reactions. As a result, the capacity and cycle performance of the battery are improved evidently when the cell is discharged to 1.8 V. Moreover, when the cell is discharged to 1.5 V, the difficult deposition of Li 2 S 2 will take place easily at 1.75 V, and the difficult transformation from solid Li 2 S 2 to solid Li 2 S will progress smoothly and completely during the voltage range of 1.55-1.75 V, too. The capacity of this L-S battery discharged to 1.5 V is as much as 1700 mAh g -1 , which is very close to the theoretical value of sulfur cathode. The knowledge acquired in this study is valuable not only for the design of an efficient new polyelectrolyte binder for sulfur cathode but also the discovery that the discharge degree is the main fact that limits the capacity to reach its theoretical value.

  19. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    NASA Astrophysics Data System (ADS)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  20. On the viability of exploiting L-shell fluorescence for X-ray polarimetry

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Sutherland, P. G.; Elsner, R. F.; Ramsey, B. D.

    1985-01-01

    It has been suggested that one may build an X-ray polarimeter by exploiting the polarization dependence of the angular distribution of L-shell fluorescence photons. In this paper the sensitivity of this approach to polarimetry is examined theoretically. The calculations are applied to several detection schemes using imaging proportional counters that would have direct application in X-ray astronomy. It is found, however, that the sensitivity of this method for measuring X-ray polarization is too low to be of use for other than laboratory applications.

  1. Radiative one- and two-electron transitions into the empty K shell of He-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadrekar, Riddhi; Natarajan, L.

    2011-12-15

    The branching ratios between the single and double electron radiative transitions to empty K shell in He-like ions with 2s2p configuration are evaluated for 15 ions with 4{<=}Z{<=}26 using fully relativistic multiconfiguration Dirac-Fock wavefunctions in the active space approximation. The effects of configuration interaction and Breit contributions on the transition parameters have been analyzed in detail. Though the influence of Breit interaction on the electric dipole allowed one-electron radiative transitions is negligible, it substantially changes the spin-forbidden rates and the two-electron one-photon transition probabilities. Also, while the single electron transition rates are gauge independent, the correlated double-electron probabilities are foundmore » to be gauge sensitive. The probable uncertainties in the computed transition rates have been evaluated by considering the line strengths and the differences between the calculated and experimental transition energies as accuracy indicators. The present results are compared with other available experimental and theoretical data.« less

  2. Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for Modeling X-Ray Photoionized Cosmic Plasmas

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.

    2002-01-01

    Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.

  3. Dielectronic Satellite Spectra of Na-like Mo Ions Benchmarked by LLNL EBIT with Application to HED Plasmas

    NASA Astrophysics Data System (ADS)

    Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Petkov, E. E.; Shlyaptseva, V. V.; Childers, R.; Shrestha, I.; Beiersdorfer, P.; Hell, H.; Brown, G. V.

    2017-10-01

    Dielectronic recombination (DR) is an important process for astrophysical and laboratory high energy density (HED) plasmas and the associated satellite lines are frequently used for plasma diagnostics. In particular, K-shell DR satellite lines were studied in detail in low-Z plasmas. L-shell Na-like spectral features from Mo X-pinches considered here represent the blend of DR and inner shell satellites and motivated the detailed study of DR at the EBIT-1 electron beam ion trap at LLNL. In these experiments the beam energy was swept between 0.6 - 2.4 keV to produce resonances at certain electron beam energies. The advantages of using an electron beam ion trap to better understand atomic processes with highly ionized ions in HED Mo plasma are highlighted. This work was supported by NNSA under DOE Grant DE-NA0002954. Work at LLNL was performed under the auspices of the U.S. DOE under Contract No. DE-AC52-07NA27344.

  4. Metal-organic framework-based separator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen

    2016-07-01

    Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

  5. Metal ion reactive thin films using spray electrostatic LbL assembly.

    PubMed

    Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T

    2008-11-20

    By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.

  6. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  7. Atomistic Structure and Dynamics of the Solvation Shell Formed by Organic Carbonates around Lithium Ions via Infrared Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kuroda, Daniel; Fufler, Kristen

    Lithium-ion batteries have become ubiquitous to the portable energy storage industry, but efficiency issues still remain. Currently, most technological and scientific efforts are focused on the electrodes with little attention on the electrolyte. For example, simple fundamental questions about the lithium ion solvation shell composition in commercially used electrolytes have not been answered. Using a combination of linear and non-linear IR spectroscopies and theoretical calculations, we have carried out a thorough investigation of the solvation structure and dynamics of the lithium ion in various linear and cyclic carbonates at common battery electrolyte concentrations. Our studies show that carbonates coordinate the lithium ion tetrahedrally. They also reveal that linear and cyclic carbonates have contrasting dynamics in which cyclic carbonates present the most ordered structure. Finally, our experiments demonstrate that simple structural modifications in the linear carbonates impact significantly the microscopic interactions of the system. The stark differences in the solvation structure and dynamics among different carbonates reveal previously unknown details about the molecular level picture of these systems.

  8. Lime sulfur toxicity to broad mite, to its host plants and to natural enemies.

    PubMed

    Venzon, Madelaine; Oliveira, Rafael M; Perez, André L; Rodríguez-Cruz, Fredy A; Martins Filho, Sebastião

    2013-06-01

    An acaricidal effect of lime sulfur has not been demonstrated for Polyphagotarsonemus latus. However, lime sulfur can cause toxicity to natural enemies and to host plants. In this study, the toxicity of different concentrations of lime sulfur to P. latus, to the predatory mite Amblyseius herbicolus and to the predatory insect Chrysoperla externa was evaluated. Additionally, the phytotoxicity of lime sulfur to two P. latus hosts, chili pepper and physic nut plants, was determined. Lime sulfur at a concentration of 9.5 mL L(-1) restrained P. latus population growth. However, this concentration was deleterious to natural enemies. The predatory mite A. herbicolus showed a negative value of instantaneous growth rate, and only 50% of the tested larvae of C. externa reached adulthood when exposed to 10 mL L(-1) . Physic nut had severe injury symptoms when sprayed with all tested lime sulfur concentrations. For chili pepper plants, no phytoxicity was observed at any tested concentration. Lime sulfur might be used for P. latus control on chili pepper but not on physic nut owing to phytotoxicity. Care should be taken when using lime sulfur in view of negative effects on natural enemies. Selective lime sulfur concentration integrated with other management tactics may provide an effective and sustainable P. latus control on chili pepper. © 2012 Society of Chemical Industry.

  9. Kinetic studies of the stability of Pt for No oxidation: effect of sulfur and long-term aging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pazmino, J. H.; Miller, J. T.; Mulla, S. S.

    2011-01-01

    The stability of Pt catalysts for NO oxidation was analyzed by observing the effect of pre-adsorbed sulfur on the reaction kinetics using a series of Pt/SBA-15 catalysts with varying Pt particle sizes (ca 2-9 nm). Our results indicate that sulfur addition did not influence catalyst deactivation of any of the Pt catalysts, resulting in unchanged turnover rates (TOR) and reaction kinetics. The presence of sulfur on Pt was confirmed by X-ray absorption fine structure spectroscopy (EXAFS) under reducing environments. However, exposure of the catalyst to NO oxidation conditions displaced sulfur from the first coordination shell of Pt, yielding Pt-O bondsmore » instead. Re-reduction fully recovered the Pt-S backscattering, implying that sulfur remained near the Pt under oxidizing conditions. X-ray photoelectron spectroscopy (XPS) and chemisorption measurements confirmed the presence of sulfur near platinum. The invariance of the NO oxidation reaction to sulfur poisoning is explained by sulfur displacement to interfacial sites and/or sulfur binding on kinetically irrelevant sites. Formation of Pt oxides remains as the main source of catalyst deactivation as observed by kinetic and X-ray absorption spectroscopy (XAS) measurements.« less

  10. Soft template synthesis of yolk/silica shell particles.

    PubMed

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  11. Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber.

    PubMed

    Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan

    2013-08-01

    The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. [The sources of inorganic sulfur in the process of cluster protein Fnr[4Fe-4S]2+ reconstruction in Escherichia coli cells cultivated with NO-donating agents].

    PubMed

    Vasil'eva, S V; Strel'tsova, D A; Vlaskina, A V; Mikoian, V D; Vanin, A F

    2012-01-01

    Dinitrosyl iron complexes (DNICs) with thiol ligands--binuclear and mononuclear--inhibited aidB gene expression in E. coli cells. This process is due to the nitrosylation of the active center in iron-sulfur protein Fnr [4Fe-4S]2+ by low-molecular DNICs. The next step is transformation of the above DNICs into the DNICs with the thiol groups in the apo-form of Fnr protein. These nitrosylated proteins are characterized by the EPR signal with g perpendicular = 2.04 and g parallel 1 = 2,014. An addition of sulfur containing L-Cys or N-A-L-Cys as well as Na2S to the cells lead to the increasing in the aidB gene expression simultaneously with an appearance of the EPR signal with g perpendicular = 2.04 and g parallel = 2.02 as the characteristics of the DNICs with persulfide (R-S-S-) ligands. We suppose that the recovery of the aidB gene activity was due to the accumulation of inorganic sulfur in the cells and reconstruction of the active center in Fnr[4Fe-4S]2+. It appears that the above process is the function of L-cysteine-desulfurase protein which repaired the active center of Fnr[4Fe-4S]2+ protein using the sulfur from L-Cys or N-A-L-Cys after its deacetylation. On the other side the ions of inorganic sulfur being reacted with SH-groups led to the transformation of DNIC with thiol ligands into the persulfides. Na2S was the most potent activator of the aidB gene expression in our experiments.

  13. M-shell electron capture and direct ionization of gold by 25-MeV carbon and 32-MeV oxygen ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.

    1984-01-01

    M-shell x-ray production cross sections have been measured for thin solid targets of Au for 25 MeV /sup 12/C/sup q+/ (q = 4, 5, 6) and for 32 MeV /sup 16/O/sup q+/ (q = 5, 7, 8). The microscopic cross sections were determined from measurements made with targets ranging in thickness from 0.5 to 100 ..mu..g/cm/sup 2/. For projectiles with one or two K-shell vacancies, the M-shell x-ray production cross sections are found to be enhanced over those by projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) and electron capture (EC) to the L,more » M, N ... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories i.e. PWBA for DI and OBK of Nikolaev for EC and the ECPSSR approach that accounts for energy loss, Coulomb deflection and relativistic effects in the perturbed stationary state theory. 25 references, 3 figures, 1 table.« less

  14. Loss of sulfur dioxide and changes in some chemical properties of Malatya apricots (Prunus armeniaca L.) during sulfuring and drying.

    PubMed

    Türkyılmaz, Meltem; Özkan, Mehmet; Güzel, Nihal

    2014-09-01

    This study was conducted to determine the differences in some analytical properties of four apricot cultivars and to determine the changes in these analytical properties during sulfuring and sun-drying. There were significant differences in the contents of polyphenols, carotenoids and organic acids (OA) as well as antioxidant activities (AOAs) of the cultivars (P < 0.05). After sulfuring and drying, considerable reductions were detected in the contents of total polyphenols (TPCs, 11-26%), OAs (4-32%) and β-carotene (6-21%), and AOAs (2-21%) of the samples. Sun-drying resulted in 71-83% decreases in sulfur dioxide (SO2 ) contents of sulfured-dried apricots (SDAs) in comparison with apricots immediately after sulfuring. As the TPCs increased, the SO2 absorption by the samples also increased. In contrast, the OA contents had no effect on SO2 absorption, but an increase in OA content resulted in an increase in the browning values of the SDAs. As expected, increases in contents of ferulic acid (r = 0.932), chlorogenic acid (r = 0.850), epicatechin (r = 0.804) and quercetin (r = 0.750) led to an increase in browning values of the SDAs. There were significant effects of cultivar and processing on the physico-chemical properties investigated in the study, and with the absorption of SO2 and the formation of a brown colour in the samples. © 2014 Society of Chemical Industry.

  15. Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells.

    PubMed

    Yetilmezsoy, Kaan; Demirel, Sevgi

    2008-05-30

    A three-layer artificial neural network (ANN) model was developed to predict the efficiency of Pb(II) ions removal from aqueous solution by Antep pistachio (Pistacia Vera L.) shells based on 66 experimental sets obtained in a laboratory batch study. The effect of operational parameters such as adsorbent dosage, initial concentration of Pb(II) ions, initial pH, operating temperature, and contact time were studied to optimise the conditions for maximum removal of Pb(II) ions. On the basis of batch test results, optimal operating conditions were determined to be an initial pH of 5.5, an adsorbent dosage of 1.0 g, an initial Pb(II) concentration of 30 ppm, and a temperature of 30 degrees C. Experimental results showed that a contact time of 45 min was generally sufficient to achieve equilibrium. After backpropagation (BP) training combined with principal component analysis (PCA), the ANN model was able to predict adsorption efficiency with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and a linear transfer function (purelin) at output layer. The Levenberg-Marquardt algorithm (LMA) was found as the best of 11 BP algorithms with a minimum mean squared error (MSE) of 0.000227875. The linear regression between the network outputs and the corresponding targets were proven to be satisfactory with a correlation coefficient of about 0.936 for five model variables used in this study.

  16. Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries

    DOE PAGES

    Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun; ...

    2017-04-27

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less

  17. Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less

  18. A Lithium-Ion Battery using a 3 D-Array Nanostructured Graphene-Sulfur Cathode and a Silicon Oxide-Based Anode.

    PubMed

    Benítez, Almudena; Di Lecce, Daniele; Elia, Giuseppe Antonio; Caballero, Álvaro; Morales, Julián; Hassoun, Jusef

    2018-05-09

    An efficient lithium-ion battery was assembled by using an enhanced sulfur-based cathode and a silicon oxide-based anode and proposed as an innovative energy-storage system. The sulfur-carbon composite, which exploits graphene carbon with a 3 D array (3DG-S), was synthesized by a reduction step through a microwave-assisted solvothermal technique and was fully characterized in terms of structure and morphology, thereby revealing suitable features for lithium-cell application. Electrochemical tests of the 3DG-S electrode in a lithium half-cell indicated a capacity ranging from 1200 to 1000 mAh g -1 at currents of C/10 and 1 C, respectively. Remarkably, the Li-alloyed anode, namely, Li y SiO x -C prepared by the sol-gel method and lithiated by surface treatment, showed suitable performance in a lithium half-cell by using an electrolyte designed for lithium-sulfur batteries. The Li y SiO x -C/3DG-S battery was found to exhibit very promising properties with a capacity of approximately 460 mAh g S -1 delivered at an average voltage of approximately 1.5 V over 200 cycles, suggesting that the characterized materials would be suitable candidates for low-cost and high-energy-storage applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  20. Crystallographic snapshots of sulfur insertion by lipoyl synthase

    PubMed Central

    McLaughlin, Martin I.; Lanz, Nicholas D.; Goldman, Peter J.; Lee, Kyung-Hoon; Booker, Squire J.; Drennan, Catherine L.

    2016-01-01

    Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms at the unactivated C6 and C8 positions of a protein-bound octanoyl chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet) radical chemistry; the remainder of the reaction mechanism, especially the source of the sulfur, has been less clear. One controversial proposal involves the removal of sulfur from a second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in destruction of the cluster during each round of catalysis. Here, we present two high-resolution crystal structures of LipA from Mycobacterium tuberculosis: one in its resting state and one at an intermediate state during turnover. In the resting state, an auxiliary [4Fe-4S] cluster has an unusual serine ligation to one of the irons. After reaction with an octanoyllysine-containing 8-mer peptide substrate and 1 eq AdoMet, conditions that allow for the first sulfur insertion but not the second insertion, the serine ligand dissociates from the cluster, the iron ion is lost, and a sulfur atom that is still part of the cluster becomes covalently attached to C6 of the octanoyl substrate. This intermediate structure provides a clear picture of iron–sulfur cluster destruction in action, supporting the role of the auxiliary cluster as the sulfur source in the LipA reaction and describing a radical strategy for sulfur incorporation into completely unactivated substrates. PMID:27506792

  1. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  2. A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Shen, Tong; Guo, Ting; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2018-04-01

    Si/C composites are currently the most commercially viable next-generation lithium-ion battery anode materials due to their high specific capacity. However, there are still many obstacles need to be overcome such as short cycle life and poor conductivity. In this work, we design and successfully synthesis an excellent durable double-conductive core-shell structure p-Si-Ag/C composites. Interestingly, this well-designed structure offers remarkable conductivity (both internal and external) due to the introduction of silver particles and carbon layer. The carbon layer acts as a protective layer to maintain the integrity of the structure as well as avoids the direct contact of silicon with electrolyte. As a result, the durable double-conductive core-shell structure p-Si-Ag/C composites exhibit outstanding cycling stability of roughly 1000 mAh g-1 after 200 cycles at a current density of 0.2 A g-1 and retain 765 mAh g-1 even at a high current density of 2 A g-1, indicating a great improvement in electrochemical performance compared with traditional silicon electrode. Our research results provide a novel pathway for production of high-performance Si-based anodes to extending the cycle life and specific capacity of commercial lithium ion batteries.

  3. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.

    PubMed

    Soomro, Razium A; Nafady, Ayman; Sirajuddin; Memon, Najma; Sherazi, Tufail H; Kalwar, Nazar H

    2014-12-01

    This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  5. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes.

    PubMed

    Poser, Alexander; Lohmayer, Regina; Vogt, Carsten; Knoeller, Kay; Planer-Friedrich, Britta; Sorokin, Dimitry; Richnow, Hans-H; Finster, Kai

    2013-11-01

    Microbial disproportionation of elemental sulfur to sulfide and sulfate is a poorly characterized part of the anoxic sulfur cycle. So far, only a few bacterial strains have been described that can couple this reaction to cell growth. Continuous removal of the produced sulfide, for instance by oxidation and/or precipitation with metal ions such as iron, is essential to keep the reaction exergonic. Hitherto, the process has exclusively been reported for neutrophilic anaerobic bacteria. Here, we report for the first time disproportionation of elemental sulfur by three pure cultures of haloalkaliphilic bacteria isolated from soda lakes: the Deltaproteobacteria Desulfurivibrio alkaliphilus and Desulfurivibrio sp. AMeS2, and a member of the Clostridia, Dethiobacter alkaliphilus. All cultures grew in saline media at pH 10 by sulfur disproportionation in the absence of metals as sulfide scavengers. Our data indicate that polysulfides are the dominant sulfur species under highly alkaline conditions and that they might be disproportionated. Furthermore, we report the first organism (Dt. alkaliphilus) from the class Clostridia that is able to grow by sulfur disproportionation.

  6. Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Zhao, Naiqin; Guo, Lichao; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2015-07-01

    Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy

  7. Distribution and Energization of the Heavy Ions in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tenishev, V.; Gombosi, T. I.; Combi, M. R.; Borovikov, D.; Regoli, L.

    2017-12-01

    Observations by Pioneer 11 and Voyager collected during their flybys of Saturn and Cassini observations during Saturn Orbit Insertion (SOI) indicate that Saturn's magnetosphere contains a significant population of energetic heavy ions, which originate in neutral tori of the moons orbiting in Saturn's magnetosphere and act as agents for the surface erosion and chemical alternation via sputtering, implantation, and radiolysis of objects embedded in Saturn's magnetosphere. The composition of these energetic heavy ions is dominated by the water group ions with a small nitrogen contribution as have been shown by observations performed with MIMI onboard Cassini, which indicate that Saturn's magnetosphere possesses a ring current located approximately between 8 and 15 RS, primarily composed of O+ ions that originate from Enceladus' neutral torus. Similarly, the energetic nitrogen ions are produced via ionization of the volatiles ejected by Titan and then accelerated in Saturn's magnetosphere. Is it suggested that the primary mechanism of energization of the heavy ions is their inward diffusion conserving the first and second adiabatic invariants. Such, nitrogen ions that have been picked up at the orbit of Titan and diffuse radially inward, could attain energies of 100 keV at Dione's Mcllwain L shell and 400 keV at Enceladus' L shell. At the same time radial transport of energetic ions will result in various loss processes such as satellite sweeping, collisions with dust and neutral clouds and precipitation into Saturn's atmosphere via wave-particle interactions. This work is focused on characterizing the global distribution and acceleration of the energetic water group and nitrogen ions produced via ionizing of the volatiles ejected by Enceladus and Titan, respectively. In our approach we will consider acceleration of the newly created pickup ions affected by the magnetic field derived from the Khurana et al. (2006) model and the convection electric field. Here we will

  8. Biostable L-DNAzyme for Sensing of Metal Ions in Biological Systems

    PubMed Central

    2015-01-01

    DNAzymes, an important type of metal ion-dependent functional nucleic acid, are widely applied in bioanalysis and biomedicine. However, the use of DNAzymes in practical applications has been impeded by the intrinsic drawbacks of natural nucleic acids, such as interferences from nuclease digestion and protein binding, as well as undesired intermolecular interactions with other nucleic acids. On the basis of reciprocal chiral substrate specificity, the enantiomer of D-DNAzyme, L-DNAzyme, could initiate catalytic cleavage activity with the same achiral metal ion as a cofactor. Meanwhile, by using the advantage of nonbiological L-DNAzyme, which is not subject to the interferences of biological matrixes, as recognition units, a facile and stable L-DNAzyme sensor was proposed for sensing metal ions in complex biological samples and live cells. PMID:26691677

  9. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries

    DOE PAGES

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; ...

    2016-03-15

    Although lithium–sulfur (Li–S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li–S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transportmore » and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g -1 in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g -1 at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g -1 at 8 C for 30 cycles, which is among the best reported rate capabilities.« less

  10. Increased shell entropy as an explanation for observed decreased shell areal densities in OMEGA implosions

    NASA Astrophysics Data System (ADS)

    Hoffman, Nelson; Herrmann, Hans; Kim, Yongho

    2014-10-01

    A reduced ion-kinetic (RIK) model used in hydrodynamic simulations has had some success in explaining time- and space-averaged observables characterizing the fusion fuel in hot low-density ICF capsule implosions driven by 1-ns 60-beam laser pulses at OMEGA. But observables characterizing the capsule shell, e.g., the areal density of 12C in a plastic shell, have proved harder to explain. Recently we have found that assuming the shell has higher entropy than expected in a 1D laser-driven RIK simulation allows an explanation of the observed values of 12C areal density, and its dependence on initial shell thickness in a set of DT-filled plastic capsules. If, for example, a 15- μm CH shell implodes on an adiabat two to three times higher than predicted in a typical unmodified RIK simulation, the calculated burn-averaged shell areal density decreases from ~80 mg/cm2 in the unmodified simulation to the observed value of ~25 mg/cm2. We discuss possible mechanisms that could lead to increased entropy in such implosions. Research supported by U.S. Department of Energy under Contract DE-AC52-06NA25396.

  11. Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions.

    PubMed

    Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan

    2016-05-23

    Lithium-sulfur batteries are among the most promising electrochemical energy storage devices of the near future. Especially the low price and abundant availability of sulfur as the cathode material and the high theoretical capacity in comparison to state-of-the art lithium-ion technologies are attractive features. Despite significant research achievements that have been made over the last years, fundamental (electro-) chemical questions still remain unanswered. This review addresses ten crucial questions associated with lithium-sulfur batteries and critically evaluates current research with respect to them. The sulfur-carbon composite cathode is a particular focus, but its complex interplay with other hardware components in the cell, such as the electrolyte and the anode, necessitates a critical discussion of other cell components. Modern in situ characterisation methods are ideally suited to illuminate the role of each component. This article does not pretend to summarise all recently published data, but instead is a critical overview over lithium-sulfur batteries based on recent research findings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A review on delayed toxic effects of sulfur mustard in Iranian veterans

    PubMed Central

    2012-01-01

    Iranian soldiers were attacked with chemical bombs, rockets and artillery shells 387 times during the 8-years war by Iraq (1980–1988). More than 1,000 tons of sulfur mustard gas was used in the battlefields by the Iraqis against Iranian people. A high rate of morbidities occurred as the result of these attacks. This study aimed to evaluate the delayed toxic effects of sulfur mustard gas on Iranian victims. During a systematic search, a total of 193 (109 more relevant to the main aim) articles on sulfur mustard gas were reviewed using known international and national databases. No special evaluation was conducted on the quality of the articles and their publication in accredited journals was considered sufficient. High rate of morbidities as the result of chemical attacks by sulfur mustard among Iranian people occurred. Iranian researchers found a numerous late complications among the victims which we be listed as wide range of respiratory, ocular, dermatological, psychological, hematological, immunological, gastrointestinal and endocrine complications, all influenced the quality of life of exposed victims. The mortality rate due to this agent was 3%. Although, mortality rate induced by sulfur mustard among Iranian people was low, variety and chronicity of toxic effects and complications of this chemical agent were dramatic. PMID:23351810

  13. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism.

    PubMed

    Li, Xian-Qing; Liang, Hai-Qing; Cao, Zhong; Xiao, Qing; Xiao, Zhong-Liang; Song, Liu-Bin; Chen, Dan; Wang, Fu-Liang

    2017-03-01

    A simple and rapid mercury ion selective electrode based on 1-undecanethiol (1-UDT) assembled Au substrate (Au/1-UDT) has been well constructed. 1-UDT was for the purpose of generating self-assembled monolayer on gold surface to recognize Hg 2+ in aqueous solution, which had a working concentration range of 1.0×10 -8 -1.0×10 -4 molL -1 , with a Nernst response slope of 28.83±0.4mV/-pC, a detection limit of 4.5×10 -9 molL -1 , and a good selectivity over the other tested cations. Also, the Au/1-UDT possessed good reproducibility, stability, and short response time. The recovery obtained for the determination of mercury ion in practical tremella samples was in the range of 99.8-103.4%. Combined electrochemical analysis and X-ray photoelectron spectroscopy (XPS) with quantum chemical computation, the probable recognition mechanism of the electrode for selective recognition of Hg 2+ has been investigated. The covalent bond formed between mercury and sulfur is stronger than the one between gold and sulfur and thus prevents the adsorption of 1-UDT molecules on the gold surface. The quantum chemical computation with density functional theory further demonstrates that the strong interaction between the mercury atom and the sulfur atom on the gold surface leads to the gold sulfur bond ruptured and the gold mercury metallophilic interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sulfuric acid on Europa and the radiolytic sulfur cycle.

    PubMed

    Carlson, R W; Johnson, R E; Anderson, M S

    1999-10-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  15. Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.

    2014-12-01

    Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the

  16. Hierarchical MoO3/SnS2 core-shell nanowires with enhanced electrochemical performance for lithium-ion batteries.

    PubMed

    Hu, Chenli; Shu, Haibo; Shen, Zihong; Zhao, Tianfeng; Liang, Pei; Chen, Xiaoshuang

    2018-06-27

    Two-dimensional (2D) tin disulfide (SnS2) is a promising anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity. The main challenges associated with the SnS2 electrodes are the poor cycling stability and low rate capability due to structural degradation in the discharge/charge process. Here, a facile two-step synthesis method is developed to fabricate hierarchical MoO3/SnS2 core-shell nanowires, where ultrathin SnS2 nanosheets are vertically anchored on MoO3 nanobelts to induce a heterointerface. Benefiting from the unique structural and compositional characteristics, the hierarchical MoO3/SnS2 core-shell nanowires exhibit excellent electrochemical performance and deliver a high reversible capacity of 504 mA h g-1 after 100 stable cycles at a current density of 100 mA g-1, which is far superior to the MoO3 and SnS2 electrodes. An analysis of lithiation dynamics based on ab initio molecular dynamics simulations demonstrates that the formation of a hierarchical MoO3/SnS2 core-shell heterostructure can effectively suppress the rapid dissociation of shell-layer SnS2 nanosheets via the interfacial coupling effect and the central MoO3 backbone can trap and support the polysulfide in the discharge/charge process. The results are responsible for the high storage capacity and rate capability of MoO3/SnS2 electrode materials. This work provides a novel design strategy for constructing high-performance electrodes for LIBs.

  17. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    PubMed Central

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among

  18. Three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei

    2015-07-01

    In this study, three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth are synthesized by a combination of the hydrothermal method for ZnO nanorods and a subsequent SnO2 and TiO2 thin film coating with atomic layer deposition (ALD). The as-prepared SnO2@TiO2 double-shell nanotubes are further tested as a flexible anode for Li ion batteries. The SnO2@TiO2 double-shell nanotubes/carbon cloth electrode exhibited a high initial discharge capacity (e.g. 778.8 mA h g-1 at a high current density of 780 mA g-1) and good cycling performance, which could be attributed to the 3D double-layer nanotube structure. The interior space of the stable TiO2 hollow tube can accommodate the large internal stress caused by volume expansion of SnO2 and protect SnO2 from pulverization and exfoliation.

  19. Sulfur-containing bimetallic metal organic frameworks with multi-fold helix as anode of lithium ion batteries.

    PubMed

    Li, Meng-Ting; Kong, Ning; Lan, Ya-Qian; Su, Zhong-Min

    2018-04-03

    We utilise the dual synthesis strategy in terms of bimetallic inorganic building blocks and sulfur containing organic ligand. A novel sulfur-containing bimetallic metal organic framework (Fe2Co-TPDC) with two types of 4-fold meso-helical structures has been successfully synthesized. Benefitting from the uniform distribution of active sulfur sites and the structural stability of the mixed-metallic method, Fe2Co-TPDC can efficiently prevent a shuttle behavior of sulfur and endow a commendable specific capacity. As far as we know, this is the first time that a sulfur-containing bimetallic crystalline MOF with helical structure and prominent specific capacity and remarkable cycling stability has served as an electrode material for LIBs.

  20. High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell

    DOE PAGES

    Oh, Pilgun; Oh, Seung -Min; Li, Wangda; ...

    2016-05-30

    The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi 0.7Co 0.15Mn 0.15O 2 core and a Li-rich Li 1.2-xNi 0.2Mn 0.6O 2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With amore » unique chemical treatment for the activation of the Li 2MnO 3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g -1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g -1).« less

  1. Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium-Sulfur Batteries.

    PubMed

    Zhao, Qian; Zhu, Qizhen; Miao, Jiawei; Guan, Zhaoruxin; Liu, Huan; Chen, Renjie; An, Yabin; Wu, Feng; Xu, Bin

    2018-04-04

    With the high energy density of 2600 W h kg -1 , lithium-sulfur (Li-S) batteries have been considered as one of the most promising energy storage systems. However, the serious capacity fading resulting from the shuttle effect hinders its commercial application. Encapsulating small S 2-4 molecules into the pores of ultramicroporous carbon (UMC) can eliminate the dissolved polysulfides, thus completely inhibiting the shuttle effect. Nevertheless, the sulfur loading of S 2-4 /UMC is usually not higher than 1 mg cm -2 because of the limited pore volume of UMC, which is a great challenge for small sulfur cathode. In this paper, by applying ultralight 3D melamine formaldehyde-based carbon foam (MFC) as a current collector, we dramatically enhanced the areal sulfur loading of the S 2-4 electrode with good electrochemical performances. The 3D skeleton of MFC can hold massive S 2-4 /UMC composites and act as a conductive network for the fast transfer of electrons and Li + ions. Furthermore, it can serve as an electrolyte reservoir to make a sufficient contact between S 2-4 and electrolyte, enhancing the utilization of S 2-4 . With the MFC current collector, the S 2-4 electrode reaches an areal sulfur loading of 4.2 mg cm -2 and performs a capacity of 839.8 mA h g -1 as well as a capacity retention of 82.5% after 100 cycles. The 3D MFC current collector provides a new insight for the application of Li-S batteries with high areal small sulfur loading and excellent cycle stability.

  2. Loss of oxygen, silicon, sulfur, and potassium from the lunar regolith

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.; Mayeda, T. K.; Hurd, J. M.

    1974-01-01

    The processes of formation and maturation of lunar soils lead to enrichments in the heavy stable isotopes of oxygen, silicon, sulfur, and potassium. The isotopic enrichment implies substantial losses of these elements from the moon. Vaporization by micrometeorite impact and by ion sputtering have removed at least 1% of the mass of the regolith. The losses of sulfur and potassium amount to at least 20-30% of their original abundance in the regolith.

  3. Testing of Lithium-Sulfur Dioxide Cells for Waste Disposal Hazards.

    DTIC Science & Technology

    1980-10-01

    r AD-AO90 785 WAPORA INC CHEVY CHASE NO F/G 10/3 TESTING OF LITHIUM-SULFUR DIOXIDE CELLS FOR WASTE DISPOSAL HAZA-ETC(U) OCT 80 D B BOIES OAAK20-79-C... TESTING ION T HUM -SUFU DIXD-EL ORWSEDSOA Daved B. pBli else 69stributonsi nlmied.e OCTOBELE198 Fia PRepr for Peio OCT 23198008 STRYUIO AELETOISRSA...34 cell Toxic waste Sulfur dioxide vapor pressure Structural Integrity Test Ignitable waste Extraction procedure results Corrosive waste ftactive waste

  4. Absolute sulfur isotope amount ratios in two batches of high purity SO2 gas: sulfur isotope reference materials IRMM-2012 and IRMM-2013

    NASA Astrophysics Data System (ADS)

    Valkiers, S.; Ding, T.; Ruße, K.; de Bièvre, P.; Taylor, P. D. P.

    2005-04-01

    SI-traceable ("absolute") values have been obtained for sulfur isotope amount ratios n(33S)/n(32S) and n(34S)/n(32S), in two batches of high purity SO2 gas (IRMM-2012 and IRMM-2013). The SO2 gas was converted at IMR-Beijing to Ag2S, then fluorinated to SF6 gas both at IMR-Beijing and at IRMM-Geel. Yields of different conversion methods exceeded 99%. The sulfur amount-of-substance measurements were performed by gas mass spectrometry on SF5+ ions using "IRMM's amount comparator II". These isotope amount ratios were calibrated by means of gravimetrically prepared synthetic mixtures of highly enriched sulfur isotopes (32S, 33S and 34S) in Ag2S form. The ratio values in the SO2 Secondary Measurement Standard are traceable to the SI system. They can be used in the calibration of field sulfur isotope measurements thus making these metrologically traceable to the SI.

  5. Rational design of Fe3O4@C yolk-shell nanorods constituting a stable anode for high-performance Li/Na-ion batteries.

    PubMed

    Wang, Beibei; Zhang, Xing; Liu, Xiaojie; Wang, Gang; Wang, Hui; Bai, Jintao

    2018-05-24

    In the current research project, we have prepared a novel Fe 3 O 4 @mesoporous carbon nanorod (denoted as Fe 3 O 4 @C) anode with yolk-shell structure for Li/Na-ion batteries via one-pot and surfactant-free synthesis strategy. The yolk-shell structure consists of Fe 3 O 4 nanorod yolk completely protected by a well-conductive mesoporous carbon shell. The substantial void space in the Fe 3 O 4 @C yolk-shell nanorod can not only accommodate the full volume expansion of inner Fe 3 O 4 nanorod, but also preserve the structural integrity of the Fe 3 O 4 @C anode and develop a stable SEI film on the outside mesoporous carbon shell during the repeated Li + /Na + insertion/extraction processes. As for lithium storage, the Fe 3 O 4 @C electrode exhibits a high specific capacity (1247 mAh g -1 ), stable cycling performance (a specific capacity of 954 mAh g -1 after 200 cycles at a current density of 0.5 A g -1 ) and excellent rate capability (specific capabilities of 1122, 958, 783, 577, and 374 mAh g -1 at 0.5, 1, 2, 4, and 8 A g -1 , respectively). As for sodium storage, the Fe 3 O 4 @C yolk-shell nanorods also maintain a reversible capacity of approximate 424 mAh g -1 at 0.1 A g -1 after 100 cycles. Copyright © 2018. Published by Elsevier Inc.

  6. Kappa distributions in Saturn's magnetosphere: energetic ion moments using Cassini/MIMI measurements

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.

    2017-12-01

    Moments of the charged particle distribution function are a compact way of characterizing some of the properties of different magnetospheric regions. Following our previous analyses (Dialynas et al. 2009) and the techniques described in Dialynas et al. (2017), in the present study we use κ-Distribution fits to combine CHEMS (3 to 236 keV/e), LEMMS (0.024 < E < 18 MeV), and INCA (5.2 to >220 keV) H+ and O+ energetic ion spectra covering measurements made in 2004-2016 to calculate the >20 keV energetic ion moments inside Saturn's magnetosphere. We use the Khurana et al. [2007] magnetic field model to map the ion measurements to the equatorial plane and produce the equatorial distributions of all ion integral moments, focusing on partial density (n), integral intensity (In), partial pressure (P), integral energy intensity (IE); as well as the characteristic energy (Ec=Ie/In), Temperature and κ-index of these ions as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20 Rs). The Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ P, n and T in both local time and L-shell. We find that a) although the PH+ and PO+ are nearly comparable, H+ have higher IE and In at all radial distances (L>5) and local times; b) the 12Η+, ΓΟ+), are consistent with the Arridge et al. [2009] results. Dialynas K. et al. 2009, JGR, 114, A01212 Dialynas K. et al. 2017, Elsevier, ISBN: 9780128046388 Khurana K. K. et al. 2007, AGU, abstract #P44A-01 Roelof E. & A. Skinner 2000, SSR, 91, 437-459 Arridge C. S. et al. 2009, PSS, 57, 2032-2047

  7. Rutile TiO2 Mesocrystals as Sulfur Host for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Sun, Qingqing; Chen, Kaixiang; Liu, Yubin; Li, Yafeng; Wei, Mingdeng

    2017-11-16

    Although lithium-sulfur (Li-S) batteries are among the most promising rechargeable batteries in the field of energy-storage devices, their poor cycling performance restricts their potential applications. Polar materials can improve the cycling stability owing to their inherent strong chemical interaction with polysulfides. Herein, novel rutile TiO 2 mesocrystals (RTMs) are employed as the host for sulfur in Li-S batteries; the RTMs display a stable cycling performance with a capacity retention of 64 % and a small average capacity decay rate of 0.12 % per cycle over 300 cycles at 1 C rate. The good electrochemical properties are attributed to the interior ordered nanopores of the RTMs, which can effectively limit the dissolution of polysulfides, and the ultrafine nanowires in RTMs, which shorten the path for lithium-ion transport effectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polarization and charge transfer in the hydration of chloride ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-07

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters.more » The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.« less

  9. Synthesis and characterization of electrospun molybdenum dioxide-carbon nanofibers as sulfur matrix additives for rechargeable lithium-sulfur battery applications.

    PubMed

    Zhuang, Ruiyuan; Yao, Shanshan; Jing, Maoxiang; Shen, Xiangqian; Xiang, Jun; Li, Tianbao; Xiao, Kesong; Qin, Shibiao

    2018-01-01

    One-dimensional molybdenum dioxide-carbon nanofibers (MoO 2 -CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). MoO 2 -CNFs with an average diameter of 425-575 nm obtained after heat treatment were used as a matrix to prepare sulfur/MoO 2 -CNF cathodes for lithium-sulfur (Li-S) batteries. The polysulfide adsorption and electrochemical performance tests demonstrated that MoO 2 -CNFs did not only act as polysulfide reservoirs to alleviate the shuttle effect, but also improve the electrochemical reaction kinetics during the charge-discharge processes. The effect of MoO 2 -CNF heat treatment on the cycle performance of sulfur/MoO 2 -CNFs electrodes was examined, and the data showed that MoO 2 -CNFs calcined at 850 °C delivered optimal performance with an initial capacity of 1095 mAh g -1 and 860 mAh g -1 after 50 cycles. The results demonstrated that sulfur/MoO 2 -CNF composites display a remarkably high lithium-ion diffusion coefficient, low interfacial resistance and much better electrochemical performance than pristine sulfur cathodes.

  10. Functional Differentiation of Three Pores for Effective Sulfur Confinement in Li-S Battery.

    PubMed

    Wang, Qian; Yang, Minghui; Wang, Zhen-Bo; Li, Chao; Gu, Da-Ming

    2018-03-01

    Shuttle effect of the dissolved intermediates is regarded as the primary cause that leads to fast capacity degradation of Li-S battery. Herein, a microporous carbon-coated sulfur composite with novel rambutan shape (R-S@MPC) is synthesized from microporous carbon-coated rambutan-like zinc sulfide (R-ZnS@MPC), via an in situ oxidation process. The R-ZnS is employed as both template and sulfur precursor. The carbon frame of R-S@MPC composite possesses three kinds of pores that are distinctly separated from each other in space and are endowed with the exclusive functions. The central macropore serves as buffer pool to accommodate the dissolved lithium polysulfides (LPSs) and volumetric variation during cycling. The marginal straight-through mesoporous, connected with the central macropore, takes the responsibility of sulfur storage. The micropores, evenly distributed in the outer carbon shell of the as-synthesized R-S@MPC, enable the blockage of LPSs. These pores are expected to perform their respective single function, and collaborate synergistically to suppress the sulfur loss. Therefore, it delivers an outstanding cycling stability, decay rate of 0.013% cycle -1 after 500 cycles at 1 C, when the sulfur loading is kept at 4 mg cm -2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    PubMed

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  12. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate.

    PubMed

    Zhao, Ling; Zhu, Nan-Wen; Wang, Xiao-Hui

    2008-01-01

    Bioleaching of spent Ni-Cd batteries using acidified sewage sludge was carried out in a continuous flow two-step leaching system including an acidifying reactor and a leaching reactor. Two systems operated about 30d to achieve almost complete dissolution of heavy metals Ni, Cd and Co in four Ni-Cd batteries. Ferrous sulphate and elemental sulfur were used as two different substrates to culture indigenous thiobacilli in sewage sludge. pH and ORP of the acidifying reactor was stabilized around 2.3 and 334mV for the iron-oxidizing system and 1.2 and 390mV for the sulfur-oxidizing system. It was opposite to the acidifying reactor, the pH/ORP in the leaching reactor of the iron-oxidizing system was relatively lower/higher than that of the sulphur-oxidizing system in the first 17d. The metal dissolution, in the first 12-16d, was faster in the iron-oxidizing system than in the sulphur-oxidizing system due to the lower pH. In the iron-oxidizing system, the maximum solubilization of cadmium (2500mg l(-1)) and cobalt (260mg l(-1)) can be reached at day 6-8 and the most of metal nickel was leached in the first 16d. But in the sulphur-oxidizing system there was a lag period of 4-8d to reach the maximum solubilization of cadmium and cobalt. The maximum dissolution of nickel hydroxide (1400mg l(-1)) and metallic nickel (2300mg l(-1)) occurred at about day 12 and day 20, respectively.

  13. L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells.

    PubMed

    Zhang, Hongyan; Sun, Pan; Liu, Chang; Gao, Huanyu; Xu, Linru; Fang, Jin; Wang, Meng; Liu, Jinling; Xu, Shukun

    2011-01-01

    Functionalized CdTe-CdS core-shell quantum dots (QDs) were synthesized in aqueous solution via water-bathing combined hydrothermal method using L-cysteine (L-Cys) as a stabilizer. This method possesses both the advantages of water-bathing and hydrothermal methods for preparing high-quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The CdTe-CdS QDs with core-shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti-CEACAM8 (CD67), the as-prepared l-Cys capped CdTe-CdS QDs were successfully used as fluorescent probes for the direct immuno-labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio-labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.

  14. Influence of Sulfur on the Arsenic Phytoremediation Using Vallisneria natans (Lour.) Hara.

    PubMed

    Chen, Guoliang; Feng, Tao; Li, Zhixian; Chen, Zhang; Chen, Yuanqi; Wang, Haihua; Xiang, Yanci

    2017-09-01

    Influences of sulfur (S) on the accumulation and detoxification of arsenic (As) in Vallisneria natans (Lour.) Hara, an arsenic hyperaccumulating submerged aquatic plant, were investigated. At low sulfur levels (<20 mg/L), the thiols and As concentrations in the plant increased significantly with increasing sulfate nutrient supply. If sulfur levels were above 20 mg/L, the thiols and As concentrations in the plant did not increase further. There was a significant positive correlation between thiols and As in the plant. As(III) is the main form (>75%) present in the plant after exposure to As(V). Sulfur plays an important role in the arsenic translocation and detoxification, possibly through stimulating the synthesis of thiols and complexation of arsenite-phytochelatins. This suggests that addition of sulfur to the arsenic-contaminated water may provide a way to promote arsenic bioaccumulation in plants for phytoremediation of arsenic pollution.

  15. Ion-induced nucleation of pure biogenic particles.

    PubMed

    Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A D; Riipinen, Ilona; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S; Curtius, Joachim

    2016-05-26

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

  16. Adsorption performance of fixed-bed column for the removal of Fe (II) in groundwater using activated carbon made from palm kernel shells

    NASA Astrophysics Data System (ADS)

    Sylvia, N.; Hakim, L.; Fardian, N.; Yunardi

    2018-03-01

    When the manganese is under the acceptable limit, then the removal of Fe (II) ion, the common metallic compound contained in groundwater, is one of the most important stages in the processing of groundwater to become potable water. This study was aimed at investigating the performance of a fixed-bed adsorption column filled, with activated carbon prepared from palm kernel shells, in the removal of Fe (II) ion from groundwater. The influence of important parameters such as bed depth and the flow rate was investigated. The bed depth adsorbent was varied at 7.5, 10 and 12 cm. At a different flow rate of 6, 10 and 14 L/minute. The Atomic Absorb Spectrophotometer was used to measure the Fe (II) ion concentration, thereafter the results were confirmed using a breakthrough curve showing that flow rate and bed depth affected the curve. The mathematical model that used to predict the result was the Thomas and Adams-Bohart model. This model is used to process design, in which predicting time and bed depth needed to meet the breakthrough. This study reveals that the Thomas model was the most appropriate one, including the use of Palm Kernel Shell for processing groundwater. According to the Thomas Model, the highest capacity of adsorption (66.189 mg/g) of 0.169-mg/L of groundwater was achieved with a flow rate of 6 L/minute, with the bed depth at 14 cm.

  17. Multistage process for the production of bioethanol from almond shell.

    PubMed

    Kacem, Imen; Koubaa, Mohamed; Maktouf, Sameh; Chaari, Fatma; Najar, Taha; Chaabouni, Moncef; Ettis, Nadia; Ellouz Chaabouni, Semia

    2016-07-01

    This work describes the feasibility of using almond shell as feedstock for bioethanol production. A pre-treatment step was carried out using 4% NaOH for 60min at 121°C followed by 1% sulfuric acid for 60min at 121°C. Enzymatic saccharification of the pre-treated almond shell was performed using Penicillium occitanis enzymes. The process was optimized using a hybrid design with four parameters including the incubation time, temperature, enzyme loads, and polyethylene glycol (PEG) concentration. The optimum hydrolysis conditions led to a sugar yield of 13.5%. A detoxification step of the enzymatic hydrolysate was carried out at pH 5 using 1U/ml of laccase enzyme produced by Polyporus ciliatus. Fermenting efficiency of the hydrolysates was greatly improved by laccase treatment, increasing the ethanol yield from 30% to 84%. These results demonstrated the efficiency of using almond shell as a promising source for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Antifungal Potential and Antioxidant Efficacy in the Shell Extract of Cocos nucifera (L.) (Arecaceae) against Pathogenic Dermal Mycosis

    PubMed Central

    Khalid Thebo, Nasreen; Ahmed Simair, Altaf; Sughra Mangrio, Ghulam; Ansari, Khalil Ahmed; Ali Bhutto, Aijaz; Lu, Changrui; Ali Sheikh, Wazir

    2016-01-01

    Background: Coconut is a tropical fruit well known for its essential oils that have been recognized for their biological activities since ancient times. There have been no previous investigations on the essential oils from coconut shells. Method: The shell extract of Cocos nucifera (L.) was prepared by the Soxhlet method and total phenolic content (TPC) in the extract was determined by Folin-Ciocalteu (FC) assay. The antioxidant potential of the coconut shell extract was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Minimum inhibitory concentration (MIC) of the extract was determined by the strip method against clinically isolated dermal mycosis of 20 infected patients. Result: Total antioxidant activity varied from 92.32% to 94.20% and total phenolic content was found at 5.33 ± 0.02 mg/g in the coconut shell extract. The extract was found to be most effective as an antifungal against human pathogenic fungi, including A. niger, A. flavus, T. rubrum, M. canis, M. gypseum, A. fumigates, T. mentagrophyte and T. vercossum. The crude shell extract was highly effective against all dermal mycosis tested with the MIC ranging from 62 mm to 90 mm, whereas all fungal samples showed good inhibitory effect. Conclusion: The results of the present study provide a potential cure for microbial infections. PMID:28930122

  19. Scallop-Inspired Shell Engineering of Microparticles for Stable and High Volumetric Capacity Battery Anodes.

    PubMed

    Zhang, Xinghao; Guo, Ruiying; Li, Xianglong; Zhi, Linjie

    2018-06-01

    Building stable and efficient electron and ion transport pathways are critically important for energy storage electrode materials and systems. Herein, a scallop-inspired shell engineering strategy is proposed and demonstrated to confine high volume change silicon microparticles toward the construction of stable and high volumetric capacity binder-free lithium battery anodes. As for each silicon microparticle, the methodology involves an inner sealed but adaptable overlapped graphene shell, and an outer open hollow shell consisting of interconnected reduced graphene oxide, mimicking the scallop structure. The inner closed shell enables simultaneous stabilization of the interfaces of silicon with both carbon and electrolyte, substantially facilitates efficient and rapid transport of both electrons and lithium ions from/to silicon, the outer open hollow shell creates stable and robust transport paths of both electrons and lithium ions throughout the electrode without any sophisticated additives. The resultant self-supported electrode has achieved stable cycling with rapidly increased coulombic efficiency in the early stage, superior rate capability, and remarkably high volumetric capacity upon a facile pressing process. The rational design and engineering of graphene shells of the silicon microparticles developed can provide guidance for the development of a wide range of other high capacity but large volume change electrochemically active materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Study on the analysis of organogermanium compounds by ion chromatography].

    PubMed

    Chen, Q; Mou, S; Hou, X; Ni, Z

    1997-05-01

    A new high performance ion exchange chromatographic method for separation and determination of three organogermanium compounds beta-carboxyethylgermanium sesquioxide (I), beta-(alpha-methyl) carboxyethylgermanium sesquioxide (II) and di-(beta-carboxyethyl) germanium hydroxide (III) has been developed. A Dionex DX-300 Ion Chromatograph equipped with a Dionex PED-II pulsed electrochemical detector (conductivity mode), a Dionex AMMS-1 anion micromembrane suppressor, and a Dionex ACI advanced computer interface coupled with AI-450 chromatographic software was employed. The separation was achieved by using a Dionex IonPac AS4A-SC column as analytical column, sodium tetraborate solution as eluent, and sulfuric acid solution as regenerant. For reducing run time, a gradient program was chosen. The detection limits (S/N = 3, expressed as germanium) for the three compounds were 0.038mg/L (I), 0.035mg/L (II) and 0.025mg/L (III), respectively. The method has been applied to the analysis of two tonic oral drinks, and the average recoveries for the three compounds ranged from 95%-101%. The results obtained were in agreement with those of hydride generation atomic fluorescence spectrometry (HG-AFS).

  1. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.

    PubMed

    Kurmanbayeva, Assylay; Brychkova, Galina; Bekturova, Aizat; Khozin, Inna; Standing, Dominic; Yarmolinsky, Dmitry; Sagi, Moshe

    2017-01-01

    In response to oxidative stress the biosynthesis of the ROS scavenger, glutathione is induced. This requires the induction of the sulfate reduction pathway for an adequate supply of cysteine, the precursor for glutathione. Cysteine also acts as the sulfur donor for the sulfuration of the molybdenum cofactor, crucial for the last step of ABA biosynthesis. Sulfate and sulfite are, respectively, the precursor and intermediate for cysteine biosynthesis and there is evidence for stress-induced sulfate uptake and further downstream, enhanced sulfite generation by 5'-phosphosulfate (APS) reductase (APR, EC 1.8.99.2) activity. Sulfite reductase (SiR, E.C.1.8.7.1) protects the chloroplast against toxic levels of sulfite by reducing it to sulfide. In case of sulfite accumulation as a result of air pollution or stress-induced premature senescence, such as in extended darkness, sulfite can be oxidized to sulfate by sulfite oxidase. Additionally sulfite can be catalyzed to thiosulfate by sulfurtransferases or to UDP-sulfoquinovose by SQD1, being the first step toward sulfolipid biosynthesis.Determination of total sulfur in plants can be accomplished using many techniques such as ICP-AES, high-frequency induction furnace, high performance ion chromatography, sulfur combustion analysis, and colorimetric titration. Here we describe a total sulfur detection method in plants by elemental analyzer (EA). The used EA method is simple, sensitive, and accurate, and can be applied for the determination of total S content in plants.Sulfate anions in the soil are the main source of sulfur, required for normal growth and development, of plants. Plants take up sulfate ions from the soil, which are then reduced and incorporated into organic matter. Plant sulfate content can be determined by ion chromatography with carbonate eluents.Sulfite is an intermediate in the reductive assimilation of sulfate to the essential amino acids cysteine and methionine, and is cytotoxic above a certain threshold

  2. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  3. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  4. Cosmic ion bombardment of the icy moons of Jupiter

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.

    2011-05-01

    A large number of experiments have been performed in many laboratories in the world with the aim to investigate the physico-chemical effects induced by fast ions irradiating astrophysical relevant materials. The laboratory in Catania (Italy) has given a contribution to some experimental works. In this paper I review the results of two class of experiments performed by the Catania group, namely implantation of reactive (H+, C+, N+, O+ and S+) ions in ices and the ion irradiation induced synthesis of molecules at the interface between water ice and carbonaceous or sulfurous solid materials. The results, discussed in the light of some questions concerning the surfaces of the Galilean moons, contribute to understand whether minor molecular species (CO2, SO2, H2SO4, etc.) observed on those objects are endogenic i.e. native from the satellite or are produced by exogenic processes, such as ion implantation.The results indicate that:C-ion implantation is not the dominant formation mechanism of CO2 on Europa, Ganimede and Callisto.Implantation of sulfur ions into water ice produces hydrated sulfuric acid with high efficiency such to give a very important contribution to the sulfur cycle on the surface of Europa and other satellites.Implantation of protons into carbon dioxide produces some species containing the projectile (H2CO3, and O-H in poly-water).Implantation of protons into sulfur dioxide produces SO3, polymers, and O3 but not H-S bonds.Water ice has been deposited on refractory carbonaceous materials: a general finding is the formation of a noteworthy quantity of CO2. We suggest that this is the primary mechanism to explain the presence of carbon dioxide on the surfaces of the Galilean satellites.Water ice has been deposited on refractory sulfurous materials originating from SO2 or H2S irradiation. No evidence for an efficient synthesis of SO2 has been found.

  5. One-step synthesis of 3D sulfur/nitrogen dual-doped graphene supported nano silicon as anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Ruihong; Li, Junli; Qi, Kaiyu; Ge, Xin; Zhang, Qiwei; Zhang, Bangwen

    2018-03-01

    Silicon is one of the most promising candidates for next-generation anode of Lithium-ion batteries. However, poor electrical conductivity and large volume change during alloying/dealloying hinder its practical use. Here we reported a three-dimensional (3D) nitrogen and sulfur codoped graphene supported silicon nanoparticles composite (SN-G/Si) through one-step hydrothermal self-assembly. The obtained SN-G/Si was investigated in term of instrumental characterizations and electrochemical properties. The results show that SN-G/Si as a freestanding anode in LIBs delivers a reversible capacity of 2020 mAh g-1 after 100 cycles with coulombic efficiency of nearly 97%. The excellent electrochemical performance is associated with the unique structure and the synergistic effect of SN-G/Si, in which SN-G provides volume buffer for nano Si as the flexible loader, short paths/fast channels for electron/Li ion transport as porous skeleton, and low charge-transfer resistance.

  6. Metabolic Design of Corynebacterium glutamicum for Production of l-Cysteine with Consideration of Sulfur-Supplemented Animal Feed.

    PubMed

    Joo, Young-Chul; Hyeon, Jeong Eun; Han, Sung Ok

    2017-06-14

    l-Cysteine is a valuable sulfur-containing amino acid widely used as a nutrition supplement in industrial food production, agriculture, and animal feed. However, this amino acid is mostly produced by acid hydrolysis and extraction from human or animal hairs. In this study, we constructed recombinant Corynebacterium glutamicum strains that overexpress combinatorial genes for l-cysteine production. The aims of this work were to investigate the effect of the combined overexpression of serine acetyltransferase (CysE), O-acetylserine sulfhydrylase (CysK), and the transcriptional regulator CysR on l-cysteine production. The CysR-overexpressing strain accumulated approximately 2.7-fold more intracellular sulfide than the control strain (empty pMT-tac vector). Moreover, in the resulting CysEKR recombinant strain, combinatorial overexpression of genes involved in l-cysteine production successfully enhanced its production by approximately 3.0-fold relative to that in the control strain. This study demonstrates a biotechnological model for the production of animal feed supplements such as l-cysteine using metabolically engineered C. glutamicum.

  7. Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode

    PubMed Central

    Das, Susobhan; Li, Jun; Hui, Rongqing

    2015-01-01

    Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension comparable or less than the Li-ion diffusion length inside silicon. The results of simulation indicate that the contraction of the silicon electrode thickness during the battery discharge process commonly found in experiments also plays a major role in the increase of the energy capacity. PMID:28347120

  8. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance inmore » term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})« less

  9. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    PubMed

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  10. ISICS2008: An expanded version of ISICS for calculating K-, L-, and M-shell cross sections from PWBA and ECPSSR theory

    NASA Astrophysics Data System (ADS)

    Cipolla, Sam J.

    2009-09-01

    New version program summaryProgram title: ISICS2008 Catalogue identifier: ADDS_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5420 No. of bytes in distributed program, including test data, etc.: 107 669 Distribution format: tar.gz Programming language: C Computer: 80 486 or higher level PCs Operating system: Windows XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v3_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 616 Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: Addition of relativistic treatment of both projectile and K-shell electrons. Summary of revisions: A new addition to ISICS is the option (R) to calculate ECPSSR cross sections that account for the relativistic treatment of both projectile and K-shell electron, as proposed recently by Lapicki [1], accordingly as σKRECPSSR=Cṡ(1+0.07(()ṡσ(√{(mKRυ1R)}/Z,ςθ), where υ1R is the relativistic projectile velocity. The option can also be invoked in calculating ECPSShsR, where hsR stands for the Hartree-Slater description of the K-shell electron, which was already incorporated into ISICS2006 [2,3], and is now expressed in this option as, σKRECPSShsR=CṡhsR((2υ1R)/(Zςθ),Z/137)ṡ(1+0.07(()ṡσ(υ1R/Z,ςθ) using the function hsR that is already incorporated into ISICS2006. It should be noted that these expressions are corrected versions [4] from the ones published in Ref. [1]. In this

  11. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.

    PubMed

    Lu, Yang; Gu, Sui; Guo, Jing; Rui, Kun; Chen, Chunhua; Zhang, Sanpei; Jin, Jun; Yang, Jianhua; Wen, Zhaoyin

    2017-05-03

    The lithium-sulfur battery is one of the most prospective chemistries in secondary energy storage field due to its high energy density and high theoretical capacity. However, the dissolution of polysulfides in liquid electrolytes causes the shuttle effect, and the rapid decay of lithium sulfur battery has greatly hindered its practical application. Herein, combination of sulfonated reduced graphene oxide (SRGO) interlayer on the separator is adopted to suppress the shuttle effect. We speculate that this SRGO layer plays two roles: physically blocking the migration of polysulfide as ion selective layer and anchoring lithium polysulfide by the electronegative sulfonic group. Lewis acid-base theory and density functional theory (DFT) calculations indicate that sulfonic groups have a strong tendency to interact with lithium ions in the lithium polysulfide. Hence, the synergic effect involved by the sulfonic group contributes to the enhancement of the battery performance. Furthermore, the uniformly distributed sulfonic groups working as active sites which could induce the uniform distribution of sulfur, alleviating the excessive growth of sulfur and enhancing the utilization of active sulfur. With this interlayer, the prototype battery exhibits a high reversible discharge capacity of more than 1300 mAh g -1 and good capacity retention of 802 mAh g -1 after 250 cycles at 0.5 C rate. After 60 cycles at different rates from 0.2 to 4 C, the cell with this functional separator still recovered a high specific capacity of 1100 mAh g -1 at 0.2 C. The results demonstrate a promising interlayer design toward high performance lithium-sulfur battery with longer cycling life, high specific capacity, and rate capability.

  12. Near L-edge Single and Multiple Photoionization of Singly Charged Iron Ions

    NASA Astrophysics Data System (ADS)

    Schippers, Stefan; Martins, Michael; Beerwerth, Randolf; Bari, Sadia; Holste, Kristof; Schubert, Kaja; Viefhaus, Jens; Savin, Daniel Wolf; Fritzsche, Stephan; Müller, Alfred

    2017-11-01

    Absolute cross-sections for m-fold photoionization (m=1, \\ldots , 6) of Fe+ by a single photon were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source, operated by DESY in Hamburg, Germany. Photon energies were in the range 680-920 eV, which covers the photoionization resonances associated with 2p and 2s excitation to higher atomic shells as well as the thresholds for 2p and 2s ionization. The corresponding resonance positions were measured with an uncertainty of ±0.2 eV. The cross-section for Fe+ photoabsorption is derived as the sum of the individually measured cross-sections for m-fold ionization. Calculations of the Fe+ absorption cross-sections were carried out using two different theoretical approaches, Hartree-Fock including relativistic extensions and fully relativistic multiconfiguration Dirac-Fock. Apart from overall energy shifts of up to about 3 eV, the theoretical cross-sections are in good agreement with each other and with the experimental results. In addition, the complex de-excitation cascades after the creation of inner-shell holes in the Fe+ ion were tracked on the atomic fine-structure level. The corresponding theoretical results for the product charge-state distributions are in much better agreement with the experimental data than previously published configuration-average results. The present experimental and theoretical results are valuable for opacity calculations and are expected to pave the way to a more accurate determination of the iron abundance in the interstellar medium.

  13. Comparisons of laboratory wavelength measurements with theoretical calculations for neon-like through lithium-like argon, sulfur, and silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepson, J K; Beiersdorfer, P; Behar, E

    Atomic structure codes have a difficult time accurately calculating the wavelengths of many-electron ions without the benefit of laboratory measurements. This is especially true for wavelengths of lines in the extreme ultraviolet and soft x-ray regions. We are using the low-energy capability of the Livermore electron beam ion traps to compile a comprehensive catalog of astrophysically relevant emission lines in support of satellite x-ray observations. Our database includes wavelength measurements, relative intensities, and line assignments, and is compared to a full set of calculations using the Hebrew University - Lawrence Livermore Atomic Code (HULLAC). Mean deviation of HULLAC calculations frommore » our measured wavelength values is highest for L-shell transitions of neon-like ions and lowest for lithium-like ions, ranging from a mean deviation of over 0.5 {angstrom} for Si V to 12 m{angstrom} in Ar XVI.« less

  14. The Study of Blocking Agent on Lengkeng (Euphoria Logan Lour) Fruit Shell and Seed for Adsorption of Pb (II) from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Kurniawati, D.; Zein, R.; Chaidir, Z.; Aziz, H.

    2018-04-01

    The study focuses on the roles played by mayor functional groups(carboxyl) in the lengkeng shell for sorption of Pb (II). The biosorbent was characterized by FTIR and elemental analyses. The parameters such as pH, initial concentration, particle sizes, adsorbent dose and flow rate were also studied. The results showed that the optimum condition was at pH = 3, concentration 400 mg/l, 250 μm particle sizes, adsorbent dose 0,5 g and 2 ml/min flow rate with adsorption capacity 4,8933 mg/g(shell) and 5,2720 mg/g(seed). It is show that ion exchange play as a more important role in the sorption of Pb (II) on lengkeng shell and seed. Blocking of COOH groups by chemical esterification resulted in Pb important reduction in metal binding.The result showed that adsorption capacity of lengkeng shell uncreases until 63.67 % and lengkeng seed uncreases 98.70%.

  15. In-situ measurement of sulfur isotopic ratios in zoned apatite crystals via SIMS: a new tool for interpreting dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Boehnke, P.; Burgisser, A.

    2017-12-01

    Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  16. Three-dimensional core-shell Fe2O3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-12-01

    A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe2O3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe2O3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe2O3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe2O3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  17. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.

    PubMed

    Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang

    2017-05-01

    Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Formation of an Anti-Core–Shell Structure in Layered Oxide Cathodes for Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanlei; Omenya, Fredrick; Whittingham, M. Stanley

    The layered → rock-salt phase transformation in the layered dioxide cathodes for Li-ion batteries is believed to result in a “core-shell” structure of the primary particles, in which the core region maintains as the layered phase while the surface region undergoes the phase transformation to the rock-salt phase. Using transmission electron microscopy, here we demonstrate the formation of an “anti-core-shell” structure in cycled primary particles with a formula of LiNi0.80Co0.15Al0.05O2, in which the surface and subsurface regions remain as the layered structure while the rock-salt phase forms as domains in the bulk with a thin layer of the spinel phasemore » between the rock-salt core and the skin of the layered phase. Formation of this anti-core-shell structure is attributed to the oxygen loss at the surface that drives the migration of oxygen from the bulk to the surface, thereby resulting in localized areas of significantly reduced oxygen levels in the bulk of the particle, which subsequently undergoes the phase transformation to the rock-salt domains. The formation of the anti-core-shell rock-salt domains is responsible for the reduced capacity, discharge voltage and ionic conductivity in cycled cathode.« less

  19. Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough

    NASA Astrophysics Data System (ADS)

    Alt, Jeffrey C.; Shanks, Wayne C., III; Jackson, Michael C.

    1993-10-01

    The sulfur contents and sulfur isotopic compositions of 24 glassy submarine volcanics from the Mariana Island Arc and back-arc Mariana Trough were determined in order to investigate the hypothesis that subducted seawater sulfur (delta S-34 = 21 parts per thousand) is recycled through arc volcanism. Our results for sulfur are similar to those for subaerial arc volcanics: Mariana Arc glasses are enriched in S-34(delta S-34 = up to 10.3 parts per thousand, mean = 3.8 parts per thousand) and depleted in S(20-290 ppm, mean = 100 ppm) relative to mid ocean ridge basalt (MORB)(850 ppm S, delta S-34 = 0.1 +/- 0.5 parts per thousand). The bac-arc trough basalts contain 200-930 ppm S and have delta S-34 values of 1.1 +/- 0.5 parts per thousand, which overlap those for the arc and MORB. The low sulfur contents of the arc and some of the trough glasses are attributed to (1) early loss of small amounts of sulfur through separation of immiscible sulfide and (2) later vapor-melt equilibrium control of sulfur contents and loss of sulfur in a vapor phase from sulfide-undersaturated melts near the minimum in sulfur solubility at fO2 is approximately equal to NNO (nickel-nickel oxide). Although these processes removed sulfur from the melts their effects on the sulfur isotopic compositions of the melts were minimal. Positive trends of delta S-34 with Sr-87/Sr-86 large ion lithophile element (LILE) and Light rare earth elements (LREE) contents of the arc volcanics are consistent with a metasomatic seawater sulfur component in the depleted sub-arc mantle source. The lack of a S-34-rich slab signature in the trough lavas may be attributed to equilibration of metasomatic fluid with mantle material along the longer pathway from the slab to the source of the trough volcanics. Sulfur is likely to have been transported into the mantle wedge by metasomatic fluid derived from subducted sediments and pore fluids. Gases extracted from vesicles in arc and back-arc samples are predominantly H2O

  20. K β to K α X-ray intensity ratios and K to L shell vacancy transfer probabilities of Co, Ni, Cu, and Zn

    NASA Astrophysics Data System (ADS)

    Anand, L. F. M.; Gudennavar, S. B.; Bubbly, S. G.; Kerur, B. R.

    2015-12-01

    The K to L shell total vacancy transfer probabilities of low Z elements Co, Ni, Cu, and Zn are estimated by measuring the K β to K α intensity ratio adopting the 2π-geometry. The target elements were excited by 32.86 keV barium K-shell X-rays from a weak 137Cs γ-ray source. The emitted K-shell X-rays were detected using a low energy HPGe X-ray detector coupled to a 16 k MCA. The measured intensity ratios and the total vacancy transfer probabilities are compared with theoretical results and others' work, establishing a good agreement.

  1. Generation of EMIC Waves Observed by Van Allen Probes at Low L-shells of Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Zhang, J.; Saikin, A.; Rassoul, H.

    2017-12-01

    In a multi-ion magnetospheric plasma, where the major species are H+, He+, and O+, the He-band of electromagnetic ion cyclotron (EMIC) waves is the dominant band observed in the inner magnetosphere, and waves are generally quasi-field-aligned inside the geostationary orbit. Almost all the satellite-based studies of EMIC waves before Van Allen Probes, however, have not reported waves below L 3.5. There is probably only one exception from the Akebono satellite where both the H-band and He-band EMIC waves were observed at L 2. The situation has changed dramatically after two Van Allen Probes spacecraft were launched on 30 August, 2012, and many EMIC wave events have been observed below L=4. The Van Allen Probes observations confirm that the He-band of EMIC waves is a dominant band in the inner magnetosphere, but the observation of the He-band waves below L=4 is a new and quite unexpected result compared to our knowledge about EMIC waves before the Van Allen Probes era. In addition, observations show that almost all the He-band EMIC waves are linearly polarized in the region L < 4. This result is also new and unexpected. Here we will present an observational test of the generation mechanism for the He-band EMIC waves observed by Van Allen Probes at L 2.8 on 18 March, 2013. All the plasma parameters, DC magnetic field, and energetic ion distribution functions will be taken from the Van Allen Probes observations during the EMIC wave event to calculate growth rates of EMIC waves. We will then identify the energetic ions responsible for instability, frequencies and normals generated, and physical mechanism of instability.

  2. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    PubMed

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  3. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    NASA Astrophysics Data System (ADS)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  4. Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells (Postprint)

    DTIC Science & Technology

    2009-05-27

    Nanoorganized polyelectrolyte shells have already found applica- tions in drug microencapsulation as a result of the tunable properties of the...polyelectrolyte shell.19 The same LbL technology allowed the introduction of enzymatic activity onto yeast cell shells in order to promote the conversion of

  5. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Jiang, Jing; Li, Yizhi; Liang, Jing; Wan, Xiaochun; Ko, Sanghoon

    2017-08-01

    In this work, we report a novel type of thiol-functionalized magnetic core-shell metal-organic framework (MOF) microspheres that can be potentially used for selective removal of Hg2+ and Pb2+ in the presence of other background ions from wastewater. The monodisperse Fe3O4@Cu3(btc)2 core-shell magnetic microspheres have been fabricated by a versatile step-by-step assembly strategy. Further, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres were successfully synthesized by utilizing a facile postsynthetic strategy. Significantly, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres exhibit remarkably selective adsorption affinity for Hg2+ (Kd = 5.98 × 104 mL g-1) and Pb2+ (Kd = 1.23 × 104 mL g-1), while a weaker binding affinity occurred for the other background ions such as Ni2+, Na+, Mg2+, Ca2+, Zn2+ and Cd2+. The adsorption kinetics follow the pseudo-second-order rate equation and with an almost complete removal of Hg2+ and Pb2+ from the mixed heavy metal ions wastewater (0.5 mM) within 120 min. Moreover, this adsorbent can be easily recycled because of the presence of the magnetic Fe3O4 core. This work provides a promising functionalized porous magnetic Fe3O4@MOF-based adsorbent with easy recycling property for the selective removal of heavy metal ions from wastewater.

  6. Sulfur

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    In 2011, elemental sulfur and the byproduct sulfuric acid were produced at 109 operations in 29 states and the U.S. Virgin Islands. Total shipments were valued at about $1.6 billion. Elemental sulfur production was 8.2 Mt (9 million st); Louisiana and Texas accounted for about 53 percent of domestic production.

  7. Apolipoprotein L1 confers pH-switchable ion permeability to phospholipid vesicles.

    PubMed

    Bruno, Jonathan; Pozzi, Nicola; Oliva, Jonathan; Edwards, John C

    2017-11-03

    Apolipoprotein L1 (ApoL1) is a human serum protein conferring resistance to African trypanosomes, and certain ApoL1 variants increase susceptibility to some progressive kidney diseases. ApoL1 has been hypothesized to function like a pore-forming colicin and has been reported to have permeability effects on both intracellular and plasma membranes. Here, to gain insight into how ApoL1 may function in vivo , we used vesicle-based ion permeability, direct membrane association, and intrinsic fluorescence to study the activities of purified recombinant ApoL1. We found that ApoL1 confers chloride-selective permeability to preformed phospholipid vesicles and that this selectivity is strongly pH-sensitive, with maximal activity at pH 5 and little activity above pH 7. When ApoL1 and lipid were allowed to interact at low pH and were then brought to neutral pH, chloride permeability was suppressed, and potassium permeability was activated. Both chloride and potassium permeability linearly correlated with the mass of ApoL1 in the reaction mixture, and both exhibited lipid selectivity, requiring the presence of negatively charged lipids for activity. Potassium, but not chloride, permease activity required the presence of calcium ions in both the association and activation steps. Direct assessment of ApoL1-lipid associations confirmed that ApoL1 stably associates with phospholipid vesicles, requiring low pH and the presence of negatively charged phospholipids for maximal binding. Intrinsic fluorescence of ApoL1 supported the presence of a significant structural transition when ApoL1 is mixed with lipids at low pH. This pH-switchable ion-selective permeability may explain the different effects of ApoL1 reported in intracellular and plasma membrane environments. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Can the biogenicity of Europa's surfical sulfur be tested simultaneously with penetrators and ion traps?

    NASA Astrophysics Data System (ADS)

    Chela-Flores, J.; Bhattacherjee, A. B.; Dudeja, S.; Kumar, N.; Seckbach, J.

    2009-04-01

    We suggest a biogenic interpretation of the sulfur patches on the Europan icy surface. This hypothesis is testable by LAPLACE, or a later mission, in which the instrumentation on board are penetrators, or ion traps, with component selection including miniaturized mass spectrometry. The argument in favor of such instrumentation and component selection is as follows: Extreme environments with microbes can act as models for extraterrestrial life (Seckbach et al., 2008). Suggestions have ranged from Venusian environments (Sagan, 1967, Seckbach and Libby, 1970) to Mars (Grilli Caiola and Billi, 2007). Active photosynthetic microbial communities are found on Antarctica, both in and on ice, in fresh water, in saline lakes and streams and within rocks. In the dry valley lakes of Antarctica close to the McMurdo Base, microbial mats are known to selectively remove a huge quantity of sulfur (Parker et al., 1982). Lake Vostok in Antarctica possesses a perennially thick (3 to 4 km) ice-cover that precludes photosynthesis, thus making this subglacial environment a good model system for determining how a potential Europan biota might emerge, evolve and distribute itself. Jupiter's moon Europa may harbor a subsurface water ocean, which lies beneath an ice layer that might be too thick to allow photosynthesis, just as in Lake Vostok. However, disequilibrium chemistry driven by charged particles from Jupiter's magnetosphere could produce sufficient organic and oxidant molecules for an Europan biosphere (Chyba, 2000). We restrict our attention to microbial mats that could still be thriving in spite of the extreme conditions of radiation on Europa. We are especially concerned with sulfur patches discovered by the Galileo mission. In the near future there are technologies available to settle the question of habitability on Europa, such as penetrators that are currently being developed for preliminary trials nearer to the Earth—the Moon-Lite mission (Smith et al., 2008). If analogies

  9. Developing core-shell upconversion nanoparticles for optical encoding

    NASA Astrophysics Data System (ADS)

    Huang, Kai

    Lanthanide-doped upconversion nanoparticles (UCNPs) are an emerging class of luminescent materials that emit UV or visible light under near infra-red (NIR) excitations, thereby possessing a large anti-Stokes shift property. Also considering their sharp emission bands, excellent photo- and chemical stability, and almost zero auto-fluorescence of their NIR excitation, UCNPs are advantageous for optical encoding. Fabricating core-shell structured UCNPs provides a promising strategy to tune and enhance their upconverting luminescence. However, the energy transfer between core and shell had been rarely studied. Moreover, this strategy had been limited by the difficulty of coating thick shells onto the large cores of UCNPs. To overcome these constraints, the overall aim of this project is to study the inter-layers energy transfer in core-shell UCNPs and to develop an approach for coating thicker shell onto the core UCNPs, in order to fabricate UCNPs with enhanced and tunable luminescence for optical encoding. The strategy for encapsulating UCNPs into hydrogel droplet to fabricate multi-color bead barcodes has also been developed. Firstly, to study the inter-layers energy transfer between the core and shell of coreshell UCNPs, the activator and sensitizer ions were separately doped in the core or shell by fabricating NaYF4:Er NaYF4:Yb and NaYF4:Yb NaYF4:Er UCNPs. This eliminated the intra-layer energy transfer, resulting in a luminescence that is solely based on the energy transfer between layers, which facilitated the study of inter-layers energy transfer. The results demonstrated that the NaYF4:Yb NaYF4:Er structure, with sensitizer ions doped in the core, was preferable because of the strong luminescence, through minimizing the cross relaxations between Er3+ and Yb3+ and the surface quenching. Based on these information, a strategy of enhancing and tuning upconversion luminescence of core-shell UCNPs by accumulating sensitizer in the core has been developed. Next, a

  10. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries.

    PubMed

    Considine, Michael J; Foyer, Christine H

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.

  11. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries

    PubMed Central

    Considine, Michael J.; Foyer, Christine H.

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the “ambient” environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry’s exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months. PMID:25750643

  12. Fluorine and sulfur simultaneously co-doped suspended graphene

    NASA Astrophysics Data System (ADS)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  13. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.

    PubMed

    Ge, Xiaoli; Li, Zhaoqiang; Wang, Chengxiang; Yin, Longwei

    2015-12-09

    Metal-organic frameworks (MOFs) derived porous core/shell ZnO/ZnCo2O4/C hybrids with ZnO as a core and ZnCo2O4 as a shell are for the first time fabricated by using core/shell ZnCo-MOF precursors as reactant templates. The unique MOFs-derived core/shell structured ZnO/ZnCo2O4/C hybrids are assembled from nanoparticles of ZnO and ZnCo2O4, with homogeneous carbon layers coated on the surface of the ZnCo2O4 shell. When acting as anode materials for lithium-ion batteries (LIBs), the MOFs-derived porous ZnO/ZnCo2O4/C anodes exhibit outstanding cycling stability, high Coulombic efficiency, and remarkable rate capability. The excellent electrochemical performance of the ZnO/ZnCo2O4/C LIB anodes can be attributed to the synergistic effect of the porous structure of the MOFs-derived core/shell ZnO/ZnCo2O4/C and homogeneous carbon layer coating on the surface of the ZnCo2O4 shells. The hierarchically porous core/shell structure offers abundant active sites, enhances the electrode/electrolyte contact area, provides abundant channels for electrolyte penetration, and also alleviates the structure decomposition induced by Li(+) insertion/extraction. The carbon layers effectively improve the conductivity of the hybrids and thus enhance the electron transfer rate, efficiently prevent ZnCo2O4 from aggregation and disintegration, and partially buffer the stress induced by the volume change during cycles. This strategy may shed light on designing new MOF-based hybrid electrodes for energy storage and conversion devices.

  14. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries.

    PubMed

    Reitz, Christian; Breitung, Ben; Schneider, Artur; Wang, Di; von der Lehr, Martin; Leichtweiss, Thomas; Janek, Jürgen; Hahn, Horst; Brezesinski, Torsten

    2016-04-27

    Nitrogen-rich carbon with both a turbostratic microstructure and meso/macroporosity was prepared by hard templating through pyrolysis of a tricyanomethanide-based ionic liquid in the voids of a silica monolith template. This multifunctional carbon not only is a promising anode candidate for long-life lithium-ion batteries but also shows favorable properties as anode and cathode host material owing to a high nitrogen content (>8% after carbonization at 900 °C). To demonstrate the latter, the hierarchical carbon was melt-infiltrated with sulfur as well as coated by atomic layer deposition (ALD) of anatase TiO2, both of which led to high-quality nanocomposites. TiO2 ALD increased the specific capacity of the carbon while maintaining high Coulombic efficiency and cycle life: the composite exhibited stable performance in lithium half-cells, with excellent recovery of low rate capacities after thousands of cycles at 5C. Lithium-sulfur batteries using the sulfur/carbon composite also showed good cyclability, with reversible capacities of ∼700 mA·h·g(-1) at C/5 and without obvious decay over several hundred cycles. The present results demonstrate that nitrogen-rich carbon with an interconnected multimodal pore structure is very versatile and can be used as both active and inactive electrode material in high-performance lithium-based batteries.

  15. Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin

    DTIC Science & Technology

    2000-01-01

    4. TITLE AND SUBTITLE Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-exposed Mouse Skin 6. AUTHOR(S) Sabourin , C.L.K...in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin Carol L. K. Sabourin ,1 John P. Petrali,2 and Robert P. Casillas2...inflammatory response following HD exposure by measuring ear swelling. Further studies using the 291 292 SABOURIN , PETRALI, AND CASILLAS Volume 14

  16. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  17. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    PubMed

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  18. The Measurement of Sulfur Oxidation Products and Their Role in Homogeneous Nucleation

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    1999-01-01

    An improved version of a transverse ion source was developed which uses selected ion chemical ionization mass spectrometry techniques inside of a particle nucleation flow tube. These new techniques are very unique, in that the chemical ionization is done inside of the flow tube rather than by having to remove the compounds and clusters of interest which are lost on first contact,with any surfaces. The transverse source is also unique because it allows the ion reaction time to be varied over more than an order of magnitude, which in turn makes possible the separation of ion induced cluster growth from the charging of preexisting molecular clusters. As a result of combining these unique capabilities, the first ever measurements of prenucleation molecular clusters were performed. These clusters are the intermediate stage of growth in the gas-to-particle conversion process. This new technique provides a means of observing clusters containing 2, 3, 4, ... and up to about 8 sulfuric acid molecules, where the critical cluster size under these measurement conditions was about 4 or 5. Thus, the nucleation process can now be directly observed and even growth beyond the critical cluster size can be investigated. The details of this investigation are discussed in a recently submitted paper, which is included as Appendix A. Measurements of the diffusion coefficient of sulfuric acid and sulfuric acid clustered with a water molecule have also been performed. The measurements are also discussed in more detail in another recently submitted paper which is included as Appendix B. The empirical results discussed in both of these papers provide a critical test of present nucleation theories. They also provide new hope for resolving many of the huge discrepancies between field observation and model prediction of particle nucleation. The second part of the research conducted under this project was directed towards the development of new chemical ionization techniques for measuring sulfur

  19. Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract

    NASA Astrophysics Data System (ADS)

    Li, Shikuo; Shen, Yuhua; Xie, Anjian; Yu, Xuerong; Zhang, Xiuzhen; Yang, Liangbao; Li, Chuanhao

    2007-10-01

    We describe the formation of amorphous selenium (α-Se)/protein composites using Capsicum annuum L extract to reduce selenium ions (SeO32-) at room temperature. The reaction occurs rapidly and the process is simple and easy to handle. A protein with a molecular weight of 30 kDa extracted from Capsicum annuum L not only reduces the SeO32- ions to Se0, but also controls the nucleation and growth of Se0, and even participates in the formation of α-Se/protein composites. The size and shell thickness of the α-Se/protein composites increases with high Capsicum annuum L extract concentration, and decreases with low reaction solution pH. The results suggest that this eco-friendly, biogenic synthesis strategy could be widely used for preparing inorganic/organic biocomposites. In addition, we also discuss the possible mechanism of the reduction of SeO32- ions by Capsicum annuum L extract.

  20. Development of a direct procedure for the measurement of sulfur isotope variability in beers by MC-ICP-MS.

    PubMed

    Giner Martínez-Sierra, J; Santamaria-Fernandez, R; Hearn, R; Marchante Gayón, J M; García Alonso, J I

    2010-04-14

    In this work, a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) was evaluated for the direct measurement of sulfur stable isotope ratios in beers as a first step toward a general study of the natural isotope variability of sulfur in foods and beverages. Sample preparation consisted of a simple dilution of the beers with 1% (v/v) HNO(3). It was observed that different sulfur isotope ratios were obtained for different dilutions of the same sample indicating that matrix effects affected differently the transmission of the sulfur ions at masses 32, 33, and 34 in the mass spectrometer. Correction for mass bias related matrix effects was evaluated using silicon internal standardization. For that purpose, silicon isotopes at masses 29 and 30 were included in the sulfur cup configuration and the natural silicon content in beers used for internal mass bias correction. It was observed that matrix effects on differential ion transmission could be corrected adequately using silicon internal standardization. The natural isotope variability of sulfur has been evaluated by measuring 26 different beer brands. Measured delta(34)S values ranged from -0.2 to 13.8 per thousand. Typical combined standard uncertainties of the measured delta(34)S values were < or = 2 per thousand. The method has therefore great potential to study sulfur isotope variability in foods and beverages.

  1. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.

    PubMed

    Guo, Juchen; Xu, Yunhua; Wang, Chunsheng

    2011-10-12

    The commercialization of lithium-sulfur batteries is hindered by low cycle stability and low efficiency, which are induced by sulfur active material loss and polysulfide shuttle reaction through dissolution into electrolyte. In this study, sulfur-impregnated disordered carbon nanotubes are synthesized as cathode material for the lithium-sulfur battery. The obtained sulfur-carbon tube cathodes demonstrate superior cyclability and Coulombic efficiency. More importantly, the electrochemical characterization indicates a new stabilization mechanism of sulfur in carbon induced by heat treatment.

  2. MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Zhengzheng

    2018-02-01

    MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur (MGN@MC/S) composite is successfully synthesized derived from metal-organic frameworks and investigated as cathode for lithium-ion batteries. Used as cathode, MGN@MC/S composite possesses electronic conductivity network for redox electron transfer and strong chemical bonding to lithium polysulfides, which enables low capacity loss to be achieved. MGN@MC/S cathodes exhibit high reversible capacity of 1475 mA h g-1 at 0.1 C and an ultra-low capacity fading of 0.042% per cycle at 1 C over 450 cycles.

  3. A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode.

    PubMed

    Agostini, Marco; Hassoun, Jusef; Liu, Jun; Jeong, Moongook; Nara, Hiroki; Momma, Toshiyuki; Osaka, Tetsuya; Sun, Yang-Kook; Scrosati, Bruno

    2014-07-23

    In this paper, we report a lithium-ion battery employing a lithium sulfide cathode and a silicon-based anode. The high capacity of the silicon anode and the high efficiency and cycling rate of the lithium sulfide cathode allowed optimal full cell balance. We show in fact that the battery operates with a very stable capacity of about 280 mAh g(-1) at an average voltage of 1.4 V. To the best of our knowledge, this battery is one of the rare examples of lithium-metal-free sulfur battery. Considering the high theoretical capacity of the employed electrodes, we believe that the battery here reported may be of potential interest as high-energy, safe, and low-cost power source for electric vehicles.

  4. Transnitrosation of alicyclic N-nitrosamines containing a sulfur atom.

    PubMed

    Inami, Keiko; Kondo, Sonoe; Ono, Yuta; Saso, Chiharu; Mochizuki, Masataka

    2013-12-15

    Aromatic and aliphatic nitrosamines are known to transfer a nitrosonium ion to another amine. The transnitrosation of alicyclic N-nitroso compounds generates S-nitrosothiols, which are potential nitric oxide donors in vivo. In this study, certain alicyclic N-nitroso compounds based on non-mutagenic N-nitrosoproline or N-nitrosothioproline were synthesised, and the formation of S-nitrosoglutathione (GSNO) was quantified under acidic conditions. We then investigated the effect of a sulfur atom as the substituent and as a ring component on the GSNO formation. In the presence of thiourea under acidic conditions, GSNO was formed from N-nitrosoproline and glutathione, and an N-nitroso compound containing a sulfur atom and glutathione produced GSNO without thiourea. The quantity of GSNO derived from the reaction of the N-nitrosamines containing a sulfur atom and glutathione was higher than that from the N-nitrosoproline and glutathione plus thiourea. Among the analogues that contained a sulfur atom either in the ring or as a substituent, the thiazolidines produced a slightly higher quantity of GSNO than the analogue with a thioamide group. A compound containing sulfur atoms both in the ring and as a substituent exhibited the highest activity for GSNO formation among the alicyclic N-nitrosamines tested. The results indicate that the intramolecular sulfur atom plays an important role in the transnitrosation via alicyclic N-nitroso compounds to form GSNO. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Biogeochemical conversion of sulfur species in saline lakes of Steppe Altai

    NASA Astrophysics Data System (ADS)

    Borzenko, Svetlana V.; Kolpakova, Marina N.; Shvartsev, Stepan L.; Isupov, Vitaly P.

    2017-08-01

    The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemical composition of biochemical processes involved in decomposition of organic matter was determined by the study of behavior of reduced forms of sulfur in lakes. The determination of reduced forms of sulfur was carried out by successive transfer of each form of sulfur to hydrogen sulfide followed by photometric measurements. The other chemical components were determined by standard methods (atomic absorption, potentiometric method, titration method and others). The salt lakes of the Altai steppe were studied in summer season 2013-2015. Analysis of the chemical composition of the saline lakes of Altai Krai has shown that carbonate-, hydrocarbonate- and chloride ions dominate among anions; sodium is main cation; sulfates are found in subordinate amounts. Reduced forms of sulfur occur everywhere: hydrogen and hydrosulfide sulfur S2- prevail in the bottom sediments; its derivative—elemental S0—prevails in the lakes water. The second important species in water of soda lakes is hydrosulfide sulfur S2-, and in chloride lakes is thiosulfate sulfur S2O3 2- . The lag in the accumulation of sulfates in soda lakes in comparison to chloride lakes can be explained by their bacterial reduction, followed by the formation and deposition of iron sulfides in sediments. In chloride lakes gypsum is a predominantly barrier for sulfates.

  6. Characterization of a transient +2 sulfur oxidation state intermediate from the oxidation of aqueous sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vairavmurthy, M.A.; Zhou, Weiqing

    1995-04-01

    The oxidation H{sub 2}S to sulfate involves a net transfer of eight electrons and occurs through the formation of several partially oxidized intermediates with oxidation states ranging from {minus}1 to +5. Known intermediates include elemental sulfur (oxidation state 0), polysulfides (outer sulfur: {minus}1, inner sulfur: 0), sulfite (+4) and thiosulfate (outer sulfur: {minus}1, inner sulfur: +5). A noticeable gap in this series of intermediates is that of a +2 sulfur oxidation state oxoacid/oxoanion species, which was never detected experimentally. Here, we present evidence of the transient existence of +2 oxidation state intermediate in the Ni(II)-catalyzed oxidation of aqueous sulfide. X-raymore » absorption near-edge structure (XANES) spectroscopy and Fourier-transform-infrared (FT-IR) spectroscopy were used to characterize this species; they suggest that it has a sulfoxylate ion (SO{sub 2}{sup 2{minus}}) structure.« less

  7. Optimization and adsorption kinetic studies of aqueous manganese ion removal using chitin extracted from shells of edible Philippine crabs

    NASA Astrophysics Data System (ADS)

    Quimque, Mark Tristan J.; Jimenez, Marvin C.; Acas, Meg Ina S.; Indoc, Danrelle Keth L.; Gomez, Enjelyn C.; Tabuñag, Jenny Syl D.

    2017-01-01

    Manganese is a common contaminant in drinking water along with other metal pollutants. This paper investigates the use of chitin, extracted from crab shells obtained as restaurant throwaway, as an adsorbent in removing manganese ions from aqueous medium. In particular, this aims to optimize the adsorption parameters and look into the kinetics of the process. The adsorption experiments done in this study employed the batch equilibration method. In the optimization, the following parameters were considered: pH and concentration of Mn (II) sorbate solution, particle size and dosage of adsorbent chitin, and adsorbent-adsorbate contact time. At the optimal condition, the order of the adsorption reaction was estimated using kinetic models which describes the process best. It was found out that the adsorption of aqueous Mn (II) ions onto chitin obeys the pseudo-second order model. This model assumes that the adsorption occurred via chemisorption

  8. Prawn Shell Derived Chitin Nanofiber Membranes as Advanced Sustainable Separators for Li/Na-Ion Batteries.

    PubMed

    Zhang, Tian-Wen; Shen, Bao; Yao, Hong-Bin; Ma, Tao; Lu, Lei-Lei; Zhou, Fei; Yu, Shu-Hong

    2017-08-09

    Separators, necessary components to isolate cathodes and anodes in Li/Na-ion batteries, are consumed in large amounts per year; thus, their sustainability is a concerning issue for renewable energy storage systems. However, the eco-efficient and environmentally friendly fabrication of separators with a high mechanical strength, excellent thermal stability, and good electrolyte wettability is still challenging. Herein, we reported the fabrication of a new type of separators for Li/Na-ion batteries through the self-assembly of eco-friendly chitin nanofibers derived from prawn shells. We demonstrated that the pore size in the chitin nanofiber membrane (CNM) separator can be tuned by adjusting the amount of pore generation agent (sodium dihydrogen citrate) in the self-assembly process of chitin nanofibers. By optimizing the pore size in CNM separators, the electrochemical performance of the LiFePO 4 /Li half-cell with a CNM separator is comparable to that with a commercialized polypropylene (PP) separator. More attractively, the CNM separator showed a much better performance in the LiFePO 4 /Li cell at 120 °C and Na 3 V 2 (PO 4 ) 3 /Na cell than the PP separator. The proposed fabrication of separators by using natural raw materials will play a significant contribution to the sustainable development of renewable energy storage systems.

  9. Sulfur, a Key Water Quality Issue in the Everglades

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Lerch, H. E.; Bates, A. L.; Corum, M.; Beck, M.; Kleckner, S.

    2002-05-01

    Sulfur is an important water quality issue in the Everglades because of its role in microbial sulfate reduction and the methylation of mercury. Methylmercury (MeHg), a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Sulfur appears to play a key role in regulating both the magnitude and distribution of MeHg in the Everglades. Freshwater wetlands typically have low sulfur concentrations, but marshes in portions of the northern Everglades have average surface water sulfate concentrations of 60 mg/l, compared to 1 mg/l or less at background sites. Marsh areas with excess sulfate are concentrated near sites of canal discharge and along canal levees. The canal water that is discharged into the marshes appears to be the major source of excess sulfate entering the Everglades. This canal water drains the Everglades Agricultural Area (EAA) and has sulfate concentrations averaging over 70 mg/l and periodically approaching 200 mg/l. We used sulfate concentration data and the sulfur (d34S) isotopic composition of sulfate in marsh surface water, canal water, rainwater, and groundwater to trace the source of the excess sulfate entering the Everglades. Results show that canal water from the EAA is the major source of excess sulfate entering the Everglades. Furthermore, canal water with the highest sulfate concentrations had d34S values of +16 per mil, similar to the d34S signature of agricultural sulfur used as a soil amendment in the EAA. Rainwater has too little sulfate to account for the high sulfate concentrations observed in the canals and in large portions of the Everglades. Groundwater beneath the present day Everglades generally has either too low a sulfate concentration or a d34S signature that is inconsistent with that of surface water in the Everglades. The excess sulfate entering the Everglades from canal

  10. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.

    PubMed

    Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won

    2014-12-01

    Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.

  11. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOEpatents

    Mamantov, Gleb

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  12. Fabrication and characterization of ZnS/ZnO core shell nanostructures on silver wires

    NASA Astrophysics Data System (ADS)

    Kao, Chyuan Haur; Su, Wei Ming; Li, Cheng Yuan; Weng, Wei Chih; Weng, Chen Yuan; Cheng, Chin-Chi; Lin, Yung-Sen; Lin, Chia Feng; Chen, Hsiang

    2018-06-01

    In this research, ZnS nanoparticles were synthesized on ZnO/silver wires to form ZnS/ZnO core shell structures. Various outward appearance and colors could be observed by different ZnO growth and sulfurization conditions. To evaluate the properties of these nanostructures, optical properties and chemical bindings were analyzed by photoluminescence, Raman analysis, and X-ray photoelectron spectroscopy. Furthermore, material characterizations including transmission electron microscopy and X-ray diffraction confirmed that cubic ZnS (311)/ZnO nanostructures were grown on silver wires for the first time. ZnS/ZnO core shell structures on silver wires are promising for future optoelectronic and biomedical applications.

  13. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    PubMed

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  14. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP

  15. Site Selective Binding of Zn(ll) ot Metallo-b-Lactamase L1 from Stenotrophomonas Maltophilia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costello,A.; Periyannan, G.; Yang, K.

    2006-01-01

    Extended X-ray absorption fine structure studies of the metallo-{beta}-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion. The di-Zn enzyme displays a well-defined metal-metal interaction at 3.42 Angstroms. Reaction with the {beta}-lactam antibiotic nitrocefin results in a product-bound species, in which the ring-opened lactam rotates inmore » the active site to present the S1 sulfur atom of nitrocefin to one of the metal ions for coordination. The product bridges the two metal ions, with a concomitant lengthening of the Zn-Zn interaction to 3.62 Angstroms.« less

  16. Inner-shell radiation from wire array implosions on the Zebra generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouart, N. D.; Giuliani, J. L.; Dasgupta, A.

    2014-03-15

    Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell Kα and Kβ transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport ismore » used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the Kα radiation, but it is found to be insufficient.« less

  17. The Provenance of Sulfur that Becomes Non-Seasalt Sulfate (NSS)

    NASA Astrophysics Data System (ADS)

    Huebert, B. J.; Simpson, R. M.; Howell, S. G.

    2012-12-01

    As a part of the Pacific Atmospheric Sulfur Experiment (PASE), we measured sulfur gases and aerosol chemistry (vs size) from the NCAR C-130 near Christmas Island. Monthly (project) average concentrations in the Marine Boundary Layer (MBL, the lowest mixed layer) and Buffer Layer (BuL, a more stable layer atop the MBL, with clouds) are used to evaluate the formation, loss, and exchange rates for DMS, SO2, and NSS in each layer. We evaluate entrainment, divergence, vertical mixing, chemical formation and loss for each to make a self-consistent budget of oxidized sulfur in the remote marine atmosphere. We find that long-range transport of sulfur from continental sources can be larger than the sulfur source from biogenic dimethyl sulfide, DMS. DMS does not appear to control either the number of NSS particles or NSS mass.

  18. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  19. On the structure and dynamics of the hydrated sulfite ion in aqueous solution--an ab initio QMCF MD simulation and large angle X-ray scattering study.

    PubMed

    Eklund, Lars; Hofer, Thomas S; Pribil, Andreas B; Rode, Bernd M; Persson, Ingmar

    2012-05-07

    Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism has been applied in conjunction to experimental large angle X-ray scattering to study the structure and dynamics of the hydrated sulfite ion in aqueous solution. The results show that there is a considerable effect of the lone electron-pair on sulfur concerning structure and dynamics in comparison with the sulfate ion with higher oxidation number and symmetry of the hydration shell. The S-O bond distance in the hydrated sulfite ion has been determined to 1.53(1) Å by both methods. The hydrogen bonds between the three water molecules bound to each sulfite oxygen are only slightly stronger than those in bulk water. The sulfite ion can therefore be regarded as a weak structure maker. The water exchange rate is somewhat slower for the sulfite ion than for the sulfate ion, τ(0.5) = 3.2 and 2.6 ps, respectively. An even more striking observation in the angular radial distribution (ARD) functions is that the for sulfite ion the water exchange takes place in close vicinity of the lone electron-pair directed at its sides, while in principle no water exchange did take place of the water molecules hydrogen bound to sulfite oxygens during the simulation time. This is also confirmed when detailed pathway analysis is conducted. The simulation showed that the water molecules hydrogen bound to the sulfite oxygens can move inside the hydration shell to the area outside the lone electron-pair and there be exchanged. On the other hand, for the hydrated sulfate ion in aqueous solution one can clearly see from the ARD that the distribution of exchange events is symmetrical around the entire hydration sphere.

  20. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.

    PubMed

    Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei; Cui, Yi

    2009-09-01

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of approximately 2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO(2) cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of approximately 4 mAh/cm(2), which is comparable to commercial battery values.

  1. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur contentmore » is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)« less

  2. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries.

    PubMed

    Chen, Feng; Ma, Lulu; Ren, Jiangang; Luo, Xinyu; Liu, Bibo; Zhou, Xiangyang

    2018-03-26

    Lithium-sulfur (Li-S) batteries have been identified as the greatest potential next- generation energy-storage systems because of the large theoretical energy density of 2600 Wh kg -1 . However, its practical application on a massive scale is impeded by severe capacity loss resulted from the notorious polysulfides shuttle. Here, we first present a novel technique to synthesize sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon (NSGPC) to modify the commercial polypropylene separator in Li-S batteries. The as-synthesized NSGPC exhibits a unique micro/mesoporous carbon framework, large specific surface area (2439.0 m² g -1 ), high pore volume (1.78 cm³ g -1 ), good conductivity, and in situ nitrogen (1.86 at %) and sulfur (5.26 at %) co-doping. Benefiting from the particular physical properties and chemical components of NSGPC, the resultant NSGPC-coated separator not only can facilitate rapid Li⁺ ions and electrons transfer, but also can restrict the dissolution of polysulfides to alleviate the shuttle effect by combining the physical absorption and strong chemical adsorption. As a result, Li-S batteries with NSGPC-coated separator exhibit high initial reversible capacity (1208.6 mAh g -1 at 0.2 C), excellent rate capability (596.6 mAh g -1 at 5 C), and superior cycling stability (over 500 cycles at 2 C with 0.074% capacity decay each cycle). Propelling our easy-designed pure sulfur cathode to a extremely increased mass loading of 3.4 mg cm -2 (70 wt. % sulfur), the Li-S batteries with this functional composite separator exhibit a superior high initial capacity of 1171.7 mAh g -1 , which is quite beneficial to commercialized applications.

  3. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-03-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less

  4. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    PubMed

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  5. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  6. Vanadium fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser–solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-09-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less

  7. Stability of nitrate-ion concentrations in simulated deposition samples used for quality-assurance activities by the U.S. Geological Survey

    USGS Publications Warehouse

    Willoughby, T.C.; See, R.B.; Schroder, L.J.

    1989-01-01

    Three experiments were conducted to determine the stability of nitrate-ion concentrations in simulated deposition samples. In the four experiment-A solutions, nitric acid provided nitrate-ion concentrations ranging from 0.6 to 10.0 mg/L and that had pH values ranging from 3.8 to 5.0. In the five experiment-B solutions, sodium nitrate provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. The pH was adjusted to about 4.5 for each of the solutions by addition of sulfuric acid. In the four experiment-C solutions, nitric acid provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. Major cation and anion concentrations were added to each solution to simulate natural deposition. Aliquots were removed from the 13 original solutions and analyzed by ion chromatography about once a week for 100 days to determine if any changes occurred in nitrate-ion concentrations throughout the study period. No substantial changes were observed in the nitrate-ion concentrations in solutions that had initial concentrations below 4.0 mg/L in experiments A and B, although most of the measured nitrate-ion concentrations for the 100-day study were below the initial concentrations. In experiment C, changes in nitrate-ion concentrations were much more pronounced; the measured nitrate-ion concentrations for the study period were less than the initial concentrations for 62 of the 67 analyses. (USGS)

  8. A highly efficient polysulfide mediator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F.

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host—manganese dioxide nanosheets serve as the prototype—reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind ‘higher’ polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g-1 at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.

  9. Adsorption of Cd(II) Metal Ion on Adsorbent beads from Biomass Saccharomycess cereviceae - Chitosan

    NASA Astrophysics Data System (ADS)

    Hasri; Mudasir

    2018-01-01

    The adsorbent beads that was preparation from Saccharomycess cereviceae culture strain FN CC 3012 and shrimp shells waste and its application for adsorption of Cd (II) metal ion has been studied. The study start with combination of Saccharomycess cereviceae biomass to chitosan (Sc-Chi), contact time, pH of solution and initial concentration of cations. Total Cd(II) metal ion adsorbed was calculated from the difference of metal ion concentration before and after adsorption by AAS. The results showed that optimum condition for adsorption of Cd(II) ions by Sc-Chi beads was achieved with solution pH of 4, contact time of 60 minutes and initial concentration adsorption 100mg/L. The hydroxyl (-OH) and amino (-NH2) functional groups were believed to be responsible for the adsorption of Cd(II) ions.

  10. Sulfur-containing components of gamma-irradiated garlic bulbs

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Choi, Jong-Uck; Yoon, Hyung-Sik

    Sulfur-containing components associated with garlic flavors were investigated to determine the effect of γ-irradiation at 0.1 kGy on the quality of garlic bulbs ( Allium sativum L.) during storage at 3±1°C and 80±5% RH for 10 months. Irradiation treatment had no influence on the amount of total sulfur and thiosulfinate of stored garlic for 10 months, while the storage period brought about a significant reduction ( P<0.05) in the content of both components after the 6-8th month of storage compared with that at the beginning of storage period. The identity of irradiated alliin ( S-allyl- L-cysteine sulfoxide) at sprout-inhibition dose was confirmed according to thin-layer chromatography, i.r. and NMR spectroscopy data.

  11. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.

    PubMed

    Liu, Zhenzhen; Zhou, Lei; Ge, Qi; Chen, Renjie; Ni, Mei; Utetiwabo, Wellars; Zhang, Xiaoling; Yang, Wen

    2018-06-13

    Lithium-sulfur batteries have been regarded as promising candidates for energy storage because of their high energy density and low cost. It is a main challenge to develop long-term cycling stability battery. Here, a catalytic strategy is presented to accelerate reversible transformation of sulfur and its discharge products in lithium-sulfur batteries. This is achieved with single-atomic iron active sites in porous nitrogen-doped carbon, prepared by polymerizing and carbonizing diphenylamine in the presence of iron phthalocyanine and a hard template. The Fe-PNC/S composite electrode exhibited a high discharge capacity (427 mAh g -1 ) at a 0.1 C rate after 300 cycles with the Columbic efficiency of above 95.6%. Besides, the electrode delivers much higher capacity of 557.4 mAh g -1 at 0.5 C over 300 cycles. Importantly, the Fe-PCN/S has a smaller phase nucleation overpotential of polysulfides than nitrogen-doped carbon alone for the formation of nanoscale of Li 2 S as revealed by ex situ SEM, which enhance lithium-ion diffusion in Li 2 S, and therefore a high rate performance and remarkable cycle life of Li-sulfur batteries were achieved. Our strategy paves a new way for polysulfide conversion with atomic iron catalysis to exploit high-performance lithium-sulfur batteries.

  12. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.

    PubMed

    Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K

    2013-08-22

    Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water.

  13. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  14. Reaction of hydroxy and carbonyl compounds with sulfur tetrafluoride. XVI. Reactions of vicinal dihydric alcohols with sulfur tetrafluoride (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burmakov, A.I.; Hassanein, S.M.; Kunshenko, B.V.

    1986-11-20

    During the action of sulfur tetrafluoride on ethanediol, d,l-1,2-propanediol, d,l-3,3,3-trifluoro-1,2-propanediol regioselective substitution of one of the hydroxyl groups by a fluorine atom occurs, depending on the electronic nature of the groups present in the molecule. The second hydroxy group in converted into a fluorosulfite group.

  15. Heterogeneous WS x/WO 3 thorn-bush nanofiber electrodes for sodium-ion batteries

    DOE PAGES

    Ryu, Won -Hee; Wilson, Hope; Sohn, Sungwoo; ...

    2016-01-25

    Heterogeneous electrode materials with hierarchical architectures promise to enable considerable improvement in future energy storage devices. In this study, we report on a tailored synthetic strategy used to create heterogeneous tungsten sulfide/oxide core–shell nanofiber materials with vertically and randomly aligned thorn-bush features, and we evaluate them as potential anode materials for high-performance Na-ion batteries. The WS x (2 ≤ x ≤ 3, amorphous WS 3 and crystalline WS 2) nanofiber is successfully prepared by electrospinning and subsequent calcination in a reducing atmosphere. To prevent capacity degradation of the WS x anodes originating from sulfur dissolution, a facile post-thermal treatment inmore » air is applied to form an oxide passivation surface. Interestingly, WO 3 thorn bundles are randomly grown on the nanofiber stem, resulting from the surface conversion. We elucidate the evolving morphological and structural features of the nanofibers during post-thermal treatment. The heterogeneous thorn-bush nanofiber electrodes deliver a high second discharge capacity of 791 mAh g –1 and improved cycle performance for 100 cycles compared to the pristine WS x nanofiber. Lastly, we show that this hierarchical design is effective in reducing sulfur dissolution, as shown by cycling analysis with counter Na electrodes.« less

  16. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    DOE PAGES

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less

  17. Sulfur isotopic evidence for the origin of elemental sulfur in gas hydrate-bearing sediments of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Zhiyong; Sun, Xiaoming; Strauss, Harald; Lu, Yang; Xu, Li; Lu, Hongfeng; Teichert, Barbara M. A.; Peckmann, Jörn

    2017-04-01

    disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Appl. Env. Microbiol. 59, 101-108. Yao W. and Millero F.J. (1996) Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Mar. Chem. 52, 1-16. Zhang G., Liang J., Lu J.A., Yang S., Zhang M., Holland M., Schultheiss P., Su X., Sha Z., Xu H., Gong Y., Fu S., Wang L. and Kuang Z. (2015) Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 67, 356-367.

  18. Rhodanese Functions as Sulfur Supplier for Key Enzymes in Sulfur Energy Metabolism

    PubMed Central

    Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-01-01

    How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus. PMID:22496367

  19. Determination of total sulfur content via sulfur-specific chemiluminescence detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubala, S.W.; Campbell, D.N.; DiSanzo, F.P.

    A specially designed system, based upon sulfur-specific chemiluminescence detection (SSCD), was developed to permit the determination of total sulfur content in a variety of samples. This type of detection system possesses several advantages such as excellent linearity and selectivity, low minimum detectable levels, and an equimolar response to various sulfur compounds. This paper will focus on the design and application of a sulfur-specific chemiluminescence detection system for use in determining total sulfur content in gasoline.

  20. Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus.

    PubMed

    Smith, Sarah L; Johnson, D Barrie

    2018-03-01

    Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.

  1. Seeded growth of gold nanorods: the effect of sulfur-containing quenching agents

    NASA Astrophysics Data System (ADS)

    Gobbo, Alberto; Marin, Riccardo; Canton, Patrizia

    2018-03-01

    Herein we present a study on the efficacy of selected sulfur-containing species as growth quenchers and metal ion scavengers in the framework of gold nanorod (GNR) synthesis. The here utilized seeded growth method is the reference GNR synthesis approach. However, GNRs synthesized according to it are prone to morphological changes upon aging, promoted by the presence of unreacted metal ions in the stock suspension. This, in turn, leads to optical property changes. Sodium sulfide is an efficient GNR growth quencher and metal ion scavenger, because sulfide ion has a strong affinity towards noble metals used for the GNRs' synthesis. Moving from these considerations, different sulfur-containing molecules were selected and their interaction with GNR surface was investigated: sulfate, sulfite, thiourea, and dodecyl sulfate were chosen for their difference in terms of net charge, size, and hydrophobicity. We initially assessed the best synthesis conditions in terms of reaction time, seed amount, silver concentration, and quencher amount. Consequently, the quencher/scavenger was varied. Thiourea, sulfite, and sulfate ions all showed a feeble, yet non-negligible, interaction with metals. Although sodium sulfide turned out to be the most efficient quencher/scavenger, also dodecyl sulfate showed evidences of adsorption on the GNR surface, probably prompted by hydrophobic interactions. These findings are expected to contribute as a background for further advancements in the perfection of GNR synthetic approaches specifically in terms of post-synthesis treatments.

  2. Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications.

    PubMed

    Xiao, Qian; Wang, Ting; Yu, Shuili; Yi, Peng; Li, Lei

    2017-03-15

    Bromate (BrO 3 - ) is a possible human carcinogen regulated worldwide at a strict standard of 10 μg/L in drinking water. Removal of BrO 3 - by advanced reduction processes (ARPs) has attracted much attention due to its high reduction efficiency and easier combination with ultraviolet (UV) disinfection. In this study, we employed a UV/sulfite process to degrade BrO 3 - and studied the effects of UV lamp, sulfur(IV) concentration, and pH on effectiveness of the system in degrading BrO 3 - . Low-pressure UV lamps (UV-L) instead of medium-pressure UV lamps (UV-M) were selected because of the high ultraviolet-C (UV-C) efficiency of UV-L. The increased sulfur(IV) concentration is proportionally correlated with enhanced degradation kinetics. BrO 3 - reduction was improved by increasing pH when pH is within 6.0-9.0, and principal component analysis demonstrated that pH is the most influential factor over sulfur(IV) concentration and type of UV lamp. Degradation mechanisms at different pH levels were subsequently investigated. Results showed that the reduction reactions are induced by hydrated electron (e aq - ) at pH > 9.0, by H at pH 4.0, and by both e aq - and H at pH 7.0. Effective quantum efficiency for the formation of e aq - and H in the photocatalytic systems was determined to be 0.109 ± 0.001 and 0.034 ± 0.001 mol E -1 , respectively. Furthermore, mass balance calculation of bromine and sulfur at pH 7 showed that bromide, sulfate and possibly dithionate ions were the major products, and a degradation pathway was proposed accordingly. Moreover, UV/sulfite processes could reduce the initial bromate concentration of 0.1 mM by 82% and 95% in the presence and absence of O 2 in tap water respectively, and 99% in the absence of O 2 in deionized water within 20 min at pH 9.0 and 2.0 mM sulfur (IV). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Operando Spectromicroscopy of Sulfur Species in Lithium-Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Elizabeth C.; Kasse, Robert M.; Heath, Khloe N.

    Here, a novel cross-sectional battery cell was developed to characterize lithium-sulfur batteries using X-ray spectromicroscopy. Chemically sensitive X-ray maps were collected operando at energies relevant to the expected sulfur species and were used to correlate changes in sulfur species with electrochemistry. Significant changes in the sulfur/carbon composite electrode were observed from cycle to cycle including rearrangement of the elemental sulfur matrix and PEO10LiTFSI binder. Polysulfide concentration and area of spatial diffusion increased with cycling, indicating that some polysulfide dissolution is irreversible, leading to polysulfide shuttle. Fitting of the maps using standard sulfur and polysulfide XANES spectra indicated that upon subsequentmore » discharge/charge cycles, the initial sulfur concentration was not fully recovered; polysulfides and lithium sulfide remained at the cathodes with higher order polysulfides as the primary species in the region of interest. Quantification of the polysulfide concentration across the electrolyte and electrode interfaces shows that the polysulfide concentration before the first discharge and after the third charge is constant within the electrolyte, but while cycling, a significant increase in polysulfides and a gradient toward the lithium metal anode forms. Finally, this chemically and spatially sensitive characterization and analysis provides a foundation for further operando spectromicroscopy of lithium-sulfur batteries.« less

  4. Operando Spectromicroscopy of Sulfur Species in Lithium-Sulfur Batteries

    DOE PAGES

    Miller, Elizabeth C.; Kasse, Robert M.; Heath, Khloe N.; ...

    2017-11-03

    Here, a novel cross-sectional battery cell was developed to characterize lithium-sulfur batteries using X-ray spectromicroscopy. Chemically sensitive X-ray maps were collected operando at energies relevant to the expected sulfur species and were used to correlate changes in sulfur species with electrochemistry. Significant changes in the sulfur/carbon composite electrode were observed from cycle to cycle including rearrangement of the elemental sulfur matrix and PEO10LiTFSI binder. Polysulfide concentration and area of spatial diffusion increased with cycling, indicating that some polysulfide dissolution is irreversible, leading to polysulfide shuttle. Fitting of the maps using standard sulfur and polysulfide XANES spectra indicated that upon subsequentmore » discharge/charge cycles, the initial sulfur concentration was not fully recovered; polysulfides and lithium sulfide remained at the cathodes with higher order polysulfides as the primary species in the region of interest. Quantification of the polysulfide concentration across the electrolyte and electrode interfaces shows that the polysulfide concentration before the first discharge and after the third charge is constant within the electrolyte, but while cycling, a significant increase in polysulfides and a gradient toward the lithium metal anode forms. Finally, this chemically and spatially sensitive characterization and analysis provides a foundation for further operando spectromicroscopy of lithium-sulfur batteries.« less

  5. Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Smith, A. S.; Chan, L. Y.; Yue, G. K.

    1982-01-01

    Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity.

  6. Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  7. Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte.

    PubMed

    Hu, Lei; Lu, Yue; Li, Xiaona; Liang, Jianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai

    2017-03-01

    Developing appropriate sulfur cathode materials in carbonate-based electrolyte is an important research subject for lithium-sulfur batteries. Although several microporous carbon materials as host for sulfur reveal the effect, methods for producing microporous carbon are neither easy nor well controllable. Moreover, due to the complexity and limitation of microporous carbon in their fabrication process, there has been rare investigation of influence on electrochemical behavior in the carbonate-based electrolyte for lithium-sulfur batteries by tuning different micropore size(0-2 nm) of carbon host. Here, we demonstrate an immediate carbonization process, self-activation strategy, which can produce microporous carbon for a sulfur host from alkali-complexes. Besides, by changing different alkali-ion in the previous complex, the obtained microporous carbon exhibits a major portion of ultramicropore (<0.7 nm, from 54.9% to 25.8%) and it is demonstrated that the micropore structure of the host material plays a vital role in confining sulfur molecule. When evaluated as cathode materials in a carbonate-based electrolyte for Li-S batteries, such microporous carbon/sulfur composite can provide high reversible capacity, cycling stability and good rate capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multimodal Characterization of the Morphology and Functional Interfaces in Composite Electrodes for Li-S Batteries by Li Ion and Electron Beams.

    PubMed

    Oleshko, Vladimir P; Herzing, Andrew A; Twedt, Kevin A; Griebel, Jared J; McClelland, Jabez J; Pyun, Jeffrey; Soles, Christopher L

    2017-09-19

    We report the characterization of multiscale 3D structural architectures of novel poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li-S batteries capable of realizing discharge capacities >1000 mAh/g and long cycling lifetimes >500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li + probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport.

  9. Polymer-Supported Optically Active fac(S)-Tris(thiotato)rhodium(III) Complex for Sulfur-Bridging Reaction With Precious Metal Ions.

    PubMed

    Aizawa, Sen-Ichi; Tsubosaka, Soshi

    2016-01-01

    The optically active mixed-ligand fac(S)-tris(thiolato)rhodium(III) complexes, ΔL -fac(S)-[Rh(aet)2 (L-cys-N,S)](-) (aet = 2-aminoethanethiolate, L-cys = L-cysteinate) () and ΔLL -fac(S)-[Rh(aet)(L-cys-N,S)2 ](2-) were newly prepared by the equatorial preference of the carboxyl group in the coordinated L-cys ligand. The amide formation reaction of with 1,10-diaminodecane and polyallylamine gave the diamine-bridged dinuclear Rh(III) complex and the single-chain polymer-supported Rh(III) complex with retention of the ΔL configuration of , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear-type trinuclear structure with the S-bridged Co(III) center and the two Δ-Rh(III) terminal moieties. The polymer-supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85-91, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Lunar sulfur

    NASA Technical Reports Server (NTRS)

    Kuck, David L.

    1991-01-01

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  11. Lunar sulfur

    NASA Astrophysics Data System (ADS)

    Kuck, David L.

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  12. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria

    NASA Technical Reports Server (NTRS)

    Fischer, U.

    1985-01-01

    Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.

  13. Receptacle model of salting-in by tetramethylammonium ions.

    PubMed

    Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2010-11-25

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do.

  14. Formation of Multilayer Graphene Domains with Strong Sulfur-Carbon Interaction and Enhanced Sulfur Reduction Zones for Lithium-Sulfur Battery Cathodes.

    PubMed

    Perez Beltran, Saul; Balbuena, Perla B

    2018-02-12

    A newly designed sulfur/graphene computational model emulates the electrochemical behavior of a Li-S battery cathode, promoting the S-C interaction through the edges of graphene sheets. A random mixture of eight-membered sulfur rings mixed with small graphene sheets is simulated at 64 wt %sulfur loading. Structural stabilization and sulfur reduction calculations are performed with classical reactive molecular dynamics. This methodology allowed the collective behavior of the sulfur and graphene structures to be accounted for. The sulfur encapsulation induces ring opening and the sulfur phase evolves into a distribution of small chain-like structures interacting with C through the graphene edges. This new arrangement of the sulfur phase not only leads to a less pronounced volume expansion during sulfur reduction but also to a different discharge voltage profile, in qualitative agreement with earlier reports on sulfur encapsulation in microporous carbon structures. The Li 2 S phase grows around ensembles of parallel graphene nanosheets during sulfur reduction. No diffusion of sulfur or lithium between graphene nanosheets is observed, and extended Li 2 S domains bridging the space between carbon ensembles are suppressed. The results emphasize the importance of morphology on the electrochemical performance of the composite material. The sulfur/graphene model outlined here provides new understanding of the graphene effects on the sulfur reduction behavior and the role that van der Waals interactions may play in promoting formation of multilayer graphene ensembles and small Li 2 S domains during sulfur reduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cattle, deer, and elk grazing of the invasive plant sulfur cinquefoil

    Treesearch

    Catherine G. Parks; Bryan A. Endress; Martin Vavra; Michael L. McInnis; Bridgett J. Naylor

    2008-01-01

    The role of ungulates as contributors to establishment and spread of non-native invasive plants in natural areas is not well known. The objectives of this study were to document whether or not sulfur cinquefoil (Potentilia recta L.) is grazed by ungulates and to quantify the effects of ungulate herbivory on the density and demography of sulfur...

  16. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    PubMed Central

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  17. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling.

    PubMed

    Aziz, Mina; Nadipalli, Ranjith K; Xie, Xitao; Sun, Yan; Surowiec, Kazimierz; Zhang, Jin-Lin; Paré, Paul W

    2016-01-01

    Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant's growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03) transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm, BAW). In contrast, a previously characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against BAW feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.

  18. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.

    PubMed

    Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2015-11-11

    Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.

  19. Core-shell structured ceramic nonwoven separators by atomic layer deposition for safe lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shen, Xiu; Li, Chao; Shi, Chuan; Yang, Chaochao; Deng, Lei; Zhang, Wei; Peng, Longqing; Dai, Jianhui; Wu, Dezhi; Zhang, Peng; Zhao, Jinbao

    2018-05-01

    Safety is one of the most factors for lithium-ion batteries (LIBs). In this work, a novel kind of ceramic separator with high safety insurance is proposed. We fabricated the core-shell nanofiber separators for LIBs by atomic layer deposition (ALD) of 30 nm Al2O3 on the electrospinning nonwoven fiber of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). The separators show a pretty high heat resistance up to 200 °C without any shrinkage, an excellent fire-resistant property and a wide electrochemical window. Besides, with higher uptake and ionic conductivity, cells assembled with the novel separator shows better electrochemical performance. The ALD produced separators exhibit great potential in elaborate products like 3C communications and in energy field with harsh requirements for safety such as electric vehicles. The application of ALD on polymer fiber membranes brings a new strategy and opportunity for improving the safety of the advanced LIBs.

  20. A Foldable Lithium-Sulfur Battery.

    PubMed

    Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil

    2015-11-24

    The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed <12% loss in specific capacity over 100 continuous folding and unfolding cycles. Such shape-conformable Li-S batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.