Sample records for l-type calcium channel

  1. L-Type Calcium Channels Modulation by Estradiol.

    PubMed

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  2. Distribution of L-type calcium channels in rat thalamic neurones.

    PubMed

    Budde, T; Munsch, T; Pape, H C

    1998-02-01

    One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.

  3. L-type calcium channel blockade attenuates morphine withdrawal: in vivo interaction between L-type calcium channels and corticosterone.

    PubMed

    Esmaeili-Mahani, Saeed; Fathi, Yadollah; Motamedi, Fereshteh; Hosseinpanah, Farhad; Ahmadiani, Abolhassan

    2008-02-01

    Both opioids and calcium channel blockers could affect hypothalamic-pituitary-adrenal (HPA) axis function. Nifedipine, as a calcium channel blocker, can attenuate the development of morphine dependence; however, the role of the HPA axis in this effect has not been elucidated. We examined the effect of nifedipine on the induction of morphine dependency in intact and adrenalectomized (ADX) male rats, as assessed by the naloxone precipitation test. We also evaluated the effect of this drug on HPA activity induced by naloxone. Our results showed that despite the demonstration of dependence in both groups of rats, nifedipine is more effective in preventing of withdrawal signs in ADX rats than in sham-operated rats. In groups that received morphine and nifedipine concomitantly, naloxone-induced corticosterone secretion was attenuated. Thus, we have shown the involvement of the HPA axis in the effect of nifedipine on the development of morphine dependency and additionally demonstrated an in vivo interaction between the L-type Ca2+ channels and corticosterone.

  4. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts.

    PubMed

    Zhang, Xuemei; Li, Fangping; Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.

  5. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts

    PubMed Central

    Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045

  6. Development of a Radiolabeled Amlodipine Analog for L-type Calcium Channel Imaging.

    PubMed

    Firouzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Pooladi, Mehrban; Shafiee-Ardestani, Mahdi; Khalaj, Ali

    2017-01-01

    The non-invasive imaging and quantification of L-type calcium channels (also known as dihydropyridine channels) in living tissues is of great interest in diagnosis of congestive heart failure, myocardial hypertrophy, irritable bowel syndrome etc. Technetium-99m labeled amlodipine conjugate ([99mTc]-DTPA-AMLO) was prepared starting freshly eluted (<1 h) 99mTechnetium pertechnetate (86.5 MBq) and conjugated DTPAAMLO at pH 5 in 30 min at room temperature in high radiochemical purity (>99%, RTLC; specific activity: 55-60 GBq/mmol). The calcium channel blockade activity (CCBA) and apoptosis/necrosis assay of DTPA-amlodipine conjugate evaluations were performed for the conjugate. Log P, stability, bio-distribution and imaging studies were performed for the tracer followed by biodistribution studies as well as imaging. The conjugate demonstrated low toxicity on MCF-7 cells and CCBA (at µm level) compared to the amlodipine. The tracer was stable up to 4 h in final production and presence of human serum and log P (-0.49) was consistent with a water soluble complex. The tracer was excreted through kidneys and liver as expected for dihydropyridines; excluding excretory organs, calcium channel rich smooth muscle cells; including colon, intestine and lungs which demonstrated significant uptake. SPECT images supported the bio-distribution data up to 4 h. significant uptake of [99mTc]-DTPA-AMLO was obtained in calcium channel rich organs. The complex can be a candidate for further SPECT imaging for L-type calcium channels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Three types of neuronal calcium channel with different calcium agonist sensitivity.

    PubMed

    Nowycky, M C; Fox, A P; Tsien, R W

    How many types of calcium channels exist in neurones? This question is fundamental to understanding how calcium entry contributes to diverse neuronal functions such as transmitter release, neurite extension, spike initiation and rhythmic firing. There is considerable evidence for the presence of more than one type of Ca conductance in neurones and other cells. However, little is known about single-channel properties of diverse neuronal Ca channels, or their responsiveness to dihydropyridines, compounds widely used as labels in Ca channel purification. Here we report evidence for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion. In addition to a large conductance channel that contributes long-lasting current at strong depolarizations (L), and a relatively tiny conductance that underlies a transient current activated at weak depolarizations (T), we find a third type of unitary activity (N) that is neither T nor L. N-type Ca channels require strongly negative potentials for complete removal of inactivation (unlike L) and strong depolarizations for activation (unlike T). The dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.

  8. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  9. Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging.

    PubMed

    Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali

    2016-01-01

    In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [ 68 Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. [ 68 Ga] DOTA AMLO was prepared at pH 4-5 in 7-10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9-2.1 GBq/mmol) and was stable up to 4 h with a log P of -0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. The complex can be a candidate for further positron emission tomography imaging for L type calcium channels.

  10. Characterization of L-type calcium channel activity in atrioventricular nodal myocytes from rats with streptozotocin-induced Diabetes mellitus

    PubMed Central

    Yuill, Kathryn H; Al Kury, Lina T; Howarth, Frank Christopher

    2015-01-01

    Cardiovascular complications are common in patients with Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. We have previously shown that spontaneous cellular electrical activity is altered in atrioventricular nodal (AVN) myocytes, isolated from the streptozotocin (STZ) rat model of type-1 DM. In this study, utilizing the same model, we have characterized the changes in L-type calcium channel activity in single AVN myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess the changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current. A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. L-type calcium channel current also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident, and a slowing of restitution parameters. These findings demonstrate that experimentally induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. These changes in ion channel activity may contribute to the abnormalities in cardiac electrical function that are associated with high mortality levels in patients with DM. PMID:26603460

  11. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels.

    PubMed

    Andres, Marilou A; Cooke, Ian M; Bellinger, Frederick P; Berry, Marla J; Zaporteza, Maribel M; Rueli, Rachel H; Barayuga, Stephanie M; Chang, Linda

    2015-07-01

    In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the

  12. Cilnidipine, an L/N-type calcium channel blocker prevents acquisition and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Bhutada, Pravinkumar; Mundhada, Yogita; Patil, Jayshree; Rahigude, Anand; Zambare, Krushna; Deshmukh, Prashant; Tanwar, Dhanshree; Jain, Kishor

    2012-04-11

    Several evidences indicated the involvement of L- and N-type calcium channels in behavioral effects of drugs of abuse, including ethanol. Calcium channels are implicated in ethanol-induced behaviors and neurochemical responses. Calcium channel antagonists block the psychostimulants induced behavioral sensitization. Recently, it is demonstrated that L-, N- and T-type calcium channel blockers attenuate the acute locomotor stimulant effects of ethanol. However, no evidence indicated the role of calcium channels in ethanol-induced psychomotor sensitization. Therefore, present study evaluated the influence of cilnidipine, an L/N-type calcium channel blocker on acquisition and expression of ethanol-induced locomotor sensitization. The results revealed that cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) attenuates the expression of sensitization to locomotor stimulant effect of ethanol (2.0g/kg, i.p.), whereas pre- treatment of cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) during development of sensitization blocks acquisition and attenuates expression of sensitization to locomotor stimulant effect of ethanol. Cilnidipine per se did not influence locomotor activity in tested doses. Further, cilnidipine had no influence on effect of ethanol on rotarod performance. These results support the hypothesis that neuroadaptive changes in calcium channels participate in the acquisition and the expression of ethanol-induced locomotor sensitization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging

    PubMed Central

    Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali

    2016-01-01

    Aim: In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Materials and Methods: Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [68Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. Results: [68Ga] DOTA AMLO was prepared at pH 4–5 in 7–10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9–2.1 GBq/mmol) and was stable up to 4 h with a log P of −0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. Conclusions: The complex can be a candidate for further positron emission tomography imaging for L type calcium channels. PMID:27833311

  14. L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis

    ERIC Educational Resources Information Center

    McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.

    2008-01-01

    Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…

  15. L-type calcium channels refine the neural population code of sound level.

    PubMed

    Grimsley, Calum Alex; Green, David Brian; Sivaramakrishnan, Shobhana

    2016-12-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (Ca L : Ca V 1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of Ca L to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. Ca L is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, Ca L activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, Ca L boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, Ca L either suppresses or enhances firing at sound levels that evoke maximum firing. Ca L multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. Copyright © 2016 the American Physiological Society.

  16. L-type calcium channels refine the neural population code of sound level

    PubMed Central

    Grimsley, Calum Alex; Green, David Brian

    2016-01-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536

  17. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    PubMed Central

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease. PMID:27488468

  18. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  19. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  20. Novel 1, 4-dihydropyridines for L-type calcium channel as antagonists for cadmium toxicity

    PubMed Central

    Saddala, Madhu Sudhana; Kandimalla, Ramesh; Adi, Pradeepkiran Jangampalli; Bhashyam, Sainath Sri; Asupatri, Usha Rani

    2017-01-01

    The present study, we design and synthesize the novel dihydropyridine derivatives, i.e., 3 (a-e) and 5 (a-e) and evaluated, anticonvulsant activity. Initially due to the lacuna of LCC, we modeled the protein through modeller 9.15v and evaluated through servers. Docking studies were performed with the synthesized compounds and resulted two best compounds, i.e., 5a, 5e showed the best binding energies. The activity of intracellular Ca2+ measurements was performed on two cell lines: A7r5 (rat aortic smooth muscle cells) and SH-SY5Y (human neuroblastoma cells). The 5a and 5e compounds was showing the more specific activity on L-type calcium channels, i.e. A7r5 (IC50 = 0.18 ± 0.02 and 0.25 ± 0.63 μg/ml, respectively) (containing only L-type channels) than SH-SY5Y (i.e. both L-type and T-type channels) (IC50 = 8 ± 0.23 and 10 ± 0.18 μg/ml, respectively) with intracellular calcium mobility similar to amlodipine. Finally, both in silico and in vitro results exploring two derivatives 5a and 5e succeeded to treat cadmium toxicity. PMID:28345598

  1. A Critical Neurodevelopmental Role for L-Type Voltage-Gated Calcium Channels in Neurite Extension and Radial Migration.

    PubMed

    Kamijo, Satoshi; Ishii, Yuichiro; Horigane, Shin-Ichiro; Suzuki, Kanzo; Ohkura, Masamichi; Nakai, Junichi; Fujii, Hajime; Takemoto-Kimura, Sayaka; Bito, Haruhiko

    2018-06-13

    Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca 2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCC during brain development remain unclear. Calcium signaling has been shown to be essential for neurodevelopmental processes such as sculpting of neurites, functional wiring, and fine tuning of growing networks. To investigate this relationship, we performed submembraneous calcium imaging using a membrane-tethered genetically encoded calcium indicator (GECI) Lck-G-CaMP7. We successfully recorded s pontaneous regenerative calcium transients (SRCaTs) in developing mouse excitatory cortical neurons prepared from both sexes before synapse formation. SRCaTs originated locally in immature neurites independently of somatic calcium rises and were significantly more elevated in the axons than in dendrites. SRCaTs were not blocked by tetrodoxin, a Na + channel blocker, but were strongly inhibited by hyperpolarization, suggesting a voltage-dependent source. Pharmacological and genetic manipulations revealed the critical importance of the Ca v 1.2 (CACNA1C) pore-forming subunit of L-type VGCCs, which were indeed expressed in immature mouse brains. Consistently, knocking out Ca v 1.2 resulted in significant alterations of neurite outgrowth. Furthermore, expression of a gain-of-function Ca v 1.2 mutant found in Timothy syndrome, an autosomal dominant multisystem disorder exhibiting syndromic autism, resulted in impaired radial migration of layer 2/3 excitatory neurons, whereas postnatal abrogation of Ca v 1.2 enhancement could rescue cortical malformation. Together, these lines of evidence suggest a critical role for spontaneous opening of L-type VGCCs in neural development and corticogenesis and indicate that L-type VGCCs might constitute a perinatal therapeutic target for neuropsychiatric calciochannelopathies. SIGNIFICANCE STATEMENT Despite many association

  2. Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence

    PubMed Central

    Uhrig, Stefanie; Vandael, David; Marcantoni, Andrea; Dedic, Nina; Bilbao, Ainhoa; Vogt, Miriam A; Hirth, Natalie; Broccoli, Laura; Bernardi, Rick E; Schönig, Kai; Gass, Peter; Bartsch, Dusan; Spanagel, Rainer; Deussing, Jan M; Sommer, Wolfgang H; Carbone, Emilio; Hansson, Anita C

    2017-01-01

    It has previously been shown that the inhibition of L-type calcium channels (LTCCs) decreases alcohol consumption, although the contribution of the central LTCC subtypes Cav1.2 and Cav1.3 remains unknown. Here, we determined changes in Cav1.2 (Cacna1c) and Cav1.3 (Cacna1d) mRNA and protein expression in alcohol-dependent rats during protracted abstinence and naive controls using in situ hybridization and western blot analysis. Functional validation was obtained by electrophysiological recordings of calcium currents in dissociated hippocampal pyramidal neurons. We then measured alcohol self-administration and cue-induced reinstatement of alcohol seeking in dependent and nondependent rats after intracerebroventricular (i.c.v.) injection of the LTCC antagonist verapamil, as well as in mice with an inducible knockout (KO) of Cav1.2 in Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-expressing neurons. Our results show that Cacna1c mRNA concentration was increased in the amygdala and hippocampus of alcohol-dependent rats after 21 days of abstinence, with no changes in Cacna1d mRNA. This was associated with increased Cav1.2 protein concentration and L-type calcium current amplitudes. Further analysis of Cacna1c mRNA in the CA1, basolateral amygdala (BLA), and central amygdala (CeA) revealed a dynamic regulation over time during the development of alcohol dependence. The inhibition of central LTCCs via i.c.v. administration of verapamil prevented cue-induced reinstatement of alcohol seeking in alcohol-dependent rats. Further studies in conditional Cav1.2-KO mice showed a lack of dependence-induced increase of alcohol-seeking behavior. Together, our data indicate that central Cav1.2 channels, rather than Cav1.3, mediate alcohol-seeking behavior. This finding may be of interest for the development of new antirelapse medications. PMID:27905406

  3. Long-term effects of L- and N-type calcium channel blocker on uric acid levels and left atrial volume in hypertensive patients.

    PubMed

    Masaki, Mitsuru; Mano, Toshiaki; Eguchi, Akiyo; Fujiwara, Shohei; Sugahara, Masataka; Hirotani, Shinichi; Tsujino, Takeshi; Komamura, Kazuo; Koshiba, Masahiro; Masuyama, Tohru

    2016-11-01

    Left ventricular (LV) diastolic dysfunction is associated with hypertension and hyperuricemia. However, it is not clear whether the L- and N-type calcium channel blocker will improve LV diastolic dysfunction through the reduction of uric acid. The aim of this study was to investigate the effects of anti-hypertensive therapy, the L- and N-type calcium channel blocker, cilnidipine or the L-type calcium channel blocker, amlodipine, on left atrial reverse remodeling and uric acid in hypertensive patients. We studied 62 patients with untreated hypertension, randomly assigned to cilnidipine or amlodipine for 48 weeks. LV diastolic function was assessed with the left atrial volume index (LAVI), mitral early diastolic wave (E), tissue Doppler early diastolic velocity (E') and the ratio (E/E'). Serum uric acid levels were measured before and after treatment. After treatment, systolic and diastolic blood pressures equally dropped in both groups. LAVI, E/E', heart rate and uric acid levels decreased at 48 weeks in the cilnidipine group but not in the amlodipine group. The % change from baseline to 48 weeks in LAVI, E wave, E/E' and uric acid levels were significantly lower in the cilnidipine group than in the amlodipine group. Larger %-drop in uric acid levels were associated with larger %-reduction of LAVI (p < 0.01). L- and N-type calcium channel blocker but not L-type calcium channel blocker may improve LV diastolic function in hypertensive patients, at least partially through the decrease in uric acid levels.

  4. Aging-associated changes in L-type calcium channels in the left atria of dogs.

    PubMed

    Gan, Tian-Yi; Qiao, Weiwei; Xu, Guo-Jun; Zhou, Xian-Hui; Tang, Bao-Peng; Song, Jian-Guo; Li, Yao-Dong; Zhang, Jian; Li, Fa-Peng; Mao, Ting; Jiang, Tao

    2013-10-01

    Action potential (AP) contours vary considerably between the fibers of normal adult and aged left atria. The underlying ionic and molecular mechanisms that mediate these differences remain unknown. The aim of the present study was to investigate whether the L-type calcium current (I Ca.L ) and the L-type Ca 2+ channel of the left atria may be altered with age to contribute to atrial fibrillation (AF). Two groups of mongrel dogs (normal adults, 2-2.5 years old and older dogs, >8 years old) were used in this study. The inducibility of AF was quantitated using the cumulative window of vulnerability (WOV). A whole-cell patch-clamp was used to record APs and I Ca.L in left atrial (LA) cells obtained from the two groups of dogs. Protein and mRNA expression levels of the a1C (Cav1.2) subunit of the L-type calcium channel were assessed using western blotting and quantitative PCR (qPCR), respectively. Although the resting potential, AP amplitude and did not differ with age, the plateau potential was more negative and the APD 90 was longer in the aged cells compared with that in normal adult cells. Aged LA cells exhibited lower peak I Ca.L current densities than normal adult LA cells (P<0.05). In addition, the Cav1.2 mRNA and protein expression levels in LA cells were decreased in the aged group compared with those in the normal adult group. The lower AP plateau potential and the decreased I Ca.L of LA cells in aged dogs may contribute to the slow and discontinuous conduction of the left atria. Furthermore, the reduction of the expression levels of Cav1.2 with age may be the molecular mechanism that mediates the decline in I Ca.L with increasing age.

  5. P/Q-type calcium channel modulators

    PubMed Central

    Nimmrich, V; Gross, G

    2012-01-01

    P/Q-type calcium channels are high-voltage-gated calcium channels contributing to vesicle release at synaptic terminals. A number of neurological diseases have been attributed to malfunctioning of P/Q channels, including ataxia, migraine and Alzheimer's disease. To date, only two specific P/Q-type blockers are known: both are peptides deriving from the spider venom of Agelenopsis aperta, ω-agatoxins. Other peptidic calcium channel blockers with activity at P/Q channels are available, albeit with less selectivity. A number of low molecular weight compounds modulate P/Q-type currents with different characteristics, and some exhibit a peculiar bidirectional pattern of modulation. Interestingly, there are a number of therapeutics in clinical use, which also show P/Q channel activity. Because selectivity as well as the exact mode of action is different between all P/Q-type channel modulators, the interpretation of clinical and experimental data is complicated and needs a comprehensive understanding of their target profile. The situation is further complicated by the fact that information on potency varies vastly in the literature, which may be the result of different experimental systems, conditions or the splice variants of the P/Q channel. This review attempts to provide a comprehensive overview of the compounds available that affect the P/Q-type channel and should help with the interpretation of results of in vitro experiments and animal models. It also aims to explain some clinical observations by implementing current knowledge about P/Q channel modulation of therapeutically used non-selective drugs. Chances and challenges of the development of P/Q channel-selective molecules are discussed. PMID:22670568

  6. CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through upregulating L-type calcium channel activity.

    PubMed

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-09-01

    A specialized culture medium termed ciliary neurotrophic factor-treated astrocyte-conditioned medium (CNTF-ACM) allows investigators to assess the peripheral effects of CNTF-induced activated astrocytes upon cultured neurons. CNTF-ACM has been shown to upregulate neuronal L-type calcium channel current activity, which has been previously linked to changes in mitochondrial respiration and oxidative stress. Therefore, the aim of this study was to evaluate CNTF-ACM's effects upon mitochondrial respiration and oxidative stress in rat cortical neurons. Cortical neurons, CNTF-ACM, and untreated control astrocyte-conditioned medium (UC-ACM) were prepared from neonatal Sprague-Dawley rat cortical tissue. Neurons were cultured in either CNTF-ACM or UC-ACM for a 48-h period. Changes in the following parameters before and after treatment with the L-type calcium channel blocker isradipine were assessed: (i) intracellular calcium levels, (ii) mitochondrial membrane potential (ΔΨm), (iii) oxygen consumption rate (OCR) and adenosine triphosphate (ATP) formation, (iv) intracellular nitric oxide (NO) levels, (v) mitochondrial reactive oxygen species (ROS) production, and (vi) susceptibility to the mitochondrial complex I toxin rotenone. CNTF-ACM neurons displayed the following significant changes relative to UC-ACM neurons: (i) increased intracellular calcium levels (p < 0.05), (ii) elevation in ΔΨm (p < 0.05), (iii) increased OCR and ATP formation (p < 0.05), (iv) increased intracellular NO levels (p < 0.05), (v) increased mitochondrial ROS production (p < 0.05), and (vi) increased susceptibility to rotenone (p < 0.05). Treatment with isradipine was able to partially rescue these negative effects of CNTF-ACM (p < 0.05). CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through elevating L-type calcium channel activity.

  7. Retinoschisin, a New Binding Partner for L-type Voltage-gated Calcium Channels in the Retina*

    PubMed Central

    Shi, Liheng; Jian, Kuihuan; Ko, Michael L.; Trump, Dorothy; Ko, Gladys Y.-P.

    2009-01-01

    The L-type voltage-gated calcium channels (L-VGCCs) are activated under high depolarization voltages. They are vital for diverse biological events, including cell excitability, differentiation, and synaptic transmission. In retinal photoreceptors, L-VGCCs are responsible for neurotransmitter release and are under circadian influences. However, the mechanism of L-VGCC regulation in photoreceptors is not fully understood. Here, we show that retinoschisin, a highly conserved extracellular protein, interacts with the L-VGCCα1D subunit and regulates its activities in a circadian manner. Mutations in the gene encoding retinoschisin (RS1) cause retinal disorganization that leads to early onset of macular degeneration. Since ion channel activities can be modulated through interactions with extracellular proteins, disruption of these interactions can alter physiology and be the root cause of disease states. Co-immunoprecipitation and mammalian two-hybrid assays showed that retinoschisin and the N-terminal fragment of the L-VGCCα1 subunit physically interacted with one another. The expression and secretion of retinoschisin are under circadian regulation with a peak at night and nadir during the day. Inhibition of L-type VGCCs decreased membrane-bound retinoschisin at night. Overexpression of a missense RS1 mutant gene, R141G, into chicken cone photoreceptors caused a decrease of L-type VGCC currents at night. Our findings demonstrate a novel bidirectional relationship between an ion channel and an extracellular protein; L-type VGCCs regulate the circadian rhythm of retinoschisin secretion, whereas secreted retinoschisin feeds back to regulate L-type VGCCs. Therefore, physical interactions between L-VGCCα1 subunits and retinoschisin play an important role in the membrane retention of L-VGCCα1 subunits and photoreceptor-bipolar synaptic transmission. PMID:19074145

  8. Evaluation of the inhibitory effect of dihydropyridines on N-type calcium channel by virtual three-dimensional pharmacophore modeling.

    PubMed

    Ogihara, Takuo; Kano, Takashi; Kakinuma, Chihaya

    2009-01-01

    Currently, a new type of calcium channel blockers, which can inhibit not only L-type calcium channels abundantly expressed in vascular smooth muscles, but also N-type calcium channels that abound in the sympathetic nerve endings, have been developed. In this study, analysis on a like-for-like basis of the L- and N-type calcium channel-inhibitory activity of typical dihydropyridine-type calcium-channel blockers (DHPs) was performed. Moreover, to understand the differences of N-type calcium channel inhibition among DHPs, the binding of DHPs to the channel was investigated by means of hypothetical three-dimensional pharmacophore modeling using multiple calculated low-energy conformers of the DHPs. All of the tested compounds, i.e. cilnidipine (CAS 132203-70-4), efonidipine (CAS 111011-76-8), amlodipine (CAS 111470-99-6), benidipine (CAS 85387-35-5), azelnidipine (CAS 123524-52-7) and nifedipine (CAS 21829-25-4), potently inhibited the L-type calcium channel, whereas only cilnidipine inhibited the N-type calcium channel (IC50 value: 51.2 nM). A virtual three-dimensional structure of the N-type calcium channel was generated by using the structure of the peptide omega-conotoxin GVIA, a standard inhibitor of the channel, and cilnidipine was found to fit well into this pharmacophore model. Lipophilic potential maps of omega-conotoxin GVIA and cilnidipine supported this finding. Conformational overlay of cilnidipine and the other DHPs indicated that amlodipine and nifedipine were not compatible with the pharmacophore model because they did not contain an aromatic ring that was functionally equivalent to Tyr13 of omega-conotoxin GVIA. Azelnidipine, benidipine, and efonidipine, which have this type of aromatic ring, were not positively identified due to intrusions into the excluded volume. Estimation of virtual three-dimensional structures of proteins, such as ion channels, by using standard substrates and/or inhibitors may be a useful method to explore the mechanisms of

  9. Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current.

    PubMed

    Nafzger, Sabine; Rougier, Jean-Sebastien

    2017-01-01

    The L-type voltage-gated calcium channel Ca v 1.2 mediates the calcium influx into cells upon membrane depolarization. The list of cardiopathies associated to Ca v 1.2 dysfunctions highlights the importance of this channel in cardiac physiology. Calcium/calmodulin-dependent serine protein kinase (CASK), expressed in cardiac cells, has been identified as a regulator of Ca v 2.2 channels in neurons, but no experiments have been performed to investigate its role in Ca v 1.2 regulation. Full length or the distal C-terminal truncated of the pore-forming Ca v 1.2 channel (Ca v 1.2α1c), both present in cardiac cells, were expressed in TsA-201 cells. In addition, a shRNA silencer, or scramble as negative control, of CASK was co-transfected in order to silence CASK endogenously expressed. Three days post-transfection, the barium current was increased only for the truncated form without alteration of the steady state activation and inactivation biophysical properties. The calcium current, however, was increased after CASK silencing with both types of Ca v 1.2α1c subunits suggesting that, in absence of calcium, the distal C-terminal counteracts the CASK effect. Biochemistry experiments did not reveals neither an alteration of Ca v 1.2 channel protein expression after CASK silencing nor an interaction between Ca v 1.2α1c subunits and CASK. Nevertheless, after CASK silencing, single calcium channel recordings have shown an increase of the voltage-gated calcium channel Ca v 1.2 open probability explaining the increase of the whole-cell current. This study suggests CASK as a novel regulator of Ca v 1.2 via a modulation of the voltage-gated calcium channel Ca v 1.2 open probability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Apo calmodulin binding to the L-type voltage-gated calcium channel Ca{sub v}1.2 IQ peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf

    2007-02-16

    The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca{sub v}1.2 subunit has been shown to bind both calcium-loaded (Ca{sup 2+}CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction ofmore » apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca{sup 2+}CaM can bind to the intact channel.« less

  11. Carbachol induces burst firing of dopamine cells in the ventral tegmental area by promoting calcium entry through L-type channels in the rat

    PubMed Central

    Zhang, Lei; Liu, Yudan; Chen, Xihua

    2005-01-01

    Enhanced activity of the central dopamine system has been implicated in many psychiatric disorders including schizophrenia and addiction. Besides terminal mechanisms that boost dopamine levels at the synapse, the cell body of dopamine cells enhances terminal dopamine concentration through encoding action potentials in bursts. This paper presents evidence that burst firing of dopamine cells in the ventral tegmental area was under cholinergic control using nystatin-perforated patch clamp recording from slice preparations. The non-selective cholinergic agonist carbachol excited the majority of recorded neurones, an action that was not affected by blocking glutamate and GABA ionotropic receptors. Twenty per cent of dopamine cells responded to carbachol with robust bursting, an effect mediated by both muscarinic and nicotinic cholinoceptors postsynaptically. Burst firing induced as such was completely dependent on calcium entry as it could be blocked by cadmium and more specifically the L-type blocker nifedipine. In the presence of the sodium channel blocker tetrodotoxin, carbachol induced membrane potential oscillation that had similar kinetics and frequency as burst firing cycles and could also be blocked by cadmium and nifedipine. Direct activation of the L-type channel with Bay K8644 induced strong bursting which could be blocked by nifedipine but not by depleting internal calcium stores. These results indicate that carbachol increases calcium entry into the postsynaptic cell through L-type channels to generate calcium-dependent membrane potential oscillation and burst firing. This could establish the L-type channel as a target for modulating the function of the central dopamine system in disease conditions. PMID:16081481

  12. Protective effects of efonidipine, a T- and L-type calcium channel blocker, on renal function and arterial stiffness in type 2 diabetic patients with hypertension and nephropathy.

    PubMed

    Sasaki, Hidehisa; Saiki, Atsuhito; Endo, Kei; Ban, Noriko; Yamaguchi, Takashi; Kawana, Hidetoshi; Nagayama, Daizi; Ohhira, Masahiro; Oyama, Tomokazu; Miyashita, Yoh; Shirai, Kohji

    2009-10-01

    The three types of calcium channel blocker (CCB), L-, T- and N-type, possess heterogeneous actions on endothelial function and renal microvascular function. In the present study, we evaluated the effects of two CCBs, efonidipine and amlodipine, on renal function and arterial stiffness. Forty type 2 diabetic patients with hypertension and nephropathy receiving angiotensin receptor II blockers were enrolled and randomly divided into two groups: the efonidipine group was administered efonidipine hydrochloride ethanolate 40 mg/day and the amlodipine group was admin-istered amlodipine besilate 5 mg/day for 12 months. Arterial stiffness was evaluated by the cardio-ankle vascular index (CAVI). Changes in blood pressure during the study were almost the same in the two groups. Sig-nificant increases in serum creatinine and urinary albumin and a significant decrease in the esti-mated glomerular filtration rate were observed in the amlodipine group, but not in the efonidipine group. On the other hand, significant decreases in plasma aldosterone, urinary 8-hydroxy-2'-deoxy-guanosine and CAVI were observed after 12 months in the efonidipine group, but not in the amlo-dipine group. These results suggest that efonidipine, which is both a T-type and L-type calcium chan-nel blocker, has more favorable effects on renal function, oxidative stress and arterial stiffness than amlodipine, an L-type calcium channel blocker.

  13. L-Histidine sensing by calcium sensing receptor inhibits voltage-dependent calcium channel activity and insulin secretion in β-cells

    PubMed Central

    Parkash, Jai; Asotra, Kamlesh

    2011-01-01

    Aims Our goal was to test the hypothesis that the histidine-induced activation of calcium sensing receptor (CaR) can regulate calcium channel activity of L-type voltage dependent calcium channel (VDCC) due to increased spatial interaction between CaR and VDCC in β-cells and thus modulate glucose-induced insulin secretion. Main methods Rat insulinoma (RINr1046-38) insulin-producing β-cells were cultured in RPMI-1640 medium on 25 mm diameter glass coverslips in six-well culture plates in a 5% CO2 incubator at 37°C. The intracellular calcium concentration, [Ca2+]i, was determined by ratio fluorescence microscopy using Fura-2AM. The spatial interactions between CaR and L-type VDCC in β-cells were measured by immunofluorescence confocal microscopy using a Nikon C1 laser scanning confocal microscope. The insulin release was determined by enzyme-linked immunosorbent assay (ELISA). Key findings The additions of increasing concentrations of L-histidine along with 10 mM glucose resulted in 57% decrease in [Ca2+]i. The confocal fluorescence imaging data showed 5.59 to 8.62-fold increase in colocalization correlation coefficient between CaR and VDCC in β-cells exposed to L-histidine thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. The insulin ELISA data showed 54% decrease in 1st phase of glucose-induced insulin secretion in β-cells exposed to increasing concentrations of L-histidine. Significance L-histidine-induced increased spatial interaction of CaR with VDCC can inhibit calcium channel activity of VDCC and consequently regulate glucose-induced insulin secretion by β-cells. The L-type VDCC could therefore be potential therapeutic target in diabetes. PMID:21219913

  14. D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry.

    PubMed

    Kisilevsky, Alexandra E; Mulligan, Sean J; Altier, Christophe; Iftinca, Mircea C; Varela, Diego; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; Macvicar, Brian A; Zamponi, Gerald W

    2008-05-22

    Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.

  15. The Calmodulin-Binding, Short Linear Motif, NSCaTE Is Conserved in L-Type Channel Ancestors of Vertebrate Cav1.2 and Cav1.3 Channels

    PubMed Central

    Taiakina, Valentina; Boone, Adrienne N.; Fux, Julia; Senatore, Adriano; Weber-Adrian, Danielle

    2013-01-01

    NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels. PMID:23626724

  16. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients.

    PubMed

    Thuesen, A D; Lyngsø, K S; Rasmussen, L; Stubbe, J; Skøtt, O; Poulsen, F R; Pedersen, C B; Rasmussen, L M; Hansen, P B L

    2017-03-01

    Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain and mammary blood vessels. Internal mammary arteries from bypass surgery patients and cerebral arterioles from patients with brain tumours with and without hypertension were tested in a myograph and perfusion set-up. PCR and immunohistochemistry were performed on isolated blood vessels. The P/Q-type antagonist ω-agatoxin IVA (10 -8  mol L -1 ) and the T-type calcium blocker mibefradil (10 -7  mol L -1 ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased contraction in cerebral arterioles from hypertensive patients. L-type blocker nifedipine abolished the contraction in mammary arteries. PCR analysis showed expression of P/Q-type (Ca v 2.1), T-type (Ca v 3.1 and Ca v 3.2) and L-type (Ca v 1.2) calcium channels in mammary and cerebral arteries. Immunohistochemical labelling of mammary and cerebral arteries revealed the presence of Ca v 2.1 in endothelial and smooth muscle cells. Ca v 3.1 was also detected in mammary arteries. P/Q- and T-type Ca v are present in human internal mammary arteries and in cerebral penetrating arterioles. P/Q- and T-type calcium channels are involved in the contraction of mammary arteries from hypertensive patients but not from normotensive patients. Furthermore, in cerebral arterioles P/Q-type channels importance was restricted to hypertensive patients might lead to that T- and P/Q-type channels could be a new target in hypertensive patients. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries.

    PubMed

    VanBavel, Ed; Sorop, Oana; Andreasen, Ditte; Pfaffendorf, Martin; Jensen, Boye L

    2002-12-01

    T-type calcium channels may be involved in the maintenance of myogenic tone. We tested their role in isolated rat cremaster arterioles obtained after CO(2) anesthesia and decapitation. Total RNA was analyzed by RT-PCR and Southern blotting for calcium channel expression. We observed expression of voltage-operated calcium (Ca(V)) channels Ca(V)3.1 (T-type), Ca(V)3.2 (T-type), and Ca(V)1.2 (L-type) in cremaster arterioles (n = 3 rats). Amplification products were observed only in the presence of reverse transcriptase and cDNA. Concentration-response curves of the relatively specific L-type blocker verapamil and the relatively specific T-type blockers mibefradil and nickel were made on cannulated vessels with either myogenic tone (75 mmHg) or a similar level of constriction induced by 30 mM K(+) at 35 mmHg. Mibefradil and nickel were, respectively, 162-fold and 300-fold more potent in inhibiting myogenic tone compared with K(+)-induced constriction [log(IC(50), M): mibefradil, basal -7.3 +/- 0.2 (n = 9) and K(+) -5.1 +/- 0.1 (n = 5); nickel, basal -4.1 +/- 0.2 (n = 5) and K(+) -1.6 +/- 0.5 (n = 5); means +/- SE]. Verapamil had a 17-fold more potent effect [log(IC(50), M): basal -6.6 +/- 0.1 (n = 5); K(+) -5.4 +/- 0.3 (n = 4); all log(IC(50)) P < 0.05, basal vs. K(+)]. These data suggest that T-type calcium channels are expressed and involved in maintenance of myogenic tone in rat cremaster muscle arterioles.

  18. Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells

    PubMed Central

    Bardy, G; Virsolvy, A; Quignard, J F; Ravier, M A; Bertrand, G; Dalle, S; Cros, G; Magous, R; Richard, S; Oiry, C

    2013-01-01

    Background and Purpose Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor. Experimental Approach Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique. Key Results Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i. Conclusions and Implications Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin's mechanism of action on insulin secretion. PMID:23530660

  19. T-type calcium channels in synaptic plasticity

    PubMed Central

    Lambert, Régis C.

    2017-01-01

    ABSTRACT The role of T-type calcium currents is rarely considered in the extensive literature covering the mechanisms of long-term synaptic plasticity. This situation reflects the lack of suitable T-type channel antagonists that till recently has hampered investigations of the functional roles of these channels. However, with the development of new pharmacological and genetic tools, a clear involvement of T-type channels in synaptic plasticity is starting to emerge. Here, we review a number of studies showing that T-type channels participate to numerous homo- and hetero-synaptic plasticity mechanisms that involve different molecular partners and both pre- and post-synaptic modifications. The existence of T-channel dependent and independent plasticity at the same synapse strongly suggests a subcellular localization of these channels and their partners that allows specific interactions. Moreover, we illustrate the functional importance of T-channel dependent synaptic plasticity in neocortex and thalamus. PMID:27653665

  20. Nimodipine, an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice.

    PubMed

    Singh, Alpana; Verma, Poonam; Balaji, Gillela; Samantaray, Supriti; Mohanakumar, Kochupurackal P

    2016-10-01

    Parkinson's disease (PD), the most common progressive neurodegenerative movement disorder, results from loss of dopaminergic neurons of substantia nigra pars compacta. These neurons exhibit Cav1.3 channel-dependent pacemaking activity. Epidemiological studies suggest reduced risk for PD in population under long-term antihypertensive therapy with L-type calcium channel antagonists. These prompted us to investigate nimodipine, an L-type calcium channel blocker for neuroprotective effect in cellular and animal models of PD. Nimodipine (0.1-10 μM) significantly attenuated 1-methyl-4-phenyl pyridinium ion-induced loss in mitochondrial morphology, mitochondrial membrane potential and increases in intracellular calcium levels in SH-SY5Y neuroblastoma cell line as measured respectively employing Mitotracker green staining, TMRM, and Fura-2 fluorescence, but only a feeble neuroprotective effect was observed in MTT assay. Nimodipine dose-dependently reduced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian syndromes (akinesia and catalepsy) and loss in swimming ability in Balb/c mice. It attenuated MPTP-induced loss of dopaminergic tyrosine hydroxylase positive neurons in substantia nigra, improved mitochondrial oxygen consumption and inhibited reactive oxygen species production in the striatal mitochondria measured using dichlorodihydrofluorescein fluorescence, but failed to block striatal dopamine depletion. These results point to an involvement of L-type calcium channels in MPTP-induced dopaminergic neuronal death in experimental parkinsonism and more importantly provide evidences for nimodipine to improve mitochondrial integrity and function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Vitamin E isomer δ-tocopherol enhances the efficiency of neural stem cell differentiation via L-type calcium channel.

    PubMed

    Deng, Sihao; Hou, Guoqiang; Xue, Zhiqin; Zhang, Longmei; Zhou, Yuye; Liu, Chao; Liu, Yanqing; Li, Zhiyuan

    2015-01-12

    The effects of the vitamin E isomer δ-tocopherol on neural stem cell (NSC) differentiation have not been investigated until now. Here we investigated the effects of δ-tocopherol on NSC neural differentiation, maturation and its possible mechanisms. Neonatal rat NSCs were grown in suspended neurosphere cultures, and were identified by their expression of nestin protein and their capacity for self-renewal. Treatment with a low concentration of δ-tocopherol induced a significant increase in the percentage of β-III-tubulin-positive cells. δ-Tocopherol also stimulated morphological maturation of neurons in culture. We further observed that δ-tocopherol stimulation increased the expression of voltage-dependent Ca(2+) channels. Moreover, a L-type specific Ca(2+) channel blocker verapamil reduced the percentage of differentiated neurons after δ-tocopherol treatment, and blocked the effects of δ-tocopherol on NSC differentiation into neurons. Together, our study demonstrates that δ-tocopherol may act through elevation of L-type calcium channel activity to increase neuronal differentiation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. The effects of vasoactive peptide urocortin 2 on hemodynamics in spontaneous hypertensive rat and the role of L-type calcium channel and CRFR2.

    PubMed

    Liu, Chunna; Liu, Xinyu; Yang, Jing; Duan, Yan; Yao, Hongyue; Li, Fenghua; Zhang, Xia

    2015-04-01

    Urocortin (UCN) is a newly identified vascular-active peptide that has been shown to reverse cardiovascular remodeling and improve left ventricular (LV) function. The effects and mechanism of urocortin 2 (UCN2) in vivo on the electrical remodeling of left ventricle and the hemodynamics of hypertensive objectives have not been investigated. UCN2 (1 μg/kg/d, 3.5 μg/kg/d or 7 μg/kg/d) was intravenously injected for 2 weeks and its effects on hemodynamics in spontaneously hypertensive rats (SHRs) observed. The whole-cell patch clamp technique was used to explore the effects of UCN2 on the electrical remodeling of left ventricular cardiomyocytes. The flow cytometry method was used to determine the content of fluorescence calcium in myocardium. UCN2 improved the systolic and diastolic function of SHRs as demonstrated by decreased left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), increased +dp/dtmax and -dp/dtmax and decreased cAMP level. UCN2 inhibited the opening of L-type calcium channel and decreased the calcium channel current of cardiomyocytes. In addition, UCN2 also decreased the contents of fluorescence calcium in SHR myocardium. However, astressin2-B (AST-2B), the antagonist of corticotropin-releasing factor receptor 2 (CRFR2), could reverse the inhibitory effects of UCN2 on calcium channel. UCN2 can modulate electrical remodeling of the myocardium and hemodynamics in an experimental model of SHR via inhibition of L-type calcium channel and CRFR2 in cardiomyocytes. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Antiapolipoprotein A-1 IgG chronotropic effects require nongenomic action of aldosterone on L-type calcium channels.

    PubMed

    Rossier, Michel F; Pagano, Sabrina; Python, Magaly; Maturana, Andres D; James, Richard W; Mach, François; Roux-Lombard, Pascale; Vuilleumier, Nicolas

    2012-03-01

    Autoantibodies to apolipoprotein A-1 (antiapoA-1 IgG) have been shown to be associated with higher resting heart rate and morbidity in myocardial infarction patients and to behave as a chronotropic agent in the presence of aldosterone on isolated neonatal rat ventricular cardiomyocytes (NRVC). We aimed at identifying the pathways accounting for this aldosterone-dependent antiapoA-1 IgG-positive chronotropic effect on NRVC. The rate of regular spontaneous contractions was determined on NRVC in the presence of different steroid hormones and antagonists. AntiapoA-1 IgG chronotropic response was maximal within 20 min and observed only in aldosterone-pretreated cells but not in those exposed to other steroids. The positive antiapoA-1 IgG chronotropic effect was already significant after 5 min aldosterone preincubation, was dependent on 3-kinase and protein kinase A activities, was not inhibited by actinomycin D, and was fully abrogated by eplerenone (but not by spironolactone), demonstrating the dependence on a nongenomic action of aldosterone elicited through the mineralocorticoid receptor (MR). Under oxidative conditions (but not under normal redox state), corticosterone mimicked the permissive action of aldosterone on the antiapoA-1 IgG chronotropic response. Pharmacological and patch-clamp studies identified L-type calcium channels as crucial effectors of antiapoA-1 IgG chronotropic action, involving two converging pathways that increase the channel activity. The first one involves the rapid, nongenomic activation of the phosphatidylinositol 3-kinase enzyme by MR, and the second one requires a constitutive basal protein kinase A activity. In conclusion, our results indicate that, on NRVC, the aldosterone-dependent chronotropic effects of antiapoA-1 IgG involve the nongenomic activation of L-type calcium channels.

  4. ß-Adrenoceptor Activation Enhances L-Type Calcium Channel Currents in Anterior Piriform Cortex Pyramidal Cells of Neonatal Mice: Implication for Odor Learning

    ERIC Educational Resources Information Center

    Ghosh, Abhinaba; Mukherjee, Bandhan; Chen, Xihua; Yuan, Qi

    2017-01-01

    Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. ß-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether ß-adrenoceptors interact directly with LTCCs in aPC…

  5. Antidepressants Rescue Stress-Induced Disruption of Synaptic Plasticity via Serotonin Transporter-Independent Inhibition of L-Type Calcium Channels.

    PubMed

    Normann, Claus; Frase, Sibylle; Haug, Verena; von Wolff, Gregor; Clark, Kristin; Münzer, Patrick; Dorner, Alexandra; Scholliers, Jonas; Horn, Max; Vo Van, Tanja; Seifert, Gabriel; Serchov, Tsvetan; Biber, Knut; Nissen, Christoph; Klugbauer, Norbert; Bischofberger, Josef

    2017-10-19

    Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca 2+ ) channels in heterologous expression systems were used to determine the modulation of Ca 2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca 2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca 2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca 2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Fibromodulin modulates myoblast differentiation by controlling calcium channel.

    PubMed

    Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho

    2018-06-16

    Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels.

    PubMed

    Hansen, P B L

    2013-04-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers. Acta Physiologica © 2013 Scandinavian Physiological Society.

  8. Inactivation of Gating Currents of L-Type Calcium Channels

    PubMed Central

    Shirokov, Roman; Ferreira, Gonzalo; Yi, Jianxun; Ríos, Eduardo

    1998-01-01

    In studies of gating currents of rabbit cardiac Ca channels expressed as α1C/β2a or α1C/β2a/α2δ subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, V1/2 ≃ 0 mV) gates noninactivated channels, while charge 2 (V1/2 ≃ −90 mV) is generated in inactivated channels. In α1C/β2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant τ ≃ 8, while the available charge 2 decreased upon recovery from inactivation (at −200 mV) with τ ≃ 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of α2δ, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the α2δ subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to τ ≃ 2 s), while slowing the reduction of charge 2 upon recovery (τ ≃ 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of α2δ are reproduced assuming that the subunit lowers the free energy of the inactivated mode. PMID:9607938

  9. Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age

    PubMed Central

    Snutch, Terrance P.

    2005-01-01

    Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373

  10. Binding mechanism investigations guiding the synthesis of novel condensed 1,4-dihydropyridine derivatives with L-/T-type calcium channel blocking activity.

    PubMed

    Schaller, David; Gündüz, Miyase Gözde; Zhang, Fang Xiong; Zamponi, Gerald W; Wolber, Gerhard

    2018-05-23

    Nifedipine and isradipine are prominent examples of calcium channel blockers with a 1,4-dihydropyridine (DHP) scaffold. Although successfully used in clinics since decades for the treatment of hypertension, the binding mechanism to their target, the L-type voltage-gated calcium channel Cav1.2, is still incompletely understood. Recently, novel DHP derivatives with a condensed ring system have been discovered that show distinct selectivity profiles to different calcium channel subtypes. This property renders this DHP class as a promising tool to achieve selectivity towards distinct calcium channel subtypes. In this study, we identified a common binding mode for prominent DHPs nifedipine and isradipine using docking and pharmacophore analysis that is also able to explain the structure-activity relationship of a small subseries of DHP derivatives with a condensed ring system. These findings were used to guide the synthesis of twenty-two novel DHPs. An extensive characterization using 1 H NMR, 13 C NMR, mass spectra and elemental analysis was followed by whole cell patch clamp assays for analyzing activity at Cav1.2 and Cav3.2. Two compounds were identified with significant activity against Cav1.2. Additionally, we identified four compounds active against Cav3.2 of which three were selective over Cav1.2. Novel binding modes were analyzed using docking and pharmacophore analysis as well as molecular dynamics simulations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    NASA Astrophysics Data System (ADS)

    Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.

    1991-06-01

    RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.

  12. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.

    PubMed

    Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K; Morales, Cyndi R; Contreras-Ferrat, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J; Somlo, Stefan; Rothermel, Beverly A; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2015-06-16

    L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. © 2015 American Heart Association, Inc.

  13. The L-Type Voltage-Gated Calcium Channel Ca [subscript V] 1.2 Mediates Fear Extinction and Modulates Synaptic Tone in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Temme, Stephanie J.; Murphy, Geoffrey G.

    2017-01-01

    L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, Ca[subscript V]1.2 and Ca[subscript V] 1.3, using transgenic mice have…

  14. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    PubMed

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.

  15. Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives

    PubMed Central

    Gleeson, Ellen C.; Graham, Janease E.; Spiller, Sandro; Vetter, Irina; Lewis, Richard J.; Duggan, Peter J.; Tuck, Kellie L.

    2015-01-01

    A set of fluorophenoxyanilides, designed to be simplified analogues of previously reported ω-conotoxin GVIA mimetics, were prepared and tested for N-type calcium channel inhibition in a SH-SY5Y neuroblastoma FLIPR assay. N-type or Cav2.2 channel is a validated target for the treatment of refractory chronic pain. Despite being significantly less complex than the originally designed mimetics, up to a seven-fold improvement in activity was observed. PMID:25871286

  16. Role of N-type calcium channels in autonomic neurotransmission in guineapig isolated left atria

    PubMed Central

    Serone, Adrian P; Angus, James A

    1999-01-01

    Calcium entry via neuronal calcium channels is essential for the process of neurotransmission. We investigated the calcium channel subtypes involved in the operation of cardiac autonomic neurotransmission by examining the effects of selective calcium channel blockers on the inotropic responses to electrical field stimulation (EFS) of driven (4 Hz) guineapig isolated left atria. In this tissue, a previous report (Hong & Chang, 1995) found no evidence for N-type channels involved in the vagal negative inotropic response and only weak involvement in sympathetic responses. The effects of cumulative concentrations of the selective N-type calcium channel blocker, ω-conotoxin GVIA (GVIA; 0.1–10 nM) and the nonselective N-, P/Q-type calcium channel blocker, ω-conotoxin MVIIC (MVIIC; 0.01–10 nM) were examined on the positive (with atropine, 1 μM present) and negative (with propranolol, 1 μM and clonidine, 1 μM present) inotropic responses to EFS (eight trains, each train four pulses per punctate stimulus). GVIA caused complete inhibition of both cardiac vagal and sympathetic inotropic responses to EFS. GVIA was equipotent at inhibiting positive (pIC50 9.29±0.08) and negative (pIC50 9.13±0.17) inotropic responses. MVIIC also mediated complete inhibition of inotropic responses to EFS and was 160 and 85 fold less potent than GVIA at inhibiting positive (pIC50 7.08±0.10) and negative (pIC50 7.20±0.14) inotropic responses, respectively. MVIIC was also equipotent at inhibiting both sympathetic and vagal responses. Our data demonstrates that N-type calcium channels account for all the calcium current required for cardiac autonomic neurotransmission in the guinea-pig isolated left atrium. PMID:10433500

  17. Direct Interaction of CaVβ with Actin Up-regulates L-type Calcium Currents in HL-1 Cardiomyocytes*

    PubMed Central

    Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E.; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia

    2015-01-01

    Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. PMID:25533460

  18. Signaling complexes of voltage-gated calcium channels

    PubMed Central

    Turner, Ray W; Anderson, Dustin

    2011-01-01

    Voltage-gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage-gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead form complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily. PMID:21832880

  19. Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L.

    PubMed

    Ramakrishna, Akula; Giridhar, Parvatam; Ravishankar, G A

    2009-12-01

    The present article reports the interplay of indoleamine neurohormones viz. serotonin, melatonin and calcium channels on shoot organogenesis in Mimosa pudica L. In vitro grown nodal segments were cultured on MS medium with B5 vitamins containing Serotonin (SER) and Melatonin (MEL) at 100 microM and indoleamine inhibitors viz. serotonin to melatonin conversion inhibitor p-chlorophenylalanine (p-CPA) at 40 microM, serotonin reuptake inhibitor (Prozac) 20 microM. In another set of experiment, calcium at 5 mM, calcium ionophore (A23187) 100 microM, and calcium channel blocker varapamil hydrochloride (1 mM) a calcium chelator EGTA (100 microM) were administered to the culture medium. The percentage of shoot multiplication, endogenous MEL and SER were monitored during shoot organogenesis. At 100 microM SER and MEL treatment 60% and 70% explants responded for shoot multiplication respectively. Medium supplemented with either SER or MEL along with calcium (5 mM) 75%-80% explants responded for organogenesis. SER or MEL along with calcium ionophore (A23187) at 100 microM 70% explants responded for shoot multiplication. p-CPA, prozac, verapamil and EGTA, shoot multiplication was reduced and endogenous pools of SER, MEL decreased by 40-70%. The results clearly demonstrated that indoleamines and calcium channels positively influenced shoot organogenesis in M. pudica L.

  20. Direct interaction of CaVβ with actin up-regulates L-type calcium currents in HL-1 cardiomyocytes.

    PubMed

    Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia

    2015-02-20

    Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Calcium channel blockers and transmitter release at the normal human neuromuscular junction.

    PubMed

    Protti, D A; Reisin, R; Mackinley, T A; Uchitel, O D

    1996-05-01

    Transmitter release evoked by nerve stimulation is highly dependent on Ca2+ entry through voltage-activated plasma membrane channels. Calcium influx may be modified in some neuromuscular diseases like Lambert-Eaton syndrome and amyotrophic lateral sclerosis. We studied the pharmacologic sensitivity of the transmitter release process to different calcium channel blockers in normal human muscles and found that funnel web toxin and omega-Agatoxin-IVA, both P-type calcium channel blockers, blocked nerve-elicited muscle action potentials and inhibited evoked synaptic transmission. The transmitter release was not affected either by nitrendipine, an L-type channel blocker, or omega-Conotoxin-GVIA, an N-type channel blocker. The pharmacologic profile of neuromuscular transmission observed in normal human muscles indicates that P-like channels mediate transmitter release at the motor nerve terminals.

  2. P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals.

    PubMed

    Protti, D A; Uchitel, O D

    1997-08-01

    The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.

  3. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation.

    PubMed

    Rozmaritsa, Nadiia; Christ, Torsten; Van Wagoner, David R; Haase, Hannelore; Stasch, Johannes-Peter; Matschke, Klaus; Ravens, Ursula

    2014-03-01

    Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.

  4. Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L.

    PubMed Central

    Ramakrishna, Akula; Giridhar, Parvatam

    2009-01-01

    The present article reports the interplay of indoleamine neurohormones viz. serotonin, melatonin and calcium channels on shoot organogenesis in Mimosa pudica L. In vitro grown nodal segments were cultured on MS medium with B5 vitamins containing Serotonin (SER) and Melatonin (MEL) at 100 µM and indoleamine inhibitors viz. serotonin to melatonin conversion inhibitor p-chlorophenylalanine (p-CPA) at 40 µM, serotonin reuptake inhibitor (Prozac) 20 µM. In another set of experiment, calcium at 5 mM, calcium ionophore (A23187) 100 µM, and calcium channel blocker varapamil hydrochloride (1 mM) a calcium chelator EGTA (100 µM) were administered to the culture medium. The percentage of shoot multiplication, endogenous MEL and SER were monitored during shoot organogenesis. At 100 µM SER and MEL treatment 60% and 70% explants responded for shoot multiplication respectively. Medium supplemented with either SER or MEL along with calcium (5 mM) 75%–80% explants responded for organogenesis. SER or MEL along with calcium ionophore (A23187) at 100 µM 70% explants responded for shoot multiplication. p-CPA, prozac, verapamil and EGTA, shoot multiplication was reduced and endogenous pools of SER, MEL decreased by 40–70%. The results clearly demonstrated that indoleamines and calcium channels positively influenced shoot organogenesis in M. pudica L. PMID:20514228

  5. Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain.

    PubMed

    Singh, Anamika; Gebhart, Mathias; Fritsch, Reinhard; Sinnegger-Brauns, Martina J; Poggiani, Chiara; Hoda, Jean-Charles; Engel, Jutta; Romanin, Christoph; Striessnig, Jörg; Koschak, Alexandra

    2008-07-25

    Low voltage activation of Ca(V)1.3 L-type Ca(2+) channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. Ca(V)1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in Ca(V)1.4 L-type Ca(2+) channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the Ca(V)1.3 alpha1 subunit C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), we investigated if a C-terminal modulatory mechanism also controls Ca(V)1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with beta3 and alpha2delta1 subunits in HEK-293 cells. Activation of calcium current through Ca(V)1.3(42A) channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several Ca(V)1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting Ca(V)1.3(DeltaC116) channels showed gating properties similar to Ca(V)1.3(42A) that were reverted by co-expression of the corresponding C-terminal peptide C(116). Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of Ca(V)1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control Ca(V)1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates Ca(V)1.3 channel activation at lower voltages expected to favor Ca(V)1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.

  6. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential

    PubMed Central

    Zamponi, Gerald W.; Striessnig, Joerg; Koschak, Alexandra

    2015-01-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type CaV1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (CaV3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (CaV2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., CaV1.2 and CaV1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective CaV1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson’s disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and

  7. Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells

    PubMed Central

    Wen, Xianjie; Xu, Shiyuan; Liu, Hongzhen; Zhang, Quinguo; Liang, Hua; Yang, Chenxiang; Wang, Hanbing

    2013-01-01

    There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca2+ ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation. PMID:23658789

  8. Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the alpha1-adrenoceptors.

    PubMed

    Bkaily, Ghassan; El-Bizri, Nesrine; Bui, Michel; Sukarieh, Rami; Jacques, Danielle; Fu, Michael L X

    2003-03-01

    The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.

  9. Population Density and Moment-based Approaches to Modeling Domain Calcium-mediated Inactivation of L-type Calcium Channels.

    PubMed

    Wang, Xiao; Hardcastle, Kiah; Weinberg, Seth H; Smith, Gregory D

    2016-03-01

    We present a population density and moment-based description of the stochastic dynamics of domain [Formula: see text]-mediated inactivation of L-type [Formula: see text] channels. Our approach accounts for the effect of heterogeneity of local [Formula: see text] signals on whole cell [Formula: see text] currents; however, in contrast with prior work, e.g., Sherman et al. (Biophys J 58(4):985-995, 1990), we do not assume that [Formula: see text] domain formation and collapse are fast compared to channel gating. We demonstrate the population density and moment-based modeling approaches using a 12-state Markov chain model of an L-type [Formula: see text] channel introduced by Greenstein and Winslow (Biophys J 83(6):2918-2945, 2002). Simulated whole cell voltage clamp responses yield an inactivation function for the whole cell [Formula: see text] current that agrees with the traditional approach when domain dynamics are fast. We analyze the voltage-dependence of [Formula: see text] inactivation that may occur via slow heterogeneous domain [[Formula: see text

  10. P-type calcium channels in rat neocortical neurones.

    PubMed Central

    Brown, A M; Sayer, R J; Schwindt, P C; Crill, W E

    1994-01-01

    1. The high threshold, voltage-activated (HVA) calcium current was recorded from acutely isolated rat neocortical pyramidal neurones using the whole-cell patch technique to examine the effect of agents that block P-type calcium channels and to compare their effects to those of omega-conotoxin GVIA (omega-CgTX) and nifedipine. 2. When applied at a saturating concentration (100 nM) the peptide toxins omega-Aga-IVA and synthetic omega-Aga-IVA blocked 31.5 and 33.0% of the HVA current respectively. 3. A saturating concentration of nifedipine (10 microM) inhibited 48.2% of the omega-Aga-IVA-sensitive current, whereas saturating concentrations of both omega-Aga-IVA (100 nM) and omega-CgTX (10 microM) blocked separate specific components of the HVA current. 4. Partially purified funnel web spider toxin (FTX) at a dilution of 1:1000 blocked 81.4% of the HVA current and occluded the inhibitory effect of omega-Aga-IVA. Synthetic FTX 3.3 arginine polyamine (sFTX) at a concentration of 1 mM blocked 61.2% of the HVA current rapidly and reversibly. The effects of sFTX were partially occluded by pre-application of omega-Aga-IVA. We conclude that neither FTX nor sFTX blocked a specific component of the HVA current in these cells. 5. In view of the specificity of omega-Aga-IVA for P-type calcium channels in other preparations and for a specific component of the HVA current in dissociated neocortical neurones we conclude that about 30% of the HVA current in these neurones flow through P-channels. PMID:7517449

  11. P-type calcium channels in rat neocortical neurones.

    PubMed

    Brown, A M; Sayer, R J; Schwindt, P C; Crill, W E

    1994-03-01

    1. The high threshold, voltage-activated (HVA) calcium current was recorded from acutely isolated rat neocortical pyramidal neurones using the whole-cell patch technique to examine the effect of agents that block P-type calcium channels and to compare their effects to those of omega-conotoxin GVIA (omega-CgTX) and nifedipine. 2. When applied at a saturating concentration (100 nM) the peptide toxins omega-Aga-IVA and synthetic omega-Aga-IVA blocked 31.5 and 33.0% of the HVA current respectively. 3. A saturating concentration of nifedipine (10 microM) inhibited 48.2% of the omega-Aga-IVA-sensitive current, whereas saturating concentrations of both omega-Aga-IVA (100 nM) and omega-CgTX (10 microM) blocked separate specific components of the HVA current. 4. Partially purified funnel web spider toxin (FTX) at a dilution of 1:1000 blocked 81.4% of the HVA current and occluded the inhibitory effect of omega-Aga-IVA. Synthetic FTX 3.3 arginine polyamine (sFTX) at a concentration of 1 mM blocked 61.2% of the HVA current rapidly and reversibly. The effects of sFTX were partially occluded by pre-application of omega-Aga-IVA. We conclude that neither FTX nor sFTX blocked a specific component of the HVA current in these cells. 5. In view of the specificity of omega-Aga-IVA for P-type calcium channels in other preparations and for a specific component of the HVA current in dissociated neocortical neurones we conclude that about 30% of the HVA current in these neurones flow through P-channels.

  12. Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling.

    PubMed

    Lai, L P; Su, M J; Lin, J L; Lin, F Y; Tsai, C H; Chen, Y S; Huang, S K; Tseng, Y Z; Lien, W P

    1999-04-01

    We investigated the gene expression of calcium-handling genes including L-type calcium channel, sarcoplasmic reticular calcium adenosine triphosphatase (Ca(2+)-ATPase), ryanodine receptor, calsequestrin and phospholamban in human atrial fibrillation. Recent studies have demonstrated that atrial electrical remodeling in atrial fibrillation is associated with intracellular calcium overload. However, the changes of calcium-handling proteins remain unclear. A total of 34 patients undergoing open heart surgery were included. Atrial tissue was obtained from the right atrial free wall, right atrial appendage, left atrial free wall and left atrial appendage, respectively. The messenger ribonucleic acid (mRNA) amount of the genes was measured by reverse transcription-polymerase chain reaction and normalized to the mRNA levels of glyceraldehyde 3-phosphate dehydrogenase. The mRNA of L-type calcium channel and of Ca(2+)-ATPase was significantly decreased in patients with persistent atrial fibrillation for more than 3 months (0.36+/-0.26 vs. 0.90+/-0.88 for L-type calcium channel; 0.69+/-0.42 vs. 1.21+/-0.68 for Ca(2+)-ATPase; both p < 0.05, all data in arbitrary unit). We further demonstrated that there was no spatial dispersion of the gene expression among the four atrial tissue sampling sites. Age, gender and underlying cardiac disease had no significant effects on the gene expression. In contrast, the mRNA levels of ryanodine receptor, calsequestrin and phospholamban showed no significant change in atrial fibrillation. L-type calcium channel and the sarcoplasmic reticular Ca(2+)-ATPase gene were down-regulated in atrial fibrillation. These changes may be a consequence of, as well as a contributory factor for, atrial fibrillation.

  13. Discovery and Development of Calcium Channel Blockers

    PubMed Central

    Godfraind, Théophile

    2017-01-01

    In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan) and Heibrunn (USA) experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB) of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are important factors of

  14. Modulation of A-type potassium channels by a family of calcium sensors.

    PubMed

    An, W F; Bowlby, M R; Betty, M; Cao, J; Ling, H P; Mendoza, G; Hinson, J W; Mattsson, K I; Strassle, B W; Trimmer, J S; Rhodes, K J

    2000-02-03

    In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.

  15. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker

    PubMed Central

    El Bardai, Sanae; Wibo, Maurice; Hamaide, Marie-Christine; Lyoussi, Badiaa; Quetin-Leclercq, Joëlle; Morel, Nicole

    2003-01-01

    The objective of the present study was to investigate the mechanism of the relaxant activity of marrubenol, a diterpenoid extracted from Marrubium vulgare. In rat aorta, marrubenol was a more potent inhibitor of the contraction evoked by 100 mM KCl (IC50: 11.8±0.3 μM, maximum relaxation: 93±0.6%) than of the contraction evoked by noradrenaline (maximum relaxation: 30±1.5%). In fura-2-loaded aorta, marrubenol simultaneously inhibited the Ca2+ signal and the contraction evoked by 100 mM KCl, and decreased the quenching rate of fura-2 fluorescence by Mn2+. Patch-clamp data obtained in aortic smooth muscle cells (A7r5) indicated that marrubenol inhibited Ba2+ inward current in a voltage-dependent manner (KD: 8±2 and 40±6 μM at holding potentials of −50 and −100 mV, respectively). These results showed that marrubenol inhibits smooth muscle contraction by blocking L-type calcium channels. PMID:14597602

  16. Block of high-threshold calcium channels by the synthetic polyamines sFTX-3.3 and FTX-3.3.

    PubMed

    Norris, T M; Moya, E; Blagbrough, I S; Adams, M E

    1996-10-01

    A polyamine component of Agelenopsis aperta spider venom designated FTX is reported to be a selective antagonist of P-type calcium channels in the mammalian brain. Consequently, this component has frequently been used as a pharmacological tool to determine the presence, distribution, and function of P-type channels in physiological systems. We describe antagonism of calcium channels by the synthesized polyamine FTX-3.3, which has the proposed structure of natural FTX. We also examined a corresponding polyamine amide, sFTX-3.3. These polyamines are critically evaluated for antagonism of three high-threshold calcium channel subtypes in rat neurons through the use of the whole-cell patch-clamp technique. FTX-3.3 (IC50 = approximately 0.13 mM) is approximately twice as potent as sFTX-3.3 (IC50 = approximately 0.24 mM) against P-type channels and approximately 3-fold more potent against N-type channels (FTX-3.3, IC50 = approximately 0.24 mM; sFTX-3.3, IC50 = approximately 0.70 mM). Both polyamines also block L-type calcium channels with similar potencies. sFTX-3.3 (1 mM) and FTX-3.3 (0.5 mM) typically block 50% and 65% of Bay K8644-enhanced L-type current, respectively. Antagonism of each calcium channel subtype is voltage dependent, with less inhibition of Ba2+ currents at more-positive potentials. These data show that both sFTX-3.3 and FTX-3.3 antagonize P-, N-, and L-type calcium channels in mammalian Purkinje and superior cervical ganglia neurons with similar IC50 values.

  17. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zahanich, Ihor; Graf, Eva M; Heubach, Jürgen F; Hempel, Ute; Boxberger, Sabine; Ravens, Ursula

    2005-09-01

    We used the patch-clamp technique and RT-PCR to study the molecular and functional expression of VOCCs in undifferentiated hMSCs and in cells undergoing osteogenic differentiation. L-type Ca2+ channel blocker nifedipine did not influence alkaline phosphatase activity, calcium, and phosphate accumulation of hMSCs during osteogenic differentiation. This study suggests that osteogenic differentiation of hMSCs does not require L-type Ca2+ channel function. During osteogenic differentiation, mesenchymal stem cells from human bone marrow (hMSCs) must adopt the calcium handling of terminally differentiated osteoblasts. There is evidence that voltage-operated calcium channels (VOCCs), including L-type calcium channels, are involved in regulation of osteoblast function. We therefore studied whether VOCCs play a critical role during osteogenic differentiation of hMSCs. Osteogenic differentiation was induced in hMSCs cultured in maintenance medium (MM) by addition of ascorbate, beta-glycerophosphate, and dexamethasone (ODM) and was assessed by measuring alkaline phosphatase activity, expression of osteopontin, osteoprotegerin, RANKL, and mineralization. Expression of Ca2+ channel alpha1 subunits was shown by semiquantitative or single cell RT-PCR. Voltage-activated calcium currents of hMSCs were measured with the whole cell voltage-clamp technique. mRNA for the pore-forming alpha1C and alpha1G subunits of the L-type and T-type Ca2+ channels, respectively, was found in comparable amounts in cells cultured in MM or ODM. The limitation of L-type Ca2+ currents to a subpopulation of hMSCs was confirmed by single cell RT-PCR, where mRNA for the alpha1C subunits was detectable in only 50% of the cells cultured in MM. Dihydropyridine-sensitive L-type Ca2+ currents were found in 13% of cells cultured in MM and in 12% of the cells cultured in ODM. Under MM and ODM culture conditions, the cells positive for L-type Ca2+ currents were significantly larger than cells without Ca2+ currents

  18. Regulation of Spinal Substance P Release by Intrathecal Calcium Channel Blockade

    PubMed Central

    Takasusuki, Toshifumi; Yaksh, Tony L.

    2012-01-01

    Background We investigated the role of different voltage sensitive calcium channels expressed at presynaptic afferent terminals in substance P release and on nociceptive behavior evoked by intraplantar formalin by examining the effects of intrathecally delivered N- (ziconotide), T- (mibefradil) and L-type voltage sensitive calcium channels blockers (diltiazem and verapamil). Methods Rats received intrathecal pretreatment with saline or doses of morphine, ziconotide, mibefradil, diltiazem or verapamil. The effect of these injections upon flinching evoked by intraplantar formalin (5%, 50μl) was quantified. To assess substance P release, the incidence of neurokinin 1 receptor internalization in the ipsilateral and contralateral lamina I was determined in immunofluorescent stained tissues. Results Intrathecal morphine (20μg), ziconotide (0.3, 0.6 and 1μg), mibefradil (100μg, but not 50μg), diltiazem (500μg, but not 300μg) and verapamil (200μg, but not 50 and 100μg) reduced paw flinching in phase 2 as compared to vehicle control (P < 0.05), with no effect upon phase 1. Ziconotide (0.3, 0.6 and 1μg) and morphine (20μg) significantly inhibited neurokinin 1 receptor internalization (P < 0.05), but mibefradil, diltiazem and verapamil at the highest doses had no effect. Conclusion These results emphasize the role in vivo of N-, but not T- and L-type voltage sensitive calcium channels in mediating the stimulus evoked substance P release from small primary afferents and suggest that T- and L-type voltage sensitive calcium channels blockers exert antihyperalgesic effects by an action on other populations of afferents or mechanisms involving post synaptic excitability. PMID:21577088

  19. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice.

    PubMed

    Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit

    2015-09-18

    The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.

  20. A novel dihydropyridine with 3-aryl meta-hydroxyl substitution blocks L-type calcium channels in rat cardiomyocytes.

    PubMed

    Galvis-Pareja, David; Zapata-Torres, Gerald; Hidalgo, Jorge; Ayala, Pedro; Pedrozo, Zully; Ibarra, Cristián; Diaz-Araya, Guillermo; Hall, Andrew R; Vicencio, Jose Miguel; Nuñez-Vergara, Luis; Lavandero, Sergio

    2014-08-15

    Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca(2+) channels and their renowned antioxidant properties. We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca(2+) channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca(2+) channel-blocking activity and antioxidant properties. The Ca(2+) channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flow cytometry using the ROS sensitive dye 1,2,3 DHR. Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca(2+) channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca(2+) channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells

    PubMed Central

    1993-01-01

    Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to

  2. L-type Ca2+ channels in the heart: structure and regulation.

    PubMed

    Treinys, Rimantas; Jurevicius, Jonas

    2008-01-01

    This review analyzes the structure and regulation mechanisms of voltage-dependent L-type Ca(2+) channel in the heart. L-type Ca(2+) channels in the heart are composed of four different polypeptide subunits, and the pore-forming subunit alpha(1) is the most important part of the channel. In cardiac myocytes, Ca(2+) enter cell cytoplasm from extracellular space mainly through L-type Ca(2+) channels; these channels are very important system in heart Ca(2+) uptake regulation. L-type Ca(2+) channels are responsible for the activation of sarcoplasmic reticulum channels (RyR2) and force of muscle contraction generation in heart; hence, activity of the heart depends on L-type Ca(2+) channels. Phosphorylation of channel-forming subunits by different kinases is one of the most important ways to change the activity of L-type Ca(2+) channel. Additionally, the activity of L-type Ca(2+) channels depends on Ca(2+) concentration in cytoplasm. Ca(2+) current in cardiac cells can facilitate, and this process is regulated by phosphorylation of L-type Ca(2+) channels and intracellular Ca(2+) concentration. Disturbances in cellular Ca(2+) transport and regulation of L-type Ca(2+) channels are directly related to heart diseases, life quality, and life span.

  3. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice

    PubMed Central

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  4. Circadian phase-dependent effect of nitric oxide on L-type voltage-gated calcium channels in avian cone photoreceptors

    PubMed Central

    Ko, Michael L.; Shi, Liheng; Huang, Cathy Chia-Yu; Grushin, Kirill; Park, So-Young; Ko, Gladys Y.-P.

    2014-01-01

    Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In the present study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-MAPK (mitogen-activated protein kinase)-Erk (extracellular-signal-regulated kinase) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. PMID:23895452

  5. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.

    PubMed

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-09-15

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in

  6. CaV3.1 isoform of T-type calcium channels supports excitability of rat and mouse ventral tegmental area neurons.

    PubMed

    Tracy, Matthew E; Tesic, Vesna; Stamenic, Tamara Timic; Joksimovic, Srdjan M; Busquet, Nicolas; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M

    2018-03-23

    Recent data have implicated voltage-gated calcium channels in the regulation of the excitability of neurons within the mesolimbic reward system. While the attention of most research has centered on high voltage L-type calcium channel activity, the presence and role of the low voltage-gated T-type calcium channel (T-channels) has not been well explored. Hence, we investigated T-channel properties in the neurons of the ventral tegmental area (VTA) utilizing wild-type (WT) rats and mice, Ca V 3.1 knock-out (KO) mice, and TH-eGFP knock-in (KI) rats in acute horizontal brain slices of adolescent animals. In voltage-clamp experiments, we first assessed T-channel activity in WT rats with characteristic properties of voltage-dependent activation and inactivation, as well as characteristic crisscrossing patterns of macroscopic current kinetics. T-current kinetics were similar in WT mice and WT rats but T-currents were abolished in Ca V 3.1 KO mice. In ensuing current-clamp experiments, we observed the presence of hyperpolarization-induced rebound burst firing in a subset of neurons in WT rats, as well as dopaminergic and non-dopaminergic neurons in TH-eGFP KI rats. Following the application of a pan-selective T-channel blocker TTA-P2, rebound bursting was significantly inhibited in all tested cells. In a behavioral assessment, the acute locomotor increase induced by a MK-801 (Dizocilpine) injection in WT mice was abolished in Ca V 3.1 KO mice, suggesting a tangible role for 3.1 T-type channels in drug response. We conclude that pharmacological targeting of Ca V 3.1 isoform of T-channels may be a novel approach for the treatment of disorders of mesolimbic reward system. Copyright © 2018. Published by Elsevier Ltd.

  7. A novel dihydropyridine with 3-aryl meta-hydroxyl substitution blocks L-type calcium channels in rat cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvis-Pareja, David; Centro Estudios Moleculares de la Célula; Zapata-Torres, Gerald

    2014-08-15

    Rationale: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca{sup 2+} channels and their renowned antioxidant properties. Methods: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca{sup 2+} channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca{sup 2+} channel-blocking activity and antioxidant properties. The Ca{sup 2+} channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flowmore » cytometry using the ROS sensitive dye 1,2,3 DHR. Results: Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca{sup 2+} channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca{sup 2+} channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Conclusions: Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. - Highlights: • Dihydropyridine (DHP) molecules are widely used in cardiovascular disease. • DHPs block Ca{sup 2+} entry through LTCC—some DHPs have antioxidant activity as well. • We synthesized 6 new DHPs and tested their Ca{sup 2+} blocking and antioxidant activities. • 3-Aryl meta-hydroxyl substitution strongly increases their Ca{sup 2+} blocking activity. • 3-Aryl meta-hydroxyl substitution did not affect the antioxidant properties.« less

  8. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*

    PubMed Central

    Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe

    2015-01-01

    Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121

  9. Inhibition of recombinant Ca(v)3.1 (alpha(1G)) T-type calcium channels by the antipsychotic drug clozapine.

    PubMed

    Choi, Kee-Hyun; Rhim, Hyewhon

    2010-01-25

    Low voltage-activated T-type calcium channels are involved in the regulation of the neuronal excitability, and could be subject to many antipsychotic drugs. The effects of clozapine, an atypical antipsychotic drug, on recombinant Ca(v)3.1 T-type calcium channels heterologously expressed in human embryonic kidney 293 cells were examined using whole-cell patch-clamp recordings. At a standard holding potential of -100 mV, clozapine inhibited Ca(v)3.1 currents with an IC(50) value of 23.7+/-1.3 microM in a use-dependent manner. However, 10 microM clozapine inhibited more than 50% of the Ca(v)3.1 currents in recordings at a more physiologically relevant holding potential of -75 mV. Clozapine caused a significant hyperpolarizing shift in the steady-state inactivation curve of the Ca(v)3.1 channels, which is presumably the main mechanism accounting for the inhibition of the Ca(v)3.1 currents. In addition, clozapine slowed Ca(v)3.1 deactivation and inactivation kinetics but not activation kinetics. Clozapine-induced changes in deactivation and inactivation rates of the Ca(v)3.1 channel gating would likely facilitate calcium influx via Ca(v)3.1 T-type calcium channels. Thus, clozapine may exert its therapeutic and/or side effects by altering cell's excitability and firing properties through actions on T-type calcium channels.

  10. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken

    PubMed Central

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-01-01

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and

  11. [Effects of the monosaccharide derivative 8RN-DAGal on the putative P-type calcium channel expressed in Xenopus oocytes].

    PubMed

    Fournier, F; Charpentier, G; Lahyani, A; Bruner, J; Czternasty, G; Marlot, D; Ronco, G; Villa, P; Brule, G

    1993-01-01

    P-type calcium channels are expressed in Xenopus oocytes after injection of rat cerebellar mRNA. The FTX and omega-Aga-IVa toxins extracted from Agelenopsis aperta venom are known to inhibit the activity of this channel. The present results demonstrate that 8RN-DAGal is also a antagonist of P-type calcium channels. The inhibition of the current, obtained with Ba2+, as charge carrier, is voltage dependent.

  12. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  13. [Human calcium channelopathies. Voltage-gated Ca(2+) channels in etiology, pathogenesis, and pharmacotherapy of neurologic disorders].

    PubMed

    Weiergräber, M; Hescheler, J; Schneider, T

    2008-04-01

    Voltage-gated calcium channels are key components in a variety of physiological processes. Within the last decade an increasing number of voltage-gated Ca(2+) channelopathies in both humans and animal models has been described, most of which are related to the neurologic and muscular system. In humans, mutations were found in L-type Ca(v)1.2 and Ca(v)1.4 Ca(2+) channels as well as the non-L-type Ca(v)2.1 and T-type Ca(v)3.2 channels, resulting in altered electrophysiologic properties. Based on their widespread distribution within the CNS, voltage-gated calcium channels are of particular importance in the etiology and pathogenesis of various forms of epilepsy and neuropsychiatric disorders. In this review we characterise the different human Ca(2+) channelopathies known so far, further illuminating basic pathophysiologic mechanisms and clinical aspects.

  14. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory.

    PubMed

    Mukherjee, Bandhan; Yuan, Qi

    2016-10-14

    The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.

  15. Effect of gingerol on colonic motility via inhibition of calcium channel currents in rats.

    PubMed

    Cai, Zheng-Xu; Tang, Xu-Dong; Wang, Feng-Yun; Duan, Zhi-Jun; Li, Yu-Chun; Qiu, Juan-Juan; Guo, Hui-Shu

    2015-12-28

    To investigate the effect of gingerol on colonic motility and the action of L-type calcium channel currents in this process. The distal colon was cut along the mesenteric border and cleaned with Ca(2+)-free physiological saline solution. Muscle strips were removed and placed in Ca(2+)-free physiological saline solution, which was oxygenated continuously. Longitudinal smooth muscle samples were prepared by cutting along the muscle strips and were then placed in a chamber. Mechanical contractile activities of isolated colonic segments in rats were recorded by a 4-channel physiograph. Colon smooth muscle cells were dissociated by enzymatic digestion. L-type calcium currents were recorded using the conventional whole-cell patch-clamp technique. Gingerol inhibited the spontaneous contraction of colonic longitudinal smooth muscle in a dose-dependent manner with inhibition percentages of 13.3% ± 4.1%, 43.4% ± 3.9%, 78.2% ± 3.6% and 80.5% ± 4.5% at 25 μmol/L, 50 μmol/L, 75 μmol/L and 100 μmol/L, respectively (P < 0.01). Nifedipine, an L-type calcium channel blocker, diminished the inhibition of colonic motility by gingerol. Gingerol inhibited L-type calcium channel currents in colonic longitudinal myocytes of rats. At a 75 μmol/L concentration of gingerol, the percentage of gingerol-induced inhibition was diminished by nifedipine from 77.1% ± 4.2% to 42.6% ± 3.6% (P < 0.01). Gingerol suppressed IBa in a dose-dependent manner, and the inhibition rates were 22.7% ± 2.38%, 35.77% ± 3.14%, 49.78% ± 3.48% and 53.78% ± 4.16% of control at 0 mV, respectively, at concentrations of 25 μmol/L, 50 μmol/L, 75 μmol/L and 100 μmol/L (P < 0.01). The steady-state activation curve was shifted to the right by treatment with gingerol. The value of half activation was -14.23 ± 1.12 mV in the control group and -10.56 ± 1.04 mV in the 75 μmol/L group (P < 0.05) with slope factors, Ks, of 7.16 ± 0.84 and 7.02 ± 0.93 (P < 0.05) in the control and 75 μmol/L groups

  16. Effect of gingerol on colonic motility via inhibition of calcium channel currents in rats

    PubMed Central

    Cai, Zheng-Xu; Tang, Xu-Dong; Wang, Feng-Yun; Duan, Zhi-Jun; Li, Yu-Chun; Qiu, Juan-Juan; Guo, Hui-Shu

    2015-01-01

    AIM: To investigate the effect of gingerol on colonic motility and the action of L-type calcium channel currents in this process. METHODS: The distal colon was cut along the mesenteric border and cleaned with Ca2+-free physiological saline solution. Muscle strips were removed and placed in Ca2+-free physiological saline solution, which was oxygenated continuously. Longitudinal smooth muscle samples were prepared by cutting along the muscle strips and were then placed in a chamber. Mechanical contractile activities of isolated colonic segments in rats were recorded by a 4-channel physiograph. Colon smooth muscle cells were dissociated by enzymatic digestion. L-type calcium currents were recorded using the conventional whole-cell patch-clamp technique. RESULTS: Gingerol inhibited the spontaneous contraction of colonic longitudinal smooth muscle in a dose-dependent manner with inhibition percentages of 13.3% ± 4.1%, 43.4% ± 3.9%, 78.2% ± 3.6% and 80.5% ± 4.5% at 25 μmol/L, 50 μmol/L, 75 μmol/L and 100 μmol/L, respectively (P < 0.01). Nifedipine, an L-type calcium channel blocker, diminished the inhibition of colonic motility by gingerol. Gingerol inhibited L-type calcium channel currents in colonic longitudinal myocytes of rats. At a 75 μmol/L concentration of gingerol, the percentage of gingerol-induced inhibition was diminished by nifedipine from 77.1% ± 4.2% to 42.6% ± 3.6% (P < 0.01). Gingerol suppressed IBa in a dose-dependent manner, and the inhibition rates were 22.7% ± 2.38%, 35.77% ± 3.14%, 49.78% ± 3.48% and 53.78% ± 4.16% of control at 0 mV, respectively, at concentrations of 25 μmol/L, 50 μmol/L, 75 μmol/L and 100 μmol/L (P < 0.01). The steady-state activation curve was shifted to the right by treatment with gingerol. The value of half activation was -14.23 ± 1.12 mV in the control group and -10.56 ± 1.04 mV in the 75 μmol/L group (P < 0.05) with slope factors, Ks, of 7.16 ± 0.84 and 7.02 ± 0.93 (P < 0.05) in the control and 75 μmol/L

  17. Endothelin induces two types of contractions of rat uterus: phasic contractions by way of voltage-dependent calcium channels and developing contractions through a second type of calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozuka, M.; Ito, T.; Hirose, S.

    1989-02-28

    Effects of endothelin on nonvascular smooth muscle have been examined using rat uterine horns and two modes of endothelin action have been revealed. Endothelin (0.3 nM) caused rhythmic contractions of isolated uterus in the presence of extracellular calcium. The rhythmic contractions were completely inhibited by calcium channel antagonists. These characteristics of endothelin-induced contractions were very similar to those induced by oxytocin. Binding assays using /sup 125/I-endothelin showed that endothelin and the calcium channel blockers did not compete for the binding sites. However, endothelin was unique in that it caused, in addition to rhythmic contractions, a slowly developing monophasic contraction thatmore » was insensitive to calcium channel blockers. This developing contraction became dominant at higher concentrations of endothelin and was also calcium dependent.« less

  18. Additive effects of cilnidipine, an L-/N-type calcium channel blocker, and an angiotensin II receptor blocker on reducing cardiorenal damage in Otsuka Long-Evans Tokushima Fatty rats with type 2 diabetes mellitus.

    PubMed

    Mori, Yutaka; Aritomi, Shizuka; Niinuma, Kazumi; Nakamura, Tarou; Matsuura, Kenichi; Yokoyama, Junichi; Utsunomiya, Kazunori

    2014-01-01

    Cilnidipine (Cil), which is an L-/N-type calcium channel blocker (CCB), has been known to provide renal protection by decreasing the activity of the sympathetic nervous system (SNS) and the renin-angiotensin system. In this study, we compared the effects of the combination of Cil and amlodipine (Aml), which is an L-type CCB, with an angiotensin (Ang) II receptor blocker on diabetic cardiorenal damage in spontaneously type 2 diabetic rats. Seventeen-week-old Otsuka Long-Evans Tokushima Fatty rats were randomly assigned to receive Cil, Aml, valsartan (Val), Cil + Val, Aml + Val, or a vehicle (eight rats per group) for 22 weeks. Antihypertensive potencies were nearly equal among the CCB monotherapy groups and the combination therapy groups. The lowering of blood pressure by either treatment did not significantly affect the glycemic variables. However, exacerbations of renal and heart failure were significantly suppressed in rats administered Cil or Val, and additional suppression was observed in those administered Cil + Val. Although Val increased the renin-Ang system, Aml + Val treatment resulted in additional increases in these parameters, while Cil + Val did not show such effects. Furthermore, Cil increased the ratio of Ang-(1-7) to Ang-I, despite the fact that Val and Aml + Val decreased the Ang-(1-7) levels. These actions of Cil + Val might be due to their synergistic inhibitory effect on the activity of the SNS, and on aldosterone secretion through N-type calcium channel antagonism and Ang II receptor type 1 antagonism. Thus, Cil may inhibit the progression of cardiorenal disease in type 2 diabetes patients by acting as an N-type CCB and inhibiting the aldosterone secretion and SNS activation when these drugs were administered in combination with an Ang II receptor blocker.

  19. Redox regulation of neuronal voltage-gated calcium channels.

    PubMed

    Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna

    2014-08-20

    Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain.

  20. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating

    PubMed Central

    1996-01-01

    Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is

  1. ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling.

    PubMed

    Mor, Merav; Beharier, Ofer; Levy, Shiri; Kahn, Joy; Dror, Shani; Blumenthal, Daniel; Gheber, Levi A; Peretz, Asher; Katz, Amos; Moran, Arie; Etzion, Yoram

    2012-07-15

    Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents (I(caT)) to 182 ± 15 and 167.95 ± 9.27% of control, respectively (P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of I(caT). In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the I(caT) to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone (P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.

  2. Short-Term Facilitation at a Detonator Synapse Requires the Distinct Contribution of Multiple Types of Voltage-Gated Calcium Channels.

    PubMed

    Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin

    2017-05-10

    Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca 2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca 2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca 2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release. SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release

  3. Creation of a genetic calcium channel blocker by targeted gem gene transfer in the heart.

    PubMed

    Murata, Mitsushige; Cingolani, Eugenio; McDonald, Amy D; Donahue, J Kevin; Marbán, Eduardo

    2004-08-20

    Calcium channel blockers are among the most commonly used therapeutic drugs. Nevertheless, the utility of calcium channel blockers for heart disease is limited because of the potent vasodilatory effect that causes hypotension, and other side effects attributable to blockade of noncardiac channels. Therefore, focal calcium channel blockade by gene transfer is highly desirable. With a view to creating a focally applicable genetic calcium channel blocker, we overexpressed the ras-related small G-protein Gem in the heart by somatic gene transfer. Adenovirus-mediated delivery of Gem markedly decreased L-type calcium current density in ventricular myocytes, resulting in the abbreviation of action potential duration. Furthermore, transduction of Gem resulted in a significant shortening of the electrocardiographic QTc interval and reduction of left ventricular systolic function. Focal delivery of Gem to the atrioventricular (AV) node significantly slowed AV nodal conduction (prolongation of PR and AH intervals), which was effective in the reduction of heart rate during atrial fibrillation. Thus, these results indicate that gene transfer of Gem functions as a genetic calcium channel blocker, the local application of which can effectively modulate cardiac electrical and contractile function.

  4. Redox Regulation of Neuronal Voltage-Gated Calcium Channels

    PubMed Central

    Jevtovic-Todorovic, Vesna

    2014-01-01

    Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125

  5. Antileishmanial activity and ultrastructural alterations of Leishmania (L.) chagasi treated with the calcium channel blocker nimodipine.

    PubMed

    Tempone, André Gustavo; Taniwaki, Noemi Nosomi; Reimão, Juliana Quero

    2009-08-01

    In a search for novel antileishmanial drugs, we investigated the activity of the calcium channel blocker nimodipine against Leishmania spp. and explored the ultrastructural damages of parasites induced by nimodipine after a short period of incubation. Nimodipine was highly effective against promastigotes and intracellular amastigotes of Leishmania (L.) chagasi, with 50% inhibitory concentration values of 81.2 and 21.5 muM, respectively. Nimodipine was about fourfold more effective than the standard pentavalent antimony against amastigotes and showed a Selectivity Index of 4.4 considering its mammalian cells toxicity. Leishmania (L.) amazonensis and Leishmania (L.) major promastigotes were also susceptible to nimodipine in a range concentration between 31 and 128 muM. Ultrastructural studies of L. (L.) chagasi revealed intense mitochondria damage and plasma membrane blebbing, resulting in a leishmanicidal effect as demonstrated by the lack of mitochondrial oxidative metabolism. The amastigote-killing effect suggests other mechanism than macrophage activation, as no upregulation of nitric oxide was seen. This calcium channel blocker is an effective in vitro antileishmanial compound and if adequately studied could be used as a novel drug candidate or as a novel drug lead compound for drug design studies against leishmaniasis.

  6. [Effect of calcium channel blockers on developing nervous syndrome of high pressure and nitrogen narcosis in mice].

    PubMed

    Sledkov, A I

    1997-01-01

    In the experiments conducted on mice which prior to compression in a heliox environment have been injected the blockers of various types of calcium channels (flunarezine, verapramil and nifedipine) as well as bemethyl (actoprotector) and oxymethacye (antioxidant) there escaped detection of noticeable effect of these drugs on developing the high pressure nervous syndrome (HPNS). On exposure to the hyperbaric nitrogen-oxygen environment verapromil (phenylalkulamine blocker of L-type calcium channels) had a protection effect with respect to a convulsive component of the nitrogen narcosis.

  7. Effects of calcium channel blockers on the kinetics of voltage-dependent changes in synaptosomal calcium concentrations.

    PubMed

    Thomas, M M; Puligandla, P S; Dunn, S M

    1994-01-28

    Synaptosomal preparations from rat cerebral cortex have been used in stopped-flow fluorescence studies to measure rapid changes in intrasynaptosomal calcium concentrations upon depolarization. Synaptosomes were loaded with the fluorescent calcium chelating dye, Fura-2, by incubation with the membrane permeant acetoxymethyl ester derivative. Depolarization by elevated external K+ concentration resulted in a rapid increase in cytoplasmic Ca2+ as measured by a quench in Fura-2 fluorescence when excited at 390 nm. The fluorescence change could be reasonably fit by a single exponential process with an apparent rate of 10-15 s-1 and the magnitude of the response was voltage-dependent, increasing with increasing external K+ over the range of 5-30 mM. The observed quench was blocked by micromolar concentrations of the inorganic calcium channel blockers, Cd2+, Co2+ and La3+. Nimodipine, a dihydropyridine which blocks L-type calcium channels, inhibited only 10-15% of the flux response while nitrendipine had no consistent effect. omega-Conotoxin GVIA, a blocker of N-type channels in many species, had only a small inhibitory effect at high (1-10 microM) concentrations. The response was, however, inhibited by pre-incubation of the synaptosomes with venom of the funnel web spider. Agelenopsis aperta (0.1-300 micrograms/ml). Inhibition was observed with both a purified polyamine fraction (FTX) from the venom (IC50 = 4 nl/ml) and a purified peptide toxin, omega-AgaIVA (IC50 = 30 nM). These results indicate that voltage-dependent Ca2+ uptake by mammalian nerve terminals is mediated primarily by channels that are insensitive to dihydropyridines and omega-conotoxin GVIA but are sensitive to components of funnel web spider venom.

  8. Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.

    PubMed

    Santiago González, Diara A; Cheli, Veronica T; Zamora, Norma N; Lama, Tenzing N; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2017-10-18

    Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2 KO ). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2 KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2 KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2 KO OPCs were identified by a Cre reporter, we establish that Cav1.2 KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca 2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca 2+ channel for OPC maturation during the remyelination of the adult brain. SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca 2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To

  9. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.

    PubMed

    Jarvis, Scott E; Zamponi, Gerald W

    2005-05-01

    Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.

  10. A Crash Course in Calcium Channels.

    PubMed

    Zamponi, Gerald W

    2017-12-20

    Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.

  11. Melanopsin Phototransduction Contributes to Light-Evoked Choroidal Expansion and Rod L-Type Calcium Channel Function In Vivo.

    PubMed

    Berkowitz, Bruce A; Schmidt, Tiffany; Podolsky, Robert H; Roberts, Robin

    2016-10-01

    In humans, rodents, and pigeons, the dark → light transition signals nonretinal brain tissue to increase choroidal thickness, a major control element of choroidal blood flow, and thus of photoreceptor and retinal pigment epithelium function. However, it is unclear which photopigments in the retina relay the light signal to the brain. Here, we test the hypothesis that melanopsin (Opn4)-regulated phototransduction modulates light-evoked choroidal thickness expansion in mice. Two-month-old C57Bl/6 wild-type (B6), 4- to 5-month-old C57Bl/6/129S6 wild-type (B6 + S6), and 2-month-old melanopsin knockout (Opn4-/-) on a B6 + S6 background were studied. Retinal anatomy was evaluated in vivo by optical coherence tomography and MRI. Choroidal thickness in dark and light were measured by diffusion-weighted MRI. Rod cell L-type calcium channel (LTCC) function in dark and light (manganese-enhanced MRI [MEMRI]) was also measured. Opn4-/- mice did not show the light-evoked expansion of choroidal thickness observed in B6 and B6 + S6 controls. Additionally, Opn4-/- mice had lower than normal rod cell and inner retinal LTCC function in the dark but not in the light. These deficits were not due to structural abnormalities because retinal laminar architecture and thickness, and choroidal thickness in the Opn4-/- mice were similar to controls. First time evidence is provided that melanopsin phototransduction contributes to dark → light control of murine choroidal thickness. The data also highlight a contribution in vivo of melanopsin phototransduction to rod cell and inner retinal depolarization in the dark.

  12. Calcium channels in chicken sperm regulate motility and the acrosome reaction.

    PubMed

    Nguyen, Thi Mong Diep; Duittoz, Anne; Praud, Christophe; Combarnous, Yves; Blesbois, Elisabeth

    2016-05-01

    Intracellular cytoplasmic calcium ([Ca(2+) ]i ) has an important regulatory role in gamete functions. However, the biochemical components involved in Ca(2+) transport are still unknown in birds, an animal class that has lost functional sperm-specific CatSper channels. Here, we provide evidence for the presence and expression of various Ca(2+) channels in chicken sperm, including high voltage-activated channels (L and R types), the store-operated Ca(2+) channel (SOC) component Orai1, the transient receptor potential channel (TRPC1) and inositol-1,4,5-trisphosphate receptors (IP3 R1). L- and R-type channels were mainly localized in the acrosome and the midpiece, and T-type channels were not detected in chicken sperm. Orai1 was found in all compartments, but with a weak, diffuse signal in the flagellum. TRCP1 was mainly localized in the acrosome and the midpiece, but a weak diffuse signal was also observed in the nucleus and the flagellum. IP3 R1 was mainly detected in the nucleus. The L-type channel inhibitor nifedipine, the R-type channel inhibitor SNX-482 and the SOC inhibitors MRS-1845, 2-APB and YM-58483 decreased [Ca(2+) ]i sperm motility and acrosome reaction capability, with the SOC inhibitors inhibiting these functions most efficiently. Furthermore, we showed that Ca(2+) -mediated induction of AMP-activated protein kinase (AMPK) phosphorylation was blocked by SOC inhibition. Our identification of important regulators of Ca(2+) signaling in avian sperm suggests that SOCs play a predominant role in gamete function, whereas T-type channels may not be involved. In addition, Ca(2+) entry via SOCs appears to be the most likely pathway for AMPK activation and energy-requiring sperm functions such as motility and the acrosome reaction. © 2016 Federation of European Biochemical Societies.

  13. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice

    PubMed Central

    Friedrich, O; Both, M; Gillis, J M; Chamberlain, J S; Fink, RHA

    2004-01-01

    L-type calcium currents (iCa) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of iCa were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of iCa was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of iCa were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas iCa was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation–contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin. PMID:14594987

  14. Cyclic AMP-dependent regulation of P-type calcium channels expressed in Xenopus oocytes.

    PubMed

    Fournier, F; Bourinet, E; Nargeot, J; Charnet, P

    1993-05-01

    Xenopus oocytes injected with rat cerebellum mRNA, express voltage-dependent calcium channels (VDCC). These were identified as P-type Ca2+ channels by their insensitivity to dihydropyridines and omega-conotoxin and by their blockade by Agelenopsis aperta venom (containing the funnel-web spider toxins: FTX and omega-Aga-IV-A). Coinjection of cerebellar mRNA and antisense oligonucleotide complementary to the dihydropyridine-resistant brain Ca2+ channel, named BI [Mori Y. et al. (1991) Nature 350:398-402] or rbA [Starr T. V. B. et al. (1991) Proc Natl Acad Sci USA 88:5621-5625], strongly reduced the expressed Ba2+ current suggesting that these clones encode a P-type VDCC. The macroscopic Ca2+ channel activity was increased by direct intraoocyte injection of cAMP. This increase in current amplitude was concomitant with a slowing of current inactivation, and was attributed to activation of protein kinase A, since it could be antagonized by a peptidic inhibitor of this enzyme. Positive regulation of P-type VDCC could be of importance in Purkinje neurons and motor nerve terminals where this channel is predominant.

  15. Chick cerebellar Purkinje cells express omega-conotoxin GVIA-sensitive rather than funnel-web spider toxin-sensitive calcium channels.

    PubMed

    Angulo, M C; Parra, P; Dieudonné, S

    1998-03-01

    Voltage-gated calcium channels form a complex family of distinct molecular entities which participate in multiple neuronal functions. In cerebellar Purkinje cells these channels contribute to the characteristic electrophysiological pattern of complex spikes, first described in birds and later in mammals. A specific calcium channel, the P-type channel, has been shown to mediate the majority of the voltage-gated calcium flux in mammalian Purkinje cells. P-type channels play an essential role in synaptic transmission of mammalian cerebellum. It is unclear whether the P-type calcium channel is present in birds. Studies in chick synaptosomal preparations show that the pharmacological profile of calcium channels is complex and suggest a minimal expression of the P-type channel in avian central nervous system. In the present work, we studied voltage-gated calcium channels in dissociated chick cerebellar Purkinje cells to examine the presence of different calcium channel types. Purkinje cells were used because, in mammals, they express predominantly P-type channels and because the morphology of these cells is thought to be phylogenetically conserved. We found that omega-conotoxin GVIA (omega-CgTx GVIA), a specific antagonist of N-type calcium channel, rather than the synthetic funnel-web spider toxin (sFTX), a P-type channel antagonist, blocks the majority of the barium current flowing through calcium channels in chick Purkinje neurons.

  16. The solution structure of omega-Aga-IVB, a P-type calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta.

    PubMed

    Reily, M D; Thanabal, V; Adams, M E

    1995-02-01

    The 48 amino acid peptides omega-Aga-IVA and omega-Aga-IVB are the first agents known to specifically block P-type calcium channels in mammalian brain, thus complementing the existing suite of pharmacological tools used for characterizing calcium channels. These peptides provide a new set of probes for studies aimed at elucidating the structural basis underlying the subtype specificity of calcium channel antagonists. We used 288 NMR-derived constraints in a protocol combining distance geometry and molecular dynamics employing the program DGII, followed by energy minimization with Discover to derive the three-dimensional structure of omega-Aga-IVB. The toxin consists of a well-defined core region, comprising seven solvent-shielded residues and a well-defined triple-stranded beta-sheet. Four loop regions have average backbone rms deviations between 0.38 and 1.31 A, two of which are well-defined type-II beta-turns. Other structural features include disordered C- and N-termini and several conserved basic amino acids that are clustered on one face of the molecule. The reported structure suggests a possible surface for interaction with the channel. This surface contains amino acids that are identical to those of another known P-type calcium channel antagonist, omega-Aga-IVA, and is rich in basic residues that may have a role in binding to the anionic sites in the extracellular regions of the calcium channel.

  17. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    PubMed

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  18. Metabotropic and ionotropic glutamate receptors regulate calcium channel currents in salamander retinal ganglion cells

    PubMed Central

    Shen, Wen; Slaughter, Malcolm M

    1998-01-01

    Glutamate suppressed high-voltage-activated barium currents (IBa,HVA) in tiger salamander retinal ganglion cells. Both ionotropic (iGluR) and metabotropic (mGluR) receptors contributed to this calcium channel inhibition. Trans-ACPD (1-aminocyclopentane-trans-1S,3R-dicarboxylic acid), a broad-spectrum metabotropic glutamate receptor agonist, suppressed a dihydropyridine-sensitive barium current. Kainate, an ionotropic glutamate receptor agonist, reduced an ω-conotoxin GVIA-sensitive current. The relative effectiveness of selective agonists indicated that the predominant metabotropic receptor was the L-2-amino-4-phosphonobutyrate (l-AP4)-sensitive, group III receptor. This receptor reversed the action of forskolin, but this was not responsible for calcium channel suppression. l-AP4 raised internal calcium concentration. Antagonists of phospholipase C, inositol trisphosphate (IP3) receptors and ryanodine receptors inhibited the action of metabotropic agonists, indicating that group III receptor transduction was linked to this pathway. The action of kainate was partially suppressed by BAPTA, by calmodulin antagonists and by blockers of calmodulin-dependent phosphatase. Suppression by kainate of the calcium channel current was more rapid when calcium was the charge carrier, instead of barium. The results indicate that calcium influx through kainate-sensitive glutamate receptors can activate calmodulin, which stimulates phosphatases that may directly suppress voltage-sensitive calcium channels. Thus, ionotropic and metabotropic glutamate receptors inhibit distinct calcium channels. They could act synergistically, since both increase internal calcium. These pathways provide negative feedback that can reduce calcium influx when ganglion cells are depolarized. PMID:9660896

  19. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    NASA Astrophysics Data System (ADS)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Qf=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Qf(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  20. Calcium Homeostatasis and Mitochondrial Dysfunction in Dopaminergic Neurons of the Substantia Nigra

    DTIC Science & Technology

    2010-03-01

    discovery that calcium entry through L-type channels during normal pacemaking elevates the sensitivity of SNc dopaminergic neurons to toxins; • the...discovery that L-type calcium channels participate in but are not necessary for pacemaking; • the discovery that serum concentration of the...FDA approved doses; • the discovery that calcium entry through L-type channels during pacemaking elevates mitochondrial oxidant stress and leads

  1. Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain

    PubMed Central

    Roehm, Pamela C.; Xu, Ningyong; Woodson, Erika A.; Green, Steven H.; Hansen, Marlan R.

    2008-01-01

    The effect of membrane electrical activity on spiral ganglion neuron (SGN) neurite growth remains unknown despite its relevance to cochlear implant technology. We demonstrate that membrane depolarization delays the initial formation and inhibits the subsequent extension of cultured SGN neurites. This inhibition depends directly on the level of depolarization with higher levels of depolarization causing retraction of existing neurites. Cultured SGNs express subunits for L-type, N-type, and P/Q type voltage-gated calcium channels (VGCCs) and removal of extracellular Ca2+ or treatment with a combination of L-type, N-type, P/Q-type VGCC antagonists rescues SGN neurite growth under depolarizing conditions. By measuring the fluorescence intensity of SGNs loaded with the fluorogenic calpain substrate t-butoxy carbonyl-Leu-Met-chloromethylaminocoumarin (20 μM), we demonstrate that depolarization activates calpains. Calpeptin (15 μM), a calpain inhibitor, prevents calpain activation by depolarization and rescues neurite growth in depolarized SGNs suggesting that calpain activation contributes to the inhibition of neurite growth by depolarization. PMID:18055215

  2. A Dihydropyridine-sensitive Voltage-dependent Calcium Channel in the Sarcolemmal Membrane of Crustacean Muscle

    PubMed Central

    Erxleben, Christian; Rathmayer, Werner

    1997-01-01

    Single-channel currents through calcium channels in muscle of a marine crustacean, the isopod Idotea baltica, were investigated in cell-attached patches. Inward barium currents were strongly voltage-dependent, and the channels were closed at the cell's resting membrane potential. The open probability (Po) increased e-fold for an 8.2 mV (±2.4, n = 13) depolarization. Channel openings were mainly brief (<0.3 ms) and evenly distributed throughout 100-ms pulses. Averaged, quasimacroscopic currents showed fast activation and deactivation and did not inactivate during 100-ms test pulses. Similarly, channel activity persisted at steadily depolarized holding potentials. With 200 mM Ba2+ as charge carrier, the average slope conductance from the unitary currents between +30 and +80 mV, was 20 pS (±2.6, n = 12). The proportion of long openings, which were very infrequent under control conditions, was greatly increased by preincubation of the muscle fibers with the calcium channel agonist, the dihydropyridine Bay K8644 (10–100 μM). Properties of these currents resemble those through the L-type calcium channels of mammalian nerve, smooth muscle, and cardiac muscle cells. PMID:9089439

  3. Pharmacological preconditioning by diazoxide downregulates cardiac L-type Ca2+ channels

    PubMed Central

    González, G; Zaldívar, D; Carrillo, ED; Hernández, A; García, MC; Sánchez, JA

    2010-01-01

    BACKGROUND AND PURPOSE Pharmacological preconditioning (PPC) with mitochondrial ATP-sensitive K+ (mitoKATP) channel openers such as diazoxide, leads to cardioprotection against ischaemia. However, effects on Ca2+ homeostasis during PPC, particularly changes in Ca2+ channel activity, are poorly understood. We investigated the effects of PPC on cardiac L-type Ca2+ channels. EXPERIMENTAL APPROACH PPC was induced in isolated hearts and enzymatically dissociated cardiomyocytes from adult rats by preincubation with diazoxide. We measured reactive oxygen species (ROS) production and Ca2+ signals associated with action potentials using fluorescent probes, and L-type currents using a whole-cell patch-clamp technique. Levels of the α1c subunit of L-type channels in the cellular membrane were measured by Western blot. KEY RESULTS PPC was accompanied by a 50% reduction in α1c subunit levels, and by a reversible fall in L-type current amplitude and Ca2+ transients. These effects were prevented by the ROS scavenger N-acetyl-L-cysteine (NAC), or by the mitoKATP channel blocker 5-hydroxydecanoate (5-HD). PPC signficantly reduced infarct size, an effect blocked by NAC and 5-HD. Nifedipine also conferred protection against infarction when applied during the reperfusion period. Downregulation of the α1c subunit and Ca2+ channel function were prevented in part by the protease inhibitor leupeptin. CONCLUSIONS AND IMPLICATIONS PPC downregulated the α1c subunit, possibly through ROS. Downregulation involved increased degradation of the Ca2+ channel, which in turn reduced Ca2+ influx, which may attenuate Ca2+ overload during reperfusion. PMID:20636393

  4. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    PubMed

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  5. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

    NASA Astrophysics Data System (ADS)

    Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

    2014-04-01

    Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.

  6. Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms

    PubMed Central

    Currie, Kevin P M; Fox, Aaron P

    2002-01-01

    Inhibition of presynaptic voltage-gated calcium channels by direct G-protein βγ subunit binding is a widespread mechanism that regulates neurotransmitter release. Voltage-dependent relief of this inhibition (facilitation), most likely to be due to dissociation of the G-protein from the channel, may occur during bursts of action potentials. In this paper we compare the facilitation of N- and P/Q-type Ca2+ channels during short trains of action potential-like waveforms (APWs) using both native channels in adrenal chromaffin cells and heterologously expressed channels in tsA201 cells. While both N- and P/Q-type Ca2+ channels exhibit facilitation that is dependent on the frequency of the APW train, there are important quantitative differences. Approximately 20 % of the voltage-dependent inhibition of N-type ICa was reversed during a train while greater than 40 % of the inhibition of P/Q-type ICa was relieved. Changing the duration or amplitude of the APW dramatically affected the facilitation of N-type channels but had little effect on the facilitation of P/Q-type channels. Since the ratio of N-type to P/Q-type Ca2+ channels varies widely between synapses, differential facilitation may contribute to the fine tuning of synaptic transmission, thereby increasing the computational repertoire of neurons. PMID:11882675

  7. Alpha-latrotoxin induces exocytosis by inhibition of voltage-dependent K+ channels and by stimulation of L-type Ca2+ channels via latrophilin in beta-cells.

    PubMed

    Lajus, Sophie; Vacher, Pierre; Huber, Denise; Dubois, Mathilde; Benassy, Marie-Noëlle; Ushkaryov, Yuri; Lang, Jochen

    2006-03-03

    The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.

  8. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.

    PubMed

    Tuluc, Petronel; Flucher, Bernhard E

    2011-12-01

    Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.

  9. Calcium channel antagonists in the treatment of hypertension.

    PubMed

    Weber, Michael A

    2002-01-01

    Calcium channel antagonists are widely used antihypertensive agents. Their popularity among primary care physicians is not only due to their blood pressure-lowering effects, but also because they appear to be effective regardless of the age or ethnic background of the patients. The first available calcium channel antagonists utilized immediate-release formulations which, although effective in patients with angina pectoris, were not approved by the US FDA for use in hypertension. When long-acting once-daily formulations were approved in this indication, the short-acting preparations--which had by then become generic and inexpensive--retained some residual unapproved use for hypertension. An observational case-controlled trial, based on such usage, noted that these agents were associated with a greater risk of myocardial infarctions than conventional agents such as diuretics and beta-adrenoceptor antagonists. Further case-controlled trials showed, in fact, that the dangers of calcium channel antagonists were confined to the short-acting agents and that approved long-acting agents were at least as well tolerated and effective as other antihypertensive drugs. Cardiovascular outcomes during treatment with calcium channel antagonists have been examined in randomized, controlled trials. Compared with placebo, the calcium channel antagonists clearly prevented strokes and other cardiovascular events and reduced mortality. The effects of these agents on survival and clinical outcomes were similar to those with other antihypertensive drugs. There is a slight tendency for the calcium channel antagonists to be more effective than other drug types in preventing stroke, but slightly less effective in preventing coronary events. These observations extend to high-risk patients with hypertension including those with diabetes mellitus. Even so, patients with evidence of nephropathy should not receive monotherapy with calcium channel antagonists. Such patients are optimally treated

  10. Interaction of calcium channel blockers (CCBs) with histamine and 5-hydroxytryptamine in aorta from normal and diseased rats.

    PubMed

    Bhugra, P; Gulati, O D

    1996-04-01

    The present study attempts to investigate the interaction of calcium channel blockers (CCBs) with histamine (H) and 5-hydroxytryptamine (5-HT) in rat isolated aortic strip preparations. In preparations obtained from rats chronically treated with various CCBs the contractile responses to H were completely blocked suggesting that this may be due to inhibition of the voltage-dependent channels and inositol 1,4,5-triphosphate induced release of calcium from intracellular stores. The decreased contractions of the aortic strip preparations with 5-HT obtained from rats chronically treated with various CCBs implies a decrease in 5-HT receptor density. DOCA-saline hypertensive rats chronically treated with various CCBs showed variable responses to H and 5-HT suggesting that these changes may be due to different isoforms of L-type calcium channels. In L-thyroxine-treated preparations or those simultaneously treated with L-thyroxine and CCBs the responses to H were abolished and those to 5-HT were partially blocked with decrease in maxima which could be secondary to the primary effect on the heart and to generalised reduced senstivity of the rat aorta.

  11. [Aging-related ionic remodeling of L-type voltage dependent calcium channel in left atria of canine].

    PubMed

    Zhou, Xian-hui; Zhang, Jian; Gan, Tian-yi; Xu, Guo-jun; Tang, Bao-peng

    2012-04-01

    To investigate aging-related ionic remodeling of L-type voltage dependent calcium channel (LVDCC) in left atria of canine. Seven adult (2.0 - 2.5 years) and 10 aged (> 8 years) dogs were used. The current of LVDCC was recorded by patch clamp technique in the whole cell mode. The action potential duration (APD(90)), amplitude of action potential plateau (APA), I(Ca-L) peak current density of LVDCC were recorded. The mRNA and protein expressions of α1c subunit (Ca(V1.2)), sarcoplasmic reticulum Ca(2+)-ATPase (SECRA(2)), Calpain-I, ryanodine receptor (RYR(2)) were detected by quantitative RT-PCR and Western blot, respectively. I(Ca-L) peak current density [(-8.11 ± 0.54) pA/pF vs. (-14.04 ± 0.82) pA/pF, P < 0.05] was significantly reduced and action potential duration to 90% repolarization (APD(90)) significantly prolonged [(340.5 ± 10.1) ms vs. (320.0 ± 7.9) ms, P < 0.05] in aged group than in adult group. The mRNA gene expression level of Ca(V1.2) was significantly lower (0.90 ± 0.35 vs. 2.38 ± 0.40, P < 0.05) while mRNA expression of RYR(2) was significantly higher (4.39 ± 4.68 vs. 1.49 ± 1.69, P < 0.05) in the aged dogs than in the adult dogs. mRNA expression of SECRA(2) and Calpain-I was similar between the two groups. Similarly, the protein expression level of Ca(V1.2) was significantly lower (0.13 ± 0.10 vs. 0.29 ± 0.12, P < 0.05) while the protein expression level of RYR(2) was significantly higher (0.18 ± 0.21 vs. 0.08 ± 0.36, P < 0.05) in the aged dogs than in the adult dogs. Again, protein expression of SECRA(2), PLN(1) and Calpain-I was similar between the two groups. These data suggest that aging could induce mRNA and protein expression changes of Ca(V1.2) and RYR(2) of LVDCC which might serve as the molecular basis of I(Ca-L) remodeling in aged dogs and might be linked to the increased likelihood of developing atrial fibrillation (AF) in aged dogs.

  12. [Alterations of cardiac hemodynamics, sodium current and L-type calcium current in rats with L-thyroxine-induced cardiomyopathy].

    PubMed

    Wang, Jing; Zhang, Wei-Dong; Lin, Mu-Sen; Zhai, Qing-Bo; Yu, Feng

    2010-08-25

    The aim of the present study is to investigate the alterations of cardiac hemodynamics, sodium current (I(Na)) and L-type calcium current (I(Ca-L)) in the cardiomyopathic model of rats. The model of cardiomyopathy was established by intraperitoneal injection of L-thyroxine (0.5 mg/kg) for 10 d. The hemodynamics was measured with biological experimental system, and then I(Na) and I(Ca-L) were recorded by using whole cell patch clamp technique. The results showed that left ventricular systolic pressure (LVSP), left ventricular developed pressure (LVDP), +/-dp/dt(max) in cardiomyopathic group were significantly lower than those in the control group, while left ventricular end-diastolic pressure (LVEDP) in cardiomyopathic group was higher than that in the control group. Intraperitoneal injection of L-thyroxine significantly increased the current density of I(Na) [(-26.2+/-3.2) pA/pF vs (-21.1+/-6.3) pA/pF, P<0.01], shifted steady-state activation and inactivation curves negatively, and markedly prolonged the time constant of recovery from inactivation. On the other hand, the injection of L-thyroxine significantly increased the current density of I(Ca-L) [(-7.9+/-0.8) pA/pF vs (-5.4+/-0.6) pA/pF, P<0.01)], shifted steady-state activation and inactivation curves negatively, and obviously shortened the time constant of recovery from inactivation. In conclusion, the cardiac performance of cardiomyopathic rats is similar to that of rats with heart failure, in which the current density of I(Na) and especially the I(Ca-L) are enhanced, suggesting that calcium channel blockade and a decrease in Na(+) permeability of membrane may play an important role in the treatment of cardiomyopathy.

  13. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice.

    PubMed

    Choi, Soonwook; Yu, Eunah; Kim, Daesoo; Urbano, Francisco J; Makarenko, Vladimir; Shin, Hee-Sup; Llinás, Rodolfo R

    2010-08-15

    The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming alpha1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming alpha1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1-/- mice. In the CaV3.1-/- mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1-/- mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1-/- mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1-/- and CaV3.1-/- mice. These results suggest that both alpha1A P/Q- and alpha1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics.

  14. Calcium channels in solitary retinal ganglion cells from post-natal rat.

    PubMed Central

    Karschin, A; Lipton, S A

    1989-01-01

    1. Calcium currents from identified, post-natal retinal ganglion cell neurones from rat were studied with whole-cell and single-channel patch-clamp techniques. Na+ and K+ currents were suppressed with pharmacological agents, allowing isolation of current carried by either 10 mM-Ca2+ or Ba2- during whole-cell recordings. For cell-attached patch recordings, the recording pipette contained 96-110 mM-BaCl2 while the bath solution consisted of isotonic potassium aspartate in order to zero the neuronal membrane potential. 2. A transient component, present in approximately one-third of the whole-cell recordings resembles closely the T-type calcium current observed previously in other tissues. This component activates at low voltages (-40 to -50 mV from holding potentials negative to -80 mV), inactivates with a time constant of 10-30 ms at 35 degrees C, and is carried equally well by Ba2+ or Ca2+. In single-channel recordings small (8 pS) channels are observed whose aggregate microscopic kinetics correspond well to the macroscopic current obtained during whole-cell measurements. 3. During whole-cell recordings, a more prolonged component activates in all retinal ganglion cells at -40 to -20 mV from a holding potential of -90 mV. This component is substantially larger when equimolar Ba2+ replaces Ca2+ as the charge carrier, and is sensitive to the dihydropyridine agonist Bay K8644 (5 microM) and antagonists nifedipine (1-10 microM) and nimodipine (1-10 microM). Thus, the dihydropyridine pharmacology of this prolonged component resembles that of the L-type calcium current found in dorsal root ganglion neurones and in heart cells. Also reminiscent of the L-current, the prolonged component in this preparation is less inactivated at depolarized holding potentials (-60 to -40 mV) than the transient component. In cell-attached recordings, large (20 pS) channels are observed with activation properties similar to those of the prolonged portion of the whole-cell current. 4. omega

  15. [Nonuniform distribution and contribution of the P- and P/Q-type calcium channels to short-term inhibitory synaptic transmission in cultured hippocampal neurons].

    PubMed

    Mizerna, O P; Fedulova, S A; Veselovs'kyĭ, M S

    2010-01-01

    In the present study, we investigated the sensitivity of GABAergic short-term plasticity to the selective P- and P/Q-type calcium channels blocker omega-agatoxin-IVA. To block the P-type channels we used 30 nM of this toxin and 200 nM of the toxin was used to block the P/Q channel types. The evoked inhibitory postsynaptic currents (eIPSC) were studied using patch-clamp technique in whole-cell configuration in postsynaptic neuron and local extracellular stimulation of single presynaptic axon by rectangular pulse. The present data show that the contribution of P- and P/Q-types channels to GABAergic synaptic transmission in cultured hippocampal neurons are 30% and 45%, respectively. It was shown that the mediate contribution of the P- and P/Q-types channels to the amplitudes of eIPSC is different to every discovered neuron. It means that distribution of these channels is non-uniform. To study the short-term plasticity of inhibitory synaptic transmission, axons of presynaptic neurons were paired-pulse stimulated with the interpulse interval of 150 ms. Neurons demonstrated both the depression and facilitation. The application of 30 nM and 200 nM of the blocker decreased the depression and increased facilitation to 8% and 11%, respectively. In addition, we found that the mediate contribution of the P- and P/Q-types channels to realization of synaptic transmission after the second stimuli is 4% less compared to that after the first one. Therefore, blocking of both P- and P/Q-types calcium channels can change the efficiency of synaptic transmission. In this instance it facilitates realization of the transmission via decreased depression or increased facilitation. These results confirm that the P- and P/Q-types calcium channels are involved in regulation of the short-term inhibitory synaptic plasticity in cultured hippocampal neurons.

  16. Calcium Channels in Postnatal Development of Rat Pancreatic Beta Cells and Their Role in Insulin Secretion

    PubMed Central

    García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia

    2018-01-01

    Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214

  17. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy.

    PubMed

    Hu, Zhenyu; Wang, Jiong-Wei; Yu, Dejie; Soon, Jia Lin; de Kleijn, Dominique P V; Foo, Roger; Liao, Ping; Colecraft, Henry M; Soong, Tuck Wah

    2016-10-12

    Decreased expression and activity of Ca V 1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of Ca V 1.2 channel, named Ca V 1.2 e21+22 , that contained the pair of mutually exclusive exons 21 and 22. This variant was highly expressed in neonatal hearts. The abundance of this variant was gradually increased by 12.5-folds within 14 days of transverse aortic banding that induced cardiac hypertrophy in adult mouse hearts and was also elevated in left ventricles from patients with dilated cardiomyopathy. Although this variant did not conduct Ca 2+ ions, it reduced the cell-surface expression of wild-type Ca V 1.2 channels and consequently decreased the whole-cell Ca 2+ influx via the Ca V 1.2 channels. In addition, the Ca V 1.2 e21+22 variant interacted with Ca V β subunits significantly more than wild-type Ca V 1.2 channels, and competition of Ca V β subunits by Ca V 1.2 e21+22 consequently enhanced ubiquitination and subsequent proteasomal degradation of the wild-type Ca V 1.2 channels. Our findings show that the resurgence of a specific neonatal splice variant of Ca V 1.2 channels in adult heart under stress may contribute to heart failure.

  18. Ca2+–calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel α1C-subunit gene (Cacna1c) by DREAM translocation

    PubMed Central

    Ronkainen, Jarkko J; Hänninen, Sandra L; Korhonen, Topi; Koivumäki, Jussi T; Skoumal, Reka; Rautio, Sini; Ronkainen, Veli-Pekka; Tavi, Pasi

    2011-01-01

    Abstract Recent studies have demonstrated that changes in the activity of calcium–calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation–contraction (E–C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM–GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+–CaMKII–DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII. PMID:21486818

  19. The TRPM7 channel kinase regulates store-operated calcium entry.

    PubMed

    Faouzi, Malika; Kilch, Tatiana; Horgen, F David; Fleig, Andrea; Penner, Reinhold

    2017-05-15

    Pharmacological and molecular inhibition of transient receptor potential melastatin 7 (TRPM7) reduces store-operated calcium entry (SOCE). Overexpression of TRPM7 in TRPM7 -/- cells restores SOCE. TRPM7 is not a store-operated calcium channel. TRPM7 kinase rather than channel modulates SOCE. TRPM7 channel activity contributes to the maintenance of store Ca 2+ levels at rest. The transient receptor potential melastatin 7 (TRPM7) is a protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. In the present study, we report store-operated calcium entry (SOCE) as a novel target of TRPM7 kinase activity. TRPM7-deficient chicken DT40 B lymphocytes exhibit a strongly impaired SOCE compared to wild-type cells as a result of reduced calcium release activated calcium currents, and independently of potassium channel regulation, membrane potential changes or changes in cell-cycle distribution. Pharmacological blockade of TRPM7 with NS8593 or waixenicin A in wild-type B lymphocytes results in a significant decrease in SOCE, confirming that TRPM7 activity is acutely linked to SOCE, without TRPM7 representing a store-operated channel itself. Using kinase-deficient mutants, we find that TRPM7 regulates SOCE through its kinase domain. Furthermore, Ca 2+ influx through TRPM7 is essential for the maintenance of endoplasmic reticulum Ca 2+ concentration in resting cells, and for the refilling of Ca 2+ stores after a Ca 2+ signalling event. We conclude that the channel kinase TRPM7 and SOCE are synergistic mechanisms regulating intracellular Ca 2+ homeostasis. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Daesoo; Urbano, Francisco J; Makarenko, Vladimir; Shin, Hee-Sup; Llinás, Rodolfo R

    2010-01-01

    The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming α1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming α1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1−/− mice. In the CaV3.1−/− mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1−/− mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1−/− mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1−/− and CaV3.1−/− mice. These results suggest that both α1A P/Q- and α1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics. PMID:20547676

  1. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    PubMed

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  2. [Single channel analysis of aconitine blockade of calcium channels in rat myocardiocytes].

    PubMed

    Chen, L; Ma, C; Cai, B C; Lu, Y M; Wu, H

    1995-01-01

    Ventricular myocardiocytes from neonatal Wistar rats were isolated and cultured. Aconitine, Ca2+ channel blocker verapamil or Ca2+ channel activator BAY K8644 were added to the bath solution separately. Using the cell-attached configuration of the patch clamp technique, the single channel activities of L type Ca2+ channel were recorded before and after addition of all three drugs. The results showed the blocking effect of aconitine (50 micrograms.ml-1) on L type Ca2+ channels. Its mechanism may be relevant to the decrease in both open state probability and the mean open time of Ca2+ channel. The difference was statistically significant compared with control group (P < 0.01). The amplitude of Ba2+ currents, which flow through open L type Ca2+ channel was unchanged.

  3. THE CRITICAL ROLE OF VOLTAGE-DEPENDENT CALCIUM CHANNEL IN AXONAL REPAIR FOLLOWING MECHANICAL TRAUMA

    PubMed Central

    Nehrt, Ashley; Rodgers, Richard; Shapiro, Scott; Borgens, Richard; Shi, Riyi

    2009-01-01

    Membrane disruption following mechanical injury likely plays a critical role in the pathology of spinal cord trauma. It is known that intracellular calcium is a key factor that is essential to membrane resealing. However, the differential role of calcium influx through the injury site and through voltage dependent calcium channels (VDCC) has not been examined in detail. Using a well established ex vivo guinea pig spinal cord white matter preparation, we have found that axonal membrane resealing was significantly inhibited following transection or compression in the presence of cadmiun, a non-specific calcium channel blocker, or nimodipine, a specific L-type calcium channel blocker. Membrane resealing was assessed by the changes of membrane potential and compound action potential (CAP), and exclusion of horseradish peroxidase 60 minutes following trauma. Furthermore, 1 μM BayK 8644, a VDCC agonist, significantly enhanced membrane resealing. Interestingly, this effect was completely abolished when the concentration of BayK 8644 was increased to 30 μM. These data suggest that VDCC play a critical role in membrane resealing. Further, there is likely an appropriate range of calcium influx through VDCC which ensures effective axonal membrane resealing. Since elevated intracellular calcium has also been linked to axonal deterioration, blockage of VDCC is proposed to be a clinical treatment for various injuries. The knowledge gained in this study will likely help us better understand the role of calcium in various CNS trauma, which is critical for designing new approaches or perhaps optimizing the effectiveness of existing methods in the treatment of CNS trauma. PMID:17448606

  4. Loperamide: A positive modulator for store-operated calcium channels?

    PubMed Central

    Harper, Jacquie L.; Shin, Yangmee; Daly, John W.

    1997-01-01

    The depletion of inositol trisphosphate-sensitive intracellular pools of calcium causes activation of store-operated calcium (SOC) channels. Loperamide at 10–30 μM has no effect on intracellular calcium levels alone, but augments calcium levels in cultured cells when SOC channels have been activated. In HL-60 leukemic cells, the apparent positive modulatory effect of loperamide on SOC channels occurs when these channels have been activated after ATP, thapsigargin, or ionomycin-elicited depletion of calcium from intracellular storage sites. Loperamide has no effect when levels of intracellular calcium are elevated through a mechanism not involving SOC channels by using sphingosine. Loperamide caused augmentation of intracellular calcium levels after activation of SOC channels in NIH 3T3 fibroblasts, astrocytoma 1321N cells, smooth muscle DDT-MF2 cells, RBL-2H3 mast cells, and pituitary GH4C1 cells. Only in astrocytoma cells did loperamide cause an elevation in intracellular calcium in the absence of activation of SOC channels. The augmentation of intracellular calcium elicited by loperamide in cultured cells was dependent on extracellular calcium and was somewhat resistant to agents (SKF 96365, miconazole, clotrimazole, nitrendipine, and trifluoperazine) that in the absence of loperamide effectively blocked SOC channels. It appears that loperamide augments influx of calcium through activated SOC channels. PMID:9405713

  5. Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites

    PubMed Central

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-01-01

    Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810

  6. Activity-dependent gating of calcium spikes by A-type K+ channels controls climbing fiber signaling in Purkinje cell dendrites.

    PubMed

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-10-01

    In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Calcium Channel Blockers

    MedlinePlus

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  8. The saponin monomer of dwarf lilyturf tuber, DT-13, reduces L-type calcium currents during hypoxia in adult rat ventricular myocytes.

    PubMed

    Tao, Jin; Wang, Hongyi; Zhou, Hong; Li, Shengnan

    2005-10-28

    The saponin monomer 13 of dwarf lilyturf tuber (DT-13), one of the saponin monomers of dwarf lilyturf tuber, has been found to have potent cardioprotective effects. In order to investigate the effects of DT-13 on L-type calcium currents (I(Ca,L)), exploring the mechanisms of DT-13's cardioprotective effects in the condition of pathophysiology, we directly measured the I(Ca,L) during hypoxia in the adult rat cardiac myocytes exposed to DT-13 using standard whole-cell patch-clamp recording technique. Our previous results showed that DT-13 exerted decreasing effects on the I(Ca,L) of the single adult rat cardiac myocytes. In the condition of hypoxia, the current density was inhibited by about 29% after exposure of the cells to DT-13 (0.1 micromol L(-1)) for 10 min, from 6.96+/-1.05 pA/pF to 4.38+/-0.35 pA/pF (n=5, P<0.05). This I(Ca,L)-inhibiting action of DT-13 was concentration-dependent and showed no frequency-dependence. DT-13 up-shifted the current-voltage (I-V) curve. Steady-state activation of I(Ca,L) was not affected markedly, and the half activation potential (V(0.5)) in the presence of DT-13 (0.1 micromol L(-1)) was also not significantly different. DT-13 at 0.1 micromol L(-1) markedly accelerated the voltage-dependent steady-state inactivation of calcium current and shifted the steady-state inactivation curve of I(Ca,L) to the left. In combination with previous reports, these results suggest that there might be a close relationship between the cardioprotective effects of DT-13 and L-type calcium channels in the condition of hypoxia.

  9. The effect of an L/N-type calcium channel blocker on intradialytic blood pressure in intradialytic hypertensive patients.

    PubMed

    Ito, Takayasu; Fujimoto, Naoki; Ishikawa, Eiji; Dohi, Kaoru; Fujimoto, Mika; Murata, Tomohiro; Kiyohara, Michiyo; Takeuchi, Hideyuki; Koyabu, Sukenari; Nishimura, Hiroyuki; Takeuchi, Toshiaki; Ito, Masaaki

    2018-03-27

    Intradialytic hypertension (HTN), which is one of the poor prognostic markers in patients undergoing hemodialysis, may be associated with sympathetic overactivity. The L/N-type calcium channel blocker, cilnidipine, has been reported to suppress sympathetic nerves activity in vivo. Therefore, we hypothesized that cilnidipine could attenuate intradialytic systolic blood pressure (SBP) elevation. Fifty-one patients on chronic hemodialysis who had intradialytic-HTN (SBP elevation ≥10 mmHg during hemodialysis) and no fluid overload were prospectively randomized into two groups: control and cilnidipine groups. Cilnidipine group patients took cilnidipine (10 mg/day) for 12 weeks. The primary endpoint was the change in the intradialytic SBP elevation before and after the 12-week intervention. Before the intervention, no differences were observed in age, sex or pre-dialytic SBP (148.5 ± 12.9 vs. 148.3 ± 19.3 mmHg) between the two groups. Intradialytic SBP elevation was unchanged in the control group. Cilnidipine significantly lowered the post-dialytic SBP with an attenuation of the intradialytic SBP elevation from 12.0 ± 15.4 mmHg to 4.8 ± 10.1 mmHg. However, the observed difference in the intradialytic SBP elevation by cilnidipine did not reach statistical significance (group×time interaction effect p = 0.25). Cathecolamine levels were unaffected by the intervention in both groups. Cilnidipine lowers both the pre- and post-dialytic SBP and might attenuate intradialytic SBP elevation. Therefore, cilnidipine may be effective in lowering SBP during HD in patients with intradialytic-HTN.

  10. Molecular characterization of thyroid hormone-inhibited atrial L-type calcium channel expression: implication for atrial fibrillation in hyperthyroidism.

    PubMed

    Chen, Wei-Jan; Yeh, Yung-Hsin; Lin, Kwang-Huei; Chang, Gwo-Jyh; Kuo, Chi-Tai

    2011-03-01

    Atrial fibrillation (AF) is a common complication in hyperthyroidism. Earlier studies demonstrate that thyroid hormone decreases L-type calcium channel (LCC) current expression with resultant shortening of action potential duration (APD), providing a substrate for AF. The aim of this study was to investigate the potential mechanism underlying the regulatory effect of thyroid hormone on LCC. In a hyperthyroid rat model, thyroid hormone (triiodothyronine [T3]) administration down-regulated atrial LCC expression. In vitro, treatment of murine atrial myocytes (HL-1) with T3 decreased the expression of LCC and its current, resulting in abbreviation of APD. Furthermore, T3 inhibited the activation of cyclic AMP response element (CRE)-binding protein (CREB), including phosphorylation at Ser133 and its nuclear translocation. Transient transfection studies in HL-1 cells indicated that T3 reduced LCC promoter activity. Deletion and mutation analysis of the LCC promoter region along with chromatin immunoprecipitation using anti-CREB antibody showed that CRE was essential for T3-mediated LCC gene expression. Transfection of dominant-negative CREB (mutated Ser133) and mutant thyroid hormone receptor (TR, mutated Cys51) abolished the T3-dependent effects, suggesting an association between both transcriptional factors. Co-immunoprecipitation documented an increased binding of TR with CREB after T3 treatment. The transcriptional cross-talk 3 between TR and CREB bound to CRE mediates T3-inhibited CREB activity and LCC expression. Thyroid hormone-induced TR binding of CREB inhibits CREB activity and LCC current expression, which may contribute to AF. These findings provide an important mechanistic insight into hyperthyroidism-induced AF.

  11. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells.

    PubMed Central

    Marengo, J J; Hidalgo, C; Bull, R

    1998-01-01

    The calcium dependence of ryanodine-sensitive single calcium channels was studied after fusing with planar lipid bilayers sarcoendoplasmic reticulum vesicles isolated from excitable tissues. Native channels from mammalian or amphibian skeletal muscle displayed three different calcium dependencies, cardiac (C), mammalian skeletal (MS), and low fractional open times (low Po), as reported for channels from brain cortex. Native channels from cardiac muscle presented only the MS and C dependencies. Channels with the MS or low Po behaviors showed bell-shaped calcium dependencies, but the latter had fractional open times of <0.1 at all [Ca2+]. Channels with C calcium dependence were activated by [Ca2+] < 10 microM and were not inhibited by increasing cis [Ca2+] up to 0.5 mM. After oxidation with 2,2'-dithiodipyridine or thimerosal, channels with low Po or MS dependencies increased their activity. These channels modified their calcium dependencies sequentially, from low Po to MS and C, or from MS to C. Reduction with glutathione of channels with C dependence (native or oxidized) decreased their fractional open times in 0.5 mM cis [Ca2+], from near unity to 0.1-0.3. These results show that all native channels displayed at least two calcium dependencies regardless of their origin, and that these changed after treatment with redox reagents. PMID:9512024

  12. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.

    PubMed

    Rawat, Dhwajbahadur K; Hecker, Peter; Watanabe, Makino; Chettimada, Sukrutha; Levy, Richard J; Okada, Takao; Edwards, John G; Gupte, Sachin A

    2012-01-01

    We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca(2+) currents (I(Ca-L)) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit I(Ca-L) and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca(2+) channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and I(Ca-L) were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of -80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO(2) and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak I(Ca-L) amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of I(Ca-L) by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca(2+) channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure).

  13. The Role of Dopamine Receptors in the Neurobehavioral Syndrome Provoked by Activation of L-Type Calcium Channels in Rodents

    PubMed Central

    Kasim, Suhail; Blake, Bonita L.; Fan, Xueliang; Chartoff, Elena; Egami, Kiyoshi; Breese, George R.; Hess, Ellen J.; Jinnah, H.A.

    2010-01-01

    In rodents, activation of L-type calcium channels with ± BayK 8644 causes an unusual behavioral syndrome that includes dystonia and self-biting. Prior studies have linked both of these behaviors to dysfunction of dopaminergic transmission in the striatum. The current studies were designed to further elucidate the relationship between ± BayK 8644 and dopaminergic transmission in the expression of the behavioral syndrome. The drug does not appear to release presynaptic dopamine stores, since microdialysis of the striatum revealed dopamine release was unaltered by ± BayK 8644. In addition, the behaviors were preserved or even exaggerated in mice or rats with virtually complete dopamine depletion. On the other hand, pretreatment of mice with D3 or D1/5 dopamine receptor antagonists attenuated the behavioral effects of ± BayK 8644, while pretreatment with D2 or D4 antagonists had no effect. In D3 receptor knockout mice, ± BayK 8644 elicited both dystonia and self-biting, but these behaviors were less severe than in matched controls. In D1 receptor knockout mice, behavioral responses to ± BayK 8644 appeared exaggerated. These results argue that the behavioral effects of ± BayK 8644 are not mediated by a presynaptic influence. Instead, the behaviors appear to result from a postsynaptic activation of the drug, which does not require but can be modified by D3 or D1/5 receptors. PMID:17028428

  14. Cav1.2, but not Cav1.3, L-type calcium channel subtype mediates nicotine-induced conditioned place preference in miceo.

    PubMed

    Liu, Yudan; Harding, Meghan; Dore, Jules; Chen, Xihua

    2017-04-03

    Nicotine use is one of the most common forms of drug addiction. Although L-type calcium channels (LTCCs) are involved in nicotine addiction, the contribution of the two primary LTCC subtypes (Ca v 1.2 and 1.3) is unknown. This study aims to determine the contribution of these two LTCC subtypes to nicotine-induced conditioned place preference (CPP) responses by using transgenic mouse models that do not express Ca v 1.3 (Ca v 1.3 -/- ) or contain a mutation in the dihydropyridine (DHP) site of the Ca v 1.2 (Ca v 1.2DHP -/- ). We found a hyperbolic dose dependent nicotine (0.1-1mg/kg; 0.5mg/kg optimum) effect on place preference in wild type (WT) mice, that could be prevented by the DHP LTCC blocker nifedipine pretreatment. Similarly, Ca v 1.3 -/- mice showed nicotine-induced place preference which was antagonized by nifedipine. In contrast, nifedipine pretreatment of Ca v 1.2DHP -/- mice had no effect on nicotine-induced CPP responses, suggesting an involvement of Ca v 1.2 subtype in the nicotine-induced CPP response. Nifedipine alone failed to produce either conditioned place aversion or CPP in WT mice. These results collectively indicate Ca v 1.2, but not Ca v 1.3 LTCC subtype regulates, at least in part, the reinforcing effects of nicotine use. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Action of aluminum, novel TPC1-type channel inhibitor, against salicylate-induced and cold-shock-induced calcium influx in tobacco BY-2 cells.

    PubMed

    Lin, Cun; Yu, Yawei; Kadono, Takashi; Iwata, Michiaki; Umemura, Kenji; Furuichi, Takuya; Kuse, Masaki; Isobe, Minoru; Yamamoto, Yoko; Matsumoto, Hideaki; Yoshizuka, Kazuharu; Kawano, Tomonori

    2005-07-08

    Previously, effect of Al ions on calcium signaling was assessed in tobacco cells expressing a Ca2+-monitoring luminescent protein, aequorin and a newly isolated putative plant Ca2+ channel protein from Arabidopsis thaliana, AtTPC1 (two-pore channel 1). TPC1 channels were shown to be the only channel known to be sensitive to Al and they are responsive to reactive oxygen species and cryptogein, a fungal elicitor protein. Thus, involvement of TPC1 channels in calcium signaling leading to development of plant defense mechanism has been suggested. Then, the use of Al as a specific inhibitor of TPC1-type plant calcium channels has been proposed. Here, using transgenic tobacco BY-2 cells expressing aequorin, we report on the evidence in support of the involvement of Al-sensitive signaling pathway requiring TPC1-type channel-dependent Ca2+ influx in response to salicylic acid, a key plant defense-inducing agent, but not to an elicitor prepared from the cell wall of rice blast disease fungus Magnaporthe grisea. In addition, involvement of Al-sensitive Ca2+ channels in response to cold shock was also tested. The data suggested that the elicitor used here induces the Ca2+ influx via Al-insensitive path, while salicylic acid and cold-shock-stimulate the influx of Ca2+ via Al-sensitive mechanism.

  16. Mutation in the Auxiliary Calcium-Channel Subunit CACNA2D4 Causes Autosomal Recessive Cone Dystrophy

    PubMed Central

    Wycisk, Katharina Agnes; Zeitz, Christina; Feil, Silke; Wittmer, Mariana; Forster, Ursula; Neidhardt, John; Wissinger, Bernd; Zrenner, Eberhart; Wilke, Robert; Kohl, Susanne; Berger, Wolfgang

    2006-01-01

    Retinal signal transmission depends on the activity of high voltage–gated l-type calcium channels in photoreceptor ribbon synapses. We recently identified a truncating frameshift mutation in the Cacna2d4 gene in a spontaneous mouse mutant with profound loss of retinal signaling and an abnormal morphology of ribbon synapses in rods and cones. The Cacna2d4 gene encodes an l-type calcium-channel auxiliary subunit of the α2δ type. Mutations in its human orthologue, CACNA2D4, were not yet known to be associated with a disease. We performed mutation analyses of 34 patients who received an initial diagnosis of night blindness, and, in two affected siblings, we detected a homozygous nucleotide substitution (c.2406C→A) in CACNA2D4. The mutation introduces a premature stop codon that truncates one-third of the corresponding open reading frame. Both patients share symptoms of slowly progressing cone dystrophy. These findings represent the first report of a mutation in the human CACNA2D4 gene and define a novel gene defect that causes autosomal recessive cone dystrophy. PMID:17033974

  17. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.

    PubMed Central

    Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R

    1992-01-01

    We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel. Images PMID:1348859

  18. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.

    PubMed

    Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R

    1992-04-15

    We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel.

  19. Iron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade

    PubMed Central

    Chen, Mei-pian; Cabantchik, Z. Ioav; Chan, Shing; Chan, Godfrey Chi-fung; Cheung, Yiu-fai

    2014-01-01

    Background Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis. Methods Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC. Results Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis. Conclusion Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other

  20. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception.

    PubMed

    Bourinet, Emmanuel; Alloui, Abdelkrim; Monteil, Arnaud; Barrère, Christian; Couette, Brigitte; Poirot, Olivier; Pages, Anne; McRory, John; Snutch, Terrance P; Eschalier, Alain; Nargeot, Joël

    2005-01-26

    Analgesic therapies are still limited and sometimes poorly effective, therefore finding new targets for the development of innovative drugs is urgently needed. In order to validate the potential utility of blocking T-type calcium channels to reduce nociception, we explored the effects of intrathecally administered oligodeoxynucleotide antisenses, specific to the recently identified T-type calcium channel family (CaV3.1, CaV3.2, and CaV3.3), on reactions to noxious stimuli in healthy and mononeuropathic rats. Our results demonstrate that the antisense targeting CaV3.2 induced a knockdown of the CaV3.2 mRNA and protein expression as well as a large reduction of 'CaV3.2-like' T-type currents in nociceptive dorsal root ganglion neurons. Concomitantly, the antisense treatment resulted in major antinociceptive, anti-hyperalgesic, and anti-allodynic effects, suggesting that CaV3.2 plays a major pronociceptive role in acute and chronic pain states. Taken together, the results provide direct evidence linking CaV3.2 T-type channels to pain perception and suggest that CaV3.2 may offer a specific molecular target for the treatment of pain.

  1. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  2. Molecular basis of proton block of L-type Ca2+ channels.

    PubMed

    Chen, X H; Bezprozvanny, I; Tsien, R W

    1996-11-01

    Hydrogen ions are important regulators of ion flux through voltage-gated Ca2+ channels but their site of action has been controversial. To identify molecular determinants of proton block of L-type Ca2+ channels, we combined site-directed mutagenesis and unitary current recordings from wild-type (WT) and mutant L-type Ca2+ channels expressed in Xenopus oocytes. WT channels in 150 mM K+ displayed two conductance states, deprotonated (140 pS) and protonated (45 pS), as found previously in native L-type Ca2+ channels. Proton block was altered in a unique fashion by mutation of each of the four P-region glutamates (EI-EIV) that form the locus of high affinity Ca2+ interaction. Glu(E)-->Gln(Q) substitution in either repeats I or III abolished the high-conductance state, as if the titration site had become permanently protonated. While the EIQ mutant displayed only an approximately 40 pS conductance, the EIIIQ mutant showed the approximately 40 pS conductance plus additional pH-sensitive transitions to an even lower conductance level. The EIVQ mutant exhibited the same deprotonated and protonated conductance states as WT, but with an accelerated rate of deprotonation. The EIIQ mutant was unusual in exhibiting three conductance states (approximately 145, 102, 50 pS, respectively). Occupancy of the low conductance state increased with external acidification, albeit much higher proton concentration was required than for WT. In contrast, the equilibrium between medium and high conductance levels was apparently pH-insensitive. We concluded that the protonation site in L-type Ca2+ channels lies within the pore and is formed by a combination of conserved P-region glutamates in repeats I, II, and III, acting in concert. EIV lies to the cytoplasmic side of the site but exerts an additional stabilizing influence on protonation, most likely via electrostatic interaction. These findings are likely to hold for all voltage-gated Ca2+ channels and provide a simple molecular explanation

  3. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    PubMed

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  4. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones.

    PubMed Central

    Fox, A P; Nowycky, M C; Tsien, R W

    1987-01-01

    1. Calcium currents in cultured dorsal root ganglion (d.r.g.) cells were studied with the whole-cell patch-clamp technique. Using experimental conditions that suppressed Na+ and K+ currents, and 3-10 mM-external Ca2+ or Ba2+, we distinguished three distinct types of calcium currents (L, T and N) on the basis of voltage-dependent kinetics and pharmacology. 2. Component L activates at relatively positive test potentials (t.p. greater than -10 mV) and shows little inactivation during a 200 ms depolarization. It is completely reprimed at a holding potential (h.p.) of -60 mV, and can be isolated by using a more depolarized h.p. (-40 mV) to inactivate the other two types of calcium currents. 3. Component T can be seen in isolation with weak test pulses. It begins activating at potentials more positive than -70 mV and inactivates quickly and completely during a maintained depolarization (time constant, tau approximately 20-50 ms). The current amplitude and the rate of decay increase with stronger depolarizations until both reach a maximum at approximately -40 mV. Inactivation is complete at h.p. greater than -60 mV and is progressively removed between -60 and -95 mV. 4. Component N activates at relatively strong depolarizations (t.p. greater than -20 mV) and decays with time constants ranging from 50 to 110 ms. Inactivation is removed over a very broad range of holding potentials (h.p. between -40 and -110 mV). 5. With 10 mM-EGTA in the pipette solution, substitution of Ba2+ for Ca2+ as the charge carrier does not alter the rates of activation or relaxation of any component. However, T-type channels are approximately equally permeable to Ca2+ and Ba2+, while L-type and N-type channels are both much more permeable to Ba2+. 6. Component N cannot be explained by current-dependent inactivation of L current resulting from recruitment of extra L-type channels at negative holding potentials: raising the external Ba2+ concentration to 110 mM greatly increases the amplitude of L

  5. A human intermediate conductance calcium-activated potassium channel.

    PubMed

    Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J

    1997-10-14

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.

  6. Store-Operated Calcium Channels

    PubMed Central

    Lewis, Richard S.

    2015-01-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca2+ from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca2+ sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca2+ from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca2+ depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease. PMID:26400989

  7. Localization of P-type calcium channels in the central nervous system.

    PubMed Central

    Hillman, D; Chen, S; Aung, T T; Cherksey, B; Sugimori, M; Llinás, R R

    1991-01-01

    The distribution of the P-type calcium channel in the mammalian central nervous system has been demonstrated immunohistochemically by using a polyclonal specific antibody. This antibody was generated after P-channel isolation via a fraction from funnel-web spider toxin (FTX) that blocks the voltage-gated P channels in cerebellar Purkinje cells. In the cerebellar cortex, immunolabeling to the antibody appeared throughout the molecular layer, while all the other regions were negative. Intensely labeled patches of reactivity were seen on Purkinje cell dendrites, especially at bifurcations; much weaker reactivity was present in the soma and stem segment. Electron microscopic localization revealed labeled patches of plasma membrane on the soma, main dendrites, spiny branchlets, and spines; portions of the smooth endoplasmic reticulum were also labeled. Strong labeling was present in the periglomerular cells of the olfactory bulb and scattered neurons in the deep layer of the entorhinal and pyriform cortices. Neurons in the brainstem, habenula, nucleus of the trapezoid body and inferior olive and along the floor of the fourth ventricle were also labeled intensely. Medium-intensity reactions were observed in layer II pyramidal cells of the frontal cortex, the CA1 cells of the hippocampus, the lateral nucleus of the substantia nigra, lateral reticular nucleus, and spinal fifth nucleus. Light labeling was seen in the neocortex, striatum, and in some brainstem neurons. Images PMID:1651493

  8. Localization of P-type calcium channels in the central nervous system.

    PubMed

    Hillman, D; Chen, S; Aung, T T; Cherksey, B; Sugimori, M; Llinás, R R

    1991-08-15

    The distribution of the P-type calcium channel in the mammalian central nervous system has been demonstrated immunohistochemically by using a polyclonal specific antibody. This antibody was generated after P-channel isolation via a fraction from funnel-web spider toxin (FTX) that blocks the voltage-gated P channels in cerebellar Purkinje cells. In the cerebellar cortex, immunolabeling to the antibody appeared throughout the molecular layer, while all the other regions were negative. Intensely labeled patches of reactivity were seen on Purkinje cell dendrites, especially at bifurcations; much weaker reactivity was present in the soma and stem segment. Electron microscopic localization revealed labeled patches of plasma membrane on the soma, main dendrites, spiny branchlets, and spines; portions of the smooth endoplasmic reticulum were also labeled. Strong labeling was present in the periglomerular cells of the olfactory bulb and scattered neurons in the deep layer of the entorhinal and pyriform cortices. Neurons in the brainstem, habenula, nucleus of the trapezoid body and inferior olive and along the floor of the fourth ventricle were also labeled intensely. Medium-intensity reactions were observed in layer II pyramidal cells of the frontal cortex, the CA1 cells of the hippocampus, the lateral nucleus of the substantia nigra, lateral reticular nucleus, and spinal fifth nucleus. Light labeling was seen in the neocortex, striatum, and in some brainstem neurons.

  9. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    PubMed Central

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  10. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate.

    PubMed

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  11. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca[superscript 2+]·calmodulins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallon, Jennifer L.; Baker, Mariah R.; Xiong, Liangwen

    2009-11-10

    Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is anmore » unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.« less

  12. The effects of crustacean cardioactive peptide on locust oviducts are calcium-dependent.

    PubMed

    Donini, Andrew; Lange, Angela B

    2002-04-01

    The role of calcium as a second messenger in the crustacean cardioactive peptide (CCAP)-induced contractions of the locust oviducts was investigated. Incubation of the oviducts in a calcium-free saline containing, a preferential calcium cation chelator, or an extracellular calcium channel blocker, abolished CCAP-induced contractions, indicating that the effects of CCAP on the oviducts are calcium-dependent. In contrast, sodium free saline did not affect CCAP-induced contractions. Co-application of CCAP to the oviducts with preferential L-type voltage-dependent calcium channel blockers reduced CCAP-induced contractions by 32-54%. Two preferential T-type voltage-dependent calcium channel blockers both inhibited CCAP-induced oviduct contractions although affecting different components of the contractions. Amiloride decreased the tonic component of CCAP-induced contractions by 40-55% and flunarizine dihydrochloride decreased the frequency of CCAP-induced phasic contractions by as much as 65%, without affecting tonus. Flunarizine dihydrochloride did not alter the proctolin-induced contractions of the oviducts. Results suggest that the actions of CCAP are partially mediated by voltage-dependent calcium channels similar to vertebrate L-type and T-type channels. High-potassium saline does not abolish CCAP-induced contractions indicating the presence of receptor-operated calcium channels that mediate the actions of CCAP on the oviducts. The involvement of calcium from intracellular stores in CCAP-induced contractions of the oviducts is likely since, an intracellular calcium antagonist decreased CCAP-induced contractions by 30-35%.

  13. L-type calcium channel blockers and substance P induce angiogenesis of cortical vessels associated with beta-amyloid plaques in an Alzheimer mouse model.

    PubMed

    Daschil, Nina; Kniewallner, Kathrin M; Obermair, Gerald J; Hutter-Paier, Birgit; Windisch, Manfred; Marksteiner, Josef; Humpel, Christian

    2015-03-01

    It is well established that L-type calcium channels (LTCCs) are expressed in astroglia. However, their functional role is still speculative, especially under pathologic conditions. We recently showed that the α1 subunit-like immunoreactivity of the CaV1.2 channel is strongly expressed in reactive astrocytes around beta-amyloid plaques in 11-month-old Alzheimer transgenic (tg) mice with the amyloid precursor protein London and Swedish mutations. The aim of the present study was to examine the cellular expression of all LTCC subunits around beta-amyloid plaques by in situ hybridization using (35)S-labeled oligonucleotides. Our data show that messenger RNAs (mRNAs) of the LTCC CaV1.2 α1 subunit as well as all auxiliary β and α2δ subunits, except α2δ-4, were expressed in the hippocampus of age-matched wild-type mice. It was unexpected to see, that cells directly located in the plaque core in the cortex expressed mRNAs for CaV1.2 α1, β2, β4, and α2δ-1, whereas no expression was detected in the halo. Furthermore, cells in the plaque core also expressed preprotachykinin-A mRNA, the precursor for substance P. By means of confocal microscopy, we demonstrated that collagen-IV-stained brain vessels in the cortex were associated with the plaque core and were immunoreactive for substance P. In cortical organotypic brain slices of adult Alzheimer mice, we could demonstrate that LTCC blockers increased angiogenesis, which was further potentiated by substance P. In conclusion, our data show that brain vessels associated with beta-amyloid plaques express substance P and an LTCC and may play a role in angiogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A human intermediate conductance calcium-activated potassium channel

    PubMed Central

    Ishii, Takahiro M.; Silvia, Christopher; Hirschberg, Birgit; Bond, Chris T.; Adelman, John P.; Maylie, James

    1997-01-01

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel. PMID:9326665

  15. An expert protocol for immunofluorescent detection of calcium channels in tsA-201 cells.

    PubMed

    Koch, Peter; Herzig, Stefan; Matthes, Jan

    Pore-forming subunits of voltage gated calcium channels (VGCC) are large membrane proteins (260kDa) containing 24 transmembrane domains. Despite transfection with viral promoter driven vectors, biochemical analysis of VGCC is often hampered by rather low expression levels in heterologous systems rendering VGCC challenging targets. Especially in immunofluorescent detection, calcium channels are demanding proteins. We provide an expert step-by-step protocol with adapted conditions for handling procedures (tsA-201 cell culture, transient transfection, incubation time and temperature at 28°C or 37°C and immunostaining) to address the L-type calcium-channel pore Ca v 1.2 in an immunofluorescent approach. We performed immunocytochemical analysis of Ca v 1.2 expression at single-cell level in combination with detection of different markers for cellular organelles. We show confluency levels and shapes of tsA-201 cells at different time points during an experiment. Our experiments reveal sufficient levels of Ca v 1.2 protein and a correct Ca v 1.2 expression pattern in polygonal shaped cells already 12h after transfection. A sequence of elaborated protocol modifications allows subcellular localization analysis of Ca v 1.2 in an immunocytochemical approach. We provide a protocol that may be used to achieve insights into physiological and pathophysiological processes involving voltage gated calcium channels. Our protocol may be used for expression analysis of other challenging proteins and efficient overexpression may be exploited in related biochemical techniques requiring immunolabels. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Bovine chromaffin cells possess FTX-sensitive calcium channels.

    PubMed

    Gandía, L; Albillos, A; García, A G

    1993-07-30

    The effects of the synthetic analogue of the toxin from the venom of the funnel-web spider Agenelopsis aperta (sFTX) on whole-cell Ba2+ currents through Ca2+ channels were studied in cultured bovine chromaffin cells. sFTX selectively and reversibly blocked a significant component (55 +/- 3%) of the whole-cell IBa. Effects of sFTX were additive to those of omega-conotoxin GVIA, a selective blocker of N-type Ca2+ channels, and those of furnidipine, a novel dihydropyridine L-type Ca2+ channel blocker. We conclude that the cultured bovine chromaffin cells, in addition to N- and L-type Ca2+ channels, possess a P-type component in their whole-cell currents through their Ca2+ channels.

  17. Treatment for calcium channel blocker poisoning: A systematic review

    PubMed Central

    Dubé, P.-A.; Gosselin, S.; Guimont, C.; Godwin, J.; Archambault, P. M.; Chauny, J.-M.; Frenette, A. J.; Darveau, M.; Le sage, N.; Poitras, J.; Provencher, J.; Juurlink, D. N.; Blais, R.

    2014-01-01

    Context Calcium channel blocker poisoning is a common and sometimes life-threatening ingestion. Objective To evaluate the reported effects of treatments for calcium channel blocker poisoning. The primary outcomes of interest were mortality and hemodynamic parameters. The secondary outcomes included length of stay in hospital, length of stay in intensive care unit, duration of vasopressor use, functional outcomes, and serum calcium channel blocker concentrations. Methods Medline/Ovid, PubMed, EMBASE, Cochrane Library, TOXLINE, International pharmaceutical abstracts, Google Scholar, and the gray literature up to December 31, 2013 were searched without time restriction to identify all types of studies that examined effects of various treatments for calcium channel blocker poisoning for the outcomes of interest. The search strategy included the following Keywords: [calcium channel blockers OR calcium channel antagonist OR calcium channel blocking agent OR (amlodipine or bencyclane or bepridil or cinnarizine or felodipine or fendiline or flunarizine or gallopamil or isradipine or lidoflazine or mibefradil or nicardipine or nifedipine or nimodipine or nisoldipine or nitrendipine or prenylamine or verapamil or diltiazem)] AND [overdose OR medication errors OR poisoning OR intoxication OR toxicity OR adverse effect]. Two reviewers independently selected studies and a group of reviewers abstracted all relevant data using a pilot-tested form. A second group analyzed the risk of bias and overall quality using the STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) checklist and the Thomas tool for observational studies, the Institute of Health Economics tool for Quality of Case Series, the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines, and the modified NRCNA (National Research Council for the National Academies) list for animal studies. Qualitative synthesis was used to summarize the evidence. Of 15,577 citations identified in

  18. Bio-inspired voltage-dependent calcium channel blockers.

    PubMed

    Yang, Tingting; He, Lin-Ling; Chen, Ming; Fang, Kun; Colecraft, Henry M

    2013-01-01

    Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.

  19. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    PubMed

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  20. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole.

    PubMed

    Miri, Ramin; Javidnia, Katayoun; Mirkhani, Hossein; Hemmateenejad, Bahram; Sepeher, Zahra; Zalpour, Masomeh; Behzad, Taherh; Khoshneviszadeh, Mehdi; Edraki, Najmeh; Mehdipour, Ahmad R

    2007-10-01

    The discovery that 1,4-dihydropyridine class of calcium channel antagonists inhibit Ca2+ influx represented a major therapeutic advance in the treatment of cardiovascular disease. In contrast to the effects of known calcium channel blockers of the Nifedipine-type, the so-called calcium channel agonists, such as Bay K8644 and CGP 28392, increase calcium influx by binding at the same receptor regions. Our goal was to discover a dual cardioselective Ca2+-channel agonist/vascular selective smooth muscle Ca2+ channel antagonist third-generation 1,4-dihydropyridine drug which would have a suitable therapeutic profile for treating congestive heart failure (CHF) patients. A series of unsymmetrical alkyl, cycloalkyl and aryl ester analogues of 2-methyl-4-(1-methyl)-5-nitro-2-imidazolyl-5-oxo-1,4,5,6,7, 8-hexahydroquinolin-3-arboxylate were synthesized using modified Hantzsch reaction. All compounds show calcium antagonist activity on guinea-pig ileum longitudinal smooth muscle and some of them show agonist effect activity on guinea-pig auricle. Effect of structural parameters on the Ca2+ channel agonist/antagonist was evaluated by quantitative structure-activity relationship analysis. These compounds could be considered as a synthon for developing a suitable drug for treating CHF patients.

  1. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity.

    PubMed

    Tacconi, S; Carletti, R; Bunnemann, B; Plumpton, C; Merlo Pich, E; Terstappen, G C

    2001-01-01

    Small conductance calcium-activated potassium channels are voltage independent potassium channels which modulate the firing patterns of neurons by activating the slow component of the afterhyperpolarization. The genes encoding a family of small conductance calcium-activated potassium channels have been cloned and up to now three known members have been described and named small conductance calcium-activated potassium channel type 1, small conductance calcium-activated potassium channel type 2 and small conductance calcium-activated potassium channel type 3; the distribution of their messenger RNA in the rat CNS has already been performed but only in a limited detail. The present study represents the first detailed analysis of small conductance calcium-activated potassium channel type 3 mRNA distribution in the adult rat brain and resulted in a strong to moderate expression of signal in medial habenular nucleus, substantia nigra compact part, suprachiasmatic nucleus, ventral tegmental area, lateral septum, dorsal raphe and locus coeruleus. Immunohistological experiments were also performed and confirmed the presence of small conductance calcium-activated potassium channel type 3 protein in medial habenular nucleus, locus coeruleus and dorsal raphe. Given the importance of dorsal raphe, locus coeruleus and substantia nigra/ventral tegmental area for serotonergic, noradrenergic and dopaminergic transmission respectively, our results pose the morphological basis for further studies on the action of small conductance calcium-activated potassium channel type 3 in serotonergic, noradrenergic and dopaminergic transmission.

  2. Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.

    PubMed

    Tatalovic, Milos; Glazebrook, Patricia A; Kunze, Diana L

    2012-06-27

    The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem. The P/Q channel, Cav2.1, the other major calcium channel responsible for transmitter release at mammalian synapses, represents only 15-20% of total calcium current in the general population of sensory neurons and makes a minor contribution to transmitter release at the presynaptic terminal. In the present study we identified a subpopulation of the largest nodose neurons (capacitance>50pF) in which, surprisingly, Cav2.1 represents over 50% of the total calcium current, differing from the remainder of the population. Consistent with these electrophysiological data, anti-Cav2.1 antibody labeling was more membrane delimited in a subgroup of the large neurons in slices of nodose ganglia. Data reported in other synapses in the central nervous system assign different roles in synaptic information transfer to the P/Q-type versus N-type calcium channels. The study raises the possibility that the P/Q channel which has been associated with high fidelity transmission at other central synapses serves a similar function in this group of large myelinated sensory afferents, including arterial baroreceptors where a high frequency regular discharge pattern signals the pressure pulse. This contrasts to the irregular lower frequency discharge of the unmyelinated fibers that make up the majority of the sensory population and that utilize the N-type channel in synaptic transmission. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels

    PubMed Central

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan

    2013-01-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types. PMID:24081981

  4. PRESENILIN-NULL CELLS HAVE ALTERED TWO-PORE CALCIUM CHANNEL EXPRESSION AND LYSOSOMAL CALCIUM; IMPLICATIONS FOR LYSOSOMAL FUNCTION

    PubMed Central

    Kayala, Kara M Neely; Dickinson, George D; Minassian, Anet; Walls, Ken C; Green, Kim N; LaFerla, Frank M

    2012-01-01

    Presenilins are necessary for calcium homeostasis and also for efficient proteolysis through the autophagy/lysosome system. Presenilin regulates both endoplasmic reticulum calcium stores and autophagic proteolysis in a γ-secretase independent fashion. The endo-lysosome system can also act as a calcium store, with calcium efflux channels being recently identified as two-pore channels 1 and 2. Here we investigated lysosomal calcium content and the channels that mediate calcium release from these acidic stores in presenilin knockout cells. We report that presenilin loss leads to a lower total lysosomal calcium store despite the buildup of lysosomes found in these cells. Additionally, we find alterations in two-pore calcium channel protein expression, with loss of presenilin preventing the formation of a high molecular weight species of TPC1 and TPC2. Finally, we find that treatments that disturb lysosomal calcium release lead to a reduction in autophagy function yet lysosomal inhibitors do not alter two-pore calcium channel expression. These data indicate that alterations in lysosomal calcium in the absence of presenilins might be leading to disruptions in autophagy. PMID:23103503

  5. Cadmium and calcium uptake in the mollusc donax rugosus and effect of a calcium channel blocker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidoumou, Z.; Gnassia-Barelli, M.; Romeo, M.

    Donax rugosus, a common bivalve mollusc in the coastal waters of Mauritania, has been studied for trace metal concentrations as a function of sampling site (from South of Mauritania to the North of this country) and of season. In this paper, the uptake of cadmium was experimentally studied in the different organs of D. rugosus. Since metals such as cadmium, copper and mercury may alter calcium homeostasis, calcium uptake was also studied in the animals treated with cadmium. Since calcium is taken up through specific channels, it appears that metals inhibit Ca uptake by interacting with these channels in themore » plasma membrane. Cadmium and calcium have very similar atomic radii, thus cadmium may be taken up through the calcium channels, particularly through voltage-dependent channels. The uptake of cadmium and calcium by D. Rugosus was therefore also studied in the presence of the calcium channel blocker verapamil. 13 refs., 3 figs., 1 tab.« less

  6. R-Type Ca2+ channels couple to inhibitory neurotransmission to the longitudinal muscle in the guinea-pig ileum.

    PubMed

    Rodriguez-Tapia, Eileen S; Naidoo, Vinogran; DeVries, Matthew; Perez-Medina, Alberto; Galligan, James J

    2017-03-01

    What is the central question of this study? Subtypes of enteric neurons are coded by the neurotransmitters they synthesize, but it is not known whether enteric neuron subtypes might also be coded by other proteins, including calcium channel subtypes controlling neurotransmitter release. What is the main finding and its importance? Our data indicate that guinea-pig ileum myenteric neuron subtypes may be coded by calcium channel subtypes. We found that R-type calcium channels are expressed by inhibitory but not excitatory longitudinal muscle motoneurons. R-Type calcium channels are also not expressed by circular muscle inhibitory motoneurons. Calcium channel subtype-selective antagonists could be used to target subtypes of neurons to treat gastrointestinal motility disorders. There is evidence that R-type Ca 2+ channels contribute to synaptic transmission in the myenteric plexus. It is unknown whether R-type Ca 2+ channels contribute to neuromuscular transmission. We measured the effects of the nitric oxide synthase inhibitor nitro-l-arginine (NLA), Ca 2+ channel blockers and apamin (SK channel blocker) on neurogenic relaxations and contractions of the guinea-pig ileum longitudinal muscle-myenteric plexus (LMMP) in vitro. We used intracellular recordings to measure inhibitory junction potentials. Immunohistochemical techniques localized R-type Ca 2+ channel protein in the LMMP and circular muscle. Cadmium chloride (pan-Ca 2+ channel blocker) blocked and NLA and NiCl 2 (R-type Ca 2+ channel blocker) reduced neurogenic relaxations in a non-additive manner. Nickel chloride did not alter neurogenic cholinergic contractions, but it potentiated neurogenic non-cholinergic contractions. Relaxations were inhibited by apamin, NiCl 2 and NLA and were blocked by combined application of these drugs. Relaxations were reduced by NiCl 2 or ω-conotoxin (N-type Ca 2+ channel blocker) and were blocked by combined application of these drugs. Longitudinal muscle inhibitory junction

  7. Spinocerebellum Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics.

    PubMed

    Du, Xiaofei; Gomez, Christopher Manuel

    2018-01-01

    Spinocerebellar ataxia (SCA) type 6 is an autosomal dominant disease affecting cerebellar degeneration. Clinically, it is characterized by pure cerebellar dysfunction, slowly progressive unsteadiness of gait and stance, slurred speech, and abnormal eye movements with late onset. Pathological findings of SCA6 include a diffuse loss of Purkinje cells, predominantly in the cerebellar vermis. Genetically, SCA6 is caused by expansion of a trinucleotide CAG repeat in the last exon of longest isoform CACNA1A gene on chromosome 19p13.1-p13.2. Normal alleles have 4-18 repeats, while alleles causing disease contain 19-33 repeats. Due to presence of a novel internal ribosomal entry site (IRES) with the mRNA, CACNA1A encodes two structurally unrelated proteins with distinct functions within an overlapping open reading frame (ORF) of the same mRNA: (1) α1A subunit of P/Q-type voltage gated calcium channel; (2) α1ACT, a newly recognized transcription factor, with polyglutamine repeat at C-terminal end. Understanding the function of α1ACT in physiological and pathological conditions may elucidate the pathogenesis of SCA6. More importantly, the IRES, as the translational control element of α1ACT, provides a potential therapeutic target for the treatment of SCA6.

  8. Calcium influx is required for endocytotic membrane retrieval

    PubMed Central

    Vogel, Steven S.; Smith, Robert M.; Baibakov, Boris; Ikebuchi, Yoshihide; Lambert, Nevin A.

    1999-01-01

    Cells use endocytotic membrane retrieval to compensate for excess surface membrane after exocytosis. Retrieval is thought to be calcium-dependent, but the source of this calcium is not known. We found that, in sea urchin eggs, endocytotic membrane retrieval required extracellular calcium. Inhibitors of P-type calcium channels—cadmium, ω-conotoxin MVIIC, ω-agatoxin IVA, and ω-agatoxin TK—blocked membrane retrieval; selective inhibitors of N-type and L-type channels did not. Treatment with calcium ionophores overcame agatoxin inhibition in a calcium-dependent manner. Cadmium blocked membrane retrieval when applied during the first 5 minutes after fertilization, the period when the membrane potential is depolarized. We conclude that calcium influx through ω-agatoxin-sensitive channels plays a key role in signaling for endocytotic membrane retrieval. PMID:10220411

  9. Intrathecal P/Q- and R-type calcium channel blockades on spinal substance P release and c-Fos expression

    PubMed Central

    Terashima, Tetsuji; Xu, Qinghao; Yamaguchi, Shigeki; Yaksh, Tony L.

    2013-01-01

    Intrathecal (IT) studies have shown that several voltage sensitive calcium channels (VSCCs), such as the L-, N- and T-type may play roles in nociception and that of these only the N-type regulates primary afferent substance P (SP) release. However, the actions of other VSCCs at the spinal level are not well known. We investigated the roles of spinal P/Q- and R-type VSCCs, by IT administration of R-type (SNX-482) and P/Q-type (ω-agatoxin IVA) VSCC blockers on intraplantar formalin-evoked flinching, SP release from primary afferents and c-Fos expression in spinal dorsal horn. Intraplantar injection of formalin (2.5%, 50 µL) produced an intense, characteristic biphasic paw flinching response. In rats with IT catheters, IT SNX-482 (0.5 µg) reduced formalin-evoked paw flinching in both phase 1 and 2 compared with vehicle. Intraplantar formalin caused robust neurokinin 1 receptor (NK1r) internalization (indicating SP release) and c-Fos expression in the ipsilateral dorsal horn, which were blocked by IT SNX-482. IT ω-agatoxin IVA (0.03, 0.125 and 0.5 µg) did not reduce formalin-evoked paw flinching or c-Fos expression at any doses, with higher doses resulting in motor dysfunction. Thus, we demonstrated that blockade of spinal R-type, but not P/Q type VSCCs attenuated formalin-induced pain behavior, NK1r internalization and c-Fos expression in the superficial dorsal horn. This study supports a role for Cav2.3 in presynaptic neurotransmitter release from peptidergic nociceptive afferents and pain behaviors. PMID:23810829

  10. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity

    PubMed Central

    Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe

    2016-01-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024

  11. Calcium channel subtypes differ at two types of cholinergic synapse in lumbar sympathetic neurones of guinea-pigs.

    PubMed

    Ireland, D R; Davies, P J; McLachlan, E M

    1999-01-01

    1. The involvement of different presynaptic Ca2+ channels in transmission at 'weak' (subthreshold) and 'strong' (suprathreshold) synapses was investigated in guinea-pig paravertebral ganglia isolated in vitro. Selective Ca2+ channel antagonists were used to block excitatory synaptic currents evoked by stimulating single preganglionic axons. 2. The N-type Ca2+ channel blocker, omega-conotoxin GVIA (100 nM), reduced peak synaptic conductance by similar amounts at weak synapses (by 39 +/- 6 %) and strong synapses (34 +/- 6 %). 3. The P-type Ca2+ channel blocker, omega-agatoxin IVA (40 nM), significantly reduced transmitter release at weak synapses (by 42 +/- 6 %) but had only a small effect at strong synapses (reduced by 6 +/- 2 %). 4. Blockers of Q-, L- or T-type Ca2+ channels had no significant effects on peak synaptic conductance at either type of synapse. 5. We conclude that the two functionally distinct types of preganglionic terminal in sympathetic ganglia which synapse on the same neurone differ in their expression of particular types of voltage-dependent Ca2+ channels. Both types utilize N-type channels and channels resistant to blockade by specific antagonists, but Ca2+ entry through P-type channels makes a substantial contribution to acetylcholine release only at weak synapses.

  12. Calcium channel subtypes differ at two types of cholinergic synapse in lumbar sympathetic neurones of guinea-pigs

    PubMed Central

    Ireland, David R; Davies, Philip J; McLachlan, Elspeth M

    1999-01-01

    The involvement of different presynaptic Ca2+ channels in transmission at ‘weak’ (subthreshold) and ‘strong’ (suprathreshold) synapses was investigated in guinea-pig paravertebral ganglia isolated in vitro. Selective Ca2+ channel antagonists were used to block excitatory synaptic currents evoked by stimulating single preganglionic axons.The N-type Ca2+ channel blocker, ω-conotoxin GVIA (100 nm), reduced peak synaptic conductance by similar amounts at weak synapses (by 39 ± 6%) and strong synapses (34 ± 6%).The P-type Ca2+ channel blocker, ω-agatoxin IVA (40 nm), significantly reduced transmitter release at weak synapses (by 42 ± 6%) but had only a small effect at strong synapses (reduced by 6 ± 2%).Blockers of Q-, L- or T-type Ca2+ channels had no significant effects on peak synaptic conductance at either type of synapse.We conclude that the two functionally distinct types of preganglionic terminal in sympathetic ganglia which synapse on the same neurone differ in their expression of particular types of voltage-dependent Ca2+ channels. Both types utilize N-type channels and channels resistant to blockade by specific antagonists, but Ca2+ entry through P-type channels makes a substantial contribution to acetylcholine release only at weak synapses. PMID:9831716

  13. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  14. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  15. Calcium Channel Block by Cadmium in Chicken Sensory Neurons

    NASA Astrophysics Data System (ADS)

    Swandulla, D.; Armstrong, C. M.

    1989-03-01

    Cadmium block of calcium channels was studied in chicken dorsal root ganglion cells by a whole-cell patch clamp that provides high time resolution. Barium ion was the current carrier, and the channel type studied had a high threshold of activation and fast deactivation (type FD). Block of these channels by 20 μ M external Cd2+ is voltage dependent. Cd2+ ions can be cleared from blocked channels by stepping the membrane voltage (Vm) to a negative value. Clearing the channels is progressively faster and more complete as Vm is made more negative. Once cleared of Cd2+, the channels conduct transiently on reopening but reequilibrate with Cd2+ and become blocked within a few milliseconds. Cd2+ equilibrates much more slowly with closed channels, but at a holding potential of -80 mV virtually all channels are blocked at equilibrium. Cd2+ does not slow closing of the channels, as would be expected if it were necessary for Cd2+ to leave the channels before closing occurred. Instead, the data show unambiguously that the channel gate can close when the channel is Cd2+ occupied.

  16. NIFLUMIC ACID BLOCKS NATIVE AND RECOMBINANT T-TYPE CHANNELS

    PubMed Central

    Balderas, E; Arteaga-Tlecuitl, R; Rivera, M; Gomora, JC; Darszon, A

    2012-01-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation and the acrosome reaction, all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the acrosome reaction. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl− channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different CaV3 members previously detected in these cells. Electrophysiological patch-clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing CaV3 channels. NA blocks mouse spermatogenic cell T-type currents with an IC50 of 73.5 µM, without major voltage-dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T-type channels. Interestingly, we found that heterologously expressed CaV3.1 and CaV3.3 channels were more sensitive to NA than CaV3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug-channel binding predicts that NA binds preferentially to the extracellular face of CaV3.1 channels. The biophysical characteristics of mouse spermatogenic cell T-type currents more closely resemble those from heterologously expressed CaV3.1 channels, including their sensitivity to NA. As CaV3.1 null mice maintain their spermatogenic cell T-currents, it is likely that a novel CaV3.2 isoform is responsible for them. PMID:21898399

  17. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.

    PubMed Central

    Nonner, W; Eisenberg, B

    1998-01-01

    L-type Ca channels contain a cluster of four charged glutamate residues (EEEE locus), which seem essential for high Ca specificity. To understand how this highly charged structure might produce the currents and selectivity observed in this channel, a theory is needed that relates charge to current. We use an extended Poisson-Nernst-Planck (PNP2) theory to compute (mean) Coulombic interactions and thus to examine the role of the mean field electrostatic interactions in producing current and selectivity. The pore was modeled as a central cylinder with tapered atria; the cylinder (i.e., "pore proper") contained a uniform volume density of fixed charge equivalent to that of one to four carboxyl groups. The pore proper was assigned ion-specific, but spatially uniform, diffusion coefficients and excess chemical potentials. Thus electrostatic selection by valency was computed self-consistently, and selection by other features was also allowed. The five external parameters needed for a system of four ionic species (Na, Ca, Cl, and H) were determined analytically from published measurements of thre limiting conductances and two critical ion concentrations, while treating the pore as a macroscopic ion-exchange system in equilibrium with a uniform bath solution. The extended PNP equations were solved with these parameters, and the predictions were compared to currents measured in a variety of solutions over a range of transmembrane voltages. The extended PNP theory accurately predicted current-voltage relations, anomalous mole fraction effects in the observed current, saturation effects of varied Ca and Na concentrations, and block by protons. Pore geometry, dielectric permittivity, and the number of carboxyl groups had only weak effects. The successful prediction of Ca fluxes in this paper demonstrates that ad hoc electrostatic parameters, multiple discrete binding sites, and logistic assumptions of single-file movement are all unnecessary for the prediction of permeation in

  18. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals

    PubMed Central

    Patel, Sandip; Marchant, Jonathan; Brailoiu, Eugen

    2010-01-01

    NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two pore-channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores “trans-chatter” and possibly within the same store “cis-chatter”. We also speculate that trafficking of two-pore channels through the endolysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760

  19. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain.

    PubMed

    Findeisen, Felix; Rumpf, Christine H; Minor, Daniel L

    2013-09-09

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Single channel recording of a mitochondrial calcium uniporter.

    PubMed

    Wu, Guangyan; Li, Shunjin; Zong, Guangning; Liu, Xiaofen; Fei, Shuang; Shen, Linda; Guan, Xiangchen; Yang, Xue; Shen, Yuequan

    2018-01-29

    Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca 2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca 2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Increased expression of CaV3.2 T-type calcium channels in damaged DRG neurons contributes to neuropathic pain in rats with spared nerve injury.

    PubMed

    Kang, Xue-Jing; Chi, Ye-Nan; Chen, Wen; Liu, Feng-Yu; Cui, Shuang; Liao, Fei-Fei; Cai, Jie; Wan, You

    2018-01-01

    Ion channels are very important in the peripheral sensitization in neuropathic pain. Our present study aims to investigate the possible contribution of Ca V 3.2 T-type calcium channels in damaged dorsal root ganglion neurons in neuropathic pain. We established a neuropathic pain model of rats with spared nerve injury. In these model rats, it was easy to distinguish damaged dorsal root ganglion neurons (of tibial nerve and common peroneal nerve) from intact dorsal root ganglion neurons (of sural nerves). Our results showed that Ca V 3.2 protein expression increased in medium-sized neurons from the damaged dorsal root ganglions but not in the intact ones. With whole cell patch clamp recording technique, it was found that after-depolarizing amplitudes of the damaged medium-sized dorsal root ganglion neurons increased significantly at membrane potentials of -85 mV and -95 mV. These results indicate a functional up-regulation of Ca V 3.2 T-type calcium channels in the damaged medium-sized neurons after spared nerve injury. Behaviorally, blockade of Ca V 3.2 with antisense oligodeoxynucleotides could significantly reverse mechanical allodynia. These results suggest that Ca V 3.2 T-type calcium channels in damaged medium-sized dorsal root ganglion neurons might contribute to neuropathic pain after peripheral nerve injury.

  2. [Distribution diversity of integrins and calcium channels on major human and mouse host cells of Leptospira species].

    PubMed

    Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie

    2012-07-01

    To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.

  3. Analytical models of calcium binding in a calcium channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jinn-Liang; Eisenberg, Bob

    2014-08-21

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions ofmore » the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na{sup +} and Ca{sup 2+} for [CaCl{sub 2}] ranging from 10{sup −8} to 10{sup −2} M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant.« less

  4. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons.

    PubMed

    Qu, Liang; Wang, Yuan; Zhang, Hai-Tao; Li, Nan; Wang, Qiang; Yang, Qian; Gao, Guo-Dong; Wang, Xue-Lian

    2014-07-11

    Voltage gated calcium channels (VGCC) are sensitive to oxidative stress, and their activation or inactivation can impact cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remain controversial. In this study, we assessed 6-hydroxydopamine (6-OHDA) induced transformation of firing pattern and functional changes of calcium channels in SNc dopaminergic neurons. Application of 6-OHDA (0.5-2mM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)]i) rise. In voltage clamp, ω-conotoxin-sensitive Ca(2+) current modulation mediated by 6-OHDA reflected an altered sensitivity. Furthermore, we found that 6-OHDA modulated Ca(2+) currents through PKA pathway. These results provided evidence for the potential role of VGCCs and PKA involved in oxidative stress in degeneration of SNc neurons in Parkinson's disease (PD). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Apo-states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain

    PubMed Central

    Findeisen, Felix; Rumpf, Christine; Minor, Daniel L.

    2013-01-01

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation (CDI) and limits calcium entry, whereas CaBP1 blocks CDI and allows sustained calcium influx. Here, we combine isothermal titration calorimetry (ITC) with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca2+/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium binding properties. The observation that the apo-forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. PMID:23811053

  6. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels

    PubMed Central

    Stephens, Robert F.; Guan, W.; Zhorov, Boris S.; Spafford, J. David

    2015-01-01

    How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel. PMID

  7. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivatesmore » a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.« less

  8. Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice

    PubMed Central

    Goonasekera, Sanjeewa A.; Hammer, Karin; Auger-Messier, Mannix; Bodi, Ilona; Chen, Xiongwen; Zhang, Hongyu; Reiken, Steven; Elrod, John W.; Correll, Robert N.; York, Allen J.; Sargent, Michelle A.; Hofmann, Franz; Moosmang, Sven; Marks, Andrew R.; Houser, Steven R.; Bers, Donald M.; Molkentin, Jeffery D.

    2011-01-01

    Antagonists of L-type Ca2+ channels (LTCCs) have been used to treat human cardiovascular diseases for decades. However, these inhibitors can have untoward effects in patients with heart failure, and their overall therapeutic profile remains nebulous given differential effects in the vasculature when compared with those in cardiomyocytes. To investigate this issue, we examined mice heterozygous for the gene encoding the pore-forming subunit of LTCC (calcium channel, voltage-dependent, L type, α1C subunit [Cacna1c mice; referred to herein as α1C–/+ mice]) and mice in which this gene was loxP targeted to achieve graded heart-specific gene deletion (termed herein α1C-loxP mice). Adult cardiomyocytes from the hearts of α1C–/+ mice at 10 weeks of age showed a decrease in LTCC current and a modest decrease in cardiac function, which we initially hypothesized would be cardioprotective. However, α1C–/+ mice subjected to pressure overload stimulation, isoproterenol infusion, and swimming showed greater cardiac hypertrophy, greater reductions in ventricular performance, and greater ventricular dilation than α1C+/+ controls. The same detrimental effects were observed in α1C-loxP animals with a cardiomyocyte-specific deletion of one allele. More severe reductions in α1C protein levels with combinatorial deleted alleles produced spontaneous cardiac hypertrophy before 3 months of age, with early adulthood lethality. Mechanistically, our data suggest that a reduction in LTCC current leads to neuroendocrine stress, with sensitized and leaky sarcoplasmic reticulum Ca2+ release as a compensatory mechanism to preserve contractility. This state results in calcineurin/nuclear factor of activated T cells signaling that promotes hypertrophy and disease. PMID:22133878

  9. Interaction of grapefruit juice and calcium channel blockers.

    PubMed

    Sica, Domenic A

    2006-07-01

    Drug-drug interactions are commonly recognized occurrences in the hypertensive population. Drug-nutrient interactions, however, are less well appreciated. The grapefruit juice-calcium channel blocker interaction is one that has been known since 1989. The basis for this interaction has been diligently explored and appears to relate to both flavanoid and nonflavanoid components of grapefruit juice interfering with enterocyte CYP3A4 activity. In the process, presystemic clearance of susceptible drugs decreases and bioavailability increases. A number of calcium channel blockers are prone to this interaction, with the most prominent interaction occurring with felodipine. The calcium channel blocker and grapefruit juice interaction should be incorporated into the knowledge base of rational therapeutics for the prescribing physician.

  10. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    PubMed

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. L-type Calcium Channel Blockers Enhance Trafficking and Function of Epilepsy-associated α1(D219N) Subunits of GABA(A) Receptors.

    PubMed

    Han, Dong-Yun; Guan, Bo-Jhih; Wang, Ya-Juan; Hatzoglou, Maria; Mu, Ting-Wei

    2015-09-18

    Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that

  12. Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents.

    PubMed

    Varga, Andrew W; Yuan, Li-Lian; Anderson, Anne E; Schrader, Laura A; Wu, Gang-Yi; Gatchel, Jennifer R; Johnston, Daniel; Sweatt, J David

    2004-04-07

    Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K(+) channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K(+) current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K(+) channels.

  13. Regulation of CaV2 calcium channels by G protein coupled receptors

    PubMed Central

    Zamponi, Gerald W.; Currie, Kevin P.M.

    2012-01-01

    Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. PMID:23063655

  14. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    PubMed

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  15. Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study.

    PubMed

    Grande, Giovanbattista; Bui, Tuan V; Rose, P Ken

    2007-06-01

    In the presence of monoamines, L-type Ca(2+) channels on the dendrites of motoneurons contribute to persistent inward currents (PICs) that can amplify synaptic inputs two- to sixfold. However, the exact location of the L-type Ca(2+) channels is controversial, and the importance of the location as a means of regulating the input-output properties of motoneurons is unknown. In this study, we used a computational strategy developed previously to estimate the dendritic location of the L-type Ca(2+) channels and test the hypothesis that the location of L-type Ca(2+) channels varies as a function of motoneuron size. Compartmental models were constructed based on dendritic trees of five motoneurons that ranged in size from small to large. These models were constrained by known differences in PIC activation reported for low- and high-conductance motoneurons and the relationship between somatic PIC threshold and the presence or absence of tonic excitatory or inhibitory synaptic activity. Our simulations suggest that L-type Ca(2+) channels are concentrated in hotspots whose distance from the soma increases with the size of the dendritic tree. Moving the hotspots away from these sites (e.g., using the hotspot locations from large motoneurons on intermediate-sized motoneurons) fails to replicate the shifts in PIC threshold that occur experimentally during tonic excitatory or inhibitory synaptic activity. In models equipped with a size-dependent distribution of L-type Ca(2+) channels, the amplification of synaptic current by PICs depends on motoneuron size and the location of the synaptic input on the dendritic tree.

  16. Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission

    PubMed Central

    Naranjo, David; Wen, Hua; Brehm, Paul

    2015-01-01

    The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions. PMID:25650925

  17. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells.

    PubMed

    Boo, Hye-Jin; Min, Hye-Young; Jang, Hyun-Ji; Yun, Hye Jeong; Smith, John Kendal; Jin, Quanri; Lee, Hyo-Jong; Liu, Diane; Kweon, Hee-Seok; Behrens, Carmen; Lee, J Jack; Wistuba, Ignacio I; Lee, Euni; Hong, Waun Ki; Lee, Ho-Young

    2016-09-26

    Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca 2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca 2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca 2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis.

  18. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy.

    PubMed

    Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li

    2009-05-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.

  19. Vascular Smooth Muscle-Specific Knockdown of the Noncardiac Form of the L-Type Calcium Channel by MicroRNA-Based Short Hairpin RNA as a Potential Antihypertensive Therapy

    PubMed Central

    Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li

    2009-01-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098

  20. Vasodilatory effect of asafoetida essential oil on rat aorta rings: The role of nitric oxide, prostacyclin, and calcium channels.

    PubMed

    Esmaeili, Hassan; Sharifi, Mozhdeh; Esmailidehaj, Mansour; Rezvani, Mohammad Ebrahim; Hafizibarjin, Zeynab

    2017-12-01

    Asafoetida is an oleo-gum resin mainly obtained from Ferula assa-foetida L. species in the apiaceae family. Previous studies have shown that it has antispasmodic effects on rat's and pig's ileums. The main goals of this study were to assess the vasodilatory effect of asafoetida essential oil (AEO) on the contractile response of rat's aorta rings and to find the role of nitric oxide, cyclooxygenase, and calcium channels. Thoracic aorta rings were stretched under a steady-state tension of 1 g in an organ bath apparatus for 1 h and then precontracted by KCl (80 mM) in the presence and absence of AEO. L-NAME (blocker of nitric oxide synthase) and indomethacin (blocker of cyclooxygenase) were used to assess the role of nitric oxide (NO) and prostacyclin in the vasodilatory effect of AEO. Also, the effect of AEO on the influx of calcium through the cell membrane calcium channels was determined. Data showed that AEO had vasodilatory effects on aorta rings with both intact (IC 50  = 1.6 µl/l) or denuded endothelium (IC 50  = 19.2 µl/l) with a significantly higher potency in intact endothelium rings. The vasodilatory effects of AEO were reduced, but not completely inhibited, in the presence of L-NAME or indomethacin. Adding AEO to the free-calcium medium also significantly reduced the CaCl 2 -induced contractions. The results indicated that AEO has a potent vasodilatory effect that is endothelium-dependent and endothelium-independent. Also, it reduced the influx of calcium into the cell through plasma membrane calcium channels. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. The L-type voltage-gated calcium channel CaV1.2 mediates fear extinction and modulates synaptic tone in the lateral amygdala.

    PubMed

    Temme, Stephanie J; Murphy, Geoffrey G

    2017-11-01

    L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, Ca V 1.2 and Ca V 1.3, using transgenic mice have failed to find a role of either subtype in fear extinction. This discontinuity between the pharmacological studies of LVGCCs and the studies investigating individual subtype contributions could be due to the limited neuronal deletion pattern of the Ca V 1.2 conditional knockout mice previously studied to excitatory neurons in the forebrain. To investigate the effects of deletion of Ca V 1.2 in all neuronal populations, we generated Ca V 1.2 conditional knockout mice using the synapsin1 promoter to drive Cre recombinase expression. Pan-neuronal deletion of Ca V 1.2 did not alter basal anxiety or fear learning. However, pan-neuronal deletion of Ca V 1.2 resulted in a significant deficit in extinction of contextual fear, implicating LVGCCs, specifically Ca V 1.2, in extinction learning. Further exploration on the effects of deletion of Ca V 1.2 on inhibitory and excitatory input onto the principle neurons of the lateral amygdala revealed a significant shift in inhibitory/excitatory balance. Together these data illustrate an important role of Ca V 1.2 in fear extinction and the synaptic regulation of activity within the amygdala. © 2017 Temme and Murphy; Published by Cold Spring Harbor Laboratory Press.

  2. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    PubMed Central

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  3. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  4. Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics.

    PubMed

    Tang, Y; Stephenson, J L; Othmer, H G

    1996-01-01

    We study the models for calcium (Ca) dynamics developed in earlier studies, in each of which the key component is the kinetics of intracellular inositol-1,4,5-trisphosphate-sensitive Ca channels. After rapidly equilibrating steps are eliminated, the channel kinetics in these models are represented by a single differential equation that is linear in the state of the channel. In the reduced kinetic model, the graph of the steady-state fraction of conducting channels as a function of log10(Ca) is a bell-shaped curve. Dynamically, a step increase in inositol-1,4,5-trisphosphate induces an incremental increase in the fraction of conducting channels, whereas a step increase in Ca can either potentiate or inhibit channel activation, depending on the Ca level before and after the increase. The relationships among these models are discussed, and experimental tests to distinguish between them are given. Under certain conditions the models for intracellular calcium dynamics are reduced to the singular perturbed form epsilon dx/d tau = f(x, y, p), dy/d tau = g(x, y, p). Phase-plane analysis is applied to a generic form of these simplified models to show how different types of Ca response, such as excitability, oscillations, and a sustained elevation of Ca, can arise. The generic model can also be used to study frequency encoding of hormonal stimuli, to determine the conditions for stable traveling Ca waves, and to understand the effect of channel properties on the wave speed.

  5. Human autoantibodies specific for the α1A calcium channel subunit reduce both P-type and Q-type calcium currents in cerebellar neurons

    PubMed Central

    Pinto, Ashwin; Gillard, Samantha; Moss, Fraser; Whyte, Kathryn; Brust, Paul; Williams, Mark; Stauderman, Ken; Harpold, Michael; Lang, Bethan; Newsom-Davis, John; Bleakman, David; Lodge, David; Boot, John

    1998-01-01

    The pharmacological properties of voltage-dependent calcium channel (VDCC) subtypes appear mainly to be determined by the α1 pore-forming subunit but, whether P-and Q-type VDCCs are encoded by the same α1 gene presently is unresolved. To investigate this, we used IgG antibodies to presynaptic VDCCs at motor nerve terminals that underlie muscle weakness in the autoimmune Lambert–Eaton myasthenic syndrome (LEMS). We first studied their action on changes in intracellular free Ca2+ concentration [Ca2+]i in human embryonic kidney (HEK293) cell lines expressing different combinations of human recombinant VDCC subunits. Incubation for 18 h with LEMS IgG (2 mg/ml) caused a significant dose-dependent reduction in the K+-stimulated [Ca2+]i increase in the α1A cell line but not in the α1B, α1C, α1D, and α1E cell lines, establishing the α1A subunit as the target for these autoantibodies. Exploiting this specificity, we incubated cultured rat cerebellar neurones with LEMS IgG and observed a reduction in P-type current in Purkinje cells and both P- and Q-type currents in granule cells. These data are consistent with the hypothesis that the α1A gene encodes for the pore-forming subunit of both P-type and Q-type VDCCs. PMID:9653186

  6. Store-operated channels regulate intracellular calcium in mammalian rods

    PubMed Central

    Molnar, Tünde; Barabas, Peter; Birnbaumer, Lutz; Punzo, Claudio; Kefalov, Vladimir; Križaj, David

    2012-01-01

    Exposure to daylight closes cyclic nucleotide-gated (CNG) and voltage-operated Ca2+-permeable channels in mammalian rods. The consequent lowering of the cytosolic calcium concentration ([Ca2+]i), if protracted, can contribute to light-induced damage and apoptosis in these cells. We here report that mouse rods are protected against prolonged lowering of [Ca2+]i by store-operated Ca2+ entry (SOCE). Ca2+ stores were depleted in Ca2+-free saline supplemented with the endoplasmic reticulum (ER) sequestration blocker cyclopiazonic acid. Store depletion elicited [Ca2+]i signals that exceeded baseline [Ca2+]i by 5.9 ± 0.7-fold and were antagonized by an inhibitory cocktail containing 2-APB, SKF 96365 and Gd3+. Cation influx through SOCE channels was sufficient to elicit a secondary activation of L-type voltage-operated Ca2+ entry. We also found that TRPC1, the type 1 canonical mammalian homologue of the Drosophila photoreceptor TRP channel, is predominantly expressed within the outer nuclear layer of the retina. Rod loss in Pde6brd1 (rd1), Chx10/Kip1−/−rd1 and Elovl4TG2 dystrophic models was associated with ∼70% reduction in Trpc1 mRNA content whereas Trpc1 mRNA levels in rodless cone-full Nrl−/− retinas were decreased by ∼50%. Genetic ablation of TRPC1 channels, however, had no effect on SOCE, the sensitivity of the rod phototransduction cascade or synaptic transmission at rod and cone synapses. Thus, we localized two new mechanisms, SOCE and TRPC1, to mammalian rods and characterized the contribution of SOCE to Ca2+ homeostasis. By preventing the cytosolic [Ca2+]i from dropping too low under sustained saturating light conditions, these signalling pathways may protect Ca2+-dependent mechanisms within the ER and the cytosol without affecting normal rod function. PMID:22674725

  7. Dysfunction of the CaV2.1 calcium channel in cerebellar ataxias

    PubMed Central

    Rajakulendran, Sanjeev; Schorge, Stephanie; Kullmann, Dimitri M

    2010-01-01

    Mutations in the CACNA1A gene are associated with episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). CACNA1A encodes the α-subunit of the P/Q-type calcium channel or CaV2.1, which is highly enriched in the cerebellum. It is one of the main channels linked to synaptic transmission throughout the human central nervous system. Here, we compare recent advances in the understanding of the genetic changes that underlie EA2 and SCA6 and what these new findings suggest about the mechanism of the disease. PMID:20948794

  8. LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α2δ-1 subunit

    PubMed Central

    Kadurin, Ivan; Rothwell, Simon W.; Lana, Beatrice; Nieto-Rostro, Manuela; Dolphin, Annette C.

    2017-01-01

    Voltage-gated Ca2+ (CaV) channels consist of a pore-forming α1 subunit, which determines the main functional and pharmacological attributes of the channel. The CaV1 and CaV2 channels are associated with auxiliary β- and α2δ-subunits. The molecular mechanisms involved in α2δ subunit trafficking, and the effect of α2δ subunits on trafficking calcium channel complexes remain poorly understood. Here we show that α2δ-1 is a ligand for the Low Density Lipoprotein (LDL) Receptor-related Protein-1 (LRP1), a multifunctional receptor which mediates trafficking of cargoes. This interaction with LRP1 is direct, and is modulated by the LRP chaperone, Receptor-Associated Protein (RAP). LRP1 regulates α2δ binding to gabapentin, and influences calcium channel trafficking and function. Whereas LRP1 alone reduces α2δ-1 trafficking to the cell-surface, the LRP1/RAP combination enhances mature glycosylation, proteolytic processing and cell-surface expression of α2δ-1, and also increase plasma-membrane expression and function of CaV2.2 when co-expressed with α2δ-1. Furthermore RAP alone produced a small increase in cell-surface expression of CaV2.2, α2δ-1 and the associated calcium currents. It is likely to be interacting with an endogenous member of the LDL receptor family to have these effects. Our findings now provide a key insight and new tools to investigate the trafficking of calcium channel α2δ subunits. PMID:28256585

  9. Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue

    PubMed Central

    Smith, Carolyn L.; Abdallah, Salsabil; Le, Phuong; Harracksingh, Alicia N.; Artinian, Liana; Tamvacakis, Arianna N.; Rehder, Vincent; Reese, Thomas S.

    2017-01-01

    Four-domain voltage-gated Ca2+ (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca2+ over Na+ compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na+ current by low external Ca2+ concentrations (i.e., the Ca2+ block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca2+ block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca2+ block and higher Ca2+ selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure–function properties, ion selectivity, and cellular physiology. PMID:28330839

  10. Oestrogen directly inhibits the cardiovascular L-type Ca{sup 2+} channel Ca{sub v}1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, Nina D.; Koschak, Alexandra; MacLeod, Kenneth T.

    2007-09-21

    Oestrogen can modify the contractile function of vascular smooth muscle and cardiomyocytes. The negative inotropic actions of oestrogen on the heart and coronary vasculature appear to be mediated by L-type Ca{sup 2+} channel (Ca{sub v}1.2) inhibition, but the underlying mechanisms remain elusive. We tested the hypothesis that oestrogen directly inhibits the cardiovascular L-type Ca{sup 2+} current, I {sub CaL}. The effect of oestrogen on I {sub CaL} was measured in Ca{sub v}1.2-transfected HEK-293 cells using the whole-cell patch-clamp technique. The current revealed typical activation and inactivation profiles of nifedipine- and cadmium-sensitive I {sub CaL}. Oestrogen (50 {mu}M) rapidly reduced Imore » {sub CaL} by 50% and shifted voltage-dependent activation and availability to more negative potentials. Furthermore, oestrogen blocked the Ca{sup 2+} channel in a rate-dependent way, exhibiting higher efficiency of block at higher stimulation frequencies. Our data suggest that oestrogen inhibits I {sub CaL} through direct interaction of the steroid with the channel protein.« less

  11. The probability of quantal secretion near a single calcium channel of an active zone.

    PubMed Central

    Bennett, M R; Farnell, L; Gibson, W G

    2000-01-01

    A Monte Carlo analysis has been made of calcium dynamics and quantal secretion at microdomains in which the calcium reaches very high concentrations over distances of <50 nm from a channel and for which calcium dynamics are dominated by diffusion. The kinetics of calcium ions in microdomains due to either the spontaneous or evoked opening of a calcium channel, both of which are stochastic events, are described in the presence of endogenous fixed and mobile buffers. Fluctuations in the number of calcium ions within 50 nm of a channel are considerable, with the standard deviation about half the mean. Within 10 nm of a channel these numbers of ions can give rise to calcium concentrations of the order of 100 microM. The temporal changes in free calcium and calcium bound to different affinity indicators in the volume of an entire varicosity or bouton following the opening of a single channel are also determined. A Monte Carlo analysis is also presented of how the dynamics of calcium ions at active zones, after the arrival of an action potential and the stochastic opening of a calcium channel, determine the probability of exocytosis from docked vesicles near the channel. The synaptic vesicles in active zones are found docked in a complex with their calcium-sensor associated proteins and a voltage-sensitive calcium channel, forming a secretory unit. The probability of quantal secretion from an isolated secretory unit has been determined for different distances of an open calcium channel from the calcium sensor within an individual unit: a threefold decrease in the probability of secretion of a quantum occurs with a doubling of the distance from 25 to 50 nm. The Monte Carlo analysis also shows that the probability of secretion of a quantum is most sensitive to the size of the single-channel current compared with its sensitivity to either the binding rates of the sites on the calcium-sensor protein or to the number of these sites that must bind a calcium ion to trigger

  12. Acute Treatment with T-Type Calcium Channel Enhancer SAK3 Reduces Cognitive Impairments Caused by Methimazole-Induced Hypothyroidism Via Activation of Cholinergic Signaling.

    PubMed

    Husain, Noreen; Yabuki, Yasushi; Shinoda, Yasuharu; Fukunaga, Kohji

    2018-01-01

    Hypothyroidism is a common disorder that is associated with psychological disturbances such as dementia, depression, and psychomotor disorders. We recently found that chronic treatment with the T-type calcium channel enhancer SAK3 prevents the cholinergic neurodegeneration induced by a single intraperitoneal (i.p.) injection of methimazole (MMI; 75 mg/kg), thereby improving cognition. Here, we evaluated the acute effect of SAK3 on cognitive impairments and its mechanism of action following the induction of hypothyroidism. Hypothyroidism was induced by 2 injections of MMI (75 mg/kg, i.p.) administered once per week. Four weeks after the final MMI treatment, MMI-treated mice showed reduced serum thyroxine (T4) levels and cognitive impairments without depression-like behaviors. Although acute SAK3 (1.0 mg/kg, p.o.) administration failed to ameliorate the decreased T4 levels and histochemical destruction of the glomerular structure, acute SAK3 (1.0 mg/kg, p.o.) administration significantly reduced cognitive impairments in MMI-treated mice. Importantly, the α7 nicotinic acetylcholine receptor (nAChR)-selective inhibitor methyllycaconitine (MLA; 12 mg/kg, i.p.) and T-type calcium channel-specific blocker NNC 55-0396 (25 mg/kg, i.p.) antagonized the acute effect of SAK3 on memory deficits in MMI-treated mice. We also confirmed that acute SAK3 administration does not rescue reduced olfactory marker protein or choline acetyltransferase immunoreactivity levels in the olfactory bulb or medial septum. Taken together, these results suggest that SAK3 has the ability to improve the cognitive decline caused by hypothyroidism directly through activation of nAChR signaling and T-type calcium channels. © 2018 S. Karger AG, Basel.

  13. Molecular Dynamics Simulations of Orai Reveal How the Third Transmembrane Segment Contributes to Hydration and Ca2+ Selectivity in Calcium Release-Activated Calcium Channels.

    PubMed

    Alavizargar, Azadeh; Berti, Claudio; Ejtehadi, Mohammad Reza; Furini, Simone

    2018-04-26

    Calcium release-activated calcium (CRAC) channels open upon depletion of Ca 2+ from the endoplasmic reticulum, and when open, they are permeable to a selective flux of calcium ions. The atomic structure of Orai, the pore domain of CRAC channels, from Drosophila melanogaster has revealed many details about conduction and selectivity in this family of ion channels. However, it is still unclear how residues on the third transmembrane helix can affect the conduction properties of the channel. Here, molecular dynamics and Brownian dynamics simulations were employed to analyze how a conserved glutamate residue on the third transmembrane helix (E262) contributes to selectivity. The comparison between the wild-type and mutated channels revealed a severe impact of the mutation on the hydration pattern of the pore domain and on the dynamics of residues K270, and Brownian dynamics simulations proved that the altered configuration of residues K270 in the mutated channel impairs selectivity to Ca 2+ over Na + . The crevices of water molecules, revealed by molecular dynamics simulations, are perfectly located to contribute to the dynamics of the hydrophobic gate and the basic gate, suggesting a possible role in channel opening and in selectivity function.

  14. The spinal inhibition of N-type voltage-gated calcium channels selectively prevents scratching behavior in mice.

    PubMed

    Maciel, I S; Azevedo, V M; Pereira, T C; Bogo, M R; Souza, A H; Gomez, M V; Campos, M M

    2014-09-26

    The present study investigated the effects of pharmacological spinal inhibition of voltage-gated calcium channels (VGCC) in mouse pruritus. The epidural administration of P/Q-type MVIIC or PhTx3.3, L-type verapamil, T-type NNC 55-0396 or R-type SNX-482 VGCC blockers failed to alter the scratching behavior caused by the proteinase-activated receptor 2 (PAR-2) activator trypsin, injected into the mouse nape skin. Otherwise, trypsin-elicited pruritus was markedly reduced by the spinal administration of preferential N-type VGCC inhibitors MVIIA and Phα1β. Time-course experiments revealed that Conus magus-derived toxin MVIIA displayed significant effects when dosed from 1h to 4h before trypsin, while the anti-pruritic effects of Phα1β from Phoneutria nigriventer remained significant for up to 12h. In addition to reducing trypsin-evoked itching, MVIIA or Phα1β also prevented the itching elicited by intradermal (i.d.) injection of SLIGRL-NH2, compound 48/80 or chloroquine, although they did not affect H2O2-induced scratching behavior. Furthermore, the co-administration of MVIIA or Phα1β markedly inhibited the pruritus caused by the spinal injection of gastrin-releasing peptide (GRP), but not morphine. Notably, the epidural administration of MVIIA or Phα1β greatly prevented the chronic pruritus allied to dry skin model. However, either tested toxin failed to alter the edema formation or neutrophil influx caused by trypsin, whereas they significantly reduced the c-Fos activation in laminas I, II and III of the spinal cord. Our data bring novel evidence on itching transmission mechanisms, pointing out the therapeutic relevance of N-type VGCC inhibitors to control refractory pruritus. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Resveratrol-induced antinociception is involved in calcium channels and calcium/caffeine-sensitive pools.

    PubMed

    Pan, Xiaoyu; Chen, Jiechun; Wang, Weijie; Chen, Ling; Wang, Lin; Ma, Quan; Zhang, Jianbo; Chen, Lichao; Wang, Gang; Zhang, Meixi; Wu, Hao; Cheng, Ruochuan

    2017-02-07

    Resveratrol has been widely investigated for its potential health properties, although little is known about its mechanism in vivo. Previous studies have indicated that resveratrol produces antinociceptive effects in mice. Calcium channels and calcium/caffeine-sensitive pools are reported to be associated with analgesic effect. The present study was to explore the involvement of Ca2+ channel and calcium/caffeine-sensitive pools in the antinociceptive response of resveratrol. Tail-flick test was used to assess antinociception in mice treated with resveratrol or the combinations of resveratrol with MK 801, nimodipine, CaCl2, ryanodine and ethylene glycol tetraacetic acid (EGTA), respectively. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) levels in the spinal cord were also investigated when treated with the above drugs. The results showed that resveratrol increased the tail flick latency in the tail-flick test, in dose-dependent manner. N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK 801 potentiated the antinociceptive effects of sub-threshold dose of resveratrol at 10 mg/kg. Ca2+ channel blocker, however, abolished the antinociceptive effects of resveratrol. In contrast to these results, EGTA or ryanodine treatment (i.c.v.) potentiated resveratrol-induced antinociception. There was a significant decrease in p-CaMKII and an increase in BDNF expression in the spinal cord when combined with MK 801, nimodipine, ryanodine and EGTA. While an increase in p-CaMKII level and a decrease in BDNF expression were observed when high dose of resveratrol combined with CaCl2. These findings suggest that resveratrol exhibits the antinociceptive effects by inhibition of calcium channels and calcium/caffeine-sensitive pools.

  16. Ferulic acid relaxed rat aortic, small mesenteric and coronary arteries by blocking voltage-gated calcium channel and calcium desensitization via dephosphorylation of ERK1/2 and MYPT1.

    PubMed

    Zhou, Zhong-Yan; Xu, Jia-Qi; Zhao, Wai-Rong; Chen, Xin-Lin; Jin, Yu; Tang, Nuo; Tang, Jing-Yi

    2017-11-15

    Ferulic acid, a natural ingredient presents in several Chinese Materia Medica such as Radix Angelicae Sinensis, has been identified as an important multifunctional and physiologically active small molecule. However, its pharmacological activity in different blood vessel types and underlying mechanisms are unclear. The present study was to investigate the vascular reactivity and the possible action mechanism of FA on aorta, small mesenteric arteries and coronary arteries isolated from Wistar rats. We found FA dose-dependently relieved the contraction of aorta, small mesenteric arteries and coronary arteries induced by different contractors, U46619, phenylephrine (Phe) and KCl. The relaxant effect of FA was not affected by L-NAME (eNOS inhibitor), ODQ (soluble guanylate cyclase inhibitor), and mechanical removal of endothelium in thoracic aortas. The contraction caused by 60mM KCl (60K) was concentration-dependently hindered by FA pretreatment in all three types of arteries. In Ca 2+ -free 60K solution, FA weakened Ca 2+ -related contraction in a concentration dependent manner. And FA relaxed both fluoride and phorbol ester which were PKC, ERK and Rho-kinase activators induced contraction in aortic rings with or without Ca 2+ in krebs solution. Western blotting experiments in A7r5 cells revealed that FA inhibited calcium sensitization via dephosphorylation of ERK1/2 and MYPT1. Furthermore, the relaxation effect of FA was attenuated by verapamil (calcium channel blocker), ERK inhibitor, and fasudil (ROCK inhibitor). These results provide evidence that FA exhibits endothelium-independent vascular relaxant effect in different types of arteries. The molecular mechanism of vasorelaxation activity of FA probably involved calcium channel inhibition and calcium desensitization. Copyright © 2017. Published by Elsevier B.V.

  17. Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation.

    PubMed

    Findeisen, Felix; Minor, Daniel L

    2009-03-01

    Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.

  18. Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation

    PubMed Central

    Findeisen, Felix

    2009-01-01

    Two processes dominate voltage-gated calcium channel (CaV) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The CaVβ/CaVα1-I-II loop and Ca2+/calmodulin (CaM)/CaVα1–C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6–α-interaction domain (AID) linker provides a rigid connection between the pore and CaVβ/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate CaV1.2 (L-type) and CaV2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt CaVβ/I-II association sharply decelerate CDI and reduce a second Ca2+/CaM/CaVα1–C-terminal–mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, CaVβ and the IS6-AID linker, are essential for calcium-dependent modulation, and that both CaVβ-dependent and CaM-dependent components couple to the pore by a common mechanism requiring CaVβ and an intact IS6-AID linker. PMID:19237593

  19. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells

    PubMed Central

    Boo, Hye-Jin; Min, Hye-Young; Jang, Hyun-Ji; Yun, Hye Jeong; Smith, John Kendal; Jin, Quanri; Lee, Hyo-Jong; Liu, Diane; Kweon, Hee-Seok; Behrens, Carmen; Lee, J. Jack; Wistuba, Ignacio I.; Lee, Euni; Hong, Waun Ki; Lee, Ho-Young

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis. PMID:27666821

  20. Lack of voltage-dependent calcium channel opening during the calcium influx induced by progesterone in human sperm. Effect of calcium channel deactivation and inactivation.

    PubMed

    Guzmán-Grenfell, Alberto Martín; González-Martínez, Marco T

    2004-01-01

    Progesterone induces calcium influx and acrosomal exocytosis in human sperm. Pharmacologic evidence suggests that voltage-dependent calcium channels (VDCCs) are involved. In this study, membrane potential (Vm) and intracellular calcium concentration ([Ca(2+)](i)) were monitored simultaneously to assess the effect of VDCC gating on the calcium influx triggered by progesterone. Holding the Vm to values that maintained VDCCs in a deactivated (-71 mV) closed state inhibited the calcium influx induced by progesterone by approximately 40%. At this Vm, the acrosomal reaction induced by progesterone, but not by A23187, was inhibited. However, when the Vm was held at -15 mV (which maintains VDCCs in an inactivated closed state), the progesterone-induced calcium influx was stimulated. Furthermore, the progesterone and voltage-dependent calcium influxes were additive. These findings indicate that progesterone does not produce VDCC gating in human sperm.

  1. Discovery of a Potent, Selective T-type Calcium Channel Blocker as a Drug Candidate for the Treatment of Generalized Epilepsies.

    PubMed

    Bezençon, Olivier; Heidmann, Bibia; Siegrist, Romain; Stamm, Simon; Richard, Sylvia; Pozzi, Davide; Corminboeuf, Olivier; Roch, Catherine; Kessler, Melanie; Ertel, Eric A; Reymond, Isabelle; Pfeifer, Thomas; de Kanter, Ruben; Toeroek-Schafroth, Michael; Moccia, Luca G; Mawet, Jacques; Moon, Richard; Rey, Markus; Capeleto, Bruno; Fournier, Elvire

    2017-12-14

    We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.

  2. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7.

    PubMed

    Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin

    2015-12-01

    Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.

  3. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  4. T-type calcium channel antagonism decreases motivation for nicotine and blocks nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine.

    PubMed

    Uslaner, Jason M; Vardigan, Joshua D; Drott, Jason M; Uebele, Victor N; Renger, John J; Lee, Ariel; Li, Zhaoxia; Lê, A D; Hutson, Pete H

    2010-10-15

    Recent evidence suggests an involvement of T-type calcium channels in the effects of drugs of abuse. We examined the influence of the novel, potent, and selective T-type calcium channel antagonist [2-(4-cyclopropylphenyl)-N-((1R)-1-{5-[2,2,2-trifluoroethyl]oxo}pyridine-2-yl)ethyl]acetamide] (TTA-A2) (.3, 1, or 3 mg/kg) on motivation for nicotine, as measured by nicotine self-administration on a progressive ratio (PR) schedule, and nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine delivery (n = 11 or 12 Long Evans rats/group). Furthermore, we examined the specificity of the TTA-A2 effects by characterizing its influence on PR responding for food (in the absence or presence of nicotine-potentiated responding), food- versus nicotine-induced cue-potentiated reinstatement for a response previously reinforced by food administration (n = 11 or 12 Wistar Hannover rats/group), and its ability to induce a conditioned place aversion. TTA-A2 dose-dependently decreased self-administration of nicotine on a PR schedule and the ability of both nicotine and a cue paired with nicotine to reinstate responding. The effects were specific for nicotine's incentive motivational properties, as TTA-A2 did not influence responding for food on a PR schedule but did attenuate the ability of nicotine to potentiate responding for food. Likewise, TTA-A2 did not alter food-induced cue-potentiated reinstatement for a response previously reinforced by food but did decrease nicotine-induced cue-potentiated reinstatement. Finally, TTA-A2 did not produce an aversive state, as indicated by a lack of ability to induce conditioned place aversion. These data suggest that T-type calcium channel antagonists have potential for alleviating nicotine addiction by selectively decreasing the incentive motivational properties of nicotine. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    PubMed Central

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  6. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels

    PubMed Central

    Salari, Autoosa; Vega, Benjamin S.; Milescu, Lorin S.; Milescu, Mirela

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173

  7. Calcium channel blocker toxicity in dogs and cats.

    PubMed

    Hayes, Cristine L; Knight, Michael

    2012-03-01

    The widespread use and availability of calcium channel blockers in human and veterinary medicine pose a risk for inadvertent pet exposure to these medications. Clinical signs can be delayed by many hours after exposure in some cases, with hypotension and cardiac rhythm changes (bradycardia, atrioventricular block, or tachycardia) as the predominant signs. Prompt decontamination and aggressive treatment using a variety of modalities may be necessary to treat patients exposed to calcium channel blockers. The prognosis of an exposed patient depends on the severity of signs and response to treatment.

  8. The Involvement of Ser1898 of the Human L-Type Calcium Channel in Evoked Secretion

    PubMed Central

    Bachnoff, Niv; Cohen-Kutner, Moshe; Atlas, Daphne

    2011-01-01

    A PKA consensus phosphorylation site S1928 at the α 11.2 subunit of the rabbit cardiac L-type channel, CaV1.2, is involved in the regulation of CaV1.2 kinetics and affects catecholamine secretion. This mutation does not alter basal CaV1.2 current properties or regulation of CaV1.2 current by PKA and the beta-adrenergic receptor, but abolishes CaV1.2 phosphorylation by PKA. Here, we test the contribution of the corresponding PKA phosphorylation site of the human α 11.2 subunit S1898, to the regulation of catecholamine secretion in bovine chromaffin cells. Chromaffin cells were infected with a Semliki-Forest viral vector containing either the human wt or a mutated S1898A α 11.2 subunit. Both subunits harbor a T1036Y mutation conferring nifedipine insensitivity. Secretion evoked by depolarization in the presence of nifedipine was monitored by amperometry. Depolarization-triggered secretion in cells infected with either the wt α 11.2 or α 11.2/S1898A mutated subunit was elevated to a similar extent by forskolin. Forskolin, known to directly activate adenylyl-cyclase, increased the rate of secretion in a manner that is largely independent of the presence of S1898. Our results are consistent with the involvement of additional PKA regulatory site(s) at the C-tail of α 11.2, the pore forming subunit of CaV1.2. PMID:22216029

  9. Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure

    PubMed Central

    Sanchez-Alonso, Jose L.; Bhargava, Anamika; O’Hara, Thomas; Glukhov, Alexey V.; Schobesberger, Sophie; Bhogal, Navneet; Sikkel, Markus B.; Mansfield, Catherine; Korchev, Yuri E.; Lyon, Alexander R.; Punjabi, Prakash P.; Nikolaev, Viacheslav O.; Trayanova, Natalia A.

    2016-01-01

    Rationale: Disruption in subcellular targeting of Ca2+ signaling complexes secondary to changes in cardiac myocyte structure may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure (HF) and certain arrhythmias. Objective: To explore microdomain-targeted remodeling of ventricular L-type Ca2+ channels (LTCCs) in HF. Methods and Results: Super-resolution scanning patch-clamp, confocal and fluorescence microscopy were used to explore the distribution of single LTCCs in different membrane microdomains of nonfailing and failing human and rat ventricular myocytes. Disruption of membrane structure in both species led to the redistribution of functional LTCCs from their canonical location in transversal tubules (T-tubules) to the non-native crest of the sarcolemma, where their open probability was dramatically increased (0.034±0.011 versus 0.154±0.027, P<0.001). High open probability was linked to enhance calcium–calmodulin kinase II–mediated phosphorylation in non-native microdomains and resulted in an elevated ICa,L window current, which contributed to the development of early afterdepolarizations. A novel model of LTCC function in HF was developed; after its validation with experimental data, the model was used to ascertain how HF-induced T-tubule loss led to altered LTCC function and early afterdepolarizations. The HF myocyte model was then implemented in a 3-dimensional left ventricle model, demonstrating that such early afterdepolarizations can propagate and initiate reentrant arrhythmias. Conclusions: Microdomain-targeted remodeling of LTCC properties is an important event in pathways that may contribute to ventricular arrhythmogenesis in the settings of HF-associated remodeling. This extends beyond the classical concept of electric remodeling in HF and adds a new dimension to cardiovascular disease. PMID:27572487

  10. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing.

    PubMed

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert

    2016-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  11. Optimization of ADME Properties for Sulfonamides Leading to the Discovery of a T-Type Calcium Channel Blocker, ABT-639

    PubMed Central

    2015-01-01

    The discovery of a novel peripherally acting and selective Cav3.2 T-type calcium channel blocker, ABT-639, is described. HTS hits 1 and 2, which have poor metabolic stability, were optimized to obtain 4, which has improved stability and oral bioavailability. Modification of 4 to further improve ADME properties led to the discovery of ABT-639. Following oral administration, ABT-639 produces robust antinociceptive activity in experimental pain models at doses that do not significantly alter psychomotor or hemodynamic function in the rat. PMID:26101566

  12. Optimization of ADME Properties for Sulfonamides Leading to the Discovery of a T-Type Calcium Channel Blocker, ABT-639.

    PubMed

    Zhang, Qingwei; Xia, Zhiren; Joshi, Shailen; Scott, Victoria E; Jarvis, Michael F

    2015-06-11

    The discovery of a novel peripherally acting and selective Cav3.2 T-type calcium channel blocker, ABT-639, is described. HTS hits 1 and 2, which have poor metabolic stability, were optimized to obtain 4, which has improved stability and oral bioavailability. Modification of 4 to further improve ADME properties led to the discovery of ABT-639. Following oral administration, ABT-639 produces robust antinociceptive activity in experimental pain models at doses that do not significantly alter psychomotor or hemodynamic function in the rat.

  13. Differential Modulation of Rhythmic Brain Activity in Healthy Adults by a T-Type Calcium Channel Blocker: An MEG Study

    PubMed Central

    Walton, Kerry D.; Maillet, Emeline L.; Garcia, John; Cardozo, Timothy; Galatzer-Levy, Isaac; Llinás, Rodolfo R.

    2017-01-01

    1-octanol is a therapeutic candidate for disorders involving the abnormal activation of the T-type calcium current since it blocks this current specifically. Such disorders include essential tremor and a group of neurological and psychiatric disorders resulting from thalamocortical dysrhythmia (TCD). For example, clinically, the observable phenotype in essential tremor is the tremor itself. The differential diagnostic of TCD is not based only on clinical signs and symptoms. Rather, TCD incorporates an electromagnetic biomarker, the presence of abnormal thalamocortical low frequency brain oscillations. The effect of 1-octanol on brain activity has not been tested. As a preliminary step to such a TCD study, we examined the short-term effects of a single dose of 1-octanol on resting brain activity in 32 healthy adults using magnetoencephalograpy. Visual inspection of baseline power spectra revealed that the subjects fell into those with strong low frequency activity (set 2, n = 11) and those without such activity, but dominated by an alpha peak (set 1, n = 22). Cross-validated linear discriminant analysis, using mean spectral density (MSD) in nine frequency bands as predictors, found overall that 82.5% of the subjects were classified as determined by visual inspection. The effect of 1-octanol on the MSD in narrow frequency bands differed between the two subject groups. In set 1 subjects the MSD increased in the 4.5-6.5Hz and 6.5–8.5 Hz bands. This was consistent with a widening of the alpha peak toward lower frequencies. In the set two subjects the MSD decrease in the 2.5–4.5 Hz and 4.5–6.5 Hz bands. This decreased power is consistent with the blocking effect of 1-octanol on T-type calcium channels. The subjects reported no adverse effects of the 1-octanol. Since stronger low frequency activity is characteristic of patients with TCD, 1-octanol and other T-type calcium channel blockers are good candidates for treatment of this group of disorders following a

  14. Differential Modulation of Rhythmic Brain Activity in Healthy Adults by a T-Type Calcium Channel Blocker: An MEG Study.

    PubMed

    Walton, Kerry D; Maillet, Emeline L; Garcia, John; Cardozo, Timothy; Galatzer-Levy, Isaac; Llinás, Rodolfo R

    2017-01-01

    1-octanol is a therapeutic candidate for disorders involving the abnormal activation of the T-type calcium current since it blocks this current specifically. Such disorders include essential tremor and a group of neurological and psychiatric disorders resulting from thalamocortical dysrhythmia (TCD). For example, clinically, the observable phenotype in essential tremor is the tremor itself. The differential diagnostic of TCD is not based only on clinical signs and symptoms. Rather, TCD incorporates an electromagnetic biomarker, the presence of abnormal thalamocortical low frequency brain oscillations. The effect of 1-octanol on brain activity has not been tested. As a preliminary step to such a TCD study, we examined the short-term effects of a single dose of 1-octanol on resting brain activity in 32 healthy adults using magnetoencephalograpy. Visual inspection of baseline power spectra revealed that the subjects fell into those with strong low frequency activity (set 2, n = 11) and those without such activity, but dominated by an alpha peak (set 1, n = 22). Cross-validated linear discriminant analysis, using mean spectral density (MSD) in nine frequency bands as predictors, found overall that 82.5% of the subjects were classified as determined by visual inspection. The effect of 1-octanol on the MSD in narrow frequency bands differed between the two subject groups. In set 1 subjects the MSD increased in the 4.5-6.5Hz and 6.5-8.5 Hz bands. This was consistent with a widening of the alpha peak toward lower frequencies. In the set two subjects the MSD decrease in the 2.5-4.5 Hz and 4.5-6.5 Hz bands. This decreased power is consistent with the blocking effect of 1-octanol on T-type calcium channels. The subjects reported no adverse effects of the 1-octanol. Since stronger low frequency activity is characteristic of patients with TCD, 1-octanol and other T-type calcium channel blockers are good candidates for treatment of this group of disorders following a placebo

  15. Calcium dynamics regulating the timing of decision-making in C. elegans.

    PubMed

    Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Kawazoe, Yuya; Miyanishi, Yosuke; Yamazaki, Shuhei J; Fei, Xianfeng; Busch, Karl Emanuel; Gengyo-Ando, Keiko; Nakai, Junichi; Iino, Yuichi; Iwasaki, Yuishi; Hashimoto, Koichi; Kimura, Koutarou D

    2017-05-23

    Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans . We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca 2+ ] i ), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca 2+ ] i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making.

  16. Effects of osmotic swelling on voltage-gated calcium channel currents in rat anterior pituitary cells.

    PubMed

    Ben-Tabou De-Leon, Shlomo; Blotnick, Edna; Nussinovitch, Itzhak

    2003-10-01

    Decrease in extracellular osmolarity ([Os]e) results in stimulation of hormone secretion from pituitary cells. Different mechanisms can account for this stimulation of hormone secretion. In this study we examined the possibility that hyposmolarity directly modulates voltage-gated calcium influx in pituitary cells. The effects of hyposmolarity on L-type (IL) and T-type (IT) calcium currents in pituitary cells were investigated by using two hyposmotic stimuli, moderate (18-22% decrease in [Os]e) and strong (31-32% decrease in [Os]e). Exposure to moderate hyposmotic stimuli resulted in three response types in IL (a decrease, a biphasic effect, and an increase in IL) and in increase in IT. Exposure to strong hyposmotic stimuli resulted only in increases in both IL and IT. Similarly, in intact pituitary cells (perforated patch method), exposure to either moderate or strong hyposmotic stimuli resulted only in increases in both IL and IT. Thus it appears that the main effect of decrease in [Os]e is increase in calcium channel currents. This increase was differential (IL were more sensitive than IT) and voltage independent. In addition, we show that these hyposmotic effects cannot be explained by activation of an anionic conductance or by an increase in cell membrane surface area. In conclusion, this study shows that hyposmotic swelling of pituitary cells can directly modulate voltage-gated calcium influx. This hyposmotic modulation of IL and IT may contribute to the previously reported hyposmotic stimulation of hormone secretion. The mechanisms underlying these hyposmotic effects and their possible physiological relevance are discussed.

  17. Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability.

    PubMed

    Voisin, Tiphaine; Bourinet, Emmanuel; Lory, Philippe

    2016-07-01

    In this study, we describe a new knock-in (KI) mouse model that allows the study of the H191-dependent regulation of T-type Cav3.2 channels. Sensitivity to zinc, nickel and ascorbate of native Cav3.2 channels is significantly impeded in the dorsal root ganglion (DRG) neurons of this KI mouse. Importantly, we describe that this H191-dependent regulation has discrete but significant effects on the excitability properties of D-hair (down-hair) cells, a sub-population of DRG neurons in which Cav3.2 currents prominently regulate excitability. Overall, this study reveals that the native H191-dependent regulation of Cav3.2 channels plays a role in the excitability of Cav3.2-expressing neurons. This animal model will be valuable in addressing the potential in vivo roles of the trace metal and redox modulation of Cav3.2 T-type channels in a wide range of physiological and pathological conditions. Cav3.2 channels are T-type voltage-gated calcium channels that play important roles in controlling neuronal excitability, particularly in dorsal root ganglion (DRG) neurons where they are involved in touch and pain signalling. Cav3.2 channels are modulated by low concentrations of metal ions (nickel, zinc) and redox agents, which involves the histidine 191 (H191) in the channel's extracellular IS3-IS4 loop. It is hypothesized that this metal/redox modulation would contribute to the tuning of the excitability properties of DRG neurons. However, the precise role of this H191-dependent modulation of Cav3.2 channel remains unresolved. Towards this goal, we have generated a knock-in (KI) mouse carrying the mutation H191Q in the Cav3.2 protein. Electrophysiological studies were performed on a subpopulation of DRG neurons, the D-hair cells, which express large Cav3.2 currents. We describe an impaired sensitivity to zinc, nickel and ascorbate of the T-type current in D-hair neurons from KI mice. Analysis of the action potential and low-threshold calcium spike (LTCS) properties revealed

  18. Physiological role of L-type Ca2+ channels in marginal cells in the stria vascularis of guinea pigs.

    PubMed

    Inui, Takaki; Mori, Yoshiaki; Watanabe, Masahito; Takamaki, Atsuko; Yamaji, Junko; Sohma, Yoshiro; Yoshida, Ryotaro; Takenaka, Hiroshi; Kubota, Takahiro

    2007-10-01

    Using immunohistochemical and electrophysiological methods, we investigated the role of L-type Ca(2+) channels in the regulation of the endocochlear potential (EP) of the endolymphatic surface cells (ESC) of the guinea pig stria vascularis. The following findings were made: (1) Administration of 30 microg/ml nifedipine via a vertebral artery significantly suppressed the transient asphyxia-induced decrease in the EP (TAID) and the transient asphyxia-induced increase in the Ca(2+), referred to as TAIICa, concentration in the endolymph ([Ca](e)). (2) The endolymphatic administration of 1 microg/ml nifedipine significantly inhibited the TAID as well as the TAIICa. The endolymphatic administration of nifedipine (0.001-10 microg/ml) inhibited the TAID in a dose-dependent manner. (3) The endolymphatic administration of (+)-Bay K8644, an L-type Ca(2+) channel closer, significantly inhibited the TAID, whereas (-)-Bay K8644, an L-type Ca(2+) channel opener, caused a large decrease in the EP from approximately +75 mV to approximately +20 mV at 10 min after the endolymphatic administration. (4) By means of immunohistochemistry, a positive staining reaction with L-type Ca(2+) channels was detected in the marginal cells of the stria vascularis. (5) Under the high [Ca](e) condition, we examined the mechanism of the TAIICa and hypothesized that the TAIICa might have been caused by the decrease in the EP through a shunt pathway in the ESC. (6) The administration of nifedipine to the endolymph significantly inhibited the Ba(2+)-induced decrease in the EP. These findings support the view that L-type Ca(2+) channels in the marginal cells regulate the EP, but not directly the TAIICa.

  19. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.

    PubMed

    Cifelli, Carlo; Boudreault, Louise; Gong, Bing; Bercier, Jean-Philippe; Renaud, Jean-Marc

    2008-10-01

    Muscles deficient in ATP-dependent potassium (KATP) channels develop contractile dysfunctions during fatigue that may explain their apparently faster rate of fatigue compared with wild-type muscles. The objectives of this study were to determine: (1) whether the contractile dysfunctions, namely unstimulated force and depressed force recovery, result from excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) whether reducing the magnitude of these two contractile dysfunctions reduces the rate of fatigue in KATP channel-deficient muscles. To reduce Ca2+ influx, we lowered the extracellular Ca2+ concentration ([Ca2+]o) from 2.4 to 0.6 mM or added 1 microM verapamil, an L-type Ca2+ channel blocker. Flexor digitorum brevis (FDB) muscles deficient in KATP channels were obtained by exposing wild-type muscles to 10 microM glibenclamide or by using FDB from Kir6.2-/- mice. Fatigue was elicited with one contraction per second for 3 min at 37 degrees C. In wild-type FDB, lowered [Ca2+]o or verapamil did not affect the decrease in peak tetanic force and unstimulated force during fatigue and force recovery following fatigue. In KATP channel-deficient FDB, lowered [Ca2+]o or verapamil slowed down the decrease in peak tetanic force recovery, reduced unstimulated force and improved force recovery. In Kir6.2-/- FDB, the rate of fatigue became slower than in wild-type FDB in the presence of verapamil. The cell membrane depolarized from -83 to -57 mV in normal wild-type FDB. The depolarizations in some glibenclamide-exposed fibres were similar to those of normal FDB, while in other fibres the cell membrane depolarized to -31 mV in 80 s, which was also the time when these fibres supercontracted. It is concluded that: (1) KATP channels are crucial in preventing excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) they contribute to the decrease in force during fatigue.

  20. A novel impedance-based cellular assay for the detection of anti-calcium channel autoantibodies in type 1 diabetes.

    PubMed

    Jackson, Michael W; Gordon, Tom P

    2010-09-30

    We have recently postulated that functional autoantibodies (Abs) against L-type voltage-gated calcium channels (VGCCs) contribute to autonomic dysfunction in type 1 diabetes (T1D). Previous studies based on whole-organ assays have proven valuable in establishing the mechanism of anti-VGCC Ab activity, but are complex and unsuitable for screening large patient cohorts. In the current study, we used real-time dynamic monitoring of cell impedance to demonstrate that anti-VGCC Abs from patients with T1D inhibit the adherence of Rin A12 cells. The functional effect of the anti-VGCC Abs was mimicked by the dihydropyridine agonist, Bay K8644, and reversed by the antagonist, nicardipine, providing a pharmacological link to the whole-organ studies. IVIg neutralized the effect on cell adhesion of the anti-VGCC Abs, consistent with the presence of anti-idiotypic Abs in IVIg that may prevent the emergence of pathogenic Abs in healthy individuals. The cell impedance assay can be performed in a 96 well plate format, and represents a simple method for detecting the presence of anti-VGCC activity in patient immunoglobulin (IgG). The new cell assay should prove useful for further studies to determine the prevalence of the Ab and its association with symptoms of autonomic dysfunction in patients with T1D. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  1. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.

    PubMed

    Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A

    2014-11-01

    Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.

  2. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    PubMed

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  3. Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells

    PubMed Central

    Villarroya, Mercedes; Olivares, Román; Ruíz, Ana; Cano-Abad, María F; de Pascual, Ricardo; Lomax, Richard B; López, Manuela G; Mayorgas, Inés; Gandía, Luis; García, Antonio G

    1999-01-01

    In this study we pose the question of why the bovine adrenal medullary chromaffin cell needs various subtypes (L, N, P, Q) of the neuronal high-voltage activated Ca2+ channels to control a given physiological function, i.e. the exocytotic release of catecholamines. One plausible hypothesis is that Ca2+ channel subtypes undergo different patterns of inactivation during cell depolarization. The net Ca2+ uptake (measured using 45Ca2+) into hyperpolarized cells (bathed in a nominally Ca2+-free solution containing 1·2 mM K+) after application of a Ca2+ pulse (5 s exposure to 100 mM K+ and 2 mM Ca2+), amounted to 0·65 ± 0·02 fmol cell−1; in depolarized cells (bathed in nominally Ca2+-free solution containing 100 mM K+) the net Ca2+ uptake was 0·16 ± 0·01 fmol cell−1. This was paralleled by a dramatic reduction of the increase in the cytosolic Ca2+ concentration, [Ca2+]i, caused by Ca2+ pulses applied to fura-2-loaded single cells, from 1181 ± 104 nM in hyperpolarized cells to 115 ± 9 nM in depolarized cells. A similar decrease was observed when studying catecholamine release. Secretion was decreased when K+ concentration was increased from 1·2 to 100 mM; the Ca2+ pulse caused, when comparing the extreme conditions, the secretion of 807 ± 35 nA of catecholamines in hyperpolarized cells and 220 ± 19 nA in depolarized cells. The inactivation by depolarization of Ca2+ entry and secretion occluded the blocking effects of combined ω-conotoxin GVIA (1 μM) and ω-agatoxin IVA (2 μM), thus suggesting that depolarization caused a selective inactivation of the N- and P/Q-type Ca2+ channels. This was strengthened by two additional findings: (i) nifedipine (3 μM), an L-type Ca2+ channel blocker, suppressed the fraction of Ca2+ entry (24 %) and secretion (27 %) left unblocked by depolarization; (ii) FPL64176 (3 μM), an L-type Ca2+ channel ‘activator’, dramatically enhanced the entry of Ca2+ and the secretory response in depolarized cells. In voltage

  4. Cav1.2 and Cav1.3 L‐type calcium channels independently control short‐ and long‐term sensitization to pain

    PubMed Central

    Radwani, Houda; Lopez‐Gonzalez, Maria José; Cattaert, Daniel; Roca‐Lapirot, Olivier; Dobremez, Eric; Bouali‐Benazzouz, Rabia; Eiríksdóttir, Emelía; Langel, Ülo; Favereaux, Alexandre; Errami, Mohammed; Landry, Marc

    2016-01-01

    Key points L‐type calcium channels in the CNS exist as two subunit forming channels, Cav1.2 and Cav1.3, which are involved in short‐ and long‐term plasticity.We demonstrate that Cav1.3 but not Cav1.2 is essential for wind‐up.These results identify Cav1.3 as a key conductance responsible for short‐term sensitization in physiological pain transmission.We confirm the role of Cav1.2 in a model of long‐term plasticity associated with neuropathic pain.Up‐regulation of Cav1.2 and down‐regultation of Cav1.3 in neuropathic pain underlies the switch from physiology to pathology.Finally, the results of the present study reveal that therapeutic targeting molecular pathways involved in wind‐up may be not relevant in the treatment of neuropathy. Abstract Short‐term central sensitization to pain temporarily increases the responsiveness of nociceptive pathways after peripheral injury. In dorsal horn neurons (DHNs), short‐term sensitization can be monitored through the study of wind‐up. Wind‐up, a progressive increase in DHNs response following repetitive peripheral stimulations, depends on the post‐synaptic L‐type calcium channels. In the dorsal horn of the spinal cord, two L‐type calcium channels are present, Cav1.2 and Cav1.3, each displaying specific kinetics and spatial distribution. In the present study, we used a mathematical model of DHNs in which we integrated the specific patterns of expression of each Cav subunits. This mathematical approach reveals that Cav1.3 is necessary for the onset of wind‐up, whereas Cav1.2 is not and that synaptically triggered wind‐up requires NMDA receptor activation. We then switched to a biological preparation in which we knocked down Cav subunits and confirmed the prominent role of Cav1.3 in both naive and spinal nerve ligation model of neuropathy (SNL). Interestingly, although a clear mechanical allodynia dependent on Cav1.2 expression was observed after SNL, the amplitude of wind‐up was decreased

  5. The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

    PubMed Central

    Kim, Sung-Jo; Kang, Sun-Yang; Yi, Jin Woong; Kim, Seung-Min

    2014-01-01

    Purpose Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium (KCa) channel genes in HOKPP patients. Methods We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the KCa channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes KCa1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels. PMID:25379045

  6. A molecule-based genetic association approach implicates a range of voltage-gated calcium channels associated with schizophrenia.

    PubMed

    Li, Wen; Fan, Chun Chieh; Mäki-Marttunen, Tuomo; Thompson, Wesley K; Schork, Andrew J; Bettella, Francesco; Djurovic, Srdjan; Dale, Anders M; Andreassen, Ole A; Wang, Yunpeng

    2018-06-01

    Traditional genome-wide association studies (GWAS) have successfully detected genetic variants associated with schizophrenia. However, only a small fraction of heritability can be explained. Gene-set/pathway-based methods can overcome limitations arising from single nucleotide polymorphism (SNP)-based analysis, but most of them place constraints on size which may exclude highly specific and functional sets, like macromolecules. Voltage-gated calcium (Ca v ) channels, belonging to macromolecules, are composed of several subunits whose encoding genes are located far away or even on different chromosomes. We combined information about such molecules with GWAS data to investigate how functional channels associated with schizophrenia. We defined a biologically meaningful SNP-set based on channel structure and performed an association study by using a validated method: SNP-set (sequence) kernel association test. We identified eight subtypes of Ca v channels significantly associated with schizophrenia from a subsample of published data (N = 56,605), including the L-type channels (Ca v 1.1, Ca v 1.2, Ca v 1.3), P-/Q-type Ca v 2.1, N-type Ca v 2.2, R-type Ca v 2.3, T-type Ca v 3.1, and Ca v 3.3. Only genes from Ca v 1.2 and Ca v 3.3 have been implicated by the largest GWAS (N = 82,315). Each subtype of Ca v channels showed relatively high chip heritability, proportional to the size of its constituent gene regions. The results suggest that abnormalities of Ca v channels may play an important role in the pathophysiology of schizophrenia and these channels may represent appropriate drug targets for therapeutics. Analyzing subunit-encoding genes of a macromolecule in aggregate is a complementary way to identify more genetic variants of polygenic diseases. This study offers the potential of power for discovery the biological mechanisms of schizophrenia. © 2018 Wiley Periodicals, Inc.

  7. Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium.

    PubMed

    Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an

    2013-12-01

    Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.

  8. Blockade of T-type calcium channels prevents tonic-clonic seizures in a maximal electroshock seizure model.

    PubMed

    Sakkaki, Sophie; Gangarossa, Giuseppe; Lerat, Benoit; Françon, Dominique; Forichon, Luc; Chemin, Jean; Valjent, Emmanuel; Lerner-Natoli, Mireille; Lory, Philippe

    2016-02-01

    T-type (Cav3) calcium channels play important roles in neuronal excitability, both in normal and pathological activities of the brain. In particular, they contribute to hyper-excitability disorders such as epilepsy. Here we have characterized the anticonvulsant properties of TTA-A2, a selective T-type channel blocker, in mouse. Using the maximal electroshock seizure (MES) as a model of tonic-clonic generalized seizures, we report that mice treated with TTA-A2 (0.3 mg/kg and higher doses) were significantly protected against tonic seizures. Although no major change in Local Field Potential (LFP) pattern was observed during the MES seizure, analysis of the late post-ictal period revealed a significant increase in the delta frequency power in animals treated with TTA-A2. Similar results were obtained for Cav3.1-/- mice, which were less prone to develop tonic seizures in the MES test, but not for Cav3.2-/- mice. Analysis of extracellular signal-regulated kinase 1/2 (ERK) phosphorylation and c-Fos expression revealed a rapid and elevated neuronal activation in the hippocampus following MES clonic seizures, which was unchanged in TTA-A2 treated animals. Overall, our data indicate that TTA-A2 is a potent anticonvulsant and that the Cav3.1 isoform plays a prominent role in mediating TTA-A2 tonic seizure protection. Copyright © 2015. Published by Elsevier Ltd.

  9. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    PubMed Central

    Weinberg, Seth H.; Smith, Gregory D.

    2012-01-01

    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  10. Calcium dynamics regulating the timing of decision-making in C. elegans

    PubMed Central

    Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Kawazoe, Yuya; Miyanishi, Yosuke; Yamazaki, Shuhei J; Fei, Xianfeng; Busch, Karl Emanuel; Gengyo-Ando, Keiko; Nakai, Junichi; Iino, Yuichi; Iwasaki, Yuishi; Hashimoto, Koichi; Kimura, Koutarou D

    2017-01-01

    Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans. We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca2+]i), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca2+]i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making. DOI: http://dx.doi.org/10.7554/eLife.21629.001 PMID:28532547

  11. Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1

    PubMed Central

    Xu, Ningyong; Cioffi, Donna L.; Alexeyev, Mikhail; Rich, Thomas C.

    2014-01-01

    Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882

  12. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats.

    PubMed

    Wang, Bin; Xiong, Shiqiang; Lin, Shaoyang; Xia, Weijie; Li, Qiang; Zhao, Zhigang; Wei, Xing; Lu, Zongshi; Wei, Xiao; Gao, Peng; Liu, Daoyan; Zhu, Zhiming

    2017-07-15

    Mitochondrial Ca 2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H 2 O 2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca 2+ ] mito , ROS production, and mitochondrial energy metabolism through targeting TRPC3. © 2017 The Authors. Published on behalf of

  13. Participation of IP3R, RyR and L-type Ca2+ channel in the nuclear maturation of Rhinella arenarum oocytes.

    PubMed

    Toranzo, G Sánchez; Bühler, M C Gramajo; Bühler, M I

    2014-05-01

    During meiosis resumption, oocytes undergo a series of nuclear and cytosolic changes that prepare them for fertilization and that are referred to as oocyte maturation. These events are characterized by germinal vesicle breakdown (GVBD), chromatin condensation and spindle formation and, among cytosolic changes, organelle redistribution and maturation of Ca2+-release mechanisms. The progression of the meiotic cell cycle is regulated by M phase/maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Changes in the levels of intracellular free Ca2+ ion have also been implicated strongly in the triggering of the initiation of the M phase. Ca2+ signals can be generated by Ca2+ release from intracellular Ca2+ stores (endoplasmic reticulum; ER) or by Ca2+ influx from the extracellular space. In this sense, the L-type Ca2+ channel plays an important role in the incorporation of Ca2+ from the extracellular space. Two types of intracellular Ca2+ receptor/channels are known to mediate the intracellular Ca2+ release from the ER lumen. The most abundant, the inositol 1,4,5-trisphosphate receptor (IP3R), and the other Ca2+ channel, the ryanodine receptor (RyR), have also been reported to mediate Ca2+ release in several oocytes. In amphibians, MPF and MAPK play a central role during oocyte maturation, controlling several events. However, no definitive relationships have been identified between Ca2+ and MPF or MAPK. We investigated the participation of Ca2+ in the spontaneous and progesterone-induced nuclear maturation in Rhinella arenarum oocytes and the effect of different pharmacological agents known to produce modifications in the Ca2+ channels. We demonstrated that loading competent and incompetent oocytes with the intracellular calcium chelator BAPTA/AM produced suppression of spontaneous and progesterone-induced GVBD. In our results, the capacity of progesterone to trigger meiosis reinitiation in Rhinella in the presence of L-type Ca2+ channel blockers

  14. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    PubMed

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  15. The inhibitory effect of BIM (I) on L-type Ca²⁺ channels in rat ventricular cells.

    PubMed

    Son, Youn Kyoung; Hong, Da Hye; Choi, Tae-Hoon; Choi, Seong Woo; Shin, Dong Hoon; Kim, Sung Joon; Jung, In Duk; Park, Yeong-Min; Jung, Won-Kyo; Kim, Dae-Joong; Choi, Il-Whan; Park, Won Sun

    2012-06-22

    We investigated the effect of a specific protein kinase C (PKC) inhibitor, bisindolylmaleimide I [BIM (I)], on L-type Ca(2+) channels in rat ventricular myocytes. BIM (I) alone inhibited the L-type Ca(2+) current in a concentration-dependent manner, with a K(d) value of 3.31 ± 0.25 μM, and a Hill coefficient of 2.34 ± 0.23. Inhibition was immediate after applying BIM (I) in the bath solution and then it partially washed out. The steady-state activation curve was not altered by applying 3μ M BIM (I), but the steady-state inactivation curve shifted to a more negative potential with a change in the slope factor. Other PKC inhibitors, PKC-IP and chelerythrine, showed no significant effects either on the L-type Ca(2+) current or on the inhibitory effect of BIM (I) on the L-type Ca(2+) current. The results suggest that the inhibitory effect of BIM (I) on the L-type Ca(2+) current is independent of the PKC pathway. Thus, our results should be considered in studies using BIM (I) to inhibit PKC activity and ion channel modulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. L-type voltage-dependent calcium channel is involved in the snake venom group IA secretory phospholipase A2-induced neuronal apoptosis.

    PubMed

    Yagami, Tatsurou; Yamamoto, Yasuhiro; Kohma, Hiromi; Nakamura, Tsutomu; Takasu, Nobuo; Okamura, Noboru

    2013-03-01

    Snake venom group IA secretory phospholipase A2 (sPLA2-IA) is known as a neurotoxin. Snake venom sPLA2s are neurotoxic in vivo and in vitro, causing synergistic neurotoxicity to cortical cultures when applied with toxic concentrations of glutamate. However, it has not yet been cleared sufficiently how sPLA2-IA exerts neurotoxicity. Here, we found sPLA2-IA induced neuronal cell death in a concentration-dependent manner. This death was a delayed response requiring a latent time for 6h. sPLA2-IA-induced neuronal cell death was accompanied with apoptotic blebbing, condensed chromatin, and fragmented DNA, exhibiting apoptotic features. NMDA receptor blockers suppressed the neurotoxicity of sPLA2-IA, but an AMPA receptor blocker did not. Interestingly, L-type voltage-dependent Ca(2+) channel (L-VDCC) blocker significantly protected neurons from the sPLA2-IA-induced apoptosis. On the other hand, neither N-VDCC blockers nor P/Q-VDCC blocker did. In conclusion, we demonstrated that sPLA2-IA induced neuronal cell death via apoptosis. Furthermore, the present study suggests that not only NMDA receptor but also L-VDCC contributed to the neurotoxicity of snake venom sPLA2-IA. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  18. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubinskiy-Nadezhdin, Vladislav I., E-mail: vchubinskiy@gmail.com; Vasileva, Valeria Y.; Pugovkina, Natalia A.

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances inmore » hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca{sup 2+} entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca{sup 2+}-sensitive BK and SK channels was shown. • Local Ca{sup 2+} influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca{sup 2+}]{sub i}. • Functional clustering of SACs and BK channels in stem cell membrane is proposed.« less

  19. Calcium current in isolated neonatal rat ventricular myocytes.

    PubMed Central

    Cohen, N M; Lederer, W J

    1987-01-01

    1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004

  20. Effects of endothelin, calcium channel blockade and EDRF inhibition on the contractility of human uteroplacental arteries.

    PubMed

    Fried, G; Liu, Y A

    1994-08-01

    In order to examine the possibility that endothelin might be important in the regulation of placental blood flow, human uteroplacental vessels were superfused in vitro to study the contractile effect of endothelin as compared with a known strong contractor of placental blood vessels, serotonin (5-HT). The contractile responses were compared in the presence and absence of calcium channel blocking agents, as well as in the presence of L-NMA, an inhibitor of EDRF/nitric oxide. Endothelin (ET, 10(-10)-10(-6) M) and 5-HT (10(-8)-10(-4) M) induced contractions in the vessels. Maximal contractions in the presence of endothelin were elicited at 10(-7) M, whereas 5-HT elicited maximal contractions at 10(-5) M. At 10(-7) M, ET was more potent than 5-HT. The calcium-channel blocking agents nifedipine, diltiazem and NiCl2 relaxed the vessels by 5-15% from baseline. The contractile response to ET in the presence of nifedipine or diltiazem was reduced by 55 and 67%, respectively. The response of 5-HT in the presence of nifedipine was reduced by 58%. The contractile response to 5-HT as well as ET in the presence of both nifedipine and NiCl2 was not significantly lower than in the presence of nifedipine only. The EDRF-inhibiting agent L-NMA caused a small contractile response at concentrations of 10(-6)-10(-5) M. ET as well as 5-HT added after pretreatment with L-NMA produced a larger contractile response than ET or 5-HT alone. The results show that ET has a strong contractile effect on placental blood vessels at concentrations likely to occur during labor and delivery. The mechanism whereby ET as well as 5-HT contracts placental vessel smooth muscle appears to partly involve nifedipine- and diltiazem-sensitive calcium channels, but almost half of the response depends on mobilization of calcium through other means.

  1. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  2. Restricting calcium currents is required for correct fiber type specification in skeletal muscle

    PubMed Central

    Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo

    2016-01-01

    ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373

  3. Ion channel mechanisms of rat tail artery contraction-relaxation by menthol involving, respectively, TRPM8 activation and L-type Ca2+ channel inhibition

    PubMed Central

    Melanaphy, Donal; Kustov, Maxim V.; Watson, Conall A.; Borysova, Lyudmyla; Burdyga, Theodor V.; Zholos, Alexander V.

    2016-01-01

    Transient receptor potential melastatin 8 (TRPM8) is the principal cold and menthol receptor channel. Characterized primarily for its cold-sensing role in sensory neurons, it is expressed and functional in several nonneuronal tissues, including vasculature. We previously demonstrated that menthol causes variable mechanical responses (vasoconstriction, vasodilatation, or biphasic reactions) in isolated arteries, depending on vascular tone. Here we aimed to dissect the specific ion channel mechanisms and corresponding Ca2+ signaling pathways underlying such complex responses to menthol and other TRPM8 ligands in rat tail artery myocytes using patch-clamp electrophysiology, confocal Ca2+ imaging, and ratiometric Ca2+ recording. Menthol (300 μM, a concentration typically used to induce TRPM8 currents) strongly inhibited L-type Ca2+ channel current (L-ICa) in isolated myocytes, especially its sustained component, most relevant for depolarization-induced vasoconstriction. In contraction studies, with nifedipine present (10 μM) to abolish L-ICa contribution to phenylephrine (PE)-induced vasoconstrictions of vascular rings, a marked increase in tone was observed with menthol, similar to resting (i.e., without α-adrenoceptor stimulation by PE) conditions, when L-type channels were mostly deactivated. Menthol-induced increases in PE-induced vasoconstrictions could be inhibited both by the TRPM8 antagonist AMTB (thus confirming the specific role of TRPM8) and by cyclopiazonic acid treatment to deplete Ca2+ stores, pointing to a major contribution of Ca2+ release from the sarcoplasmic reticulum in these contractile responses. Immunocytochemical analysis has indeed revealed colocalization of TRPM8 and InsP3 receptors. Moreover, menthol Ca2+ responses, which were somewhat reduced under Ca2+-free conditions, were strongly reduced by cyclopiazonic acid treatment to deplete Ca2+ store, whereas caffeine-induced Ca2+ responses were blunted in the presence of menthol. Finally, two

  4. Ethanol-mediated relaxation of guinea pig urinary bladder smooth muscle: involvement of BK and L-type Ca2+ channels

    PubMed Central

    Malysz, John; Afeli, Serge A. Y.; Provence, Aaron

    2013-01-01

    Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca2+-activated K+ (BK) channels or L-type voltage-dependent Ca2+ channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (∼50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ∼300 nM intracellular Ca2+ concentration ([Ca2+]), EtOH (0.1–0.3%) affected single BK channels (mean conductance ∼210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ∼10 μM but not ∼2 μM intracellular [Ca2+], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1–1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis. PMID:24153429

  5. Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes.

    PubMed

    Moreno, Cristian; Hermosilla, Tamara; Morales, Danna; Encina, Matías; Torres-Díaz, Leandro; Díaz, Pablo; Sarmiento, Daniela; Simon, Felipe; Varela, Diego

    2015-12-01

    In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.

  6. Calcium Channels, Rho-Kinase, Protein Kinase-C, and Phospholipase-C Pathways Mediate Mercury Chloride-Induced Myometrial Contractions in Rats.

    PubMed

    Koli, Swati; Prakash, Atul; Choudhury, Soumen; Mandil, Rajesh; Garg, Satish K

    2018-05-21

    Adverse effects of mercury on female reproduction are reported; however, its effect on myogenic activity of uterus and mechanism thereof is obscure. Present study was undertaken to unravel the mechanistic pathways of mercuric chloride (HgCl 2 )-induced myometrial contraction in rats. Isometric tension in myometrial strips of rats following in vitro exposure to HgCl 2 was recorded using data acquisition system-based physiograph. HgCl 2 produced concentration-dependent (10 nM-100 μM) uterotonic effect which was significantly (p < 0.05) reduced in Ca 2+ -free solution and inhibited in the presence of nifedipine (1 μM), a L-type Ca 2+ channel blocker, thus suggesting the importance of extracellular Ca 2+ and its entry through L-type calcium channels in HgCl 2 -induced myometrial contractions in rats. Cumulative concentration-response curve of HgCl 2 was significantly (p < 0.05) shifted towards right in the presence of Y-27632 (10 μM), a Rho-kinase inhibitor, suggesting the involvement of Ca 2+ -sensitization pathway in mediating HgCl 2 -induced myometrial contraction. HgCl 2 -induced myometrial contraction was also significantly (p < 0.05) inhibited in the presence of methoctramine or para-fluoro-hexahydro-siladifenidol, a selective M 2 and M 3 receptor antagonists, respectively, which evidently suggest that mercury also interacts with M 2 and M 3 muscarinic receptors to produce myometrial contractions. U-73122 and GF-109203X, the respective inhibitors of PLC and PKC-dependent pathways, downstream to the receptor activation, also significantly (p < 0.05) attenuated the uterotonic effect of HgCl 2 on rat uterus. Taken together, present study evidently reveals that HgCl 2 interacts with muscarinic receptors and activates calcium signaling cascades involving calcium channels, Rho-kinase, protein kinase-C, and phospholipase-C pathways to exert uterotonic effect in rats. Graphical Abstract Graphical abstract depicting the mechanism of mercury

  7. Demonstration of the existence of receptor-dependent calcium channels in the platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avdonin, P.V.; Bugrii, E.M.; Cheglakov, I.B.

    1987-01-01

    Recently, with the new methodology of measuring calcium ion concentration in the cytoplasm with the aid of the fluorescent indicator, it has been shown that calcium is a second messenger, mediating the action of many hormones, neuromediators, and other extracellular factors. Another argument in support of the existence of receptor-dependent calcium channels is provided by data on the activation by agonists of the uptake of /sup 45/Ca by the cells. In all the studies cited, the conditions were such that the passage of Ca/sup 2 +/ through the potential-dependent channels was excluded. In this paper, evidence is presented for themore » existence of receptor-dependent calcium channels in the plasma membrane using human platelets as the objects. Two approaches were used. First, the authors determined the binding of /sup 45/Ca by the platelets. In this case, to determine whether /sup 45/Ca passes into the cytoplasm or is adsorbed on the membrane, the authors compared its uptake by simply washed platelets and by platelets in whose cytoplasm buffer capacity for calcium was artificially created with quin 2. The second approach was based on the data of Hallam and Rink, who showed that agonists that increase the calcium level in the platelets induce an intake of Mn/sup 2 +/ ions into the cell in a calcium-free medium.« less

  8. The Recent Evolution of a Symbiotic Ion Channel in the Legume Family Altered Ion Conductance and Improved Functionality in Calcium Signaling[C][W

    PubMed Central

    Venkateshwaran, Muthusubramanian; Cosme, Ana; Han, Lu; Banba, Mari; Satyshur, Kenneth A.; Schleiff, Enrico; Parniske, Martin; Imaizumi-Anraku, Haruko; Ané, Jean-Michel

    2012-01-01

    Arbuscular mycorrhiza and the rhizobia-legume symbiosis are two major root endosymbioses that facilitate plant nutrition. In Lotus japonicus, two symbiotic cation channels, CASTOR and POLLUX, are indispensable for the induction of nuclear calcium spiking, one of the earliest plant responses to symbiotic partner recognition. During recent evolution, a single amino acid substitution in DOES NOT MAKE INFECTIONS1 (DMI1), the POLLUX putative ortholog in the closely related Medicago truncatula, rendered the channel solo sufficient for symbiosis; castor, pollux, and castor pollux double mutants of L. japonicus were rescued by DMI1 alone, while both Lj-CASTOR and Lj-POLLUX were required for rescuing a dmi1 mutant of M. truncatula. Experimental replacement of the critical serine by an alanine in the selectivity filter of Lj-POLLUX conferred a symbiotic performance indistinguishable from DMI1. Electrophysiological characterization of DMI1 and Lj-CASTOR (wild-type and mutants) by planar lipid bilayer experiments combined with calcium imaging in Human Embryonic Kidney-293 cells expressing DMI1 (the wild type and mutants) suggest that the serine-to-alanine substitution conferred reduced conductance with a long open state to DMI1 and improved its efficiency in mediating calcium oscillations. We propose that this single amino acid replacement in the selectivity filter made DMI1 solo sufficient for symbiosis, thus explaining the selective advantage of this allele at the mechanistic level. PMID:22706284

  9. Crystal structure of the epithelial calcium channel TRPV6.

    PubMed

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  10. Calmodulin regulates Cav3 T-type channels at their gating brake

    PubMed Central

    Taiakina, Valentina; Monteil, Arnaud; Piazza, Michael; Guan, Wendy; Stephens, Robert F.; Dieckmann, Thorsten; Guillemette, Joseph Guy; Spafford, J. David

    2017-01-01

    Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I–II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I–II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM. PMID:28972185

  11. Presynaptic muscarinic receptors, calcium channels, and protein kinase C modulate the functional disconnection of weak inputs at polyinnervated neonatal neuromuscular synapses.

    PubMed

    Santafe, M M; Garcia, N; Lanuza, M A; Tomàs, M; Besalduch, N; Tomàs, J

    2009-04-01

    We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used intracellular recording to determine the synaptic efficacy in dually innervated endplates of the levator auris longus muscle of newborn rats during axonal competition in the postnatal synaptic elimination period. In these dual junctions, the weak nerve terminal was potentiated by partially reducing calcium entry (P/Q-, N-, or L-type VDCC-specific block or 500 muM magnesium ions), M1- or M4-type selective mAChR block, or PKC block. Moreover, reducing calcium entry or blocking PKC or mAChRs results in unmasking functionally silent nerve endings that now recover neurotransmitter release. Our results show interactions between these molecules and indicate that there is a release inhibition mechanism based on an mAChR-PKC-VDCC intracellular cascade. When it is fully active in certain weak motor axons, it can depress ACh release and even disconnect synapses. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses, because functional axonal withdrawal can indeed be reversed by mAChRs, VDCCs, or PKC block.

  12. Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.

    PubMed

    Yang, Jie; Xie, Man-Xiu; Hu, Li; Wang, Xiao-Fang; Mai, Jie-Zhen; Li, Yong-Yong; Wu, Ning; Zhang, Cheng; Li, Jin; Pang, Rui-Ping; Liu, Xian-Guo

    2018-07-01

    N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 μM or ZC88, 10-1000 μM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 μM) and ZC88 (10 μM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1β) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1β induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1β and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1β over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined bymore » molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport

  14. Synthetic peptides corresponding to human follicle-stimulating hormone (hFSH)-beta-(1-15) and hFSH-beta-(51-65) induce uptake of 45Ca++ by liposomes: evidence for calcium-conducting transmembrane channel formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasso, P.; Santa-Coloma, T.A.; Reichert, L.E. Jr.

    1991-06-01

    We have previously described FSH receptor-mediated influx of 45Ca++ in cultured Sertoli cells from immature rats and receptor-enriched proteoliposomes via activation of voltage-sensitive and voltage-independent calcium channels. We have further shown that this effect of FSH does not require cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding protein or activation of adenylate cyclase. In the present study, we have identified regions of human FSH-beta-subunit which appear to be involved in mediating calcium influx. We screened 11 overlapping peptide amides representing the entire primary structure of hFSH-beta-subunit for their effects on 45Ca++ flux in FSH receptor-enriched proteoliposomes. hFSH-beta-(1-15) and hFSH-beta-(51-65) inducedmore » uptake of 45Ca++ in a concentration-related manner. This effect of hFSH-beta-(1-15) and hFSH-beta-(51-65) was also observed in liposomes lacking incorporated FSH receptor. Reducing membrane fluidity by incubating liposomes (containing no receptor) with hFSH-beta-(1-15) or hFSH-beta-(51-65) at temperatures lower than the transition temperatures of their constituent phospholipids resulted in no significant (P greater than 0.05) difference in 45Ca++ uptake. The effectiveness of the calcium ionophore A23187, however, was abolished. Ruthenium red, a voltage-independent calcium channel antagonist, was able to completely block uptake of 45Ca++ induced by hFSH-beta-(1-15) and hFSH-beta-(51-65) whereas nifedipine, a calcium channel blocker specific for L-type voltage-sensitive calcium channels, was without effect. These results suggest that in addition to its effect on voltage-sensitive calcium channel activity, interaction of FSH with its receptor may induce formation of transmembrane aqueous channels which also facilitate influx of extracellular calcium.« less

  15. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.

    PubMed

    Seol, Min; Kuner, Thomas

    2015-12-01

    The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test.

    PubMed

    Budni, Josiane; Gadotti, Vinícius M; Kaster, Manuella P; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2007-12-01

    The administration of agmatine elicits an antidepressant-like effect in the mouse forced swimming test by a mechanism dependent on the inhibition of the NMDA receptors and the L-arginine-nitric oxide (NO) pathway. Since it has been reported that the NO can activate different types of potassium (K(+)) channels in several tissues, the present study investigates the possibility of synergistic interactions between different types of K(+) channel inhibitors and agmatine in the forced swimming test. Treatment of mice by i.c.v. route with subeffective doses of tetraethylammonium (a non specific inhibitor of K(+) channels, 25 pg/site), glibenclamide (an ATP-sensitive K(+) channels inhibitor, 0.5 pg/site), charybdotoxin (a large- and intermediate-conductance calcium-activated K(+) channel inhibitor, 25 pg/site) or apamin (a small-conductance calcium-activated K(+) channel inhibitor, 10 pg/site), augmented the effect of agmatine (0.001 mg/kg, i.p.) in the forced swimming test. Furthermore, the administration of agmatine and the K(+) channel inhibitors, alone or in combination, did not affect locomotion in the open-field test. Moreover, the reduction in the immobility time elicited by an active dose of agmatine (10 mg/kg, i.p.) in the forced swimming test was prevented by the pre-treatment of mice with the K(+) channel openers cromakalim (10 microg/site, i.c.v.) and minoxidil (10 microg/site, i.c.v.), without affecting locomotion. Together these data raise the possibility that the antidepressant-like effect of agmatine in the forced swimming test is related to its modulatory effects on neuronal excitability, via inhibition of K(+) channels.

  17. Retinoic acid induction of calcium channel expression in human NT2N neurons.

    PubMed

    Gao, Z Y; Xu, G; Stwora-Wojczyk, M M; Matschinsky, F M; Lee, V M; Wolf, B A

    1998-06-18

    Ca2+ channel expression and regulation of intracellular Ca2+ homeostasis were studied during retinoic acid (RA)-induced differentiation of the human teratocarcinoma cell line Ntera 2/C1.D1 (NT2- cells) into NT2N neurons, a unique model of human neurons in culture. The cytosolic Ca2+ level of undifferentiated NT2- cells was low (75 +/- 5 nM) and stable under basal conditions, and it was only marginally decreased (by 9%) upon removal of extracellular Ca2+. After 10 microM RA treatment, NT2- cells were irreversibly differentiated into a phenotype of neuron-like NT2N cells. Cytosolic Ca2+ level of NT2N neurons was higher (106 +/- 14 nM) than that of NT2- cells and spontaneously fluctuated (0.208 +/- 0.038 transients/min) under basal conditions. Although K+ increased 86Rb fluxes in both NT2- cells and NT2N neurons, it only increased cytosolic Ca2+ level in NT2N neurons. The K+-induced increase in cytosolic Ca2+ in NT2N neurons was antagonized by 0.1-10 microM nifedipine or verapamil, 5 microM omega-CgTx GVIA, but not by 1 microM omega-agatoxin IVA, 1 microM omega-agatoxin TK, 1 microM FTX-3.3, or 100 microM Ni+ implicating L- and N-type voltage-dependent Ca2+ channels. In L- and N-type channels, but not in P- and Q-types, mRNAs were expressed in NT2N neurons as well as NT2- cells. Quantitative analysis of L- and N-type Ca2+ protein levels showed major differences between NT2- cells and NT2N neurons. In NT2- cells, N-type Ca2+ channels were undetectable while L-type channels levels were fivefold lower compared to NT2N neurons. Our findings show that L- and N-type channels are expressed during differentiation of NT2- cells into neurons, and that these voltage-dependent Ca2+ channels have a major role in regulating intracellular Ca2+ homeostasis and neuronal excitability. Copyright 1998 Academic Press.

  18. Significance of KATP channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles In vivo

    PubMed Central

    2013-01-01

    Background ATP-sensitive K+ channels (KATP channels), NO, prostaglandins, 20-HETE and L-type Ca2+ channels have all been suggested to be involved in oxygen sensing in skeletal muscle arterioles, but the role of the individual mechanisms remain controversial. We aimed to establish the importance of these mechanisms for oxygen sensing in arterioles in an in vivo model of metabolically active skeletal muscle. For this purpose we utilized the exteriorized cremaster muscle of anesthetized mice, in which the cremaster muscle was exposed to controlled perturbation of tissue PO2. Results Change from “high” oxygen tension (PO2 = 153.4 ± 3.4 mmHg) to “low” oxygen tension (PO2 = 13.8 ± 1.3 mmHg) dilated cremaster muscle arterioles from 11.0 ± 0.4 μm to 32.9 ± 0.9 μm (n = 28, P < 0.05). Glibenclamide (KATP channel blocker) caused maximal vasoconstriction, and abolished the dilation to low oxygen, whereas the KATP channel opener cromakalim caused maximal dilation and prevented the constriction to high oxygen. When adding cromakalim on top of glibenclamide or vice versa, the reactivity to oxygen was gradually restored. Inhibition of L-type Ca2+ channels using 3 μM nifedipine did not fully block basal tone in the arterioles, but rendered them unresponsive to changes in PO2. Inhibition of the CYP450-4A enzyme using DDMS blocked vasoconstriction to an increase in PO2, but had no effect on dilation to low PO2. Conclusions We conclude that: 1) L-type Ca2+ channels are central to oxygen sensing, 2) KATP channels are permissive for the arteriolar response to oxygen, but are not directly involved in the oxygen sensing mechanism and 3) CYP450-4A mediated 20-HETE production is involved in vasoconstriction to high PO2. PMID:23663730

  19. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms

    PubMed Central

    Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.

    2011-01-01

    Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768

  20. Role of dihydropyridinic calcium channel blockers in the management of hypertension.

    PubMed

    Coca, Antonio; Mazón, Pilar; Aranda, Pedro; Redón, Josep; Divisón, Juan Antonio; Martínez, Javier; Calvo, Carlos; Galcerán, Josep María; Barrios, Vivencio; Roca-Cusachs I Coll, Alexandre

    2013-01-01

    Dihydropyridinic calcium channel blockers are a subclass of antihypertensive drugs with growing significance in the therapeutic armamentarium. Early studies in the 1990s had aroused certain fears with regard to the safety of the first drugs from this class, since they had a fast onset of action and a short half-life, and thus they were associated with reflex adrenergic activation. New molecules with long half-lives and high lipophilia have shown safety and efficacy in the control of blood pressure, as well as in the reduction of several end points related to hypertension. Moreover, these new molecules, which block special subtypes of calcium channel receptors, provide drugs not only with an action profile that goes beyond the antihypertensive effect, but also with a lower rate of side effects. Therefore, in the light of new studies that include calcium channel blockers alone or in combination, these agents will probably be used even more extensively for the management of hypertension in the following years.

  1. Role of L-Type Ca[superscript 2+] Channel Isoforms in the Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jorg; Singewald, Nicolas

    2008-01-01

    Dihydropyridine (DHP) L-type Ca[superscript 2+] channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the…

  2. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum

    PubMed Central

    Dobrev, Dobromir; Milde, Alexander S; Andreas, Klaus; Ravens, Ursula

    1999-01-01

    The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to ω-conotoxin GVIA (ω-CTx-GVIA), ω-agatoxin IVA (ω-Aga-IVA) and ω-conotoxin MVIIC (ω-CTx-MVIIC), respectively.KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 μM). It was significantly blocked by ω-CTx-GVIA (1 μM), ω-Aga-IVA (30 nM) and was confirmed to be abolished by ω-CTx-MVIIC (3 μM), indicating involvement of N-, P- and Q-type channel subtypes.Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 μM) were fully additive to the effect of ω-CTx-GVIA (1 μM), whereas co-application with ω-Aga-IVA (30 nM) produced similar effects to those of ω-Aga-IVA alone.As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 μM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 μM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 μM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved.Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only. PMID:10385261

  3. Calcium channel currents in bovine adrenal chromaffin cells and their modulation by anaesthetic agents.

    PubMed Central

    Charlesworth, P; Pocock, G; Richards, C D

    1994-01-01

    1. The calcium channel currents of bovine adrenal chromaffin cells were characterized using a variety of voltage pulse protocols and selective channel blockers before examination of their modulation by anaesthetic agents. 2. All the anaesthetics studied (halothane, methoxyflurane, etomidate and methohexitone) inhibited the calcium channel currents in a concentration-dependent manner and increased the rate of current decay. 3. The anaesthetics did not shift the current-voltage relation nor did they change the voltage for half-maximal channel activation derived from analysis of the voltage dependence of the tail currents. None of the anaesthetics appeared to alter the time constant of tail current decay. 4. To complement earlier studies of the inhibitory actions of anaesthetics on K(+)-evoked catecholamine secretion and the associated Ca2+ uptake, the IC50 values for etomidate and methohexitone were determined using a biochemical assay. The IC50 values for anaesthetic inhibition of calcium channel currents corresponded closely with those for inhibition of K(+)-evoked calcium uptake and catecholamine secretion. 5. The inhibitory effect of the volatile anaesthetics and etomidate is best explained by dual action: a reduction in the probability of channel opening coupled with an increase in the rate of channel inactivation. Methohexitone appeared to inhibit the currents by a use-dependent slow block. PMID:7707224

  4. CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype.

    PubMed

    Busquet, Perrine; Nguyen, Ngoc Khoi; Schmid, Eduard; Tanimoto, Naoyuki; Seeliger, Mathias W; Ben-Yosef, Tamar; Mizuno, Fengxia; Akopian, Abram; Striessnig, Jörg; Singewald, Nicolas

    2010-05-01

    Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.

  5. The Contribution of L-Type Cav1.3 Channels to Retinal Light Responses

    PubMed Central

    Shi, Liheng; Chang, Janet Ya-An; Yu, Fei; Ko, Michael L.; Ko, Gladys Y.-P.

    2017-01-01

    L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Cav1.2, Cav1.3, and Cav1.4) expressed in the retina. While Cav1.2 is expressed in all retinal cells including the Müller glia and neurons, Cav1.3 and Cav1.4 are expressed in the retinal neurons with Cav1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Cav1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Cav1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Cav1.3 are not associated with severe vision impairment in humans or in Cav1.3-null (Cav1.3−/−) mice. However, a failure to regulate Cav1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Cav1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Cav1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG) recordings and immunohistochemical staining, we found that Cav1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Cav1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Cav1.3−/− mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT). Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Cav1.3−/− mice retinas. Hence, Cav1.3 plays a more prominent role in retinal physiology and function than previously reported. PMID:29259539

  6. The Contribution of L-Type Cav1.3 Channels to Retinal Light Responses.

    PubMed

    Shi, Liheng; Chang, Janet Ya-An; Yu, Fei; Ko, Michael L; Ko, Gladys Y-P

    2017-01-01

    L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Ca v 1.2, Ca v 1.3, and Ca v 1.4) expressed in the retina. While Ca v 1.2 is expressed in all retinal cells including the Müller glia and neurons, Ca v 1.3 and Ca v 1.4 are expressed in the retinal neurons with Ca v 1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Ca v 1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Ca v 1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Ca v 1.3 are not associated with severe vision impairment in humans or in Ca v 1.3-null (Ca v 1.3 -/- ) mice. However, a failure to regulate Ca v 1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Ca v 1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Ca v 1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG) recordings and immunohistochemical staining, we found that Ca v 1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Ca v 1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Ca v 1.3 -/- mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT). Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Ca v 1.3 -/- mice retinas. Hence, Ca v 1.3 plays a more prominent role in retinal physiology and function than previously reported.

  7. Activation of brain nitric oxide synthase in depolarized human temporal cortex slices: differential role of voltage-sensitive calcium channels

    PubMed Central

    Fontana, Giovanni; Fedele, Ernesto; Cossu, Massimo; Munari, Claudio; Raiteri, Maurizio

    1997-01-01

    Nitric oxide (NO) synthase activity was studied in slices of human temporal cortex samples obtained in neurosurgery by measuring the conversion of L-[3H]-arginine to L-[3H]-citrulline. Elevation of extracellular K+ to 20, 35 or 60 mM concentration-dependently augmented L-[3H]-citrulline production. The response to 35 mM KCl was abolished by NG-nitro-L-arginine (100 μM) demonstrating NO synthase specific conversion of L-arginine to L-citrulline. Increasing extracellular MgCl2 concentration up to 10 mM also prevented the K+ (35 mM)-induced NO synthase activation, suggesting the absolute requirement of external calcium ions for enzyme activity. However, the effect of high K+ (35 mM) on citrulline synthesis was insensitive to the antagonists of ionotropic and metabotropic glutamate receptors dizocilpine (MK-801), 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione (NBQX) or L-2-amino-3-phosphonopropionic acid (L-AP3) as well as to the nicotinic receptor antagonist, mecamylamine. The 35 mM K+ response was insensitive to ω-conotoxin GVIA (1 μM) and nifedipine (100 μM), but could be prevented in part by ω-agatoxin IVA (0.1 and 1 μM). The inhibition caused by 0.1 μM ω-agatoxin IVA (∼30%) was enhanced by adding ω-conotoxin GVIA (1 μM) or nifedipine (100 μM). Further inhibition (up to above 70%) could be observed when the three Ca2+ channel blockers were added together. Similarly, synthetic FTX 3.3 arginine polyamine (sFTX) prevented (50% at 100 μM) the K+-evoked NO synthase activation. This effect of sFTX was further enhanced (up to 70%) by adding 1 μM ω-conotoxin GVIA plus 100 μM nifedipine. No further inhibition could be observed upon addition of MK-801 or/and NBQX. It was concluded that elevation of extracellular [K+] causes NO synthase activation by external Ca+ entering cells mainly through channels of the P/Q-type. Other Ca2+ channels (L- and N-type) appear to contribute when P/Q-channels are blocked. PMID:9384511

  8. Activation of brain nitric oxide synthase in depolarized human temporal cortex slices: differential role of voltage-sensitive calcium channels.

    PubMed

    Fontana, G; Fedele, E; Cossu, M; Munari, C; Raiteri, M

    1997-11-01

    1. Nitric oxide (NO) synthase activity was studied in slices of human temporal cortex samples obtained in neurosurgery by measuring the conversion of L-[3H]-arginine to L-[3H]-citrulline. 2. Elevation of extracellular K+ to 20, 35 or 60 mM concentration-dependently augmented L-[3H]-citrulline production. The response to 35 mM KCl was abolished by N(G)-nitro-L-arginine (100 microM) demonstrating NO synthase specific conversion of L-arginine to L-citrulline. Increasing extracellular MgCl2 concentration up to 10 mM also prevented the K+ (35 mM)-induced NO synthase activation, suggesting the absolute requirement of external calcium ions for enzyme activity. 3. However, the effect of high K+ (35 mM) on citrulline synthesis was insensitive to the antagonists of ionotropic and metabotropic glutamate receptors dizocilpine (MK-801), 6-nitro-7-sulphamoylbenzo(f)-quinoxaline-2-3-dione (NBQX) or L-2-amino-3-phosphonopropionic acid (L-AP3) as well as to the nicotinic receptor antagonist, mecamylamine. 4. The 35 mM K+ response was insensitive to omega-conotoxin GVIA (1 microM) and nifedipine (100 microM), but could be prevented in part by omega-agatoxin IVA (0.1 and 1 microM). The inhibition caused by 0.1 microM omega-agatoxin IVA (approximately 30%) was enhanced by adding omega-conotoxin GVIA (1 microM) or nifedipine (100 microM). Further inhibition (up to above 70%) could be observed when the three Ca2+ channel blockers were added together. Similarly, synthetic FTX 3.3 arginine polyamine (sFTX) prevented (50% at 100 microM) the K+-evoked NO synthase activation. This effect of sFTX was further enhanced (up to 70%) by adding 1 microM omega-conotoxin GVIA plus 100 microM nifedipine. No further inhibition could be observed upon addition of MK-801 or/and NBQX. 5. It was concluded that elevation of extracellular [K+] causes NO synthase activation by external Ca2+ entering cells mainly through channels of the P/Q-type. Other Ca2+ channels (L- and N-type) appear to contribute when P/Q-channels

  9. (2R,3S,2”R,3”R)-manniflavanone, a new gastrointestinal smooth muscle L-type calcium channel inhibitor, which underlies the spasmolytic properties of Garcinia buchananii stem bark extract

    PubMed Central

    Balemba, Onesmo B.; Stark, Timo D.; Lösch, Sofie; Patterson, Savannah; McMillan, John S.; Mawe, Gary M.; Hofmann, Thomas

    2014-01-01

    Garcinia buchananii Baker stem bark extract (GBB) is a traditional medication of diarrhea and dysentery in sub-Saharan Africa. It is believed that GBB causes gastrointestinal smooth muscle relaxation. The aim of this study was to determine whether GBB has spasmolytic actions and identify compounds underlying these actions. Calcium (Ca2+) imaging was used to analyze the effect of GBB on Ca2+ flashes and Ca2+ waves in guinea pig gallbladder and distal colon smooth muscle. Intracellular microelectrode recording was used to determine the effect of GBB, six fractions of GBB, M1–5 and M7, and (2R,3S,2”R,3”R)-manniflavanone, a compound isolated from M3 on action potentials in gallbladder smooth muscle. The technique was also used to analyze the effect of GBB, M3, and (2R,3S,2”R,3”R)-manniflavanone on action potentials in the circular muscle of mouse and guinea pig distal colons, and the effect of GBB and (2R,3S,2”R,3”R)-manniflavanone on slow waves in porcine ileum. GBB inhibited Ca2+ flashes and Ca2+ waves. GBB, M3 and (2R,3S,2”R,3”R)-manniflavanone inhibited action potentials. L-type Ca2+ channel activator Bay K 8644 increased the discharge of action potentials in mouse colon but did not trigger or increase action potentials in the presence of GBB and (2R,3S,2”R,3”R)-manniflavanone. GBB and (2R,3S,2”R,3”R)-manniflavanone inhibited action potentials in the presence of Bay K 8644. GBB and (2R,3S,2”R,3”R)-manniflavanone reduced the amplitude but did not alter the frequency of slow waves in the porcine ileum. In conclusion, GBB and (2R,3S,2”R,3”R)-manniflavanone relax smooth muscle by inhibiting L-type Ca2+ channels, thus have potential for use as therapies of gastrointestinal smooth muscle spasms, and arrhythmias. PMID:26081368

  10. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain.

    PubMed

    Miljanich, G P

    2004-12-01

    Ziconotide (PRIALT) is a neuroactive peptide in the final stages of clinical development as a novel non-opioid treatment for severe chronic pain. It is the synthetic equivalent of omega-MVIIA, a component of the venom of the marine snail, Conus magus. The mechanism of action underlying ziconotide's therapeutic profile derives from its potent and selective blockade of neuronal N-type voltage-sensitive calcium channels (N-VSCCs). Direct blockade of N-VSCCs inhibits the activity of a subset of neurons, including pain-sensing primary nociceptors. This mechanism of action distinguishes ziconotide from all other analgesics, including opioid analgesics. In fact, ziconotide is potently anti-nociceptive in animal models of pain in which morphine exhibits poor anti-nociceptive activity. Moreover, in contrast to opiates, tolerance to ziconotide is not observed. Clinical studies of ziconotide in more than 2,000 patients reveal important correlations to ziconotide's non-clinical pharmacology. For example, ziconotide provides significant pain relief to severe chronic pain sufferers who have failed to obtain relief from opiate therapy and no evidence of tolerance to ziconotide is seen in these patients. Contingent on regulatory approval, ziconotide will be the first in a new class of neurological drugs: the N-type calcium channel blockers, or NCCBs. Its novel mechanism of action as a non-opioid analgesic suggests ziconotide has the potential to play a valuable role in treatment regimens for severe chronic pain. If approved for clinical use, ziconotide will further validate the neuroactive venom peptides as a source of new and useful medicines.

  11. Protective effect of T-type calcium channel blocker flunarizine on cisplatin-induced death of auditory cells.

    PubMed

    So, Hong-Seob; Park, Channy; Kim, Hyung-Jin; Lee, Jung-Han; Park, Sung-Yeol; Lee, Jai-Hyung; Lee, Zee-Won; Kim, Hyung-Min; Kalinec, Federico; Lim, David J; Park, Raekil

    2005-06-01

    Changes in intracellular Ca2+ level are involved in a number of intracellular events, including triggering of apoptosis. The role of intracellular calcium mobilization in cisplatin-induced hair cell death, however, is still unknown. In this study, the effect of calcium channel blocker flunarizine (Sibelium), which is used to prescribe for vertigo and tinnitus, on cisplatin-induced hair cell death was investigated in a cochlear organ of Corti-derived cell line, HEI-OC1, and the neonatal (P2) rat organ of Corti explant. Cisplatin induced apoptotic cell death showing nuclear fragmentation, DNA ladder, and TUNEL positive in both HEI-OC1 and primary organ of Corti explant. Flunarizine significantly inhibited the cisplatin-induced apoptosis. Unexpectedly, flunarizine increased the intracellular calcium ([Ca2+]i) levels of HEI-OC1. However, the protective effect of flunarizine against cisplatin was not mediated by modulation of intracellular calcium level. Treatment of cisplatin resulted in ROS generation and lipid peroxidation in HEI-OC1. Flunarizine did not attenuate ROS production but inhibited lipid peroxidation and mitochondrial permeability transition in cisplatin-treated cells. This result suggests that the protective mechanism of flunarizine on cisplatin-induced cytotoxicity is associated with direct inhibition of lipid peroxidation and mitochondrial permeability transition.

  12. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders

    PubMed Central

    Heyes, Samuel; Pratt, Wendy S.; Rees, Elliott; Dahimene, Shehrazade; Ferron, Laurent; Owen, Michael J.; Dolphin, Annette C.

    2015-01-01

    This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients. PMID:26386135

  13. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.

    PubMed

    Nanou, Evanthia; Lee, Amy; Catterall, William A

    2018-05-02

    Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V

  14. Effects of Cilnidipine, an L/N-Type Calcium Channel Blocker, on Carotid Atherosclerosis in Japanese Post-Stroke Hypertensive Patients: Results from the CA-ATTEND Study.

    PubMed

    Nezu, Tomohisa; Hosomi, Naohisa; Aoki, Shiro; Suzuki, Noriyuki; Teshima, Tsukasa; Sugii, Hitoshi; Nagahama, Shinobu; Kurose, Yoshiki; Maruyama, Hirofumi; Matsumoto, Masayasu

    2018-06-01

    Although several antihypertensive agents reduced the carotid intima-media thickness (IMT), it remains unclear whether those agents affect the interadventitial diameter (IAD). We aimed to examine whether cilnidipine, an L/N-type calcium channel blocker, reduced the common carotid IMT or IAD in post-stroke hypertensive patients. The common carotid IMT and IAD were measured at the start of cilnidipine treatment and 12 months from that. The changes in the mean max-IMT or IAD between baseline and the 12-month follow-up were evaluated and compared between the thick group (max-IMT ≥1.1 mm) and the normal group (max-IMT <1.1 mm). A total of 603 post-stroke hypertensive subjects (mean age=69.3 yr, 378 males) were included in the analysis. At baseline, IAD was increased stepwise according to the value of max-IMT (p for trend <0.001). Among them, 326 subjects were followed up for 12 months. The mean max-IMT from baseline to 12 months did not change in the normal group (-0.01 mm, 95% confidence interval [CI] -0.03 to 0.01, n=170), whereas a significant reduction was observed in the thick group (-0.09 mm, 95% CI -0.13 to -0.05, n=156). The mean IAD was significantly reduced during the study period in the normal group (-0.14 mm, 95% CI -0.22 to -0.05) as well as in the thick group (-0.12 mm, 95% CI -0.21 to -0.03). Cilnidipine promoted the regression of common carotid IMT in post-stroke hypertensive patients, especially in the thick group. Cilnidipine also reduced the IAD in both normal and thick groups.

  15. Parallel stochastic simulation of macroscopic calcium currents.

    PubMed

    González-Vélez, Virginia; González-Vélez, Horacio

    2007-06-01

    This work introduces MACACO, a macroscopic calcium currents simulator. It provides a parameter-sweep framework which computes macroscopic Ca(2+) currents from the individual aggregation of unitary currents, using a stochastic model for L-type Ca(2+) channels. MACACO uses a simplified 3-state Markov model to simulate the response of each Ca(2+) channel to different voltage inputs to the cell. In order to provide an accurate systematic view for the stochastic nature of the calcium channels, MACACO is composed of an experiment generator, a central simulation engine and a post-processing script component. Due to the computational complexity of the problem and the dimensions of the parameter space, the MACACO simulation engine employs a grid-enabled task farm. Having been designed as a computational biology tool, MACACO heavily borrows from the way cell physiologists conduct and report their experimental work.

  16. Two-photon activation of endogenous store-operated calcium channels without optogenetics

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Tang, Wanyi; He, Hao

    2018-02-01

    Store-operated calcium (SOC) channels, regulated by intracellular Ca2+ store, are the essential pathway of calcium signaling and participate in a wide variety of cellular activities such as gene expression, secretion and immune response1. However, our understanding and regulation of SOC channels are mainly based on pharmacological methods. Considering the unique advantages of optical control, optogenetic control of SOC channels has been developed2. However, the process of genetic engineering to express exogenous light-sensitive protein is complicated, which arouses concerns about ethic difficulties in some research of animal and applications in human. In this report, we demonstrate rapid, robust and reproducible two-photon activation of endogenous SOC channels by femtosecond laser without optogenetics. We present that the short-duration two-photon scanning on subcellular microregion induces slow Ca2+ influx from extracellular medium, which can be eliminated by removing extracellular Ca2+. Block of SOC channels using various pharmacological inhibitors or knockdown of SOC channels by RNA interference reduce the probability of two-photon activated Ca2+ influx. On the contrary, overexpression of SOC channels can increase the probability of Ca2+ influx by two-photon scanning. These results collectively indicate Ca2+ influx through two-photon activated SOC channels. Different from classical pathway of SOC entry activated by Ca2+ store depletion, STIM1, the sensor protein of Ca2+ level in endoplasmic reticulum, does not show any aggregation or migration in this two-photon activated Ca2+ influx, which rules out the possibility of intracellular Ca2+ store depletion. Thereby, we propose this all-optical method of two-photon activation of SOC channels is of great potential to be widely applied in the research of cell calcium signaling and related biological research.

  17. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6.

    PubMed

    van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny

    2017-06-01

    Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.

  18. Inhibitory effect of aniracetam on N-type calcium current in acutely isolated rat neuronal cells.

    PubMed

    Koike, H; Saito, H; Matsuki, N

    1993-04-01

    Effects of aniracetam on whole-cell calcium currents were studied in acutely isolated neuronal cells from postnatal rat ventromedial hypothalamus. There were three types of inward calcium currents, one low-threshold transient current and two high-threshold sustained currents. The nicardipine sensitive L-type current was activated at -20 mV or more depolarized potentials, and the omega-conotoxin sensitive N-type current was recorded at more positive potentials than the L-type. Aniracetam inhibited the N-type current in a dose-dependent manner without affecting the other two types of calcium currents. The effect appeared soon after the addition and lasted for several minutes during washing. Since the N-type current is thought to regulate the release of transmitters, the inhibitory effect may contribute to the nootropic property of aniracetam by modifying the neurotransmission.

  19. Analgesic activity of ZC88, a novel N-type voltage-dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and dependence.

    PubMed

    Meng, Ge; Wu, Ning; Zhang, Cheng; Su, Rui-Bin; Lu, Xin-Qiang; Liu, Yin; Yun, Liu-Hong; Zheng, Jian-Quan; Li, Jin

    2008-05-31

    ZC88 is a novel non-peptide N-type voltage-sensitive calcium channel blocker synthesized by our institute. In the present study, the oral analgesic activity of ZC88 in animal models of acute and neuropathic pain, and functional interactions between ZC88 and morphine in terms of analgesia, tolerance and dependence were investigated. In mice acetic acid writhing tests, ZC88 (10-80 mg/kg) administered by oral route showed significant antinociceptive effects in a dose-dependent manner. The ED50 values of ZC88 were 14.5 and 14.3 mg/kg in male and female mice, respectively. In sciatic nerve chronic constriction injury rats, mechanical allodynia was ameliorated by oral administration of ZC88 at doses of 14, 28 and 56 mg/kg, suggesting ZC88 relieved allodynic response of neuropathic pain. When concurrently administered with morphine, ZC88 (20-80 mg/kg) dose-dependently potentiated morphine analgesia and attenuated morphine analgesic tolerance in hot-plate tests. ZC88 also prevented chronic exposure to morphine-induced physical dependence and withdrawal, but not morphine-induced psychological dependence in conditioned place preference model. These results suggested that ZC88, a new non-peptide N-type calcium channel blocker, had notable oral analgesia and anti-allodynia for acute and neuropathic pain. ZC88 might be used in pain relief by either application alone or in combination with opioids because it enhanced morphine analgesia while prevented morphine-induced tolerance and physical dependence.

  20. Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A.

    PubMed

    Cruz-Rangel, Silvia; De Jesús-Pérez, José J; Aréchiga-Figueroa, Iván A; Rodríguez-Menchaca, Aldo A; Pérez-Cornejo, Patricia; Hartzell, H Criss; Arreola, Jorge

    2017-03-01

    The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca 2+ -dependent Cl - channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca 2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H + ] o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H + ] o from 10 -10 to 10 -5.5  m caused a progressive increase in the chloride current (I Cl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca 2+ sensitivity. Noise analysis showed

  1. Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels*

    PubMed Central

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E.; Sinnegger-Brauns, Martina J.; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-01-01

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes. PMID:21998310

  2. Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels

    PubMed Central

    Bartoletti, Theodore M.; Huang, Wei; Akopian, Abram; Thoreson, Wallace B.; Krizaj, David

    2009-01-01

    Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse. PMID:19696927

  3. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway

    PubMed Central

    Sandoval, Alejandro; Duran, Paz; Gandini, María A.; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2018-01-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. PMID:28807144

  4. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation

    PubMed Central

    Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts. PMID:21139419

  5. [Spinocerebellar ataxias in infancy: pathogenesis of potassium and calcium channels' diseases, clinical features and therapeutical approach].

    PubMed

    Bozzola, E; Savasta, S; Peruzzi, C; Bozzola, M; Bona, G

    2007-04-01

    In infancy, the autosomal dominant inherited ataxias are severe neurological diseases, due to inherited mutations of ion channels. The main forms are: episodic ataxia type 1 (EA1), episodic ataxia type 2 (EA2), spinocerebellar ataxia type 6 (SCA6). EA1 is due to a mutation in KCNA1, the gene encoding human Kv1.1 on chromosome 12p13, which contributes as a subunit to the formation of potassium channels in motor nerve terminals and in many central nervous system neurones. To date, there are fifteen different mutations, which affect potassium channel's properties and lead to phenotypic variability and to different responses to therapy. EA2 can result from mutations in the CACNA1A gene, encoding calcium channels on chromosome 19p13.1 and widely distributed throughout the central nervous system. To date, associated with EA2, in the CACNA1A gene thirty different mutations have been described, resulting in altered or truncated protein products and, as a consequence, in nonfunctional calcium channels. There is phenotypic variability, also inside the same family, without correlation genotype-phenotype. SCA6 is a progressive neurodegenerative disease due to mutations of the CACNA1A gene. CACNA1A is responsible for both EA2 and SCA6. Nevertheless, the pathogenesis of the two diseases is different: SCA6 is associated with small expansion of a CAGn repeat, while EA2 is due to point mutations. Clinically, SCA6 is characterized by a slowly progressive development and by an inverse correlation between the number of repeats and the severity of the disease.

  6. Calcium current in type I hair cells isolated from the semicircular canal crista ampullaris of the rat.

    PubMed

    Almanza, Angélica; Vega, Rosario; Soto, Enrique

    2003-12-24

    The low voltage gain in type I hair cells implies that neurotransmitter release at their afferent synapse should be mediated by low voltage activated calcium channels, or that some peculiar mechanism should be operating in this synapse. With the patch clamp technique, we studied the characteristics of the Ca(2+) current in type I hair cells enzymatically dissociated from rat semicircular canal crista ampullaris. Calcium current in type I hair cells exhibited a slow inactivation (during 2-s depolarizing steps), was sensitive to nimodipine and was blocked by Cd(2+) and Ni(2+). This current was activated at potentials above -60 mV, had a mean half maximal activation of -36 mV, and exhibited no steady-state inactivation at holding potentials between -100 and -60 mV. This data led us to conclude that hair cell Ca(2+) current is most likely of the L type. Thus, other mechanisms participating in neurotransmitter release such as K(+) accumulation in the synaptic cleft, modulation of K(+) currents by nitric oxide, participation of a Na(+) current and possible metabotropic cascades activated by depolarization should be considered.

  7. Insulin-like growth factor-1 enhances rat skeletal muscle charge movement and L-type Ca2+ channel gene expression

    PubMed Central

    Wang, Zhong-Min; Laura Messi, María; Renganathan, Muthukrishnan; Delbono, Osvaldo

    1999-01-01

    We investigated whether insulin-like growth factor-1 (IGF-1), an endogenous potent activator of skeletal muscle proliferation and differentiation, enhances L-type Ca2+ channel gene expression resulting in increased functional voltage sensors in single skeletal muscle cells. Charge movement and inward Ca2+ current were recorded in primary cultured rat myoballs using the whole-cell configuration of the patch-clamp technique. Ca2+ current and maximum charge movement (Qmax) were potentiated in cells treated with IGF-1 without significant changes in their voltage dependence. Peak Ca2+ current in control and IGF-1-treated cells was -7·8 ± 0·44 and -10·5 ± 0·37 pA pF−1, respectively (P < 0·01), whilst Qmax was 12·9 ± 0·4 and 22·0 ± 0·3 nC μF−1, respectively (P < 0·01). The number of L-type Ca2+ channels was found to increase in the same preparation. The maximum binding capacity (Bmax) of the high-affinity radioligand [3H]PN200-110 in control and IGF-1-treated cells was 1·21 ± 0·25 and 3·15 ± 0·5 pmol (mg protein)−1, respectively (P < 0·01). No significant change in the dissociation constant for [3H]PN200-110 was found. Antisense RNA amplification showed a significant increase in the level of mRNA encoding the L-type Ca2+ channel α1-subunit in IGF-1-treated cells. This study demonstrates that IGF-1 regulates charge movement and the level of L-type Ca2+ channel α1-subunits through activation of gene expression in skeletal muscle cells. PMID:10087334

  8. Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.

    PubMed

    Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin

    2017-01-01

    The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (I Ca,L ) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). I Ca,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased I Ca,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced I Ca,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, I Ca,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Pharmacoresistant Cav 2·3 (E-type/R-type) voltage-gated calcium channels influence heart rate dynamics and may contribute to cardiac impulse conduction.

    PubMed

    Galetin, Thomas; Tevoufouet, Etienne E; Sandmeyer, Jakob; Matthes, Jan; Nguemo, Filomain; Hescheler, Jürgen; Weiergräber, Marco; Schneider, Toni

    2013-07-01

    Voltage-gated Ca(2+) channels regulate cardiac automaticity, rhythmicity and excitation-contraction coupling. Whereas L-type (Cav 1·2, Cav 1·3) and T-type (Cav 3·1, Cav 3·2) channels are widely accepted for their functional relevance in the heart, the role of Cav 2·3 Ca(2+) channels expressing R-type currents remains to be elucidated. We have investigated heart rate dynamics in control and Cav 2·3-deficient mice using implantable electrocardiogram radiotelemetry and pharmacological injection experiments. Autonomic block revealed that the intrinsic heart rate does not differ between both genotypes. Systemic administration of isoproterenol resulted in a significant reduction in interbeat interval in both genotypes. It remained unaffected after administering propranolol in Cav 2·3(-|-) mice. Heart rate from isolated hearts as well as atrioventricular conduction for both genotypes differed significantly. Additionally, we identified and analysed the developmental expression of two splice variants, i.e. Cav 2·3c and Cav 2·3e. Using patch clamp technology, R-type currents could be detected in isolated prenatal cardiomyocytes and be related to R-type Ca(2+) channels. Our results indicate that on the systemic level, the pharmacologically inducible heart rate range and heart rate reserve are impaired in Cav 2·3 (-|-) mice. In addition, experiments on Langendorff perfused hearts elucidate differences in basic properties between both genotypes. Thus, Cav 2·3 does not only contribute to the cardiac autonomous nervous system but also to intrinsic rhythm propagation. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Modulation of low-voltage-activated T-type Ca²⁺ channels.

    PubMed

    Zhang, Yuan; Jiang, Xinghong; Snutch, Terrance P; Tao, Jin

    2013-07-01

    Low-voltage-activated T-type Ca²⁺ channels contribute to a wide variety of physiological functions, most predominantly in the nervous, cardiovascular and endocrine systems. Studies have documented the roles of T-type channels in sleep, neuropathic pain, absence epilepsy, cell proliferation and cardiovascular function. Importantly, novel aspects of the modulation of T-type channels have been identified over the last few years, providing new insights into their physiological and pathophysiological roles. Although there is substantial literature regarding modulation of native T-type channels, the underlying molecular mechanisms have only recently begun to be addressed. This review focuses on recent evidence that the Ca(v)3 subunits of T-type channels, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are differentially modulated by a multitude of endogenous ligands including anandamide, monocyte chemoattractant protein-1, endostatin, and redox and oxidizing agents. The review also provides an overview of recent knowledge gained concerning downstream pathways involving G-protein-coupled receptors. This article is part of a Special Issue entitled: Calcium channels. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    USGS Publications Warehouse

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  12. David J. Triggle: Medicinal chemistry, to pharmacology, calcium channels, and beyond.

    PubMed

    Walker, Michael J A

    2015-11-15

    David Triggle's scientific career began as a chemist, went through medicinal chemistry into pharmacology, and finally on to somewhat more philosophical interests in later years. It was a career marked by many contributions to all of those aspects of science. Chief amongst his many contributions, in addition to those in medicinal chemistry, was his work on the drugs known as calcium ion channel blockers or (calcium antagonists). In the calcium ion channel field he was a particularly instrumental figure in sorting out the mechanisms, actions and roles of the class of calcium channel blockers, known chemical and pharmacologically as the dihydropyridines (DHPs) in particular, as well as other calcium blockers of diverse structures. During the course of a long career, and extensive journeys into medicinal chemistry and pharmacology, he published voluminously in terms of papers, reviews, conference proceedings and books. Notably, many of his papers often had limited authorship where, as senior author it reflected his deep involvement in all aspects of the reported work. His work always helped clarify the field while his incisive reviews, together with his role in coordinating and running scientific meetings, were a great help in clarifying and organizing various fields of study. He has had a long and illustrious career, and is wellknown in the world of biomedical science; his contributions are appreciated, and well recognized everywhere. The following article attempts to chart a path through his work and contributions to medicinal chemistry, pharmacology, science, academia and students. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Polycystin-1 is a Cardiomyocyte Mechanosensor That Governs L-type Ca2+ Channel Protein Stability

    PubMed Central

    Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K.; Morales, Cyndi R.; Contreras, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J.; Somlo, Stefan; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.

    2015-01-01

    Background L-type calcium channel (LTCC) activity is critical to afterload-induced hypertrophic growth of the heart. However, mechanisms governing mechanical stress-induced activation of LTCC activity are obscure. Polycystin-1 (PC-1) is a G-protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. Methods and Results We subjected neonatal rat ventricular myocytes (NRVMs) to mechanical stretch by exposing them to hypo-osmotic (HS) medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on LTCC activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Over-expression of a C-terminal fragment of PC-1 was sufficient to trigger NRVM hypertrophy. Exposing NRVMs to HS medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 KO) and subjected them to mechanical stress in vivo (transverse aortic constriction, TAC). At baseline, PC-1 KO mice manifested decreased cardiac function relative to littermate controls, and α1C LTCC protein levels were significantly lower in PC-1 KO hearts. Whereas control mice manifested robust TAC-induced increases in cardiac mass, PC-1 KO mice showed no significant growth. Likewise, TAC-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals Conclusions PC-1 is a cardiomyocyte mechanosensor and is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. PMID:25888683

  14. Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom's particle insertion method

    NASA Astrophysics Data System (ADS)

    Boda, Dezső; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk

    2011-02-01

    The selectivity filter of the L-type calcium channel works as a Ca2 + binding site with a very large affinity for Ca2 + versus Na+. Ca2 + replaces half of the Na+ ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na+) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca2 +). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca2 + versus Na+ selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.

  15. Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom's particle insertion method.

    PubMed

    Boda, Dezso; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk

    2011-02-07

    The selectivity filter of the L-type calcium channel works as a Ca(2+) binding site with a very large affinity for Ca(2+) versus Na(+). Ca(2+) replaces half of the Na(+) ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na(+)) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca(2+)). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca(2+) versus Na(+) selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.

  16. Current statins show calcium channel blocking activity through voltage gated channels.

    PubMed

    Ali, Niaz; Begum, Robina; Faisal, Muhammad Saleh; Khan, Aslam; Nabi, Muhammad; Shehzadi, Gulfam; Ullah, Shakir; Ali, Waqar

    2016-09-21

    Statins are used for treatment of hypercholestremia. Common adverse reports associated with use of statins are generalized bodyache, rhabdomyolysis, muscles weakness and gastrointestinal disorders. The current work is an attempt to explain how smooth muscles of gastrointestinal tissues are affected by the current statins (Simvastatin, atorvastatin, fluvastatin and rosuvastatin). Effects of the current statins were studied on spontaneous activity of isolated rabbits' jejunal preparations. Different molar concentrations (10(-12)-10(-2)M) of the statins were applied on spontaneously contracting rabbits' jejunal preparations. As statins relaxed spontaneous activity, so we tested the statins on KCl (80 mM) induced contractions in similar test concentrations. Positive relaxant statins were tested again through construction of Calcium Concentration Response Curves (CCRCs) in the absence and presence of the statins using verapamil, a standard calcium channel blocker. CCRCs of statins were compared with CCRCs of verapamil. Simvastatin, atorvastatin, fluvastatin and rosuvastatin relaxed the spontaneous and KCl-induced contractions. IC50 for simvastatin on spontaneous rabbit's jejunal preparations is -5.08 ± 0.1 Log 10 M. Similarly, IC50 for KCl-induced contractions is -4.25 ± 0.01 Log 10 M. Mean IC50 (Log 10 M) for atorvastatin on spontaneous rabbit's jejunal preparations and KCl-induced contractions are -5.19 ± 0.07 and -4.37 ± 0.09, respectively. Fluvastatin relaxed spontaneous activity of rabbits' jejunal preparations with an IC50 (Log 10 M) -4.5 ± 0.03. Rosuvastatin relaxed spontaneous as well as KCl (80 mM) induced contractions with respective IC50 (Log 10 M) -3.62 ± 0.04 and -4.57 ± 0.06. In case of CCRCs, tissues pre-treated with 4.6 μg/ml of simvastatin, have IC50 = -1.84 ± 0.03 [log (Ca(++)) M] vs control IC50 = -2.54 ± 0.04 [log (Ca(++)) M]. Similarly, atorvastatin, fluvastatin and rosuvastatin produced

  17. Calcium waves in a grid of clustered channels with synchronous IP3 binding and unbinding.

    PubMed

    Rückl, M; Rüdiger, S

    2016-11-01

    Calcium signals in cells occur at multiple spatial scales and variable temporal duration. However, a physical explanation for transitions between long-lasting global oscillations and localized short-term elevations (puffs) of cytoplasmic Ca 2+ is still lacking. Here we introduce a phenomenological, coarse-grained model for the calcium variable, which is represented by ordinary differential equations. Due to its small number of parameters, and its simplicity, this model allows us to numerically study the interplay of multi-scale calcium concentrations with stochastic ion channel gating dynamics even in larger systems. We apply this model to a single cluster of inositol trisphosphate (IP 3 ) receptor channels and find further evidence for the results presented in earlier work: a single cluster may be capable of producing different calcium release types, where long-lasting events are accompanied by unbinding of IP 3 from the receptor (Rückl et al., PLoS Comput. Biol. 11, e1003965 (2015)). Finally, we show the practicability of the model in a grid of 64 clusters which is computationally intractable with previous high-resolution models. Here long-lasting events can lead to synchronized oscillations and waves, while short events stay localized. The frequency of calcium releases as well as their coherence can thereby be regulated by the amplitude of IP 3 stimulation. Finally the model allows for a new explanation of oscillating [IP 3 ], which is not based on metabolic production and degradation of IP 3 .

  18. Putative calcium-binding domains of the Caenorhabditis elegans BK channel are dispensable for intoxication and ethanol activation

    PubMed Central

    Davis, S. J.; Scott, L. L.; Ordemann, G.; Philpo, A.; Cohn, J.; Pierce-Shimomura, J. T.

    2016-01-01

    Alcohol modulates the highly conserved, voltage- and calcium-activated potassium (BK) channel, which contributes to alcohol-mediated behaviors in species from worms to humans. Previous studies have shown that the calcium-sensitive domains, RCK1 and the Ca2+ bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO-1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel-dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO-1 channels predicted to have the RCK1, Ca2+ bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO-1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO-1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO-1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium-sensing domains displayed resistance to intoxication. Thus, for the worm SLO-1 channel, the putative calcium-sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action. PMID:26113050

  19. Suggestive evidence for association between L-type voltage-gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: a family-based association study

    PubMed Central

    Gonzalez, Suzanne; Xu, Chun; Ramirez, Mercedes; Zavala, Juan; Armas, Regina; Contreras, Salvador A; Contreras, Javier; Dassori, Albana; Leach, Robin J; Flores, Deborah; Jerez, Alvaro; Raventós, Henriette; Ontiveros, Alfonso; Nicolini, Humberto; Escamilla, Michael

    2013-01-01

    Objectives Through recent genome-wide association studies (GWAS), several groups have reported significant association between variants in the alpha 1C subunit of the L-type voltage-gated calcium channel (CACNA1C) and bipolar disorder (BP) in European and European-American cohorts. We performed a family-based association study to determine whether CACNA1C is associated with BP in the Latino population. Methods This study consisted of 913 individuals from 215 Latino pedigrees recruited from the United States, Mexico, Guatemala, and Costa Rica. The Illumina GoldenGate Genotyping Assay was used to genotype 58 single-nucleotide polymorphisms (SNPs) that spanned a 602.9 kb region encompassing the CACNA1C gene including two SNPs (rs7297582 and rs1006737) previously shown to associate with BP. Individual SNP and haplotype association analyses were performed using Family-Based Association Test (version 2.0.3) and Haploview (version 4.2) software. Results An eight-locus haplotype block that included these two markers showed significant association with BP (global marker permuted p = 0.0018) in the Latino population. For individual SNPs, this sample had insufficient power (10%) to detect associations with SNPs with minor effect (odds ratio = 1.15). Conclusions Although we were not able to replicate findings of association between individual CACNA1C SNPs rs7297582 and rs1006737 and BP, we were able to replicate the GWAS signal reported for CACNA1C through a haplotype analysis that encompassed these previously reported significant SNPs. These results provide additional evidence that CACNA1C is associated with BP and provides the first evidence that variations in this gene might play a role in the pathogenesis of this disorder in the Latino population. PMID:23437964

  20. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    PubMed

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium.

    PubMed

    Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela

    2018-05-09

    Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human

  2. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    PubMed Central

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  3. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  4. The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels

    PubMed Central

    Campiglio, Marta; Flucher, Bernhard E

    2015-01-01

    Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α1 subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein–protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein–protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity. J. Cell. Physiol. 999: 00–00, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. J. Cell. Physiol. 230: 2019–2031, 2015. © 2015 Wiley Periodicals, Inc. PMID:25820299

  5. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    PubMed Central

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  6. Altering calcium influx for selective destruction of breast tumor.

    PubMed

    Yu, Han-Gang; McLaughlin, Sarah; Newman, Mackenzie; Brundage, Kathleen; Ammer, Amanda; Martin, Karen; Coad, James

    2017-03-04

    Human triple-negative breast cancer has limited therapeutic choices. Breast tumor cells have depolarized plasma membrane potential. Using this unique electrical property, we aim to develop an effective selective killing of triple-negative breast cancer. We used an engineered L-type voltage-gated calcium channel (Cec), activated by membrane depolarization without inactivation, to induce excessive calcium influx in breast tumor cells. Patch clamp and flow cytometry were used in testing the killing selectivity and efficiency of human breast tumor cells in vitro. Bioluminescence and ultrasound imaging were used in studies of human triple-negative breast cancer cell MDA-MB-231 xenograft in mice. Histological staining, immunoblotting and immunohistochemistry were used to investigate mechanism that mediates Cec-induced cell death. Activating Cec channels expressed in human breast cancer MCF7 cells produced enormous calcium influx at depolarized membrane. Activating the wild-type Cav1.2 channels expressed in MCF7 cells also produced a large calcium influx at depolarized membrane, but this calcium influx was diminished at the sustained membrane depolarization due to channel inactivation. MCF7 cells expressing Cec died when the membrane potential was held at -10 mV for 1 hr, while non-Cec-expressing MCF7 cells were alive. MCF7 cell death was 8-fold higher in Cec-expressing cells than in non-Cec-expressing cells. Direct injection of lentivirus containing Cec into MDA-MB-231 xenograft in mice inhibited tumor growth. Activated caspase-3 protein was detected only in MDA-MB-231 cells expressing Cec, along with a significantly increased expression of activated caspase-3 in xenograft tumor treated with Cec. We demonstrated a novel strategy to induce constant calcium influx that selectively kills human triple-negative breast tumor cells.

  7. Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b

    PubMed Central

    Low, Sean E.; Woods, Ian G.; Lachance, Mathieu; Ryan, Joel; Saint-Amant, Louis

    2012-01-01

    The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild-type CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via morpholino oligonucleotides recapitulates the fakir mutant phenotype. Fakir mutants display normal current-evoked synaptic communication at the neuromuscular junction but have attenuated touch-evoked activation of motor neurons. NMDA-evoked fictive swimming is not affected by the loss of CaV2.1b, suggesting that this channel is not required for motor pattern generation. These results, coupled with the expression of CACNA1Ab by sensory neurons, suggest that CaV2.1b channel activity is necessary for touch-evoked activation of the locomotor network in zebrafish. PMID:22490555

  8. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels.

    PubMed

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E; Sinnegger-Brauns, Martina J; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-12-09

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.

  9. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway.

    PubMed

    Sandoval, Alejandro; Duran, Paz; Gandini, María A; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2017-09-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca 2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated Ca V 1.3L-type Ca 2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant Ca V 1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the Ca V α 1 ion-conducting subunit of the Ca V 1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca 2+ macroscopic currents and impair insulin release stimulated with high K + . In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for Ca V 1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the Ca V α 1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate Ca V 1.3 channels and contribute to regulate insulin secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels.

    PubMed

    Gomes Castro, Allisson Jhonatan; Cazarolli, Luisa Helena; Bretanha, Lizandra C; Sulis, Paola Miranda; Rey Padilla, Diana Patricia; Aragón Novoa, Diana Marcela; Dambrós, Betina Fernanda; Pizzolatti, Moacir G; Mena Barreto Silva, Fátima Regina

    2018-06-15

    Betulinic acid (BA) has been described as an insulin secretagogue which may explain its potent antihyperglycemic effect; however, the exact role of BA as an insulinogenic agent is not clear. The aim of this study was to investigate the mechanism of BA on calcium influx and static insulin secretion in pancreatic islets isolated from euglycemic rats. We found that BA triggers calcium influx by a mechanism dependent on ATP-dependent potassium channels and L-type voltage-dependent calcium channels. Additionally, the voltage-dependent and calcium-dependent chloride channels are also involved in the mechanism of BA, probably due to an indirect stimulation of calcium entry and increased intracellular calcium. Additionally, the downstream activation of PKC, which is necessary for the effect of BA on calcium influx, is involved in the full stimulatory response of the triterpene. BA stimulated the static secretion of insulin in pancreatic islets, indicating that the abrupt calcium influx may be a key step in its secretagogue effect. As such, BA stimulates insulin secretion through the activation of electrophysiological mechanisms, such as the closure of potassium channels and opening of calcium and chloride channels, inducing cellular depolarization associated with metabolic-biochemical effects, in turn activating PKC and ensuring the secretion of insulin. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Are prostaglandins or calcium channel blockers efficient for free flap salvage? A review of the literature.

    PubMed

    Huby, M; Rem, K; Moris, V; Guillier, D; Revol, M; Cristofari, S

    2018-03-01

    The free flap failure rate is less than 5%. The responsible mechanisms of postoperative secondary ischemia are mostly vascular. The main postoperative complication leading to flap failure is thrombosis. Different strategies have been reported to improve the reliability of flaps and decrease the risk of partial or total necrosis: thus, pharmacologic agents have been studied to reduce the risk of microvascular thrombosis. The aim of this review was to evaluate the effect of calcium channel blockers and prostaglandins on free skin flap survival. A systematic review of the literature was performed to identify articles studying the efficacy of calcium channel blockers and prostaglandins on free flap survival. After full text reading, eleven articles were finally included. Eight articles investigated the role of prostaglandins in free tissue transfers, two in rats subjects, one in rabbits, five in humans. Two articles studied the effect of calcium channel blockers on free flaps, one in rats subjects, one in rabbits. One article studied in different groups the effect of calcium channel blockers and prostaglandins on free flaps in rabbits. Literature regarding the efficacy of calcium channel blockers and prostaglandins to salvage free flap is poor and mainly based on animal models. Nevertheless, studies on prostaglandins showed a slight efficiency of these molecules for free flap salvage. Results are less reliable for calcium channel blockers and dependent on the molecule used. In conclusion, there is a lack of evidence to use them in clinical practice. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  13. Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing.

    PubMed

    Andrade, Arturo; Denome, Sylvia; Jiang, Yu-Qiu; Marangoudakis, Spiro; Lipscombe, Diane

    2010-10-01

    Alternative pre-mRNA splicing occurs extensively in the nervous systems of complex organisms, including humans, considerably expanding the potential size of the proteome. Cell-specific alternative pre-mRNA splicing is thought to optimize protein function for specialized cellular tasks, but direct evidence for this is limited. Transmission of noxious thermal stimuli relies on the activity of N-type Ca(V)2.2 calcium channels in nociceptors. Using an exon-replacement strategy in mice, we show that mutually exclusive splicing patterns in the Ca(V)2.2 gene modulate N-type channel function in nociceptors, leading to a change in morphine analgesia. Exon 37a (e37a) enhances μ-opioid receptor-mediated inhibition of N-type calcium channels by promoting activity-independent inhibition. In the absence of e37a, spinal morphine analgesia is weakened in vivo but the basal response to noxious thermal stimuli is not altered. Our data suggest that highly specialized, discrete cellular responsiveness in vivo can be attributed to alternative splicing events regulated at the level of individual neurons.

  14. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

    PubMed Central

    Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia

    2015-01-01

    Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056

  15. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex

    PubMed Central

    Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388

  16. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  17. Involvement of a Gardos-type potassium channel in head activator-induced mitosis of BON cells.

    PubMed

    Kayser, S T; Ulrich, H; Schaller, H C

    1998-06-01

    The human neuroendocrine cell line BON was used to study second messengers involved in signal transduction for entry into mitosis. BON cells produce the neuropeptide head activator (HA) and use it as autocrine growth factor. HA stimulates BON cell proliferation by triggering entry into mitosis. HA-induced mitosis is mediated by an inhibitory G protein, the action of which is blocked by pertussis toxin. HA signaling requires inhibition of the cAMP pathway, calcium influx, and hyperpolarization of cells. The latter is a very important and sensitive step involving a calcium-activated potassium channel. Cell cycle progression and proliferation of BON cells are most efficiently inhibited with specific inhibitors of this potassium channel. Pharmacology and RNA analysis suggest identity with the recently cloned Gardos-type potassium channel.

  18. Use of a purified and functional recombinant calcium-channel beta4 subunit in surface-plasmon resonance studies.

    PubMed Central

    Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel

    2002-01-01

    Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102

  19. Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type Ca{sup 2+} channel-mediated PGC-1α/ERRα activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yoon Kyung; Park, Joon Ha; Baek, Yi-Yong

    Carbon monoxide (CO), derived by the enzymatic reaction of heme oxygenase (HO), is a cellular regulator of energy metabolism and cytoprotection; however, its underlying mechanism has not been clearly elucidated. Astrocytes pre-exposed to the CO-releasing compound CORM-2 increased mitochondrial biogenesis, mitochondrial electron transport components (cytochrome c, Cyt c; cytochrome c oxidase subunit 2, COX2), and ATP synthesis. The increased mitochondrial function was correlated with activation of AMP-activated protein kinase α and upregulation of HO-1, peroxisome proliferators-activated receptor γ-coactivator-1α (PGC-1α), and estrogen-related receptor α (ERRα). These events elicited by CORM-2 were suppressed by Ca{sup 2+} chelators, a HO inhibitor, and anmore » L-type Ca{sup 2+} channel blocker, but not other Ca{sup 2+} channel inhibitors. Among the HO byproducts, combined CORM-2 and bilirubin treatment effectively increased PGC-1α, Cyt c and COX2 expression, mitochondrial biogenesis, and ATP synthesis, and these increases were blocked by Ca{sup 2+} chelators. Moreover, cerebral ischemia significantly increased HO-1, PGC-1α, and ERRα levels, subsequently increasing Cyt c and COX2 expression, in wild-type mice, compared with HO-1{sup +/−} mice. These results suggest that HO-1-derived CO enhances mitochondrial biogenesis in astrocytes by activating L-type Ca{sup 2+} channel-mediated PGC-1α/ERRα axis, leading to maintenance of astrocyte function and neuroprotection/recovery against damage of brain function. - Highlights: • CORM-pretreated astrocytes induces mitochondrial biogenesis by activating L-type Ca{sup 2+} channel-mediated PGC-1α stabilization. • Cerebral ischemia increased electron transport chain proteins (e.g. Cyt c and COX2), in WT mice, compared with HO-1{sup +/−} mice. • CO/HO-1 pathway increases astrocytic mitochondrial functions via a PGC-1α/ERRα axis.« less

  20. Preliminary Studies of Acute Cadmium Administration Effects on the Calcium-Activated Potassium (SKCa and BKCa) Channels and Na+/K+-ATPase Activity in Isolated Aortic Rings of Rats.

    PubMed

    Vassallo, Dalton V; Almenara, Camila C P; Broseghini-Filho, Gilson Brás; Teixeira, Ariane Calazans; da Silva, David Chaves F; Angeli, Jhuli K; Padilha, Alessandra S

    2018-06-01

    Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na + /K + -ATPase, we aimed to determine whether acute cadmium administration (10 μM) alters the participation of K + channels, voltage-activated calcium channel, and Na + /K + -ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K + channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K + channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca 2+ -activated K + channels-SK Ca ), iberiotoxin (a selective blocker of large-conductance Ca 2+ -activated K + channels-BK Ca ), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na + /K + -ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SK Ca and BK Ca ) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na + /K + -ATPase activity.

  1. Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential

    PubMed Central

    Hegyi, Bence; Komáromi, István; Kistamás, Kornél; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Nánási, Péter P.; Szentandrássy, Norbert

    2013-01-01

    Tetrodotoxin (TTX) is believed to be one of the most selective inhibitors of voltage-gated fast Na+ channels in excitable tissues. Recently, however, TTX has been shown to block L-type Ca2+ current (ICa) in canine cardiac cells. In the present study, the TTX-sensitivity of ICa was studied in isolated canine ventricular myocytes as a function of (1) channel phosphorylation, (2) extracellular pH and (3) the redox potential of the bathing medium using the whole cell voltage clamp technique. Fifty-five micromoles of TTX (IC50 value obtained under physiological conditions) caused 60% ± 2% inhibition of ICa in acidic (pH = 6.4), while only a 26% ± 2% block in alkaline (pH = 8.4) milieu. Similarly, the same concentration of TTX induced 62% ± 6% suppression of ICa in a reductant milieu (containing glutathione + ascorbic acid + dithiothreitol, 1 mM each), in contrast to the 31% ± 3% blockade obtained in the presence of a strong oxidant (100 μM H2O2). Phosphorylation of the channel protein (induced by 3 μM forskolin) failed to modify the inhibiting potency of TTX; an IC50 value of 50 ± 4 μM was found in forskolin. The results are in a good accordance with the predictions of our model, indicating that TTX binds, in fact, to the selectivity filter of cardiac L-type Ca channels. PMID:23771047

  2. Molecular physiology and modulation of somatodendritic A-type potassium channels.

    PubMed

    Jerng, Henry H; Pfaffinger, Paul J; Covarrubias, Manuel

    2004-12-01

    The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.

  3. Selective inhibitory action of Biginelli-type dihydropyrimidines on depolarization-induced arterial smooth muscle contraction.

    PubMed

    Cernecka, Hana; Veizerova, Lucia; Mensikova, Lucia; Svetlik, Jan; Krenek, Peter

    2012-05-01

    Dihydropyridine calcium channel blockers have some disadvantages such as light sensitivity and relatively short plasma half-lives. Stability of dihydropyrimidines analogues could be of advantage, yet they remain less well characterized. We aimed to test four newly synthesized Biginelli-type dihydropyrimidines for their calcium channel blocking activity on rat isolated aorta. Dihydropyrimidines (compounds A-D) were prepared by the Biginelli-like three-component condensation of benzaldehydes with urea/thiourea and dimethyl or diethyl acetone-1,3-dicarboxylate, and their physicochemical properties and effects on depolarization-induced and noradrenaline-induced contractions of rat isolated aorta were evaluated. Dihydropyrimidines A and C blocked KCl-induced contraction only weakly (-log(IC50)=5.03 and 3.73, respectively), while dihydropyrimidine D (-log(IC50)=7.03) was almost as potent as nifedipine (-log(IC50)=8.14). Washout experiments revealed that dihydropyrimidine D may bind strongly to the L-type calcium channel or remains bound to membrane. All tested dihydropyrimidines only marginally inhibited noradrenaline-induced contractions of rat isolated aorta (20% reduction of noradrenaline E(max) ), indicating a more selective action on L-type calcium channel than nifedipine with 75% inhibition of noradrenaline E(max) at 10(-4) m nifedipine). Compounds A and, particularly, D are potent calcium channel blockers in vitro, with a better selectivity in inhibiting depolarization-induced arterial smooth muscle contraction than nifedipine. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  4. Reciprocal Regulation of Reactive Oxygen Species and Phospho-CREB Regulates Voltage Gated Calcium Channel Expression during Mycobacterium tuberculosis Infection

    PubMed Central

    Selvakumar, Arti; Antony, Cecil; Singhal, Jhalak; Tiwari, Brijendra K.; Singh, Yogendra; Natarajan, Krishnamurthy

    2014-01-01

    Our previous work has demonstrated the roles played by L-type Voltage Gated Calcium Channels (VGCC) in regulating Mycobacterium tuberculosis (M. tb) survival and pathogenesis. Here we decipher mechanisms and pathways engaged by the pathogen to regulate VGCC expression in macrophages. We show that M. tb and its antigen Rv3416 use phospho-CREB (pCREB), Reactive Oxygen Species (ROS), Protein Kinase C (PKC) and Mitogen Activated Protein Kinase (MAPK) to modulate VGCC expression in macrophages. siRNA mediated knockdown of MyD88, IRAK1, IRAK2 or TRAF6 significantly inhibited antigen mediated VGCC expression. Inhibiting Protein Kinase C (PKC) or MEK-ERK1/2 further increased VGCC expression. Interestingly, inhibiting intracellular calcium release upregulated antigen mediated VGCC expression, while inhibiting extracellular calcium influx had no significant effect. siRNA mediated knockdown of transcription factors c-Jun, SOX5 and CREB significantly inhibited Rv3416 mediated VGCC expression. A dynamic reciprocal cross-regulation between ROS and pCREB was observed that in turn governed VGCC expression with ROS playing a limiting role in the process. Further dissection of the mechanisms such as the interplay between ROS and pCREB would improve our understanding of the regulation of VGCC expression during M. tb infection. PMID:24797940

  5. Influence of pHo on calcium channel block by amlodipine, a charged dihydropyridine compound. Implications for location of the dihydropyridine receptor

    PubMed Central

    1989-01-01

    We have investigated the modulation of L-type calcium channel currents in isolated ventricular cells by the dihydropyridine derivative amlodipine, a weak base with a pKa of 8.6. Under conditions that favor neutral drug molecules, amlodipine block resembles other, previously described, neutral dihydropyridine derivatives: block is more pronounced at depolarized voltages, repetitive pulsing is not needed to promote block, and recovery is complete at hyperpolarized voltages. When the drug is ionized, depolarized voltages still enhance block, however, the time course is slow and speeded by repetitive pulses that open channels. Recovery from block by ionized drug molecules is very slow and incomplete, but can be rapidly modified by changes in external hydrogen ion concentration. We conclude from these observations that the degree of ionization of the drug molecule can affect access to the dihydropyridine receptor and that external protons can interact with the drug-receptor complex even if channels are blocked and closed. These observations place limitations on the location of this receptor in the ventricular cell membrane. PMID:2549176

  6. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.

    PubMed

    Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana

    2015-01-01

    The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.

  7. Polyaniline-graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine.

    PubMed

    Jain, Rajeev; Sinha, Ankita; Khan, Ab Lateef

    2016-08-01

    A novel polyaniline-graphene oxide nanocomposite (PANI/GO/GCE) sensor has been fabricated for quantification of a calcium channel blocker drug levamlodipine (LAMP). Fabricated sensor has been characterized by electrochemical impedance spectroscopy, square wave and cyclic voltammetry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The developed PANI/GO/GCE sensor has excellent analytical performance towards electrocatalytic oxidation as compared to PANI/GCE, GO/GCE and bare GCE. Under optimized experimental conditions, the fabricated sensor exhibits a linear response for LAMP for its oxidation over a concentration range from 1.25μgmL(-1) to 13.25μgmL(-1) with correlation coefficient of 0.9950 (r(2)), detection limit of 1.07ngmL(-1) and quantification limit of 3.57ngmL(-1). The sensor shows an excellent performance for detecting LAMP with reproducibility of 2.78% relative standard deviation (RSD). The proposed method has been successfully applied for LAMP determination in pharmaceutical formulation with a recovery from 99.88% to 101.75%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Role of voltage-gated L-type Ca2+ channel isoforms for brain function.

    PubMed

    Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N

    2006-11-01

    Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.

  9. Mathematical investigation of IP3-dependent calcium dynamics in astrocytes.

    PubMed

    Handy, Gregory; Taheri, Marsa; White, John A; Borisyuk, Alla

    2017-06-01

    We study evoked calcium dynamics in astrocytes, a major cell type in the mammalian brain. Experimental evidence has shown that such dynamics are highly variable between different trials, cells, and cell subcompartments. Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. Variation in the maximum flow in different calcium channels is also shown to determine the range of stable oscillations, as well as set the range of frequencies of the oscillations. Further, by conducting a randomized search through the parameter space and recording the resulting calcium responses, we create a database that can be used by experimentalists to help estimate the underlying channel distribution of their cells.

  10. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    PubMed Central

    Luo, Yuhuan; Yu, Xiafei; Ma, Cheng; Luo, Jianhong; Yang, Wei

    2018-01-01

    As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  11. Electrophysiological Features of Single Store-Operated Calcium Channels in HEK S4 Cell Line with Stable STIM1 Protein Knockdown.

    PubMed

    Shalygin, A V; Vigont, V A; Glushankova, L N; Zimina, O A; Kolesnikov, D O; Skopin, A Yu; Kaznacheeva, E V

    2017-07-01

    An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression. We can conclude that electrophysiological peculiarities of store-regulated calcium entry observed in different cells can be explained by differences in STIM1 expression.

  12. Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate.

    PubMed

    Nelson, Michael T; Joksovic, Pavle M; Su, Peihan; Kang, Ho-Won; Van Deusen, Amy; Baumgart, Joel P; David, Laurence S; Snutch, Terrance P; Barrett, Paula Q; Lee, Jung-Ha; Zorumski, Charles F; Perez-Reyes, Edward; Todorovic, Slobodan M

    2007-11-14

    T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Ca(v)3.2 T-channels in peripheral and central neurons, as well as recombinant Ca(v)3.2 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific, metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Ca(v)3.2 channels over a wide range of membrane potentials, and inhibits Ca(v)3.2-dependent low-threshold-Ca2+ spikes as well as burst-firing in reticular thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.

  13. Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit.

    PubMed Central

    Lamb, G D; Walsh, T

    1987-01-01

    1. The Vaseline-gap technique was used to record slow calcium currents and asymmetric charge movement in single fibres of fast-twitch muscles (extensor digitorum longus (e.d.l.) and sternomastoid) and slow-twitch muscles (soleus) from rat and rabbit, at a holding potential of -90 mV. 2. The slow calcium current in soleus fibres was about one-third of the size of the current in e.d.l. fibres, but was very similar otherwise. In both e.d.l. and soleus fibres, the dihydropyridine (DHP), nifedipine, suppressed the calcium current entirely. 3. In these normally polarized fibres, nifedipine suppressed only part (qns) of the asymmetric charge movement. The proportion of qns suppressed by various concentrations of nifedipine was linearly related to the associated reduction of the calcium current. Half-maximal suppression of both parameters was obtained with about 0.5 microM-nifedipine. The calcium current and the qns component of the charge movement also were suppressed over the same time course by nifedipine. Another DHP calcium antagonist, (+)PN200/110, was indistinguishable from nifedipine in its effects of suppressing calcium currents and qns. 4. In all muscle types, the total amount of qns in each fibre was linearly related to the size of the calcium current (in the absence of DHP). On average, qns was 3.3 times larger in e.d.l. fibres than in soleus fibres. 5. In contrast to the other dihydropyridines, (-)bay K8644, a calcium channel agonist, did not suppress any asymmetric charge movement. 6. The potential dependence of the slow calcium current implied a minimum gating charge of about five or six electronic charges. The movement of qns occurred over a more negative potential range than the change in calcium conductance. 7. Experiments on the binding of (+)PN200/110 indicated that e.d.l. muscles had between about 2 and 3 times more specific DHP binding sites than did soleus muscle. 8. These results point to a close relationship between slow calcium channels, the qns

  14. K(Ca)3.1 channel downregulation and impaired endothelium-derived hyperpolarization-type relaxation in pulmonary arteries from chronically hypoxic rats.

    PubMed

    Kroigaard, Christel; Kudryavtseva, Olga; Dalsgaard, Thomas; Wandall-Frostholm, Christine; Olesen, Søren-Peter; Simonsen, Ulf

    2013-04-01

    Calcium-activated potassium channels of small (K(Ca)2, SK) and intermediate (K(Ca)3.1, IK) conductance are involved in endothelium-dependent relaxation of pulmonary arteries. We hypothesized that the function and expression of K(Ca)2 and K(Ca)3.1 increase as a compensatory mechanism to counteract hypoxia-induced pulmonary hypertension in rats. For functional studies, pulmonary arteries were mounted in microvascular myographs for isometric tension recordings. The K(Ca) channel expression was evaluated by immunoblotting and quantitative PCR. Although ACh induced similar relaxations, the ACh-induced relaxations were abolished by the combined inhibition of nitric oxide synthase (by L-nitro-arginine, L-NOARG), cyclo-oxygenase (by indomethacin) and soluble guanylate cyclase (by ODQ) in pulmonary arteries from hypoxic rats, whereas 20 ± 6% (n = 8) maximal relaxation in response to ACh persisted in arteries from normoxic rats. Inhibiting Na(+),K(+)-ATPase with ouabain or blocking K(Ca)2 and K(Ca)3.1 channels reduced the persisting ACh-induced relaxation. In the presence of L-NOARG and indomethacin, a novel K(Ca)2 and K(Ca)3.1 channel activator, NS4591, induced concentration- and endothelium-dependent relaxations, which were markedly reduced in arteries from chronically hypoxic rats compared with arteries from normoxic rats. The mRNA levels of K(Ca)2.3 and K(Ca)3.1 were unaltered, whereas K(Ca)2.3 protein expression was upregulated and K(Ca)3.1 protein expression downregulated in pulmonary arteries from rats exposed to hypoxia. In conclusion, endothelium-dependent relaxation was conserved in pulmonary arteries from chronically hypoxic rats, while endothelium-derived hyperpolarization (EDH)-type relaxation was impaired in chronically hypoxic pulmonary small arteries despite upregulation of K(Ca)2.3 channels. Since impaired EDH-type relaxation was accompanied by K(Ca)3.1 channel protein downregulation, these findings suggest that K(Ca)3.1 channels are important for the

  15. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1.

    PubMed

    Su, Qiang; Hu, Feizhuo; Liu, Yuxia; Ge, Xiaofei; Mei, Changlin; Yu, Shengqiang; Shen, Aiwen; Zhou, Qiang; Yan, Chuangye; Lei, Jianlin; Zhang, Yanqing; Liu, Xiaodong; Wang, Tingliang

    2018-03-22

    PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a nonselective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π-π interactions, suggesting a potential PKD2L1 gating mechanism.

  16. Increasing T-type calcium channel activity by β-adrenergic stimulation contributes to β-adrenergic regulation of heart rates.

    PubMed

    Li, Yingxin; Zhang, Xiaoxiao; Zhang, Chen; Zhang, Xiaoying; Li, Ying; Qi, Zhao; Szeto, Christopher; Tang, Mingxin; Peng, Yizhi; Molkentin, Jeffery D; Houser, Steven R; Xie, Mingxing; Chen, Xiongwen

    2018-04-01

    Cav3.1 T-type Ca 2+ channel current (I Ca-T ) contributes to heart rate genesis but is not known to contribute to heart rate regulation by the sympathetic/β-adrenergic system (SAS). We show that the loss of Cav3.1 makes the beating rates of the heart in vivo and perfused hearts ex vivo, as well as sinoatrial node cells, less sensitive to β-adrenergic stimulation; it also renders less conduction acceleration through the atrioventricular node by β-adrenergic stimulation. Increasing Cav3.1 in cardiomyocytes has the opposite effects. I Ca-T in sinoatrial nodal cells can be upregulated by β-adrenergic stimulation. The results of the present study add a new contribution to heart rate regulation by the SAS system and provide potential new mechanisms for the dysregulation of heart rate and conduction by the SAS in the heart. T-type Ca 2+ channel can be a target for heart disease treatments that aim to slow down the heart rate ABSTRACT: Cav3.1 (α 1G ) T-type Ca 2+ channel (TTCC) is expressed in mouse sinoatrial node cells (SANCs) and atrioventricular (AV) nodal cells and contributes to heart rate (HR) genesis and AV conduction. However, its role in HR regulation and AV conduction acceleration by the β-adrenergic system (SAS) is unclear. In the present study, L- (I Ca-L ) and T-type (I Ca-T ) Ca 2+ currents were recorded in SANCs from Cav3.1 transgenic (TG) and knockout (KO), and control mice. I Ca-T was absent in KO SANCs but enhanced in TG SANCs. In anaesthetized animals, different doses of isoproterenol (ISO) were infused via the jugular vein and the HR was recorded. The EC 50 of the HR response to ISO was lower in TG mice but higher in KO mice, and the maximal percentage of HR increase by ISO was greater in TG mice but less in KO mice. In Langendorff-perfused hearts, ISO increased HR and shortened PR intervals to a greater extent in TG but to a less extent in KO hearts. KO SANCs had significantly slower spontaneous beating rates than control SANCs before and after

  17. Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process.

    PubMed

    Kaestner, Lars; Tabellion, Wiebke; Lipp, Peter; Bernhardt, Ingolf

    2004-12-01

    Prostaglandin E(2) (PGE(2)) is released from platelets when they are activated. Using fluorescence imaging and the patch-clamp technique, we provide evidence that PGE(2) at physiological concentrations (10(-10) M) activates calcium rises mediated by calcium influx through a non-selective cation-channel in human red blood cells. The extent of calcium increase varied between cells with a total of 45% of the cells responding. It is well known that calcium increases elicited the calcium-activated potassium channel (Gardos channel) in the red cell membrane. Previously, it was shown that the Gardos channel activation results in potassium efflux and shrinkage of the cells. Therefore, we conclude that the PGE(2) responses of red blood cells described here reveal a direct and active participation of erythrocytes in blood clot formation.

  18. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms.

    PubMed

    Laver, D R; Baynes, T M; Dulhunty, A F

    1997-04-01

    The gating of ryanodine receptor calcium release channels (RyRs) depends on myoplasmic Ca2+ and Mg2+ concentrations. RyRs from skeletal and cardiac muscle are activated by microm Ca2+ and inhibited by mm Ca2+ and Mg2+. 45Ca2+ release from skeletal SR vesicles suggests two mechanisms for Mg2+-inhibition (Meissner, Darling & Eveleth, 1986, Biochemistry 25:236-244). The present study investigates the nature of these mechanisms using measurements of single-channel activity from cardiac- and skeletal RyRs incorporated into planar lipid bilayers. Our measurements of Mg2+- and Ca2+-dependent gating kinetics confirm that there are two mechanisms for Mg2+ inhibition (Type I and II inhibition) in skeletal and cardiac RyRs. The mechanisms operate concurrently, are independent and are associated with different parts of the channel protein. Mg2+ reduces Po by competing with Ca2+ for the activation site (Type-I) or binding to more than one, and probably two low affinity inhibition sites which do not discriminate between Ca2+ and Mg2+ (Type-II). The relative contributions of the two inhibition mechanisms to the total Mg2+ effect depend on cytoplasmic [Ca2+] in such a way that Mg2+ inhibition has the properties of Types-I and II inhibition at low and high [Ca2+] respectively. Both mechanisms are equally important when [Ca2+] = 10 microm in cardiac RyRs or 1 microm in skeletal RyRs. We show that Type-I inhibition is not the sole mechanism responsible for Mg2+ inhibition, as is often assumed, and we discuss the physiological implications of this finding.

  19. Phosphate and calcium are required for TGFbeta-mediated stimulation of ANK expression and function during chondrogenesis.

    PubMed

    Oca, Paulina; Zaka, Raihana; Dion, Arnold S; Freeman, Theresa A; Williams, Charlene J

    2010-08-01

    The expression of ANK, a key player in biomineralization, is stimulated by treatment with TGFbeta. The purpose of this study was to determine whether TGFbeta stimulation of ANK expression during chondrogenesis was dependent upon the influx of calcium and phosphate into cells. Treatment of ATDC5 cells with TGFbeta increased ANK expression during all phases of chondrogenic differentiation, particularly at day 14 (proliferation) and day 32 (mineralizing hypertrophy) of culture. Phosphate uptake studies in the presence and absence of phosphonoformic acid (PFA), a competitive inhibitor of the type III Na(+)/Pi channels Pit-1 and Pit-2, indicated that the stimulation of ANK expression by TGFbeta required the influx of phosphate, specifically by the Pit-1 transporter, at all phases of differentiation. At hypertrophy, when alkaline phosphatase is highly expressed, inhibition of its activity with levamisole also abrogated the stimulatory effect of TGFbeta on ANK expression, further illustrating that Pi availability and uptake by the cells is necessary for stimulation of ANK expression in response to TGFbeta. Since previous studies of endochondral ossification in the growth plate have shown that L-type calcium channels are essential for chondrogenesis, we investigated their role in the TGFbeta-stimulated ANK response in ATDC5 cells. Treatment with nifedipine to inhibit calcium influx via the L-type channel Cav1.2 (alpha(1C)) inhibited the TGFbeta stimulated increase in ANK expression at all phases of chondrogenesis. Our findings indicate that TGFbeta stimulation of ANK expression is dependent upon the influx of phosphate and calcium into ATDC5 cells at all stages of differentiation.

  20. An integrated platform for simultaneous multi-well field potential recording and Fura-2-based calcium transient ratiometry in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes.

    PubMed

    Rast, Georg; Weber, Jürgen; Disch, Christoph; Schuck, Elmar; Ittrich, Carina; Guth, Brian D

    2015-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes are available from various sources and they are being evaluated for safety testing. Several platforms are available offering different assay principles and read-out parameters: patch-clamp and field potential recording, imaging or photometry, impedance measurement, and recording of contractile force. Routine use will establish which assay principle and which parameters best serve the intended purpose. We introduce a combination of field potential recording and calcium ratiometry from spontaneously beating cardiomyocytes as a novel assay providing a complementary read-out parameter set. Field potential recording is performed using a commercial multi-well multi-electrode array platform. Calcium ratiometry is performed using a fiber optic illumination and silicon avalanche photodetectors. Data condensation and statistical analysis are designed to enable statistical inference of differences and equivalence with regard to a solvent control. Simultaneous recording of field potentials and calcium transients from spontaneously beating monolayers was done in a nine-well format. Calcium channel blockers (e.g. nifedipine) and a blocker of calcium store release (ryanodine) can be recognized and discriminated based on the calcium transient signal. An agonist of L-type calcium channels, FPL 64176, increased and prolonged the calcium transient, whereas BAY K 8644, another L-type calcium channel agonist, had no effect. Both FPL 64176 and various calcium channel antagonists have chronotropic effects, which can be discriminated from typical "chronotropic" compounds, like (±)isoprenaline (positive) and arecaidine propargyl ester (negative), based on their effects on the calcium transient. Despite technical limitations in temporal resolution and exact matching of composite calcium transient with the field potential of a subset of cells, the combined recording platform enables a refined interpretation of the field potential

  1. Canonical Transient Receptor Potential Channel 2 (TRPC2) as a Major Regulator of Calcium Homeostasis in Rat Thyroid FRTL-5 Cells

    PubMed Central

    Sukumaran, Pramod; Löf, Christoffer; Kemppainen, Kati; Kankaanpää, Pasi; Pulli, Ilari; Näsman, Johnny; Viitanen, Tero; Törnquist, Kid

    2012-01-01

    Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca2+-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca2+-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells. PMID:23144458

  2. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons.

    PubMed

    Winland, Carissa D; Welsh, Nora; Sepulveda-Rodriguez, Alberto; Vicini, Stefano; Maguire-Zeiss, Kathleen A

    2017-11-01

    Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca 2+ ] i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca 2+ ] i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca 2+ ] i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca 2+ ] i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Calmodulins from Schistosoma mansoni: Biochemical analysis and interaction with IQ-motifs from voltage-gated calcium channels.

    PubMed

    Thomas, Charlotte M; Timson, David J

    2018-05-17

    The trematode Schistosoma mansoni is a causative agent of schistosomiasis, the second most common parasitic disease of humans after malaria. Calcium homeostasis and calcium-mediated signalling pathways are of particular interest in this species. The drug of choice for treating schistosomiasis, praziquantel, disrupts the regulation of calcium uptake and there is interest in exploiting calcium-mediated processes for future drug discovery. Calmodulin is a calcium sensing protein, present in most eukaryotes. It is a critical regulator of processes as diverse as muscle contraction, cell division and, partly through interaction with voltage-gated calcium channels, intra-cellular calcium concentrations. S. mansoni expresses two highly similar calmodulins - SmCaM1 and SmCaM2. Both proteins interact with calcium, manganese, cadmium (II), iron (II) and lead ions in native gel electrophoresis. These ions also cause conformational changes in the proteins resulting in the exposure of a more hydrophobic surface (as demonstrated by anilinonaphthalene-8-sulfonate fluorescence assays). The proteins are primarily dimeric in the absence of calcium ions, but monomeric in the presence of this ion. Both SmCaM1 and SmCaM2 interact with a peptide corresponding to an IQ-motif derived from the α-subunit of the voltage-gated calcium channel SmCa v 1B (residues 1923-1945). Both proteins bound with slightly higher affinity in the presence of calcium ions. However, there was no difference between the affinities of the two proteins for the peptide. This interaction could be antagonised by chlorpromazine and trifluoperazine, but not praziquantel or thiamylal. Interestingly no interaction could be detected with the other three IQ-motifs identified in S. mansoni voltage-gated ion calcium channels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death.

    PubMed

    Marks, A R

    2001-04-01

    Calcium (Ca2+) ions are second messengers in signaling pathways in all types of cells. They regulate muscle contraction, electrical signals which determine the cardiac rhythm and cell growth pathways in the heart. In the past decade cDNA cloning has provided clues as to the molecular structure of the intracellular Ca2+ release channels (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP3R) on the sarcoplasmic and endoplasmic reticulum (SR/ER) and an understanding of how these molecules regulate Ca2+ homeostasis in the heart is beginning to emerge. The intracellular Ca2+ release channels form a distinct class of ion channels distinguished by their structure, size, and function. Both RyRs and IP3Rs have gigantic cytoplasmic domains that serve as scaffolds for modulatory proteins that regulate the channel pore located in the carboxy terminal 10% of the channel sequence. The channels are tetramers comprised of four RyR or IP3R subunits. RyR2 is required for excitation-contraction (EC) coupling in the heart. Using co-sedimentation and co-immunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein mAKAP. We have shown that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (P(o)). In failing human hearts RyR2 is PKA hyperphosphorylated resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.

  5. Aqueous solubility of calcium L-lactate, calcium D-gluconate, and calcium D-lactobionate: importance of complex formation for solubility increase by hydroxycarboxylate mixtures.

    PubMed

    Vavrusova, Martina; Munk, Merete Bøgelund; Skibsted, Leif H

    2013-08-28

    Among the calcium hydroxycarboxylates important for cheese quality, D-lactobionate [Ksp = (7.0 ± 0.3) × 10(-3) mol(3) L(-3)] and L-lactate [Ksp = (5.8 ± 0.2) × 10(-3) mol(3) L(-3)] were found more soluble than D-gluconate [Ksp = (7.1 ± 0.2) × 10(-4) mol(3) L(-3)], as indicated by the solubility products determined electrochemically for aqueous 1.0 M NaCl at 25.0 °C. Still, solubility of calcium L-lactate increases by 45% in the presence of 0.50 M sodium D-gluconate and by 37% in the presence of 0.50 M sodium D-lactobionate, while solubility of calcium D-gluconate increases by 66 and 85% in the presence of 0.50 M sodium L-lactate and 0.50 M sodium D-lactobionate, respectively, as determined by complexometric titration. Sodium L-lactate and sodium D-gluconate have only little influence on solubility of calcium D-lactobionate. The increased solubility is described quantitatively by calcium binding to D-gluconate (K1 = 14 ± 3 mol(-1) L) in 1.0 M NaCl at 25 °C, D-lactobionate (K1 = 11 ± 2 mol(-1) L), and L-lactate (K1 = 8 ± 2 mol(-1) L), as indicated by the association constants determined electrochemically. In mixed hydroxycarboxylate solutions, calcium binding is quantitatively described by the geometric mean of the individual association constants for both aqueous 1.0 and 0.20 M NaCl, indicating a 1:1 stoichiometry for complex formation.

  6. Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation.

    PubMed

    Kaplan, Mehmet Mahsum; Sultana, Nasreen; Benedetti, Ariane; Obermair, Gerald J; Linde, Nina F; Papadopoulos, Symeon; Dayal, Anamika; Grabner, Manfred; Flucher, Bernhard E

    2018-06-26

    Formation of synapses between motor neurons and muscles is initiated by clustering of acetylcholine receptors (AChRs) in the center of muscle fibers prior to nerve arrival. This AChR patterning is considered to be critically dependent on calcium influx through L-type channels (Ca V 1.1). Using a genetic approach in mice, we demonstrate here that either the L-type calcium currents (LTCCs) or sarcoplasmic reticulum (SR) calcium release is necessary and sufficient to regulate AChR clustering at the onset of neuromuscular junction (NMJ) development. The combined lack of both calcium signals results in loss of AChR patterning and excessive nerve branching. In the absence of SR calcium release, the severity of synapse formation defects inversely correlates with the magnitude of LTCCs. These findings highlight the importance of activity-dependent calcium signaling in early neuromuscular junction formation and indicate that both LTCC and SR calcium release individually support proper innervation of muscle by regulating AChR patterning and motor axon outgrowth. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Amlodipine Inhibits Vascular Cell Senescence and Protects Against Atherogenesis Through the Mechanism Independent of Calcium Channel Blockade.

    PubMed

    Kayamori, Hiromi; Shimizu, Ippei; Yoshida, Yohko; Hayashi, Yuka; Suda, Masayoshi; Ikegami, Ryutaro; Katsuumi, Goro; Wakasugi, Takayuki; Minamino, Tohru

    2018-05-30

    Vascular cells have a finite lifespan and eventually enter irreversible growth arrest called cellular senescence. We have previously suggested that vascular cell senescence contributes to the pathogenesis of human atherosclerosis. Amlodipine is a mixture of two enantiomers, one of which (S- enantiomer) has L-type channel blocking activity, while the other (R+ enantiomer) shows ~1000-fold weaker channel blocking activity than S- enantiomer and has other unknown effects. It has been reported that amlodipine inhibits the progression of atherosclerosis in humans, but the molecular mechanism of this beneficial effect remains unknown. Apolipoprotein E-deficient mice on a high-fat diet were treated with amlodipine, its R+ enantiomer or vehicle for eight weeks. Compared with vehicle treatment, both amlodipine and the R+ enantiomer significantly reduced the number of senescent vascular cells and inhibited plaque formation to a similar extent. Expression of the pro-inflammatory molecule interleukin-1β was markedly upregulated in vehicle-treated mice, but was inhibited to a similar extent by treatment with amlodipine or the R+ enantiomer. Likewise, activation of p53 (a critical inducer of senescence) was markedly suppressed by treatment with amlodipine or the R+ enantiomer. These results suggest that amlodipine inhibits vascular cell senescence and protects against atherogenesis at least partly by a mechanism that is independent of calcium channel blockade.

  8. Immunosuppressive Interactions among Calcium Channel Antagonists and Selected Corticosteroids and Macrolides Using Human whole Blood Lymphocytes

    PubMed Central

    Chow, Fung-Sing; Jusko, William J.

    2014-01-01

    Summary The immunosuppressive interactions of calcium channel antagonists [diltiazem (Dil), verapamil (Ver) and nifedipine (Nif)], with corticosteroids [methylprednisolone (Mpl), prednisolone (Prd)], and macrolides [tacrolimus (Tac) and sirolnnus (Sir)] were examined in human whole blood lymphocyte cultures. Gender-related differences in responses in the interactions between these drug classes were studied using blood from 6 males and 6 females. The nature and intensity of interactions were determined using an extended Loewe additivity model. All immunosuppressants exhibited higher potency than the calcium channel antagonists with mean IC50 values of: Dil (mM)Ver (mM)Nif (mM)Mpl (nM)Prd (nM)Tac (nM)Sir (nM)Male13541.921312.118.6150327Female11431.847.44.68.8111106 Gender-related differences in responses to Mpl and Prd were observed while the others were not significant. Additive interactions were found among calcium channel antagonists and corticosteroids. Significant synergistic interactions were observed between calcium channel antagonists and tacrolimus and sirolimus, although these are unlikely to be of clinical importance. These studies demonstrate diverse drug interactions in the examination of an important array of immunosuppressant drug combinations. PMID:15681895

  9. Use of calcium channel blockers in hypertension.

    PubMed

    Conlin, P R; Williams, G H

    1998-01-01

    During the past 20 years the number of subclasses of calcium channel blockers has increased from one to four. Three classes have only a single clinically approved compound: verapamil, diltiazem, and mibefradil. The fourth class, dihydropyridines, contains numerous compounds. All agents are effective in lowering blood pressure in short-term studies, and side effects that trouble the patient are infrequent. Long-term studies in hypertensive patients are limited. Short-acting agents such as nifedipine have been associated with an increased cardiovascular risk in some, but not all studies. These agents also probably create a compliance problem for hypertensive patients because of the need for multiple daily doses and their unpleasant side effects, e.g., ankle edema, palpitations, and flushing. Therefore, they are not useful or indicated for the treatment of hypertensive patients. No data have suggested that long-acting dihydropyridines or nondihydropyridine calcium channel blockers share the same fate. Indeed, several lines of evidence suggest the opposite: they have a cardioprotective effect. However, definitive information will require the completion of several long-term trials, including ALLHAT, CONVINCE, HOT, INSIGHT and NORDIL. Finally, it is important to reflect on the lessons learned from the controversy associated with the potential risks of calcium channel blockers. First, disagreements are common when one uses case-controlled studies and are reflective of the poor precision of the methods used. What is statistically relevant in one study may not hold true for another and may have no clinical relevance, particularly if the relative risk is less than 2. Investigators need to temper their enthusiasm to reflect this reality. Second, at the cutting edge of science there is probably relatively little agreement about what is correct among equally competent scientists. All have bias in their positions and should both recognize and admit so to themselves and their

  10. Tests of the relative roles of calcium channels and calcium pumps in controlling gravity-directed development in single spore cells of the fern Ceratopteris richardii

    NASA Astrophysics Data System (ADS)

    Roux, Stanley; Porterfield, D. Marshall; Haque, Aeraj Ul; Bushart, Thomas

    The vector of gravity sets the direction of polarized development of single spore cells of the fern Ceratopteris richardii after light initiates their germination. Gravity also sets the direction of a trans-cell calcium current, which enters the cell along its bottom and exits it from its top. The direction of this current predicts the subsequent direction of spore development, and blocking this current with calcium channel blockers randomizes the direction of subsequent development. Recently the laboratory of D. Marshall Porterfield (Purdue University) developed a microchip device that can measure the direction and magnitude of the trans-spore calcium current in real time. Our laboratory in collaboration with Porterfield's recently found that this current inverts rapidly when the cells are turned upside down and that the magnitude of the current rises and falls with the magnitude of the g-force when these cells are tested in parabolic flight on the DC-9 aircraft. We assume that the gravity-directed entry of calcium into these cells is through calcium channels and its exit is through calcium pumps. Here we report our studies of a calcium pump that is highly expressed in the spores during the period when gravity is setting the direction of the calcium current, and we describe pharmacological tests of the relative importance of calcium pumps in maintaining the calcium current and in controlling the direction of subsequent spore development. We found that inhibitors that block the activity of calcium pumps also greatly depress the trans-cell current, but, surprisingly, have little effect on the ability of gravity to set the direction of spore development. These results, in combination with earlier findings, indicate that the gravity-directed opening of calcium channels along the bottom of spore cells plays a more important role in directing subsequent spore development than the activity of calcium pumps, despite the importance of these pumps in maintaining the trans

  11. Calcium Channel Antagonists as Disease-Modifying Therapy for Parkinson's Disease: Therapeutic Rationale and Current Status.

    PubMed

    Swart, Tara; Hurley, Michael J

    2016-12-01

    Parkinson's disease is a disabling hypokinetic neurological movement disorder in which the aetiology is unknown in the majority of cases. Current pharmacological treatments, though effective at restoring movement, are only symptomatic and do nothing to slow disease progression. Electrophysiological, epidemiological and neuropathological studies have implicated Ca V 1.3 subtype calcium channels in the pathogenesis of the disorder, and drugs with some selectivity for this ion channel (brain-penetrant dihydropyridine calcium channel blockers) are neuroprotective in animal models of the disease. Dihydropyridines have been safely used for decades to treat hypertension and other cardiovascular disorders. A phase II clinical trial found that isradipine was safely tolerated by patients with Parkinson's disease, and a phase III trial is currently underway to determine whether treatment with isradipine is neuroprotective and therefore able to slow the progression of Parkinson's disease. This manuscript reviews the current information about the use of dihydropyridines as therapy for Parkinson's disease and discusses the possible mechanism of action of these drugs, highlighting Ca V 1.3 calcium channels as a potential therapeutic target for neuroprotection in Parkinson's disease.

  12. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.

    PubMed

    Minor, Daniel L; Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.

  13. Modulation of the activity of midbrain central gray substance neurons by calcium channel agonists and antagonists in vitro.

    PubMed

    Yakhnitsa, V A; Pilyavskii, A I; Limansky, Y P; Bulgakova, N V

    1996-01-01

    Changes in the background impulse activity of midbrain central gray substance neurons have been studied on slice preparations from the rat midbrain upon application of calcium-free solution, an activator of calcium channels, BAY-K 8644 (10 nM), organic (verapamil, 40 microM; D600, 10 microM; nifedipine, 1-10 microM; amiloride, 1 microM) and inorganic (Co2+, 1.5 mM) calcium channel blockers. Besides BAY-K 8644, all the substances inhibited most of the neurons studied. Verapamil, BAY-K 8644 and Co2+ also revealed facilitatory effects. Facilitatory action of BAY-K was most effective in silent neurons and in those previously inhibited by amiloride. Latent period values of inhibition in calcium-free solution and upon application of organic and inorganic blockers have the following sequence: D600 > amiloride > verapamil > Co2+ > nifedipine > calcium-free solution. Maximum rise time had the following order: amiloride > D600 > nifedipine > verapamil > Co2+ > calcium-free solution. Complete suppression of the neuronal activity induced by amiloride lasted twice as long as that induced by calcium-free solution, Co2+ and nifedipine, and six times as long as verapamil-induced suppression. Preliminary application of calcium channel blockers reduced facilitatory and increased inhibitory effects of serotonin and substance P. Data obtained are discussed with the supposition in mind that inhibition of the function of calcium channels in central gray substance neurons could be one of the mechanisms underlying the analgesic effect of a series of neurotropic agents after their introduction into this structure.

  14. A Monte Carlo Simulation of Vesicle Exocytosis in the Buffered Diffusion of Calcium Channel Currents

    NASA Astrophysics Data System (ADS)

    Dimcovic, Z.; Eagan, T. P.; Brown, R. W.; Petschek, R. G.; Eppell, S. J.; Yunker, A. M. R.; Sharp, A. H.; McEnery, M. W.

    2001-04-01

    The voltage-dependent opening of calcium channels results in an influx of calcium ions that leads to the fusion of synaptic vesicles with the cell membrane, resulting in the release of neurotransmitters. This allows nerve impulses to be transmitted from one neuron to another. A Monte Carlo model of the three-dimensional diffusion of calcium following a channel opening is employed to estimate the space and time dependence of the calcium density. The effects of fixed and mobile calcium buffers are included, and a tethered nearby vesicle is considered. The importance of the size and location of the vesicle is studied. When the vesicle is ignored, these results are compared with the analytical calculations of Naraghi and Neher and the Monte Carlo calculations of Bennett et al. The finite-vesicle-size analysis offers new insights into the process of neurosecretion. Support: NIH MH55747, AHA 96001250, NSF 0086643, and CWRU Presidential Research Initiative grants.

  15. Gestational hypothyroidism-induced changes in L-type calcium channels of rat aorta smooth muscle and their impact on the responses to vasoconstrictors.

    PubMed

    Sedaghat, Katayoun; Zahediasl, Saleh; Ghasemi, Asghar

    2015-02-01

    Thyroid hormones play an essential role in fetal growth and maternal hypo-thyroidism which leads to cardiovascular deficiency in their offspring. Considering this, we intended to investigate the impact of gestational hypothyroidism on offspring vascular contractibility and possible underlying mechanisms. Hypothyroidism was induced in female rats by administration of 6-n-propyl-2-thiouracil in drinking water (0.02%) till delivery. The offspring aorta smooth muscle (without endothelium) contractile response to KCl (10-100 mM), KCl in the presence of nifedipine (10(-4)-10(-1) µM), phenylephrine (10(-9)-10(-6) M) and finally, phenylephrine and caffeine 100 mM in Ca(2+)-free Krebs were measured. KCl and phenylephrine-induced contractions were considerably lower in gestational hypothyroid (GH) than euthyroid offspring. GH responded to nifedipine with less sensitivity than control. The GH and control groups produced almost equal contraction in respond to phenylephrine and caffeine in Ca(2+)-free Krebs. This study suggests that in hypothyroid offspring L-type Ca(2+) channels are less functional, while intracellular Ca(2+) handling systems are less modified by low levels of maternal thyroid hormones.

  16. Discovery of novel and cardioselective diltiazem-like calcium channel blockers via virtual screening.

    PubMed

    Carosati, Emanuele; Budriesi, Roberta; Ioan, Pierfranco; Ugenti, Maria P; Frosini, Maria; Fusi, Fabio; Corda, Gaetano; Cosimelli, Barbara; Spinelli, Domenico; Chiarini, Alberto; Cruciani, Gabriele

    2008-09-25

    With the effort to discover new chemotypes blocking L-type calcium channels (LTCCs), ligand-based virtual screening was applied with a specific interest toward the diltiazem binding site. Roughly 50000 commercially available compounds served as a database for screening. The filtering through predicted pharmacokinetic properties and structural requirements reduced the initial database to a few compounds for which the similarity was calculated toward two template molecules, diltiazem and 4-chloro-Ncyclopropyl- N-(4-piperidinyl)benzene-sulfonamide, the most interesting hit of a previous screening experiment. For 18 compounds, inotropic and chronotropic activity as well as the vasorelaxant effect on guinea pig were studied "in vitro", and for the most promising, binding studies to the diltiazem site were carried out. The procedure yielded several hits, confirming in silico techniques to be useful for finding new chemotypes. In particular, N-[2-(dimethylamino)ethyl]-3-hydroxy-2-naphthamide, N,Ndimethyl- N'-(2-pyridin-3-ylquinolin-4-yl)ethane-1,2-diamine, 2-[(4-chlorophenyl)(pyridin-2-yl)methoxy]- N,N-dimethylethanamine (carbinoxamine), and 7-[2-(diethylamino)ethoxy]-2H-chromen-2-one revealed interesting activity and binding to the benzothiazepine site.

  17. A double tyrosine motif in the cardiac sodium channel domain III-IV linker couples calcium-dependent calmodulin binding to inactivation gating.

    PubMed

    Sarhan, Maen F; Van Petegem, Filip; Ahern, Christopher A

    2009-11-27

    Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr(1494) and Tyr(1495)) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.

  18. [The alpha2delta subunit of the voltage-dependent calcium channel. A new pharmaceutical target for psychiatry and neurology].

    PubMed

    Wedekind, D; Bandelow, B

    2005-07-01

    Calcium channel blockers are substances used for treating high blood pressure and coronary heart disease. New medications have been developed that modulate calcium channels but also show promise in psychiatric and neurologic applications. Gabapentin and pregabalin bind to a subunit of calcium channels--the alpha2delta receptors--thereby reducing calcium influx to neurons. As a result, less glutamate is released from nerve endings that use excitatory amino acids as transmitters. This in turn reduces substance P-related activation of AMPA heteroreceptors on noradrenergic synapses, total transmitter release, and finally neuronal activity. That mechanism is the probable explanation for gabapentin's and pregabalin's usefulness in the treatment of neuropathic pain but also their possible anticonvulsive and anxiolytic effects.

  19. The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P.

    PubMed Central

    Mayer, E A; Loo, D D; Snape, W J; Sachs, G

    1990-01-01

    1. The regulation of Ca2(+)-activated K+ channels by the agonist substance P in freshly dissociated smooth muscle cells from the rabbit longitudinal colonic muscle was characterized using the patch clamp technique. 2. In the cell-attached recording mode, when pipette and bath solutions contained equal [K+] (126 mM), the Ca2(+)-activated K+ channels showed a linear current-voltage relationship (between -50 mV and 50 mV) with a slope conductance of 210 +/- 35 pS (n = 12). Reversal potential measurements indicated that the channel was highly selective for K+ over Na+ (PK/PNa = 110). 3. Channels were activated by depolarizing membrane voltages and cytosolic Ca2+, and in inside-out patches channel activation depended sigmoidally on voltage and [Ca2+]. The potential for half-activation at a cytosolic [Ca2+] of 5 x 10(-6) M was 0 mV. A tenfold increase in cytosolic Ca2+ resulted in a 60 mV shift of the sigmoidal voltage activation curve to more negative potentials. 4. Threshold concentrations of substance P (10(-12) M), which did not result in cell contraction, caused a prolonged activation of K+ channels. The K+ channels were observed to open in clusters: simultaneous opening of multiple channels was interrupted by complete, prolonged channel closure. 5. Lowering bath [Ca2+] to submicromolar concentrations abolished the effect of substance P. The activation of K+ channels by substance P (10(-12) M) was also inhibited by the dihydropyridine nifedipine (10(-6) M), a blocker of L-type Ca2+ channels. 6. In the whole-cell recording mode, with the pipette solution containing 126 mM-KCl, 0.77 mM-EGTA and 1 mM-ATP, depolarization from a holding potential of -70 mV elicited outward currents which increased to steady-state values. These were K+ currents as they were blocked by TEA (tetraethylammonium, 30 mM) and Ba2+ (1 mM) and were abolished when pipette K+ was replaced by Cs+. 7. The depolarization-activated outward current was not affected by lowering extracellular [Ca2+] or by

  20. Calcium signaling in immune cells

    PubMed Central

    Vig, Monika; Kinet, Jean-Pierre

    2010-01-01

    Calcium acts as a second messenger in many cell types, including lymphocytes. Resting lymphocytes maintain a low concentration of Ca2+. However, engagement of antigen receptors induces calcium influx from the extracellular space by several routes. A chief mechanism of Ca2+ entry in lymphocytes is through store-operated calcium (SOC) channels. The identification of two important molecular components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium), has allowed genetic and molecular manipulation of the SOC entry pathway. In this review, we highlight advances in the understanding of Ca2+ signaling in lymphocytes with special emphasis on SOC entry. We also discuss outstanding questions and probable future directions of the field. PMID:19088738

  1. The L‐type Ca2+ channel facilitates abnormal metabolic activity in the cTnI‐G203S mouse model of hypertrophic cardiomyopathy

    PubMed Central

    Viola, Helena; Johnstone, Victoria; Cserne Szappanos, Henrietta; Richman, Tara; Tsoutsman, Tatiana; Filipovska, Aleksandra; Semsarian, Christopher

    2016-01-01

    Key points Genetic mutations in cardiac troponin I (cTnI) are associated with development of hypertrophic cardiomyopathy characterized by myocyte remodelling, disorganization of cytoskeletal proteins and altered energy metabolism.The L‐type Ca2+ channel is the main route for calcium influx and is crucial to cardiac excitation and contraction. The channel also regulates mitochondrial function in the heart by a functional communication between the channel and mitochondria via the cytoskeletal network.We find that L‐type Ca2+ channel kinetics are altered in cTnI‐G203S cardiac myocytes and that activation of the channel causes a significantly greater increase in mitochondrial membrane potential and metabolic activity in cTnI‐G203S cardiac myocytes.These responses occur as a result of impaired communication between the L‐type Ca2+ channel and cytoskeletal protein F‐actin, involving decreased movement of actin–myosin and block of the mitochondrial voltage‐dependent anion channel, resulting in a ‘hypermetabolic’ mitochondrial state.We propose that L‐type Ca2+ channel antagonists, such as diltiazem, might be effective in reducing the cardiomyopathy by normalizing mitochondrial metabolic activity. Abstract Genetic mutations in cardiac troponin I (cTnI) account for 5% of families with hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy is associated with disorganization of cytoskeletal proteins and altered energy metabolism. The L‐type Ca2+ channel (ICa‐L) plays an important role in regulating mitochondrial function. This involves a functional communication between the channel and mitochondria via the cytoskeletal network. We investigate the role of ICa‐L in regulating mitochondrial function in 25‐ to 30‐week‐old cardiomyopathic mice expressing the human disease‐causing mutation Gly203Ser in cTnI (cTnI‐G203S). The inactivation rate of ICa‐L is significantly faster in cTnI‐G203S myocytes [cTnI‐G203S: τ1 = 40.68 ± 3.22, n

  2. New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants.

    PubMed

    Cabañero, Francisco J; Martínez-Ballesta, M Carmen; Teruel, José A; Carvajal, Micaela

    2006-02-01

    This study, of how Ca2+ availability (intracellular, extracellular or linked to the membrane) influences the functionality of aquaporins of pepper (Capsicum annuum L.) plants grown under salinity stress, was carried out in plants treated with NaCl (50 mM), CaCl2 (10 mM), and CaCl2 (10 mM) + NaCl (50 mM). For this, water transport through the plasma membrane of isolated protoplasts, and the involvement of aquaporins and calcium (extracellular, intracellular and linked to the membrane) has been determined. After these treatments, it could be seen that the calcium concentration was reduced in the apoplast, in the cells and on the plasma membrane of roots of pepper plants grown under saline conditions; these concentrations were increased or restored when extra calcium was added to the nutrient solution. Protoplasts extracted from plants grown under Ca2+ starvation showed no aquaporin functionality. However, for the protoplasts to which calcium was added, an increase of aquaporin functionality of the plasma membrane was observed [osmotic water permeability (Pf) inhibition after Hg addition]. Interestingly, when verapamil (a Ca2+ channel blocker) was added, no functionality was observed, even when Ca2+ was added with verapamil. Therefore, calcium seems to be involved in plasma membrane aquaporin regulation via a chain of processes within the cell but not by alteration of the stability of the plasma membrane.

  3. Calcium Deficiency of Dark-grown Seedlings of Phaseolus vulgaris L.

    PubMed

    Helms, K

    1971-06-01

    Hypocotyl collapse in dark-grown seedlings of Phaseolus vulgaris cv. Pinto was due to calcium deficiency. There was no evidence of an associated pathogen. The number of seedlings with hypocotyl collapse decreased and the mean hypocotyl length increased when increasing levels of calcium (0-100 micrograms per gram) were supplied in an external nutrient solution to seedlings grown under sterile conditions.When seedlings were supplied with a complete nutrient solution, containing calcium at 100 micrograms per gram, but minus potassium, magnesium, sulfur, nitrogen, or phosphorus, occasional plants developed hypocotyl collapse symptoms; however, the lengths of hypocotyls varied little from those of controls grown in complete nutrient. When the calcium level in the deficient nutrient solutions was raised to 200 micrograms per gram, the number of plants with hypocotyl collapse was reduced markedly.With complete nutrient solution minus calcium, seedlings developed symptoms of calcium deficiency irrespective of seed size, i.e., irrespective of whether or not the seed contained a total calcium content that was low or relatively high.An increase in hypocotyl length in response to an external supply of calcium was obtained with five cultivars of Phaseolus vulgaris L. and with one of Soja max Piper. A similar response to calcium was obtained for epicotyl growth of a cultivar of Vicia faba L., but not for a cultivar of Pisum sativum L.

  4. A dynamic alpha-beta inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening.

    PubMed

    Zhang, Rong; Dzhura, Igor; Grueter, Chad E; Thiel, William; Colbran, Roger J; Anderson, Mark E

    2005-09-01

    L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.

  5. Characterization of selective Calcium-Release Activated Calcium channel blockers in mast cells and T-cells from human, rat, mouse and guinea-pig preparations.

    PubMed

    Rice, Louise V; Bax, Heather J; Russell, Linda J; Barrett, Victoria J; Walton, Sarah E; Deakin, Angela M; Thomson, Sally A; Lucas, Fiona; Solari, Roberto; House, David; Begg, Malcolm

    2013-03-15

    Loss of function mutations in the two key proteins which constitute Calcium-Release Activated Calcium (CRAC) channels demonstrate the critical role of this ion channel in immune cell function. The aim of this study was to demonstrate that inhibition of immune cell activation could be achieved with highly selective inhibitors of CRAC channels in vitro using cell preparations from human, rat, mouse and guinea-pig. Two selective small molecule blockers of CRAC channels; GSK-5498A and GSK-7975A were tested to demonstrate their ability to inhibit mediator release from mast cells, and pro-inflammatory cytokine release from T-cells in a variety of species. Both GSK-5498A and GSK-7975A completely inhibited calcium influx through CRAC channels. This led to inhibition of the release of mast cell mediators and T-cell cytokines from multiple human and rat preparations. Mast cells from guinea-pig and mouse preparations were not inhibited by GSK-5498A or GSK-7975A; however cytokine release was fully blocked from T-cells in a mouse preparation. GSK-5498A and GSK-7975A confirm the critical role of CRAC channels in human mast cell and T-cell function, and that inhibition can be achieved in vitro. The rat displays a similar pharmacology to human, promoting this species for future in vivo research with this series of molecules. Together these observations provide a critical forward step in the identification of CRAC blockers suitable for clinical development in the treatment of inflammatory disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons.

    PubMed

    Power, John M; Sah, Pankaj

    2008-03-19

    Acetylcholine (ACh) is an important modulator of learning, memory, and synaptic plasticity in the basolateral amygdala (BLA) and other brain regions. Activation of muscarinic acetylcholine receptors (mAChRs) suppresses a variety of potassium currents, including sI(AHP), the calcium-activated potassium conductance primarily responsible for the slow afterhyperpolarization (AHP) that follows a train of action potentials. Muscarinic stimulation also produces inositol 1,4,5-trisphosphate (IP(3)), releasing calcium from intracellular stores. Here, we show using whole-cell patch-clamp recordings and high-speed fluorescence imaging that focal application of mAChR agonists evokes large rises in cytosolic calcium in the soma and proximal dendrites in rat BLA projection neurons that are often associated with activation of an outward current that hyperpolarizes the cell. This hyperpolarization results from activation of small conductance calcium-activated potassium (SK) channels, secondary to the release of calcium from intracellular stores. Unlike bath application of cholinergic agonists, which always suppressed the AHP, focal application of ACh often evoked a paradoxical enhancement of the AHP and spike-frequency adaptation. This enhancement was correlated with amplification of the action potential-evoked calcium response and resulted from the activation of SK channels. When SK channels were blocked, cholinergic stimulation always reduced the AHP and spike-frequency adaptation. Conversely, suppression of the sI(AHP) by the beta-adrenoreceptor agonist, isoprenaline, potentiated the cholinergic enhancement of the AHP. These results suggest that competition between cholinergic suppression of the sI(AHP) and cholinergic activation of the SK channels shapes the AHP and spike-frequency adaptation.

  7. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    PubMed

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  8. Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels

    PubMed Central

    Sribnick, Eric A.; Del Re, Angelo M.; Ray, Swapan K.; Woodward, John J.; Banik, Naren L.

    2009-01-01

    Estrogen-mediated neuroprotection is observed in neurodegenerative disease and neurotrauama models; however, determining a mechanism for these effects has been difficult. We propose that estrogen may limit cell death in the nervous system tissue by inhibiting increases in intracellular free Ca2+. Here, we present data using VSC 4.1 cell line, a ventral spinal motoneuron and neuroblastoma hybrid cell line. Treatment with 1 mM glutamate for 24 h induced apoptosis. When cells were pre-treated with 100 nM 17β-estradiol (estrogen) for 1 h and then co-treated with glutamate, apoptotic death was significantly attenuated. Estrogen also prevented glutamate-mediated changes in resting membrane potential and membrane capacitance. Treatment with either 17α-estradiol or cell impermeable estrogen did not mimic the findings seen with estrogen. Glutamate treatment significantly increased both intracellular free Ca2+ and the activities of downstream proteases such as calpain and caspase-3. Estrogen attenuated both the increases in intracellular free Ca2+ and protease activities. In order to determine the pathway responsible for estrogen-mediated inhibition of these increases in intracellular free Ca2+, cells were treated with several Ca2+ entry inhibitors, but only the L-type Ca2+ channel blocker nifedipine demonstrated cytoprotective effects comparable to estrogen. To expand these findings, cells were treated with the L-type Ca2+ channel agonist FPL 64176, which increased both cell death and intracellular free Ca2+, and estrogen inhibited both effects. From these observations, we conclude that estrogen limits glutamate-induced cell death in VSC 4.1 cells through effects on L-type Ca2+ channels, inhibiting Ca2+ influx as well as activation of the pro-apoptotic proteases calpain and caspase-3. PMID:19389388

  9. Calcium channel modulation as a target in chronic pain control

    PubMed Central

    Montagut‐Bordas, Carlota; Dickenson, Anthony H

    2017-01-01

    Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first‐in‐class synthetic version of ω‐conotoxin MVIIA, a peptide blocker of Cav2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use‐dependent block of Cav2.2 channels; activation state‐dependent blockers were hypothesized to circumvent the side effects of state‐independent blockers by selectively targeting high‐frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state‐dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans‐aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus‐evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant‐based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench‐to‐bedside translation of calcium channel modulators. Linked Articles This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http

  10. Conservation of cardiac L-type Ca2+ channels and their regulation in Drosophila: A novel genetically-pliable channelopathic model.

    PubMed

    Limpitikul, Worawan B; Viswanathan, Meera C; O'Rourke, Brian; Yue, David T; Cammarato, Anthony

    2018-04-21

    Dysregulation of L-type Ca 2+ channels (LTCCs) underlies numerous cardiac pathologies. Understanding their modulation with high fidelity relies on investigating LTCCs in their native environment with intact interacting proteins. Such studies benefit from genetic manipulation of endogenous channels in cardiomyocytes, which often proves cumbersome in mammalian models. Drosophila melanogaster, however, offers a potentially efficient alternative as it possesses a relatively simple heart, is genetically pliable, and expresses well-conserved genes. Fluorescence in situ hybridization confirmed an abundance of Ca-α1D and Ca-α1T mRNA in fly myocardium, which encode subunits that specify hetero-oligomeric channels homologous to mammalian LTCCs and T-type Ca 2+ channels, respectively. Cardiac-specific knockdown of Ca-α1D via interfering RNA abolished cardiac contraction, suggesting Ca-α1D (i.e. A1D) represents the primary functioning Ca 2+ channel in Drosophila hearts. Moreover, we successfully isolated viable single cardiomyocytes and recorded Ca 2+ currents via patch clamping, a feat never before accomplished with the fly model. The profile of Ca 2+ currents recorded in individual cells when Ca 2+ channels were hypomorphic, absent, or under selective LTCC blockage by nifedipine, additionally confirmed the predominance of A1D current across all activation voltages. T-type current, activated at more negative voltages, was also detected. Lastly, A1D channels displayed Ca 2+ -dependent inactivation, a critical negative feedback mechanism of LTCCs, and the current through them was augmented by forskolin, an activator of the protein kinase A pathway. In sum, the Drosophila heart possesses a conserved compendium of Ca 2+ channels, suggesting that the fly may serve as a robust and effective platform for studying cardiac channelopathies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization.

    PubMed

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-04-01

    The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.

  12. Antibodies to voltage-gated potassium and calcium channels in epilepsy.

    PubMed

    Majoie, H J Marian; de Baets, Mark; Renier, Willy; Lang, Bethan; Vincent, Angela

    2006-10-01

    To determine the prevalence of antibodies to ion channels in patients with long standing epilepsy. Although the CNS is thought to be protected from circulating antibodies by the blood brain barrier, glutamate receptor antibodies have been reported in Rasmussen's encephalitis, glutamic acid decarboxylase (GAD) antibodies have been found in a few patients with epilepsy, and antibodies to voltage-gated potassium channels (VGKC) have been found in a non-paraneoplastic form of limbic encephalitis (with amnesia and seizures) that responds to immunosuppressive therapy. We retrospectively screened sera from female epilepsy patients (n=106) for autoantibodies to VGKC (Kv 1.1, 1.2 or 1.6), voltage-gated calcium channels (VGCC) (P/Q-type), and GAD. All positive results, based on the values of control data [McKnight, K., Jiang, Y., et al. (2005). Serum antibodies in epilepsy and seizure-associated disorders. Neurology 65, 1730-1735], were retested at lower serum concentrations, and results compared with previously published control data. Demographics, medical history, and epilepsy related information was gathered. The studied group consisted predominantly of patients with long standing drug resistant epilepsy. VGKC antibodies were raised (>100 pM) in six patients. VGCC antibodies (>45 pM) were slightly raised in only one patient. GAD antibodies were <3 U/ml in all patients. The clinical features of the patients with VGKC antibodies differed from previously described patients with limbic encephalitis-like syndrome, and were not different with respect to seizure type, age at first seizure, duration of epilepsy, or use of anti-epileptic drugs from the VGKC antibody negative patients. The results demonstrate that antibodies to VGKC are present in 6% of patients with typical long-standing epilepsy, but whether these antibodies are pathogenic or secondary to the primary disease process needs to be determined.

  13. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    PubMed

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.

  14. Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus.

    PubMed

    Browne, Austin; O'Donnell, Michael J

    2018-01-01

    Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca 2+ within internal calcium stores (Ca-rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion-selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca 2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca 2+ transport was specific to midtubule segments, where 97% of the Ca 2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage-gated (L-type) calcium channels decreased Ca 2+ influx ≥fivefold in adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated tubules, suggesting basolateral Ca 2+ influx is facilitated by voltage-gated Ca 2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca 2+ had opposite effects on tubule Ca 2+ transport. The adenylyl cyclase-cAMP-PKA pathway promotes Ca 2+ sequestration whereas both 5-hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca 2+ sequestration through stimulatory (cAMP) and inhibitory (Ca 2+ ) regulatory pathways. © 2017 Wiley Periodicals, Inc.

  15. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    PubMed

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  16. Long-term blockade of L/N-type Ca2+ channels by cilnidipine ameliorates repolarization abnormality of the canine hypertrophied heart

    PubMed Central

    Takahara, A; Nakamura, Y; Wagatsuma, H; Aritomi, S; Nakayama, A; Satoh, Y; Akie, Y; Sugiyama, A

    2009-01-01

    Background and purpose: The heart of the canine model of chronic atrioventricular block is known to have a ventricular electrical remodelling, which mimics the pathophysiology of long QT syndrome. Using this model, we explored a new pharmacological therapeutic strategy for the prevention of cardiac sudden death. Experimental approach: The L-type Ca2+ channel blocker amlodipine (2.5 mg·day−1), L/N-type Ca2+ channel blocker cilnidipine (5 mg·day−1), or the angiotensin II receptor blocker candesartan (12 mg·day−1) was administered orally to the dogs with chronic atrioventricular block for 4 weeks. Electropharmacological assessments with the monophasic action potential (MAP) recordings and blood sample analyses were performed before and 4 weeks after the start of drug administration. Key results: Amlodipine and cilnidipine decreased the blood pressure, while candesartan hardly affected it. The QT interval, MAP duration and beat-to-beat variability of the ventricular repolarization period were shortened only in the cilnidipine group, but such effects were not observed in the amlodipine or candesartan group. Plasma concentrations of adrenaline, angiotensin II and aldosterone decreased in the cilnidipine group. In contrast, plasma concentrations of angiotensin II and aldosterone were elevated in the amlodipine group, whereas in the candesartan group an increase in plasma levels of angiotensin II and a decrease in noradrenaline and adrenaline concentrations were observed. Conclusions and implications: Long-term blockade of L/N-type Ca2+ channels ameliorated the ventricular electrical remodelling in the hypertrophied heart which causes the prolongation of the QT interval. This could provide a novel therapeutic strategy for the treatment of cardiovascular diseases. PMID:19785655

  17. Non-Selective Calcium Channel Blocker Bepridil Decreases Secondary Pathology in Mice after Photothrombotic Cortical Lesion

    PubMed Central

    Lipsanen, Anu; Flunkert, Stefanie; Kuptsova, Kristina; Hiltunen, Mikko; Windisch, Manfred; Hutter-Paier, Birgit; Jolkkonen, Jukka

    2013-01-01

    Experimental studies have identified a complex link between neurodegeneration, β-amyloid (Aβ) and calcium homeostasis. Here we asked whether early phase β-amyloid pathology in transgenic hAPPSL mice exaggerates the ischemic lesion and remote secondary pathology in the thalamus, and whether a non-selective calcium channel blocker reduces these pathologies. Transgenic hAPPSL (n = 33) and non-transgenic (n = 30) male mice (4–5 months) were subjected to unilateral cortical photothrombosis and treated with the non-selective calcium channel blocker bepridil (50 mg/kg, p.o., once a day) or vehicle for 28 days, starting administration 2 days after the operation. Animals were then perfused for histological analysis of infarct size, Aβ and calcium accumulation in the thalamus. Cortical photothrombosis resulted in a small infarct, which was associated with atypical Aβ and calcium accumulation in the ipsilateral thalamus. Transgenic mice had significantly smaller infarct volumes than non-transgenic littermates (P<0.05) and ischemia-induced rodent Aβ accumulation in the thalamus was lower in transgenic mice compared to non-transgenic mice (P<0.01). Bepridil decreased calcium load in the thalamus (P<0.01). The present data suggest less pronounced primary and secondary pathology in hAPPSL transgenic mice after ischemic cortical injury. Bepridil particularly decreased calcium pathology in the thalamus following ischemia. PMID:23555933

  18. Ursodeoxycholic acid prevents ventricular conduction slowing and arrhythmia by restoring T-type calcium current in fetuses during cholestasis.

    PubMed

    Adeyemi, Oladipupo; Alvarez-Laviada, Anita; Schultz, Francisca; Ibrahim, Effendi; Trauner, Michael; Williamson, Catherine; Glukhov, Alexey V; Gorelik, Julia

    2017-01-01

    Increased maternal serum bile acid concentrations in intrahepatic cholestasis of pregnancy (ICP) are associated with fetal cardiac arrhythmias. Ursodeoxycholic acid (UDCA) has been shown to demonstrate anti-arrhythmic properties via preventing ICP-associated cardiac conduction slowing and development of reentrant arrhythmias, although the cellular mechanism is still being elucidated. High-resolution fluorescent optical mapping of electrical activity and electrocardiogram measurements were used to characterize effects of UDCA on one-day-old neonatal and adult female Langendorff-perfused rat hearts. ICP was modelled by perfusion of taurocholic acid (TC, 400μM). Whole-cell calcium currents were recorded from neonatal rat and human fetal cardiomyocytes. TC significantly prolonged the PR interval by 11.0±3.5% (P<0.05) and slowed ventricular conduction velocity (CV) by 38.9±5.1% (P<0.05) exclusively in neonatal and not in maternal hearts. A similar CV decline was observed with the selective T-type calcium current (ICa,T) blocker mibefradil 1μM (23.0±6.2%, P<0.05), but not with the L-type calcium current (ICa,L) blocker nifedipine 1μM (6.9±6.6%, NS). The sodium channel blocker lidocaine (30μM) reduced CV by 60.4±4.5% (P<0.05). UDCA co-treatment was protective against CV slowing induced by TC and mibefradil, but not against lidocaine. UDCA prevented the TC-induced reduction in the ICa,T density in both isolated human fetal (-10.2±1.5 versus -5.5±0.9 pA/pF, P<0.05) and neonatal rat ventricular myocytes (-22.3±1.1 versus -9.6±0.8 pA/pF, P<0.0001), whereas UDCA had limited efficacy on the ICa,L. Our findings demonstrate that ICa,T plays a significant role in ICP-associated fetal cardiac conduction slowing and arrhythmogenesis, and is an important component of the fetus-specific anti-arrhythmic activity of UDCA.

  19. Ursodeoxycholic acid prevents ventricular conduction slowing and arrhythmia by restoring T-type calcium current in fetuses during cholestasis

    PubMed Central

    Adeyemi, Oladipupo; Alvarez-Laviada, Anita; Schultz, Francisca; Ibrahim, Effendi; Trauner, Michael; Williamson, Catherine; Glukhov, Alexey V.

    2017-01-01

    Background Increased maternal serum bile acid concentrations in intrahepatic cholestasis of pregnancy (ICP) are associated with fetal cardiac arrhythmias. Ursodeoxycholic acid (UDCA) has been shown to demonstrate anti-arrhythmic properties via preventing ICP-associated cardiac conduction slowing and development of reentrant arrhythmias, although the cellular mechanism is still being elucidated. Methods High-resolution fluorescent optical mapping of electrical activity and electrocardiogram measurements were used to characterize effects of UDCA on one-day-old neonatal and adult female Langendorff-perfused rat hearts. ICP was modelled by perfusion of taurocholic acid (TC, 400μM). Whole-cell calcium currents were recorded from neonatal rat and human fetal cardiomyocytes. Results TC significantly prolonged the PR interval by 11.0±3.5% (P<0.05) and slowed ventricular conduction velocity (CV) by 38.9±5.1% (P<0.05) exclusively in neonatal and not in maternal hearts. A similar CV decline was observed with the selective T-type calcium current (ICa,T) blocker mibefradil 1μM (23.0±6.2%, P<0.05), but not with the L-type calcium current (ICa,L) blocker nifedipine 1μM (6.9±6.6%, NS). The sodium channel blocker lidocaine (30μM) reduced CV by 60.4±4.5% (P<0.05). UDCA co-treatment was protective against CV slowing induced by TC and mibefradil, but not against lidocaine. UDCA prevented the TC-induced reduction in the ICa,T density in both isolated human fetal (−10.2±1.5 versus −5.5±0.9 pA/pF, P<0.05) and neonatal rat ventricular myocytes (−22.3±1.1 versus −9.6±0.8 pA/pF, P<0.0001), whereas UDCA had limited efficacy on the ICa,L. Conclusion Our findings demonstrate that ICa,T plays a significant role in ICP-associated fetal cardiac conduction slowing and arrhythmogenesis, and is an important component of the fetus-specific anti-arrhythmic activity of UDCA. PMID:28934223

  20. Calcium channel blockers as the treatment of choice for hypertension in renal transplant recipients: fact or fiction.

    PubMed

    Baroletti, Steven A; Gabardi, Steven; Magee, Colm C; Milford, Edgar L

    2003-06-01

    Posttransplantation hypertension has been identified as an independent risk factor for chronic allograft dysfunction and loss. Based on available morbidity and mortality data, posttransplantation hypertension must be identified and managed appropriately. During the past decade, calcium channel blockers have been recommended by some as the antihypertensive agents of choice in this population, because it was theorized that their vasodilatory effects would counteract the vasoconstrictive effects of the calcineurin inhibitors. With increasing data becoming available, reexamining the use of traditional antihypertensive agents, including diuretics and beta-blockers, or the newer agents, angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers, may be beneficial. Transplant clinicians must choose antihypertensive agents that will provide their patients with maximum benefit, from both a renal and a cardiovascular perspective. Beta-blockers, diuretics, and ACE inhibitors have all demonstrated significant benefit on morbidity and mortality in patients with cardiovascular disease. Calcium channel blockers have been shown to possess the ability to counteract cyclosporine-induced nephrotoxicity. When compared with beta-blockers, diuretics, and ACE inhibitors, however, the relative risk of cardiovascular events is increased with calcium channel blockers. With the long-term benefits of calcium channel blockers on the kidney unknown and a negative cardiovascular profile, these agents are best reserved as adjunctive therapy to beta-blockers, diuretics, and ACE inhibitors.

  1. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans.

    PubMed

    Schafer, W R; Kenyon, C J

    1995-05-04

    Processing and storage of information by the nervous system requires the ability to modulate the response of excitable cells to neurotransmitter. A simple process of this type, known as adaptation or desensitization, occurs when prolonged stimulation triggers processes that attenuate the response to neurotransmitter. Here we report that the Caenorhabditis elegans gene unc-2 is required for adaptation to two neurotransmitters, dopamine and serotonin. A loss-of-function mutation in unc-2 resulted in failure to adapt either to paralysis by dopamine or to stimulation of egg laying by serotonin. In addition, unc-2 mutants displayed behaviours similar to those induced by serotonin treatment. We found that unc-2 encodes a homologue of a voltage-sensitive calcium-channel alpha-1 subunit. Expression of unc-2 occurs in two types of neurons implicated in the control of egg laying, a behaviour regulated by serotonin. Unc-2 appears to be required in modulatory neurons to downregulate the response of the egg-laying muscles to serotonin. We propose that adaptation to serotonin occurs through activation of an Unc-2-dependent calcium influx, which modulates the postsynaptic response to serotonin, perhaps by inhibiting the release of a potentiating neuropeptide.

  2. Contributions of two types of calcium channels to synaptic transmission and plasticity.

    PubMed

    Edmonds, B; Klein, M; Dale, N; Kandel, E R

    1990-11-23

    In Aplysia sensory and motor neurons in culture, the contributions of the major classes of calcium current can be selectively examined while transmitter release and its modulation are examined. A slowly inactivating, dihydropyridine-sensitive calcium current does not contribute either to normal synaptic transmission or to any of three different forms of plasticity: presynaptic inhibition, homosynaptic depression, and presynaptic facilitation. This current does contribute, however, to a fourth form of plasticity--modulation of transmitter release by tonic depolarization of the sensory neuron. By contrast, a second calcium current, which is rapidly inactivating and dihydropyridine-insensitive, contributes to release elicited by the transient depolarization of an action potential and to the other three forms of plasticity.

  3. Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle.

    PubMed

    Bowles, D K; Maddali, K K; Ganjam, V K; Rubin, L J; Tharp, D L; Turk, J R; Heaps, C L

    2004-11-01

    Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.

  4. The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton.

    PubMed

    Hohaus, Annette; Person, Veronika; Behlke, Joachim; Schaper, Jutta; Morano, Ingo; Haase, Hannelore

    2002-08-01

    Ahnak is a ubiquitously expressed giant protein of 5643 amino acids implicated in cell differentiation and signal transduction. In a recent study, we demonstrated the association of ahnak with the regulatory beta2 subunit of the cardiac L-type Ca2+ channel. Here we identify the most carboxyl-terminal ahnak region (aa 5262-5643) to interact with recombinant beta2a as well as with beta2 and beta1a isoforms of native muscle Ca2+ channels using a panel of GST fusion proteins. Equilibrium sedimentation analysis revealed Kd values of 55 +/- 11 nM and 328 +/- 24 nM for carboxyl-terminal (aa 195-606) and amino-terminal (aa 1-200) truncates of the beta2a subunit, respectively. The same carboxyl-terminal ahnak region (aa 5262-5643) bound to G-actin and cosedimented with F-actin. Confocal microscopy of human left ventricular tissue localized the carboxyl-terminal ahnak portion to the sarcolemma including the T-tubular system and the intercalated disks of cardiomyocytes. These results suggest that ahnak provides a structural basis for the subsarcolemmal cytoarchitecture and confers the regulatory role of the actin-based cytoskeleton to the L-type Ca2+ channel.

  5. Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance[C][W

    PubMed Central

    Finka, Andrija; Cuendet, America Farinia Henriquez; Maathuis, Frans J.M.; Saidi, Younousse; Goloubinoff, Pierre

    2012-01-01

    Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca2+ channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca2+ influx and altered Ca2+ signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca2+ channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca2+ channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca2+ channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance. PMID:22904147

  6. Effect of Cavβ Subunits on Structural Organization of Cav1.2 Calcium Channels

    PubMed Central

    Duong, Son Q.; Thomas, Sam; Harry, Jo Beth; Patel, Chirag; Lao, Qi Zong; Soldatov, Nikolai M.

    2009-01-01

    Background Voltage-gated Cav1.2 calcium channels play a crucial role in Ca2+ signaling. The pore-forming α1C subunit is regulated by accessory Cavβ subunits, cytoplasmic proteins of various size encoded by four different genes (Cavβ1 - β4) and expressed in a tissue-specific manner. Methods and Results Here we investigated the effect of three major Cavβ types, β1b, β2d and β3, on the structure of Cav1.2 in the plasma membrane of live cells. Total internal reflection fluorescence microscopy showed that the tendency of Cav1.2 to form clusters depends on the type of the Cavβ subunit present. The highest density of Cav1.2 clusters in the plasma membrane and the smallest cluster size were observed with neuronal/cardiac β1b present. Cav1.2 channels containing β3, the predominant Cavβ subunit of vascular smooth muscle cells, were organized in a significantly smaller number of larger clusters. The inter- and intramolecular distances between α1C and Cavβ in the plasma membrane of live cells were measured by three-color FRET microscopy. The results confirm that the proximity of Cav1.2 channels in the plasma membrane depends on the Cavβ type. The presence of different Cavβ subunits does not result in significant differences in the intramolecular distance between the termini of α1C, but significantly affects the distance between the termini of neighbor α1C subunits, which varies from 67 Å with β1b to 79 Å with β3. Conclusions Thus, our results show that the structural organization of Cav1.2 channels in the plasma membrane depends on the type of Cavβ subunits present. PMID:19492014

  7. Modulatory mechanisms and multiple functions of somatodendritic A-type K (+) channel auxiliary subunits.

    PubMed

    Jerng, Henry H; Pfaffinger, Paul J

    2014-01-01

    Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders.

  8. Hyperinsulin therapy for calcium channel antagonist poisoning: a seven-year retrospective study.

    PubMed

    Espinoza, Tamara R; Bryant, Sean M; Aks, Steve E

    2013-01-01

    The use of hyperinsulin therapy (HIT) in severe calcium channel antagonist (CCA) poisoning has become a more common therapy within the last decade. The objective of this study is to report 7 years of experience recommending HIT. This was a retrospective chart review utilizing our regional poison center (RPC) data from January 1, 2002, through December 31, 2008. All cases of CCA poisoning receiving HIT were searched. Endpoints included the number of CCA cases utilizing HIT, insulin dose, time of initiation of HIT, patient outcome, adverse events, age, glucose concentration, and lowest systolic blood pressure recorded. Forty-six cases of CCA poisoning were managed with HIT over 7 years. All the patients received standard antidotal therapy (= intravenous fluids, calcium salts, glucagon, and pressors). HIT administration followed our RPC recommendation 23 times (50%), and no hypoglycemic events occurred. Means (age, highest glucose measured, and lowest systolic blood pressure measured) were 51 years, 282 mg/dL, and 74 mm Hg, respectively. Our RPC recommendations for HIT were followed 50% of the time over the last 7 years. In light of the lack of hypoglycemia associated with HIT in our study population, we recommend HIT as an early and safe antidote in significant CCA poisoning.

  9. Computational model based approach to analysis ventricular arrhythmias: Effects of dysfunction calcium channels

    NASA Astrophysics Data System (ADS)

    Gulothungan, G.; Malathi, R.

    2018-04-01

    Disturbed sodium (Na+) and calcium (Ca2+) handling is known to be a major predisposing factor for life-threatening cardiac arrhythmias. Cardiac contractility in ventricular tissue is prominent by Ca2+ channels like voltage dependent Ca2+ channels, sodium-calcium exchanger (Na+-Ca2+x) and sacroplasmicrecticulum (SR) Ca2+ pump and leakage channels. Experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. Our aim of this article is to study the impact on action potential (AP) generation and propagation in single ventricular myocyte and ventricular tissue under different dysfunction Ca2+ channels condition. In enhanced activity of Na+-Ca2+x, single myocyte produces AP duration (APD90) and APD50 is significantly smaller (266 ms and 235 ms). Its Na+-Ca2+x current at depolarization is increases 60% from its normal level and repolarization current goes more negative (nonfailing= -0.28 pA/pF and failing= -0.47 pA/pF). Similarly, same enhanced activity of Na+-Ca2+x in 10 mm region of ventricular sheet, raises the plateau potential abruptly, which ultimately affects the diastolic repolarization. Compare with normal ventricular sheet region of 10 mm, 10% of ventricular sheet resting state is reduces and ventricular sheet at time 250 ms is goes to resting state very early. In hypertrophy condition, single myocyte produces APD90 and APD50 is worthy of attention smaller (232 mS and 198 ms). Its sodium-potassium (Na+-K+) pump current is 75% reduces from its control conditions (0.13 pA/pF). Hypertrophy condition, 50% of ventricular sheet is reduces to minimum plateau potential state, that starts the repolarization process very early and reduces the APD. In a single failing SR Ca2+ channels myocyte, recovery of Ca2+ concentration level in SR reduces upto 15% from its control myocytes. At time 290 ms, 70% of ventricular sheet

  10. Sarcoplasmic Reticulum Calcium Release Channels in Ventricles of Older Adult Hamsters

    ERIC Educational Resources Information Center

    Nicholl, Peter A.; Howlett, Susan E.

    2006-01-01

    Whether the density of sarcoplasmic reticulum (SR) calcium release channels/ryanodine receptors in the heart declines with age is not clear. We investigated age-related changes in the density of [3H]-ryanodine receptors in crude ventricular homogenates, which contained all ligand binding sites in heart and in isolated junctional SR membranes.…

  11. A new candidate of calcium channel blocker in silico from Tectona grandis for treatment of gestational hypertension

    NASA Astrophysics Data System (ADS)

    Azizah, A.; Suselo, Y. H.; Muthmainah, M.; Indarto, D.

    2018-05-01

    Gestational Hypertension is one of the three main causes of maternal mortality in Indonesia. Nifedipine which blockes the Cav1.2 calcium channel has frequently been used to treat gestational hypertension. However the efficacy of nifedipine has not been established yet and the prevalence of gestational hypertension is still high (27.1 %). Indonesian herbal plants have potential to be developed as natural drugs. Molecular docking, a computational method, is very often used to depict interaction between molecules and target receptor This study was therefore to identify Indonesian herbal plants that could inhibit the calcium channel in silico. This was a bioinformatics study with molecular docking approach. Three-dimensional structure of human calcium channel Cav1.2 was determined by modelling with rabbit calcium channel (ID:5GJW) as template and using the SWISS MODEL software. Nifedipine was used as a standard ligand and obtained from ZINC database with the access code ZINC19594578. Active compounds of Indonesian herbal plants were registered in HerbalDB database and their molecular structure was obtained from PubChem. Binding affinity of human Cav1.2 model-ligand complexes were assesed using AutoDock Vina 1.1.2 software and visualization of molecular conformation used Chimera 1.10 and PyMol 1.3 softwares. The Lipinsky’s rules of five were used to determine active compounds which fullfilled drug criteria. The human Cav1-2 model had 72.35% sequence identity with rabbit Cav1.1. Nifedipine bound to the human Cav1.2 model with -2.1 kcal/mol binding affinity and had binding sites at Gln1060, Phe1129, Ser1132, and Ile1173 residues. A lower binding affinity was observed in 8 phytochemicals but only obtusifolin 2-glucoside (-2.2 kcal/mol) had similar binding sites as nifedipin did. In addition, obtusifolin 2-glucoside met the Lipinsky criteria and the molecule conformation was similar with nifedipine. From the HerbalDB database, obtusifolin 2-glucoside is found in Tectona

  12. Mechanisms of Pyrethroid Insecticide-Induced Stimulation of Calcium Influx in Neocortical Neurons

    PubMed Central

    Cao, Zhengyu; Shafer, Timothy J.

    2011-01-01

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated calcium channels. Therefore, the present study compared the ability of 11 structurally diverse pyrethroids to evoke Ca2+ influx in primary cultures of mouse neocortical neurons. Nine pyrethroids (tefluthrin, deltamethrin, λ-cyhalothrin, β-cyfluthrin, esfenvalerate, S-bioallethrin, fenpropathrin, cypermethrin, and bifenthrin) produced concentration-dependent elevations in intracellular calcium concentration ([Ca2+]i) in neocortical neurons. Permethrin and resmethrin were without effect on [Ca2+]i. These pyrethroids displayed a range of efficacies on Ca2+ influx; however, the EC50 values for active pyrethroids all were within one order of magnitude. Tetrodotoxin blocked increases in [Ca2+]i caused by all nine active pyrethroids, indicating that the effects depended on VGSC activation. The pathways for deltamethrin- and tefluthrin-induced Ca2+ influx include N-methyl-d-aspartic acid receptors, L-type Ca2+ channels, and reverse mode of operation of the Na+/Ca2+ exchanger inasmuch as antagonists of these sites blocked deltamethrin-induced Ca2+ influx. These data demonstrate that pyrethroids stimulate Ca2+ entry into neurons subsequent to their actions on VGSCs. PMID:20881019

  13. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization

    PubMed Central

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-01-01

    Abstract The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges. PMID:21300746

  14. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  15. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.

    PubMed Central

    Islam, M S; Larsson, O; Nilsson, T; Berggren, P O

    1995-01-01

    In the pancreatic beta-cell, an increase in the cytoplasmic free Ca2+ concentration ([Ca2+]i) by caffeine is believed to indicate mobilization of Ca2+ from intracellular stores, through activation of a ryanodine receptor-like channel. It is not known whether other mechanisms, as well, underlie caffeine-induced changes in [Ca2+]i. We studied the effects of caffeine on [Ca2+]i by using dual-wavelength excitation microfluorimetry in fura-2-loaded beta-cells. In the presence of a non-stimulatory concentration of glucose, caffeine (10-50 mM) consistently increased [Ca2+]i. The effect was completely blocked by omission of extracellular Ca2+ and by blockers of the L-type voltage-gated Ca2+ channel, such as D-600 or nifedipine. Depletion of agonist-sensitive intracellular Ca2+ pools by thapsigargin did not inhibit the stimulatory effect of caffeine on [Ca2+]i. Moreover, this effect of caffeine was not due to an increase in cyclic AMP, since forskolin and 3-isobutyl-1-methylxanthine (IBMX) failed to raise [Ca2+]i in unstimulated beta-cells. In beta-cells, glucose and sulphonylureas increase [Ca2+]i by causing closure of ATP-sensitive K+ channels (KATP channels). Caffeine also caused inhibition of KATP channel activity, as measured in excised inside-out patches. Accordingly, caffeine (> 10 mM) induced insulin release from beta-cells in the presence of a non-stimulatory concentration of glucose (3 mM). Hence, membrane depolarization and opening of voltage-gated L-type Ca2+ channels were the underlying mechanisms whereby the xanthine drug increased [Ca2+]i and induced insulin release. Paradoxically, in glucose-stimulated beta-cells, caffeine (> 10 mM) lowered [Ca2+]i. This effect was due to the fact that caffeine reduced depolarization-induced whole-cell Ca2+ current through the L-type voltage-gated Ca2+ channel in a dose-dependent manner. Lower concentrations of caffeine (2.5-5.0 mM), when added after glucose-stimulated increase in [Ca2+]i, induced fast oscillations in [Ca2

  16. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival

    PubMed Central

    Raphaël, Maylis; Lehen’kyi, V’yacheslav; Vandenberghe, Matthieu; Beck, Benjamin; Khalimonchyk, Sergiy; Vanden Abeele, Fabien; Farsetti, Leonardo; Germain, Emmanuelle; Bokhobza, Alexandre; Mihalache, Adriana; Gosset, Pierre; Romanin, Christoph; Clézardin, Philippe; Skryma, Roman; Prevarskaya, Natalia

    2014-01-01

    Transient receptor potential vanilloid subfamily member 6 (TRPV6) is a highly selective calcium channel that has been considered as a part of store-operated calcium entry (SOCE). Despite its first discovery in the early 2000s, the role of this channel in prostate cancer (PCa) remained, until now, obscure. Here we show that TRPV6 mediates calcium entry, which is highly increased in PCa due to the remodeling mechanism involving the translocation of the TRPV6 channel to the plasma membrane via the Orai1/TRPC1-mediated Ca2+/Annexin I/S100A11 pathway, partially contributing to SOCE. The TRPV6 calcium channel is expressed de novo by the PCa cell to increase its survival by enhancing proliferation and conferring apoptosis resistance. Xenografts in nude mice and bone metastasis models confirmed the remarkable aggressiveness of TRPV6-overexpressing tumors. Immunohistochemical analysis of these demonstrated the increased expression of clinical markers such as Ki-67, prostate specific antigen, synaptophysin, CD31, and CD56, which are strongly associated with a poor prognosis. Thus, the TRPV6 channel acquires its oncogenic potential in PCa due to the remodeling mechanism via the Orai1-mediated Ca2+/Annexin I/S100A11 pathway. PMID:25172921

  17. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    PubMed

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  18. Does calcium influx regulate melatonin production through the circadian pacemaker in chick pineal cells? Effects of nitrendipine, Bay K 8644, Co2+, Mn2+, and low external Ca2+.

    PubMed

    Zatz, M; Mullen, D A

    1988-11-01

    We have recently described a system, using dispersed chick pineal cells in static culture, which displays a persistent, photosensitive, circadian rhythm of melatonin production and release. Here, we describe the effects of nitrendipine (NTR) (a dihydropyridine 'antagonist' of L-type calcium channels), Bay K 8644 (BK) (a dihydropyridine calcium channel 'agonist'), cobalt and manganese ions (both inorganic calcium channel blockers), and low external calcium concentrations, on the melatonin rhythm. NTR inhibited and BK stimulated melatonin output; they were potent and effective. Co2+, Mn2+, and low external Ca2+ markedly inhibited melatonin output. These results support a role for calcium influx through voltage-dependent calcium channels (L-type) in the regulation of melatonin production. Four or 8 h pulses of white light or darkness, in otherwise constant red light, cause, in addition to acute effects, phase-dependent phase shifts of the melatonin rhythm in subsequent cycles. Such phase shifts indicate an effect on (proximal to) the pacemaker generating the rhythm. Four or 8 h pulses of NTR, BK, Co2+, or low Ca2+, however, did not appreciably alter the phase of subsequent melatonin cycles. Neither did BK interfere with phase shifts induced by light pulses. Mn2+ pulses did induce phase-dependent phase shifts, but, unlike those evoked by light or dark pulses, these were all delays. Such effects of Mn2+ in other systems have been attributed to, and are characteristic of, 'metabolic inhibitors'. On balance, the results fail to support a prominent role for calcium influx in regulating the pacemaker underlying the circadian rhythm in chick pineal cells. Rather, calcium influx appears to regulate melatonin production primarily by acting on the melatonin-synthesizing apparatus, distal to the pacemaker.

  19. Geraniol improves the impaired vascular reactivity in diabetes and metabolic syndrome through calcium channel blocking effect.

    PubMed

    El-Bassossy, Hany M; Elberry, Ahmed A; Ghareib, Salah A

    2016-08-01

    The aim of the present study is to investigate the effect and possible mechanism of action of geraniol on the impaired vascular reactivity of aortic rings isolated from diabetes or metabolic syndrome (MS) -induced rats. Male Wistar rats were divided into control, type 1 diabetes and metabolic syndrome (MS) groups. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50mg/kg) and left for 10weeks to develop vascular complications. MS was induced by adding 10% fructose and 3% salt to water and diet for 12weeks. The present study investigated the effect of in vitro incubation with geraniol (10-300μM) on the vasoconstrictor response to phenylephrine (PE) and the vasodilator response to acetylcholine (ACh) as well as its effect on aortae incubated with methylglyoxal (MG) as an advanced glycation end product (AGE). To investigate the mechanism of action of geraniol, different blockers are used, including Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, 100μM), tetraethylammonium chloride (TEA, 10mM), and indomethacin (INDO, 5μM). Moreover, the effect of calcium chloride (CaCl2) on aortic rings precontracted with PE or potassium chloride (KCl) was examined. Thirty minutes incubation with geraniol alleviated the exaggerated vasoconstriction in aortae isolated from diabetic or MS animals or in vitro exposed to MG in a concentration-dependent manner. In addition, geraniol improved the vasodilatation response of diabetic or MS aortae or aortae exposed to MG. In search for the mechanism; geraniol produced concentration-dependent relaxation of both PE and KCl-precontracted aorta. Geraniol relaxation was not affected by L-NAME, INDO or TEA. However, geraniol significantly inhibited voltage dependent and receptor mediated Ca(2+)-induced contraction activated by KCl or PE respectively. In conclusion, geraniol ameliorates impaired vascular reactivity in experimentally induced diabetes and MS. The effect may be partially attributed to an

  20. Magnolol and honokiol regulate the calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli-induced diarrhea mice.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe

    2015-05-15

    To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The novel product of a five-exon stargazin-related gene abolishes CaV2.2 calcium channel expression

    PubMed Central

    Moss, Fraser J.; Viard, Patricia; Davies, Anthony; Bertaso, Federica; Page, Karen M.; Graham, Alex; Cantí, Carles; Plumpton, Mary; Plumpton, Christopher; Clare, Jeffrey J.; Dolphin, Annette C.

    2002-01-01

    We have cloned and characterized a new member of the voltage-dependent Ca2+ channel γ subunit family, with a novel gene structure and striking properties. Unlike the genes of other potential γ subunits identified by their homology to the stargazin gene, CACNG7 is a five-, and not four-exon gene whose mRNA encodes a protein we have designated γ7. Expression of human γ7 has been localized specifically to brain. N-type current through CaV2.2 channels was almost abolished when co-expressed transiently with γ7 in either Xenopus oocytes or COS-7 cells. Furthermore, immunocytochemistry and western blots show that γ7 has this effect by causing a large reduction in expression of CaV2.2 rather than by interfering with trafficking or biophysical properties of the channel. No effect of transiently expressed γ7 was observed on pre-existing endogenous N-type calcium channels in sympathetic neurones. Low homology to the stargazin-like γ subunits, different gene structure and the unique functional properties of γ7 imply that it represents a distinct subdivision of the family of proteins identified by their structural and sequence homology to stargazin. PMID:11927536

  2. Calcium channel modulation as a target in chronic pain control.

    PubMed

    Patel, Ryan; Montagut-Bordas, Carlota; Dickenson, Anthony H

    2018-06-01

    Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first-in-class synthetic version of ω-conotoxin MVIIA, a peptide blocker of Ca v 2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use-dependent block of Ca v 2.2 channels; activation state-dependent blockers were hypothesized to circumvent the side effects of state-independent blockers by selectively targeting high-frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state-dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans-aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus-evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant-based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench-to-bedside translation of calcium channel modulators. This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175

  3. Hormonal crosstalk with calcium channel blocker during implantation.

    PubMed

    Banerjee, Aryamitra; Padh, Harish; Nivsarkar, Manish

    2011-08-01

    The site specific action of the calcium channel blocker diltiazem in blocking prostaglandin synthesis and hence causing blastocyst implantation failure has been previously described. Based on this understanding it was important to learn if this pathway was under the control of the fine balance in estradiol-progesterone (E2-P4) milieu, considered to be of the utmost significance for effective implantation. In the current study the circulating E2-P4 levels were monitored on the first 6 d of pregnancy at various time points using sensitive chemiluminescence based assays. Next, diltiazem was administered intra-luminally into the uterus at 10-20 h prior to implantation as this time has been previously implicated to be when the best anti-implantation activity of diltiazem can be observed. Following this, the E2-P4 in peripheral circulation was again monitored. On d 6 (post implantation) the implantation sites were observed in the uterus of both diltiazem treated and untreated groups using Chicago blue dye and correlated to the hormonal activity. The levels of both estradiol and progesterone were very similar in both untreated and diltiazem treated groups during and post implantation. However complete implantation failure was noted in the diltiazem treated group whereas prominent implantation sites were observed in the untreated animals. Thus, the previously reported inhibition of blastocyst implantation cascade by calcium channel blockers during the 'implantation window' seems to be an independent mechanism interfering with uterine receptivity without any direct estrogen-progesterone control and further studies to understand its regulation need to be performed.

  4. The analgesic effect of trans-resveratrol is regulated by calcium channels in the hippocampus of mice.

    PubMed

    Wang, Weijie; Yu, Yingcong; Li, Jing; Wang, Lin; Li, Zhi; Zhang, Chong; Zhen, Linlin; Ding, Lianshu; Wang, Gang; Sun, Xiaoyang; Xu, Ying

    2017-08-01

    Resveratrol has been widely studied in terms of it's potential to slow the progression of many diseases. But little is known about the mechanism of action in neuropathic pain. Neuropathic pain is the main type of chronic pain associated with tissue injury. Calcium channels and calcium/caffeine-sensitive pools are associated with analgesic pathway involving neuropathic pain. Our previous study suggested that the antinociceptive effect of resveratrol was involved in Ca 2+ /calmodulin-dependent signaling in the spinal cord of mice. The aim of this study was to explore the involvement of Ca 2+ in analgesic effects of trans-resveratrol in neuropathic pain and signal pathway in hippocampus. Hot plate test was used to assess antinociceptive response when mice were treated with trans-resveratrol alone or in combination with Mk 801, nimodipine, CaCl 2 , ryanodine or EGTA. The effects of trans-resveratrol and the combination on Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) and BDNF (brain-derived neurotrophic factor) expression in hippocampus were also investigated. The results showed that trans-resveratrol increased paw withdraw latency in the hot plate test. The effect of resveratrol was enhanced by Mk 801 and nimodipine. Central administration of Ca 2+ , however, abolished the antinociceptive effects of resveratrol. In contrast, centrally administered EGTA or ryanodine improved trans-resveratrol induced antinociception. There was a significant increase in p-CaMKII and BDNF expression in the hippocampus when resveratrol were combined with Mk 801, nimodipine, ryanodine and EGTA. Administration of CaCl 2 blocked changes in p-CaMKII and BDNF levels in the hippocampus. These findings suggest that trans-resveratrol exerts the effects of antinociception through regulation of calcium channels and calcium/caffeine-sensitive pools.

  5. Transcriptional regulation of α1H T-type calcium channel under hypoxia

    PubMed Central

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M.

    2014-01-01

    The low-voltage-activated T-type Ca2+ channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5′-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site −1,173cacgc−1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  6. Lattice model for calcium dynamics

    NASA Astrophysics Data System (ADS)

    Guisoni, Nara; de Oliveira, Mario José

    2005-06-01

    We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane. Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in two ways: (i) via calcium release and (ii) because transitions between channel states are calcium dependent. The opening or closing of a channel is a stochastic process controlled by two functions which depend on the calcium density on the channel neighborhood. The model is studied through mean field calculations and simulations. We show that the critical behavior of the model changes drastically depending on the opening/closing functions. For certain choices of these functions, all channels are closed at very low and high calcium densities and the model presents one absorbing state.

  7. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels

    PubMed Central

    Castillo, Karen; Contreras, Gustavo F.; Pupo, Amaury; Torres, Yolima P.; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-01-01

    Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  8. Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice

    PubMed Central

    Mironov, S L

    2008-01-01

    Respiration in vertebrates is generated by a compact network which is located in the lower brainstem but cellular mechanisms which underlie persistent oscillatory activity of the respiratory network are yet unknown. Using two-photon imaging and patch-clamp recordings in functional brainstem preparations of mice containing pre-Bötzinger complex (preBötC), we examined the actions of metabotropic glutamate receptors (mGluR1/5) on the respiratory patterns. The agonist DHPG potentiated and antagonist LY367385 depressed respiration-related activities. In the inspiratory neurons, we observed rhythmic activation of non-selective channels which had a conductance of 24 pS. Their activity was enhanced with membrane depolarization and after elevation of calcium from the cytoplasmic side of the membrane. They were activated by a non-hydrolysable PIP2 analogue and blocked by flufenamate, ATP4− and Gd3+. All these properties correspond well to those of TRPM4 channels. Calcium imaging of functional slices revealed rhythmic transients in small clusters of neurons present in a network. Calcium transients in the soma were preceded by the waves in dendrites which were dependent on mGluR activation. Initiation and propagation of waves required calcium influx and calcium release from internal stores. Calcium waves activated TPRM4-like channels in the soma and promoted generation of inspiratory bursts. Simulations of activity of neurons communicated via dendritic calcium waves showed emerging activity within neuronal clusters and its synchronization between the clusters. The experimental and theoretical data provide a subcellular basis for a recently proposed group-pacemaker hypothesis and describe a novel mechanism of rhythm generation in neuronal networks. PMID:18308826

  9. Hyperkalemia induced by the calcium channel blocker, benidipine.

    PubMed

    Imamura, Takuroh; Matsuura, Yunosuke; Nagoshi, Toshiro; Ishikawa, Tetsunori; Date, Haruhiko; Kita, Toshihiro; Matsuyama, Akihiko; Matsuo, Takeshi; Eto, Tanenao

    2003-06-01

    A 73-year-old hypertensive, non-diabetic woman without obvious renal dysfunction had frequently been hyperkalemic over four years after receiving antihypertensive drugs including the calcium channel blocker (CCB) benidipine. One week after all medications were accidentally discontinued, the serum potassium level returned to normal. After we obtained the informed consent of the patient, benidipine alone was administered again for over two weeks and hyperkalemia developed once more. This previously uncommon side effect of hyperkalemia induced by benidipine is not very serious but it is apt to be overlooked. Since CCBs are now widely prescribed, the development of hyperkalemia should be considered.

  10. Group III metabotropic glutamate receptors and exocytosed protons inhibit L-type calcium currents in cones but not in rods.

    PubMed

    Hosoi, Nobutake; Arai, Itaru; Tachibana, Masao

    2005-04-20

    Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.

  11. Characterization of the slow calcium channel binding sites for ( sup 3 H)SR 33557 in rat heart sarcolemmal membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatelain, P.; Beaufort, P.; Meysmans, L.

    1991-01-01

    SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. ({sup 3}H)SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific ({sup 3}H)SR 33557 binding, with Cd2+ being themore » most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace ({sup 3}H)SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit ({sup 3}H)SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes.« less

  12. Modulatory mechanisms and multiple functions of somatodendritic A-type K+ channel auxiliary subunits

    PubMed Central

    Jerng, Henry H.; Pfaffinger, Paul J.

    2014-01-01

    Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders. PMID:24723849

  13. Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels.

    PubMed

    Liu, Dong-Dong; Lu, Jun-Mei; Zhao, Qian-Ru; Hu, Changlong; Mei, Yan-Ai

    2016-06-29

    Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with GDF-15 for 60 min significantly increased the frequency of mEPSCs without effect on their amplitude. GDF-15 also significantly elevated presynaptic glutamate release, as shown by HPLC. These effects were blocked by dual TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) antagonists, but not by a TβRI antagonist alone. Meanwhile, GDF-15 enhanced pERK level, and inhibition of MAPK/ERK activity attenuated the GDF-15-induced increases in mEPSC and glutamate release. Blocking T-type calcium channels reduced the GDF-15 induced up-regulation of synaptic transmission. Membrane-protein extraction and use of an intracellular protein-transport inhibitor showed that GDF-15 promoted CaV3.1 and CaV3.3 α-subunit expression by trafficking to the membrane. These results confirm previous findings in cerebellar granule neurons, in which GDF-15 induces its neurobiological effects via TβRII and activation of the ERK pathway, providing novel insights into the mechanism of GDF-15 function in cortical neurons.

  14. Genetic contribution to iron status: SNPs related to iron deficiency anaemia and fine mapping of CACNA2D3 calcium channel subunit.

    PubMed

    Baeza-Richer, Carlos; Arroyo-Pardo, Eduardo; Blanco-Rojo, Ruth; Toxqui, Laura; Remacha, Angel; Vaquero, M Pilar; López-Parra, Ana M

    2015-12-01

    Numerous studies associate genetic markers with iron- and erythrocyte-related parameters, but few relate them to iron-clinical phenotypes. Novel SNP rs1375515, located in a subunit of the calcium channel gene CACNA2D3, is associated with a higher risk of anaemia. The aim of this study is to further investigate the association of this SNP with iron-related parameters and iron-clinical phenotypes, and to explore the potential role of calcium channel subunit region in iron regulation. Furthermore, we aim to replicate the association of other SNPs reported previously in our population. We tested 45 SNPs selected via systematic review and fine mapping of CACNA2D3 region, with haematological and biochemical traits in 358 women of reproductive age. Multivariate analyses include back-step logistic regression and decision trees. The results replicate the association of SNPs with iron-related traits, and also confirm the protective effect of both A allele of rs1800562 (HFE) and G allele of rs4895441 (HBS1L-MYB). The risk of developing anaemia is increased in reproductive age women carriers of A allele of rs1868505 (CACNA2D3) and/or T allele of rs13194491 (HIST1H2BJ). Association of SNPs from fine mapping with ferritin and serum iron suggests that calcium channels could be a potential pathway for iron uptake in physiological conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Transient and Big Are Key Features of an Invertebrate T-type Channel (LCav3) from the Central Nervous System of Lymnaea stagnalis*

    PubMed Central

    Senatore, Adriano; Spafford, J. David

    2010-01-01

    Here we describe features of the first non-mammalian T-type calcium channel (LCav3) expressed in vitro. This molluscan channel possesses combined biophysical properties that are reminiscent of all mammalian T-type channels. It exhibits T-type features such as “transient” kinetics, but the “tiny” label, usually associated with Ba2+ conductance, is hard to reconcile with the “bigness” of this channel in many respects. LCav3 is 25% larger than any voltage-gated ion channel expressed to date. It codes for a massive, 322-kDa protein that conducts large macroscopic currents in vitro. LCav3 is also the most abundant Ca2+ channel transcript in the snail nervous system. A window current at typical resting potentials appears to be at least as large as that reported for mammalian channels. This distant gene provides a unique perspective to analyze the structural, functional, drug binding, and evolutionary aspects of T-type channels. PMID:20056611

  16. Calcium responses to synaptically activated bursts of action potentials and their synapse-independent replay in cultured networks of hippocampal neurons.

    PubMed

    Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar

    2013-07-01

    Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Effects of cilnidipine on sympathetic nerve activity and cardiorenal function in hypertensive patients with type 2 diabetes mellitus: association with BNP and aldosterone levels.

    PubMed

    Tanaka, Masami; Sekioka, Risa; Nishimura, Takeshi; Ichihara, Atsuhiro; Itoh, Hiroshi

    2014-12-01

    Hypertension stimulates the sympathetic nervous system and this phenomenon is exacerbated by diabetes mellitus. We investigated the effects of cilnidipine, an N/L-type calcium channel blocker, on aspects of this system in patients with type 2 diabetes mellitus. In 33 hypertensive patients with type 2 diabetes mellitus treated with a calcium channel blocker other than cilnidipine, we evaluated the influence of switching to cilnidipine on blood pressure, heart rate, catecholamine, plasma renin and aldosterone concentration, brain natriuretic peptide, urine liver-type fatty acid binding protein, and urinary albumin excretion ratio in the same patients by a cross-over design. Other biochemical parameters were also evaluated. Switching to cilnidipine did not change blood pressure but caused reduction in catecholamine concentrations in blood and urine and plasma aldosterone concentration, accompanied by significant reduction in brain natriuretic peptide, urine liver-type fatty acid binding protein, and albumin excretion ratio. These parameters other than brain natriuretic peptide were significantly increased after cilnidipine was changed to the original calcium channel blocker. In 33 hypertensive patients with type 2 diabetes mellitus, compared to other calcium channel blockers, cilnidipine suppressed sympathetic nerve activity and aldosterone, and significantly improved markers of cardiorenal disorders. Therefore, cilnidipine may be an important calcium channel blocker for use in combination with renin-angiotensin-aldosterone system inhibitors when dealing with hypertension complicated with diabetes mellitus. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Prolonged Attenuation of Amygdala-Kindled Seizure Measures in Rats by Convection-Enhanced Delivery of the N-Type Calcium Channel Antagonists ω-Conotoxin GVIA and ω-Conotoxin MVIIA

    PubMed Central

    Gasior, Maciej; White, Natalie A.; Rogawski, Michael A.

    2008-01-01

    Convection-enhanced delivery (CED) permits the homogeneous distribution of therapeutic agents throughout localized regions of the brain parenchyma without causing tissue damage as occurs with bolus injection. Here, we examined whether CED infusion of the N-type calcium channel antagonists ω-conotoxin GVIA (ω-CTX-G) and ω-conotoxin MVIIA (ω-CTX-M) can attenuate kindling measures in fully amygdala-kindled rats. Rats were implanted with a combination infusion cannula-stimulating electrode assembly into the right basolateral amygdala. Fully kindled animals received infusions of vehicle, ω-CTX-G (0.005, 0.05, and 0.5 nmol), ω-CTX-M (0.05, 0.15, and 0.5 nmol), proteolytically inactivated ω-CTX-M (0.5 nmol), or carbamazepine (500 nmol) into the stimulation site. CED of ω-CTX-G and ω-CTX-M over a 20-min period resulted in a dose-dependent increase in the afterdischarge threshold and a decrease in the afterdischarge duration and behavioral seizure score and duration during a period of 20 min to 1 week after the infusion, indicating an inhibitory effect on the triggering and expression of kindled seizures. The protective effects of ω-conotoxins reached a maximum at 48 h postinfusion, and then they gradually resolved over the next 5 days. In contrast, carbamazepine was active at 20 min but not at 24 h after the infusion, whereas CED of vehicle or inactivated ω-CTX-M had no effect. Except for transient tremor in some rats receiving the highest toxin doses, no adverse effects were observed. These results indicate that local CED of high-molecular-weight presynaptic N-type calcium channel blockers can produce long-lasting inhibition of brain excitability and that they may provide prolonged seizure protection in focal seizure disorders. PMID:17717191

  19. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels.

    PubMed

    Kamaleddin, Mohammad Amin

    2018-02-01

    Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl - and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl - flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca 2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca 2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain. © 2017 Wiley Periodicals, Inc.

  20. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se; Sköld, Anna-Carin; Ericson, Ann-Christin

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effectmore » on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.« less

  1. Influence of infrasound exposure on the whole L-type calcium currents in rat ventricular myocytes.

    PubMed

    Pei, Zhaohui; Zhuang, Zhiqiang; Xiao, Pingxi; Chen, Jingzao; Sang, Hanfei; Ren, Jun; Wu, Zhenbiao; Yan, Guangmei

    2009-06-01

    This study was designed to examine the effect of infrasound exposure (5 Hz at 130 dB) on whole-cell L-type Ca2+ currents (WLCC) in rat ventricular myocytes and the underlying mechanism(s) involved. Thirty-two adult Sprague-Dawley rats were randomly assigned to infrasound exposure and control groups. [Ca2+](i), WLCC, mRNA expression of the a(1c) subunit of L-type Ca2+ channels (LCC), and SERCA2 protein were examined on day 1, 7, and 14 after initiation of infrasound exposure. Fluo-3/AM fluorescence and the laser scanning confocal microscope techniques were used to measure [Ca2+](i) in freshly isolated ventricular myocytes. The Ca2+ fluorescence intensity (FI), denoting [Ca2+](i) in cardiomyocytes, was significantly elevated in a time-dependent manner in the exposure groups. There was a significant increase in WLCC in the 1-day group and a further significant increase in the 7- and 14-day groups. LCC mRNA expression measured by RT-PCR revealed a significant rise in the 1-day group and a significant additional rise in the 7- and 14-day groups compared with control group. SERCA2 expression was significantly upregulated in the 1-day group followed by an overt decrease in the 7- and 14-day groups. Prolonged exposure of infrasound altered WLCC in rat cardiomyocytes by shifting the steady-state inactivation curves to the right (more depolarized direction) without altering the slope and biophysical properties of I (Ca,L). Taken together, our data suggest that changes in [Ca2+](I) levels as well as expression of LCC and SERCA2 may contribute to the infrasound exposure-elicited cardiac response.

  2. Disorder of endoplasmic reticulum calcium channel components is associated with the increased apoptotic potential in pale, soft, exudative pork.

    PubMed

    Guo, Bing; Zhang, Wangang; Tume, Ron K; Hudson, Nicholas J; Huang, Feng; Yin, Yan; Zhou, Guanghong

    2016-05-01

    Eight pale, soft and exudative (PSE) and eight reddish-pink, firm and non-exudative (RFN) porcine longissimus muscle samples were selected based on pH and L* at 1h postmortem (PM), and drip loss at 24h PM, and used to evaluate the cellular calcium and apoptosis status. We found that SERCA1 was decreased, while IP3R was decreased in PSE meat (P<0.05), indicative of the overloaded sarcoplasmic calcium status. In PSE meat, the pro-apoptotic factor BAX was increased while the anti-apoptotic factor Bcl-2 was decreased (P<0.05). The significantly increased activity of caspase 3 and the expression of its cleavage fragment suggested higher apoptotic potential in PSE meat compared with RFN meat (P<0.05). Moreover, the significantly higher expression level of cytochrome C (P<0.05) suggests the important role of mitochondria during apoptosis appearance in PSE meat. Taken together, our data inferred that the calcium channel disorder present in PSE meat was associated with the increased apoptotic potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pharmacokinetic Analysis of Ziconotide (SNX-111), an Intrathecal N-type Calcium Channel Blocking Analgesic, Delivered by Bolus and Infusion in the Dog

    PubMed Central

    Yaksh, Tony L.; de Kater, Annelies; Dean, Robin; Best, Brookie M.; Miljanich, George P.

    2012-01-01

    SUMMARY Background and purpose Ziconotide is a peptide that blocks N-type calcium channels and is anti-hyperalgesic after intrathecal delivery. We here characterize the spinal kinetics of intrathecal bolus and infused ziconotide in dog. Experimental approach Male beagle dogs (N = 5) were prepared with chronic intrathecal (IT) lumbar injection and cerebrospinal fluid (LCSF) sampling catheters connected to vest-mounted pumps. Each dog received: i) IT bolus ziconotide (10 µg + 1 µCi 3H-inulin), ii) IT infusion for 48 hr of ziconotide (1 µg/100 µL/hr), iii) IT infusion for 48 hr of ziconotide (5 µg/100 µL/hr), and iv) intravenous injection of ziconotide (0.1 mg/kg). After IT bolus, LCSF ziconotide and inulin showed an initial peak and biphasic (distribtution/elimination) clearance (ziconotide T1/2 α / ß = 0.14 and 1.77 hr, and inulin T1/2 α / ß = 0.16 and 3.88 hr, respectively). The LCSF: plasma ziconotide concentration ratio was 20,000: 1 at 30 min, and 30: 1 at 8 hr. IT infusion of 1 and then 5 µg/hr resulted in LCSF concentrations that peaked by 8 hr and remained stable at 343 and 1380 ng/mL, respectively, to the end of the 48-hr infusions. Terminal elimination T1/2 after termination of continuous infusion was 2.47 hr. Ziconotide LCSF: cisternal CSF: plasma concentration ratios after infusion of 1 µg/hr and 5 µg/hr were 1: 0.017: 0.001 and 1: 0.015: 0.003, respectively. IT infusion of ziconotide at 1 µg/hr inhibited thermal skin twitch by 24 hr, and produced modest trembling, ataxia, and decreased arousal. Effects continued through the 48-hr infusion period, increased in magnitude during the subsequent 5 µg/hr infusion periods, and disappeared after drug clearance. Conclusions and Implications After intrathecal bolus or infusion, ziconotide displays linear kinetics that are consistent with a hydrophilic molecule of approximately 2500 Da that is cleared slightly more rapidly than inulin from the LCSF. Behavioral effects were dose dependent and

  4. Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling

    PubMed Central

    Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming

    2014-01-01

    Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642

  5. Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium.

    PubMed

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Kishine, Naomi; Fujimoto, Zui; Yaoi, Katsuro

    2017-09-01

    The crystal structure of metagenomic β-xylosidase/α-l-arabinofuranosidase CoXyl43, activated by calcium ions, was determined in its apo and complexed forms with xylotriose or l-arabinose in the presence and absence of calcium. The presence of calcium ions dramatically increases the kcat of CoXyl43 for p-nitrophenyl β-d-xylopyranoside and reduces the Michaelis constant for p-nitrophenyl α-l-arabinofuranoside. CoXyl43 consists of a single catalytic domain comprised of a five-bladed β-propeller. In the presence of calcium, a single calcium ion was observed at the centre of this catalytic domain, behind the catalytic pocket. In the absence of calcium, the calcium ion was replaced with one sodium ion and one water molecule, and the positions of these cations were shifted by 1.3 Å. The histidine-319 side chain, which coordinates to the 2-hydroxyl oxygen atom of the bound xylose molecule in the catalytic pocket, also coordinates to the calcium ion, but not to the sodium ion. The calcium-dependent increase in activity appears to be caused by the structural change in the catalytic pocket induced by the tightly bound calcium ion and coordinating water molecules, and by the protonation state of glutamic acid-268, the catalytic acid of the enzyme. Our findings further elucidate the complex relationship between metal ions and glycosidases. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea.

    PubMed

    Zachary, Stephen; Nowak, Nathaniel; Vyas, Pankhuri; Bonanni, Luke; Fuchs, Paul Albert

    2018-06-20

    Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca 2+ -activated K + (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 μm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses. SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons

  7. Calcium Entry in Toxoplasma gondii and Its Enhancing Effect of Invasion-linked Traits*

    PubMed Central

    Pace, Douglas A.; McKnight, Ciara A.; Liu, Jing; Jimenez, Veronica; Moreno, Silvia N. J.

    2014-01-01

    During invasion and egress from their host cells, Apicomplexan parasites face sharp changes in the surrounding calcium ion (Ca2+) concentration. Our work with Toxoplasma gondii provides evidence for Ca2+ influx from the extracellular milieu leading to cytosolic Ca2+ increase and enhancement of virulence traits, such as gliding motility, conoid extrusion, microneme secretion, and host cell invasion. Assays of Mn2+ and Ba2+ uptake do not support a canonical store-regulated Ca2+ entry mechanism. Ca2+ entry was blocked by the L-type Ca2+ channel inhibitor nifedipine and stimulated by the increase in cytosolic Ca2+ and by the specific L-type Ca2+ channel agonist Bay K-8644. Our results demonstrate that Ca2+ entry is critical for parasite virulence. We propose a regulated Ca2+ entry mechanism activated by cytosolic Ca2+ that has an enhancing effect on invasion-linked traits. PMID:24867952

  8. Redistribution of Cav2.1 channels and calcium ions in nerve terminals following end-to-side neurorrhaphy: ionic imaging analysis by TOF-SIMS.

    PubMed

    Liu, Chiung-Hui; Chang, Hung-Ming; Tseng, To-Jung; Lan, Chyn-Tair; Chen, Li-You; Youn, Su-Chung; Lee, Jian-Jr; Mai, Fu-Der; Chou, Jui-Feng; Liao, Wen-Chieh

    2016-11-01

    The P/Q-type voltage-dependent calcium channel (Cav2.1) in the presynaptic membranes of motor nerve terminals plays an important role in regulating Ca 2+ transport, resulting in transmitter release within the nervous system. The recovery of Ca 2+ -dependent signal transduction on motor end plates (MEPs) and innervated muscle may directly reflect nerve regeneration following peripheral nerve injury. Although the functional significance of calcium channels and the levels of Ca 2+ signalling in nerve regeneration are well documented, little is known about calcium channel expression and its relation with the dynamic Ca 2+ ion distribution at regenerating MEPs. In the present study, end-to-side neurorrhaphy (ESN) was performed as an in vivo model of peripheral nerve injury. The distribution of Ca 2+ at regenerating MEPs following ESN was first detected by time-of-flight secondary ion mass spectrometry, and the specific localization and expression of Cav2.1 channels were examined by confocal microscopy and western blotting. Compared with other fundamental ions, such as Na + and K + , dramatic changes in the Ca 2+ distribution were detected along with the progression of MEP regeneration. The re-establishment of Ca 2+ distribution and intensity were correlated with the functional recovery of muscle in ESN rats. Furthermore, the re-clustering of Cav2.1 channels after ESN at the nerve terminals corresponded with changes in the Ca 2+ distribution. These results indicated that renewal of the Cav2.1 distribution within the presynaptic nerve terminals may be necessary for initiating a proper Ca 2+ influx and shortening the latency of muscle contraction during nerve regeneration.

  9. Chemico-Genetic Identification of Drebrin as a Regulator of Calcium Responses

    PubMed Central

    Mercer, Jason C.; Qi, Qian; Mottram, Laurie F.; Law, Mankit; Bruce, Danny; Iyer, Archana; Morales, J. Luis; Yamazaki, Hiroyuki; Shirao, Tomoaki; Peterson, Blake R.; August, Avery

    2009-01-01

    Store-operated calcium channels are plasma membrane Ca2+ channels that are activated by depletion of intracellular Ca2+ stores, resulting in an increase in intracellular Ca2+ concentration, which is maintained for prolonged periods in some cell types. Increases in intracellular Ca2+ concentration serve as signals that activate a number of cellular processes, however, little is known about the regulation of these channels. We have characterized the immuno-suppressant compound BTP, which blocks store-operated channel mediated calcium influx into cells. Using an affinity purification scheme to identify potential targets of BTP, we identified the actin reorganizing protein, drebrin, and demonstrated that loss of drebrin protein expression prevents store-operated channel mediated Ca2+ entry, similar to BTP treatment. BTP also blocks actin rearrangements induced by drebrin. While actin cytoskeletal reorganization has been implicated in store-operated calcium channel regulation, little is known about actin binding proteins that are involved in this process, or how actin regulates channel function. The identification of drebrin as a mediator of this process should provide new insight into the interaction between actin rearrangement and tore-operated channel mediated calcium influx. PMID:19948240

  10. Spasmolytic effect of aqueous extract of Tagetes erecta L. flowers is mediated through calcium channel blockade on the guinea-pig ileum.

    PubMed

    Ventura-Martínez, Rosa; Ángeles-López, Guadalupe E; Rodríguez, Rodolfo; González-Trujano, Ma Eva; Déciga-Campos, Myrna

    2018-07-01

    This study provides pharmacological evidence on the spasmolytic activity of Tagetes erecta L. (marigold or cempasúchil) on the guinea-pig ileum and presents data on its mechanism of action. The relaxant effect on KCl contractions was more marked with aqueous (AqEx) than with ethanol extracts (EtEx) of T. erecta flowers (55.6 ± 11.0 vs 21.1 ± 4.4%, respectively). In addition, the aqueous extract antagonized contractions elicited by EFS, but not by acetylcholine (73.5 ± 1.9 vs 14.5 ± 5.3%, respectively). These effects were not diminished by hexamethonium or L-NAME, but this extract caused a rightward shift in the Ca 2+ concentration-response curves like that of verapamil. Quercetin and rutin, two flavonoids present in this plant, also showed spasmolytic effects (95.7 ± 2.8 and 27.9 ± 7.1%, respectively). Interestingly, in tissues without spasmogens, the extract induced contractions superimposed on their spontaneous activity. These results support the traditional use of T. erecta as a spasmolytic in folk medicine and suggest mainly that quercetin could be partly responsible for this effect. The spasmolytic effect appears to involve voltage-gated calcium channels, but not the nitric oxide pathway or the release of neurotransmitters from enteric neurons. Nevertheless, this plant could produce colic or stomachache as adverse effects in clinical situations in which these symptoms are not originally present. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. [Results of an intervention to reduce potentially inappropriate prescriptions of beta blockers and calcium channel blockers].

    PubMed

    Machado-Alba, J E; Giraldo-Giraldo, C; Aguirre Novoa, A

    2016-01-01

    To determine the frequency of simultaneous prescription of β-blockers and calcium channel blockers, notify the cardiovascular risk of these patients to the health care professionals in charge of them, and achieve a reduction in the number of those who use them. Quasi-experimental, prospective study by developing an intervention on medical prescriptions of patients older than 65 years treated between January 1 and July 30, 2014, affiliated to the Health System in 101 cities in Colombia. A total of 43,180 patients received a β-blocker each month, and 14,560 receiving a calcium channel blocker were identified. Educational interventions were performed and an evaluation was made, using sociodemographic and pharmacological variables, on the number of patients that stopped taking any of the two drugs in the following three months. A total of 535 patients, with a mean age 75.8±6.7 years received concomitant β-blockers plus calcium channel blockers. Modification of therapy was achieved in 235 patients (43.9% of users) after 66 educational interventions. In 209 cases (88.9%) one of the two drugs was suspended, and 11.1% changed to other antihypertensive drugs. The variable of being more than 85 years old (OR: 1.93; 95% CI: 1.07-3.50), and receiving concomitant medication with inhibitors of the renin-angiotensin system (OR: 2.16; 95% CI: 1.28-3.65) were associated with increased risk of their doctor changing or stopping the prescription. An improved adherence to recommendations for appropriate use of β-blockers and calcium channel blockers by health service providers was achieved. Intervention programs that reduce potentially inappropriate prescriptions for patients treated for cardiovascular disease should be used more frequently. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  12. Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits.

    PubMed

    Ravindran, Arippa; Lao, Qi Zong; Harry, Jo Beth; Abrahimi, Parwiz; Kobrinsky, Evgeny; Soldatov, Nikolai M

    2008-06-10

    It is generally accepted that to generate calcium currents in response to depolarization, Ca(v)1.2 calcium channels require association of the pore-forming alpha(1C) subunit with accessory Ca(v)beta and alpha(2)delta subunits. A single calmodulin (CaM) molecule is tethered to the C-terminal alpha(1C)-LA/IQ region and mediates Ca2+-dependent inactivation of the channel. Ca(v)beta subunits are stably associated with the alpha(1C)-interaction domain site of the cytoplasmic linker between internal repeats I and II and also interact dynamically, in a Ca2+-dependent manner, with the alpha(1C)-IQ region. Here, we describe a surprising discovery that coexpression of exogenous CaM (CaM(ex)) with alpha(1C)/alpha(2)delta in COS1 cells in the absence of Ca(v)beta subunits stimulates the plasma membrane targeting of alpha(1C), facilitates calcium channel gating, and supports Ca2+-dependent inactivation. Neither real-time PCR with primers complementary to monkey Ca(v)beta subunits nor coimmunoprecipitation analysis with exogenous alpha(1C) revealed an induction of endogenous Ca(v)beta subunits that could be linked to the effect of CaM(ex). Coexpression of a calcium-insensitive CaM mutant CaM(1234) also facilitated gating of Ca(v)beta-free Ca(v)1.2 channels but did not support Ca2+-dependent inactivation. Our results show there is a functional matchup between CaM(ex) and Ca(v)beta subunits that, in the absence of Ca(v)beta, renders Ca2+ channel gating facilitated by CaM molecules other than the one tethered to LA/IQ to support Ca2+-dependent inactivation. Thus, coexpression of CaM(ex) creates conditions when the channel gating, voltage- and Ca2+-dependent inactivation, and plasma-membrane targeting occur in the absence of Ca(v)beta. We suggest that CaM(ex) affects specific Ca(v)beta-free conformations of the channel that are not available to endogenous CaM.

  13. Magnolol inhibits colonic motility through down-regulation of voltage-sensitive L-type Ca2+ channels of colonic smooth muscle cells in rats.

    PubMed

    Zhang, Man; Zang, Kai-Hong; Luo, Jia-Lie; Leung, Fung-Ping; Huang, Yu; Lin, Cheng-Yuan; Yang, Zhi-Jun; Lu, Ai-Ping; Tang, Xu-Dong; Xu, Hong-Xi; Sung, Joseph Jao-yiu; Bian, Zhao-Xiang

    2013-11-15

    This study aimed to investigate the effect of magnolol (5,5'-diallyl-2,2'-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca(2+) currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3-100 μM). In the presence of Bay K8644 (100 nM), magnolol (10-100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-L-arginine methyl ester (L-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3-100 μM) inhibited the L-type Ca(2+) currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca(2+) channel activity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.

    PubMed

    Vaisey, George; Miller, Alexandria N; Long, Stephen B

    2016-11-22

    Cytoplasmic calcium (Ca 2+ ) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca 2+ -independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca 2+ activation and ion selectivity. A "Ca 2+ clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca 2+ . Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca 2+ . We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca 2+ -dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca 2+ dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

  15. The AKAP Cypher/Zasp contributes to β-adrenergic/PKA stimulation of cardiac CaV1.2 calcium channels.

    PubMed

    Yu, Haijie; Yuan, Can; Westenbroek, Ruth E; Catterall, William A

    2018-06-04

    Stimulation of the L-type Ca 2+ current conducted by Ca V 1.2 channels in cardiac myocytes by the β-adrenergic/protein kinase A (PKA) signaling pathway requires anchoring of PKA to the Ca V 1.2 channel by an A-kinase anchoring protein (AKAP). However, the AKAP(s) responsible for regulation in vivo remain unknown. Here, we test the role of the AKAP Cypher/Zasp in β-adrenergic regulation of Ca V 1.2 channels using physiological studies of cardiac ventricular myocytes from young-adult mice lacking the long form of Cypher/Zasp (LCyphKO mice). These myocytes have increased protein levels of Ca V 1.2, PKA, and calcineurin. In contrast, the cell surface density of Ca V 1.2 channels and the basal Ca 2+ current conducted by Ca V 1.2 channels are significantly reduced without substantial changes to kinetics or voltage dependence. β-adrenergic regulation of these L-type Ca 2+ currents is also significantly reduced in myocytes from LCyphKO mice, whether calculated as a stimulation ratio or as net-stimulated Ca 2+ current. At 100 nM isoproterenol, the net β-adrenergic-Ca 2+ current conducted by Ca V 1.2 channels was reduced to 39 ± 12% of wild type. However, concentration-response curves for β-adrenergic stimulation of myocytes from LCyphKO mice have concentrations that give a half-maximal response similar to those for wild-type mice. These results identify Cypher/Zasp as an important AKAP for β-adrenergic regulation of cardiac Ca V 1.2 channels. Other AKAPs may work cooperatively with Cypher/Zasp to give the full magnitude of β-adrenergic regulation of Ca V 1.2 channels observed in vivo. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  16. Effects of temperature and calcium availability on ventricular myocardium from rainbow trout.

    PubMed

    Coyne, M D; Kim, C S; Cameron, J S; Gwathmey, J K

    2000-06-01

    We studied the mechanical and electrophysiological properties of ventricular myocardium from rainbow trout (Oncorhynchus mykiss) in vitro at 4, 10, and 18 degrees C from fish acclimated at 10 degrees C. Temperature alone did not significantly alter the contractile force of the myocardium, but the time to peak tension and time to 80% relaxation were prolonged at 4 degrees C and shortened at 18 degrees C. The duration of the action potential was also prolonged at 4 degrees C and progressively shortened at higher temperatures. An alteration of the stimulation frequency did not affect contraction amplitude at any temperature. Calcium influx via L-type calcium channels was increased by raising extracellular calcium concentration (¿Ca(2+)(o)) or including Bay K 8644 (Bay K) and isoproterenol in the bathing medium. These treatments significantly enhanced the contractile force at all temperatures. Calcium channel blockers had a reverse-negative inotropic effect. Unexpectedly, the duration of the action potential at 10 degrees C was shortened as ¿Ca(2+)(o) increased. However, Bay K prolonged the plateau phase at 4 degrees C. Caffeine, which promotes the release of sarcoplasmic reticulum (SR) calcium, increased contractile force eightfold at all three temperatures, but the SR blocker ryanodine was only inhibitory at 4 degrees C. Our results suggest that contractile force in ventricular myocardium from Oncorhynchus mykiss is primarily regulated by sarcolemmal calcium influx and that ventricular contractility is maintained during exposure to a wide range of temperatures.

  17. Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide.

    PubMed

    Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno

    2008-01-01

    Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.

  18. The effect of hypercholesterolemia on carbachol-induced contractions of the detrusor smooth muscle in rats: increased role of L-type Ca2+ channels.

    PubMed

    Balkanci, Zeynep Dicle; Pehlivanoğlu, Bilge; Bayrak, Sibel; Karabulut, Ismail; Karaismailoğlu, Serkan; Erdem, Ayşen

    2012-11-01

    To investigate a possible relation between hypercholesterolemia and detrusor smooth muscle function, we studied the contractile response to potassium challenge, carbachol (CCh), and the components of CCh-induced contractile mechanism in high-cholesterol diet-fed rats. Adult male Sprague-Dawley rats were fed with standard (control group, N = 17) or 4 % cholesterol diet (hypercholesterolemia group (HC), N = 16) for 4 weeks. Spontaneous contractions of detrusor muscle strips and their responses to potassium chloride (KCl) or cumulative dose-contraction curves to CCh were recorded. The effects of muscarinic receptor antagonists (methoctramin and/or 4-diphenylacetoxy-N-methylpiperidine), L-type Ca(+2) channel blocker (nifedipine), and/or rho-kinase inhibitor Y-27632 were investigated. Blood cholesterol level was increased in the HC group with no sign of atherosclerosis. The KCl-induced detrusor smooth muscle contractions were higher in HC, whereas spontaneous and CCh-induced responses were similar in both groups. Preincubation with receptor antagonist for M(3) but not for M(2) attenuated contraction significantly, shifting the dose-response curve to the right. This response was similar in both groups. Among two effector mechanisms of M(3)-mediated detrusor smooth muscle contraction, rho-kinase pathway was not affected by hypercholesterolemia, whereas blockade of L-type Ca(+2) channels potently reduced contractions. The results of this study point out a relation between hypercholesterolemia and contractile mechanism of detrusor smooth muscle likely to change urinary bladder function, via altering L-type Ca(+2) channels. Taken together with escalating incidence of hypercholesterolemia and lower urinary tract symptoms, it is a field which deserves to be investigated further.

  19. Exclusion of alternative exon 33 of CaV1.2 calcium channels in heart is proarrhythmogenic

    PubMed Central

    Li, Guang; Wang, Juejin; Liao, Ping; Bartels, Peter; Zhang, Hengyu; Yu, Dejie; Liang, Mui Cheng; Poh, Kian Keong; Yu, Chye Yun; Jiang, Fengli; Yong, Tan Fong; Wong, Yuk Peng; Hu, Zhenyu; Huang, Hua; Zhang, Guangqin; Galupo, Mary Joyce; Bian, Jin-Song; Ponniah, Sathivel; Trasti, Scott Lee; Foo, Roger; Hoppe, Uta C.; Herzig, Stefan; Soong, Tuck Wah

    2017-01-01

    Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure–function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential −10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33−/−-null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33−/− mice from β-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear. PMID:28490495

  20. Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid

    PubMed Central

    1986-01-01

    Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279- 287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of

  1. Chronic treatment with otilonium bromide induces changes in L-type Ca²⁺ channel, tachykinins, and nitric oxide synthase expression in rat colon muscle coat.

    PubMed

    Traini, C; Cipriani, G; Evangelista, S; Santicioli, P; Faussone-Pellegrini, M-S; Vannucchi, M-G

    2013-11-01

    Otilonium bromide (OB) is a quaternary ammonium derivative used for the treatment of intestinal hypermotility and is endowed with neurokinin2 receptor (NK2r) antagonist and Ca²⁺ channel blocker properties. Therefore, the possibility that OB might play a role in the neurokinin receptor/Substance-P/nitric oxide (NKr/SP/NO) circuit was investigated after chronic exposition to the drug. Rats were treated with OB 2-20 mg kg⁻¹ for 10 and 30 days. In the proximal colon, the expression and distribution of muscle NOsynthase 1 (NOS1), NK1r, NK2r, SP and Cav 1.2 subunit (for L-type Ca²⁺ channel) and the spontaneous activity and stimulated responses to NK1r and NK2r agonists were investigated. Immunohistochemistry showed a redistribution of NK1r and L-type Ca²⁺ channel in muscle cells with no change of NK2r at 30 days, a significant increase in muscle NOS1 expression at 10 days and a significant decrease in the SP content early in the ganglia and later in the intramuscular nerve fibers. Functional studies showed no change in spontaneous activity but a significant increase in maximal contraction induced by NK1r agonist. Chronic exposition to OB significantly affects the NKr/SP/NO circuit. The progressive decrease in SP-expression might be the consequence of the persistent presence of OB, the increase of NOS1 expression in muscle cells at 10 days in an attempt to guarantee an adequate NO production, and, at 30 days, the redistribution of the L-type Ca²⁺ channel and NK1r as a sign to compensate the drug channel block by re-cycling both of them. The physiological data suggest NK1r hypersensitivity. © 2013 John Wiley & Sons Ltd.

  2. α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels

    PubMed Central

    Li, Peiyao; Miao, Yong; Dani, Adish; Vig, Monika

    2016-01-01

    Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP–deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP–depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1. PMID:27335124

  3. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding[OPEN

    PubMed Central

    Vincent, Thomas R.; Avramova, Marieta; Canham, James; Higgins, Peter; Bilkey, Natasha; Mugford, Sam T.; Pitino, Marco; Toyota, Masatsugu

    2017-01-01

    A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction. PMID:28559475

  4. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    PubMed

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  5. The new generation dihydropyridine type calcium blockers, bearing 4-phenyl oxypropanolamine, display alpha-/beta-adrenoceptor antagonist and long-acting antihypertensive activities.

    PubMed

    Liang, Jhy-Chong; Yeh, Jwu-Lai; Wang, Chia-Sui; Liou, Shwu-Fen; Tsai, Chieh-Ho; Chen, Ing-Jun

    2002-03-01

    A new series of dihydropyridine derivatives, bearing oxypropanolamine moiety on phenyl ring at the 4-position of the dihydropyridine base, were prepared. Oxypropanolamine was synthesized by replacing the phenolic OH of vanillin or other compounds, having a phenyl aldehyde group, with epichlorohydrin, followed by cleavaging the obtained epoxide compounds with tert-butylamine, n-butylamine or 2-methoxy-1-oxyethylamino benzene (guaiacoxyethylamine), respectively. Obtained various oxypropanolamine compounds, still remaining a phenyl aldehyde moiety, were then performed by Hantzsch condensation reaction with methylacetoacetate or ethylacetoacetate, respectively, to give our new series of dihydropyridine linked with the 4-phenyl ring. These compounds were evaluated for inotropic, chronotropic, and aorta contractility that associated with calcium channel and adrenoceptor antagonist activities. Dihydropyridine derivatives that with oxypropanolamine side chain on their 4-phenyl ring associated alpha-/beta-adrenoceptor blocking activities created a new family of calcium entry and the third generation beta-adrenoceptor blockers. Optimizing this research to obtain more potent alpha-/beta-adrenoceptor blocking and long-acting antihypertensive oxypropanolamine on the 4-phenyl ring of dihydropyridine series compounds was thus accomplished and classified as third generation dihydropyridine type calcium channel blockers, in comparison with previous short-acting type nifedipine and long-acting type amlodipine. We concluded that compounds 1a, 1b and 1g showed not only markedly high calcium-antagonistic activity but also the highest antihypertensive effect; compounds 1b, 1c, 1f, 1g, 1i and 1j induced sustained antihypertensive effects are major and attributed to their calcium entry and alpha-adrenoceptor blocking activities in the blood vessel due to their introduction of 2-methoxy, 1-oxyethylamino benzene moiety in the side chain on the 4-phenyl ring of dihydropyridine. Bradycardiac

  6. The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors.

    PubMed

    Mendez, Aida G; Juncal, Andrea Boente; Silva, Siguara B L; Thomas, Olivier P; Martín Vázquez, Víctor; Alfonso, Amparo; Vieytes, Mercedes R; Vale, Carmen; Botana, Luís M

    2017-07-19

    Crambescidin 816 is a guanidine alkaloid produced by the sponge Crambe crambe with known antitumoral activity. While the information describing the effects of this alkaloid in central neurons is scarce, Cramb816 is known to block voltage dependent calcium channels being selective for L-type channels. Moreover, Cramb816 reduced neuronal viability through an unknown mechanism. Here, we aimed to describe the toxic activity of Cramb816 in cortical neurons. Since calcium influx is considered the main mechanism responsible for neuronal cell death, the effects of Cramb816 in the cytosolic calcium concentration of cortical neurons were studied. The alkaloid decreased neuronal viability and induced a dose-dependent increase in cytosolic calcium that was also related to the presence of calcium in the extracellular media. The increase in calcium influx was age dependent, being higher in younger neurons. Moreover, this effect was prevented by glutamate receptor antagonists, which did not fully block the cytotoxic effect of Cramb816 after 24 h of treatment but completely prevented Cramb816 cytotoxicity after 10 min exposure. Therefore, the findings presented herein provide new insights into the cytotoxic effect of Cramb816 in cortical neurons.

  7. T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input.

    PubMed

    Kim, Haram R; Hong, Su Z; Fiorillo, Christopher D

    2015-01-01

    Although neurons within intact nervous systems can be classified as 'sensory' or 'motor,' it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of 'predictive homeostasis' to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced ('H-type') depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.

  8. The β1 Subunit Enhances Oxidative Regulation of Large-Conductance Calcium-activated K+ Channels

    PubMed Central

    Santarelli, Lindsey Ciali; Chen, Jianguo; Heinemann, Stefan H.; Hoshi, Toshinori

    2004-01-01

    Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) α subunits alone. Because native BKCa channel complexes may include the auxiliary subunit β1, we investigated whether β1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with β1 present shifted the half-activation voltage much further in the hyperpolarizing direction (−75 mV) as compared with that with α alone (−30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of β1. Oxidation of cysteine and methionine residues within β1 was not involved in these potentiated effects because expression of mutant β1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type β1. Unlike the results with α alone, oxidation by Ch-T caused a significant acceleration of channel activation only when β1 was present. The β1 M177 mutation disrupted normal channel activation and prevented the Ch-T–induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming α subunit are greatly amplified by the presence of β1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within β1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with β1 has a considerable chance of being open within the physiological voltage

  9. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels.

    PubMed

    Li, Dong; Zhang, Shu-Zhuo; Yao, Yu-Hong; Xiang, Yun; Ma, Xiao-Yun; Wei, Xiao-Li; Yan, Hai-Tao; Liu, Xiao-Yan

    2017-12-01

    Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca 2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases. © 2017 John Wiley & Sons Ltd.

  10. Efficacy of Calcium Channel Blockers on Major Cardiovascular Outcomes for the Treatment of Hypertension in Asian Populations: A Meta-analysis.

    PubMed

    Tran, Karen C; Leung, Alexander A; Tang, Karen L; Quan, Hude; Khan, Nadia A

    2017-05-01

    Whether calcium channel blockers exert a greater effect on cardiovascular risk reduction in Asian populations than other antihypertensive agents is unclear. We conducted a meta-analysis of hypertension trials of dihydropyridine calcium channel blockers in Asian populations to clarify this association. EMBASE, MEDLINE, and Cochrane databases were searched (from inception to August 2016) for randomized controlled trials on cardiovascular death, major adverse cardiovascular events, stroke, congestive heart failure, and coronary revascularization in Asian persons with hypertension. We identified 9 trials that reported data specific to Asian populations (N = 29,643). These trials included 1 placebo-controlled trial and 8 active comparator trials; of these, 5 had angiotensin receptor blockers as the active comparator. One placebo-controlled trial (n = 9711) showed significantly reduced cardiovascular mortality, major adverse cardiovascular events, and stroke with calcium channel blockers. Among 8 active comparator trials (n = 19,932), there were no significant differences in mortality (relative risk [RR], 1.10; 95% confidence interval [CI], 0.72-1.67; I 2  = 0.0%), major adverse cardiovascular events (RR, 1.02; 95% CI, 0.90-1.15; I 2  = 0.0%), stroke (RR, 0.97; 95% CI, 0.80-1.17; I 2  = 0.0%), congestive heart failure (RR, 1.01; 95% CI, 0.51-2.00; I 2  = 53.7), or coronary revascularization rates (RR, 0.98; 95% CI, 0.76-1.25; I 2  = 0.0%) in the calcium channel blocker group compared with other antihypertensive agents. When restricting the meta-analysis to angiotensin receptor blocker comparators (n = 10,384), there were no significant differences in cardiovascular outcomes. There is no evidence that dihydropyridine calcium channel blockers are superior to other antihypertensive agents in Asian populations for the treatment of hypertension. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  11. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue andmore » promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, Gd

  12. Inhibitory gene expression of the Cav3.1 T-type calcium channel to improve neuronal injury induced by lidocaine hydrochloride.

    PubMed

    Wen, Xianjie; Xu, Shiyuan; Zhang, Qingguo; Li, Xiaohong; Liang, Hua; Yang, Chenxiang; Wang, Hanbing; Liu, Hongzhen

    2016-03-15

    Cav3.1 is a low-voltage-activated (LVA) calcium channel that plays a key role in regulating intracellular calcium ion levels. In this study, we observed the effects of lidocaine hydrochloride on the pshRNA-CACNA1G-SH-SY5Y cells that silenced Cav3.1 mRNA by RNA interference, and investigated the roles of p38 MAPK in these effects. We constructed the pNC-puro-CACNA1G-SH-SY5Y cells and pshRNA-CACNA1G -SH-SY5Y cells by the RNA interference. All the cells were cultured with or without 10mM lidocaine hydrochloride for 24 h. The cell morphology, cell viability, Cav3.1 and p38 protein expression, cell apoptosis rate and intracellular calcium ion concentration were detected. We found that all cells treated with 10mM lidocaine hydrochloride for 24 h showed cellular rounding, axonal regression, and cellular floating. Compared with the cells in SH-SY5Y+Lido group and NC+Lido group, those in the RNAi+Lido group showed similar changes, but of smaller magnitude. Additionally, following lidocaine hydrochloride all cells displayed increased Cav3.1 and p38 MAPK protein, apoptosis rate, and intracellular calcium ion levels; however,these changes in the RNAi+Lido group were less pronounced than in the SH-SY5Y+Lido and NC+Lido groups. The cell viability decreased following lidocaine hydrochloride treatment, but viability of the cells in the RNAi+Lido group was higher than in the SH-SY5Y+Lido and NC+Lido groups. The results showed that Cav3.1 may be involved in neuronal injury induced by lidocaine hydrochloride and that p38 MAPK phosphorylation was reduced upon Cav3.1 gene silencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    PubMed

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  14. Calcium Dynamics in Basal Dendrites of Layer 5A and 5B Pyramidal Neurons Is Tuned to the Cell-Type Specific Physiological Action Potential Discharge

    PubMed Central

    Krieger, Patrik; de Kock, Christiaan P. J.; Frick, Andreas

    2017-01-01

    Layer 5 (L5) is a major neocortical output layer containing L5A slender-tufted (L5A-st) and L5B thick-tufted (L5B-tt) pyramidal neurons. These neuron types differ in their in vivo firing patterns, connectivity and dendritic morphology amongst other features, reflecting their specific functional role within the neocortical circuits. Here, we asked whether the active properties of the basal dendrites that receive the great majority of synaptic inputs within L5 differ between these two pyramidal neuron classes. To quantify their active properties, we measured the efficacy with which action potential (AP) firing patterns backpropagate along the basal dendrites by measuring the accompanying calcium transients using two-photon laser scanning microscopy in rat somatosensory cortex slices. For these measurements we used both “artificial” three-AP patterns and more complex physiological AP patterns that were previously recorded in anesthetized rats in L5A-st and L5B-tt neurons in response to whisker stimulation. We show that AP patterns with relatively few APs (3APs) evoke a calcium response in L5B-tt, but not L5A-st, that is dependent on the temporal pattern of the three APs. With more complex in vivo recorded AP patterns, the average calcium response was similar in the proximal dendrites but with a decay along dendrites (measured up to 100 μm) of L5B-tt but not L5A-st neurons. Interestingly however, the whisker evoked AP patterns—although very different for the two cell types—evoke similar calcium responses. In conclusion, although the effectiveness with which different AP patterns evoke calcium transients vary between L5A-st and L5B-tt cell, the calcium influx appears to be tuned such that whisker-evoked calcium transients are within the same dynamic range for both cell types. PMID:28744201

  15. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear.

    PubMed

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J; Striessnig, Jörg; Singewald, Nicolas

    2008-05-01

    Dihydropyridine (DHP) L-type Ca(2+) channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. Ca(V)1.2 and Ca(V)1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive Ca(V)1.2 LTCCs (Ca(V)1.2DHP(-/-) mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in Ca(V)1.2DHP(-/-) mice, indicating that it is mediated by Ca(V)1.2, but not by Ca(V)1.3 LTCCs. Supporting this conclusion, Ca(V)1.3-deficient mice (Ca(V)1.3(-/-)) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral Ca(V)1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in Ca(V)1.2DHP(-/-) mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the Ca(V)1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly Ca(V)1.3) is not sufficient to accelerate extinction of conditioned fear in mice.

  16. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear

    PubMed Central

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jörg; Singewald, Nicolas

    2008-01-01

    Dihydropyridine (DHP) L-type Ca2+ channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. CaV1.2 and CaV1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive CaV1.2 LTCCs (CaV1.2DHP−/− mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in CaV1.2DHP−/− mice, indicating that it is mediated by CaV1.2, but not by CaV1.3 LTCCs. Supporting this conclusion, CaV1.3-deficient mice (CaV1.3−/−) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral CaV1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in CaV1.2DHP−/− mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the CaV1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly CaV1.3) is not sufficient to accelerate extinction of conditioned fear in mice. PMID:18441296

  17. Receptor model for the molecular basis of tissue selectivity of 1,4-dihydropyridine calcium channel drugs

    NASA Astrophysics Data System (ADS)

    Langs, David A.; Strong, Phyllis D.; Triggle, David J.

    1990-09-01

    Our analysis of the solid state conformations of nifedipine [dimethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinecarboxylate] and its 1,4-dihydropyridine (1,4-DHP) analogues produced a cartoon description of the important interactions between these drugs and their voltage-dependent calcium channel receptor. In the present study a molecular-level detailed model of the 1,4-DHP receptor binding site has been built from the published amino acid sequence of the 215-1 subunit of the voltage-dependent calcium channel isolated from rabbit skeletal muscle transverse tubule membranes. The voltage-sensing component of the channel described in this work differs from others reported for the homologous sodium channel in that it incorporates a water structure and a staggered, rather than eclipsed, hydrogen bonded S4 helix conformation. The major recognition surfaces of the receptor lie in helical grooves on the S4 or voltagesensing α-helix that is positioned in the center of the bundle of transmembrane helices that define each of the four calcium channel domains. Multiple binding clefts defined by Arg-X-X-Arg-P-X-X-S `reading frames' exist on the S4 strand. The tissue selectivity of nifedipine and its analogues may arise, in part, from conservative changes in the amino acid residues at the P and S positions of the reading frame that define the ester-binding regions of receptors from different tissues. The crystal structures of two tissue-selective nifedipine analogues, nimodipine [isopropyl (2-methoxyethyl) 1,4-dihydro-2,6- dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylate] and nitrendipine [ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylate] are reported. Nimodipine was observed to have an unusual ester side chain conformation that enhances the fit to the proposed ester-sensing region of the receptor.

  18. Pre-electroconvulsive shock administration of calcium channel blockers reduces retrograde amnesia induced by ECS.

    PubMed

    Sushma, M; Sudha, S; Guido, S

    2004-11-01

    Effect of pre-electroconvulsive shock (ECS) administration of calcium channel blockers (CCBs) like verapamil, diltiazem, nifedipine, nimodipine, flunarizine and cinnarizine on retrograde amnesia induced by ECS was examined using passive avoidance paradigm in rats. The groups (Gr 1-7) of adult, male Wistar rats received true ECS with CCBs (5mg/kg; i.p) or vehicle (10 ml/kg; ip) and other groups (Gr 8-14) received sham ECS with CCBs (5mg/kg; i.p) or vehicle (10 ml/kg; i.p). The anti-amnestic activity of CCBs were evaluated using the passive avoidance paradigm in rats. Results showed that, the baseline latencies for all the groups did not differ significantly. Rats receiving true ECS produced significantly lower latencies. There was increase in the post ECS step through latencies of the rats administered CCBs before ECS. Therefore, pre-ECS administration of calcium channel blockers might reduce retrograde amnesia produced by ECS without altering seizure duration.

  19. Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast.

    PubMed

    Matza, Didi; Flavell, Richard A

    2009-09-01

    T lymphocytes require Ca2+ entry though the plasma membrane for their activation and function. Recently, several routes for Ca2+ entry through the T-cell plasma membrane after activation have been described. These include calcium release-activated channels (CRAC), transient receptor potential (TRP) channels, and inositol-1,4,5-trisphosphate receptors (IP3Rs). Herein we review the emergence of a fourth new route for Ca2+ entry, composed of Ca(v) channels (also known as L-type voltage-gated calcium channels) and the scaffold protein AHNAK1 (AHNAK/desmoyokin). Both helper (CD4+) and killer (CD8+) T cells express high levels of Ca(v)1 alpha1 subunits (alpha1S, alpha1C, alpha1D, and alpha1F) and AHNAK1 after their differentiation and require these molecules for Ca2+ entry during an immune response. In this article, we describe the observations and open questions that ultimately suggest the involvement of multiple consecutive routes for Ca2+ entry into lymphocytes, one of which may be mediated by Ca(v) channels and AHNAK1.

  20. Involvement of Parkin in the ubiquitin proteasome system-mediated degradation of N-type voltage-gated Ca2+ channels.

    PubMed

    Grimaldo, Lizbeth; Sandoval, Alejandro; Garza-López, Edgar; Felix, Ricardo

    2017-01-01

    N-type calcium (CaV2.2) channels are widely expressed in the brain and the peripheral nervous system, where they play important roles in the regulation of transmitter release. Although CaV2.2 channel expression levels are precisely regulated, presently little is known regarding the molecules that mediate its synthesis and degradation. Previously, by using a combination of biochemical and functional analyses, we showed that the complex formed by the light chain 1 of the microtubule-associated protein 1B (LC1-MAP1B) and the ubiquitin-proteasome system (UPS) E2 enzyme UBE2L3, may interact with the CaV2.2 channels promoting ubiquitin-mediated degradation. The present report aims to gain further insights into the possible mechanism of degradation of the neuronal CaV2.2 channel by the UPS. First, we identified the enzymes UBE3A and Parkin, members of the UPS E3 ubiquitin ligase family, as novel CaV2.2 channel binding partners, although evidence to support a direct protein-protein interaction is not yet available. Immunoprecipitation assays confirmed the interaction between UBE3A and Parkin with CaV2.2 channels heterologously expressed in HEK-293 cells and in neural tissues. Parkin, but not UBE3A, overexpression led to a reduced CaV2.2 protein level and decreased current density. Electrophysiological recordings performed in the presence of MG132 prevented the actions of Parkin suggesting enhanced channel proteasomal degradation. Together these results unveil a novel functional coupling between Parkin and the CaV2.2 channels and provide a novel insight into the basic mechanisms of CaV channels protein quality control and functional expression.