Sample records for l-type voltage-gated calcium

  1. L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis

    ERIC Educational Resources Information Center

    McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.

    2008-01-01

    Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…

  2. Signaling complexes of voltage-gated calcium channels

    PubMed Central

    Turner, Ray W; Anderson, Dustin

    2011-01-01

    Voltage-gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage-gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead form complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily. PMID:21832880

  3. A Critical Neurodevelopmental Role for L-Type Voltage-Gated Calcium Channels in Neurite Extension and Radial Migration.

    PubMed

    Kamijo, Satoshi; Ishii, Yuichiro; Horigane, Shin-Ichiro; Suzuki, Kanzo; Ohkura, Masamichi; Nakai, Junichi; Fujii, Hajime; Takemoto-Kimura, Sayaka; Bito, Haruhiko

    2018-06-13

    Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca 2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCC during brain development remain unclear. Calcium signaling has been shown to be essential for neurodevelopmental processes such as sculpting of neurites, functional wiring, and fine tuning of growing networks. To investigate this relationship, we performed submembraneous calcium imaging using a membrane-tethered genetically encoded calcium indicator (GECI) Lck-G-CaMP7. We successfully recorded s pontaneous regenerative calcium transients (SRCaTs) in developing mouse excitatory cortical neurons prepared from both sexes before synapse formation. SRCaTs originated locally in immature neurites independently of somatic calcium rises and were significantly more elevated in the axons than in dendrites. SRCaTs were not blocked by tetrodoxin, a Na + channel blocker, but were strongly inhibited by hyperpolarization, suggesting a voltage-dependent source. Pharmacological and genetic manipulations revealed the critical importance of the Ca v 1.2 (CACNA1C) pore-forming subunit of L-type VGCCs, which were indeed expressed in immature mouse brains. Consistently, knocking out Ca v 1.2 resulted in significant alterations of neurite outgrowth. Furthermore, expression of a gain-of-function Ca v 1.2 mutant found in Timothy syndrome, an autosomal dominant multisystem disorder exhibiting syndromic autism, resulted in impaired radial migration of layer 2/3 excitatory neurons, whereas postnatal abrogation of Ca v 1.2 enhancement could rescue cortical malformation. Together, these lines of evidence suggest a critical role for spontaneous opening of L-type VGCCs in neural development and corticogenesis and indicate that L-type VGCCs might constitute a perinatal therapeutic target for neuropsychiatric calciochannelopathies. SIGNIFICANCE STATEMENT Despite many association

  4. Redox regulation of neuronal voltage-gated calcium channels.

    PubMed

    Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna

    2014-08-20

    Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain.

  5. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels.

    PubMed

    Andres, Marilou A; Cooke, Ian M; Bellinger, Frederick P; Berry, Marla J; Zaporteza, Maribel M; Rueli, Rachel H; Barayuga, Stephanie M; Chang, Linda

    2015-07-01

    In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the

  6. Redox Regulation of Neuronal Voltage-Gated Calcium Channels

    PubMed Central

    Jevtovic-Todorovic, Vesna

    2014-01-01

    Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125

  7. Retinoschisin, a New Binding Partner for L-type Voltage-gated Calcium Channels in the Retina*

    PubMed Central

    Shi, Liheng; Jian, Kuihuan; Ko, Michael L.; Trump, Dorothy; Ko, Gladys Y.-P.

    2009-01-01

    The L-type voltage-gated calcium channels (L-VGCCs) are activated under high depolarization voltages. They are vital for diverse biological events, including cell excitability, differentiation, and synaptic transmission. In retinal photoreceptors, L-VGCCs are responsible for neurotransmitter release and are under circadian influences. However, the mechanism of L-VGCC regulation in photoreceptors is not fully understood. Here, we show that retinoschisin, a highly conserved extracellular protein, interacts with the L-VGCCα1D subunit and regulates its activities in a circadian manner. Mutations in the gene encoding retinoschisin (RS1) cause retinal disorganization that leads to early onset of macular degeneration. Since ion channel activities can be modulated through interactions with extracellular proteins, disruption of these interactions can alter physiology and be the root cause of disease states. Co-immunoprecipitation and mammalian two-hybrid assays showed that retinoschisin and the N-terminal fragment of the L-VGCCα1 subunit physically interacted with one another. The expression and secretion of retinoschisin are under circadian regulation with a peak at night and nadir during the day. Inhibition of L-type VGCCs decreased membrane-bound retinoschisin at night. Overexpression of a missense RS1 mutant gene, R141G, into chicken cone photoreceptors caused a decrease of L-type VGCC currents at night. Our findings demonstrate a novel bidirectional relationship between an ion channel and an extracellular protein; L-type VGCCs regulate the circadian rhythm of retinoschisin secretion, whereas secreted retinoschisin feeds back to regulate L-type VGCCs. Therefore, physical interactions between L-VGCCα1 subunits and retinoschisin play an important role in the membrane retention of L-VGCCα1 subunits and photoreceptor-bipolar synaptic transmission. PMID:19074145

  8. Apo calmodulin binding to the L-type voltage-gated calcium channel Ca{sub v}1.2 IQ peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf

    2007-02-16

    The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca{sub v}1.2 subunit has been shown to bind both calcium-loaded (Ca{sup 2+}CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction ofmore » apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca{sup 2+}CaM can bind to the intact channel.« less

  9. The L-Type Voltage-Gated Calcium Channel Ca [subscript V] 1.2 Mediates Fear Extinction and Modulates Synaptic Tone in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Temme, Stephanie J.; Murphy, Geoffrey G.

    2017-01-01

    L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, Ca[subscript V]1.2 and Ca[subscript V] 1.3, using transgenic mice have…

  10. [Human calcium channelopathies. Voltage-gated Ca(2+) channels in etiology, pathogenesis, and pharmacotherapy of neurologic disorders].

    PubMed

    Weiergräber, M; Hescheler, J; Schneider, T

    2008-04-01

    Voltage-gated calcium channels are key components in a variety of physiological processes. Within the last decade an increasing number of voltage-gated Ca(2+) channelopathies in both humans and animal models has been described, most of which are related to the neurologic and muscular system. In humans, mutations were found in L-type Ca(v)1.2 and Ca(v)1.4 Ca(2+) channels as well as the non-L-type Ca(v)2.1 and T-type Ca(v)3.2 channels, resulting in altered electrophysiologic properties. Based on their widespread distribution within the CNS, voltage-gated calcium channels are of particular importance in the etiology and pathogenesis of various forms of epilepsy and neuropsychiatric disorders. In this review we characterise the different human Ca(2+) channelopathies known so far, further illuminating basic pathophysiologic mechanisms and clinical aspects.

  11. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  12. L-Type Calcium Channels Modulation by Estradiol.

    PubMed

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  13. Short-Term Facilitation at a Detonator Synapse Requires the Distinct Contribution of Multiple Types of Voltage-Gated Calcium Channels.

    PubMed

    Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin

    2017-05-10

    Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca 2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca 2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca 2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release. SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release

  14. Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain.

    PubMed

    Singh, Anamika; Gebhart, Mathias; Fritsch, Reinhard; Sinnegger-Brauns, Martina J; Poggiani, Chiara; Hoda, Jean-Charles; Engel, Jutta; Romanin, Christoph; Striessnig, Jörg; Koschak, Alexandra

    2008-07-25

    Low voltage activation of Ca(V)1.3 L-type Ca(2+) channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. Ca(V)1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in Ca(V)1.4 L-type Ca(2+) channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the Ca(V)1.3 alpha1 subunit C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), we investigated if a C-terminal modulatory mechanism also controls Ca(V)1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with beta3 and alpha2delta1 subunits in HEK-293 cells. Activation of calcium current through Ca(V)1.3(42A) channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several Ca(V)1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting Ca(V)1.3(DeltaC116) channels showed gating properties similar to Ca(V)1.3(42A) that were reverted by co-expression of the corresponding C-terminal peptide C(116). Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of Ca(V)1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control Ca(V)1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates Ca(V)1.3 channel activation at lower voltages expected to favor Ca(V)1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.

  15. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential

    PubMed Central

    Zamponi, Gerald W.; Striessnig, Joerg; Koschak, Alexandra

    2015-01-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type CaV1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (CaV3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (CaV2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., CaV1.2 and CaV1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective CaV1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson’s disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and

  16. Circadian phase-dependent effect of nitric oxide on L-type voltage-gated calcium channels in avian cone photoreceptors

    PubMed Central

    Ko, Michael L.; Shi, Liheng; Huang, Cathy Chia-Yu; Grushin, Kirill; Park, So-Young; Ko, Gladys Y.-P.

    2014-01-01

    Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In the present study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-MAPK (mitogen-activated protein kinase)-Erk (extracellular-signal-regulated kinase) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. PMID:23895452

  17. Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current.

    PubMed

    Nafzger, Sabine; Rougier, Jean-Sebastien

    2017-01-01

    The L-type voltage-gated calcium channel Ca v 1.2 mediates the calcium influx into cells upon membrane depolarization. The list of cardiopathies associated to Ca v 1.2 dysfunctions highlights the importance of this channel in cardiac physiology. Calcium/calmodulin-dependent serine protein kinase (CASK), expressed in cardiac cells, has been identified as a regulator of Ca v 2.2 channels in neurons, but no experiments have been performed to investigate its role in Ca v 1.2 regulation. Full length or the distal C-terminal truncated of the pore-forming Ca v 1.2 channel (Ca v 1.2α1c), both present in cardiac cells, were expressed in TsA-201 cells. In addition, a shRNA silencer, or scramble as negative control, of CASK was co-transfected in order to silence CASK endogenously expressed. Three days post-transfection, the barium current was increased only for the truncated form without alteration of the steady state activation and inactivation biophysical properties. The calcium current, however, was increased after CASK silencing with both types of Ca v 1.2α1c subunits suggesting that, in absence of calcium, the distal C-terminal counteracts the CASK effect. Biochemistry experiments did not reveals neither an alteration of Ca v 1.2 channel protein expression after CASK silencing nor an interaction between Ca v 1.2α1c subunits and CASK. Nevertheless, after CASK silencing, single calcium channel recordings have shown an increase of the voltage-gated calcium channel Ca v 1.2 open probability explaining the increase of the whole-cell current. This study suggests CASK as a novel regulator of Ca v 1.2 via a modulation of the voltage-gated calcium channel Ca v 1.2 open probability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of osmotic swelling on voltage-gated calcium channel currents in rat anterior pituitary cells.

    PubMed

    Ben-Tabou De-Leon, Shlomo; Blotnick, Edna; Nussinovitch, Itzhak

    2003-10-01

    Decrease in extracellular osmolarity ([Os]e) results in stimulation of hormone secretion from pituitary cells. Different mechanisms can account for this stimulation of hormone secretion. In this study we examined the possibility that hyposmolarity directly modulates voltage-gated calcium influx in pituitary cells. The effects of hyposmolarity on L-type (IL) and T-type (IT) calcium currents in pituitary cells were investigated by using two hyposmotic stimuli, moderate (18-22% decrease in [Os]e) and strong (31-32% decrease in [Os]e). Exposure to moderate hyposmotic stimuli resulted in three response types in IL (a decrease, a biphasic effect, and an increase in IL) and in increase in IT. Exposure to strong hyposmotic stimuli resulted only in increases in both IL and IT. Similarly, in intact pituitary cells (perforated patch method), exposure to either moderate or strong hyposmotic stimuli resulted only in increases in both IL and IT. Thus it appears that the main effect of decrease in [Os]e is increase in calcium channel currents. This increase was differential (IL were more sensitive than IT) and voltage independent. In addition, we show that these hyposmotic effects cannot be explained by activation of an anionic conductance or by an increase in cell membrane surface area. In conclusion, this study shows that hyposmotic swelling of pituitary cells can directly modulate voltage-gated calcium influx. This hyposmotic modulation of IL and IT may contribute to the previously reported hyposmotic stimulation of hormone secretion. The mechanisms underlying these hyposmotic effects and their possible physiological relevance are discussed.

  19. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels.

    PubMed

    Hansen, P B L

    2013-04-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers. Acta Physiologica © 2013 Scandinavian Physiological Society.

  20. Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation.

    PubMed

    Findeisen, Felix; Minor, Daniel L

    2009-03-01

    Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.

  1. Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation

    PubMed Central

    Findeisen, Felix

    2009-01-01

    Two processes dominate voltage-gated calcium channel (CaV) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The CaVβ/CaVα1-I-II loop and Ca2+/calmodulin (CaM)/CaVα1–C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6–α-interaction domain (AID) linker provides a rigid connection between the pore and CaVβ/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate CaV1.2 (L-type) and CaV2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt CaVβ/I-II association sharply decelerate CDI and reduce a second Ca2+/CaM/CaVα1–C-terminal–mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, CaVβ and the IS6-AID linker, are essential for calcium-dependent modulation, and that both CaVβ-dependent and CaM-dependent components couple to the pore by a common mechanism requiring CaVβ and an intact IS6-AID linker. PMID:19237593

  2. Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea.

    PubMed

    Zachary, Stephen; Nowak, Nathaniel; Vyas, Pankhuri; Bonanni, Luke; Fuchs, Paul Albert

    2018-06-20

    Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca 2+ -activated K + (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 μm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses. SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons

  3. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium.

    PubMed

    Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela

    2018-05-09

    Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human

  4. Distribution of L-type calcium channels in rat thalamic neurones.

    PubMed

    Budde, T; Munsch, T; Pape, H C

    1998-02-01

    One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.

  5. Calmodulins from Schistosoma mansoni: Biochemical analysis and interaction with IQ-motifs from voltage-gated calcium channels.

    PubMed

    Thomas, Charlotte M; Timson, David J

    2018-05-17

    The trematode Schistosoma mansoni is a causative agent of schistosomiasis, the second most common parasitic disease of humans after malaria. Calcium homeostasis and calcium-mediated signalling pathways are of particular interest in this species. The drug of choice for treating schistosomiasis, praziquantel, disrupts the regulation of calcium uptake and there is interest in exploiting calcium-mediated processes for future drug discovery. Calmodulin is a calcium sensing protein, present in most eukaryotes. It is a critical regulator of processes as diverse as muscle contraction, cell division and, partly through interaction with voltage-gated calcium channels, intra-cellular calcium concentrations. S. mansoni expresses two highly similar calmodulins - SmCaM1 and SmCaM2. Both proteins interact with calcium, manganese, cadmium (II), iron (II) and lead ions in native gel electrophoresis. These ions also cause conformational changes in the proteins resulting in the exposure of a more hydrophobic surface (as demonstrated by anilinonaphthalene-8-sulfonate fluorescence assays). The proteins are primarily dimeric in the absence of calcium ions, but monomeric in the presence of this ion. Both SmCaM1 and SmCaM2 interact with a peptide corresponding to an IQ-motif derived from the α-subunit of the voltage-gated calcium channel SmCa v 1B (residues 1923-1945). Both proteins bound with slightly higher affinity in the presence of calcium ions. However, there was no difference between the affinities of the two proteins for the peptide. This interaction could be antagonised by chlorpromazine and trifluoperazine, but not praziquantel or thiamylal. Interestingly no interaction could be detected with the other three IQ-motifs identified in S. mansoni voltage-gated ion calcium channels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Inactivation of Gating Currents of L-Type Calcium Channels

    PubMed Central

    Shirokov, Roman; Ferreira, Gonzalo; Yi, Jianxun; Ríos, Eduardo

    1998-01-01

    In studies of gating currents of rabbit cardiac Ca channels expressed as α1C/β2a or α1C/β2a/α2δ subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, V1/2 ≃ 0 mV) gates noninactivated channels, while charge 2 (V1/2 ≃ −90 mV) is generated in inactivated channels. In α1C/β2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant τ ≃ 8, while the available charge 2 decreased upon recovery from inactivation (at −200 mV) with τ ≃ 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of α2δ, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the α2δ subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to τ ≃ 2 s), while slowing the reduction of charge 2 upon recovery (τ ≃ 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of α2δ are reproduced assuming that the subunit lowers the free energy of the inactivated mode. PMID:9607938

  7. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    PubMed

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  8. Voltage-gated calcium flux mediates Escherichia coli mechanosensation

    PubMed Central

    Weekley, R. Andrew; Dodd, Benjamin J. T.

    2017-01-01

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli, including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings. PMID:28808010

  9. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    PubMed

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells

    PubMed Central

    1993-01-01

    Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to

  11. The spinal inhibition of N-type voltage-gated calcium channels selectively prevents scratching behavior in mice.

    PubMed

    Maciel, I S; Azevedo, V M; Pereira, T C; Bogo, M R; Souza, A H; Gomez, M V; Campos, M M

    2014-09-26

    The present study investigated the effects of pharmacological spinal inhibition of voltage-gated calcium channels (VGCC) in mouse pruritus. The epidural administration of P/Q-type MVIIC or PhTx3.3, L-type verapamil, T-type NNC 55-0396 or R-type SNX-482 VGCC blockers failed to alter the scratching behavior caused by the proteinase-activated receptor 2 (PAR-2) activator trypsin, injected into the mouse nape skin. Otherwise, trypsin-elicited pruritus was markedly reduced by the spinal administration of preferential N-type VGCC inhibitors MVIIA and Phα1β. Time-course experiments revealed that Conus magus-derived toxin MVIIA displayed significant effects when dosed from 1h to 4h before trypsin, while the anti-pruritic effects of Phα1β from Phoneutria nigriventer remained significant for up to 12h. In addition to reducing trypsin-evoked itching, MVIIA or Phα1β also prevented the itching elicited by intradermal (i.d.) injection of SLIGRL-NH2, compound 48/80 or chloroquine, although they did not affect H2O2-induced scratching behavior. Furthermore, the co-administration of MVIIA or Phα1β markedly inhibited the pruritus caused by the spinal injection of gastrin-releasing peptide (GRP), but not morphine. Notably, the epidural administration of MVIIA or Phα1β greatly prevented the chronic pruritus allied to dry skin model. However, either tested toxin failed to alter the edema formation or neutrophil influx caused by trypsin, whereas they significantly reduced the c-Fos activation in laminas I, II and III of the spinal cord. Our data bring novel evidence on itching transmission mechanisms, pointing out the therapeutic relevance of N-type VGCC inhibitors to control refractory pruritus. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Role of voltage-gated L-type Ca2+ channel isoforms for brain function.

    PubMed

    Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N

    2006-11-01

    Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.

  13. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels.

    PubMed

    Li, Dong; Zhang, Shu-Zhuo; Yao, Yu-Hong; Xiang, Yun; Ma, Xiao-Yun; Wei, Xiao-Li; Yan, Hai-Tao; Liu, Xiao-Yan

    2017-12-01

    Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca 2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases. © 2017 John Wiley & Sons Ltd.

  14. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    PubMed

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  15. Antibodies to voltage-gated potassium and calcium channels in epilepsy.

    PubMed

    Majoie, H J Marian; de Baets, Mark; Renier, Willy; Lang, Bethan; Vincent, Angela

    2006-10-01

    To determine the prevalence of antibodies to ion channels in patients with long standing epilepsy. Although the CNS is thought to be protected from circulating antibodies by the blood brain barrier, glutamate receptor antibodies have been reported in Rasmussen's encephalitis, glutamic acid decarboxylase (GAD) antibodies have been found in a few patients with epilepsy, and antibodies to voltage-gated potassium channels (VGKC) have been found in a non-paraneoplastic form of limbic encephalitis (with amnesia and seizures) that responds to immunosuppressive therapy. We retrospectively screened sera from female epilepsy patients (n=106) for autoantibodies to VGKC (Kv 1.1, 1.2 or 1.6), voltage-gated calcium channels (VGCC) (P/Q-type), and GAD. All positive results, based on the values of control data [McKnight, K., Jiang, Y., et al. (2005). Serum antibodies in epilepsy and seizure-associated disorders. Neurology 65, 1730-1735], were retested at lower serum concentrations, and results compared with previously published control data. Demographics, medical history, and epilepsy related information was gathered. The studied group consisted predominantly of patients with long standing drug resistant epilepsy. VGKC antibodies were raised (>100 pM) in six patients. VGCC antibodies (>45 pM) were slightly raised in only one patient. GAD antibodies were <3 U/ml in all patients. The clinical features of the patients with VGKC antibodies differed from previously described patients with limbic encephalitis-like syndrome, and were not different with respect to seizure type, age at first seizure, duration of epilepsy, or use of anti-epileptic drugs from the VGKC antibody negative patients. The results demonstrate that antibodies to VGKC are present in 6% of patients with typical long-standing epilepsy, but whether these antibodies are pathogenic or secondary to the primary disease process needs to be determined.

  16. The L-type voltage-gated calcium channel CaV1.2 mediates fear extinction and modulates synaptic tone in the lateral amygdala.

    PubMed

    Temme, Stephanie J; Murphy, Geoffrey G

    2017-11-01

    L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, Ca V 1.2 and Ca V 1.3, using transgenic mice have failed to find a role of either subtype in fear extinction. This discontinuity between the pharmacological studies of LVGCCs and the studies investigating individual subtype contributions could be due to the limited neuronal deletion pattern of the Ca V 1.2 conditional knockout mice previously studied to excitatory neurons in the forebrain. To investigate the effects of deletion of Ca V 1.2 in all neuronal populations, we generated Ca V 1.2 conditional knockout mice using the synapsin1 promoter to drive Cre recombinase expression. Pan-neuronal deletion of Ca V 1.2 did not alter basal anxiety or fear learning. However, pan-neuronal deletion of Ca V 1.2 resulted in a significant deficit in extinction of contextual fear, implicating LVGCCs, specifically Ca V 1.2, in extinction learning. Further exploration on the effects of deletion of Ca V 1.2 on inhibitory and excitatory input onto the principle neurons of the lateral amygdala revealed a significant shift in inhibitory/excitatory balance. Together these data illustrate an important role of Ca V 1.2 in fear extinction and the synaptic regulation of activity within the amygdala. © 2017 Temme and Murphy; Published by Cold Spring Harbor Laboratory Press.

  17. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating

    PubMed Central

    1996-01-01

    Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is

  18. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    PubMed Central

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E.; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  19. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels

    PubMed Central

    Salari, Autoosa; Vega, Benjamin S.; Milescu, Lorin S.; Milescu, Mirela

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173

  20. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  1. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation

    PubMed Central

    Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts. PMID:21139419

  2. Suggestive evidence for association between L-type voltage-gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: a family-based association study

    PubMed Central

    Gonzalez, Suzanne; Xu, Chun; Ramirez, Mercedes; Zavala, Juan; Armas, Regina; Contreras, Salvador A; Contreras, Javier; Dassori, Albana; Leach, Robin J; Flores, Deborah; Jerez, Alvaro; Raventós, Henriette; Ontiveros, Alfonso; Nicolini, Humberto; Escamilla, Michael

    2013-01-01

    Objectives Through recent genome-wide association studies (GWAS), several groups have reported significant association between variants in the alpha 1C subunit of the L-type voltage-gated calcium channel (CACNA1C) and bipolar disorder (BP) in European and European-American cohorts. We performed a family-based association study to determine whether CACNA1C is associated with BP in the Latino population. Methods This study consisted of 913 individuals from 215 Latino pedigrees recruited from the United States, Mexico, Guatemala, and Costa Rica. The Illumina GoldenGate Genotyping Assay was used to genotype 58 single-nucleotide polymorphisms (SNPs) that spanned a 602.9 kb region encompassing the CACNA1C gene including two SNPs (rs7297582 and rs1006737) previously shown to associate with BP. Individual SNP and haplotype association analyses were performed using Family-Based Association Test (version 2.0.3) and Haploview (version 4.2) software. Results An eight-locus haplotype block that included these two markers showed significant association with BP (global marker permuted p = 0.0018) in the Latino population. For individual SNPs, this sample had insufficient power (10%) to detect associations with SNPs with minor effect (odds ratio = 1.15). Conclusions Although we were not able to replicate findings of association between individual CACNA1C SNPs rs7297582 and rs1006737 and BP, we were able to replicate the GWAS signal reported for CACNA1C through a haplotype analysis that encompassed these previously reported significant SNPs. These results provide additional evidence that CACNA1C is associated with BP and provides the first evidence that variations in this gene might play a role in the pathogenesis of this disorder in the Latino population. PMID:23437964

  3. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain.

    PubMed

    Findeisen, Felix; Rumpf, Christine H; Minor, Daniel L

    2013-09-09

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. L-type calcium channels refine the neural population code of sound level.

    PubMed

    Grimsley, Calum Alex; Green, David Brian; Sivaramakrishnan, Shobhana

    2016-12-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (Ca L : Ca V 1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of Ca L to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. Ca L is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, Ca L activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, Ca L boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, Ca L either suppresses or enhances firing at sound levels that evoke maximum firing. Ca L multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. Copyright © 2016 the American Physiological Society.

  5. L-type calcium channels refine the neural population code of sound level

    PubMed Central

    Grimsley, Calum Alex; Green, David Brian

    2016-01-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536

  6. Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain

    PubMed Central

    Roehm, Pamela C.; Xu, Ningyong; Woodson, Erika A.; Green, Steven H.; Hansen, Marlan R.

    2008-01-01

    The effect of membrane electrical activity on spiral ganglion neuron (SGN) neurite growth remains unknown despite its relevance to cochlear implant technology. We demonstrate that membrane depolarization delays the initial formation and inhibits the subsequent extension of cultured SGN neurites. This inhibition depends directly on the level of depolarization with higher levels of depolarization causing retraction of existing neurites. Cultured SGNs express subunits for L-type, N-type, and P/Q type voltage-gated calcium channels (VGCCs) and removal of extracellular Ca2+ or treatment with a combination of L-type, N-type, P/Q-type VGCC antagonists rescues SGN neurite growth under depolarizing conditions. By measuring the fluorescence intensity of SGNs loaded with the fluorogenic calpain substrate t-butoxy carbonyl-Leu-Met-chloromethylaminocoumarin (20 μM), we demonstrate that depolarization activates calpains. Calpeptin (15 μM), a calpain inhibitor, prevents calpain activation by depolarization and rescues neurite growth in depolarized SGNs suggesting that calpain activation contributes to the inhibition of neurite growth by depolarization. PMID:18055215

  7. Apo-states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain

    PubMed Central

    Findeisen, Felix; Rumpf, Christine; Minor, Daniel L.

    2013-01-01

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation (CDI) and limits calcium entry, whereas CaBP1 blocks CDI and allows sustained calcium influx. Here, we combine isothermal titration calorimetry (ITC) with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca2+/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium binding properties. The observation that the apo-forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. PMID:23811053

  8. Voltage-gated sodium channels in taste bud cells.

    PubMed

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  9. Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b

    PubMed Central

    Low, Sean E.; Woods, Ian G.; Lachance, Mathieu; Ryan, Joel; Saint-Amant, Louis

    2012-01-01

    The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild-type CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via morpholino oligonucleotides recapitulates the fakir mutant phenotype. Fakir mutants display normal current-evoked synaptic communication at the neuromuscular junction but have attenuated touch-evoked activation of motor neurons. NMDA-evoked fictive swimming is not affected by the loss of CaV2.1b, suggesting that this channel is not required for motor pattern generation. These results, coupled with the expression of CACNA1Ab by sensory neurons, suggest that CaV2.1b channel activity is necessary for touch-evoked activation of the locomotor network in zebrafish. PMID:22490555

  10. Reciprocal Regulation of Reactive Oxygen Species and Phospho-CREB Regulates Voltage Gated Calcium Channel Expression during Mycobacterium tuberculosis Infection

    PubMed Central

    Selvakumar, Arti; Antony, Cecil; Singhal, Jhalak; Tiwari, Brijendra K.; Singh, Yogendra; Natarajan, Krishnamurthy

    2014-01-01

    Our previous work has demonstrated the roles played by L-type Voltage Gated Calcium Channels (VGCC) in regulating Mycobacterium tuberculosis (M. tb) survival and pathogenesis. Here we decipher mechanisms and pathways engaged by the pathogen to regulate VGCC expression in macrophages. We show that M. tb and its antigen Rv3416 use phospho-CREB (pCREB), Reactive Oxygen Species (ROS), Protein Kinase C (PKC) and Mitogen Activated Protein Kinase (MAPK) to modulate VGCC expression in macrophages. siRNA mediated knockdown of MyD88, IRAK1, IRAK2 or TRAF6 significantly inhibited antigen mediated VGCC expression. Inhibiting Protein Kinase C (PKC) or MEK-ERK1/2 further increased VGCC expression. Interestingly, inhibiting intracellular calcium release upregulated antigen mediated VGCC expression, while inhibiting extracellular calcium influx had no significant effect. siRNA mediated knockdown of transcription factors c-Jun, SOX5 and CREB significantly inhibited Rv3416 mediated VGCC expression. A dynamic reciprocal cross-regulation between ROS and pCREB was observed that in turn governed VGCC expression with ROS playing a limiting role in the process. Further dissection of the mechanisms such as the interplay between ROS and pCREB would improve our understanding of the regulation of VGCC expression during M. tb infection. PMID:24797940

  11. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts.

    PubMed

    Zhang, Xuemei; Li, Fangping; Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.

  12. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts

    PubMed Central

    Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045

  13. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.

    PubMed

    Minor, Daniel L; Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.

  14. N-acetylcysteine-induced vasodilation involves voltage-gated potassium channels in rat aorta.

    PubMed

    Han, Wei-Qing; Zhu, Ding-Liang; Wu, Ling-Yun; Chen, Qi-Zhi; Guo, Shu-Jie; Gao, Ping-Jin

    2009-05-22

    N-acetylcysteine (NAC) has a protective effect against vascular dysfunction by decreasing the level of reactive oxygen species (ROS) in experimental and human hypertension. This study was designed to examine whether NAC would relax vascular rings in vitro via nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, extracellular Ca2+ and/or K+ channels. Rat aortic arteries were mounted in an organ bath, contracted with 0.1, 0.5 or 1 micromol/L phenylephrine to plateau, and the vasodilatory effect of NAC was examined in the absence or presence of ROS scavengers, inhibitors of NO-cGMP pathway or K+ channels. Vascular smooth muscle cells (VSMCs) were loaded with a calcium sensitive fluorescent dye fluo-3 AM, and [Ca2+](i) was determined with laser-scanning confocal microscopy. NAC (0.1-4 mmol/L) dose-dependently relaxed rat aorta pre-contracted with phenylephrine. Endothelium removal, endothelial nitric oxide synthase inhibitor N(omega)-Nitro-l-arginine (L-NNA) (100 micromol/L) or soluble guanylyl cyclase (sGC) inhibitor (ODQ) (10 micromol/L) did not affect NAC-induced vasodilation. In contrast, NAC-induced vasodilation was blunted after extracellular calcium was removed and calcium imaging showed that 4 mmol/L NAC quickly decreased [Ca2+](i) in fluo-3 AM loaded VSMCs. NAC-induced vasodilation was significantly reduced in the presence of voltage-gated K+ channels (Kv) inhibitor 4-aminopyridine (4-AP). The vasodilatory effect of NAC may be explained at least partly by activation of voltage-gated K+ channels.

  15. Voltage-gated currents in identified rat olfactory receptor neurons.

    PubMed

    Trombley, P Q; Westbrook, G L

    1991-02-01

    Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act

  16. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects

    PubMed Central

    Pall, Martin L

    2013-01-01

    The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca2+/calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca2+-mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca2+/calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects. PMID:23802593

  17. Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels

    PubMed Central

    Blunck, Rikard; Batulan, Zarah

    2012-01-01

    Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3–4e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4–S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during

  18. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    NASA Astrophysics Data System (ADS)

    Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.

    1991-06-01

    RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.

  19. Voltage-gated calcium channel autoimmune cerebellar degeneration

    PubMed Central

    McKasson, Marilyn; Clawson, Susan A.; Hill, Kenneth E.; Wood, Blair; Carlson, Noel; Bromberg, Mark; Greenlee, John E.

    2016-01-01

    Objectives: To describe response to treatment in a patient with autoantibodies against voltage-gated calcium channels (VGCCs) who presented with autoimmune cerebellar degeneration and subsequently developed Lambert-Eaton myasthenic syndrome (LEMS), and to study the effect of the patient's autoantibodies on Purkinje cells in rat cerebellar slice cultures. Methods: Case report and study of rat cerebellar slice cultures incubated with patient VGCC autoantibodies. Results: A 53-year-old man developed progressive incoordination with ataxic speech. Laboratory evaluation revealed VGCC autoantibodies without other antineuronal autoantibodies. Whole-body PET scans 6 and 12 months after presentation detected no malignancy. The patient improved significantly with IV immunoglobulin G (IgG), prednisone, and mycophenolate mofetil, but worsened after IV IgG was halted secondary to aseptic meningitis. He subsequently developed weakness with electrodiagnostic evidence of LEMS. The patient's IgG bound to Purkinje cells in rat cerebellar slice cultures, followed by neuronal death. Reactivity of the patient's autoantibodies with VGCCs was confirmed by blocking studies with defined VGCC antibodies. Conclusions: Autoimmune cerebellar degeneration associated with VGCC autoantibodies may precede onset of LEMS and may improve with immunosuppressive treatment. Binding of anti-VGCC antibodies to Purkinje cells in cerebellar slice cultures may be followed by cell death. Patients with anti-VGCC autoantibodies may be at risk of irreversible neurologic injury over time, and treatment should be initiated early. PMID:27088118

  20. Modulation of voltage-gated channel currents by harmaline and harmane.

    PubMed

    Splettstoesser, Frank; Bonnet, Udo; Wiemann, Martin; Bingmann, Dieter; Büsselberg, Dietrich

    2005-01-01

    Harmala alkaloids are endogenous substances, which are involved in neurodegenerative disorders such as M. Parkinson, but some of them also have neuroprotective effects in the nervous system. While several sites of action at the cellular level (e.g. benzodiazepine receptors, 5-HT and GABA(A) receptors) have been identified, there is no report on how harmala alkaloids interact with voltage-gated membrane channels. The aim of this study was to investigate the effects of harmaline and harmane on voltage-activated calcium- (I(Ca(V))), sodium- (I(Na(V))) and potassium (I(K(V)))-channel currents, using the whole-cell patch-clamp method with cultured dorsal root ganglion neurones of 3-week-old rats. Currents were elicited by voltage steps from the holding potential to different command potentials. Harmaline and harmane reduced I(Ca(V)), I(Na(V)) and I(K(V)) concentration-dependent (10-500 microM) over the voltage range tested. I(Ca(V)) was reduced with an IC(50) of 100.6 microM for harmaline and by a significantly lower concentration of 75.8 microM (P<0.001, t-test) for harmane. The Hill coefficient was close to 1. Threshold concentration was around 10 microM for both substances. The steady state of inhibition of I(Ca(V)) by harmaline or harmane was reached within several minutes. The action was not use-dependent and at least partly reversible. It was mainly due to a reduction in the sustained calcium channel current (I(Ca(L+N))), while the transient voltage-gated calcium channel current (I(Ca(T))) was only partially affected. We conclude that harmaline and harmane are modulators of I(Ca(V)) in vitro. This might be related to their neuroprotective effects.

  1. Modulation of voltage-gated channel currents by harmaline and harmane

    PubMed Central

    Splettstoesser, Frank; Bonnet, Udo; Wiemann, Martin; Bingmann, Dieter; Büsselberg, Dietrich

    2004-01-01

    Harmala alkaloids are endogenous substances, which are involved in neurodegenerative disorders such as M. Parkinson, but some of them also have neuroprotective effects in the nervous system. While several sites of action at the cellular level (e.g. benzodiazepine receptors, 5-HT and GABAA receptors) have been identified, there is no report on how harmala alkaloids interact with voltage-gated membrane channels. The aim of this study was to investigate the effects of harmaline and harmane on voltage-activated calcium- (ICa(V)), sodium- (INa(V)) and potassium (IK(V))-channel currents, using the whole-cell patch-clamp method with cultured dorsal root ganglion neurones of 3-week-old rats. Currents were elicited by voltage steps from the holding potential to different command potentials. Harmaline and harmane reduced ICa(V), INa(V) and IK(V) concentration-dependent (10–500 μM) over the voltage range tested. ICa(V) was reduced with an IC50 of 100.6 μM for harmaline and by a significantly lower concentration of 75.8 μM (P<0.001, t-test) for harmane. The Hill coefficient was close to 1. Threshold concentration was around 10 μM for both substances. The steady state of inhibition of ICa(V) by harmaline or harmane was reached within several minutes. The action was not use dependent and at least partly reversible. It was mainly due to a reduction in the sustained calcium channel current (ICa(L+N)), while the transient voltage-gated calcium channel current (ICa(T)) was only partially affected. We conclude that harmaline and harmane are modulators of ICa(V) in vitro. This might be related to their neuroprotective effects. PMID:15644868

  2. Gating of the designed trimeric/tetrameric voltage-gated H+ channel

    PubMed Central

    Fujiwara, Yuichiro; Kurokawa, Tatsuki; Takeshita, Kohei; Nakagawa, Atsushi; Larsson, H Peter; Okamura, Yasushi

    2013-01-01

    The voltage-gated H+ channel functions as a dimer, a configuration that is different from standard tetrameric voltage-gated channels. Each channel protomer has its own permeation pathway. The C-terminal coiled-coil domain has been shown to be necessary for both dimerization and cooperative gating in the two channel protomers. Here we report the gating cooperativity in trimeric and tetrameric Hv channels engineered by altering the hydrophobic core sequence of the coiled-coil assembly domain. Trimeric and tetrameric channels exhibited more rapid and less sigmoidal kinetics of activation of H+ permeation than dimeric channels, suggesting that some channel protomers in trimers and tetramers failed to produce gating cooperativity observed in wild-type dimers. Multimerization of trimer and tetramer channels were confirmed by the biochemical analysis of proteins, including crystallography. These findings indicate that the voltage-gated H+ channel is optimally designed as a dimeric channel on a solid foundation of the sequence pattern of the coiled-coil core, with efficient cooperative gating that ensures sustained and steep voltage-dependent H+ conductance in blood cells. PMID:23165764

  3. Voltage-Dependent Gating of hERG Potassium Channels

    PubMed Central

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  4. Contribution of Sialic Acid to the Voltage Dependence of Sodium Channel Gating

    PubMed Central

    Bennett, Eric; Urcan, Mary S.; Tinkle, Sally S.; Koszowski, Adam G.; Levinson, Simon R.

    1997-01-01

    A potential role for sialic acid in the voltage-dependent gating of rat skeletal muscle sodium channels (rSkM1) was investigated using Chinese hamster ovary (CHO) cells stably transfected with rSkM1. Changes in the voltage dependence of channel gating were observed after enzymatic (neuraminidase) removal of sialic acid from cells expressing rSkM1 and through the expression of rSkM1 in a sialylation-deficient cell line (lec2). The steady-state half-activation voltages (Va) of channels under each condition of reduced sialylation were ∼10 mV more depolarized than control channels. The voltage dependence of the time constants of channel activation and inactivation were also shifted in the same direction and by a similar magnitude. In addition, recombinant deletion of likely glycosylation sites from the rSkM1 sequence resulted in mutant channels that gated at voltages up to 10 mV more positive than wild-type channels. Thus three independent means of reducing channel sialylation show very similar effects on the voltage dependence of channel gating. Finally, steady-state activation voltages for channels subjected to reduced sialylation conditions were much less sensitive to the effects of external calcium than those measured under control conditions, indicating that sialic acid directly contributes to the negative surface potential. These results are consistent with an electrostatic mechanism by which external, negatively charged sialic acid residues on rSkM1 alter the electric field sensed by channel gating elements. PMID:9089440

  5. Lack of voltage-dependent calcium channel opening during the calcium influx induced by progesterone in human sperm. Effect of calcium channel deactivation and inactivation.

    PubMed

    Guzmán-Grenfell, Alberto Martín; González-Martínez, Marco T

    2004-01-01

    Progesterone induces calcium influx and acrosomal exocytosis in human sperm. Pharmacologic evidence suggests that voltage-dependent calcium channels (VDCCs) are involved. In this study, membrane potential (Vm) and intracellular calcium concentration ([Ca(2+)](i)) were monitored simultaneously to assess the effect of VDCC gating on the calcium influx triggered by progesterone. Holding the Vm to values that maintained VDCCs in a deactivated (-71 mV) closed state inhibited the calcium influx induced by progesterone by approximately 40%. At this Vm, the acrosomal reaction induced by progesterone, but not by A23187, was inhibited. However, when the Vm was held at -15 mV (which maintains VDCCs in an inactivated closed state), the progesterone-induced calcium influx was stimulated. Furthermore, the progesterone and voltage-dependent calcium influxes were additive. These findings indicate that progesterone does not produce VDCC gating in human sperm.

  6. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.

    PubMed

    Tuluc, Petronel; Flucher, Bernhard E

    2011-12-01

    Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.

  7. L-Histidine sensing by calcium sensing receptor inhibits voltage-dependent calcium channel activity and insulin secretion in β-cells

    PubMed Central

    Parkash, Jai; Asotra, Kamlesh

    2011-01-01

    Aims Our goal was to test the hypothesis that the histidine-induced activation of calcium sensing receptor (CaR) can regulate calcium channel activity of L-type voltage dependent calcium channel (VDCC) due to increased spatial interaction between CaR and VDCC in β-cells and thus modulate glucose-induced insulin secretion. Main methods Rat insulinoma (RINr1046-38) insulin-producing β-cells were cultured in RPMI-1640 medium on 25 mm diameter glass coverslips in six-well culture plates in a 5% CO2 incubator at 37°C. The intracellular calcium concentration, [Ca2+]i, was determined by ratio fluorescence microscopy using Fura-2AM. The spatial interactions between CaR and L-type VDCC in β-cells were measured by immunofluorescence confocal microscopy using a Nikon C1 laser scanning confocal microscope. The insulin release was determined by enzyme-linked immunosorbent assay (ELISA). Key findings The additions of increasing concentrations of L-histidine along with 10 mM glucose resulted in 57% decrease in [Ca2+]i. The confocal fluorescence imaging data showed 5.59 to 8.62-fold increase in colocalization correlation coefficient between CaR and VDCC in β-cells exposed to L-histidine thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. The insulin ELISA data showed 54% decrease in 1st phase of glucose-induced insulin secretion in β-cells exposed to increasing concentrations of L-histidine. Significance L-histidine-induced increased spatial interaction of CaR with VDCC can inhibit calcium channel activity of VDCC and consequently regulate glucose-induced insulin secretion by β-cells. The L-type VDCC could therefore be potential therapeutic target in diabetes. PMID:21219913

  8. Voltage-gated proton (H(v)1) channels, a singular voltage sensing domain.

    PubMed

    Castillo, Karen; Pupo, Amaury; Baez-Nieto, David; Contreras, Gustavo F; Morera, Francisco J; Neely, Alan; Latorre, Ramon; Gonzalez, Carlos

    2015-11-14

    The main role of voltage-gated proton channels (Hv1) is to extrude protons from the intracellular milieu when, mediated by different cellular processes, the H(+) concentration increases. Hv1 are exquisitely selective for protons and their structure is homologous to the voltage sensing domain (VSD) of other voltage-gated ion channels like sodium, potassium, and calcium channels. In clear contrast to the classical voltage-dependent channels, Hv1 lacks a pore domain and thus permeation necessarily occurs through the voltage sensing domain. Hv1 channels are activated by depolarizing voltages, and increases in internal proton concentration. It has been proposed that local conformational changes of the transmembrane segment S4, driven by depolarization, trigger the molecular rearrangements that open Hv1. However, it is still unclear how the electromechanical coupling is achieved between the VSD and the potential pore, allowing the proton flux from the intracellular to the extracellular side. Here we provide a revised view of voltage activation in Hv1 channels, offering a comparative scenario with other voltage sensing channels domains. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  10. Chloride concentration affects Kv channel voltage-gating kinetics: Importance of experimental anion concentrations.

    PubMed

    Bekar, L K; Loewen, M E; Forsyth, G W; Walz, W

    2005-09-30

    Chloride concentration has been shown to have a dramatic impact on protein folding and subsequent tertiary conformation [K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300-311; I. Jelesarov, E. Durr, R.M. Thomas, H.R. Bosshard, Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper), Biochemistry 37 (1998) 7539-7550]. As it is known that Kv channel gating is linked to the stability of the cytoplasmic T1 multimerization domain conformation [D.L. Minor, Y.F. Lin, B.C. Mobley, A. Avelar, Y.N. Jan, L.Y. Jan, J.M. Berger, The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel, Cell 102 (2000) 657-670; B.A. Yi, D.L. Minor Jr., Y.F. Lin, Y.N. Jan, L.Y. Jan, Controlling potassium channel activities: interplay between the membrane and intracellular factors, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 11016-11023] and that intracellular chloride concentration has been linked to Kv channel kinetics [L.K. Bekar, W. Walz, Intracellular chloride modulates A-type potassium currents in astrocytes, Glia 39 (2002) 207-216; W.B. Thoreson, S.L. Stella, Anion modulation of calcium current voltage dependence and amplitude in salamander rods, Biochim. Biophys. Acta 1464 (2000) 142-150], the objective of the present study was to address how chloride concentration changes affect Kv channel kinetics more closely in an isolated expression system. Initially, no significant chloride concentration-dependent effects on channel steady-state gating kinetics were observed. Only after disruption of the cytoskeleton with cytochalasin-D did we see significant chloride concentration-dependent shifts in gating kinetics. This suggests that the shift in gating kinetics is mediated through effects of intracellular chloride concentration on cytoplasmic domain tertiary

  11. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains.

    PubMed

    Hong, Liang; Pathak, Medha M; Kim, Iris H; Ta, Dennis; Tombola, Francesco

    2013-01-23

    Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here, we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically coupled gates. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients.

    PubMed

    Thuesen, A D; Lyngsø, K S; Rasmussen, L; Stubbe, J; Skøtt, O; Poulsen, F R; Pedersen, C B; Rasmussen, L M; Hansen, P B L

    2017-03-01

    Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain and mammary blood vessels. Internal mammary arteries from bypass surgery patients and cerebral arterioles from patients with brain tumours with and without hypertension were tested in a myograph and perfusion set-up. PCR and immunohistochemistry were performed on isolated blood vessels. The P/Q-type antagonist ω-agatoxin IVA (10 -8  mol L -1 ) and the T-type calcium blocker mibefradil (10 -7  mol L -1 ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased contraction in cerebral arterioles from hypertensive patients. L-type blocker nifedipine abolished the contraction in mammary arteries. PCR analysis showed expression of P/Q-type (Ca v 2.1), T-type (Ca v 3.1 and Ca v 3.2) and L-type (Ca v 1.2) calcium channels in mammary and cerebral arteries. Immunohistochemical labelling of mammary and cerebral arteries revealed the presence of Ca v 2.1 in endothelial and smooth muscle cells. Ca v 3.1 was also detected in mammary arteries. P/Q- and T-type Ca v are present in human internal mammary arteries and in cerebral penetrating arterioles. P/Q- and T-type calcium channels are involved in the contraction of mammary arteries from hypertensive patients but not from normotensive patients. Furthermore, in cerebral arterioles P/Q-type channels importance was restricted to hypertensive patients might lead to that T- and P/Q-type channels could be a new target in hypertensive patients. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    PubMed Central

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  14. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  15. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels.

    PubMed

    Elinder, Fredrik; Liin, Sara I

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (Na V ), potassium (K V ), calcium (Ca V ), and proton (H V ) channels, as well as calcium-activated potassium (K Ca ), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1 : The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2 : The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3 : The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4 : The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5 : The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.

  16. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels

    PubMed Central

    Elinder, Fredrik; Liin, Sara I.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels. PMID:28220076

  17. Calmodulin regulates Cav3 T-type channels at their gating brake

    PubMed Central

    Taiakina, Valentina; Monteil, Arnaud; Piazza, Michael; Guan, Wendy; Stephens, Robert F.; Dieckmann, Thorsten; Guillemette, Joseph Guy; Spafford, J. David

    2017-01-01

    Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I–II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I–II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM. PMID:28972185

  18. Hysteresis in voltage-gated channels.

    PubMed

    Villalba-Galea, Carlos A

    2017-03-04

    Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.

  19. Hysteresis in voltage-gated channels

    PubMed Central

    2017-01-01

    ABSTRACT Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels. PMID:27689426

  20. G protein modulation of CaV2 voltage-gated calcium channels.

    PubMed

    Currie, Kevin P M

    2010-01-01

    Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.

  1. Three Dimensional Neuronal Cell Cultures More Accurately Model Voltage Gated Calcium Channel Functionality in Freshly Dissected Nerve Tissue

    PubMed Central

    Kisaalita, William

    2012-01-01

    It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC) functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG) were cultured on two dimensional (2D) flat surfaces and in three dimensional (3D) synthetic poly-L-lactic acid (PLLA) and polystyrene (PS) polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K+ depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells’ functionality, transcriptase expression and related membrane protein distributions (caveolin-1) were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns. PMID:23049767

  2. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    PubMed

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  3. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  4. A molecule-based genetic association approach implicates a range of voltage-gated calcium channels associated with schizophrenia.

    PubMed

    Li, Wen; Fan, Chun Chieh; Mäki-Marttunen, Tuomo; Thompson, Wesley K; Schork, Andrew J; Bettella, Francesco; Djurovic, Srdjan; Dale, Anders M; Andreassen, Ole A; Wang, Yunpeng

    2018-06-01

    Traditional genome-wide association studies (GWAS) have successfully detected genetic variants associated with schizophrenia. However, only a small fraction of heritability can be explained. Gene-set/pathway-based methods can overcome limitations arising from single nucleotide polymorphism (SNP)-based analysis, but most of them place constraints on size which may exclude highly specific and functional sets, like macromolecules. Voltage-gated calcium (Ca v ) channels, belonging to macromolecules, are composed of several subunits whose encoding genes are located far away or even on different chromosomes. We combined information about such molecules with GWAS data to investigate how functional channels associated with schizophrenia. We defined a biologically meaningful SNP-set based on channel structure and performed an association study by using a validated method: SNP-set (sequence) kernel association test. We identified eight subtypes of Ca v channels significantly associated with schizophrenia from a subsample of published data (N = 56,605), including the L-type channels (Ca v 1.1, Ca v 1.2, Ca v 1.3), P-/Q-type Ca v 2.1, N-type Ca v 2.2, R-type Ca v 2.3, T-type Ca v 3.1, and Ca v 3.3. Only genes from Ca v 1.2 and Ca v 3.3 have been implicated by the largest GWAS (N = 82,315). Each subtype of Ca v channels showed relatively high chip heritability, proportional to the size of its constituent gene regions. The results suggest that abnormalities of Ca v channels may play an important role in the pathophysiology of schizophrenia and these channels may represent appropriate drug targets for therapeutics. Analyzing subunit-encoding genes of a macromolecule in aggregate is a complementary way to identify more genetic variants of polygenic diseases. This study offers the potential of power for discovery the biological mechanisms of schizophrenia. © 2018 Wiley Periodicals, Inc.

  5. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.

    PubMed Central

    Islam, M S; Larsson, O; Nilsson, T; Berggren, P O

    1995-01-01

    In the pancreatic beta-cell, an increase in the cytoplasmic free Ca2+ concentration ([Ca2+]i) by caffeine is believed to indicate mobilization of Ca2+ from intracellular stores, through activation of a ryanodine receptor-like channel. It is not known whether other mechanisms, as well, underlie caffeine-induced changes in [Ca2+]i. We studied the effects of caffeine on [Ca2+]i by using dual-wavelength excitation microfluorimetry in fura-2-loaded beta-cells. In the presence of a non-stimulatory concentration of glucose, caffeine (10-50 mM) consistently increased [Ca2+]i. The effect was completely blocked by omission of extracellular Ca2+ and by blockers of the L-type voltage-gated Ca2+ channel, such as D-600 or nifedipine. Depletion of agonist-sensitive intracellular Ca2+ pools by thapsigargin did not inhibit the stimulatory effect of caffeine on [Ca2+]i. Moreover, this effect of caffeine was not due to an increase in cyclic AMP, since forskolin and 3-isobutyl-1-methylxanthine (IBMX) failed to raise [Ca2+]i in unstimulated beta-cells. In beta-cells, glucose and sulphonylureas increase [Ca2+]i by causing closure of ATP-sensitive K+ channels (KATP channels). Caffeine also caused inhibition of KATP channel activity, as measured in excised inside-out patches. Accordingly, caffeine (> 10 mM) induced insulin release from beta-cells in the presence of a non-stimulatory concentration of glucose (3 mM). Hence, membrane depolarization and opening of voltage-gated L-type Ca2+ channels were the underlying mechanisms whereby the xanthine drug increased [Ca2+]i and induced insulin release. Paradoxically, in glucose-stimulated beta-cells, caffeine (> 10 mM) lowered [Ca2+]i. This effect was due to the fact that caffeine reduced depolarization-induced whole-cell Ca2+ current through the L-type voltage-gated Ca2+ channel in a dose-dependent manner. Lower concentrations of caffeine (2.5-5.0 mM), when added after glucose-stimulated increase in [Ca2+]i, induced fast oscillations in [Ca2

  6. The CaV2.3 R-Type Voltage-Gated Ca2+ Channel in Mouse Sleep Architecture

    PubMed Central

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-01-01

    Study Objectives: Voltage-gated Ca2+ channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca2+ channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca2+ channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca2+ channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3−/− mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca2+ influx into RTN neurons can trigger small-conductance Ca2+-activated K+-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca2+ channels in rodent sleep. Methods: The role of CaV2.3 Ca2+ channels was analyzed in CaV2.3−/− mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. Results: CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3−/− mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca2+ channel expression. The detailed mechanisms of SWS increase in CaV2.3−/− mice remain to be determined. Conclusions: Low-voltage activated CaV2.3 R-type Ca2+ channels in the thalamocortical

  7. Modulation of BK channel voltage gating by different auxiliary β subunits

    PubMed Central

    Contreras, Gustavo F.; Neely, Alan; Alvarez, Osvaldo; Gonzalez, Carlos; Latorre, Ramon

    2012-01-01

    Calcium- and voltage-activated potassium channels (BK) are regulated by a multiplicity of signals. The prevailing view is that different BK gating mechanisms converge to determine channel opening and that these gating mechanisms are allosterically coupled. In most instances the pore forming α subunit of BK is associated with one of four alternative β subunits that appear to target specific gating mechanisms to regulate the channel activity. In particular, β1 stabilizes the active configuration of the BK voltage sensor having a large effect on BK Ca2+ sensitivity. To determine the extent to which β subunits regulate the BK voltage sensor, we measured gating currents induced by the pore-forming BK α subunit alone and with the different β subunits expressed in Xenopus oocytes (β1, β2IR, β3b, and β4). We found that β1, β2, and β4 stabilize the BK voltage sensor in the active conformation. β3 has no effect on voltage sensor equilibrium. In addition, β4 decreases the apparent number of charges per voltage sensor. The decrease in the charge associated with the voltage sensor in α β4 channels explains most of their biophysical properties. For channels composed of the α subunit alone, gating charge increases slowly with pulse duration as expected if a significant fraction of this charge develops with a time course comparable to that of K+ current activation. In the presence of β1, β2, and β4 this slow component develops in advance of and much more rapidly than ion current activation, suggesting that BK channel opening proceeds in two steps. PMID:23112204

  8. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    PubMed

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.

  9. CaV3.1 isoform of T-type calcium channels supports excitability of rat and mouse ventral tegmental area neurons.

    PubMed

    Tracy, Matthew E; Tesic, Vesna; Stamenic, Tamara Timic; Joksimovic, Srdjan M; Busquet, Nicolas; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M

    2018-03-23

    Recent data have implicated voltage-gated calcium channels in the regulation of the excitability of neurons within the mesolimbic reward system. While the attention of most research has centered on high voltage L-type calcium channel activity, the presence and role of the low voltage-gated T-type calcium channel (T-channels) has not been well explored. Hence, we investigated T-channel properties in the neurons of the ventral tegmental area (VTA) utilizing wild-type (WT) rats and mice, Ca V 3.1 knock-out (KO) mice, and TH-eGFP knock-in (KI) rats in acute horizontal brain slices of adolescent animals. In voltage-clamp experiments, we first assessed T-channel activity in WT rats with characteristic properties of voltage-dependent activation and inactivation, as well as characteristic crisscrossing patterns of macroscopic current kinetics. T-current kinetics were similar in WT mice and WT rats but T-currents were abolished in Ca V 3.1 KO mice. In ensuing current-clamp experiments, we observed the presence of hyperpolarization-induced rebound burst firing in a subset of neurons in WT rats, as well as dopaminergic and non-dopaminergic neurons in TH-eGFP KI rats. Following the application of a pan-selective T-channel blocker TTA-P2, rebound bursting was significantly inhibited in all tested cells. In a behavioral assessment, the acute locomotor increase induced by a MK-801 (Dizocilpine) injection in WT mice was abolished in Ca V 3.1 KO mice, suggesting a tangible role for 3.1 T-type channels in drug response. We conclude that pharmacological targeting of Ca V 3.1 isoform of T-channels may be a novel approach for the treatment of disorders of mesolimbic reward system. Copyright © 2018. Published by Elsevier Ltd.

  10. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.

    PubMed

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-09-15

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in

  11. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

    PubMed Central

    Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia

    2015-01-01

    Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056

  12. Population Density and Moment-based Approaches to Modeling Domain Calcium-mediated Inactivation of L-type Calcium Channels.

    PubMed

    Wang, Xiao; Hardcastle, Kiah; Weinberg, Seth H; Smith, Gregory D

    2016-03-01

    We present a population density and moment-based description of the stochastic dynamics of domain [Formula: see text]-mediated inactivation of L-type [Formula: see text] channels. Our approach accounts for the effect of heterogeneity of local [Formula: see text] signals on whole cell [Formula: see text] currents; however, in contrast with prior work, e.g., Sherman et al. (Biophys J 58(4):985-995, 1990), we do not assume that [Formula: see text] domain formation and collapse are fast compared to channel gating. We demonstrate the population density and moment-based modeling approaches using a 12-state Markov chain model of an L-type [Formula: see text] channel introduced by Greenstein and Winslow (Biophys J 83(6):2918-2945, 2002). Simulated whole cell voltage clamp responses yield an inactivation function for the whole cell [Formula: see text] current that agrees with the traditional approach when domain dynamics are fast. We analyze the voltage-dependence of [Formula: see text] inactivation that may occur via slow heterogeneous domain [[Formula: see text

  13. Extended-gate-type IGZO electric-double-layer TFT immunosensor with high sensitivity and low operation voltage

    NASA Astrophysics Data System (ADS)

    Liang, Lingyan; Zhang, Shengnan; Wu, Weihua; Zhu, Liqiang; Xiao, Hui; Liu, Yanghui; Zhang, Hongliang; Javaid, Kashif; Cao, Hongtao

    2016-10-01

    An immunosensor is proposed based on the indium-gallium-zinc-oxide (IGZO) electric-double-layer thin-film transistor (EDL TFT) with a separating extended gate. The IGZO EDL TFT has a field-effect mobility of 24.5 cm2 V-1 s-1 and an operation voltage less than 1.5 V. The sensors exhibit the linear current response to label-free target immune molecule in the concentrations ranging from 1.6 to 368 × 10-15 g/ml with a detection limit of 1.6 × 10-15 g/ml (0.01 fM) under an ultralow operation voltage of 0.5 V. The IGZO TFT component demonstrates a consecutive assay stability and recyclability due to the unique structure with the separating extended gate. With the excellent electrical properties and the potential for plug-in-card-type multifunctional sensing, extended-gate-type IGZO EDL TFTs can be promising candidates for the development of a label-free biosensor for public health applications.

  14. The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels

    PubMed Central

    Campiglio, Marta; Flucher, Bernhard E

    2015-01-01

    Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α1 subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein–protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein–protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity. J. Cell. Physiol. 999: 00–00, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. J. Cell. Physiol. 230: 2019–2031, 2015. © 2015 Wiley Periodicals, Inc. PMID:25820299

  15. Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.

    PubMed

    Santiago González, Diara A; Cheli, Veronica T; Zamora, Norma N; Lama, Tenzing N; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2017-10-18

    Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2 KO ). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2 KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2 KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2 KO OPCs were identified by a Cre reporter, we establish that Cav1.2 KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca 2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca 2+ channel for OPC maturation during the remyelination of the adult brain. SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca 2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To

  16. Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons

    EPA Science Inventory

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...

  17. The NH2 terminus regulates voltage-dependent gating of CALHM ion channels.

    PubMed

    Tanis, Jessica E; Ma, Zhongming; Foskett, J Kevin

    2017-08-01

    Calcium homeostasis modulator protein-1 (CALHM1) and its Caenorhabditis elegans (ce) homolog, CLHM-1, belong to a new family of physiologically important ion channels that are regulated by voltage and extracellular Ca 2+ (Ca 2+ o ) but lack a canonical voltage-sensing domain. Consequently, the intrinsic voltage-dependent gating mechanisms for CALHM channels are unknown. Here, we performed voltage-clamp experiments on ceCLHM-1 chimeric, deletion, insertion, and point mutants to assess the role of the NH 2 terminus (NT) in CALHM channel gating. Analyses of chimeric channels in which the ceCLHM-1 and human (h)CALHM1 NH 2 termini were interchanged showed that the hCALHM1 NT destabilized channel-closed states, whereas the ceCLHM-1 NT had a stabilizing effect. In the absence of Ca 2+ o , deletion of up to eight amino acids from the ceCLHM-1 NT caused a hyperpolarizing shift in the conductance-voltage relationship with little effect on voltage-dependent slope. However, deletion of nine or more amino acids decreased voltage dependence and induced a residual conductance at hyperpolarized voltages. Insertion of amino acids into the NH 2 -terminal helix also decreased voltage dependence but did not prevent channel closure. Mutation of ceCLHM-1 valine 9 and glutamine 13 altered half-maximal activation and voltage dependence, respectively, in 0 Ca 2+ In 2 mM Ca 2+ o , ceCLHM-1 NH 2 -terminal deletion and point mutant channels closed completely at hyperpolarized voltages with apparent affinity for Ca 2+ o indistinguishable from wild-type ceCLHM-1, although the ceCLHM-1 valine 9 mutant exhibited an altered conductance-voltage relationship and kinetics. We conclude that the NT plays critical roles modulating voltage dependence and stabilizing the closed states of CALHM channels. Copyright © 2017 the American Physiological Society.

  18. Pharmacoresistant Cav 2·3 (E-type/R-type) voltage-gated calcium channels influence heart rate dynamics and may contribute to cardiac impulse conduction.

    PubMed

    Galetin, Thomas; Tevoufouet, Etienne E; Sandmeyer, Jakob; Matthes, Jan; Nguemo, Filomain; Hescheler, Jürgen; Weiergräber, Marco; Schneider, Toni

    2013-07-01

    Voltage-gated Ca(2+) channels regulate cardiac automaticity, rhythmicity and excitation-contraction coupling. Whereas L-type (Cav 1·2, Cav 1·3) and T-type (Cav 3·1, Cav 3·2) channels are widely accepted for their functional relevance in the heart, the role of Cav 2·3 Ca(2+) channels expressing R-type currents remains to be elucidated. We have investigated heart rate dynamics in control and Cav 2·3-deficient mice using implantable electrocardiogram radiotelemetry and pharmacological injection experiments. Autonomic block revealed that the intrinsic heart rate does not differ between both genotypes. Systemic administration of isoproterenol resulted in a significant reduction in interbeat interval in both genotypes. It remained unaffected after administering propranolol in Cav 2·3(-|-) mice. Heart rate from isolated hearts as well as atrioventricular conduction for both genotypes differed significantly. Additionally, we identified and analysed the developmental expression of two splice variants, i.e. Cav 2·3c and Cav 2·3e. Using patch clamp technology, R-type currents could be detected in isolated prenatal cardiomyocytes and be related to R-type Ca(2+) channels. Our results indicate that on the systemic level, the pharmacologically inducible heart rate range and heart rate reserve are impaired in Cav 2·3 (-|-) mice. In addition, experiments on Langendorff perfused hearts elucidate differences in basic properties between both genotypes. Thus, Cav 2·3 does not only contribute to the cardiac autonomous nervous system but also to intrinsic rhythm propagation. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Voltage gating of mechanosensitive PIEZO channels.

    PubMed

    Moroni, Mirko; Servin-Vences, M Rocio; Fleischer, Raluca; Sánchez-Carranza, Oscar; Lewin, Gary R

    2018-03-15

    Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.

  20. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    PubMed

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  1. Characterization of L-type calcium channel activity in atrioventricular nodal myocytes from rats with streptozotocin-induced Diabetes mellitus

    PubMed Central

    Yuill, Kathryn H; Al Kury, Lina T; Howarth, Frank Christopher

    2015-01-01

    Cardiovascular complications are common in patients with Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. We have previously shown that spontaneous cellular electrical activity is altered in atrioventricular nodal (AVN) myocytes, isolated from the streptozotocin (STZ) rat model of type-1 DM. In this study, utilizing the same model, we have characterized the changes in L-type calcium channel activity in single AVN myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess the changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current. A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. L-type calcium channel current also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident, and a slowing of restitution parameters. These findings demonstrate that experimentally induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. These changes in ion channel activity may contribute to the abnormalities in cardiac electrical function that are associated with high mortality levels in patients with DM. PMID:26603460

  2. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels

    NASA Astrophysics Data System (ADS)

    Lau, Carus H. Y.; King, Glenn F.; Mobli, Mehdi

    2016-09-01

    Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating, and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.

  3. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken

    PubMed Central

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-01-01

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and

  4. Antidepressants Rescue Stress-Induced Disruption of Synaptic Plasticity via Serotonin Transporter-Independent Inhibition of L-Type Calcium Channels.

    PubMed

    Normann, Claus; Frase, Sibylle; Haug, Verena; von Wolff, Gregor; Clark, Kristin; Münzer, Patrick; Dorner, Alexandra; Scholliers, Jonas; Horn, Max; Vo Van, Tanja; Seifert, Gabriel; Serchov, Tsvetan; Biber, Knut; Nissen, Christoph; Klugbauer, Norbert; Bischofberger, Josef

    2017-10-19

    Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca 2+ ) channels in heterologous expression systems were used to determine the modulation of Ca 2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca 2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca 2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca 2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Spinal blockage of P/Q- or N-type voltage-gated calcium channels modulates functional and symptomatic changes related to haemorrhagic cystitis in mice

    PubMed Central

    Silva, R B M; Sperotto, N D M; Andrade, E L; Pereira, T C B; Leite, C E; de Souza, A H; Bogo, M R; Morrone, F B; Gomez, M V; Campos, M M

    2015-01-01

    Background and Purpose Spinal voltage-gated calcium channels (VGCCs) are pivotal regulators of painful and inflammatory alterations, representing attractive therapeutic targets. We examined the effects of epidural administration of the P/Q- and N-type VGCC blockers Tx3-3 and Phα1β, respectively, isolated from the spider Phoneutria nigriventer, on symptomatic, inflammatory and functional changes allied to mouse cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC). The effects of P. nigriventer-derived toxins were compared with those displayed by MVIIC and MVIIA, extracted from the cone snail Conus magus. Experimental Approach HC was induced by a single i.p. injection of CPA (300 mg·kg–1). Dose- and time-related effects of spinally administered P/Q and N-type VGCC blockers were assessed on nociceptive behaviour and macroscopic inflammation elicited by CPA. The effects of toxins were also evaluated on cell migration, cytokine production, oxidative stress, functional cystometry alterations and TRPV1, TRPA1 and NK1 receptor mRNA expression. Key Results The spinal blockage of P/Q-type VGCC by Tx3-3 and MVIIC or N-type VGCC by Phα1β attenuated nociceptive and inflammatory events associated with HC, including bladder oxidative stress and cytokine production. CPA produced a slight increase in bladder TRPV1 and TRPA1 mRNA expression, which was reversed by all the toxins tested. Noteworthy, Phα1β strongly prevented bladder neutrophil migration, besides HC-related functional alterations, and its effects were potentiated by co-injecting the selective NK1 receptor antagonist CP-96345. Conclusions and Implications Our results shed new light on the role of spinal P/Q and N-type VGCC in bladder dysfunctions, pointing out Phα1β as a promising alternative for treating complications associated with CPA-induced HC. PMID:25298144

  6. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels.

    PubMed

    Zhang, Guohui; Geng, Yanyan; Jin, Yakang; Shi, Jingyi; McFarland, Kelli; Magleby, Karl L; Salkoff, Lawrence; Cui, Jianmin

    2017-03-06

    Large conductance Ca 2+ -activated K + channels (BK channels) gate open in response to both membrane voltage and intracellular Ca 2+ The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca 2+ sensor. How these voltage and Ca 2+ sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca 2+ activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca 2+ sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel's β1 and β2 subunits. © 2017 Zhang et al.

  7. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels

    PubMed Central

    Zhang, Guohui; Shi, Jingyi; McFarland, Kelli; Magleby, Karl L.; Salkoff, Lawrence

    2017-01-01

    Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+. The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca2+ activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA. http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca2+ sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel’s β1 and β2 subunits. PMID:28196879

  8. Resurgent current of voltage-gated Na+ channels

    PubMed Central

    Lewis, Amanda H; Raman, Indira M

    2014-01-01

    Resurgent Na+ current results from a distinctive form of Na+ channel gating, originally identified in cerebellar Purkinje neurons. In these neurons, the tetrodotoxin-sensitive voltage-gated Na+ channels responsible for action potential firing have specialized mechanisms that reduce the likelihood that they accumulate in fast inactivated states, thereby shortening refractory periods and permitting rapid, repetitive, and/or burst firing. Under voltage clamp, step depolarizations evoke transient Na+ currents that rapidly activate and quickly decay, and step repolarizations elicit slower channel reopening, or a ‘resurgent’ current. The generation of resurgent current depends on a factor in the Na+ channel complex, probably a subunit such as NaVβ4 (Scn4b), which blocks open Na+ channels at positive voltages, competing with the fast inactivation gate, and unblocks at negative voltages, permitting recovery from an open channel block along with a flow of current. Following its initial discovery, resurgent Na+ current has been found in nearly 20 types of neurons. Emerging research suggests that resurgent current is preferentially increased in a variety of clinical conditions associated with altered cellular excitability. Here we review the biophysical, molecular and structural mechanisms of resurgent current and their relation to the normal functions of excitable cells as well as pathophysiology. PMID:25172941

  9. Further characterization of the effect of ethanol on voltage-gated Ca(2+) channel function in developing CA3 hippocampal pyramidal neurons.

    PubMed

    Morton, Russell A; Valenzuela, C Fernando

    2016-02-15

    Developmental ethanol exposure damages the hippocampus, a brain region involved in learning and memory. Alterations in synaptic transmission and plasticity may play a role in this effect of ethanol. We previously reported that acute and repeated exposure to ethanol during the third trimester-equivalent inhibits long-term potentiation of GABAA receptor-dependent synaptic currents in CA3 pyramidal neurons through a mechanism that depends on retrograde release of brain-derived neurotrophic factor driven by activation of voltage-gated Ca(2+) channels (Zucca and Valenzuela, 2010). We found evidence indicating that voltage-gated Ca(2+) channels are inhibited in the presence of ethanol, an effect that may play a role in its mechanism of action. Here, we further investigated the acute effect of ethanol on the function of voltage-gated Ca(2+) channels in CA3 pyramidal neurons using Ca(2+) imaging techniques. These experiments revealed that acute ethanol exposure inhibits voltage-gated Ca(2+) channels both in somatic and proximal dendritic compartments. To investigate the long-term consequences of ethanol on voltage-gated Ca(2+) channels, we used patch-clamp electrophysiological techniques to assess the function of L-type voltage-gated Ca(2+) channels during and following ten days of vapor ethanol exposure. During ethanol withdrawal periods, the function of these channels was not significantly affected by vapor chamber exposure. Taken together with our previous findings, our results suggest that 3(rd) trimester-equivalent ethanol exposure transiently inhibits L-type voltage-gated Ca(2+) channel function in CA3 pyramidal neurons and that compensatory mechanisms restore their function during ethanol withdrawal. Transient inhibition of these channels by ethanol may be, in part, responsible for the hippocampal abnormalities associated with developmental exposure to this agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice.

    PubMed

    Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit

    2015-09-18

    The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.

  11. Voltage-gated calcium channels of Paramecium cilia

    PubMed Central

    Lodh, Sukanya; Valentine, Megan S.; Van Houten, Judith L.

    2016-01-01

    ABSTRACT Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. PMID:27707864

  12. Voltage-gated calcium channels of Paramecium cilia.

    PubMed

    Lodh, Sukanya; Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2016-10-01

    Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca 2+ entering the cilium through voltage-gated Ca 2+ (Ca V ) channels that are found exclusively in the cilia. As ciliary Ca 2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the Ca V channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary Ca V channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three Ca V α1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary Ca V channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of Ca V channel activity do not express any of the three Ca V 1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three Ca V channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the Ca V 1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. © 2016. Published by The Company of Biologists Ltd.

  13. Current statins show calcium channel blocking activity through voltage gated channels.

    PubMed

    Ali, Niaz; Begum, Robina; Faisal, Muhammad Saleh; Khan, Aslam; Nabi, Muhammad; Shehzadi, Gulfam; Ullah, Shakir; Ali, Waqar

    2016-09-21

    significant right shift in IC50 for CCRCs (P ≤ 0.05). In case of verapamil, IC50 for control curves is -2.45 ± 0.06 [log (Ca (++)) M], while IC50 in presence of verapamil (0.1 μM) is -1.69 ± 0.05 [log (Ca (++)) M]. Statins produced right shift in the IC50 of CCRCs. The effects of statins are like that of effects of verapamil, a standard calcium channel blocker. Our findings suggest that current statins have calcium antagonistic effects that act on voltage gated calcium channels that may provide a rationale for cause muscle weakness and gastrointestinal disorders.

  14. Coupling between the Voltage-sensing and Pore Domains in a Voltage-gated Potassium Channel

    PubMed Central

    Schow, Eric V.; Freites, J. Alfredo; Nizkorodov, Alex; White, Stephen H.; Tobias, Douglas J.

    2012-01-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence. PMID:22425907

  15. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    PubMed

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  16. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice

    PubMed Central

    Friedrich, O; Both, M; Gillis, J M; Chamberlain, J S; Fink, RHA

    2004-01-01

    L-type calcium currents (iCa) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of iCa were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of iCa was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of iCa were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas iCa was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation–contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin. PMID:14594987

  17. Voltage-gated Proton Channels

    PubMed Central

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  18. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.

    PubMed

    Shen, Huaizong; Zhou, Qiang; Pan, Xiaojing; Li, Zhangqiang; Wu, Jianping; Yan, Nieng

    2017-03-03

    Voltage-gated sodium (Na v ) channels are responsible for the initiation and propagation of action potentials. They are associated with a variety of channelopathies and are targeted by multiple pharmaceutical drugs and natural toxins. Here, we report the cryogenic electron microscopy structure of a putative Na v channel from American cockroach (designated Na v PaS) at 3.8 angstrom resolution. The voltage-sensing domains (VSDs) of the four repeats exhibit distinct conformations. The entrance to the asymmetric selectivity filter vestibule is guarded by heavily glycosylated and disulfide bond-stabilized extracellular loops. On the cytoplasmic side, a conserved amino-terminal domain is placed below VSD I , and a carboxy-terminal domain binds to the III-IV linker. The structure of Na v PaS establishes an important foundation for understanding function and disease mechanism of Na v and related voltage-gated calcium channels. Copyright © 2017, American Association for the Advancement of Science.

  19. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  20. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

    PubMed

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-05-01

    Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra

  1. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel.

    PubMed

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na + /K + -ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K + -battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  2. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  3. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation.

    PubMed

    Rozmaritsa, Nadiia; Christ, Torsten; Van Wagoner, David R; Haase, Hannelore; Stasch, Johannes-Peter; Matschke, Klaus; Ravens, Ursula

    2014-03-01

    Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.

  4. Harnessing the Flow of Excitation: TRP, Voltage-Gated Na(+), and Voltage-Gated Ca(2+) Channels in Contemporary Medicine.

    PubMed

    Frolov, Roman V; Weckström, Matti

    2016-01-01

    Cellular signaling in both excitable and nonexcitable cells involves several classes of ion channels. Some of them are of minor importance, with very specialized roles in physiology, but here we concentrate on three major channel classes: TRP (transient receptor potential channels), voltage-gated sodium channels (Nav), and voltage-gated calcium channels (Cav). Here, we first propose a conceptual framework binding together all three classes of ion channels, a "flow-of-excitation model" that takes into account the inputs mediated by TRP and other similar channels, the outputs invariably provided by Cav channels, and the regenerative transmission of signals in the neural networks, for which Nav channels are responsible. We use this framework to examine the function, structure, and pharmacology of these channel classes both at cellular and also at whole-body physiological level. Building on that basis we go through the pathologies arising from the direct or indirect malfunction of the channels, utilizing ion channel defects, the channelopathies. The pharmacological interventions affecting these channels are numerous. Part of those are well-established treatments, like treatment of hypertension or some forms of epilepsy, but many other are deeply problematic due to poor drug specificity, ion channel diversity, and widespread expression of the channels in tissues other than those actually targeted. © 2016 Elsevier Inc. All rights reserved.

  5. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents

    PubMed Central

    Clarke, Stephen G.; Scarnati, Matthew S.

    2016-01-01

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large

  6. Benzodiazepine-induced hippocampal CA1 neuron alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor plasticity linked to severity of withdrawal anxiety: differential role of voltage-gated calcium channels and N-methyl-D-aspartic acid receptors.

    PubMed

    Xiang, Kun; Tietz, Elizabeth I

    2007-09-01

    Withdrawal from 1-week oral administration of the benzodiazepine, flurazepam (FZP) is associated with increased alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor (AMPAR) miniature excitatory postsynaptic currents (mEPSCs) but reduction of N-methyl-D-aspartic acid (NMDA) receptor (NMDAR)-evoked (e)EPSCs in hippocampal CA1 neurons. A positive correlation was observed between increased AMPAR-mediated mEPSC amplitude and anxiety-like behavior in 1-day FZP-withdrawn rats. These effects were disrupted by systemic AMPAR antagonist administration (GYKI-52466, 0.5 mg/kg, intraperitoneal) at withdrawal onset, strengthening the hypothesis that CA1 neuron AMPAR-mediated hyperexcitability is a central component of a functional anatomic circuit associated with the expression of withdrawal anxiety. Abolition of AMPAR current upregulation in 2-day FZP withdrawn rats by GYKI-52466 injection also reversed the reduction in NMDAR-mediated eEPSC amplitude in CA1 neurons from the same rats, suggesting that downregulation of NMDAR function may serve a protective, negative-feedback role to prevent AMPAR-mediated neuronal overexcitation. NMDAR antagonist administration (MK-801, 0.25 mg/kg intraperitoneally) had no effect on modifying increased glutamatergic strength or on withdrawal anxiety, whereas injection of an L-type voltage-gated calcium channel antagonist, nimodipine (10 mg/kg, intraperitoneally) averted AMPAR current enhancement and anxiety-like behavior, suggesting that these manifestations may be initiated by a voltage-gated calcium channel-dependent signal transduction pathway. An evidence-based model of likely cellular mechanisms in the hippocampus contributing to benzodiazepine withdrawal anxiety was proposed implicating regulation of multiple CA1 neuron ion channels.

  7. Inhibition of Voltage-Gated Calcium Channels as Common Mode of Action for (Mixtures of) Distinct Classes of Insecticides

    PubMed Central

    Meijer, Marieke; Dingemans, Milou M.L.; van den Berg, Martin; Westerink, Remco H.S.

    2014-01-01

    Humans are exposed to distinct structural classes of insecticides with different neurotoxic modes of action. Because calcium homeostasis is essential for proper neuronal function and development, we investigated the effects of insecticides from different classes (pyrethroid: (α-)cypermethrin; organophosphate: chlorpyrifos; organochlorine: endosulfan; neonicotinoid: imidacloprid) and mixtures thereof on the intracellular calcium concentration ([Ca2+]i). Effects of acute (20 min) exposure to (mixtures of) insecticides on basal and depolarization-evoked [Ca2+]i were studied in vitro with Fura-2-loaded PC12 cells and high resolution single-cell fluorescence microscopy. The data demonstrate that cypermethrin, α-cypermethrin, endosulfan, and chlorpyrifos concentration-dependently decreased depolarization-evoked [Ca2+]i, with 50% (IC50) at 78nM, 239nM, 250nM, and 899nM, respectively. Additionally, acute exposure to chlorpyrifos or endosulfan (10μM) induced a modest increase in basal [Ca2+]i, amounting to 68 ± 8nM and 53 ± 8nM, respectively. Imidacloprid did not disturb basal or depolarization-evoked [Ca2+]i at 10μM. Following exposure to binary mixtures, effects on depolarization-evoked [Ca2+]i were within the expected effect additivity range, whereas the effect of the tertiary mixture was less than this expected additivity effect range. These results demonstrate that different types of insecticides inhibit depolarization-evoked [Ca2+]i in PC12 cells by inhibiting voltage-gated calcium channels (VGCCs) in vitro at concentrations comparable with human occupational exposure levels. Moreover, the effective concentrations in this study are below those for earlier described modes of action. Because inhibition of VGCCs appears to be a common and potentially additive mode of action of several classes of insecticides, this target should be considered in neurotoxicity risk assessment studies. PMID:24913802

  8. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    PubMed

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  9. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels

    PubMed Central

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred

    2016-01-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3–S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3–S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3–S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3–S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3–S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular

  10. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zahanich, Ihor; Graf, Eva M; Heubach, Jürgen F; Hempel, Ute; Boxberger, Sabine; Ravens, Ursula

    2005-09-01

    We used the patch-clamp technique and RT-PCR to study the molecular and functional expression of VOCCs in undifferentiated hMSCs and in cells undergoing osteogenic differentiation. L-type Ca2+ channel blocker nifedipine did not influence alkaline phosphatase activity, calcium, and phosphate accumulation of hMSCs during osteogenic differentiation. This study suggests that osteogenic differentiation of hMSCs does not require L-type Ca2+ channel function. During osteogenic differentiation, mesenchymal stem cells from human bone marrow (hMSCs) must adopt the calcium handling of terminally differentiated osteoblasts. There is evidence that voltage-operated calcium channels (VOCCs), including L-type calcium channels, are involved in regulation of osteoblast function. We therefore studied whether VOCCs play a critical role during osteogenic differentiation of hMSCs. Osteogenic differentiation was induced in hMSCs cultured in maintenance medium (MM) by addition of ascorbate, beta-glycerophosphate, and dexamethasone (ODM) and was assessed by measuring alkaline phosphatase activity, expression of osteopontin, osteoprotegerin, RANKL, and mineralization. Expression of Ca2+ channel alpha1 subunits was shown by semiquantitative or single cell RT-PCR. Voltage-activated calcium currents of hMSCs were measured with the whole cell voltage-clamp technique. mRNA for the pore-forming alpha1C and alpha1G subunits of the L-type and T-type Ca2+ channels, respectively, was found in comparable amounts in cells cultured in MM or ODM. The limitation of L-type Ca2+ currents to a subpopulation of hMSCs was confirmed by single cell RT-PCR, where mRNA for the alpha1C subunits was detectable in only 50% of the cells cultured in MM. Dihydropyridine-sensitive L-type Ca2+ currents were found in 13% of cells cultured in MM and in 12% of the cells cultured in ODM. Under MM and ODM culture conditions, the cells positive for L-type Ca2+ currents were significantly larger than cells without Ca2+ currents

  11. Chick cerebellar Purkinje cells express omega-conotoxin GVIA-sensitive rather than funnel-web spider toxin-sensitive calcium channels.

    PubMed

    Angulo, M C; Parra, P; Dieudonné, S

    1998-03-01

    Voltage-gated calcium channels form a complex family of distinct molecular entities which participate in multiple neuronal functions. In cerebellar Purkinje cells these channels contribute to the characteristic electrophysiological pattern of complex spikes, first described in birds and later in mammals. A specific calcium channel, the P-type channel, has been shown to mediate the majority of the voltage-gated calcium flux in mammalian Purkinje cells. P-type channels play an essential role in synaptic transmission of mammalian cerebellum. It is unclear whether the P-type calcium channel is present in birds. Studies in chick synaptosomal preparations show that the pharmacological profile of calcium channels is complex and suggest a minimal expression of the P-type channel in avian central nervous system. In the present work, we studied voltage-gated calcium channels in dissociated chick cerebellar Purkinje cells to examine the presence of different calcium channel types. Purkinje cells were used because, in mammals, they express predominantly P-type channels and because the morphology of these cells is thought to be phylogenetically conserved. We found that omega-conotoxin GVIA (omega-CgTx GVIA), a specific antagonist of N-type calcium channel, rather than the synthetic funnel-web spider toxin (sFTX), a P-type channel antagonist, blocks the majority of the barium current flowing through calcium channels in chick Purkinje neurons.

  12. Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO 3/NdGaO 3 heterostructures

    DOE PAGES

    Dong, Yongqi; Xu, Haoran; Luo, Zhenlin; ...

    2017-05-16

    The effect of gate voltage polarity on the behavior of NdNiO 3 epitaxial thin films during ionic liquid gating is studied using in situ synchrotron X-ray techniques. We show that while negative biases have no discernible effect on the structure or composition of the films, large positive gate voltages result in the injection of a large concentration of oxygen vacancies (similar to 3%) and pronounced lattice expansion (0.17%) in addition to a 1000-fold increase in sheet resistance at room temperature. Despite the creation of large defect densities, the heterostructures exhibit a largely reversible switching behavior when sufficient time is providedmore » for the vacancies to migrate in and out of the thin film surface. The results confirm that electrostatic gating takes place at negative gate voltages for p-type complex oxides while positive voltages favor the electrochemical reduction of Ni 3+. Switching between positive and negative gate voltages therefore involves a combination of electronic and ionic doping processes that may be utilized in future electrochemical transistors.« less

  13. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels

    PubMed Central

    Cui, Jianmin

    2016-01-01

    Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405

  14. Benzonatate inhibition of voltage-gated sodium currents.

    PubMed

    Evans, M Steven; Maglinger, G Benton; Fletcher, Anita M; Johnson, Stephen R

    2016-02-01

    Benzonatate was FDA-approved in 1958 as an antitussive. Its mechanism of action is thought to be anesthesia of vagal sensory nerve fibers that mediate cough. Vagal sensory neurons highly express the Nav1.7 subtype of voltage-gated sodium channels, and inhibition of this channel inhibits the cough reflex. Local anesthetics inhibit voltage-gated sodium channels, but there are no reports of whether benzonatate affects these channels. Our hypothesis is that benzonatate inhibits Nav1.7 voltage-gated sodium channels. We used whole cell voltage clamp recording to test the effects of benzonatate on voltage-gated sodium (Na(+)) currents in two murine cell lines, catecholamine A differentiated (CAD) cells, which express primarily Nav1.7, and N1E-115, which express primarily Nav1.3. We found that, like local anesthetics, benzonatate strongly and reversibly inhibits voltage-gated Na(+) channels. Benzonatate causes both tonic and phasic inhibition. It has greater effects on channel inactivation than on activation, and its potency is much greater at depolarized potentials, indicating inactivated-state-specific effects. Na(+) currents in CAD cells and N1E-115 cells are similarly affected, indicating that benzonatate is not Na(+) channel subtype-specific. Benzonatate is a mixture of polyethoxy esters of 4-(butylamino) benzoic acid having varying degrees of hydrophobicity. We found that Na(+) currents are inhibited most potently by a benzonatate fraction containing the 9-ethoxy component. Detectable effects of benzonatate occur at concentrations as low as 0.3 μM, which has been reported in humans. We conclude that benzonatate has local anesthetic-like effects on voltage-gated sodium channels, including Nav1.7, which is a possible mechanism for cough suppression by the drug. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Binding mechanism investigations guiding the synthesis of novel condensed 1,4-dihydropyridine derivatives with L-/T-type calcium channel blocking activity.

    PubMed

    Schaller, David; Gündüz, Miyase Gözde; Zhang, Fang Xiong; Zamponi, Gerald W; Wolber, Gerhard

    2018-05-23

    Nifedipine and isradipine are prominent examples of calcium channel blockers with a 1,4-dihydropyridine (DHP) scaffold. Although successfully used in clinics since decades for the treatment of hypertension, the binding mechanism to their target, the L-type voltage-gated calcium channel Cav1.2, is still incompletely understood. Recently, novel DHP derivatives with a condensed ring system have been discovered that show distinct selectivity profiles to different calcium channel subtypes. This property renders this DHP class as a promising tool to achieve selectivity towards distinct calcium channel subtypes. In this study, we identified a common binding mode for prominent DHPs nifedipine and isradipine using docking and pharmacophore analysis that is also able to explain the structure-activity relationship of a small subseries of DHP derivatives with a condensed ring system. These findings were used to guide the synthesis of twenty-two novel DHPs. An extensive characterization using 1 H NMR, 13 C NMR, mass spectra and elemental analysis was followed by whole cell patch clamp assays for analyzing activity at Cav1.2 and Cav3.2. Two compounds were identified with significant activity against Cav1.2. Additionally, we identified four compounds active against Cav3.2 of which three were selective over Cav1.2. Novel binding modes were analyzed using docking and pharmacophore analysis as well as molecular dynamics simulations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. EFFECTS OF SUBSCUTE EXPOSURE TO NANOMOLAR CONCENTRATIONS OF METHYLMERCURY ON VOLTAGE-GATES SODIUM AND CALCIUM CURRENTS IN PC12 CELLS.

    EPA Science Inventory

    Methylmercury (CH3Hg+) alters the function of voltage-gated Na+ and Ca2+ channels in neuronal preparations following acute, in vitro, exposure. Because the developing nervous system is particularly sensitive to CH3Hg+ neurotoxicity, effects on voltage-gated Na+ (INa) and Ca2+ (IC...

  17. Ciguatoxins: Cyclic Polyether Modulators of Voltage-gated Iion Channel Function

    PubMed Central

    Nicholson, Graham M.; Lewis, Richard J.

    2006-01-01

    Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

  18. Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion

    PubMed Central

    Chen, Wei Chun; Xue, Hui Zhong; Hsu, Yun (Lucy); Liu, Qing; Patel, Shail; Davis, Robin L.

    2011-01-01

    As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K+ channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC α-subunits expressed in the ganglion, investigated aspects of Ca2+-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC α-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC α-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca2+ channels. Moreover, we were able to study seven of the α-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, and that three of them were neuron-specific (CaV1.3, CaV2.2, and CaV3.3). Further characterization of neuron-specific α-subunits showed that CaV1.3 and CaV3.3 were tonotopically-distributed, whereas CaV2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC α-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact0 (CaV2.3, CaV3.1) from loose (CaV1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca2+ plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under

  19. Oxidative Modulation of Voltage-Gated Potassium Channels

    PubMed Central

    Sahoo, Nirakar; Hoshi, Toshinori

    2014-01-01

    Abstract Significance: Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. Recent Advances: Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. Critical Issues: Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. Future Directions: High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs. Antioxid. Redox Signal. 21, 933–952. PMID:24040918

  20. The effects of piracetam and its novel peptide analogue GVS-111 on neuronal voltage-gated calcium and potassium channels.

    PubMed

    Solntseva, E I; Bukanova, J V; Ostrovskaya, R U; Gudasheva, T A; Voronina, T A; Skrebitsky, V G

    1997-07-01

    1. With the use of the two-microelectrode voltage-clamp method, three types of voltage-activated ionic currents were examined in isolated neurons of the snail Helix pomatia: high-threshold Ca2+ current (ICa), high-threshold Ca(2+)-dependent K+ current (IK(Ca)) and high-threshold K+ current independent of Ca2+ (IK(V)). 2. The effect of bath application of the nootropics piracetam and a novel piracetam peptide analog, ethyl ester of N-phenyl-acetyl-L-prolyl-glycine (GVS-111), on these three types of voltage-activated ionic currents was studied. 3. In more than half of the tested cells, ICa was resistant to both piracetam and GVS-111. In the rest of the cells, ICa decreased 19 +/- 7% with 2 mM of piracetam and 39 +/- 14% with 2 microM of GVS-111. 4. IK(V) in almost all cells tested was resistant to piracetam at concentrations up to 2 mM. However, IK(V) in two-thirds of the cells was sensitive to GVS-111, being suppressed 49 +/- 18% with 1 microM GVS-111. 5. IK(Ca) appeared to be the most sensitive current of those studied to both piracetam and GVS-111. Piracetam at 1 mM and GVS-111 at 0.1 microM decreased the amplitude of IK(Ca) in most of the cells examined by 49 +/- 19% and 69 +/- 24%, respectively. 6. The results suggest that piracetam and GVS-111 suppression of voltage-activated calcium and potassium currents of the neuronal membrane may regulate (both up and down) Ca2+ influx into neurons.

  1. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.

    PubMed

    Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G

    2016-11-09

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in

  2. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    PubMed Central

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359

  3. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels

    PubMed Central

    Castillo, Karen; Contreras, Gustavo F.; Pupo, Amaury; Torres, Yolima P.; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-01-01

    Being activated by depolarizing voltages and increases in cytoplasmic Ca2+, voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation. PMID:25825713

  4. High-frequency voltage oscillations in cultured astrocytes

    PubMed Central

    Fleischer, Wiebke; Theiss, Stephan; Slotta, Johannes; Holland, Christine; Schnitzler, Alfons

    2015-01-01

    Because of their close interaction with neuronal physiology, astrocytes can modulate brain function in multiple ways. Here, we demonstrate a yet unknown astrocytic phenomenon: Astrocytes cultured on microelectrode arrays (MEAs) exhibited extracellular voltage fluctuations in a broad frequency spectrum (100–600 Hz) after electrical stimulation. These aperiodic high-frequency oscillations (HFOs) could last several seconds and did not spread across the MEA. The voltage-gated calcium channel antagonist cilnidipine dose-dependently decreased the power of the oscillations. While intracellular calcium was pivotal, incubation with bafilomycin A1 showed that vesicular release of transmitters played only a minor role in the emergence of HFOs. Gap junctions and volume-regulated anionic channels had just as little functional impact, which was demonstrated by the addition of carbenoxolone (100 μmol/L) and NPPB (100 μmol/L). Hyperpolarization with low potassium in the extracellular solution (2 mmol/L) dramatically raised oscillation power. A similar effect was seen when we added extra sodium (+50 mmol/L) or if we replaced it with NMDG+ (50 mmol/L). The purinergic receptor antagonist PPADS suppressed the oscillation power, while the agonist ATP (100 μmol/L) had only an increasing effect when the bath solution pH was slightly lowered to pH 7.2. From these observations, we conclude that astrocytic voltage oscillations are triggered by activation of voltage-gated calcium channels and driven by a downstream influx of cations through channels that are permeable for large ions such as NMDG+. Most likely candidates are subtypes of pore-forming P2X channels with a low affinity for ATP. PMID:25969464

  5. P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals.

    PubMed

    Protti, D A; Uchitel, O D

    1997-08-01

    The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.

  6. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.

    PubMed

    Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana

    2015-01-01

    The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.

  7. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    PubMed Central

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de la Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-01-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4–S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4–S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules. PMID:25818916

  8. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains.

    PubMed

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de la Peña, Pilar; Tomczak, Adam P; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A

    2015-03-30

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  9. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    NASA Astrophysics Data System (ADS)

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de La Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-03-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  10. Effect of gate bias sweep rate on the threshold voltage of in-plane gate nanowire transistor

    NASA Astrophysics Data System (ADS)

    Liu, H. X.; Li, J.; Tan, R. R.

    2018-01-01

    In2O3 nanowire electric-double-layer (EDL) transistors with in-plane gate gated by SiO2 solid-electrolyte are fabricated on transparent glass substrates. The gate voltage sweep rates can effectively modulate the threshold voltage (Vth) of nanowire device. Both depletion mode and enhancement mode are realized, and the Vth shift of the nanowire transistors is estimated to be 0.73V (without light). This phenomenon is due to increased adsorption of oxygen on the nanowire surface by the slower gate voltage sweep rates. Adsorbed oxygens capture electrons and cause a surface of nanowire channel was depleted. The operation voltage of transistor was 1.0 V, because the EDL gate dielectric can lead to high gate dielectric capacitance. These transparent in-plane gate nanowire transistors are promising for “see-through” nanoscale sensors.

  11. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    PubMed Central

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  12. Differential effect of brief electrical stimulation on voltage-gated potassium channels.

    PubMed

    Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W

    2017-05-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  13. Differential effect of brief electrical stimulation on voltage-gated potassium channels

    PubMed Central

    Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.

    2017-01-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  14. Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shun; Gao, Xu, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn; Zhong, Ya-Nan

    High-performance pentacene-based organic field-effect transistor nonvolatile memories, using polystyrene as a tunneling dielectric and Au nanoparticles as a nano-floating-gate, show parallelogram-like transfer characteristics with a featured transition point. The transition voltage at the transition point corresponds to a threshold electric field in the tunneling dielectric, over which stored electrons in the nano-floating-gate will start to leak out. The transition voltage can be modulated depending on the bias configuration and device structure. For p-type active layers, optimized transition voltage should be on the negative side of but close to the reading voltage, which can simultaneously achieve a high ON/OFF ratio andmore » good memory retention.« less

  15. Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus.

    PubMed

    Browne, Austin; O'Donnell, Michael J

    2018-01-01

    Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca 2+ within internal calcium stores (Ca-rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion-selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca 2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca 2+ transport was specific to midtubule segments, where 97% of the Ca 2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage-gated (L-type) calcium channels decreased Ca 2+ influx ≥fivefold in adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated tubules, suggesting basolateral Ca 2+ influx is facilitated by voltage-gated Ca 2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca 2+ had opposite effects on tubule Ca 2+ transport. The adenylyl cyclase-cAMP-PKA pathway promotes Ca 2+ sequestration whereas both 5-hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca 2+ sequestration through stimulatory (cAMP) and inhibitory (Ca 2+ ) regulatory pathways. © 2017 Wiley Periodicals, Inc.

  16. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    PubMed Central

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  17. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function.

    PubMed

    Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L

    2017-06-21

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca V ) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Ca V β). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Ca V β interactions and reduce the entropic penalty associated with AID binding to Ca V β. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Ca V α 1 :Ca V β interaction that modulate Ca V function in an Ca V β isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca V modulator design.

  18. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein–Protein Interaction Inhibitors of CaV Function

    PubMed Central

    2017-01-01

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein–protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein–protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein–protein interaction, the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (CaVβ). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:CaVβ interactions and reduce the entropic penalty associated with AID binding to CaVβ. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the CaVα1:CaVβ interaction that modulate CaV function in an CaVβ isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein–protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based CaV modulator design. PMID:28278376

  19. Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate.

    PubMed

    Ryu, Sujung; Yellen, Gary

    2012-11-01

    HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K(+) channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K(+) channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd(2+) ions freeze the open-closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd(2+) and measure the effect on voltage sensor movement. Cd(2+) did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd(2+)-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open-closed equilibrium, corresponding to a coupling energy of ∼1.3-2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K(+) channels, but also much weaker.

  20. Restricting calcium currents is required for correct fiber type specification in skeletal muscle

    PubMed Central

    Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo

    2016-01-01

    ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373

  1. Molecular mechanism of voltage sensing in voltage-gated proton channels

    PubMed Central

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  2. Identification of an HV 1 voltage-gated proton channel in insects.

    PubMed

    Chaves, Gustavo; Derst, Christian; Franzen, Arne; Mashimo, Yuta; Machida, Ryuichiro; Musset, Boris

    2016-04-01

    The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722. © 2016 Federation of European Biochemical Societies.

  3. Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury.

    PubMed

    Pan, Bin; Guo, Yuan; Wu, Hsiang-En; Park, John; Trinh, Van Nancy; Luo, Z David; Hogan, Quinn H

    2016-09-01

    Loss of high-voltage-activated (HVA) calcium current (ICa) and gain of low-voltage-activated (LVA) ICa after painful peripheral nerve injury cause elevated excitability in sensory neurons. Nerve injury is also accompanied by increased expression of the extracellular matrix glycoprotein thrombospondin-4 (TSP4), and interruption of TSP4 function can reverse or prevent behavioral hypersensitivity after injury. We therefore investigated TSP4 regulation of ICa in dorsal root ganglion (DRG) neurons. During depolarization adequate to activate HVA ICa, TSP4 decreases both N- and L-type ICa and the associated intracellular calcium transient. In contrast, TSP4 increases ICa and the intracellular calcium signal after low-voltage depolarization, which we confirmed is due to ICa through T-type channels. These effects are blocked by gabapentin, which ameliorates neuropathic pain by targeting the α2δ1 calcium subunit. Injury-induced changes of HVA and LVA ICa are attenuated in TSP4 knockout mice. In the neuropathic pain model of spinal nerve ligation, TSP4 application did not further regulate ICa of injured DRG neurons. Taken together, these findings suggest that elevated TSP4 after peripheral nerve injury may contribute to hypersensitivity of peripheral sensory systems by decreasing HVA and increasing LVA in DRG neurons by targeting the α2δ1 calcium subunit. Controlling TSP4 overexpression in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.

  4. The saponin monomer of dwarf lilyturf tuber, DT-13, reduces L-type calcium currents during hypoxia in adult rat ventricular myocytes.

    PubMed

    Tao, Jin; Wang, Hongyi; Zhou, Hong; Li, Shengnan

    2005-10-28

    The saponin monomer 13 of dwarf lilyturf tuber (DT-13), one of the saponin monomers of dwarf lilyturf tuber, has been found to have potent cardioprotective effects. In order to investigate the effects of DT-13 on L-type calcium currents (I(Ca,L)), exploring the mechanisms of DT-13's cardioprotective effects in the condition of pathophysiology, we directly measured the I(Ca,L) during hypoxia in the adult rat cardiac myocytes exposed to DT-13 using standard whole-cell patch-clamp recording technique. Our previous results showed that DT-13 exerted decreasing effects on the I(Ca,L) of the single adult rat cardiac myocytes. In the condition of hypoxia, the current density was inhibited by about 29% after exposure of the cells to DT-13 (0.1 micromol L(-1)) for 10 min, from 6.96+/-1.05 pA/pF to 4.38+/-0.35 pA/pF (n=5, P<0.05). This I(Ca,L)-inhibiting action of DT-13 was concentration-dependent and showed no frequency-dependence. DT-13 up-shifted the current-voltage (I-V) curve. Steady-state activation of I(Ca,L) was not affected markedly, and the half activation potential (V(0.5)) in the presence of DT-13 (0.1 micromol L(-1)) was also not significantly different. DT-13 at 0.1 micromol L(-1) markedly accelerated the voltage-dependent steady-state inactivation of calcium current and shifted the steady-state inactivation curve of I(Ca,L) to the left. In combination with previous reports, these results suggest that there might be a close relationship between the cardioprotective effects of DT-13 and L-type calcium channels in the condition of hypoxia.

  5. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    NASA Technical Reports Server (NTRS)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  6. Mechanisms of Pyrethroid Insecticide-Induced Stimulation of Calcium Influx in Neocortical Neurons

    PubMed Central

    Cao, Zhengyu; Shafer, Timothy J.

    2011-01-01

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated calcium channels. Therefore, the present study compared the ability of 11 structurally diverse pyrethroids to evoke Ca2+ influx in primary cultures of mouse neocortical neurons. Nine pyrethroids (tefluthrin, deltamethrin, λ-cyhalothrin, β-cyfluthrin, esfenvalerate, S-bioallethrin, fenpropathrin, cypermethrin, and bifenthrin) produced concentration-dependent elevations in intracellular calcium concentration ([Ca2+]i) in neocortical neurons. Permethrin and resmethrin were without effect on [Ca2+]i. These pyrethroids displayed a range of efficacies on Ca2+ influx; however, the EC50 values for active pyrethroids all were within one order of magnitude. Tetrodotoxin blocked increases in [Ca2+]i caused by all nine active pyrethroids, indicating that the effects depended on VGSC activation. The pathways for deltamethrin- and tefluthrin-induced Ca2+ influx include N-methyl-d-aspartic acid receptors, L-type Ca2+ channels, and reverse mode of operation of the Na+/Ca2+ exchanger inasmuch as antagonists of these sites blocked deltamethrin-induced Ca2+ influx. These data demonstrate that pyrethroids stimulate Ca2+ entry into neurons subsequent to their actions on VGSCs. PMID:20881019

  7. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes

    PubMed Central

    Petrovič, Pavol; Valent, Ivan; Cocherová, Elena; Pavelková, Jana

    2015-01-01

    The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases. PMID:26009544

  8. P/Q-type calcium channel modulators

    PubMed Central

    Nimmrich, V; Gross, G

    2012-01-01

    P/Q-type calcium channels are high-voltage-gated calcium channels contributing to vesicle release at synaptic terminals. A number of neurological diseases have been attributed to malfunctioning of P/Q channels, including ataxia, migraine and Alzheimer's disease. To date, only two specific P/Q-type blockers are known: both are peptides deriving from the spider venom of Agelenopsis aperta, ω-agatoxins. Other peptidic calcium channel blockers with activity at P/Q channels are available, albeit with less selectivity. A number of low molecular weight compounds modulate P/Q-type currents with different characteristics, and some exhibit a peculiar bidirectional pattern of modulation. Interestingly, there are a number of therapeutics in clinical use, which also show P/Q channel activity. Because selectivity as well as the exact mode of action is different between all P/Q-type channel modulators, the interpretation of clinical and experimental data is complicated and needs a comprehensive understanding of their target profile. The situation is further complicated by the fact that information on potency varies vastly in the literature, which may be the result of different experimental systems, conditions or the splice variants of the P/Q channel. This review attempts to provide a comprehensive overview of the compounds available that affect the P/Q-type channel and should help with the interpretation of results of in vitro experiments and animal models. It also aims to explain some clinical observations by implementing current knowledge about P/Q channel modulation of therapeutically used non-selective drugs. Chances and challenges of the development of P/Q channel-selective molecules are discussed. PMID:22670568

  9. Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age

    PubMed Central

    Snutch, Terrance P.

    2005-01-01

    Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373

  10. [Aging-related ionic remodeling of L-type voltage dependent calcium channel in left atria of canine].

    PubMed

    Zhou, Xian-hui; Zhang, Jian; Gan, Tian-yi; Xu, Guo-jun; Tang, Bao-peng

    2012-04-01

    To investigate aging-related ionic remodeling of L-type voltage dependent calcium channel (LVDCC) in left atria of canine. Seven adult (2.0 - 2.5 years) and 10 aged (> 8 years) dogs were used. The current of LVDCC was recorded by patch clamp technique in the whole cell mode. The action potential duration (APD(90)), amplitude of action potential plateau (APA), I(Ca-L) peak current density of LVDCC were recorded. The mRNA and protein expressions of α1c subunit (Ca(V1.2)), sarcoplasmic reticulum Ca(2+)-ATPase (SECRA(2)), Calpain-I, ryanodine receptor (RYR(2)) were detected by quantitative RT-PCR and Western blot, respectively. I(Ca-L) peak current density [(-8.11 ± 0.54) pA/pF vs. (-14.04 ± 0.82) pA/pF, P < 0.05] was significantly reduced and action potential duration to 90% repolarization (APD(90)) significantly prolonged [(340.5 ± 10.1) ms vs. (320.0 ± 7.9) ms, P < 0.05] in aged group than in adult group. The mRNA gene expression level of Ca(V1.2) was significantly lower (0.90 ± 0.35 vs. 2.38 ± 0.40, P < 0.05) while mRNA expression of RYR(2) was significantly higher (4.39 ± 4.68 vs. 1.49 ± 1.69, P < 0.05) in the aged dogs than in the adult dogs. mRNA expression of SECRA(2) and Calpain-I was similar between the two groups. Similarly, the protein expression level of Ca(V1.2) was significantly lower (0.13 ± 0.10 vs. 0.29 ± 0.12, P < 0.05) while the protein expression level of RYR(2) was significantly higher (0.18 ± 0.21 vs. 0.08 ± 0.36, P < 0.05) in the aged dogs than in the adult dogs. Again, protein expression of SECRA(2), PLN(1) and Calpain-I was similar between the two groups. These data suggest that aging could induce mRNA and protein expression changes of Ca(V1.2) and RYR(2) of LVDCC which might serve as the molecular basis of I(Ca-L) remodeling in aged dogs and might be linked to the increased likelihood of developing atrial fibrillation (AF) in aged dogs.

  11. Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mechanism.

    PubMed

    Whicher, Jonathan R; MacKinnon, Roderick

    2016-08-12

    Voltage-gated potassium (K(v)) channels are gated by the movement of the transmembrane voltage sensor, which is coupled, through the helical S4-S5 linker, to the potassium pore. We determined the single-particle cryo-electron microscopy structure of mammalian K(v)10.1, or Eag1, bound to the channel inhibitor calmodulin, at 3.78 angstrom resolution. Unlike previous K(v) structures, the S4-S5 linker of Eag1 is a five-residue loop and the transmembrane segments are not domain swapped, which suggest an alternative mechanism of voltage-dependent gating. Additionally, the structure and position of the S4-S5 linker allow calmodulin to bind to the intracellular domains and to close the potassium pore, independent of voltage-sensor position. The structure reveals an alternative gating mechanism for K(v) channels and provides a template to further understand the gating properties of Eag1 and related channels. Copyright © 2016, American Association for the Advancement of Science.

  12. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    PubMed Central

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  13. Effects of calcium channel blockers on the kinetics of voltage-dependent changes in synaptosomal calcium concentrations.

    PubMed

    Thomas, M M; Puligandla, P S; Dunn, S M

    1994-01-28

    Synaptosomal preparations from rat cerebral cortex have been used in stopped-flow fluorescence studies to measure rapid changes in intrasynaptosomal calcium concentrations upon depolarization. Synaptosomes were loaded with the fluorescent calcium chelating dye, Fura-2, by incubation with the membrane permeant acetoxymethyl ester derivative. Depolarization by elevated external K+ concentration resulted in a rapid increase in cytoplasmic Ca2+ as measured by a quench in Fura-2 fluorescence when excited at 390 nm. The fluorescence change could be reasonably fit by a single exponential process with an apparent rate of 10-15 s-1 and the magnitude of the response was voltage-dependent, increasing with increasing external K+ over the range of 5-30 mM. The observed quench was blocked by micromolar concentrations of the inorganic calcium channel blockers, Cd2+, Co2+ and La3+. Nimodipine, a dihydropyridine which blocks L-type calcium channels, inhibited only 10-15% of the flux response while nitrendipine had no consistent effect. omega-Conotoxin GVIA, a blocker of N-type channels in many species, had only a small inhibitory effect at high (1-10 microM) concentrations. The response was, however, inhibited by pre-incubation of the synaptosomes with venom of the funnel web spider. Agelenopsis aperta (0.1-300 micrograms/ml). Inhibition was observed with both a purified polyamine fraction (FTX) from the venom (IC50 = 4 nl/ml) and a purified peptide toxin, omega-AgaIVA (IC50 = 30 nM). These results indicate that voltage-dependent Ca2+ uptake by mammalian nerve terminals is mediated primarily by channels that are insensitive to dihydropyridines and omega-conotoxin GVIA but are sensitive to components of funnel web spider venom.

  14. Structural Mechanism of Voltage-Dependent Gating in an Isolated Voltage-Sensing Domain

    PubMed Central

    Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos; Hulse, Raymond E.; Roux, Benoit; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo

    2014-01-01

    SUMMARY The transduction of transmembrane electric fields into protein motion plays an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSD) carry out these functions through reorientations of S4 helix with discrete gating charges. Here, crystal structures of the VSD from Ci-VSP were determined in both, active (Up) and resting (Down) conformations. The S4 undergoes a ~5 Å displacement along its main axis accompanied by a ~60o rotation, consistent with the helix-screw gating mechanism. This movement is stabilized by a change in countercharge partners in helices S1 and S3, generating an estimated net charge transfer of ~1 eo. Gating charges move relative to a “hydrophobic gasket” that electrically divides intra and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent cellular activities. PMID:24487958

  15. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1.

    PubMed

    Mumm, Patrick; Imes, Dennis; Martinoia, Enrico; Al-Rasheid, Khaled A S; Geiger, Dietmar; Marten, Irene; Hedrich, Rainer

    2013-09-01

    Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families—SLAC/SLAH and ALMT—are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation–deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.

  16. Direct Interaction of CaVβ with Actin Up-regulates L-type Calcium Currents in HL-1 Cardiomyocytes*

    PubMed Central

    Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E.; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia

    2015-01-01

    Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. PMID:25533460

  17. Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge.

    PubMed

    Michel, K; Michaelis, M; Mazzuoli, G; Mueller, K; Vanden Berghe, P; Schemann, M

    2011-12-15

    Slow changes in [Ca(2+)](i) reflect increased neuronal activity. Our study demonstrates that single-trial fast [Ca(2+)](i) imaging (≥200 Hz sampling rate) revealed peaks each of which are associated with single spike discharge recorded by consecutive voltage-sensitive dye (VSD) imaging in enteric neurones and nerve fibres. Fast [Ca(2+)](i) imaging also revealed subthreshold fast excitatory postsynaptic potentials. Nicotine-evoked [Ca(2+)](i) peaks were reduced by -conotoxin and blocked by ruthenium red or tetrodotoxin. Fast [Ca(2+)](i) imaging can be used to directly record single action potentials in enteric neurones. [Ca(2+)](i) peaks required opening of voltage-gated sodium and calcium channels as well as Ca(2+) release from intracellular stores.

  18. Voltage-gated proton channels: what' next?

    PubMed Central

    DeCoursey, Thomas E

    2008-01-01

    This review is an attempt to identify and place in context some of the many questions about voltage-gated proton channels that remain unsolved. As the gene was identified only 2 years ago, the situation is very different than in fields where the gene has been known for decades. For the proton channel, most of the obvious and less obvious structure–function questions are still wide open. Remarkably, the proton channel protein strongly resembles the voltage-sensing domain of many voltage-gated ion channels, and thus offers a novel approach to study gating mechanisms. Another surprise is that the proton channel appears to function as a dimer, with two separate conduction pathways. A number of significant biological questions remain in dispute, unanswered, or in some cases, not yet asked. This latter deficit is ascribable to the intrinsic difficulty in evaluating the importance of one component in a complex system, and in addition, to the lack, until recently, of a means of performing an unambiguous lesion experiment, that is, of selectively eliminating the molecule in question. We still lack a potent, selective pharmacological inhibitor, but the identification of the gene has allowed the development of powerful new tools including proton channel antibodies, siRNA and knockout mice. PMID:18801839

  19. Calcium dynamics regulating the timing of decision-making in C. elegans.

    PubMed

    Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Kawazoe, Yuya; Miyanishi, Yosuke; Yamazaki, Shuhei J; Fei, Xianfeng; Busch, Karl Emanuel; Gengyo-Ando, Keiko; Nakai, Junichi; Iino, Yuichi; Iwasaki, Yuishi; Hashimoto, Koichi; Kimura, Koutarou D

    2017-05-23

    Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans . We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca 2+ ] i ), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca 2+ ] i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making.

  20. Effects of trap-assisted tunneling on gate-induced drain leakage in silicon-germanium channel p-type FET for scaled supply voltages

    NASA Astrophysics Data System (ADS)

    Tiwari, Vishal A.; Divakaruni, Rama; Hook, Terence B.; Nair, Deleep R.

    2016-04-01

    Silicon-germanium is considered as an alternative channel material to silicon p-type FET (pFET) for the development of energy efficient high performance transistors for 28 nm and beyond in a high-k metal gate technology because of its lower threshold voltage and higher mobility. However, gate-induced drain leakage (GIDL) is a concern for high threshold voltage device design because of tunneling at reduced bandgap. In this work, the trap-assisted tunneling and band-to-band tunneling (BTBT) effects on GIDL is analyzed and modeled for SiGe pFETs. Experimental results and Monte Carlo simulation results reveal that the pre-halo germanium pre-amorphization implant used to contain the short channel effects contribute to GIDL at the drain sidewall in addition to GIDL due to BTBT in SiGe devices. The results are validated by comparing the experimental observations with the numerical simulation and a set of calibrated models are used to describe the GIDL mechanisms for various drain and gate bias.

  1. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    PubMed

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages

  2. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers*

    PubMed Central

    Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro

    2016-01-01

    The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1–S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer's cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process. PMID:26755722

  3. Voltage-Gated Lipid Ion Channels

    PubMed Central

    Blicher, Andreas; Heimburg, Thomas

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times. PMID:23823188

  4. Paraneoplastic cerebellar degeneration and lambert-eaton myasthenia in a patient with merkel cell carcinoma and voltage-gated calcium channel antibodies.

    PubMed

    Pavolucci, Lucia; Giannini, Giulia; Giannoccaro, Maria Pia; Foschini, Maria Pia; Lang, Bethan; Avoni, Patrizia; Tinuper, Paolo; Vincent, Angela; Liguori, Rocco

    2017-11-01

    Merkel cell carcinoma is a rare cutaneous, aggressive tumor. Although it shares many neuroendocrine features with small cell lung carcinoma, it has only occasionally been reported with paraneoplastic neurological syndromes. A healthy 67-year-old man developed acute ataxia, vertigo, and nausea. Subsequently he also developed dysarthria, diplopia, xerostomia, fatigability and progressive anorexia. He underwent a full diagnostic workup and was found to have a high titer of voltage-gated calcium channel antibodies in serum and cerebrospinal fluid, neurophysiological findings compatible with Lambert-Eaton myasthenia and neurological signs compatible with cerebellar degeneration. A positron emission tomography study revealed a hypermetabolic lesion in the axilla, subsequently biopsied and consistent with Merkel cell carcinoma. In most previous reports, neurological symptoms preceded the Merkel cell carcinoma diagnosis, and the primary localization was in lymph nodes. This tumor should be considered in patients with paraneoplastic syndrome, and particularly Lambert-Eaton myasthenia after exclusion of small cell lung carcinoma. Muscle Nerve 56: 998-1000, 2017. © 2016 Wiley Periodicals, Inc.

  5. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation.

    PubMed

    Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing

    2014-07-01

    Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.

  6. Direct interaction of CaVβ with actin up-regulates L-type calcium currents in HL-1 cardiomyocytes.

    PubMed

    Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia

    2015-02-20

    Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.

    PubMed

    Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy

    2015-01-01

    Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

  8. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History

    PubMed Central

    Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy

    2015-01-01

    Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom. PMID:26356684

  9. Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

    PubMed

    Kasimova, M A; Granata, D; Carnevale, V

    2016-01-01

    Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Inherited disorders of voltage-gated sodium channels

    PubMed Central

    George, Alfred L.

    2005-01-01

    A variety of inherited human disorders affecting skeletal muscle contraction, heart rhythm, and nervous system function have been traced to mutations in genes encoding voltage-gated sodium channels. Clinical severity among these conditions ranges from mild or even latent disease to life-threatening or incapacitating conditions. The sodium channelopathies were among the first recognized ion channel diseases and continue to attract widespread clinical and scientific interest. An expanding knowledge base has substantially advanced our understanding of structure-function and genotype-phenotype relationships for voltage-gated sodium channels and provided new insights into the pathophysiological basis for common diseases such as cardiac arrhythmias and epilepsy. PMID:16075039

  11. Integrative Approach with Electrophysiological and Theoretical Methods Reveals a New Role of S4 Positively Charged Residues in PKD2L1 Channel Voltage-Sensing.

    PubMed

    Numata, Tomohiro; Tsumoto, Kunichika; Yamada, Kazunori; Kurokawa, Tatsuki; Hirose, Shinichi; Nomura, Hideki; Kawano, Mitsuhiro; Kurachi, Yoshihisa; Inoue, Ryuji; Mori, Yasuo

    2017-08-29

    Numerical model-based simulations provide important insights into ion channel gating when experimental limitations exist. Here, a novel strategy combining numerical simulations with patch clamp experiments was used to investigate the net positive charges in the putative transmembrane segment 4 (S4) of the atypical, positively-shifted voltage-dependence of polycystic kidney disease 2-like 1 (PKD2L1) channel. Charge-neutralising mutations (K452Q, K455Q and K461Q) in S4 reduced gating charges, positively shifted the Boltzmann-type activation curve [i.e., open probability (P open )-V curve] and altered the time-courses of activation/deactivation of PKD2L1, indicating that this region constitutes part of a voltage sensor. Numerical reconstruction of wild-type (WT) and mutant PKD2L1-mediated currents necessitated, besides their voltage-dependent gating parameters, a scaling factor that describes the voltage-dependence of maximal conductance, G max . Subsequent single-channel conductance (γ) measurements revealed that voltage-dependence of G max in WT can be explained by the inward-rectifying property of γ, which is greatly changed in PKD2L1 mutants. Homology modelling based on PKD2 and Na V Ab structures suggest that such voltage dependence of P open and γ in PKD2L1 could both reflect the charged state of the S4 domain. The present conjunctive experimental and theoretical approaches provide a framework to explore the undetermined mechanism(s) regulating TRP channels that possess non-classical voltage-dependent properties.

  12. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.

    PubMed

    Huang, Weiyun; Liu, Minhao; Yan, S Frank; Yan, Nieng

    2017-06-01

    Voltage-gated sodium (Na v ) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na v channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na v channels, with Na v 1.1 and Na v 1.5 each harboring more than 400 mutations. Na v channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na v channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca v ) channel Ca v 1.1 provides a template for homology-based structural modeling of the evolutionarily related Na v channels. In this Resource article, we summarized all the reported disease-related mutations in human Na v channels, generated a homologous model of human Na v 1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na v channels, the analysis presented here serves as the base framework for mechanistic investigation of Na v channelopathies and for potential structure-based drug discovery.

  13. Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function.

    PubMed

    Theis, Anne-Kathrin; Rózsa, Balázs; Katona, Gergely; Schmitz, Dietmar; Johenning, Friedrich W

    2018-01-01

    The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca 2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs) propagate back into the dendritic tree and activate voltage gated Ca 2+ channels (VGCCs). For spines, this global mode of spine Ca 2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs) result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca 2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca 2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca 2+ conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs) measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca 2+ influx, the amount of EPSP mediated Ca 2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.

  14. Modulation of A-type potassium channels by a family of calcium sensors.

    PubMed

    An, W F; Bowlby, M R; Betty, M; Cao, J; Ling, H P; Mendoza, G; Hinson, J W; Mattsson, K I; Strassle, B W; Trimmer, J S; Rhodes, K J

    2000-02-03

    In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.

  15. Restoration of Motor Defects Caused by Loss of Drosophila TDP-43 by Expression of the Voltage-Gated Calcium Channel, Cacophony, in Central Neurons.

    PubMed

    Lembke, Kayly M; Scudder, Charles; Morton, David B

    2017-09-27

    Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony , a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects. SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43

  16. Distribution and function of voltage-gated sodium channels in the nervous system.

    PubMed

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  17. L-type calcium channel blockade attenuates morphine withdrawal: in vivo interaction between L-type calcium channels and corticosterone.

    PubMed

    Esmaeili-Mahani, Saeed; Fathi, Yadollah; Motamedi, Fereshteh; Hosseinpanah, Farhad; Ahmadiani, Abolhassan

    2008-02-01

    Both opioids and calcium channel blockers could affect hypothalamic-pituitary-adrenal (HPA) axis function. Nifedipine, as a calcium channel blocker, can attenuate the development of morphine dependence; however, the role of the HPA axis in this effect has not been elucidated. We examined the effect of nifedipine on the induction of morphine dependency in intact and adrenalectomized (ADX) male rats, as assessed by the naloxone precipitation test. We also evaluated the effect of this drug on HPA activity induced by naloxone. Our results showed that despite the demonstration of dependence in both groups of rats, nifedipine is more effective in preventing of withdrawal signs in ADX rats than in sham-operated rats. In groups that received morphine and nifedipine concomitantly, naloxone-induced corticosterone secretion was attenuated. Thus, we have shown the involvement of the HPA axis in the effect of nifedipine on the development of morphine dependency and additionally demonstrated an in vivo interaction between the L-type Ca2+ channels and corticosterone.

  18. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels

    NASA Astrophysics Data System (ADS)

    Oelstrom, Kevin; Goldschen-Ohm, Marcel P.; Holmgren, Miguel; Chanda, Baron

    2014-03-01

    Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inactivation-removed background. We find that state-dependent accessibility is demarcated by an S6 hydrophobic residue; substituted cysteines above this site are not modified by charged thiol reagents when the channel is closed. These accessibilities are consistent with those inferred from open- and closed-state structures of prokaryotic sodium channels. Our findings suggest that an intracellular gate composed of a ring of hydrophobic residues is not only responsible for regulating access to the pore of sodium channels, but is also a conserved feature within canonical members of the VGIC superfamily.

  19. Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing.

    PubMed

    Zhang, Yu; Li, Jun; Li, Rui; Sbircea, Dan-Tiberiu; Giovannitti, Alexander; Xu, Junling; Xu, Huihua; Zhou, Guodong; Bian, Liming; McCulloch, Iain; Zhao, Ni

    2017-11-08

    Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  20. [Voltage-gated potassium channels and human neurological diseases].

    PubMed

    Jin, Hong-Wei; Wang, Xiao-Liang

    2002-01-01

    Voltage-gated potassium channels (Kv) is the largest, most complex in potassium channel superfamily. It can be divided into Kv alpha subunit and auxiliary two groups. The roles of some Kv channels types, e.g. rapidly inactivating (A-Type channel) and muscarine sensitive channels (M-type channel) are beginning to be understood. They are prominent in nervous system, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, neurotransmitter release, cell proliferation or degeneration, signal transduction in neuronal network. Many human neurological disease pathogenesis are found to be related to mutant of Kv-channels subunit or subtype, such as, learning and memory impairing, ataxia, epilepsy, deafness, etc.

  1. Calcium dynamics regulating the timing of decision-making in C. elegans

    PubMed Central

    Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Kawazoe, Yuya; Miyanishi, Yosuke; Yamazaki, Shuhei J; Fei, Xianfeng; Busch, Karl Emanuel; Gengyo-Ando, Keiko; Nakai, Junichi; Iino, Yuichi; Iwasaki, Yuishi; Hashimoto, Koichi; Kimura, Koutarou D

    2017-01-01

    Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans. We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca2+]i), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca2+]i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making. DOI: http://dx.doi.org/10.7554/eLife.21629.001 PMID:28532547

  2. Polysilicon Gate Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations in Sub-100 nm MOSFET's with Ultrathin Gate Oxide

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Saini, Subhash

    2000-01-01

    In this paper, we investigate various aspects of the polysilicon gate influence on the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFET's with ultrathin gate oxides. The study is done by using an efficient statistical three-dimensional (3-D) "atomistic" simulation technique described else-where. MOSFET's with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveal that even in devices with a single crystal gate the gate depletion and the random dopants in it are responsible for a substantial fraction of the threshold voltage fluctuations when the gate oxide is scaled-in the range of 1-2 nm. Simulation experiments have been used in order to separate the enhancement in the threshold voltage fluctuations due to an effective increase in the oxide thickness associated with the gate depletion from the direct influence of the random dopants in the gate depletion layer. The results of the experiments show that the both factors contribute to the enhancement of the threshold voltage fluctuations, but the effective increase in the oxide-thickness has a dominant effect in the investigated range of devices. Simulations illustrating the effect or the polysilicon grain boundaries on the threshold voltage variation are also presented.

  3. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channelmore » expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.« less

  4. High-voltage-activated calcium current subtypes in mouse DRG neurons adapt in a subpopulation-specific manner after nerve injury.

    PubMed

    Murali, Swetha S; Napier, Ian A; Mohammadi, Sarasa A; Alewood, Paul F; Lewis, Richard J; Christie, MacDonald J

    2015-03-01

    Changes in ion channel function and expression are characteristic of neuropathic pain. Voltage-gated calcium channels (VGCCs) are integral for neurotransmission and membrane excitability, but relatively little is known about changes in their expression after nerve injury. In this study, we investigate whether peripheral nerve ligation is followed by changes in the density and proportion of high-voltage-activated (HVA) VGCC current subtypes in dorsal root ganglion (DRG) neurons, the contribution of presynaptic N-type calcium channels in evoked excitatory postsynaptic currents (EPSCs) recorded from dorsal horn neurons in the spinal cord, and the changes in expression of mRNA encoding VGCC subunits in DRG neurons. Using C57BL/6 mice [8- to 11-wk-old males (n = 91)] for partial sciatic nerve ligation or sham surgery, we performed whole cell patch-clamp recordings on isolated DRG neurons and dorsal horn neurons and measured the expression of all VGCC subunits with RT-PCR in DRG neurons. After nerve injury, the density of P/Q-type current was reduced overall in DRG neurons. There was an increase in the percentage of N-type and a decrease in that of P/Q-type current in medium- to large-diameter neurons. No changes were found in the contribution of presynaptic N-type calcium channels in evoked EPSCs recorded from dorsal horn neurons. The α2δ-1 subunit was upregulated by 1.7-fold and γ-3, γ-2, and β-4 subunits were all downregulated 1.7-fold in injured neurons compared with sham-operated neurons. This comprehensive characterization of HVA VGCC subtypes in mouse DRG neurons after nerve injury revealed changes in N- and P/Q-type current proportions only in medium- to large-diameter neurons. Copyright © 2015 the American Physiological Society.

  5. Mechanism of voltage-gated channel formation in lipid membranes.

    PubMed

    Guidelli, Rolando; Becucci, Lucia

    2016-04-01

    Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Review: Cav2.3 R-type Voltage-Gated Ca2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity

    PubMed Central

    Wormuth, Carola; Lundt, Andreas; Henseler, Christina; Müller, Ralf; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2016-01-01

    Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders. PMID:27843503

  7. Synaptic Calcium Regulation in Hair Cells of the Chicken Basilar Papilla

    PubMed Central

    Im, Gi Jung; Moskowitz, Howard S.; Lehar, Mohammed; Hiel, Hakim

    2014-01-01

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents (“minis”) resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. PMID:25505321

  8. Opposing Roles of Calcium and Intracellular ATP on Gating of the Purinergic P2X2 Receptor Channel.

    PubMed

    Rokic, Milos B; Castro, Patricio; Leiva-Salcedo, Elias; Tomic, Melanija; Stojilkovic, Stanko S; Coddou, Claudio

    2018-04-11

    P2X2 receptors (P2X2R) exhibit a slow desensitization during the initial ATP application and a progressive, calcium-dependent increase in rates of desensitization during repetitive stimulation. This pattern is observed in whole-cell recordings from cells expressing recombinant and native P2X2R. However, desensitization is not observed in perforated-patched cells and in two-electrode voltage clamped oocytes. Addition of ATP, but not ATPγS or GTP, in the pipette solution also abolishes progressive desensitization, whereas intracellular injection of apyrase facilitates receptor desensitization. Experiments with injection of alkaline phosphatase or addition of staurosporine and ATP in the intracellular solution suggest a role for a phosphorylation-dephosphorylation in receptor desensitization. Mutation of residues that are potential phosphorylation sites identified a critical role of the S363 residue in the intracellular ATP action. These findings indicate that intracellular calcium and ATP have opposing effects on P2X2R gating: calcium allosterically facilitates receptor desensitization and ATP covalently prevents the action of calcium. Single cell measurements further revealed that intracellular calcium stays elevated after washout in P2X2R-expressing cells and the blockade of mitochondrial sodium/calcium exchanger lowers calcium concentrations during washout periods to basal levels, suggesting a role of mitochondria in this process. Therefore, the metabolic state of the cell can influence P2X2R gating.

  9. A double tyrosine motif in the cardiac sodium channel domain III-IV linker couples calcium-dependent calmodulin binding to inactivation gating.

    PubMed

    Sarhan, Maen F; Van Petegem, Filip; Ahern, Christopher A

    2009-11-27

    Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr(1494) and Tyr(1495)) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.

  10. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    PubMed

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  11. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.

    PubMed

    Jarvis, Scott E; Zamponi, Gerald W

    2005-05-01

    Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.

  12. Voltage Gating of Shaker K+ Channels

    PubMed Central

    Rodríguez, Beatriz M.; Sigg, Daniel; Bezanilla, Francisco

    1998-01-01

    Ionic (Ii) and gating currents (Ig) from noninactivating Shaker H4 K+ channels were recorded with the cut-open oocyte voltage clamp and macropatch techniques. Steady state and kinetic properties were studied in the temperature range 2–22°C. The time course of Ii elicited by large depolarizations consists of an initial delay followed by an exponential rise with two kinetic components. The main Ii component is highly temperature dependent (Q10 > 4) and mildly voltage dependent, having a valence times the fraction of electric field (z) of 0.2–0.3 eo. The Ig On response obtained between −60 and 20 mV consists of a rising phase followed by a decay with fast and slow kinetic components. The main Ig component of decay is highly temperature dependent (Q10 > 4) and has a z between 1.6 and 2.8 eo in the voltage range from −60 to −10 mV, and ∼0.45 eo at more depolarized potentials. After a pulse to 0 mV, a variable recovery period at −50 mV reactivates the gating charge with a high temperature dependence (Q10 > 4). In contrast, the reactivation occurring between −90 and −50 mV has a Q10 = 1.2. Fluctuation analysis of ionic currents reveals that the open probability decreases 20% between 18 and 8°C and the unitary conductance has a low temperature dependence with a Q10 of 1.44. Plots of conductance and gating charge displacement are displaced to the left along the voltage axis when the temperature is decreased. The temperature data suggests that activation consists of a series of early steps with low enthalpic and negative entropic changes, followed by at least one step with high enthalpic and positive entropic changes, leading to final transition to the open state, which has a negative entropic change. PMID:9689029

  13. Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling

    PubMed Central

    Stanley, Elise F

    2015-01-01

    At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating. PMID:26457441

  14. The cooperative voltage sensor motion that gates a potassium channel.

    PubMed

    Pathak, Medha; Kurtz, Lisa; Tombola, Francesco; Isacoff, Ehud

    2005-01-01

    The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close.

  15. The Cooperative Voltage Sensor Motion that Gates a Potassium Channel

    PubMed Central

    Pathak, Medha; Kurtz, Lisa; Tombola, Francesco; Isacoff, Ehud

    2005-01-01

    The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close. PMID:15623895

  16. Synaptic calcium regulation in hair cells of the chicken basilar papilla.

    PubMed

    Im, Gi Jung; Moskowitz, Howard S; Lehar, Mohammed; Hiel, Hakim; Fuchs, Paul Albert

    2014-12-10

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. Copyright © 2014 the authors 0270-6474/14/3416688-10$15.00/0.

  17. Unfolding of a temperature-sensitive domain controls voltage-gated channel activation

    PubMed Central

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A.; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S.; Minor, Daniel L.

    2016-01-01

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNaV) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNaV CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNaV CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNaV voltage dependencies, and demonstrate that a discrete domain can encode the temperature dependent response of a channel. PMID:26919429

  18. [Mechanisms of action of voltage-gated sodium channel ligands].

    PubMed

    Tikhonov, D B

    2007-05-01

    The voltage-gated sodium channels play a key role in the generation of action potential in excitable cells. Sodium channels are targeted by a number of modulating ligands. Despite numerous studies, the mechanisms of action of many ligands are still unknown. The main cause of the problem is the absence of the channel structure. Sodium channels belong to the superfamily of P-loop channels that also the data abowt includes potassium and calcium channels and the channels of ionotropic glutamate receptors. Crystallization of several potassium channels has opened a possibility to analyze the structure of other members of the superfamily using the homology modeling approach. The present study summarizes the results of several recent modelling studies of such sodium channel ligands as tetrodotoxin, batrachotoxin and local anesthetics. Comparison of available experimental data with X-ray structures of potassium channels has provided a new level of understanding of the mechanisms of action of sodium channel ligands and has allowed proposing several testable hypotheses.

  19. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    PubMed

    Tian, Xuejun; Gala, Upasana; Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J; Tong, Chao

    2015-03-01

    Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.

  20. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel.

    PubMed

    Zhao, Juan; Blunck, Rikard

    2016-10-06

    Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.

  1. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    PubMed Central

    Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445

  2. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents.

    PubMed

    Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  3. Simulating the Activation of Voltage Sensing Domain for a Voltage-Gated Sodium Channel Using Polarizable Force Field.

    PubMed

    Sun, Rui-Ning; Gong, Haipeng

    2017-03-02

    Voltage-gated sodium (Na V ) channels play vital roles in the signal transduction of excitable cells. Upon activation of a Na V channel, the change of transmembrane voltage triggers conformational change of the voltage sensing domain, which then elicits opening of the pore domain and thus allows an influx of Na + ions. Description of this process with atomistic details is in urgent demand. In this work, we simulated the partial activation process of the voltage sensing domain of a prokaryotic Na V channel using a polarizable force field. We not only observed the conformational change of the voltage sensing domain from resting to preactive state, but also rigorously estimated the free energy profile along the identified reaction pathway. Comparison with the control simulation using an additive force field indicates that voltage-gating thermodynamics of Na V channels may be inaccurately described without considering the electrostatic polarization effect.

  4. The episodic ataxia type 1 mutation I262T alters voltage-dependent gating and disrupts protein biosynthesis of human Kv1.1 potassium channels.

    PubMed

    Chen, Szu-Han; Fu, Ssu-Ju; Huang, Jing-Jia; Tang, Chih-Yung

    2016-01-18

    Voltage-gated potassium (Kv) channels are essential for setting neuronal membrane excitability. Mutations in human Kv1.1 channels are linked to episodic ataxia type 1 (EA1). The EA1-associated mutation I262T was identified from a patient with atypical phenotypes. Although a previous report has characterized its suppression effect, several key questions regarding the impact of the I262T mutation on Kv1.1 as well as other members of the Kv1 subfamily remain unanswered. Herein we show that the dominant-negative effect of I262T on Kv1.1 current expression is not reversed by co-expression with Kvβ1.1 or Kvβ2 subunits. Biochemical examinations indicate that I262T displays enhanced protein degradation and impedes membrane trafficking of Kv1.1 wild-type subunits. I262T appears to be the first EA1 mutation directly associated with impaired protein stability. Further functional analyses demonstrate that I262T changes the voltage-dependent activation and Kvβ1.1-mediated inactivation, uncouples inactivation from activation gating, and decelerates the kinetics of cumulative inactivation of Kv1.1 channels. I262T also exerts similar dominant effects on the gating of Kv1.2 and Kv1.4 channels. Together our data suggest that I262T confers altered channel gating and reduced functional expression of Kv1 channels, which may account for some of the phenotypes of the EA1 patient.

  5. Voltage Sensor Inactivation in Potassium Channels

    PubMed Central

    Bähring, Robert; Barghaan, Jan; Westermeier, Regina; Wollberg, Jessica

    2012-01-01

    In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a voltage sensor domain. This conformational change of the protein is transmitted to the pore domain and eventually leads to pore opening. However, the voltage sensor domain may interact with two distinct gates in the pore domain: the activation gate (A-gate), involving the cytoplasmic S6 bundle crossing, and the pore gate (P-gate), located externally in the selectivity filter. How the voltage sensor moves and how tightly it interacts with these two gates on its way to adopt a relaxed conformation when the membrane is depolarized may critically determine the mode of Kv channel inactivation. In certain Kv channels, voltage sensor movement leads to a tight interaction with the P-gate, which may cause conformational changes that render the selectivity filter non-conductive (“P/C-type inactivation”). Other Kv channels may preferably undergo inactivation from pre-open closed-states during voltage sensor movement, because the voltage sensor temporarily uncouples from the A-gate. For this behavior, known as “preferential” closed-state inactivation, we introduce the term “A/C-type inactivation”. Mechanistically, P/C- and A/C-type inactivation represent two forms of “voltage sensor inactivation.” PMID:22654758

  6. Threshold voltage tuning in AlGaN/GaN HFETs with p-type Cu2O gate synthesized by magnetron reactive sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Liuan; Xie, Tian; Wang, Xinzhi; Liu, Xinke; Ao, Jin-Ping

    2018-04-01

    In present study, copper oxide films were prepared at different sputtering powers (10-100 W) using magnetron reactive sputtering. The crystalline structure, surface morphologies, composition, and optical band gap of the as-grown films are dependent on sputtering power. As the sputtering power decreasing from 100 to 10 W, the composition of films changed from CuO to quasi Cu2O domination. Moreover, when the sputtering power is 10 W, a relative high hole carrier density and high-surface-quality quasi Cu2O thin film can be achieved. AlGaN/GaN HFETs were fabricated with the optimized p-type quasi Cu2O film as gate electrode, the threshold voltage of the device shows a 0.55 V positive shift, meanwhile, a lower gate leakage current, a higher ON/OFF drain current ratio of ∼108, a higher electron mobility (1465 cm2/Vs), and a lower subthreshold slope of 74 mV/dec are also achieved, compared with the typical Ni/Au-gated HFETs. Therefore, Cu2O have a great potential to develop high performance p-type gate AlGaN/GaN HFETs.

  7. A Rare Case of Cerebellar Ataxia Due to Voltage-Gated Calcium Channel and Glutamic Acid Decarboxylase Autoantibodies.

    PubMed

    Annunziata, Giuseppe; Lobo, Pamela; Carbuccia, Cristian

    2017-11-27

    BACKGROUND Autoimmune cerebellar ataxia can be paraneoplastic in nature or can occasionally present without evidence of an ongoing malignancy. The detection of specific autoantibodies has been statistically linked to different etiologies. CASE REPORT A 55-year-old African-American woman with hypertension and a past history of morbid obesity and uncontrolled diabetes status post gastric bypass four years prior to the visit (with significantly improved body mass index and hemoglobin A1c controlled at the time of the clinical encounter) presented to the office complaining of gradual onset of unsteadiness and recurrent falls for the past three years, as well as difficulties coordinating routine daily activities. The neurologic exam showed moderate dysarthria and ataxic gait with bilateral dysmetria and positive Romberg test. Routine laboratory test results were only remarkable for a mild elevation of erythrocyte sedimentation rate, and most laboratory and imaging tests for common causes of ataxia failed to demonstrate an etiology. Upon further workup, evidence of anti-voltage-gated calcium channel and anti-glutamic acid decarboxylase antibody was demonstrated. She was then treated with intravenous immunoglobulins with remarkable clinical improvement. CONCLUSIONS We present a case of antibody-mediated ataxia not associated with malignancy. While ataxia is rarely related to autoantibodies, in such cases it is critical to understand the etiology of this disabling condition in order to treat it correctly. Clinicians should be aware of the possible association with specific autoantibodies and the necessity to rule out an occult malignancy in such cases.

  8. Upregulation of voltage-gated Ca2+ channels in mouse astrocytes infected with Theiler's murine encephalomyelitis virus (TMEV).

    PubMed

    Rubio, N; Almanza, A; Mercado, F; Arévalo, M-Á; Garcia-Segura, L M; Vega, R; Soto, E

    2013-09-05

    Theiler's murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice through a CD4(+) Th1 T cell-mediated immunopathological process. TMEV infection produces a syndrome in mice that resembles multiple sclerosis. In this work, we focused on the increased expression of the genes encoding voltage-gated Ca(2+) channel subunits in SJL/J mouse astrocytes infected in culture with a BeAn strain of TMEV. Affymetrix DNA murine genome U74v2 DNA microarray hybridized with cRNA from mock- and TMEV-infected astrocytes revealed the upregulation of four sequences encoding Ca(2+)-binding and Ca(2+) channel subunit proteins. The DNA hybridization results were further validated using conventional RT-PCR and quantitative RT-PCR, demonstrating the increased expression of mRNA encoding channel subunit proteins. Western blotting also showed the increased synthesis of L- and N-type channel subunit specific proteins after infection. The reduced expression and the functional upregulation of functional voltage-gated Ca(2+) channels in mock- and TMEV-infected cells, respectively, was demonstrated using voltage clamp experiments. TMEV infection in mouse astrocytes induced a Ca(2+) current with a density proportional to the amount of viral particles used for infection. The use of Ca(2+) channel blockers, nimodipine and ω-conotoxin-GVIA, showed that both functional L- and N-type Ca(2+) channels were upregulated in infected astrocytes. The upregulation of Ca(2+) channels in astrocytes after TMEV infection provides insight into the molecular processes and potential role of astrocyte Ca(2+) dysregulation in the pathophysiology of encephalomyelitis and is important for the development of novel therapeutic strategies leading to prevention of neurodegeneration. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Unusual Voltage-Gated Sodium Currents as Targets for Pain.

    PubMed

    Barbosa, C; Cummins, T R

    2016-01-01

    Pain is a serious health problem that impacts the lives of many individuals. Hyperexcitability of peripheral sensory neurons contributes to both acute and chronic pain syndromes. Because voltage-gated sodium currents are crucial to the transmission of electrical signals in peripheral sensory neurons, the channels that underlie these currents are attractive targets for pain therapeutics. Sodium currents and channels in peripheral sensory neurons are complex. Multiple-channel isoforms contribute to the macroscopic currents in nociceptive sensory neurons. These different isoforms exhibit substantial variations in their kinetics and pharmacology. Furthermore, sodium current complexity is enhanced by an array of interacting proteins that can substantially modify the properties of voltage-gated sodium channels. Resurgent sodium currents, atypical currents that can enhance recovery from inactivation and neuronal firing, are increasingly being recognized as playing potentially important roles in sensory neuron hyperexcitability and pain sensations. Here we discuss unusual sodium channels and currents that have been identified in nociceptive sensory neurons, describe what is known about the molecular determinants of the complex sodium currents in these neurons. Finally, we provide an overview of therapeutic strategies to target voltage-gated sodium currents in nociceptive neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Differential contribution of Kv4-containing channels to A-type, voltage-gated potassium currents in somatic and visceral dorsal root ganglion neurons.

    PubMed

    Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji; Yoshimura, Naoki

    2014-11-15

    Little is known about electrophysiological differences of A-type transient K(+) (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K(+) (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. Copyright © 2014 the American Physiological Society.

  11. Differential contribution of Kv4-containing channels to A-type, voltage-gated potassium currents in somatic and visceral dorsal root ganglion neurons

    PubMed Central

    Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji

    2014-01-01

    Little is known about electrophysiological differences of A-type transient K+ (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K+ (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. PMID:25143545

  12. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    PubMed

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gating currents from Kv7 channels carrying neuronal hyperexcitability mutations in the voltage-sensing domain.

    PubMed

    Miceli, Francesco; Vargas, Ernesto; Bezanilla, Francisco; Taglialatela, Maurizio

    2012-03-21

    Changes in voltage-dependent gating represent a common pathogenetic mechanism for genetically inherited channelopathies, such as benign familial neonatal seizures or peripheral nerve hyperexcitability caused by mutations in neuronal K(v)7.2 channels. Mutation-induced changes in channel voltage dependence are most often inferred from macroscopic current measurements, a technique unable to provide a detailed assessment of the structural rearrangements underlying channel gating behavior; by contrast, gating currents directly measure voltage-sensor displacement during voltage-dependent gating. In this work, we describe macroscopic and gating current measurements, together with molecular modeling and molecular-dynamics simulations, from channels carrying mutations responsible for benign familial neonatal seizures and/or peripheral nerve hyperexcitability; K(v)7.4 channels, highly related to K(v)7.2 channels both functionally and structurally, were used for these experiments. The data obtained showed that mutations affecting charged residues located in the more distal portion of S(4) decrease the stability of the open state and the active voltage-sensing domain configuration but do not directly participate in voltage sensing, whereas mutations affecting a residue (R4) located more proximally in S(4) caused activation of gating-pore currents at depolarized potentials. These results reveal that distinct molecular mechanisms underlie the altered gating behavior of channels carrying disease-causing mutations at different voltage-sensing domain locations, thereby expanding our current view of the pathogenesis of neuronal hyperexcitability diseases. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons.

    PubMed

    Winland, Carissa D; Welsh, Nora; Sepulveda-Rodriguez, Alberto; Vicini, Stefano; Maguire-Zeiss, Kathleen A

    2017-11-01

    Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca 2+ ] i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca 2+ ] i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca 2+ ] i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca 2+ ] i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice

    PubMed Central

    Nakao, Akito; Miki, Takafumi; Shoji, Hirotaka; Nishi, Miyuki; Takeshima, Hiroshi; Miyakawa, Tsuyoshi; Mori, Yasuo

    2015-01-01

    Calcium (Ca2+) influx through voltage-gated Ca2+ channels (VGCCs) induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP) was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO) mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached “study-wide significance.” Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions. PMID:26136667

  16. Voltage imaging to understand connections and functions of neuronal circuits.

    PubMed

    Antic, Srdjan D; Empson, Ruth M; Knöpfel, Thomas

    2016-07-01

    Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. Copyright © 2016 the American Physiological Society.

  17. Voltage imaging to understand connections and functions of neuronal circuits

    PubMed Central

    Antic, Srdjan D.; Empson, Ruth M.

    2016-01-01

    Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. PMID:27075539

  18. Gating mechanism of Kv11.1 (hERG) K+ channels without covalent connection between voltage sensor and pore domains.

    PubMed

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-01

    Kv11.1 (hERG, KCNH2) is a voltage-gated potassium channel crucial in setting the cardiac rhythm and the electrical behaviour of several non-cardiac cell types. Voltage-dependent gating of Kv11.1 can be reconstructed from non-covalently linked voltage sensing and pore modules (split channels), challenging classical views of voltage-dependent channel activation based on a S4-S5 linker acting as a rigid mechanical lever to open the gate. Progressive displacement of the split position from the end to the beginning of the S4-S5 linker induces an increasing negative shift in activation voltage dependence, a reduced z g value and a more negative ΔG 0 for current activation, an almost complete abolition of the activation time course sigmoid shape and a slowing of the voltage-dependent deactivation. Channels disconnected at the S4-S5 linker near the S4 helix show a destabilization of the closed state(s). Furthermore, the isochronal ion current mode shift magnitude is clearly reduced in the different splits. Interestingly, the progressive modifications of voltage dependence activation gating by changing the split position are accompanied by a shift in the voltage-dependent availability to a methanethiosulfonate reagent of a Cys introduced at the upper S4 helix. Our data demonstrate for the first time that alterations in the covalent connection between the voltage sensor and the pore domains impact on the structural reorganizations of the voltage sensor domain. Also, they support the hypothesis that the S4-S5 linker integrates signals coming from other cytoplasmic domains that constitute either an important component or a crucial regulator of the gating machinery in Kv11.1 and other KCNH channels.

  19. Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms

    PubMed Central

    Currie, Kevin P M; Fox, Aaron P

    2002-01-01

    Inhibition of presynaptic voltage-gated calcium channels by direct G-protein βγ subunit binding is a widespread mechanism that regulates neurotransmitter release. Voltage-dependent relief of this inhibition (facilitation), most likely to be due to dissociation of the G-protein from the channel, may occur during bursts of action potentials. In this paper we compare the facilitation of N- and P/Q-type Ca2+ channels during short trains of action potential-like waveforms (APWs) using both native channels in adrenal chromaffin cells and heterologously expressed channels in tsA201 cells. While both N- and P/Q-type Ca2+ channels exhibit facilitation that is dependent on the frequency of the APW train, there are important quantitative differences. Approximately 20 % of the voltage-dependent inhibition of N-type ICa was reversed during a train while greater than 40 % of the inhibition of P/Q-type ICa was relieved. Changing the duration or amplitude of the APW dramatically affected the facilitation of N-type channels but had little effect on the facilitation of P/Q-type channels. Since the ratio of N-type to P/Q-type Ca2+ channels varies widely between synapses, differential facilitation may contribute to the fine tuning of synaptic transmission, thereby increasing the computational repertoire of neurons. PMID:11882675

  20. Variable N-type negative resistance in an injection-gated double-injection diode

    NASA Technical Reports Server (NTRS)

    Kapoor, A. K.; Henderson, H. T.

    1981-01-01

    Double-injection (DI) switching devices consist of p+ and n+ contacts (for hole and electron injection, respectively), separated by a near intrinsic semiconductor region containing deep traps. Under proper conditions, these devices exhibit S-type differential negative resistance (DNR) similar to silicon-controlled rectifiers. With the added influence of a p+ gate appropriately placed between the anode (p+) and cathode (n+), the current-voltage characteristic of the device has been manipulated for the first time to exhibit a variable N-type DNR. The anode current and the anode-to-cathode voltage levels at which this N-type DNR is observed can be varied by changing the gate-to-cathode bias. In essence, the classical S-type DI diode can be electronically transformed into an N-type diode. A first-order phenomenological model is proposed for the N-type DNR.

  1. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel

    PubMed Central

    Zhao, Juan; Blunck, Rikard

    2016-01-01

    Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related. DOI: http://dx.doi.org/10.7554/eLife.18130.001 PMID:27710769

  2. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  3. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons.

    PubMed

    Qu, Liang; Wang, Yuan; Zhang, Hai-Tao; Li, Nan; Wang, Qiang; Yang, Qian; Gao, Guo-Dong; Wang, Xue-Lian

    2014-07-11

    Voltage gated calcium channels (VGCC) are sensitive to oxidative stress, and their activation or inactivation can impact cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remain controversial. In this study, we assessed 6-hydroxydopamine (6-OHDA) induced transformation of firing pattern and functional changes of calcium channels in SNc dopaminergic neurons. Application of 6-OHDA (0.5-2mM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)]i) rise. In voltage clamp, ω-conotoxin-sensitive Ca(2+) current modulation mediated by 6-OHDA reflected an altered sensitivity. Furthermore, we found that 6-OHDA modulated Ca(2+) currents through PKA pathway. These results provided evidence for the potential role of VGCCs and PKA involved in oxidative stress in degeneration of SNc neurons in Parkinson's disease (PD). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Regulation of voltage-gated Ca(2+) currents by Ca(2+)/calmodulin-dependent protein kinase II in resting sensory neurons.

    PubMed

    Kostic, Sandra; Pan, Bin; Guo, Yuan; Yu, Hongwei; Sapunar, Damir; Kwok, Wai-Meng; Hudmon, Andy; Wu, Hsiang-En; Hogan, Quinn H

    2014-09-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0μM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent. Published by Elsevier Inc.

  5. Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions.

    PubMed

    Meisel, Eshcar; Tobelaim, William; Dvir, Meidan; Haitin, Yoni; Peretz, Asher; Attali, Bernard

    2018-01-01

    Inactivation is an intrinsic property of numerous voltage-gated K + (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.

  6. A new mode of regulation of N-type inactivation in a Caenorhabditis elegans voltage-gated potassium channel.

    PubMed

    Cai, Shi-Qing; Sesti, Federico

    2007-06-22

    N-type inactivation in voltage-gated K+ (Kv) channels is a widespread means to modulate neuronal excitability and signaling. Here we have shown a novel mechanism of N-type inactivation in a Caenorhabditis elegans Kv channel. The N-terminal sequence of KVS-1 contains a domain of 22 amino acids that resembles the inactivation ball in A-type channels, which is preceded by a domain of eighteen amino acids. Wild type KVS-1 currents can be described as A-type; however, their kinetics are significantly (approximately 5-fold) slower. When the putative inactivation ball is deleted, the current becomes non-inactivating. Inactivation is restored in non-inactivating channels by diffusion of the missing inactivation domain in the cytoplasm. Deletion of the domain in front of the ball speeds inactivation kinetics approximately 5-fold. We conclude that KVS-1 is the first example of a novel type of Kv channel simultaneously possessing an N-inactivating ball preceded by an N inactivation regulatory domain (NIRD) that acts to slow down inactivation through steric mechanisms.

  7. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering

    NASA Astrophysics Data System (ADS)

    Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao

    2018-04-01

    In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.

  8. Development of a Radiolabeled Amlodipine Analog for L-type Calcium Channel Imaging.

    PubMed

    Firouzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Pooladi, Mehrban; Shafiee-Ardestani, Mahdi; Khalaj, Ali

    2017-01-01

    The non-invasive imaging and quantification of L-type calcium channels (also known as dihydropyridine channels) in living tissues is of great interest in diagnosis of congestive heart failure, myocardial hypertrophy, irritable bowel syndrome etc. Technetium-99m labeled amlodipine conjugate ([99mTc]-DTPA-AMLO) was prepared starting freshly eluted (<1 h) 99mTechnetium pertechnetate (86.5 MBq) and conjugated DTPAAMLO at pH 5 in 30 min at room temperature in high radiochemical purity (>99%, RTLC; specific activity: 55-60 GBq/mmol). The calcium channel blockade activity (CCBA) and apoptosis/necrosis assay of DTPA-amlodipine conjugate evaluations were performed for the conjugate. Log P, stability, bio-distribution and imaging studies were performed for the tracer followed by biodistribution studies as well as imaging. The conjugate demonstrated low toxicity on MCF-7 cells and CCBA (at µm level) compared to the amlodipine. The tracer was stable up to 4 h in final production and presence of human serum and log P (-0.49) was consistent with a water soluble complex. The tracer was excreted through kidneys and liver as expected for dihydropyridines; excluding excretory organs, calcium channel rich smooth muscle cells; including colon, intestine and lungs which demonstrated significant uptake. SPECT images supported the bio-distribution data up to 4 h. significant uptake of [99mTc]-DTPA-AMLO was obtained in calcium channel rich organs. The complex can be a candidate for further SPECT imaging for L-type calcium channels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore.

    PubMed

    Tomczak, Adam P; Fernández-Trillo, Jorge; Bharill, Shashank; Papp, Ferenc; Panyi, Gyorgy; Stühmer, Walter; Isacoff, Ehud Y; Pardo, Luis A

    2017-05-01

    Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4-S5 linker). However, our recent work on channels disrupted in the S4-S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of K V 10.1 revealed that the S4-S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use "split" channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in K V 10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4-S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4-S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism. © 2017 Tomczak et al.

  10. A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore

    PubMed Central

    Fernández-Trillo, Jorge; Bharill, Shashank; Panyi, Gyorgy; Stühmer, Walter; Isacoff, Ehud Y.

    2017-01-01

    Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4–S5 linker). However, our recent work on channels disrupted in the S4–S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of KV10.1 revealed that the S4–S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use “split” channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in KV10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4–S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4–S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism. PMID:28360219

  11. Method for voltage-gated protein fractionation

    DOEpatents

    Hatch, Anson [Tracy, CA; Singh, Anup K [Danville, CA

    2012-04-24

    We report unique findings on the voltage dependence of protein exclusion from the pores of nanoporous polymer exclusion membranes. The pores are small enough that proteins are excluded from passage with low applied electric fields, but increasing the field enables proteins to pass through. The requisite field necessary for a change in exclusion is protein-specific with a correlation to protein size. The field-dependence of exclusion is important to consider for preconcentration applications. The ability to selectively gate proteins at exclusion membranes is also a promising means for manipulating and characterizing proteins. We show that field-gated exclusion can be used to selectively remove proteins from a mixture, or to selectively trap protein at one exclusion membrane in a series.

  12. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  13. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane.

    PubMed

    Schmidt, Daniel; MacKinnon, Roderick

    2008-12-09

    Voltage-dependent K(+) (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K(+) channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane.

  14. Non-scaling behavior of electroosmotic flow in voltage-gated nanopores

    DOE PAGES

    Lian, Cheng; Gallegos, Alejandro; Liu, Honglai; ...

    2016-11-17

    Ionic transport through nanopores is of fundamental importance for the design and development of nanofiltration membranes and novel electrochemical devices including supercapacitors, fuel cells and batteries. Recent experiments have shown an unusual variation of electrical conductance with the pore size and the electrolyte parameters that defies conventional scaling relations. Here ionic transport through voltage-gated nanopores was studied by using the classical density functional theory for ion distributions in combination with the Navier–Stokes equation for the electroosmotic flow. We also identified a significant influence of the gating potential on the scaling behavior of the conductance with changes in the pore sizemore » and the salt concentration. Finally, for ion transport in narrow pores with a high gating voltage, the conductivity shows an oscillatory dependence on the pore size owing to the strong overlap of electric double layers.« less

  15. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins*

    PubMed Central

    Pinto, Bernardo I.; García, Isaac E.; Pupo, Amaury; Retamal, Mauricio A.; Martínez, Agustín D.; Latorre, Ramón; González, Carlos

    2016-01-01

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. PMID:27143357

  16. An expert protocol for immunofluorescent detection of calcium channels in tsA-201 cells.

    PubMed

    Koch, Peter; Herzig, Stefan; Matthes, Jan

    Pore-forming subunits of voltage gated calcium channels (VGCC) are large membrane proteins (260kDa) containing 24 transmembrane domains. Despite transfection with viral promoter driven vectors, biochemical analysis of VGCC is often hampered by rather low expression levels in heterologous systems rendering VGCC challenging targets. Especially in immunofluorescent detection, calcium channels are demanding proteins. We provide an expert step-by-step protocol with adapted conditions for handling procedures (tsA-201 cell culture, transient transfection, incubation time and temperature at 28°C or 37°C and immunostaining) to address the L-type calcium-channel pore Ca v 1.2 in an immunofluorescent approach. We performed immunocytochemical analysis of Ca v 1.2 expression at single-cell level in combination with detection of different markers for cellular organelles. We show confluency levels and shapes of tsA-201 cells at different time points during an experiment. Our experiments reveal sufficient levels of Ca v 1.2 protein and a correct Ca v 1.2 expression pattern in polygonal shaped cells already 12h after transfection. A sequence of elaborated protocol modifications allows subcellular localization analysis of Ca v 1.2 in an immunocytochemical approach. We provide a protocol that may be used to achieve insights into physiological and pathophysiological processes involving voltage gated calcium channels. Our protocol may be used for expression analysis of other challenging proteins and efficient overexpression may be exploited in related biochemical techniques requiring immunolabels. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Structures of closed and open states of a voltage-gated sodium channel

    PubMed Central

    Lenaeus, Michael J.; Gamal El-Din, Tamer M.; Ramanadane, Karthik; Pomès, Régis; Zheng, Ning; Catterall, William A.

    2017-01-01

    Bacterial voltage-gated sodium channels (BacNavs) serve as models of their vertebrate counterparts. BacNavs contain conserved voltage-sensing and pore-forming domains, but they are homotetramers of four identical subunits, rather than pseudotetramers of four homologous domains. Here, we present structures of two NaVAb mutants that capture tightly closed and open states at a resolution of 2.8–3.2 Å. Introduction of two humanizing mutations in the S6 segment (NaVAb/FY: T206F and V213Y) generates a persistently closed form of the activation gate in which the intracellular ends of the four S6 segments are drawn tightly together to block ion permeation completely. This construct also revealed the complete structure of the four-helix bundle that forms the C-terminal domain. In contrast, truncation of the C-terminal 40 residues in NavAb/1–226 captures the activation gate in an open conformation, revealing the open state of a BacNav with intact voltage sensors. Comparing these structures illustrates the full range of motion of the activation gate, from closed with its orifice fully occluded to open with an orifice of ∼10 Å. Molecular dynamics and free-energy simulations confirm designation of NaVAb/1–226 as an open state that allows permeation of hydrated Na+, and these results also support a hydrophobic gating mechanism for control of ion permeation. These two structures allow completion of a closed–open–inactivated conformational cycle in a single voltage-gated sodium channel and give insight into the structural basis for state-dependent binding of sodium channel-blocking drugs. PMID:28348242

  18. Vitamin E isomer δ-tocopherol enhances the efficiency of neural stem cell differentiation via L-type calcium channel.

    PubMed

    Deng, Sihao; Hou, Guoqiang; Xue, Zhiqin; Zhang, Longmei; Zhou, Yuye; Liu, Chao; Liu, Yanqing; Li, Zhiyuan

    2015-01-12

    The effects of the vitamin E isomer δ-tocopherol on neural stem cell (NSC) differentiation have not been investigated until now. Here we investigated the effects of δ-tocopherol on NSC neural differentiation, maturation and its possible mechanisms. Neonatal rat NSCs were grown in suspended neurosphere cultures, and were identified by their expression of nestin protein and their capacity for self-renewal. Treatment with a low concentration of δ-tocopherol induced a significant increase in the percentage of β-III-tubulin-positive cells. δ-Tocopherol also stimulated morphological maturation of neurons in culture. We further observed that δ-tocopherol stimulation increased the expression of voltage-dependent Ca(2+) channels. Moreover, a L-type specific Ca(2+) channel blocker verapamil reduced the percentage of differentiated neurons after δ-tocopherol treatment, and blocked the effects of δ-tocopherol on NSC differentiation into neurons. Together, our study demonstrates that δ-tocopherol may act through elevation of L-type calcium channel activity to increase neuronal differentiation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Inhibition of recombinant Ca(v)3.1 (alpha(1G)) T-type calcium channels by the antipsychotic drug clozapine.

    PubMed

    Choi, Kee-Hyun; Rhim, Hyewhon

    2010-01-25

    Low voltage-activated T-type calcium channels are involved in the regulation of the neuronal excitability, and could be subject to many antipsychotic drugs. The effects of clozapine, an atypical antipsychotic drug, on recombinant Ca(v)3.1 T-type calcium channels heterologously expressed in human embryonic kidney 293 cells were examined using whole-cell patch-clamp recordings. At a standard holding potential of -100 mV, clozapine inhibited Ca(v)3.1 currents with an IC(50) value of 23.7+/-1.3 microM in a use-dependent manner. However, 10 microM clozapine inhibited more than 50% of the Ca(v)3.1 currents in recordings at a more physiologically relevant holding potential of -75 mV. Clozapine caused a significant hyperpolarizing shift in the steady-state inactivation curve of the Ca(v)3.1 channels, which is presumably the main mechanism accounting for the inhibition of the Ca(v)3.1 currents. In addition, clozapine slowed Ca(v)3.1 deactivation and inactivation kinetics but not activation kinetics. Clozapine-induced changes in deactivation and inactivation rates of the Ca(v)3.1 channel gating would likely facilitate calcium influx via Ca(v)3.1 T-type calcium channels. Thus, clozapine may exert its therapeutic and/or side effects by altering cell's excitability and firing properties through actions on T-type calcium channels.

  20. Voltage-gated proton channel in a dinoflagellate

    PubMed Central

    Smith, Susan M. E.; Morgan, Deri; Musset, Boris; Cherny, Vladimir V.; Place, Allen R.; Hastings, J. Woodland; DeCoursey, Thomas E.

    2011-01-01

    Fogel and Hastings first hypothesized the existence of voltage-gated proton channels in 1972 in bioluminescent dinoflagellates, where they were thought to trigger the flash by activating luciferase. Proton channel genes were subsequently identified in human, mouse, and Ciona intestinalis, but their existence in dinoflagellates remained unconfirmed. We identified a candidate proton channel gene from a Karlodinium veneficum cDNA library based on homology with known proton channel genes. K. veneficum is a predatory, nonbioluminescent dinoflagellate that produces toxins responsible for fish kills worldwide. Patch clamp studies on the heterologously expressed gene confirm that it codes for a genuine voltage-gated proton channel, kHV1: it is proton-specific and activated by depolarization, its gH–V relationship shifts with changes in external or internal pH, and mutation of the selectivity filter (which we identify as Asp51) results in loss of proton-specific conduction. Indirect evidence suggests that kHV1 is monomeric, unlike other proton channels. Furthermore, kHV1 differs from all known proton channels in activating well negative to the Nernst potential for protons, EH. This unique voltage dependence makes the dinoflagellate proton channel ideally suited to mediate the proton influx postulated to trigger bioluminescence. In contrast to vertebrate proton channels, whose main function is acid extrusion, we propose that proton channels in dinoflagellates have fundamentally different functions of signaling and excitability. PMID:22006335

  1. L1014F-kdr Mutation in Indian Anopheles subpictus (Diptera: Culicidae) Arising From Two Alternative Transversions in the Voltage-Gated Sodium Channel and a Single PIRA-PCR for Their Detection

    PubMed Central

    Singh, O. P.; Dykes, C. L.; Sharma, G.; Das, M. K.

    2015-01-01

    Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis–polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. PMID:26336276

  2. Experimental Study of Floating-Gate-Type Metal-Oxide-Semiconductor Capacitors with Nanosize Triangular Cross-Sectional Tunnel Areas for Low Operating Voltage Flash Memory Application

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Guo, Ruofeng; Kamei, Takahiro; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku

    2012-06-01

    The floating-gate (FG)-type metal-oxide-semiconductor (MOS) capacitors with planar (planar-MOS) and three-dimensional (3D) nanosize triangular cross-sectional tunnel areas (3D-MOS) have successfully been fabricated by introducing rapid thermal oxidation (RTO) and postdeposition annealing (PDA), and their electrical characteristics between the control gate (CG) and FG have been systematically compared. It was experimentally found in both planar- and 3D-MOS capacitors that the uniform and higher breakdown voltages are obtained by introducing RTO owing to the high-quality thermal oxide formation on the surface and etched edge regions of the n+ polycrystalline silicon (poly-Si) FG, and the leakage current is highly suppressed after PDA owing to the improved quality of the tetraethylorthosilicate (TEOS) silicon dioxide (SiO2) between CG and FG. Moreover, a lower breakdown voltage between CG and FG was obtained in the fabricated 3D-MOS capacitors as compared with that of planar-MOS capacitors thanks to the enhanced local electric field at the tips of triangular tunnel areas. The developed nanosize triangular cross-sectional tunnel area is useful for the fabrication of low operating voltage flash memories.

  3. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins.

    PubMed

    Pinto, Bernardo I; García, Isaac E; Pupo, Amaury; Retamal, Mauricio A; Martínez, Agustín D; Latorre, Ramón; González, Carlos

    2016-07-22

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms.

    PubMed

    Balbi, Pietro; Massobrio, Paolo; Hellgren Kotaleski, Jeanette

    2017-09-01

    Modelling ionic channels represents a fundamental step towards developing biologically detailed neuron models. Until recently, the voltage-gated ion channels have been mainly modelled according to the formalism introduced by the seminal works of Hodgkin and Huxley (HH). However, following the continuing achievements in the biophysical and molecular comprehension of these pore-forming transmembrane proteins, the HH formalism turned out to carry limitations and inconsistencies in reproducing the ion-channels electrophysiological behaviour. At the same time, Markov-type kinetic models have been increasingly proven to successfully replicate both the electrophysiological and biophysical features of different ion channels. However, in order to model even the finest non-conducting molecular conformational change, they are often equipped with a considerable number of states and related transitions, which make them computationally heavy and less suitable for implementation in conductance-based neurons and large networks of those. In this purely modelling study we develop a Markov-type kinetic model for all human voltage-gated sodium channels (VGSCs). The model framework is detailed, unifying (i.e., it accounts for all ion-channel isoforms) and computationally efficient (i.e. with a minimal set of states and transitions). The electrophysiological data to be modelled are gathered from previously published studies on whole-cell patch-clamp experiments in mammalian cell lines heterologously expressing the human VGSC subtypes (from NaV1.1 to NaV1.9). By adopting a minimum sequence of states, and using the same state diagram for all the distinct isoforms, the model ensures the lightest computational load when used in neuron models and neural networks of increasing complexity. The transitions between the states are described by original ordinary differential equations, which represent the rate of the state transitions as a function of voltage (i.e., membrane potential). The

  5. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane

    PubMed Central

    Schmidt, Daniel; MacKinnon, Roderick

    2008-01-01

    Voltage-dependent K+ (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K+ channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane. PMID:19050073

  6. Microscopic origin of gating current fluctuations in a potassium channel voltage sensor.

    PubMed

    Freites, J Alfredo; Schow, Eric V; White, Stephen H; Tobias, Douglas J

    2012-06-06

    Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    PubMed

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  8. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states.

    PubMed

    Bargiello, Thaddeus A; Oh, Seunghoon; Tang, Qingxiu; Bargiello, Nicholas K; Dowd, Terry L; Kwon, Taekyung

    2018-01-01

    Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (V m or V i-o ). These transjunctional voltage dependent processes have been termed V j - or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use

  9. Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits.

    PubMed

    Ravindran, Arippa; Lao, Qi Zong; Harry, Jo Beth; Abrahimi, Parwiz; Kobrinsky, Evgeny; Soldatov, Nikolai M

    2008-06-10

    It is generally accepted that to generate calcium currents in response to depolarization, Ca(v)1.2 calcium channels require association of the pore-forming alpha(1C) subunit with accessory Ca(v)beta and alpha(2)delta subunits. A single calmodulin (CaM) molecule is tethered to the C-terminal alpha(1C)-LA/IQ region and mediates Ca2+-dependent inactivation of the channel. Ca(v)beta subunits are stably associated with the alpha(1C)-interaction domain site of the cytoplasmic linker between internal repeats I and II and also interact dynamically, in a Ca2+-dependent manner, with the alpha(1C)-IQ region. Here, we describe a surprising discovery that coexpression of exogenous CaM (CaM(ex)) with alpha(1C)/alpha(2)delta in COS1 cells in the absence of Ca(v)beta subunits stimulates the plasma membrane targeting of alpha(1C), facilitates calcium channel gating, and supports Ca2+-dependent inactivation. Neither real-time PCR with primers complementary to monkey Ca(v)beta subunits nor coimmunoprecipitation analysis with exogenous alpha(1C) revealed an induction of endogenous Ca(v)beta subunits that could be linked to the effect of CaM(ex). Coexpression of a calcium-insensitive CaM mutant CaM(1234) also facilitated gating of Ca(v)beta-free Ca(v)1.2 channels but did not support Ca2+-dependent inactivation. Our results show there is a functional matchup between CaM(ex) and Ca(v)beta subunits that, in the absence of Ca(v)beta, renders Ca2+ channel gating facilitated by CaM molecules other than the one tethered to LA/IQ to support Ca2+-dependent inactivation. Thus, coexpression of CaM(ex) creates conditions when the channel gating, voltage- and Ca2+-dependent inactivation, and plasma-membrane targeting occur in the absence of Ca(v)beta. We suggest that CaM(ex) affects specific Ca(v)beta-free conformations of the channel that are not available to endogenous CaM.

  10. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene.

    PubMed

    Wu, Meixiang; Gotoh, Hiroki; Waters, Timothy; Walsh, Douglas B; Lavine, Laura Corley

    2014-06-01

    Knockdown resistance (kdr) has been identified as a main mechanism against pyrethroid insecticides in many arthropod pests including in the onion thrips, Thrips tabaci. To characterize and identify pyrethroid-resistance in onion thrips in Washington state, we conducted insecticide bioassays and sequenced a region of the voltage gated sodium channel gene from several different T. tabaci populations. Field collected Thrips tabaci were found to have large variations in resistance to the pyrethroid insecticide lambda-cyhalothrin. We identified two single nucleotide substitutions in our analysis of a partial sequence of the T. tabaci voltage-gated sodium channel gene. One mutation resulted in the non-synonymous substitution of methionine with leucine (M918L), which is well known to be responsible for super knockdown resistance in some pest species. Another non-synonymous substitution, a valine (GTT) to alanine (GCT) replacement at amino acid 1010 (V1010A) was identified in our study and was associated with lambda-cyhalothrin resistance. We have characterized a known kdr mutation and identified a novel mutation in the voltage-gated sodium channel gene of Thrips tabaci associated with resistance to lambda-cyhalothrin. This gene region and these mutations are expected to be useful in the development of a diagnostic test to detect kdr resistance in many onion thrips populations. © 2013 Society of Chemical Industry.

  11. Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging.

    PubMed

    Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali

    2016-01-01

    In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [ 68 Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. [ 68 Ga] DOTA AMLO was prepared at pH 4-5 in 7-10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9-2.1 GBq/mmol) and was stable up to 4 h with a log P of -0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. The complex can be a candidate for further positron emission tomography imaging for L type calcium channels.

  12. Consequences of Phosphate-Arginine Complexes in Voltage-Gated Ion Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael E.

    2008-11-01

    There are two reasons for suspecting that phosphate complexes of arginine make it very difficult to derive gating charge in voltage gated potassium (and presumably sodium) channels from the motion of charged arginines. For one thing, the arginines should be complexed with phosphate, thereby neutralizing the charge, at least partially. Second, Li et al.(1) have shown that there is a large energy penalty for putting a charged arginine into a membrane. on channel gating current is generally attributed to S4 motion, in that the S4 segment of the voltage sensing domain (VSD) of these channels contains arginines, some of whichmore » are not (or at least not obviously) salt bridged, or otherwise charge compensated. There is, however, good reason to expect that there should be a complex of these arginines with phosphate, very probably from lipid headgroups. This has consequences for gating current; the complexed arginines, if they moved, would carry too much of the membrane along. This leads to the suggestion that an alternative to S4 physical motion, H+ transport, should be considered as a possible resolution of the apparent paradox. The consequences for a gating model that was proposed in our earlier work are discussed; there is one major difference in the model in the present form (a conformational change), but the proton cascade as gating current and the role of water in the closed state are reinforced.« less

  13. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    PubMed Central

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  14. Philosophy of voltage-gated proton channels

    PubMed Central

    DeCoursey, Thomas E.; Hosler, Jonathan

    2014-01-01

    In this review, voltage-gated proton channels are considered from a mainly teleological perspective. Why do proton channels exist? What good are they? Why did they go to such lengths to develop several unique hallmark properties such as extreme selectivity and ΔpH-dependent gating? Why is their current so minuscule? How do they manage to be so selective? What is the basis for our belief that they conduct H+ and not OH–? Why do they exist in many species as dimers when the monomeric form seems to work quite well? It is hoped that pondering these questions will provide an introduction to these channels and a way to logically organize their peculiar properties as well as to understand how they are able to carry out some of their better-established biological functions. PMID:24352668

  15. Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line.

    PubMed

    Mosier, D R; Baldelli, P; Delbono, O; Smith, R G; Alexianu, M E; Appel, S H; Stefani, E

    1995-01-01

    The sporadic form of amyotrophic lateral sclerosis (ALS) is an idiopathic and eventually lethal disorder causing progressive degeneration of cortical and spinal motoneurons. Recent studies have shown that the majority of patients with sporadic ALS have serum antibodies that bind to purified L-type voltage-gated calcium channels and that antibody titer correlates with the rate of disease progression. Furthermore, antibodies purified from ALS patient sera have been found to alter the physiologic function of voltage-gated calcium channels in nonmotoneuron cell types. Using whole-cell patch-clamp techniques, immunoglobulins purified from sera of 5 of 6 patients with sporadic ALS are now shown to increase calcium currents in a hybrid motoneuron cell line, VSC4.1. These calcium currents are blocked by the polyamine funnel-web spider toxin FTX, which has previously been shown to block Ca2+ currents and evoked transmitter release at mammalian motoneuron terminals. These data provide additional evidence linking ALS to an autoimmune process and suggest that antibody-induced increases in calcium entry through voltage-gated calcium channels may occur in motoneurons in this disease, with possible deleterious effects in susceptible neurons.

  16. Neutralisation of a single voltage sensor affects gating determinants in all four pore-forming S6 segments of Ca(V)1.2: a cooperative gating model.

    PubMed

    Beyl, Stanislav; Depil, Katrin; Hohaus, Annette; Stary-Weinzinger, Anna; Linder, Tobias; Timin, Eugen; Hering, Steffen

    2012-10-01

    Voltage sensors trigger the closed-open transitions in the pore of voltage-gated ion channels. To probe the transmission of voltage sensor signalling to the channel pore of Ca(V)1.2, we investigated how elimination of positive charges in the S4 segments (charged residues were replaced by neutral glutamine) modulates gating perturbations induced by mutations in pore-lining S6 segments. Neutralisation of all positively charged residues in IIS4 produced a functional channel (IIS4(N)), while replacement of the charged residues in IS4, IIIS4 and IVS4 segments resulted in nonfunctional channels. The IIS4(N) channel displayed activation kinetics similar to wild type. Mutations in a highly conserved structure motif on S6 segments ("GAGA ring": G432W in IS6, A780T in IIS6, G1193T in IIIS6 and A1503G in IVS6) induce strong left-shifted activation curves and decelerated channel deactivation kinetics. When IIS4(N) was combined with these mutations, the activation curves were shifted back towards wild type and current kinetics were accelerated. In contrast, 12 other mutations adjacent to the GAGA ring in IS6-IVS6, which also affect activation gating, were not rescued by IIS4(N). Thus, the rescue of gating distortions in segments IS6-IVS6 by IIS4(N) is highly position-specific. Thermodynamic cycle analysis supports the hypothesis that IIS4 is energetically coupled with the distantly located GAGA residues. We speculate that conformational changes caused by neutralisation of IIS4 are not restricted to domain II (IIS6) but are transmitted to gating structures in domains I, III and IV via the GAGA ring.

  17. Direct Evidence of Conformational Changes Associated with Voltage Gating in a Voltage Sensor Protein by Time-Resolved X-ray/Neutron Interferometry

    PubMed Central

    2015-01-01

    The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na+, K+) channels central to neurological signal transmission can function as a distinct module. When linked to an otherwise voltage-insensitive, ion-selective membrane pore, the VSD imparts voltage sensitivity to the channel. Proteins homologous with the VSD have recently been found to function themselves as voltage-gated proton channels or to impart voltage sensitivity to enzymes. Determining the conformational changes associated with voltage gating in the VSD itself in the absence of a pore domain thereby gains importance. We report the direct measurement of changes in the scattering-length density (SLD) profile of the VSD protein, vectorially oriented within a reconstituted phospholipid bilayer membrane, as a function of the transmembrane electric potential by time-resolved X-ray and neutron interferometry. The changes in the experimental SLD profiles for both polarizing and depolarizing potentials with respect to zero potential were found to extend over the entire length of the isolated VSD’s profile structure. The characteristics of the changes observed were in qualitative agreement with molecular dynamics simulations of a related membrane system, suggesting an initial interpretation of these changes in terms of the VSD’s atomic-level 3-D structure. PMID:24697545

  18. Voltage-gated sodium channels

    PubMed Central

    Abdelsayed, Mena; Sokolov, Stanislav

    2013-01-01

    Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel’s fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment. PMID:23531742

  19. Silicon direct bonding approach to high voltage power device (insulated gate bipolar transistors)

    NASA Astrophysics Data System (ADS)

    Cha, Giho; Kim, Youngchul; Jang, Hyungwoo; Kang, Hyunsoon; Song, Changsub

    2001-10-01

    Silicon direct bonding technique was successfully applied for the fabrication of high voltage IGBT (Insulated Gate Bipolar Transistor). In this work, 5 inch, p-type CZ wafer for handle wafer and n-type FZ wafer for device wafer were used and bonding the two wafers was performed at reduced pressure (1mmTorr) using a modified vacuum bonding machine. Since the breakdown voltage in high voltage device has been determined by the remained thickness of device layer, grinding and CMP steps should be carefully designed in order to acquire better uniformity of device layer. In order to obtain the higher removal rate and the final better uniformity of device layer, the harmony of the two processes must be considered. We found that the concave type of grinding profile and the optimal thickness of ground wafer was able to reduce the process time of CMP step and also to enhance the final thickness uniformity of device layer up to +/- 1%. Finally, when compared epitaxy layer with SDB wafer, the SDB wafer was found to be more favorable in terms of cost and electrical characteristics.

  20. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    PubMed Central

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease. PMID:27488468

  1. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  2. Perturbed atrial calcium handling in an ovine model of heart failure: Potential roles for reductions in the L-type calcium current

    PubMed Central

    Clarke, Jessica D.; Caldwell, Jessica L.; Horn, Margaux A.; Bode, Elizabeth F.; Richards, Mark A.; Hall, Mark C.S.; Graham, Helen K.; Briston, Sarah J.; Greensmith, David J.; Eisner, David A.; Dibb, Katharine M.; Trafford, Andrew W.

    2015-01-01

    Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca2 + and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca2 + concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca2 + transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca2 + removal (kSR, by 32%), L-type Ca2 + current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca2 + content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca2 + current (ICa-L) in control cells reproduced both the decrease in Ca2 + transient amplitude and increase of SR Ca2 + content observed in voltage-clamped HF cells. During β-AR stimulation Ca2 + transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca2 + content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca2 + transient amplitude and increased SR Ca2 + content observed in voltage-clamped cells. PMID:25463272

  3. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel NaV1.2.

    PubMed

    Hovey, Liam; Fowler, C Andrew; Mahling, Ryan; Lin, Zesen; Miller, Mark Stephen; Marx, Dagan C; Yoder, Jesse B; Kim, Elaine H; Tefft, Kristin M; Waite, Brett C; Feldkamp, Michael D; Yu, Liping; Shea, Madeline A

    2017-05-01

    Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel Na V 1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat Na V 1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca 2+ ) 4 -CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca 2+ ) 4 -CaM, NMR demonstrated that Na V 1.2 IQ motif peptide (Na V 1.2 IQp ) exclusively made contacts with C-domain residues of CaM (CaM C ). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca 2+ ) 2 -CaM C bound to Na V 1.2 IQp . The polarity of (Ca 2+ ) 2 -CaM C relative to the IQ motif was opposite to that seen in apo CaM C -Na v 1.2 IQp (2KXW), revealing that CaM C recognizes nested, anti-parallel sites in Na v 1.2 IQp . Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaM N allowing interactions with non-IQ Na V 1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators

    PubMed

    Dimitrakopoulos; Purushothaman; Kymissis; Callegari; Shaw

    1999-02-05

    The gate bias dependence of the field-effect mobility in pentacene-based insulated gate field-effect transistors (IGFETs) was interpreted on the basis of the interaction of charge carriers with localized trap levels in the band gap. This understanding was used to design and fabricate IGFETs with mobility of more than 0.3 square centimeter per volt per second and current modulation of 10(5), with the use of amorphous metal oxide gate insulators. These values were obtained at operating voltage ranges as low as 5 volts, which are much smaller than previously reported results. An all-room-temperature fabrication process sequence was used, which enabled the demonstration of high-performance organic IGFETs on transparent plastic substrates, at low operating voltages for organic devices.

  5. The voltage-sensing domain of a phosphatase gates the pore of a potassium channel.

    PubMed

    Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L; Thiel, Gerhard; Moroni, Anna

    2013-03-01

    The modular architecture of voltage-gated K(+) (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates Kv(Synth1), a functional voltage-gated, outwardly rectifying K(+) channel. Kv(Synth1) displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V(1/2) = +56 mV; z of ~1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.

  6. Carvacrol modulates voltage-gated sodium channels kinetics in dorsal root ganglia.

    PubMed

    Joca, Humberto Cavalcante; Vieira, Daiana Cardoso Oliveira; Vasconcelos, Aliny Perreira; Araújo, Demetrius Antônio Machado; Cruz, Jader Santos

    2015-06-05

    Recent studies have shown that many of plant-derived compounds interact with specific ion channels and thereby modulate many sensing mechanisms, such as nociception. The monoterpenoid carvacrol (5-isopropyl-2-methylphenol) has an anti-nociceptive effect related to a reduction in neuronal excitability and voltage-gated Na(+) channels (NaV) inhibition in peripheral neurons. However, the detailed mechanisms of carvacrol-induced inhibition of neuronal NaV remain elusive. This study explores the interaction between carvacrol and NaV in isolated dorsal root ganglia neurons. Carvacrol reduced the total voltage-gated Na(+) current and tetrodotoxin-resistant (TTX-R) Na(+) current component in a concentration-dependent manner. Carvacrol accelerates current inactivation and induced a negative-shift in voltage-dependence of steady-state fast inactivation in total and TTX-R Na(+) current. Furthermore, carvacrol slowed the recovery from inactivation. Carvacrol provoked a leftward shift in both the voltage-dependence of steady-state inactivation and activation of the TTX-R Na(+) current component. In addition, carvacrol-induced inhibition of TTX-R Na(+) current was enhanced by an increase in stimulation frequency and when neurons were pre-conditioned with long depolarization pulse (5s at -50 mV). Taken all results together, we herein demonstrated that carvacrol affects NaV gating properties. The present findings would help to explain the mechanisms underlying the analgesic activity of carvacrol. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. THE CRITICAL ROLE OF VOLTAGE-DEPENDENT CALCIUM CHANNEL IN AXONAL REPAIR FOLLOWING MECHANICAL TRAUMA

    PubMed Central

    Nehrt, Ashley; Rodgers, Richard; Shapiro, Scott; Borgens, Richard; Shi, Riyi

    2009-01-01

    Membrane disruption following mechanical injury likely plays a critical role in the pathology of spinal cord trauma. It is known that intracellular calcium is a key factor that is essential to membrane resealing. However, the differential role of calcium influx through the injury site and through voltage dependent calcium channels (VDCC) has not been examined in detail. Using a well established ex vivo guinea pig spinal cord white matter preparation, we have found that axonal membrane resealing was significantly inhibited following transection or compression in the presence of cadmiun, a non-specific calcium channel blocker, or nimodipine, a specific L-type calcium channel blocker. Membrane resealing was assessed by the changes of membrane potential and compound action potential (CAP), and exclusion of horseradish peroxidase 60 minutes following trauma. Furthermore, 1 μM BayK 8644, a VDCC agonist, significantly enhanced membrane resealing. Interestingly, this effect was completely abolished when the concentration of BayK 8644 was increased to 30 μM. These data suggest that VDCC play a critical role in membrane resealing. Further, there is likely an appropriate range of calcium influx through VDCC which ensures effective axonal membrane resealing. Since elevated intracellular calcium has also been linked to axonal deterioration, blockage of VDCC is proposed to be a clinical treatment for various injuries. The knowledge gained in this study will likely help us better understand the role of calcium in various CNS trauma, which is critical for designing new approaches or perhaps optimizing the effectiveness of existing methods in the treatment of CNS trauma. PMID:17448606

  8. Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature

    NASA Astrophysics Data System (ADS)

    Sun, Jia; Wan, Qing; Lu, Aixia; Jiang, Jie

    2009-11-01

    Battery drivable low-voltage SnO2-based paper thin-film transistors with a near-zero threshold voltage (Vth=0.06 V) gated by microporous SiO2 dielectric with electric-double-layer (EDL) effect are fabricated at room temperature. The operating voltage is found to be as low as 1.5 V due to the huge gate specific capacitance (1.34 μF/cm2 at 40 Hz) related to EDL formation. The subthreshold gate voltage swing and current on/off ratio is found to be 82 mV/decade and 2.0×105, respectively. The electron field-effect mobility is estimated to be 47.3 cm2/V s based on the measured gate specific capacitance at 40 Hz.

  9. Common Gating of Both CLC Transporter Subunits Underlies Voltage-dependent Activation of the 2Cl−/1H+ Exchanger ClC-7/Ostm1*

    PubMed Central

    Ludwig, Carmen F.; Ullrich, Florian; Leisle, Lilia; Stauber, Tobias; Jentsch, Thomas J.

    2013-01-01

    CLC anion transporters form dimers that function either as Cl− channels or as electrogenic Cl−/H+ exchangers. CLC channels display two different types of “gates,” “protopore” gates that open and close the two pores of a CLC dimer independently of each other and common gates that act on both pores simultaneously. ClC-7/Ostm1 is a lysosomal 2Cl−/1H+ exchanger that is slowly activated by depolarization. This gating process is drastically accelerated by many CLCN7 mutations underlying human osteopetrosis. Making use of some of these mutants, we now investigate whether slow voltage activation of plasma membrane-targeted ClC-7/Ostm1 involves protopore or common gates. Voltage activation of wild-type ClC-7 subunits was accelerated by co-expressing an excess of ClC-7 subunits carrying an accelerating mutation together with a point mutation rendering these subunits transport-deficient. Conversely, voltage activation of a fast ClC-7 mutant could be slowed by co-expressing an excess of a transport-deficient mutant. These effects did not depend on whether the accelerating mutation localized to the transmembrane part or to cytoplasmic cystathionine-β-synthase (CBS) domains of ClC-7. Combining accelerating mutations in the same subunit did not speed up gating further. No currents were observed when ClC-7 was truncated after the last intramembrane helix. Currents and slow gating were restored when the C terminus was co-expressed by itself or fused to the C terminus of the β-subunit Ostm1. We conclude that common gating underlies the slow voltage activation of ClC-7. It depends on the CBS domain-containing C terminus that does not require covalent binding to the membrane domain of ClC-7. PMID:23983121

  10. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    PubMed Central

    Kariev, Alisher M.; Green, Michael E.

    2012-01-01

    Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned

  11. The GaN trench gate MOSFET with floating islands: High breakdown voltage and improved BFOM

    NASA Astrophysics Data System (ADS)

    Shen, Lingyan; Müller, Stephan; Cheng, Xinhong; Zhang, Dongliang; Zheng, Li; Xu, Dawei; Yu, Yuehui; Meissner, Elke; Erlbacher, Tobias

    2018-02-01

    A novel GaN trench gate (TG) MOSFET with P-type floating islands (FLI) in drift region, which can suppress the electric field peak at bottom of gate trench during the blocking state and prevent premature breakdown in gate oxide, is proposed and investigated by TCAD simulations. The influence of thickness, position, doping concentration and length of the FLI on breakdown voltage (BV) and specific on-resistance (Ron_sp) is studied, providing useful guidelines for design of this new type of device. Using optimized parameters for the FLI, GaN FLI TG-MOSFET obtains a BV as high as 2464 V with a Ron_sp of 3.0 mΩ cm2. Compared to the conventional GaN TG-MOSFET with the same structure parameters, the Baliga figure of merit (BFOM) is enhanced by 150%, getting closer to theoretical limit for GaN devices.

  12. The effects of crustacean cardioactive peptide on locust oviducts are calcium-dependent.

    PubMed

    Donini, Andrew; Lange, Angela B

    2002-04-01

    The role of calcium as a second messenger in the crustacean cardioactive peptide (CCAP)-induced contractions of the locust oviducts was investigated. Incubation of the oviducts in a calcium-free saline containing, a preferential calcium cation chelator, or an extracellular calcium channel blocker, abolished CCAP-induced contractions, indicating that the effects of CCAP on the oviducts are calcium-dependent. In contrast, sodium free saline did not affect CCAP-induced contractions. Co-application of CCAP to the oviducts with preferential L-type voltage-dependent calcium channel blockers reduced CCAP-induced contractions by 32-54%. Two preferential T-type voltage-dependent calcium channel blockers both inhibited CCAP-induced oviduct contractions although affecting different components of the contractions. Amiloride decreased the tonic component of CCAP-induced contractions by 40-55% and flunarizine dihydrochloride decreased the frequency of CCAP-induced phasic contractions by as much as 65%, without affecting tonus. Flunarizine dihydrochloride did not alter the proctolin-induced contractions of the oviducts. Results suggest that the actions of CCAP are partially mediated by voltage-dependent calcium channels similar to vertebrate L-type and T-type channels. High-potassium saline does not abolish CCAP-induced contractions indicating the presence of receptor-operated calcium channels that mediate the actions of CCAP on the oviducts. The involvement of calcium from intracellular stores in CCAP-induced contractions of the oviducts is likely since, an intracellular calcium antagonist decreased CCAP-induced contractions by 30-35%.

  13. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels.

    PubMed

    Schewe, Marcus; Nematian-Ardestani, Ehsan; Sun, Han; Musinszki, Marianne; Cordeiro, Sönke; Bucci, Giovanna; de Groot, Bert L; Tucker, Stephen J; Rapedius, Markus; Baukrowitz, Thomas

    2016-02-25

    Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    PubMed Central

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  15. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.

    PubMed

    Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O

    1994-05-26

    Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.

  16. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    PubMed Central

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  17. Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells

    PubMed Central

    Bardy, G; Virsolvy, A; Quignard, J F; Ravier, M A; Bertrand, G; Dalle, S; Cros, G; Magous, R; Richard, S; Oiry, C

    2013-01-01

    Background and Purpose Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor. Experimental Approach Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique. Key Results Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i. Conclusions and Implications Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin's mechanism of action on insulin secretion. PMID:23530660

  18. Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging

    PubMed Central

    Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali

    2016-01-01

    Aim: In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Materials and Methods: Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [68Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. Results: [68Ga] DOTA AMLO was prepared at pH 4–5 in 7–10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9–2.1 GBq/mmol) and was stable up to 4 h with a log P of −0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. Conclusions: The complex can be a candidate for further positron emission tomography imaging for L type calcium channels. PMID:27833311

  19. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.

    PubMed

    Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel

    2016-12-06

    Large-conductance voltage- and calcium-activated K + (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca 2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the "gating ring," which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. In contrast to Ca 2+ that binds to both RCK domains, Mg 2+ , Cd 2+ , or Ba 2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg 2+ and Ba 2+ selectively induce structural movement of the RCK2 domain, whereas Cd 2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca 2+ By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca 2+ binding sites.

  20. Regulation of CaV2 calcium channels by G protein coupled receptors

    PubMed Central

    Zamponi, Gerald W.; Currie, Kevin P.M.

    2012-01-01

    Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. PMID:23063655

  1. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    PubMed Central

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  2. Gating by Cyclic Gmp and Voltage in the α Subunit of the Cyclic Gmp–Gated Channel from Rod Photoreceptors

    PubMed Central

    Benndorf, Klaus; Koopmann, Rolf; Eismann, Elisabeth; Kaupp, U. Benjamin

    1999-01-01

    Gating by cGMP and voltage of the α subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 μM), the current displayed strong outward rectification. At low and high (700 μM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P o. Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P o at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from −100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 μM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose–response relation at −100 mV was shifted to the right and saturated at significantly lower P o values with respect to that at +100 mV (0.77 vs. 0.96). P o was determined as function of the [cGMP] (at +100 and −100 mV) and voltage (at 20, 70, and 700 μM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels

  3. High temperature sensitivity is intrinsic to voltage-gated potassium channels

    PubMed Central

    Yang, Fan; Zheng, Jie

    2014-01-01

    Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910

  4. Voltage-gated K+ channel modulators as neuroprotective agents.

    PubMed

    Leung, Yuk-Man

    2010-05-22

    A manifestation in neurodegeneration is apoptosis of neurons. Neurons undergoing apoptosis may lose a substantial amount of cytosolic K+ through a number of pathways including K+ efflux via voltage-gated K+ (Kv) channels. The consequent drop in cytosolic [K+] relieves inhibition of an array of pro-apoptotic enzymes such as caspases and nucleases. Blocking Kv channels has been known to prevent neuronal apoptosis by preventing K+ efflux. Some neural diseases such as epilepsy are caused by neuronal hyperexcitability, which eventually may lead to neuronal apoptosis. Reduction in activities of A-type Kv channels and Kv7 subfamily members is amongst the etiological causes of neuronal hyperexcitation; enhancing the opening of these channels may offer opportunities of remedy. This review discusses the potential uses of Kv channel modulators as neuroprotective drugs.

  5. Significance of the gate voltage-dependent mobility in the electrical characterization of organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jong Beom; Lee, Dong Ryeol

    2018-04-01

    We studied the effect of the addition of free hole- and electron-rich organic molecules to organic semiconductors (OSCs) in organic field effect transistors (OFETs) on the gate voltage-dependent mobility. The drain current versus gate voltage characteristics were quantitatively analyzed using an OFET mobility model of power law behavior based on hopping transport in an OSC. This analysis distinguished the threshold voltage shifts, depending on the materials and structures of the OFET device, and properly estimated the hopping transport of the charge carriers induced by the gate bias within the OSC from the power law exponent parameter. The addition of pentacene or C60 molecules to a one-monolayer pentacene-based OFET shifted the threshold voltages negatively or positively, respectively, due to the structural changes that occurred in the OFET device. On the other hand, the power law parameters revealed that the addition of charge carriers of the same or opposite polarity enhanced or hindered hopping transport, respectively. This study revealed the need for a quantitative analysis of the gate voltage-dependent mobility while distinguishing this effect from the threshold voltage effect in order to understand OSC hopping transport in OFETs.

  6. The voltage-sensing domain of a phosphatase gates the pore of a potassium channel

    PubMed Central

    Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L.; Thiel, Gerhard

    2013-01-01

    The modular architecture of voltage-gated K+ (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates KvSynth1, a functional voltage-gated, outwardly rectifying K+ channel. KvSynth1 displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V1/2 = +56 mV; z of ∼1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains. PMID:23440279

  7. Cilnidipine, an L/N-type calcium channel blocker prevents acquisition and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Bhutada, Pravinkumar; Mundhada, Yogita; Patil, Jayshree; Rahigude, Anand; Zambare, Krushna; Deshmukh, Prashant; Tanwar, Dhanshree; Jain, Kishor

    2012-04-11

    Several evidences indicated the involvement of L- and N-type calcium channels in behavioral effects of drugs of abuse, including ethanol. Calcium channels are implicated in ethanol-induced behaviors and neurochemical responses. Calcium channel antagonists block the psychostimulants induced behavioral sensitization. Recently, it is demonstrated that L-, N- and T-type calcium channel blockers attenuate the acute locomotor stimulant effects of ethanol. However, no evidence indicated the role of calcium channels in ethanol-induced psychomotor sensitization. Therefore, present study evaluated the influence of cilnidipine, an L/N-type calcium channel blocker on acquisition and expression of ethanol-induced locomotor sensitization. The results revealed that cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) attenuates the expression of sensitization to locomotor stimulant effect of ethanol (2.0g/kg, i.p.), whereas pre- treatment of cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) during development of sensitization blocks acquisition and attenuates expression of sensitization to locomotor stimulant effect of ethanol. Cilnidipine per se did not influence locomotor activity in tested doses. Further, cilnidipine had no influence on effect of ethanol on rotarod performance. These results support the hypothesis that neuroadaptive changes in calcium channels participate in the acquisition and the expression of ethanol-induced locomotor sensitization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker

    PubMed Central

    El Bardai, Sanae; Wibo, Maurice; Hamaide, Marie-Christine; Lyoussi, Badiaa; Quetin-Leclercq, Joëlle; Morel, Nicole

    2003-01-01

    The objective of the present study was to investigate the mechanism of the relaxant activity of marrubenol, a diterpenoid extracted from Marrubium vulgare. In rat aorta, marrubenol was a more potent inhibitor of the contraction evoked by 100 mM KCl (IC50: 11.8±0.3 μM, maximum relaxation: 93±0.6%) than of the contraction evoked by noradrenaline (maximum relaxation: 30±1.5%). In fura-2-loaded aorta, marrubenol simultaneously inhibited the Ca2+ signal and the contraction evoked by 100 mM KCl, and decreased the quenching rate of fura-2 fluorescence by Mn2+. Patch-clamp data obtained in aortic smooth muscle cells (A7r5) indicated that marrubenol inhibited Ba2+ inward current in a voltage-dependent manner (KD: 8±2 and 40±6 μM at holding potentials of −50 and −100 mV, respectively). These results showed that marrubenol inhibits smooth muscle contraction by blocking L-type calcium channels. PMID:14597602

  9. A Dihydropyridine-sensitive Voltage-dependent Calcium Channel in the Sarcolemmal Membrane of Crustacean Muscle

    PubMed Central

    Erxleben, Christian; Rathmayer, Werner

    1997-01-01

    Single-channel currents through calcium channels in muscle of a marine crustacean, the isopod Idotea baltica, were investigated in cell-attached patches. Inward barium currents were strongly voltage-dependent, and the channels were closed at the cell's resting membrane potential. The open probability (Po) increased e-fold for an 8.2 mV (±2.4, n = 13) depolarization. Channel openings were mainly brief (<0.3 ms) and evenly distributed throughout 100-ms pulses. Averaged, quasimacroscopic currents showed fast activation and deactivation and did not inactivate during 100-ms test pulses. Similarly, channel activity persisted at steadily depolarized holding potentials. With 200 mM Ba2+ as charge carrier, the average slope conductance from the unitary currents between +30 and +80 mV, was 20 pS (±2.6, n = 12). The proportion of long openings, which were very infrequent under control conditions, was greatly increased by preincubation of the muscle fibers with the calcium channel agonist, the dihydropyridine Bay K8644 (10–100 μM). Properties of these currents resemble those through the L-type calcium channels of mammalian nerve, smooth muscle, and cardiac muscle cells. PMID:9089439

  10. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    PubMed

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  11. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries.

    PubMed

    VanBavel, Ed; Sorop, Oana; Andreasen, Ditte; Pfaffendorf, Martin; Jensen, Boye L

    2002-12-01

    T-type calcium channels may be involved in the maintenance of myogenic tone. We tested their role in isolated rat cremaster arterioles obtained after CO(2) anesthesia and decapitation. Total RNA was analyzed by RT-PCR and Southern blotting for calcium channel expression. We observed expression of voltage-operated calcium (Ca(V)) channels Ca(V)3.1 (T-type), Ca(V)3.2 (T-type), and Ca(V)1.2 (L-type) in cremaster arterioles (n = 3 rats). Amplification products were observed only in the presence of reverse transcriptase and cDNA. Concentration-response curves of the relatively specific L-type blocker verapamil and the relatively specific T-type blockers mibefradil and nickel were made on cannulated vessels with either myogenic tone (75 mmHg) or a similar level of constriction induced by 30 mM K(+) at 35 mmHg. Mibefradil and nickel were, respectively, 162-fold and 300-fold more potent in inhibiting myogenic tone compared with K(+)-induced constriction [log(IC(50), M): mibefradil, basal -7.3 +/- 0.2 (n = 9) and K(+) -5.1 +/- 0.1 (n = 5); nickel, basal -4.1 +/- 0.2 (n = 5) and K(+) -1.6 +/- 0.5 (n = 5); means +/- SE]. Verapamil had a 17-fold more potent effect [log(IC(50), M): basal -6.6 +/- 0.1 (n = 5); K(+) -5.4 +/- 0.3 (n = 4); all log(IC(50)) P < 0.05, basal vs. K(+)]. These data suggest that T-type calcium channels are expressed and involved in maintenance of myogenic tone in rat cremaster muscle arterioles.

  12. The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    PubMed Central

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  13. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.

    PubMed Central

    Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R

    1992-01-01

    We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel. Images PMID:1348859

  14. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.

    PubMed

    Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R

    1992-04-15

    We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel.

  15. High-voltage lateral double-implanted MOSFETs implemented on high-purity semi-insulating 4H-SiC substrates with gate field plates

    NASA Astrophysics Data System (ADS)

    Seok, Ogyun; Kim, Hyoung Woo; Moon, Jeong Hyun; Lee, Hyun-Su; Bahng, Wook

    2018-06-01

    Lateral double-implanted MOSFETs (LDIMOSFETs) fabricated on on-axis high-purity semi-insulating (HPSI) 4H-SiC substrates with gate field plates have been demonstrated for the enhancement of reverse blocking capability. The effects of gate field plate on LDIMOSFET were analyzed by simulation and experimental methods. The electric field concentration at the gate edge was successfully suppressed by a gate field plate. A high breakdown voltage of 934 V and a figure of merit of 14.6 MW/cm2 were achieved at L FP of 2 µm and L drift of 15 µm, while those of the conventional device without a gate field plate were 744 V and 13.3 MW/cm2, respectively. Also, the fabricated device shows stable blocking characteristics at a high temperature of 250 °C. The drain leakage was increased by only 22% at 250 °C compared with that at room temperature.

  16. A type of all-optical logic gate based on graphene surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoting; Tian, Jinping; Yang, Rongcao

    2017-11-01

    In this paper, a novel type of all-optical logic device based on graphene surface plasmon polaritons (GSP) is proposed. By utilizing linear interference between the GSP waves propagating in the different channels, this new structure can realize six different basic logic gates including OR, XOR, NOT, AND, NOR, and NAND. The state of ;ON/OFF; of each input channel can be well controlled by tuning the optical conductivity of graphene sheets, which can be further controlled by changing the external gate voltage. This type of logic gate is compact in geometrical sizes and is a potential block in the integration of nanophotonic devices.

  17. Low-voltage operation of Si-based ferroelectric field effect transistors using organic ferroelectrics, poly(vinylidene fluoride-trifluoroethylene), as a gate dielectric

    NASA Astrophysics Data System (ADS)

    Miyata, Yusuke; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi

    2016-04-01

    Si-based metal-ferroelectric-semiconductor (MFS) capacitors have been fabricated using poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as a ferroelectric gate. The pinhole-free P(VDF-TrFE) thin films with high resistivity were able to be prepared by spin-coating directly onto hydrogen-terminated Si. The capacitance-voltage (C-V) characteristics of the ferroelectric gate field effect transistor (FeFET) using this MFS structure clearly show butterfly-shaped hysteresis originating from the ferroelectricity, indicating carrier modulation on the Si surface at gate voltages below 2 V. The drain current-gate voltage (I D-V G) characteristics also show counterclockwise hysteresis at gate voltages below 5 V. This is the first report on the low-voltage operation of a Si-based FeFET using P(VDF-TrFE) as a gate dielectric. This organic gate FeFET without any insulator layer at the ferroelectric/Si interface should be one of the promising devices for overcoming the critical issues of the FeFET, such as depolarization field and a decrease in the gate voltage.

  18. The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions.

    PubMed Central

    Ri, Y; Ballesteros, J A; Abrams, C K; Oh, S; Verselis, V K; Weinstein, H; Bargiello, T A

    1999-01-01

    We have explored the role of a proline residue located at position 87 in the second transmembrane segment (TM2) of gap junctions in the mechanism of voltage-dependent gating of connexin32 (Cx32). Substitution of this proline (denoted Cx32P87) with residues G, A, or V affects channel function in a progressive manner consistent with the expectation that a proline kink (PK) motif exists in the second transmembrane segment (TM2) of this connexin. Mutations of the preceding threonine residue T86 to S, A, C, V, N, or L shift the conductance-voltage relation of wild-type Cx32, such that the mutated channels close at smaller transjunctional voltages. The observed shift in voltage dependence is consistent with a reduction in the open probability of the mutant hemichannels at a transjunctional voltage (Vj) of 0 mV. In both cases in which kinetics were examined, the time constants for reaching steady state were faster for T86N and T86A than for wild type at comparable voltages, suggesting that the T86 mutations cause the energetic destabilization of the open state relative to the other states of the channel protein. The structural underpinnings of the observed effects were explored with Monte Carlo simulations. The conformational space of TM2 helices was found to differ for the T86A, V, N, and L mutants, which produce a less bent helix ( approximately 20 degrees bend angle) compared to the wild type, which has a approximately 37 degrees bend angle. The greater bend angle of the wild-type helix reflects the propensity of the T86 residue to hydrogen bond with the backbone carbonyl of amino acid residue I82. The relative differences in propensity for hydrogen bonding of the mutants relative to the wild-type threonine residue in the constructs we studied (T86A, V, N, L, S, and C) correlate with the shift in the conductance-voltage relation observed for T86 mutations. The data are consistent with a structural model in which the open conformation of the Cx32 channel corresponds to

  19. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy.

    PubMed

    Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li

    2009-05-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.

  20. Vascular Smooth Muscle-Specific Knockdown of the Noncardiac Form of the L-Type Calcium Channel by MicroRNA-Based Short Hairpin RNA as a Potential Antihypertensive Therapy

    PubMed Central

    Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li

    2009-01-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098

  1. Interface trap of p-type gate integrated AlGaN/GaN heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Sang

    2017-09-01

    In this work, the impact of trap states at the p-(Al)GaN/AlGaN interface has been investigated for the normally-off mode p-(Al)GaN/AlGaN/GaN heterostructure field-effect transistors (HFETs) by means of frequency dependent conductance. From the current-voltage (I-V) measurement, it was found that the p-AlGaN gate integrated device has higher drain current and lower gate leakage current compared to the p-GaN gate integrated device. We obtained the interface trap density and the characteristic time constant for the p-type gate integrated HFETs under the forward gate voltage of up to 6 V. As a result, the interface trap density (characteristic time constant) of the p-GaN gate device was lower (longer) than that of the p-AlGaN. Furthermore, it was analyzed that the trap state energy level of the p-GaN gate device was located at the shallow level relative to the p-AlGaN gate device, which accounts for different gate leakage current of each devices.

  2. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.

    PubMed

    Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos A; Hulse, Raymond E; Roux, Benoît; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo

    2014-03-01

    The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.

  3. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels

    PubMed Central

    Stephens, Robert F.; Guan, W.; Zhorov, Boris S.; Spafford, J. David

    2015-01-01

    How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel. PMID

  4. Threshold voltage control in TmSiO/HfO2 high-k/metal gate MOSFETs

    NASA Astrophysics Data System (ADS)

    Dentoni Litta, E.; Hellström, P.-E.; Östling, M.

    2015-06-01

    High-k interfacial layers have been proposed as a way to extend the scalability of Hf-based high-k/metal gate CMOS technology, which is currently limited by strong degradations in threshold voltage control, channel mobility and device reliability when the chemical oxide (SiOx) interfacial layer is scaled below 0.4 nm. We have previously demonstrated that thulium silicate (TmSiO) is a promising candidate as a high-k interfacial layer, providing competitive advantages in terms of EOT scalability and channel mobility. In this work, the effect of the TmSiO interfacial layer on threshold voltage control is evaluated, showing that the TmSiO/HfO2 dielectric stack is compatible with threshold voltage control techniques commonly used with SiOx/HfO2 stacks. Specifically, we show that the flatband voltage can be set in the range -1 V to +0.5 V by the choice of gate metal and that the effective workfunction of the stack is properly controlled by the metal workfunction in a gate-last process flow. Compatibility with a gate-first approach is also demonstrated, showing that integration of La2O3 and Al2O3 capping layers can induce a flatband voltage shift of at least 150 mV. Finally, the effect of the annealing conditions on flatband voltage is investigated, finding that the duration of the final forming gas anneal can be used as a further process knob to tune the threshold voltage. The evaluation performed on MOS capacitors is confirmed by the fabrication of TmSiO/HfO2/TiN MOSFETs achieving near-symmetric threshold voltages at sub-nm EOT.

  5. Low-voltage organic strain sensor on plastic using polymer/high- K inorganic hybrid gate dielectrics

    NASA Astrophysics Data System (ADS)

    Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2007-12-01

    In this paper, gate-induced pentacene semiconductor strain sensors based on hybrid-gate dielectrics using poly-vinylphenol (PVP) and high-K inorganic, Ta IIO 5 are fabricated on flexible substrates, polyethylene naphthalate (PEN). The Ta IIO 5 gate dielectric layer is combined with a thin PVP layer to obtain very smooth and hydrophobic surfaces which improve the molecular structures of pentacene films. The PVP-Ta IIO 5 hybrid-gate dielectric films exhibit a high dielectric capacitance and low leakage current. The sensors adopting thin film transistor (TFT)-like structures show a significantly reduced operating voltage (~6V), and good device characteristics with a field-effect mobility of 1.89 cm2/V•s, a threshold voltage of -0.5 V, and an on/off ratio of 10 3. The strain sensor, one of the practical applications in large-area organic electronics, was characterized with different bending radii of 50, 40, 30, and 20 mm. The sensor output signals were significantly improved with low-operating voltages.

  6. Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.

    PubMed

    Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C

    2010-10-01

    Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.

  7. L1014F-kdr Mutation in Indian Anopheles subpictus (Diptera: Culicidae) Arising From Two Alternative Transversions in the Voltage-Gated Sodium Channel and a Single PIRA-PCR for Their Detection.

    PubMed

    Singh, O P; Dykes, C L; Sharma, G; Das, M K

    2015-01-01

    Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Calcium Channels in Postnatal Development of Rat Pancreatic Beta Cells and Their Role in Insulin Secretion

    PubMed Central

    García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia

    2018-01-01

    Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214

  9. Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence

    PubMed Central

    Uhrig, Stefanie; Vandael, David; Marcantoni, Andrea; Dedic, Nina; Bilbao, Ainhoa; Vogt, Miriam A; Hirth, Natalie; Broccoli, Laura; Bernardi, Rick E; Schönig, Kai; Gass, Peter; Bartsch, Dusan; Spanagel, Rainer; Deussing, Jan M; Sommer, Wolfgang H; Carbone, Emilio; Hansson, Anita C

    2017-01-01

    It has previously been shown that the inhibition of L-type calcium channels (LTCCs) decreases alcohol consumption, although the contribution of the central LTCC subtypes Cav1.2 and Cav1.3 remains unknown. Here, we determined changes in Cav1.2 (Cacna1c) and Cav1.3 (Cacna1d) mRNA and protein expression in alcohol-dependent rats during protracted abstinence and naive controls using in situ hybridization and western blot analysis. Functional validation was obtained by electrophysiological recordings of calcium currents in dissociated hippocampal pyramidal neurons. We then measured alcohol self-administration and cue-induced reinstatement of alcohol seeking in dependent and nondependent rats after intracerebroventricular (i.c.v.) injection of the LTCC antagonist verapamil, as well as in mice with an inducible knockout (KO) of Cav1.2 in Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-expressing neurons. Our results show that Cacna1c mRNA concentration was increased in the amygdala and hippocampus of alcohol-dependent rats after 21 days of abstinence, with no changes in Cacna1d mRNA. This was associated with increased Cav1.2 protein concentration and L-type calcium current amplitudes. Further analysis of Cacna1c mRNA in the CA1, basolateral amygdala (BLA), and central amygdala (CeA) revealed a dynamic regulation over time during the development of alcohol dependence. The inhibition of central LTCCs via i.c.v. administration of verapamil prevented cue-induced reinstatement of alcohol seeking in alcohol-dependent rats. Further studies in conditional Cav1.2-KO mice showed a lack of dependence-induced increase of alcohol-seeking behavior. Together, our data indicate that central Cav1.2 channels, rather than Cav1.3, mediate alcohol-seeking behavior. This finding may be of interest for the development of new antirelapse medications. PMID:27905406

  10. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    PubMed

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.

  11. Novel 1, 4-dihydropyridines for L-type calcium channel as antagonists for cadmium toxicity

    PubMed Central

    Saddala, Madhu Sudhana; Kandimalla, Ramesh; Adi, Pradeepkiran Jangampalli; Bhashyam, Sainath Sri; Asupatri, Usha Rani

    2017-01-01

    The present study, we design and synthesize the novel dihydropyridine derivatives, i.e., 3 (a-e) and 5 (a-e) and evaluated, anticonvulsant activity. Initially due to the lacuna of LCC, we modeled the protein through modeller 9.15v and evaluated through servers. Docking studies were performed with the synthesized compounds and resulted two best compounds, i.e., 5a, 5e showed the best binding energies. The activity of intracellular Ca2+ measurements was performed on two cell lines: A7r5 (rat aortic smooth muscle cells) and SH-SY5Y (human neuroblastoma cells). The 5a and 5e compounds was showing the more specific activity on L-type calcium channels, i.e. A7r5 (IC50 = 0.18 ± 0.02 and 0.25 ± 0.63 μg/ml, respectively) (containing only L-type channels) than SH-SY5Y (i.e. both L-type and T-type channels) (IC50 = 8 ± 0.23 and 10 ± 0.18 μg/ml, respectively) with intracellular calcium mobility similar to amlodipine. Finally, both in silico and in vitro results exploring two derivatives 5a and 5e succeeded to treat cadmium toxicity. PMID:28345598

  12. Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.

    PubMed

    Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel

    2015-09-01

    We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.

  13. Sterol Regulation of Voltage-Gated K+ Channels.

    PubMed

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  14. Nitric oxide augments voltage-activated calcium currents of crustacea (Idotea baltica) skeletal muscle.

    PubMed

    Erxleben, C; Hermann, A

    2001-03-16

    Invertebrate skeletal muscle contraction is regulated by calcium influx through voltage-dependent calcium channels in the sarcolemmal membrane. In present study we investigated the effects of nitric oxide (NO) donors on calcium currents of single skeletal muscle fibres from the marine isopod, Idotea baltica, using two-electrode voltage clamp recording techniques. The NO donors, S-nitrosocysteine, S-nitroso-N-acetyl-penicillamine or hydroxylamine reversibly increased calcium inward currents in a time dependent manner. The increase of the current was prevented by methylene blue. Our experiments suggest that NO increases calcium inward currents. NO, by acting on calcium ion channels in the sarcolemmal membrane, therefore, may directly be involved in the modulation of muscle contraction.

  15. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    ERIC Educational Resources Information Center

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  16. Three-Function Logic Gate Controlled by Analog Voltage

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo; Stoica, Adrian

    2006-01-01

    The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that performs one of three different logic functions, depending on the level of an externally applied control voltage, V(sub sel). Specifically, the circuit acts as A NAND gate at V(sub sel) = 0.0 V, A wire (the output equals one of the inputs) at V(sub sel) = 1.0 V, or An AND gate at V(sub sel) = -1.8 V. [The nominal power-supply potential (VDD) and logic "1" potential of this circuit is 1.8 V.] Like other multifunctional circuits described in several prior NASA Tech Briefs articles, this circuit was synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. An evolved circuit can be tested by computational simulation and/or tested in real hardware, and the results of the test can provide guidance for refining the design through further iteration. The evolutionary synthesis of electronic circuits can now be implemented by means of a software package Genetic Algorithms for Circuit Synthesis (GACS) that was developed specifically for this purpose. GACS was used to synthesize the present trifunctional circuit. As in the cases of other multifunctional circuits described in several prior NASA Tech Briefs articles, the multiple functionality of this circuit, the use of a single control voltage to select the function, and the automated evolutionary approach to synthesis all contribute synergistically to a combination of features that are potentially advantageous for the further development of robust, multiple-function logic circuits, including, especially, field-programmable gate arrays (FPGAs). These advantages include the following: This circuit contains only 9 transistors about half the number of transistors that would be needed to obtain equivalent NAND/wire/AND functionality by use of components from a standard digital design library. If

  17. Controlling the layer localization of gapless states in bilayer graphene with a gate voltage

    NASA Astrophysics Data System (ADS)

    Jaskólski, W.; Pelc, M.; Bryant, Garnett W.; Chico, Leonor; Ayuela, A.

    2018-04-01

    Experiments in gated bilayer graphene with stacking domain walls present topological gapless states protected by no-valley mixing. Here we research these states under gate voltages using atomistic models, which allow us to elucidate their origin. We find that the gate potential controls the layer localization of the two states, which switches non-trivially between layers depending on the applied gate voltage magnitude. We also show how these bilayer gapless states arise from bands of single-layer graphene by analyzing the formation of carbon bonds between layers. Based on this analysis we provide a model Hamiltonian with analytical solutions, which explains the layer localization as a function of the ratio between the applied potential and interlayer hopping. Our results open a route for the manipulation of gapless states in electronic devices, analogous to the proposed writing and reading memories in topological insulators.

  18. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family

    PubMed Central

    2013-01-01

    Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829

  19. Shaping charge excitations in chiral edge states with a time-dependent gate voltage

    NASA Astrophysics Data System (ADS)

    Misiorny, Maciej; Fève, Gwendal; Splettstoesser, Janine

    2018-02-01

    We study a coherent conductor supporting a single edge channel in which alternating current pulses are created by local time-dependent gating and sent on a beam-splitter realized by a quantum point contact. The current response to the gate voltage in this setup is intrinsically linear. Based on a fully self-consistent treatment employing a Floquet scattering theory, we analyze the effect of different voltage shapes and frequencies, as well as the role of the gate geometry on the injected signal. In particular, we highlight the impact of frequency-dependent screening on the process of shaping the current signal. The feasibility of creating true single-particle excitations with this method is confirmed by investigating the suppression of excess noise, which is otherwise created by additional electron-hole pair excitations in the current signal.

  20. Effects of inositol trisphosphate on calcium mobilization in high-voltage and saponin-permeabilized platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gear, A.R.L.; Hallam, T.J.

    1986-03-01

    Interest in phosphatidylinositol metabolism has been greatly stimulated by the findings that diglyceride and inositol phosphates may serve as second messengers in modulating cellular function. Formation of 1,4,5-inositol trisphosphate (IP/sub 3/), in particular, has been linked to mobilization of intracellular calcium in a number of cell types. The authors have examined the ability of IP/sub 3/ to mobilize calcium in human platelets permeabilized by either saponin or high-voltage discharge. Saponin at 15 ..mu..g/ml effectively permeabilized platelets to exogenous inositol 1,4,5-trisphosphate which released bound (/sup 45/Ca) within 1 min and with a Ka of 7.4 +/- 4.1 ..mu..M. A small (25%)more » azide-sensitive pool was also responsive to inositol trisphosphate. The calcium pools were completely discharged by A-23187 and the ATP-dependent uptake was prevented by dinitrophenol. In contrast to the result with saponin, platelets accessed by high-voltage discharge were insensitive to challenge by inositol 1,4,5-trisphosphate. The data suggest that while inositol 1,4,5-trisphosphate can rapidly mobilize platelet calcium, the ability to demonstrate this depends on the method of permeabilization.« less

  1. Controllable Hysteresis and Threshold Voltage of Single-Walled Carbon Nano-tube Transistors with Ferroelectric Polymer Top-Gate Insulators

    PubMed Central

    Sun, Yi-Lin; Xie, Dan; Xu, Jian-Long; Zhang, Cheng; Dai, Rui-Xuan; Li, Xian; Meng, Xiang-Jian; Zhu, Hong-Wei

    2016-01-01

    Double-gated field effect transistors have been fabricated using the SWCNT networks as channel layer and the organic ferroelectric P(VDF-TrFE) film spin-coated as top gate insulators. Standard photolithography process has been adopted to achieve the patterning of organic P(VDF-TrFE) films and top-gate electrodes, which is compatible with conventional CMOS process technology. An effective way for modulating the threshold voltage in the channel of P(VDF-TrFE) top-gate transistors under polarization has been reported. The introduction of functional P(VDF-TrFE) gate dielectric also provides us an alternative method to suppress the initial hysteresis of SWCNT networks and obtain a controllable ferroelectric hysteresis behavior. Applied bottom gate voltage has been found to be another effective way to highly control the threshold voltage of the networked SWCNTs based FETs by electrostatic doping effect. PMID:26980284

  2. Three types of neuronal calcium channel with different calcium agonist sensitivity.

    PubMed

    Nowycky, M C; Fox, A P; Tsien, R W

    How many types of calcium channels exist in neurones? This question is fundamental to understanding how calcium entry contributes to diverse neuronal functions such as transmitter release, neurite extension, spike initiation and rhythmic firing. There is considerable evidence for the presence of more than one type of Ca conductance in neurones and other cells. However, little is known about single-channel properties of diverse neuronal Ca channels, or their responsiveness to dihydropyridines, compounds widely used as labels in Ca channel purification. Here we report evidence for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion. In addition to a large conductance channel that contributes long-lasting current at strong depolarizations (L), and a relatively tiny conductance that underlies a transient current activated at weak depolarizations (T), we find a third type of unitary activity (N) that is neither T nor L. N-type Ca channels require strongly negative potentials for complete removal of inactivation (unlike L) and strong depolarizations for activation (unlike T). The dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.

  3. Non-scaling behavior of electroosmotic flow in voltage-gated nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Cheng; Gallegos, Alejandro; Liu, Honglai

    2017-01-01

    Ionic size effects and electrostatic correlations result in the non-monotonic dependence of the electrical conductivity on the pore size. For ion transport at a high gating voltage, the conductivity oscillates with the pore size due to a significant overlap of the electric double layers.

  4. Breathing of voltage dependent anion channel as revealed by the fractal property of its gating

    NASA Astrophysics Data System (ADS)

    Manna, Smarajit; Banerjee, Jyotirmoy; Ghosh, Subhendu

    2007-12-01

    The gating of voltage dependent anion channel (VDAC) depends on the movement of voltage sensors in the transmembrane region, but the actual mechanism is still not well understood. With a view to understand the phenomenon we have analyzed the current recordings of VDAC in lipid bilayer membrane (BLM) and found that the data show self-similarity and fractal characteristics. We look for the microscopic and molecular basis of fractal behavior of gating of VDAC. A model describing the oscillatory dynamics of voltage sensors of VDAC in the transmembrane region under applied potential has been proposed which gives rise to the aforesaid fractal behavior.

  5. Aging-associated changes in L-type calcium channels in the left atria of dogs.

    PubMed

    Gan, Tian-Yi; Qiao, Weiwei; Xu, Guo-Jun; Zhou, Xian-Hui; Tang, Bao-Peng; Song, Jian-Guo; Li, Yao-Dong; Zhang, Jian; Li, Fa-Peng; Mao, Ting; Jiang, Tao

    2013-10-01

    Action potential (AP) contours vary considerably between the fibers of normal adult and aged left atria. The underlying ionic and molecular mechanisms that mediate these differences remain unknown. The aim of the present study was to investigate whether the L-type calcium current (I Ca.L ) and the L-type Ca 2+ channel of the left atria may be altered with age to contribute to atrial fibrillation (AF). Two groups of mongrel dogs (normal adults, 2-2.5 years old and older dogs, >8 years old) were used in this study. The inducibility of AF was quantitated using the cumulative window of vulnerability (WOV). A whole-cell patch-clamp was used to record APs and I Ca.L in left atrial (LA) cells obtained from the two groups of dogs. Protein and mRNA expression levels of the a1C (Cav1.2) subunit of the L-type calcium channel were assessed using western blotting and quantitative PCR (qPCR), respectively. Although the resting potential, AP amplitude and did not differ with age, the plateau potential was more negative and the APD 90 was longer in the aged cells compared with that in normal adult cells. Aged LA cells exhibited lower peak I Ca.L current densities than normal adult LA cells (P<0.05). In addition, the Cav1.2 mRNA and protein expression levels in LA cells were decreased in the aged group compared with those in the normal adult group. The lower AP plateau potential and the decreased I Ca.L of LA cells in aged dogs may contribute to the slow and discontinuous conduction of the left atria. Furthermore, the reduction of the expression levels of Cav1.2 with age may be the molecular mechanism that mediates the decline in I Ca.L with increasing age.

  6. Mapping the Interaction Site for a β-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels*

    PubMed Central

    Zhang, Joel Z.; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A.

    2012-01-01

    Activation of voltage-gated sodium (Nav) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of NaV channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIVE15A. Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on NaV channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on NaV channels acts synergistically to modify channel gating and paralyze prey. PMID:22761417

  7. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

    NASA Astrophysics Data System (ADS)

    Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

    2014-04-01

    Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.

  8. Ferulic acid relaxed rat aortic, small mesenteric and coronary arteries by blocking voltage-gated calcium channel and calcium desensitization via dephosphorylation of ERK1/2 and MYPT1.

    PubMed

    Zhou, Zhong-Yan; Xu, Jia-Qi; Zhao, Wai-Rong; Chen, Xin-Lin; Jin, Yu; Tang, Nuo; Tang, Jing-Yi

    2017-11-15

    Ferulic acid, a natural ingredient presents in several Chinese Materia Medica such as Radix Angelicae Sinensis, has been identified as an important multifunctional and physiologically active small molecule. However, its pharmacological activity in different blood vessel types and underlying mechanisms are unclear. The present study was to investigate the vascular reactivity and the possible action mechanism of FA on aorta, small mesenteric arteries and coronary arteries isolated from Wistar rats. We found FA dose-dependently relieved the contraction of aorta, small mesenteric arteries and coronary arteries induced by different contractors, U46619, phenylephrine (Phe) and KCl. The relaxant effect of FA was not affected by L-NAME (eNOS inhibitor), ODQ (soluble guanylate cyclase inhibitor), and mechanical removal of endothelium in thoracic aortas. The contraction caused by 60mM KCl (60K) was concentration-dependently hindered by FA pretreatment in all three types of arteries. In Ca 2+ -free 60K solution, FA weakened Ca 2+ -related contraction in a concentration dependent manner. And FA relaxed both fluoride and phorbol ester which were PKC, ERK and Rho-kinase activators induced contraction in aortic rings with or without Ca 2+ in krebs solution. Western blotting experiments in A7r5 cells revealed that FA inhibited calcium sensitization via dephosphorylation of ERK1/2 and MYPT1. Furthermore, the relaxation effect of FA was attenuated by verapamil (calcium channel blocker), ERK inhibitor, and fasudil (ROCK inhibitor). These results provide evidence that FA exhibits endothelium-independent vascular relaxant effect in different types of arteries. The molecular mechanism of vasorelaxation activity of FA probably involved calcium channel inhibition and calcium desensitization. Copyright © 2017. Published by Elsevier B.V.

  9. Micro-mechanical resonators for dynamically reconfigurable reduced voltage logic gates

    NASA Astrophysics Data System (ADS)

    Chappanda, K. N.; Ilyas, S.; Younis, M. I.

    2018-05-01

    Due to the limitations of transistor-based logic devices such as their poor performance at elevated temperature, alternative computing methods are being actively investigated. In this work, we present electromechanical logic gates using electrostatically coupled in-plane micro-cantilever resonators operated at modest vacuum conditions of 5 Torr. Operating in the first resonant mode, we demonstrate 2-bit XOR, 2- and 3-bit AND, 2- and 3-bit NOR, and 1-bit NOT gates; all condensed in the same device. Through the designed electrostatic coupling, the required voltage for the logic gates is reduced by 80%, along with the reduction in the number of electrical interconnects and devices per logic operation (contrary to transistors). The device is dynamically reconfigurable between any logic gates in real time without the need for any change in the electrical interconnects and the drive circuit. By operating in the first two resonant vibration modes, we demonstrate mechanical logic gates consisting of two 2-bit AND and two 2-bit XOR gates. The device is tested at elevated temperatures and is shown to be functional as a logic gate up to 150 °C. Also, the device has high reliability with demonstrated lifetime greater than 5  ×  1012 oscillations.

  10. Calcium current in type I hair cells isolated from the semicircular canal crista ampullaris of the rat.

    PubMed

    Almanza, Angélica; Vega, Rosario; Soto, Enrique

    2003-12-24

    The low voltage gain in type I hair cells implies that neurotransmitter release at their afferent synapse should be mediated by low voltage activated calcium channels, or that some peculiar mechanism should be operating in this synapse. With the patch clamp technique, we studied the characteristics of the Ca(2+) current in type I hair cells enzymatically dissociated from rat semicircular canal crista ampullaris. Calcium current in type I hair cells exhibited a slow inactivation (during 2-s depolarizing steps), was sensitive to nimodipine and was blocked by Cd(2+) and Ni(2+). This current was activated at potentials above -60 mV, had a mean half maximal activation of -36 mV, and exhibited no steady-state inactivation at holding potentials between -100 and -60 mV. This data led us to conclude that hair cell Ca(2+) current is most likely of the L type. Thus, other mechanisms participating in neurotransmitter release such as K(+) accumulation in the synaptic cleft, modulation of K(+) currents by nitric oxide, participation of a Na(+) current and possible metabotropic cascades activated by depolarization should be considered.

  11. Protonic/electronic hybrid oxide transistor gated by chitosan and its full-swing low voltage inverter applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Jin Yu; Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn

    Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ∼1.0 V such as on/off ratio of ∼3 × 10{sup 7}, subthreshold swing of ∼65 mV/dec, threshold voltage of ∼0.3 V, and mobility of ∼7 cm{sup 2}/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor inmore » series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.« less

  12. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    PubMed

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  13. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    PubMed

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  14. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium–gallium–zinc oxide gate stack

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-01

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  15. Gating modifier toxins isolated from spider venom: modulation of voltage-gated sodium channels and the role of lipid membranes.

    PubMed

    Agwa, Akello J; Peigneur, Steve; Chow, Chun Yuen; Lawrence, Nicole; Craik, David J; Tytgat, Jan; King, Glenn F; Henriques, Sonia Troeira; Schroeder, Christina I

    2018-04-27

    Gating modifier toxins (GMTs) are venom-derived peptides isolated from spiders and other venomous creatures that modulate activity of disease-relevant voltage-gated ion channels and are therefore being pursued as therapeutic leads. The amphipathic surface profile of GMTs has prompted the proposal that some GMTs simultaneously bind to the cell membrane and voltage-gated ion channels in a trimolecular complex. Here we examined whether there is a relationship among spider GMT amphipathicity, membrane binding and potency or selectivity for voltage-gated sodium (NaV) channels. We used NMR spectroscopy and in silico calculations to examine the structures and physicochemical properties of a panel of nine GMTs and deployed surface plasmon resonance to measure GMT affinity for lipids putatively found in proximity to NaV channels. Electrophysiology was used to quantify GMT activity on NaV1.7, an ion channel linked to chronic pain. Selectivity of the peptides was further examined against a panel of NaV channel subtypes. We show that GMTs adsorb to the outer leaflet of anionic lipid bilayers through electrostatic interactions. We did not observe a direct correlation between GMT amphipathicity and affinity for lipid bilayers. Furthermore, GMT-lipid bilayer interactions did not correlate with potency or selectivity for NaVs. We therefore propose that increased membrane binding is unlikely to improve subtype selectivity and that the conserved amphipathic GMT surface profile is an adaptation that facilitates simultaneous modulation of multiple NaVs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Toxins That Affect Voltage-Gated Sodium Channels.

    PubMed

    Ji, Yonghua

    2017-10-26

    Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.

  17. Regulation of Spinal Substance P Release by Intrathecal Calcium Channel Blockade

    PubMed Central

    Takasusuki, Toshifumi; Yaksh, Tony L.

    2012-01-01

    Background We investigated the role of different voltage sensitive calcium channels expressed at presynaptic afferent terminals in substance P release and on nociceptive behavior evoked by intraplantar formalin by examining the effects of intrathecally delivered N- (ziconotide), T- (mibefradil) and L-type voltage sensitive calcium channels blockers (diltiazem and verapamil). Methods Rats received intrathecal pretreatment with saline or doses of morphine, ziconotide, mibefradil, diltiazem or verapamil. The effect of these injections upon flinching evoked by intraplantar formalin (5%, 50μl) was quantified. To assess substance P release, the incidence of neurokinin 1 receptor internalization in the ipsilateral and contralateral lamina I was determined in immunofluorescent stained tissues. Results Intrathecal morphine (20μg), ziconotide (0.3, 0.6 and 1μg), mibefradil (100μg, but not 50μg), diltiazem (500μg, but not 300μg) and verapamil (200μg, but not 50 and 100μg) reduced paw flinching in phase 2 as compared to vehicle control (P < 0.05), with no effect upon phase 1. Ziconotide (0.3, 0.6 and 1μg) and morphine (20μg) significantly inhibited neurokinin 1 receptor internalization (P < 0.05), but mibefradil, diltiazem and verapamil at the highest doses had no effect. Conclusion These results emphasize the role in vivo of N-, but not T- and L-type voltage sensitive calcium channels in mediating the stimulus evoked substance P release from small primary afferents and suggest that T- and L-type voltage sensitive calcium channels blockers exert antihyperalgesic effects by an action on other populations of afferents or mechanisms involving post synaptic excitability. PMID:21577088

  18. Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel.

    PubMed

    Zhorov, Boris S; Dong, Ke

    2017-05-01

    DDT and pyrethroid insecticides were among the earliest neurotoxins identified to act on voltage-gated sodium channels. In the 1960s, equipped with, at the time, new voltage-clamp techniques, Professor Narahashi and associates provided the initial evidence that DDT and allethrin (the first commercial pyrethroid insecticide) caused prolonged flow of sodium currents in lobster and squid giant axons. Over the next several decades, continued efforts by Prof. Narahashi's group as well as other laboratories led to a comprehensive understanding of the mechanism of action of DDT and pyrethroids on sodium channels. Fast forward to the 1990s, genetic, pharmacological and toxicological data all further confirmed voltage-gated sodium channels as the primary targets of DDT and pyrethroid insecticides. Modifications of the gating kinetics of sodium channels by these insecticides result in repetitive firing and/or membrane depolarization in the nervous system. This mini-review focuses on studies from Prof. Narahashi's pioneer work and more recent mutational and computational modeling analyses which collectively elucidated the elusive pyrethroid receptor sites as well as the molecular basis of differential sensitivities of insect and mammalian sodium channels to pyrethroids. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A complementary organic inverter of porphyrazine thin films: low-voltage operation using ionic liquid gate dielectrics.

    PubMed

    Fujimoto, Takuya; Miyoshi, Yasuhito; Matsushita, Michio M; Awaga, Kunio

    2011-05-28

    We studied a complementary organic inverter consisting of a p-type semiconductor, metal-free phthalocyanine (H(2)Pc), and an n-type semiconductor, tetrakis(thiadiazole)porphyrazine (H(2)TTDPz), operated through the ionic-liquid gate dielectrics of N,N-diethyl-N-methyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide (DEME-TFSI). This organic inverter exhibits high performance with a very low operation voltage below 1.0 V and a dynamic response up to 20 Hz. © The Royal Society of Chemistry 2011

  20. Long-term effects of L- and N-type calcium channel blocker on uric acid levels and left atrial volume in hypertensive patients.

    PubMed

    Masaki, Mitsuru; Mano, Toshiaki; Eguchi, Akiyo; Fujiwara, Shohei; Sugahara, Masataka; Hirotani, Shinichi; Tsujino, Takeshi; Komamura, Kazuo; Koshiba, Masahiro; Masuyama, Tohru

    2016-11-01

    Left ventricular (LV) diastolic dysfunction is associated with hypertension and hyperuricemia. However, it is not clear whether the L- and N-type calcium channel blocker will improve LV diastolic dysfunction through the reduction of uric acid. The aim of this study was to investigate the effects of anti-hypertensive therapy, the L- and N-type calcium channel blocker, cilnidipine or the L-type calcium channel blocker, amlodipine, on left atrial reverse remodeling and uric acid in hypertensive patients. We studied 62 patients with untreated hypertension, randomly assigned to cilnidipine or amlodipine for 48 weeks. LV diastolic function was assessed with the left atrial volume index (LAVI), mitral early diastolic wave (E), tissue Doppler early diastolic velocity (E') and the ratio (E/E'). Serum uric acid levels were measured before and after treatment. After treatment, systolic and diastolic blood pressures equally dropped in both groups. LAVI, E/E', heart rate and uric acid levels decreased at 48 weeks in the cilnidipine group but not in the amlodipine group. The % change from baseline to 48 weeks in LAVI, E wave, E/E' and uric acid levels were significantly lower in the cilnidipine group than in the amlodipine group. Larger %-drop in uric acid levels were associated with larger %-reduction of LAVI (p < 0.01). L- and N-type calcium channel blocker but not L-type calcium channel blocker may improve LV diastolic function in hypertensive patients, at least partially through the decrease in uric acid levels.

  1. Spinocerebellum Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics.

    PubMed

    Du, Xiaofei; Gomez, Christopher Manuel

    2018-01-01

    Spinocerebellar ataxia (SCA) type 6 is an autosomal dominant disease affecting cerebellar degeneration. Clinically, it is characterized by pure cerebellar dysfunction, slowly progressive unsteadiness of gait and stance, slurred speech, and abnormal eye movements with late onset. Pathological findings of SCA6 include a diffuse loss of Purkinje cells, predominantly in the cerebellar vermis. Genetically, SCA6 is caused by expansion of a trinucleotide CAG repeat in the last exon of longest isoform CACNA1A gene on chromosome 19p13.1-p13.2. Normal alleles have 4-18 repeats, while alleles causing disease contain 19-33 repeats. Due to presence of a novel internal ribosomal entry site (IRES) with the mRNA, CACNA1A encodes two structurally unrelated proteins with distinct functions within an overlapping open reading frame (ORF) of the same mRNA: (1) α1A subunit of P/Q-type voltage gated calcium channel; (2) α1ACT, a newly recognized transcription factor, with polyglutamine repeat at C-terminal end. Understanding the function of α1ACT in physiological and pathological conditions may elucidate the pathogenesis of SCA6. More importantly, the IRES, as the translational control element of α1ACT, provides a potential therapeutic target for the treatment of SCA6.

  2. Outward stabilization of the voltage sensor in domain II but not domain I speeds inactivation of voltage-gated sodium channels.

    PubMed

    Sheets, Michael F; Chen, Tiehua; Hanck, Dorothy A

    2013-10-15

    To determine the roles of the individual S4 segments in domains I and II to activation and inactivation kinetics of sodium current (INa) in NaV1.5, we used a tethered biotin and avidin approach after a site-directed cysteine substitution was made in the second outermost Arg in each S4 (DI-R2C and DII-R2C). We first determined the fraction of gating charge contributed by the individual S4's to maximal gating current (Qmax), and found that the outermost Arg residue in each S4 contributed ∼19% to Qmax with minimal contributions by other arginines. Stabilization of the S4's in DI-R2C and DII-R2C was confirmed by measuring the expected reduction in Qmax. In DI-R2C, stabilization resulted in a decrease in peak INa of ∼45%, while its peak current-voltage (I-V) and voltage-dependent Na channel availability (SSI) curves were nearly unchanged from wild type (WT). In contrast, stabilization of the DII-R2C enhanced activation with a negative shift in the peak I-V relationship by -7 mV and a larger -17 mV shift in the voltage-dependent SSI curve. Furthermore, its INa decay time constants and time-to-peak INa became more rapid than WT. An explanation for these results is that the depolarized conformation of DII-S4, but not DI-S4, affects the receptor for the inactivation particle formed by the interdomain linker between DIII and IV. In addition, the leftward shifts of both activation and inactivation and the decrease in Gmax after stabilization of the DII-S4 support previous studies that showed β-scorpion toxins trap the voltage sensor of DII in an activated conformation.

  3. Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes.

    PubMed

    Osteen, Jeremiah D; Sampson, Kevin; Iyer, Vivek; Julius, David; Bosmans, Frank

    2017-06-27

    The Na v 1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Na v ) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Na v 1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Na v channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Na v 1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Na v 1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Na v 1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Na v 1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Na v channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Na v 1.1 function.

  4. L-type voltage-dependent calcium channel is involved in the snake venom group IA secretory phospholipase A2-induced neuronal apoptosis.

    PubMed

    Yagami, Tatsurou; Yamamoto, Yasuhiro; Kohma, Hiromi; Nakamura, Tsutomu; Takasu, Nobuo; Okamura, Noboru

    2013-03-01

    Snake venom group IA secretory phospholipase A2 (sPLA2-IA) is known as a neurotoxin. Snake venom sPLA2s are neurotoxic in vivo and in vitro, causing synergistic neurotoxicity to cortical cultures when applied with toxic concentrations of glutamate. However, it has not yet been cleared sufficiently how sPLA2-IA exerts neurotoxicity. Here, we found sPLA2-IA induced neuronal cell death in a concentration-dependent manner. This death was a delayed response requiring a latent time for 6h. sPLA2-IA-induced neuronal cell death was accompanied with apoptotic blebbing, condensed chromatin, and fragmented DNA, exhibiting apoptotic features. NMDA receptor blockers suppressed the neurotoxicity of sPLA2-IA, but an AMPA receptor blocker did not. Interestingly, L-type voltage-dependent Ca(2+) channel (L-VDCC) blocker significantly protected neurons from the sPLA2-IA-induced apoptosis. On the other hand, neither N-VDCC blockers nor P/Q-VDCC blocker did. In conclusion, we demonstrated that sPLA2-IA induced neuronal cell death via apoptosis. Furthermore, the present study suggests that not only NMDA receptor but also L-VDCC contributed to the neurotoxicity of snake venom sPLA2-IA. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Group III metabotropic glutamate receptors and exocytosed protons inhibit L-type calcium currents in cones but not in rods.

    PubMed

    Hosoi, Nobutake; Arai, Itaru; Tachibana, Masao

    2005-04-20

    Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.

  6. Caution Is Required in Interpretation of Mutations in the Voltage Sensing Domain of Voltage Gated Channels as Evidence for Gating Mechanisms

    PubMed Central

    Kariev, Alisher M.; Green, Michael E.

    2015-01-01

    The gating mechanism of voltage sensitive ion channels is generally considered to be the motion of the S4 transmembrane segment of the voltage sensing domains (VSD). The primary supporting evidence came from R→C mutations on the S4 transmembrane segment of the VSD, followed by reaction with a methanethiosulfonate (MTS) reagent. The cys side chain is –SH (reactive form –S−); the arginine side chain is much larger, leaving space big enough to accommodate the MTS sulfonate head group. The cavity created by the mutation has space for up to seven more water molecules than were present in wild type, which could be displaced irreversibly by the MTS reagent. Our quantum calculations show there is major reorientation of three aromatic residues that face into the cavity in response to proton displacement within the VSD. Two phenylalanines reorient sufficiently to shield/unshield the cysteine from the intracellular and extracellular ends, depending on the proton positions, and a tyrosine forms a hydrogen bond to the cysteine sulfur with its side chain –OH. These could produce the results of the experiments that have been interpreted as evidence for physical motion of the S4 segment, without physical motion of the S4 backbone. The computations strongly suggest that the interpretation of cysteine substitution reaction experiments be re-examined in the light of these considerations. PMID:25588216

  7. Caution is required in interpretation of mutations in the voltage sensing domain of voltage gated channels as evidence for gating mechanisms.

    PubMed

    Kariev, Alisher M; Green, Michael E

    2015-01-12

    The gating mechanism of voltage sensitive ion channels is generally considered to be the motion of the S4 transmembrane segment of the voltage sensing domains (VSD). The primary supporting evidence came from R → C mutations on the S4 transmembrane segment of the VSD, followed by reaction with a methanethiosulfonate (MTS) reagent. The cys side chain is -SH (reactive form -S-); the arginine side chain is much larger, leaving space big enough to accommodate the MTS sulfonate head group. The cavity created by the mutation has space for up to seven more water molecules than were present in wild type, which could be displaced irreversibly by the MTS reagent. Our quantum calculations show there is major reorientation of three aromatic residues that face into the cavity in response to proton displacement within the VSD. Two phenylalanines reorient sufficiently to shield/unshield the cysteine from the intracellular and extracellular ends, depending on the proton positions, and a tyrosine forms a hydrogen bond to the cysteine sulfur with its side chain -OH. These could produce the results of the experiments that have been interpreted as evidence for physical motion of the S4 segment, without physical motion of the S4 backbone. The computations strongly suggest that the interpretation of cysteine substitution reaction experiments be re-examined in the light of these considerations.

  8. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides.

    PubMed

    Foster, Stephen P; Paul, Verity L; Slater, Russell; Warren, Anne; Denholm, Ian; Field, Linda M; Williamson, Martin S

    2014-08-01

    The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35-40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species. © 2013 Society of Chemical Industry.

  9. Action potentials drive body wall muscle contractions in Caenorhabditis elegans

    PubMed Central

    Gao, Shangbang; Zhen, Mei

    2011-01-01

    The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227

  10. Voltage-Gated Channel Mechanosensitivity: Fact or Friction?

    PubMed Central

    Morris, Catherine E.

    2011-01-01

    The heart is a continually active pulsatile fluid pump. It generates appropriate forces by precisely timed and spaced engagement of its contractile machinery. Largely, it makes its own control signals, the most crucial of which are precisely timed and spaced fluxes of ions across the sarcolemma, achieved by the timely opening and closing of diverse voltage-gated channels (VGC). VGCs have four voltage sensors around a central ion-selective pore that opens and closes under the influence of membrane voltage. Operation of any VGC is secondarily tuned by the mechanical state (i.e., structure) of the bilayer in which it is embedded. Rates of opening and closing, in other words, vary with bilayer structure. Thus, in the intensely mechanical environment of the myocardium and its vasculature, VGCs kinetics might be routinely modulated by reversible and irreversible nano-scale changes in bilayer structure. If subtle bilayer deformations are routine in the pumping heart, VGCs could be subtly transducing bilayer mechanical signals, thereby tuning cardiac rhythmicity, collectively contributing to mechano-electric feedback. Reversible bilayer deformations would be expected with changing shear flows and tissue distension, while irreversible bilayer restructuring occurs with ischemia, inflammation, membrane remodeling, etc. I suggest that tools now available could be deployed to help probe whether/how the inherent mechanosensitivity of VGCs – an attribute substantially reflecting the dependence of voltage sensor stability on bilayer structure – contributes to cardiac rhythmicity. Chief among these tools are voltage sensor toxins (whose inhibitory efficacy varies with the mechanical state of bilayer) and arrhythmia-inducing VGC mutants with distinctive mechano-phenotypes. PMID:21660289

  11. Pentacene-based low voltage organic field-effect transistors with anodized Ta2O5 gate dielectric

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Taek; Dodabalapur, Ananth

    2007-11-01

    Pentacene-based low voltage organic field-effect transistors were realized using an anodized Ta2O5 gate dielectric. The Ta2O5 gate dielectric layer with a surface roughness of 1.3Å was obtained by anodizing an e-beam evaporated Ta film. The device exhibited values of saturation mobility, threshold voltage, and Ion/Ioff ratio of 0.45cm2/Vs, 0.56V, and 7.5×101, respectively. The gate leakage current was reduced by more than 70% with a hexamethyldisilazane (HMDS) treatment on the Ta2O5 layer. The HMDS treatment also resulted in enhanced mobility values and a larger pentacene grain size.

  12. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels

    PubMed Central

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.

    2013-01-01

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938

  13. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    PubMed

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.

  14. A gating grid driver for time projection chambers

    NASA Astrophysics Data System (ADS)

    Tangwancharoen, S.; Lynch, W. G.; Barney, J.; Estee, J.; Shane, R.; Tsang, M. B.; Zhang, Y.; Isobe, T.; Kurata-Nishimura, M.; Murakami, T.; Xiao, Z. G.; Zhang, Y. F.; SπRIT Collaboration

    2017-05-01

    A simple but novel driver system has been developed to operate the wire gating grid of a Time Projection Chamber (TPC). This system connects the wires of the gating grid to its driver via low impedance transmission lines. When the gating grid is open, all wires have the same voltage allowing drift electrons, produced by the ionization of the detector gas molecules, to pass through to the anode wires. When the grid is closed, the wires have alternating higher and lower voltages causing the drift electrons to terminate at the more positive wires. Rapid opening of the gating grid with low pickup noise is achieved by quickly shorting the positive and negative wires to attain the average bias potential with N-type and P-type MOSFET switches. The circuit analysis and simulation software SPICE shows that the driver restores the gating grid voltage to 90% of the opening voltage in less than 0.20 μs, for small values of the termination resistors. When tested in the experimental environment of a time projection chamber larger termination resistors were chosen so that the driver opens the gating grid in 0.35 μs. In each case, opening time is basically characterized by the RC constant given by the resistance of the switches and terminating resistors and the capacitance of the gating grid and its transmission line. By adding a second pair of N-type and P-type MOSFET switches, the gating grid is closed by restoring 99% of the original charges to the wires within 3 μs.

  15. Induction of divalent cation permeability by heterologous expression of a voltage sensor domain.

    PubMed

    Arima, Hiroki; Tsutsui, Hidekazu; Sakamoto, Ayako; Yoshida, Manabu; Okamura, Yasushi

    2018-01-06

    The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K + channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Voltage gated sodium channels as drug discovery targets

    PubMed Central

    Bagal, Sharan K; Marron, Brian E; Owen, Robert M; Storer, R Ian; Swain, Nigel A

    2015-01-01

    Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter. PMID:26646477

  17. Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature.

    PubMed

    Greenberg, R M

    2005-01-01

    Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular processes, and cells employ both intracellular and extracellular sources of Ca2+ for signalling. Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ channels are members of the ion channel superfamily and represent essential components of neurons, muscles and other excitable cells. Ca2+ channels are membrane protein complexes in which the pore-forming alpha1 subunit is modulated by auxiliary subunits such as beta and alpha2delta. Schistosomes express two Ca2+ channel beta subunit subtypes: a conventional subtype similar to beta subunits found in other vertebrates and invertebrates and a novel variant subtype with unusual structural and functional properties. The variant schistosome beta subunit confers praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, implicating it as a mediator of praziquantel action.

  18. Comparison between mouse and sea urchin orthologs of voltage-gated proton channel suggests role of S3 segment in activation gating.

    PubMed

    Sakata, Souhei; Miyawaki, Nana; McCormack, Thomas J; Arima, Hiroki; Kawanabe, Akira; Özkucur, Nurdan; Kurokawa, Tatsuki; Jinno, Yuka; Fujiwara, Yuichiro; Okamura, Yasushi

    2016-12-01

    The voltage-gated proton channel, Hv1, is expressed in blood cells, airway epithelium, sperm and microglia, playing important roles in diverse biological contexts including phagocytosis or sperm maturation through its regulation of membrane potential and pH. The gene encoding Hv1, HVCN1, is widely found across many species and is also conserved in unicellular organisms such as algae or dinoflagellates where Hv1 plays role in calcification or bioluminescence. Voltage-gated proton channels exhibit a large variation of activation rate among different species. Here we identify an Hv1 ortholog from sea urchin, Strongylocentrotus purpuratus, SpHv1. SpHv1 retains most of key properties of Hv1 but exhibits 20-60 times more rapid activation kinetics than mammalian orthologs upon heterologous expression in HEK293T cells. Comparison between SpHv1 and mHv1 highlights novel roles of the third transmembrane segment S3 in activation gating of Hv1. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel.

    PubMed Central

    Peng, S; Blachly-Dyson, E; Forte, M; Colombini, M

    1992-01-01

    The VDAC channel of the mitochondrial outer membrane is voltage-gated like the larger, more complex voltage-gated channels of the plasma membrane. However, VDAC is a low molecular weight (30 kDa), abundant protein, which is readily purified and reconstituted, making it an ideal system for analyzing the molecular basis for ion selectivity and voltage-gating. We have probed the VDAC channel by subjecting the cloned yeast (S. cerevisiae) VDAC gene to site-directed mutagenesis and introducing the resulting mutant channels into planar bilayers to detect the effects of specific sequence changes on channel properties. This approach has allowed us to formulate and test a model of the open state structure of the VDAC channel. Now we have applied the same approach to analyzing the structure of the channel's low-conducting "closed state" (essentially closed to important metabolites). We have identified protein domains forming the wall of the closed conformation and domains that seem to be removed from the wall of the pore during channel closure. The latter can explain the reduction in pore diameter and volume and the dramatically altered channel selectivity resulting from the channel closure. This process would make a natural coupling between motion of the sensor and channel gating. PMID:1376163

  20. Inhibitory effects of magnolol on voltage-gated Na+ and K+ channels of NG108-15 cells.

    PubMed

    Gong, Chi-Li; Wong, Kar-Lok; Cheng, Ka-Shun; Kuo, Chang-Shin; Chao, Chia-Chia; Tsai, Min-Fan; Leung, Yuk-Man

    2012-05-05

    Magnolol, a polyphenolic compound isolated from Houpu, a Chinese herb from the bark of Magnolia officinalis, has been reported to have in vitro and in vivo neuroprotective effects. In spite of these reported beneficial effects, studies on the direct impact of magnolol on neuronal ion channels have been scarce. Whether magnolol affects voltage-gated Na(+) channels (VGSC) and voltage-gated K(+) (Kv) channels is unknown. Using the whole-cell voltage-clamp method, we studied the effects of magnolol on voltage-gated ion channels in neuronal NG108-15 cells. Magnolol inhibited VGSC channels with mild state-dependence (IC(50) of 15 and 30 μM, at holding potentials of -70 and -100 mV, respectively). No frequency-dependence was observed in magnolol block. Magnolol caused a left-shift of 18 mV in the steady-state inactivation curve but did not affect the voltage-dependence of activation. Magnolol inhibited Kv channels with an IC(50) of 21 μM, and it caused a 20-mV left-shift in the steady-state inactivation curve without affecting the voltage-dependence of activation. In conclusion, magnolol is an inhibitor of both VGSC and Kv channels and these inhibitory effects may in part contribute to some of the reported neuroprotective effects of magnolol. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through upregulating L-type calcium channel activity.

    PubMed

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-09-01

    A specialized culture medium termed ciliary neurotrophic factor-treated astrocyte-conditioned medium (CNTF-ACM) allows investigators to assess the peripheral effects of CNTF-induced activated astrocytes upon cultured neurons. CNTF-ACM has been shown to upregulate neuronal L-type calcium channel current activity, which has been previously linked to changes in mitochondrial respiration and oxidative stress. Therefore, the aim of this study was to evaluate CNTF-ACM's effects upon mitochondrial respiration and oxidative stress in rat cortical neurons. Cortical neurons, CNTF-ACM, and untreated control astrocyte-conditioned medium (UC-ACM) were prepared from neonatal Sprague-Dawley rat cortical tissue. Neurons were cultured in either CNTF-ACM or UC-ACM for a 48-h period. Changes in the following parameters before and after treatment with the L-type calcium channel blocker isradipine were assessed: (i) intracellular calcium levels, (ii) mitochondrial membrane potential (ΔΨm), (iii) oxygen consumption rate (OCR) and adenosine triphosphate (ATP) formation, (iv) intracellular nitric oxide (NO) levels, (v) mitochondrial reactive oxygen species (ROS) production, and (vi) susceptibility to the mitochondrial complex I toxin rotenone. CNTF-ACM neurons displayed the following significant changes relative to UC-ACM neurons: (i) increased intracellular calcium levels (p < 0.05), (ii) elevation in ΔΨm (p < 0.05), (iii) increased OCR and ATP formation (p < 0.05), (iv) increased intracellular NO levels (p < 0.05), (v) increased mitochondrial ROS production (p < 0.05), and (vi) increased susceptibility to rotenone (p < 0.05). Treatment with isradipine was able to partially rescue these negative effects of CNTF-ACM (p < 0.05). CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through elevating L-type calcium channel activity.

  2. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1.

    PubMed

    Su, Qiang; Hu, Feizhuo; Liu, Yuxia; Ge, Xiaofei; Mei, Changlin; Yu, Shengqiang; Shen, Aiwen; Zhou, Qiang; Yan, Chuangye; Lei, Jianlin; Zhang, Yanqing; Liu, Xiaodong; Wang, Tingliang

    2018-03-22

    PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a nonselective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π-π interactions, suggesting a potential PKD2L1 gating mechanism.

  3. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

    PubMed

    Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R

    2016-09-01

    The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*

    PubMed Central

    Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe

    2015-01-01

    Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121

  5. Calcium homeostasis and protein kinase/phosphatase balance participate in nicotine-induced memory improvement in passive avoidance task in mice.

    PubMed

    Michalak, Agnieszka; Biala, Grazyna

    2017-01-15

    Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca 2+ /calmodulin concentration. LTP results from Ca 2+ influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca 2+ influx, leads to activation of Ca 2+ /calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca 2+ , it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells?

    PubMed

    Besson, Pierre; Driffort, Virginie; Bon, Émeline; Gradek, Frédéric; Chevalier, Stéphan; Roger, Sébastien

    2015-10-01

    Voltage-gated sodium channels are abnormally expressed in tumors, often as neonatal isoforms, while they are not expressed, or only at a low level, in the matching normal tissue. The level of their expression and their activity is related to the aggressiveness of the disease and to the formation of metastases. A vast knowledge on the regulation of their expression and functioning has been accumulated in normal excitable cells. This helped understand their regulation in cancer cells. However, how voltage-gated sodium channels impose a pro-metastatic behavior to cancer cells is much less documented. This aspect will be addressed in the review. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin

    PubMed Central

    Ozawa, Shin-ichiro; Kimura, Tomomi; Nozaki, Tomohiro; Harada, Hitomi; Shimada, Ichio; Osawa, Masanori

    2015-01-01

    Voltage-dependent K+ (Kv) channels play crucial roles in nerve and muscle action potentials. Voltage-sensing domains (VSDs) of Kv channels sense changes in the transmembrane potential, regulating the K+-permeability across the membrane. Gating modifier toxins, which have been used for the functional analyses of Kv channels, inhibit Kv channels by binding to VSD. However, the structural basis for the inhibition remains elusive. Here, fluorescence and NMR analyses of the interaction between VSD derived from KvAP channel and its gating modifier toxin, VSTx1, indicate that VSTx1 recognizes VSD under depolarized condition. We identified the VSD-binding residues of VSTx1 and their proximal residues of VSD by the cross-saturation (CS) and amino acid selective CS experiments, which enabled to build a docking model of the complex. These results provide structural basis for the specific binding and inhibition of Kv channels by gating modifier toxins. PMID:26382304

  8. Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle.

    PubMed

    Bowles, D K; Maddali, K K; Ganjam, V K; Rubin, L J; Tharp, D L; Turk, J R; Heaps, C L

    2004-11-01

    Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.

  9. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders

    PubMed Central

    Heyes, Samuel; Pratt, Wendy S.; Rees, Elliott; Dahimene, Shehrazade; Ferron, Laurent; Owen, Michael J.; Dolphin, Annette C.

    2015-01-01

    This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients. PMID:26386135

  10. [Distribution diversity of integrins and calcium channels on major human and mouse host cells of Leptospira species].

    PubMed

    Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie

    2012-07-01

    To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.

  11. A novel impedance-based cellular assay for the detection of anti-calcium channel autoantibodies in type 1 diabetes.

    PubMed

    Jackson, Michael W; Gordon, Tom P

    2010-09-30

    We have recently postulated that functional autoantibodies (Abs) against L-type voltage-gated calcium channels (VGCCs) contribute to autonomic dysfunction in type 1 diabetes (T1D). Previous studies based on whole-organ assays have proven valuable in establishing the mechanism of anti-VGCC Ab activity, but are complex and unsuitable for screening large patient cohorts. In the current study, we used real-time dynamic monitoring of cell impedance to demonstrate that anti-VGCC Abs from patients with T1D inhibit the adherence of Rin A12 cells. The functional effect of the anti-VGCC Abs was mimicked by the dihydropyridine agonist, Bay K8644, and reversed by the antagonist, nicardipine, providing a pharmacological link to the whole-organ studies. IVIg neutralized the effect on cell adhesion of the anti-VGCC Abs, consistent with the presence of anti-idiotypic Abs in IVIg that may prevent the emergence of pathogenic Abs in healthy individuals. The cell impedance assay can be performed in a 96 well plate format, and represents a simple method for detecting the presence of anti-VGCC activity in patient immunoglobulin (IgG). The new cell assay should prove useful for further studies to determine the prevalence of the Ab and its association with symptoms of autonomic dysfunction in patients with T1D. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  12. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability

    PubMed Central

    Hsu, Wei-Chun J.; Scala, Federico; Nenov, Miroslav N.; Wildburger, Norelle C.; Elferink, Hannah; Singh, Aditya K.; Chesson, Charles B.; Buzhdygan, Tetyana; Sohail, Maveen; Shavkunov, Alexander S.; Panova, Neli I.; Nilsson, Carol L.; Rudra, Jai S.; Lichti, Cheryl F.; Laezza, Fernanda

    2016-01-01

    Recent data shows that fibroblast growth factor 14 (FGF14) binds to and controls the function of the voltage-gated sodium (Nav) channel with phenotypic outcomes on neuronal excitability. Mutations in the FGF14 gene in humans have been associated with brain disorders that are partially recapitulated in Fgf14−/− mice. Thus, signaling pathways that modulate the FGF14:Nav channel interaction may be important therapeutic targets. Bioluminescence-based screening of small molecule modulators of the FGF14:Nav1.6 complex identified 4,5,6,7-tetrabromobenzotriazole (TBB), a potent casein kinase 2 (CK2) inhibitor, as a strong suppressor of FGF14:Nav1.6 interaction. Inhibition of CK2 through TBB reduces the interaction of FGF14 with Nav1.6 and Nav1.2 channels. Mass spectrometry confirmed direct phosphorylation of FGF14 by CK2 at S228 and S230, and mutation to alanine at these sites modified FGF14 modulation of Nav1.6-mediated currents. In 1 d in vitro hippocampal neurons, TBB induced a reduction in FGF14 expression, a decrease in transient Na+ current amplitude, and a hyperpolarizing shift in the voltage dependence of Nav channel steady-state inactivation. In mature neurons, TBB reduces the axodendritic polarity of FGF14. In cornu ammonis area 1 hippocampal slices from wild-type mice, TBB impairs neuronal excitability by increasing action potential threshold and lowering firing frequency. Importantly, these changes in excitability are recapitulated in Fgf14−/− mice, and deletion of Fgf14 occludes TBB-dependent phenotypes observed in wild-type mice. These results suggest that a CK2-FGF14 axis may regulate Nav channels and neuronal excitability.—Hsu, W.-C. J., Scala, F., Nenov, M. N., Wildburger, N. C., Elferink, H., Singh, A. K., Chesson, C. B., Buzhdygan, T., Sohail, M., Shavkunov, A. S., Panova, N. I., Nilsson, C. L., Rudra, J. S., Lichti, C. F., Laezza, F. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal

  13. ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling.

    PubMed

    Mor, Merav; Beharier, Ofer; Levy, Shiri; Kahn, Joy; Dror, Shani; Blumenthal, Daniel; Gheber, Levi A; Peretz, Asher; Katz, Amos; Moran, Arie; Etzion, Yoram

    2012-07-15

    Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents (I(caT)) to 182 ± 15 and 167.95 ± 9.27% of control, respectively (P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of I(caT). In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the I(caT) to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone (P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.

  14. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    PubMed Central

    Rao, Vidhya R.; Perez-Neut, Mathew; Kaja, Simon; Gentile, Saverio

    2015-01-01

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K+, Ca++, Cl−, Na+. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation. PMID:26010603

  15. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.

    PubMed

    Seol, Min; Kuner, Thomas

    2015-12-01

    The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Molecular modelling studies of kdr mutations in voltage gated sodium channel revealed significant conformational variations contributing to insecticide resistance.

    PubMed

    Yellapu, Nanda Kumar; Gopal, Jeyakodi; Kasinathan, Gunasekaran; Purushothaman, Jambulingam

    2018-06-01

    Voltage gated sodium channels (VGSC) of mosquito vectors are the primary targets of dichlorodiphenyltrichloroethane (DDT) and other synthetic pyrethroids used in public health programmes. The knockdown resistant (kdr) mutations in VGSC are associated with the insecticide resistance especially in Anophelines. The present study is aimed to emphasize and demarcate the impact of three kdr-mutations such as L1014S, L1014F and L1014H on insecticide resistance. The membrane model of sodium transport domain of VGSC (STD-VGSC) was constructed using de novo approach based on domain and trans-membrane predictions. The comparative molecular modelling studies of wild type and mutant models of STD-VGSC revealed that L1014F mutant was observed to be near native to the wild type model in all the respects, but, L1014S and L1014H mutations showed drastic variations in the energy levels, root mean square fluctuations (RMSF) that resulted in conformational variations. The predicted binding sites also showed variable cavity volumes and RMSF in L1014S and L1014H mutants. Further, DDT also found be bound in near native manner to wild type in L1014F mutant and with variable orientation and affinities in L1014S and L1014H mutants. The variations and fluctuations observed in mutant structures explained that each mutation has its specific impact on the conformation of VGSC and its binding with DDT. The study provides new insights into the structure-function-correlations of mutant STD-VGSC structures and demonstrates the role and effects of kdr mutations on insecticide resistance in mosquito vectors.

  17. Regulation of the Proteasome by Neuronal Activity and Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Djakovic, Stevan N.; Schwarz, Lindsay A.; Barylko, Barbara; DeMartino, George N.; Patrick, Gentry N.

    2009-01-01

    Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation. PMID:19638347

  18. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.

    PubMed

    Djakovic, Stevan N; Schwarz, Lindsay A; Barylko, Barbara; DeMartino, George N; Patrick, Gentry N

    2009-09-25

    Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-D-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.

  19. Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels.

    PubMed

    Vien, T N; DeCaen, P G

    2016-01-01

    This chapter describes the adaptive features found in voltage-gated sodium channels (NaVs) of prokaryotes and eukaryotes. These two families are distinct, having diverged early in evolutionary history but maintain a surprising degree of convergence in function. While prokaryotic NaVs are required for growth and motility, eukaryotic NaVs selectively conduct fast electrical currents for short- and long-range signaling across cell membranes in mammalian organs. Current interest in prokaryotic NaVs is stoked by their resolved high-resolution structures and functional features which are reminiscent of eukaryotic NaVs. In this chapter, comparisons between eukaryotic and prokaryotic NaVs are made to highlight the shared and unique aspects of ion selectivity, voltage sensitivity, and pharmacology. Examples of prokaryotic and eukaryotic NaV convergent evolution will be discussed within the context of their structural features. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Frequency-Stable Ionic-Type Hybrid Gate Dielectrics for High Mobility Solution-Processed Metal-Oxide Thin-Film Transistors

    PubMed Central

    Heo, Jae Sang; Choi, Seungbeom; Jo, Jeong-Wan; Kang, Jingu; Park, Ho-Hyun; Kim, Yong-Hoon; Park, Sung Kyu

    2017-01-01

    In this paper, we demonstrate high mobility solution-processed metal-oxide thin-film transistors (TFTs) by using a high-frequency-stable ionic-type hybrid gate dielectric (HGD). The HGD gate dielectric, a blend of sol-gel aluminum oxide (AlOx) and poly(4-vinylphenol) (PVP), exhibited high dielectric constant (ε~8.15) and high-frequency-stable characteristics (1 MHz). Using the ionic-type HGD as a gate dielectric layer, an minimal electron-double-layer (EDL) can be formed at the gate dielectric/InOx interface, enhancing the field-effect mobility of the TFTs. Particularly, using the ionic-type HGD gate dielectrics annealed at 350 °C, InOx TFTs having an average field-effect mobility of 16.1 cm2/Vs were achieved (maximum mobility of 24 cm2/Vs). Furthermore, the ionic-type HGD gate dielectrics can be processed at a low temperature of 150 °C, which may enable their applications in low-thermal-budget plastic and elastomeric substrates. In addition, we systematically studied the operational stability of the InOx TFTs using the HGD gate dielectric, and it was observed that the HGD gate dielectric effectively suppressed the negative threshold voltage shift during the negative-illumination-bias stress possibly owing to the recombination of hole carriers injected in the gate dielectric with the negatively charged ionic species in the HGD gate dielectric. PMID:28772972

  1. Altering calcium influx for selective destruction of breast tumor.

    PubMed

    Yu, Han-Gang; McLaughlin, Sarah; Newman, Mackenzie; Brundage, Kathleen; Ammer, Amanda; Martin, Karen; Coad, James

    2017-03-04

    Human triple-negative breast cancer has limited therapeutic choices. Breast tumor cells have depolarized plasma membrane potential. Using this unique electrical property, we aim to develop an effective selective killing of triple-negative breast cancer. We used an engineered L-type voltage-gated calcium channel (Cec), activated by membrane depolarization without inactivation, to induce excessive calcium influx in breast tumor cells. Patch clamp and flow cytometry were used in testing the killing selectivity and efficiency of human breast tumor cells in vitro. Bioluminescence and ultrasound imaging were used in studies of human triple-negative breast cancer cell MDA-MB-231 xenograft in mice. Histological staining, immunoblotting and immunohistochemistry were used to investigate mechanism that mediates Cec-induced cell death. Activating Cec channels expressed in human breast cancer MCF7 cells produced enormous calcium influx at depolarized membrane. Activating the wild-type Cav1.2 channels expressed in MCF7 cells also produced a large calcium influx at depolarized membrane, but this calcium influx was diminished at the sustained membrane depolarization due to channel inactivation. MCF7 cells expressing Cec died when the membrane potential was held at -10 mV for 1 hr, while non-Cec-expressing MCF7 cells were alive. MCF7 cell death was 8-fold higher in Cec-expressing cells than in non-Cec-expressing cells. Direct injection of lentivirus containing Cec into MDA-MB-231 xenograft in mice inhibited tumor growth. Activated caspase-3 protein was detected only in MDA-MB-231 cells expressing Cec, along with a significantly increased expression of activated caspase-3 in xenograft tumor treated with Cec. We demonstrated a novel strategy to induce constant calcium influx that selectively kills human triple-negative breast tumor cells.

  2. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.

    PubMed

    Song, Jin-Ho; Yeh, Jay Z

    2012-05-10

    Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Single cell analysis of voltage-gated potassium channels that determines neuronal types of rat hypothalamic paraventricular nucleus neurons.

    PubMed

    Lee, S K; Lee, S; Shin, S Y; Ryu, P D; Lee, S Y

    2012-03-15

    The hypothalamic paraventricular nucleus (PVN), a site for the integration of both the neuroendocrine and autonomic systems, has heterogeneous cell composition. These neurons are classified into type I and type II neurons based on their electrophysiological properties. In the present study, we investigated the molecular identification of voltage-gated K+ (Kv) channels, which determines a distinctive characteristic of type I PVN neurons, by means of single-cell reverse transcription-polymerase chain reaction (RT-PCR) along with slice patch clamp recordings. In order to determine the mRNA expression profiles, firstly, the PVN neurons of male rats were classified into type I and type II neurons, and then, single-cell RT-PCR and single-cell real-time RT-PCR analysis were performed using the identical cell. The single-cell RT-PCR analysis revealed that Kv1.2, Kv1.3, Kv1.4, Kv4.1, Kv4.2, and Kv4.3 were expressed both in type I and in type II neurons, and several Kv channels were co-expressed in a single PVN neuron. However, we found that the expression densities of Kv4.2 and Kv4.3 were significantly higher in type I neurons than in type II neurons. Taken together, several Kv channels encoding A-type K+ currents are present both in type I and in type II neurons, and among those, Kv4.2 and Kv4.3 are the major Kv subunits responsible for determining the distinct electrophysiological properties. Thus these 2 Kv subunits may play important roles in determining PVN cell types and regulating PVN neuronal excitability. This study further provides key molecular mechanisms for differentiating type I and type II PVN neurons. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding?

    PubMed

    Gasperini, Robert J; Pavez, Macarena; Thompson, Adrian C; Mitchell, Camilla B; Hardy, Holly; Young, Kaylene M; Chilton, John K; Foa, Lisa

    2017-10-01

    The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  6. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    PubMed

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  7. The voltage sensor of excitation–contraction coupling in mammals: Inactivation and interaction with Ca2+

    PubMed Central

    2017-01-01

    In skeletal muscle, the four-helix voltage-sensing modules (VSMs) of CaV1.1 calcium channels simultaneously gate two Ca2+ pathways: the CaV1.1 pore itself and the RyR1 calcium release channel in the sarcoplasmic reticulum. Here, to gain insight into the mechanism by which VSMs gate RyR1, we quantify intramembrane charge movement associated with VSM activation (sensing current) and gated Ca2+ release flux in single muscle cells of mice and rats. As found for most four-helix VSMs, upon sustained depolarization, rodent VSMs lose the ability to activate Ca2+ release channels opening; their properties change from a functionally capable mode, in which the mobile sensor charge is called charge 1, to an inactivated mode, charge 2, with a voltage dependence shifted toward more negative voltages. We find that charge 2 is promoted and Ca2+ release inactivated when resting, well-polarized muscle cells are exposed to low extracellular [Ca2+] and that the opposite occurs in high [Ca2+]. It follows that murine VSMs are partly inactivated at rest, which establishes the reduced availability of voltage sensing as a pathogenic mechanism in disorders of calcemia. We additionally find that the degree of resting inactivation is significantly different in two mouse strains, which underscores the variability of voltage sensor properties and their vulnerability to environmental conditions. Our studies reveal that the resting and activated states of VSMs are equally favored by extracellular Ca2+. Promotion by an extracellular species of two states of the VSM that differ in the conformation of the activation gate requires the existence of a second gate, inactivation, topologically extracellular and therefore accessible from outside regardless of the activation state. PMID:29021148

  8. Neurological perspectives on voltage-gated sodium channels

    PubMed Central

    Linley, John E.; Baker, Mark D.; Minett, Michael S.; Cregg, Roman; Werdehausen, Robert; Rugiero, François

    2012-01-01

    The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors. PMID:22961543

  9. Biophysics of BK Channel Gating.

    PubMed

    Pantazis, A; Olcese, R

    2016-01-01

    BK channels are universal regulators of cell excitability, given their exceptional unitary conductance selective for K(+), joint activation mechanism by membrane depolarization and intracellular [Ca(2+)] elevation, and broad expression pattern. In this chapter, we discuss the structural basis and operational principles of their activation, or gating, by membrane potential and calcium. We also discuss how the two activation mechanisms interact to culminate in channel opening. As members of the voltage-gated potassium channel superfamily, BK channels are discussed in the context of archetypal family members, in terms of similarities that help us understand their function, but also seminal structural and biophysical differences that confer unique functional properties. © 2016 Elsevier Inc. All rights reserved.

  10. Mechanisms Responsible for ω-Pore Currents in Cav Calcium Channel Voltage-Sensing Domains.

    PubMed

    Monteleone, Stefania; Lieb, Andreas; Pinggera, Alexandra; Negro, Giulia; Fuchs, Julian E; Hofer, Florian; Striessnig, Jörg; Tuluc, Petronel; Liedl, Klaus R

    2017-10-03

    Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in Ca V 1.1 and Ca V 1.3 Ca 2+ channels bearing several S4 charge mutations. Our modeling predicts that mutations of Ca V 1.1-R1 (R528H/G, R897S) or Ca V 1.1-R2 (R900S, R1239H) linked to hypokalemic periodic paralysis type 1 and of Ca V 1.3-R3 (R990H) identified in aldosterone-producing adenomas conducts ω-currents in resting state, but not during voltage-sensing domain activation. The mechanism responsible for the ω-current and its amplitude depend on the number of charges in S4, the position of the mutated S4 charge and countercharges, and the nature of the replacing amino acid. Functional characterization validates the modeling prediction showing that Ca V 1.3-R990H channels conduct ω-currents at hyperpolarizing potentials, but not upon membrane depolarization compared with wild-type channels. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Protective effects of efonidipine, a T- and L-type calcium channel blocker, on renal function and arterial stiffness in type 2 diabetic patients with hypertension and nephropathy.

    PubMed

    Sasaki, Hidehisa; Saiki, Atsuhito; Endo, Kei; Ban, Noriko; Yamaguchi, Takashi; Kawana, Hidetoshi; Nagayama, Daizi; Ohhira, Masahiro; Oyama, Tomokazu; Miyashita, Yoh; Shirai, Kohji

    2009-10-01

    The three types of calcium channel blocker (CCB), L-, T- and N-type, possess heterogeneous actions on endothelial function and renal microvascular function. In the present study, we evaluated the effects of two CCBs, efonidipine and amlodipine, on renal function and arterial stiffness. Forty type 2 diabetic patients with hypertension and nephropathy receiving angiotensin receptor II blockers were enrolled and randomly divided into two groups: the efonidipine group was administered efonidipine hydrochloride ethanolate 40 mg/day and the amlodipine group was admin-istered amlodipine besilate 5 mg/day for 12 months. Arterial stiffness was evaluated by the cardio-ankle vascular index (CAVI). Changes in blood pressure during the study were almost the same in the two groups. Sig-nificant increases in serum creatinine and urinary albumin and a significant decrease in the esti-mated glomerular filtration rate were observed in the amlodipine group, but not in the efonidipine group. On the other hand, significant decreases in plasma aldosterone, urinary 8-hydroxy-2'-deoxy-guanosine and CAVI were observed after 12 months in the efonidipine group, but not in the amlo-dipine group. These results suggest that efonidipine, which is both a T-type and L-type calcium chan-nel blocker, has more favorable effects on renal function, oxidative stress and arterial stiffness than amlodipine, an L-type calcium channel blocker.

  12. Lidocaine reduces the transition to slow inactivation in Nav1.7 voltage-gated sodium channels

    PubMed Central

    Sheets, Patrick L; Jarecki, Brian W; Cummins, Theodore R

    2011-01-01

    BACKGROUND AND PURPOSE The primary use of local anaesthetics is to prevent or relieve pain by reversibly preventing action potential propagation through the inhibition of voltage-gated sodium channels. The tetrodotoxin-sensitive voltage-gated sodium channel subtype Nav1.7, abundantly expressed in pain-sensing neurons, plays a crucial role in perception and transmission of painful stimuli and in inherited chronic pain syndromes. Understanding the interaction of lidocaine with Nav1.7 channels could provide valuable insight into the drug's action in alleviating pain in distinct patient populations. The aim of this study was to determine how lidocaine interacts with multiple inactivated conformations of Nav1.7 channels. EXPERIMENTAL APPROACH We investigated the interactions of lidocaine with wild-type Nav1.7 channels and a paroxysmal extreme pain disorder mutation (I1461T) that destabilizes fast inactivation. Whole cell patch clamp recordings were used to examine the activity of channels expressed in human embryonic kidney 293 cells. KEY RESULTS Depolarizing pulses that increased slow inactivation of Nav1.7 channels also reduced lidocaine inhibition. Lidocaine enhanced recovery of Nav1.7 channels from prolonged depolarizing pulses by decreasing slow inactivation. A paroxysmal extreme pain disorder mutation that destabilizes fast inactivation of Nav1.7 channels decreased lidocaine inhibition. CONCLUSIONS AND IMPLICATIONS Lidocaine decreased the transition of Nav1.7 channels to the slow inactivated state. The fast inactivation gate (domain III–IV linker) is important for potentiating the interaction of lidocaine with the Nav1.7 channel. PMID:21232038

  13. Molecule desorption induced by gate-voltage application in MOS structure

    NASA Astrophysics Data System (ADS)

    Hirota, Nozomu; Hattori, Ken; Daimon, Hiroshi; Hattori, Azusa N.; Tanaka, Hidekazu

    2016-04-01

    For the first time, we demonstrate desorption from a MOS surface by applying gate voltages (V G). We observed CH4, CO, and CO2 desorption from a MOS (Fe nanofilm/a-SiO2/Si) surface in vacuum only when applying negative V G, suggesting the occurrence of electronic excitation by hot-hole injection. This demonstration is the first step in the application of MOSs to electrically controlled catalysts.

  14. Pyrethroid resistance in Sitophilus zeamais is associated with a mutation (T929I) in the voltage-gated sodium channel.

    PubMed

    Araújo, Rúbia A; Williamson, Martin S; Bass, Christopher; Field, Linda M; Duce, Ian R

    2011-08-01

    The maize weevil, Sitophilus zeamais, is the most important pest affecting stored grain in Brazil and its control relies heavily on the use of insecticides. The intensive use of compounds such as the pyrethroids has led to the emergence of resistance, and previous studies have suggested that resistance to both pyrethroids and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) may result from reduced sensitivity of the insecticide target, the voltage-gated sodium channel. To identify the molecular mechanisms underlying pyrethroid resistance in S. zeamais, the domain II region of the voltage-gated sodium channel (para-orthologue) gene was amplified by PCR and sequenced from susceptible and resistant laboratory S. zeamais strains that were selected with a discriminating dose of DDT. A single point mutation, T929I, was found in the para gene of the resistant S. zeamais populations and its presence in individual weevils was strongly associated with survival after DDT exposure. This is the first identification of a target-site resistance mutation in S. zeamais and unusually it is a super-kdr type mutation occurring in the absence of the more common kdr (L1014F) substitution. A high-throughput assay based on TaqMan single nucleotide polymorphism genotyping was developed for sensitive detection of the mutation and used to screen field-collected strains of S. zeamais. This showed that the mutation is present at low frequency in field populations and is a useful tool for informing control strategies. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  15. Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel

    PubMed Central

    Varela, Diego; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V

    2002-01-01

    ClC-2, a chloride channel widely expressed in mammalian tissues, is activated by hyperpolarisation and extracellular acidification. Deletion of amino acids 16–61 in rat ClC-2 abolishes voltage and pH dependence in two-electrode voltage-clamp experiments in amphibian oocytes. These results have been interpreted in terms of a ball-and-chain type of mechanism in which the N-terminus would behave as a ball that is removed from an inactivating site upon hyperpolarisation. We now report whole-cell patch-clamp measurements in mammalian cells showing hyperpolarization-activation of rClC-2Δ16–61 differing only in presenting faster opening and closing kinetics than rClC-2. The lack of time and voltage dependence observed previously was reproduced, however, in nystatin-perforated patch experiments. The behaviour of wild-type rClC-2 did not differ between conventional and nystatin-perforated patches. Similar results were obtained with ClC-2 from guinea-pig. One possible explanation of the results is that some diffusible component is able to lock the channel in an open state but does so only to the mutated channel. Alternative explanations involving the osmotic state of the cell and cytoskeleton structure are also considered. Low extracellular pH activates the wild-type channel but not rClC-2Δ16–61 when expressed in oocytes, a result that had been interpreted to suggest that protons affect the ball-and-chain mechanism. In our experiments no difference was seen in the effect of extracellular pH upon rClC-2 and rClC-2Δ16–61 in either recording configuration, suggesting that protons act independently from possible effects of the N-terminus on gating. Our observations of voltage-dependent gating of the N-terminal deleted ClC-2 are an argument against a ball-and-chain mechanism for this channel. PMID:12381811

  16. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    PubMed

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  17. Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels.

    PubMed

    Mckeown, Lynn; Burnham, Matthew P; Hodson, Charlotte; Jones, Owen T

    2008-10-31

    The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.

  18. Reversible control of doping in graphene-on-SiO2 by cooling under gate-voltage

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Gupta, Anjan Kumar

    2017-11-01

    The electronic properties of graphene can be modulated by various doping techniques other than back-gate, but most such methods are not easily reversible and also lead to mobility reduction. Here, we report on the reversible control of doping in graphene by cooling under back-gate-voltage. The observed variation in hysteresis in our devices with the temperature and interface preparation method is attributed to the variation in the density of redox species, namely, H2O and O2, at the graphene/SiO2 interface, and their diffusion. With careful interface preparation, we have been able to make devices with negligible hysteresis at room temperature and by exploiting hysteresis at high temperatures, we get a wide, but reversible tunability of interface charge density and graphene doping, by cooling to room temperature under gate-voltage. Such reversible control of graphene doping by manipulating the interface defect charge density can help in making new data storage devices using graphene.

  19. [Alterations of cardiac hemodynamics, sodium current and L-type calcium current in rats with L-thyroxine-induced cardiomyopathy].

    PubMed

    Wang, Jing; Zhang, Wei-Dong; Lin, Mu-Sen; Zhai, Qing-Bo; Yu, Feng

    2010-08-25

    The aim of the present study is to investigate the alterations of cardiac hemodynamics, sodium current (I(Na)) and L-type calcium current (I(Ca-L)) in the cardiomyopathic model of rats. The model of cardiomyopathy was established by intraperitoneal injection of L-thyroxine (0.5 mg/kg) for 10 d. The hemodynamics was measured with biological experimental system, and then I(Na) and I(Ca-L) were recorded by using whole cell patch clamp technique. The results showed that left ventricular systolic pressure (LVSP), left ventricular developed pressure (LVDP), +/-dp/dt(max) in cardiomyopathic group were significantly lower than those in the control group, while left ventricular end-diastolic pressure (LVEDP) in cardiomyopathic group was higher than that in the control group. Intraperitoneal injection of L-thyroxine significantly increased the current density of I(Na) [(-26.2+/-3.2) pA/pF vs (-21.1+/-6.3) pA/pF, P<0.01], shifted steady-state activation and inactivation curves negatively, and markedly prolonged the time constant of recovery from inactivation. On the other hand, the injection of L-thyroxine significantly increased the current density of I(Ca-L) [(-7.9+/-0.8) pA/pF vs (-5.4+/-0.6) pA/pF, P<0.01)], shifted steady-state activation and inactivation curves negatively, and obviously shortened the time constant of recovery from inactivation. In conclusion, the cardiac performance of cardiomyopathic rats is similar to that of rats with heart failure, in which the current density of I(Na) and especially the I(Ca-L) are enhanced, suggesting that calcium channel blockade and a decrease in Na(+) permeability of membrane may play an important role in the treatment of cardiomyopathy.

  20. Ephaptic coupling rescues conduction failure in weakly coupled cardiac tissue with voltage-gated gap junctions

    NASA Astrophysics Data System (ADS)

    Weinberg, S. H.

    2017-09-01

    Electrical conduction in cardiac tissue is usually considered to be primarily facilitated by gap junctions, providing a pathway between the intracellular spaces of neighboring cells. However, recent studies have highlighted the role of coupling via extracellular electric fields, also known as ephaptic coupling, particularly in the setting of reduced gap junction expression. Further, in the setting of reduced gap junctional coupling, voltage-dependent gating of gap junctions, an oft-neglected biophysical property in computational studies, produces a positive feedback that promotes conduction failure. We hypothesized that ephaptic coupling can break the positive feedback loop and rescue conduction failure in weakly coupled cardiac tissue. In a computational tissue model incorporating voltage-gated gap junctions and ephaptic coupling, we demonstrate that ephaptic coupling can rescue conduction failure in weakly coupled tissue. Further, ephaptic coupling increased conduction velocity in weakly coupled tissue, and importantly, reduced the minimum gap junctional coupling necessary for conduction, most prominently at fast pacing rates. Finally, we find that, although neglecting gap junction voltage-gating results in negligible differences in well coupled tissue, more significant differences occur in weakly coupled tissue, greatly underestimating the minimal gap junctional coupling that can maintain conduction. Our study suggests that ephaptic coupling plays a conduction-preserving role, particularly at rapid heart rates.

  1. Characterization of high-dose and high-energy implanted gate and source diode and analysis of lateral spreading of p gate profile in high voltage SiC static induction transistors

    NASA Astrophysics Data System (ADS)

    Onose, Hidekatsu; Kobayashi, Yutaka; Onuki, Jin

    2017-03-01

    The effect of the p gate dose on the characteristics of the gate-source diode in SiC static induction transistors (SIT) was investigated. It was found that a dose of 1.5 × 1014 cm-2 yields a pn junction breakdown voltage higher than 60 V and good forward characteristics. A normally on SiC SIT was fabricated and demonstrated. A blocking voltage higher than 2.0 kV at a gate-source voltage of -50 V and on-resistance of 70 mΩ cm2 were obtained. Device simulations were performed to investigate the effect of the lateral spreading. By comparing the measured I-V curves with simulation results, the lateral spreading factor was estimated to be about 0.5. The lateral spreading detrimentally affected the electrical properties of the SIT made using implantations at energies higher than 1 MeV.

  2. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells

    PubMed Central

    Tilley, Drew C.; Eum, Kenneth S.; Fletcher-Taylor, Sebastian; Austin, Daniel C.; Dupré, Christophe; Patrón, Lilian A.; Garcia, Rita L.; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E.; Sack, Jon T.

    2014-01-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX–fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  3. Bio-inspired voltage-dependent calcium channel blockers.

    PubMed

    Yang, Tingting; He, Lin-Ling; Chen, Ming; Fang, Kun; Colecraft, Henry M

    2013-01-01

    Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.

  4. Structural basis for gating and activation of RyR1

    PubMed Central

    des Georges, Amédée; Clarke, Oliver B.; Zalk, Ran; Yuan, Qi; Condon, Kendall J.; Grassucci, Robert A.; Hendrickson, Wayne A.; Marks, Andrew R.; Frank, Joachim

    2016-01-01

    Summary The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca2+) release channel required for skeletal muscle contraction. Here we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca2+, ATP and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca2+ alone induce conformational changes in the cytoplasmic assembly (‘priming’), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement and deformation of the S4-S5 linker, and conformational changes in the pseudo-voltage-sensor domain. PMID:27662087

  5. Locating the route of entry and binding sites of benzocaine and phenytoin in a bacterial voltage gated sodium channel.

    PubMed

    Martin, Lewis J; Corry, Ben

    2014-07-01

    Sodium channel blockers are used to control electrical excitability in cells as a treatment for epileptic seizures and cardiac arrhythmia, and to provide short term control of pain. Development of the next generation of drugs that can selectively target one of the nine types of voltage-gated sodium channel expressed in the body requires a much better understanding of how current channel blockers work. Here we make use of the recently determined crystal structure of the bacterial voltage gated sodium channel NavAb in molecular dynamics simulations to elucidate the position at which the sodium channel blocking drugs benzocaine and phenytoin bind to the protein as well as to understand how these drugs find their way into resting channels. We show that both drugs have two likely binding sites in the pore characterised by nonspecific, hydrophobic interactions: one just above the activation gate, and one at the entrance to the the lateral lipid filled fenestrations. Three independent methods find the same sites and all suggest that binding to the activation gate is slightly more favourable than at the fenestration. Both drugs are found to be able to pass through the fenestrations into the lipid with only small energy barriers, suggesting that this can represent the long posited hydrophobic entrance route for neutral drugs. Our simulations highlight the importance of a number of residues in directing drugs into and through the fenestration, and in forming the drug binding sites.

  6. Locating the Route of Entry and Binding Sites of Benzocaine and Phenytoin in a Bacterial Voltage Gated Sodium Channel

    PubMed Central

    Martin, Lewis J.; Corry, Ben

    2014-01-01

    Sodium channel blockers are used to control electrical excitability in cells as a treatment for epileptic seizures and cardiac arrhythmia, and to provide short term control of pain. Development of the next generation of drugs that can selectively target one of the nine types of voltage-gated sodium channel expressed in the body requires a much better understanding of how current channel blockers work. Here we make use of the recently determined crystal structure of the bacterial voltage gated sodium channel NavAb in molecular dynamics simulations to elucidate the position at which the sodium channel blocking drugs benzocaine and phenytoin bind to the protein as well as to understand how these drugs find their way into resting channels. We show that both drugs have two likely binding sites in the pore characterised by nonspecific, hydrophobic interactions: one just above the activation gate, and one at the entrance to the the lateral lipid filled fenestrations. Three independent methods find the same sites and all suggest that binding to the activation gate is slightly more favourable than at the fenestration. Both drugs are found to be able to pass through the fenestrations into the lipid with only small energy barriers, suggesting that this can represent the long posited hydrophobic entrance route for neutral drugs. Our simulations highlight the importance of a number of residues in directing drugs into and through the fenestration, and in forming the drug binding sites. PMID:24992293

  7. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    PubMed

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  8. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels

    PubMed Central

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447

  9. Voltage-gated Na+ currents in human dorsal root ganglion neurons

    PubMed Central

    Zhang, Xiulin; Priest, Birgit T; Belfer, Inna; Gold, Michael S

    2017-01-01

    Available evidence indicates voltage-gated Na+ channels (VGSCs) in peripheral sensory neurons are essential for the pain and hypersensitivity associated with tissue injury. However, our understanding of the biophysical and pharmacological properties of the channels in sensory neurons is largely based on the study of heterologous systems or rodent tissue, despite evidence that both expression systems and species differences influence these properties. Therefore, we sought to determine the extent to which the biophysical and pharmacological properties of VGSCs were comparable in rat and human sensory neurons. Whole cell patch clamp techniques were used to study Na+ currents in acutely dissociated neurons from human and rat. Our results indicate that while the two major current types, generally referred to as tetrodotoxin (TTX)-sensitive and TTX-resistant were qualitatively similar in neurons from rats and humans, there were several differences that have important implications for drug development as well as our understanding of pain mechanisms. DOI: http://dx.doi.org/10.7554/eLife.23235.001 PMID:28508747

  10. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  11. Identifying interacting proteins of a Caenorhabditis elegans voltage-gated chloride channel CLH-1 using GFP-Trap and mass spectrometry.

    PubMed

    Zhou, Zi-Liang; Jiang, Jing; Yin, Jiang-An; Cai, Shi-Qing

    2014-06-25

    Chloride channels belong to a superfamily of ion channels that permit passive passage of anions, mainly chloride, across cell membrane. They play a variety of important physiological roles in regulation of cytosolic pH, cell volume homeostasis, organic solute transport, cell migration, cell proliferation, and differentiation. However, little is known about the functional regulation of these channels. In this study, we generated an integrated transgenic worm strain expressing green fluorescence protein (GFP) fused CLC-type chloride channel 1 (CLH-1::GFP), a voltage-gated chloride channel in Caenorhabditis elegans (C. elegans). CLH-1::GFP was expressed in some unidentified head neurons and posterior intestinal cells of C. elegans. Interacting proteins of CLH-1::GFP were purified by GFP-Trap, a novel system for efficient isolation of GFP fusion proteins and their interacting factors. Mass spectrometry (MS) analysis revealed that a total of 27 high probability interacting proteins were co-trapped with CLHp-1::GFP. Biochemical evidence showed that eukaryotic translation elongation factor 1 (EEF-1), one of these co-trapped proteins identified by MS, physically interacted with CLH-1, in consistent with GFP-Trap experiments. Further immunostaining data revealed that the protein level of CLH-1 was significantly increased upon co-expression with EEF-1. These results suggest that the combination of GFP-Trap purification with MS is an excellent tool to identify novel interacting proteins of voltage-gated chloride channels in C. elegans. Our data also show that EEF-1 is a regulator of voltage-gated chloride channel CLH-1.

  12. Gate length variation effect on performance of gate-first self-aligned In₀.₅₃Ga₀.₄₇As MOSFET.

    PubMed

    Mohd Razip Wee, Mohd F; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y

    2013-01-01

    A multi-gate n-type In₀.₅₃Ga₀.₄₇As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm(2)/Vs are achieved for the gate length and width of 0.2 µm and 30 µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10(-8) A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared.

  13. Gate Length Variation Effect on Performance of Gate-First Self-Aligned In0.53Ga0.47As MOSFET

    PubMed Central

    Mohd Razip Wee, Mohd F.; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y.

    2013-01-01

    A multi-gate n-type In0.53Ga0.47As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm2/Vs are achieved for the gate length and width of 0.2 µm and 30µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10−8 A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared. PMID:24367548

  14. Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels

    PubMed Central

    Bartoletti, Theodore M.; Huang, Wei; Akopian, Abram; Thoreson, Wallace B.; Krizaj, David

    2009-01-01

    Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse. PMID:19696927

  15. TRICHLOROETHYLENE IHIBITS VOLTAGE-SENSITIVE CALCIUM CURRENTS IN DIFFERENTIATED PC 12 CELLS.

    EPA Science Inventory

    ABSTRACT BODY: It has been demonstrated recently that volatile organic compounds (VOCs)such as toluene, perchloroethylene and trichloroethylene inhibit function of voltage-sensitive calcium channels (VSSC). Such actions are hypothesized to contribute to the acute neurotoxicity of...

  16. Crebanine inhibits voltage-dependent Na+ current in guinea-pig ventricular myocytes.

    PubMed

    Xiao-Shan, He; Qing, Lin; Yun-Shu, Ma; Ze-Pu, Yu

    2014-01-01

    To study the effects of crebanine on voltage-gated Na(+) channels in cardiac tissues. Single ventricular myocytes were enzymatically dissociated from adult guinea-pig heart. Voltage-dependent Na(+) current was recorded using the whole cell voltage-clamp technique. Crebanine reversibly inhibited Na(+) current with an IC50 value of 0.283 mmol·L(-1) (95% confidence range: 0.248-0.318 mmol·L(-1)). Crebanine at 0.262 mmol·L(-1) caused a negative shift (about 12 mV) in the voltage-dependence of steady-state inactivation of Na(+) current, and retarded its recovery from inactivation, but did not affect its activation curve. In addition to blocking other voltage-gated ion channels, crebanine blocked Na(+) channels in guinea-pig ventricular myocytes. Crebanine acted as an inactivation stabilizer of Na(+) channels in cardiac tissues. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones.

    PubMed Central

    Fox, A P; Nowycky, M C; Tsien, R W

    1987-01-01

    1. Calcium currents in cultured dorsal root ganglion (d.r.g.) cells were studied with the whole-cell patch-clamp technique. Using experimental conditions that suppressed Na+ and K+ currents, and 3-10 mM-external Ca2+ or Ba2+, we distinguished three distinct types of calcium currents (L, T and N) on the basis of voltage-dependent kinetics and pharmacology. 2. Component L activates at relatively positive test potentials (t.p. greater than -10 mV) and shows little inactivation during a 200 ms depolarization. It is completely reprimed at a holding potential (h.p.) of -60 mV, and can be isolated by using a more depolarized h.p. (-40 mV) to inactivate the other two types of calcium currents. 3. Component T can be seen in isolation with weak test pulses. It begins activating at potentials more positive than -70 mV and inactivates quickly and completely during a maintained depolarization (time constant, tau approximately 20-50 ms). The current amplitude and the rate of decay increase with stronger depolarizations until both reach a maximum at approximately -40 mV. Inactivation is complete at h.p. greater than -60 mV and is progressively removed between -60 and -95 mV. 4. Component N activates at relatively strong depolarizations (t.p. greater than -20 mV) and decays with time constants ranging from 50 to 110 ms. Inactivation is removed over a very broad range of holding potentials (h.p. between -40 and -110 mV). 5. With 10 mM-EGTA in the pipette solution, substitution of Ba2+ for Ca2+ as the charge carrier does not alter the rates of activation or relaxation of any component. However, T-type channels are approximately equally permeable to Ca2+ and Ba2+, while L-type and N-type channels are both much more permeable to Ba2+. 6. Component N cannot be explained by current-dependent inactivation of L current resulting from recruitment of extra L-type channels at negative holding potentials: raising the external Ba2+ concentration to 110 mM greatly increases the amplitude of L

  18. The voltage-gated proton channel: a riddle, wrapped in a mystery, inside an enigma

    PubMed Central

    DeCoursey, Thomas E.

    2016-01-01

    The main properties of voltage gated proton channels are described, along with what is known about how the channel protein structure accomplishes these functions. Just as protons are unique among ions, proton channels are unique among ion channels. Their four transmembrane helices sense voltage, the pH gradient, and conduct protons exclusively. Selectivity is achieved by the unique ability of H3O+ to protonate an Asp-Arg salt bridge. Pathognomonic sensitivity of gating to the pH gradient ensures channel opening only when acid extrusion will result, which is crucial to most biological functions. An exception occurs in dinoflagellates in which H+ influx through HV1 triggers the bioluminescent flash. Pharmacological interventions that promise to ameliorate cancer, asthma, brain damage in ischemic stroke, Alzheimer’s disease, autoimmune diseases, and numerous other conditions, await future progress. PMID:25964989

  19. Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1.

    PubMed

    Cherny, Vladimir V; Morgan, Deri; Thomas, Sarah; Smith, Susan M E; DeCoursey, Thomas E

    2018-05-09

    We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis , HtH V 1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtH V 1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pH i ). The H + conductance ( g H )- V relationship in the voltage-gated proton channel (H V 1) from other species shifts 40 mV when either pH i or pH o (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of H V 1 in many species and in numerous human tissues. The HtH V 1 channel exhibits normal pH o dependence but anomalously weak pH i dependence. In this study, we show that a single point mutation in human hH V 1-changing His 168 to Gln 168 , the corresponding residue in HtH V 1-compromises the pH i dependence of gating in the human channel so that it recapitulates the HtH V 1 response. This location was previously identified as a contributor to the rapid gating kinetics of H V 1 in Strongylocentrotus purpuratus His 168 mutation in human H V 1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pH o dependence, but changing pH i shifts the g H - V relationship on average by <20 mV/unit. Thus, His 168 is critical to pH i sensing in hH V 1. His 168 , located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in H V 1 that significantly impairs pH sensing when mutated. Because pH o dependence remains intact, the selective erosion of pH i dependence supports the idea that there are distinct internal and external pH sensors. Although His 168 may itself be a pH i sensor, the converse mutation, Q229H, does not normalize the pH i sensitivity of the HtH V 1 channel. We hypothesize that the imidazole group of His 168 interacts with nearby Phe 165 or other parts of hH V 1 to

  20. Carbachol induces burst firing of dopamine cells in the ventral tegmental area by promoting calcium entry through L-type channels in the rat

    PubMed Central

    Zhang, Lei; Liu, Yudan; Chen, Xihua

    2005-01-01

    Enhanced activity of the central dopamine system has been implicated in many psychiatric disorders including schizophrenia and addiction. Besides terminal mechanisms that boost dopamine levels at the synapse, the cell body of dopamine cells enhances terminal dopamine concentration through encoding action potentials in bursts. This paper presents evidence that burst firing of dopamine cells in the ventral tegmental area was under cholinergic control using nystatin-perforated patch clamp recording from slice preparations. The non-selective cholinergic agonist carbachol excited the majority of recorded neurones, an action that was not affected by blocking glutamate and GABA ionotropic receptors. Twenty per cent of dopamine cells responded to carbachol with robust bursting, an effect mediated by both muscarinic and nicotinic cholinoceptors postsynaptically. Burst firing induced as such was completely dependent on calcium entry as it could be blocked by cadmium and more specifically the L-type blocker nifedipine. In the presence of the sodium channel blocker tetrodotoxin, carbachol induced membrane potential oscillation that had similar kinetics and frequency as burst firing cycles and could also be blocked by cadmium and nifedipine. Direct activation of the L-type channel with Bay K8644 induced strong bursting which could be blocked by nifedipine but not by depleting internal calcium stores. These results indicate that carbachol increases calcium entry into the postsynaptic cell through L-type channels to generate calcium-dependent membrane potential oscillation and burst firing. This could establish the L-type channel as a target for modulating the function of the central dopamine system in disease conditions. PMID:16081481

  1. Molecular basis of proton block of L-type Ca2+ channels.

    PubMed

    Chen, X H; Bezprozvanny, I; Tsien, R W

    1996-11-01

    Hydrogen ions are important regulators of ion flux through voltage-gated Ca2+ channels but their site of action has been controversial. To identify molecular determinants of proton block of L-type Ca2+ channels, we combined site-directed mutagenesis and unitary current recordings from wild-type (WT) and mutant L-type Ca2+ channels expressed in Xenopus oocytes. WT channels in 150 mM K+ displayed two conductance states, deprotonated (140 pS) and protonated (45 pS), as found previously in native L-type Ca2+ channels. Proton block was altered in a unique fashion by mutation of each of the four P-region glutamates (EI-EIV) that form the locus of high affinity Ca2+ interaction. Glu(E)-->Gln(Q) substitution in either repeats I or III abolished the high-conductance state, as if the titration site had become permanently protonated. While the EIQ mutant displayed only an approximately 40 pS conductance, the EIIIQ mutant showed the approximately 40 pS conductance plus additional pH-sensitive transitions to an even lower conductance level. The EIVQ mutant exhibited the same deprotonated and protonated conductance states as WT, but with an accelerated rate of deprotonation. The EIIQ mutant was unusual in exhibiting three conductance states (approximately 145, 102, 50 pS, respectively). Occupancy of the low conductance state increased with external acidification, albeit much higher proton concentration was required than for WT. In contrast, the equilibrium between medium and high conductance levels was apparently pH-insensitive. We concluded that the protonation site in L-type Ca2+ channels lies within the pore and is formed by a combination of conserved P-region glutamates in repeats I, II, and III, acting in concert. EIV lies to the cytoplasmic side of the site but exerts an additional stabilizing influence on protonation, most likely via electrostatic interaction. These findings are likely to hold for all voltage-gated Ca2+ channels and provide a simple molecular explanation

  2. Modulation of voltage-gated conductances of retinal horizontal cells by UV-excited TiO2 nanoparticles.

    PubMed

    Meshik, Xenia; Choi, Min; Baker, Adam; Malchow, R Paul; Covnot, Leigha; Doan, Samuel; Mukherjee, Souvik; Farid, Sidra; Dutta, Mitra; Stroscio, Michael A

    2017-04-01

    This study examines the ability of optically-excited titanium dioxide nanoparticles to influence voltage-gated ion channels in retinal horizontal cells. Voltage clamp recordings were obtained in the presence and absence of TiO 2 and ultraviolet laser excitation. Significant current changes were observed in response to UV light, particularly in the -40 mV to +40 mV region where voltage-gated Na + and K + channels have the highest conductance. Cells in proximity to UV-excited TiO 2 exhibited a left-shift in the current-voltage relation of around 10 mV in the activation of Na + currents. These trends were not observed in control experiments where cells were excited with UV light without being exposed to TiO 2 . Electrostatic force microscopy confirmed that electric fields can be induced in TiO 2 with UV light. Simulations using the Hodgkin-Huxley model yielded results which agreed with the experimental data and showed the I-V characteristics of individual ion channels in the presence of UV-excited TiO 2 . Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells

    PubMed Central

    Villarroya, Mercedes; Olivares, Román; Ruíz, Ana; Cano-Abad, María F; de Pascual, Ricardo; Lomax, Richard B; López, Manuela G; Mayorgas, Inés; Gandía, Luis; García, Antonio G

    1999-01-01

    In this study we pose the question of why the bovine adrenal medullary chromaffin cell needs various subtypes (L, N, P, Q) of the neuronal high-voltage activated Ca2+ channels to control a given physiological function, i.e. the exocytotic release of catecholamines. One plausible hypothesis is that Ca2+ channel subtypes undergo different patterns of inactivation during cell depolarization. The net Ca2+ uptake (measured using 45Ca2+) into hyperpolarized cells (bathed in a nominally Ca2+-free solution containing 1·2 mM K+) after application of a Ca2+ pulse (5 s exposure to 100 mM K+ and 2 mM Ca2+), amounted to 0·65 ± 0·02 fmol cell−1; in depolarized cells (bathed in nominally Ca2+-free solution containing 100 mM K+) the net Ca2+ uptake was 0·16 ± 0·01 fmol cell−1. This was paralleled by a dramatic reduction of the increase in the cytosolic Ca2+ concentration, [Ca2+]i, caused by Ca2+ pulses applied to fura-2-loaded single cells, from 1181 ± 104 nM in hyperpolarized cells to 115 ± 9 nM in depolarized cells. A similar decrease was observed when studying catecholamine release. Secretion was decreased when K+ concentration was increased from 1·2 to 100 mM; the Ca2+ pulse caused, when comparing the extreme conditions, the secretion of 807 ± 35 nA of catecholamines in hyperpolarized cells and 220 ± 19 nA in depolarized cells. The inactivation by depolarization of Ca2+ entry and secretion occluded the blocking effects of combined ω-conotoxin GVIA (1 μM) and ω-agatoxin IVA (2 μM), thus suggesting that depolarization caused a selective inactivation of the N- and P/Q-type Ca2+ channels. This was strengthened by two additional findings: (i) nifedipine (3 μM), an L-type Ca2+ channel blocker, suppressed the fraction of Ca2+ entry (24 %) and secretion (27 %) left unblocked by depolarization; (ii) FPL64176 (3 μM), an L-type Ca2+ channel ‘activator’, dramatically enhanced the entry of Ca2+ and the secretory response in depolarized cells. In voltage

  4. Voltage-gated potassium channel (K(v) 1) autoantibodies in patients with chagasic gut dysmotility and distribution of K(v) 1 channels in human enteric neuromusculature (autoantibodies in GI dysmotility).

    PubMed

    Hubball, A W; Lang, B; Souza, M A N; Curran, O D; Martin, J E; Knowles, C H

    2012-08-01

    Autoantibodies directed against specific neuronal antigens are found in a significant number of patients with gastrointestinal neuromuscular diseases (GINMDs) secondary to neoplasia. This study examined the presence of antineuronal antibodies in idiopathic GINMD and GINMD secondary to South American Trypanosomiasis. The GI distribution of voltage-gated potassium channels (VGKCs) was also investigated. Seventy-three patients were included in the study with diagnoses of primary achalasia, enteric dysmotility, chronic intestinal pseudo-obstruction, esophageal or colonic dysmotility secondary to Chagas' disease. Sera were screened for specific antibodies to glutamic acid decarboxylase, voltage-gated calcium channels (VGCCs; P/Q subtype), nicotinic acetylcholine receptors (nAChRs; α3 subtype), and voltage-gated potassium channels (VGKCs, K(V) 1 subtype) using validated immunoprecipitation assays. The distribution of six VGKC subunits (K(V) 1.1-1.6), including those known to be antigenic targets of anti-VGKC antibodies was immunohistochemically investigated in all main human GI tract regions. Three patients (14%) with chagasic GI dysmotility were found to have positive anti-VGKC antibody titers. No antibodies were detected in patients with idiopathic GINMD. The VGKCs were found in enteric neurons at every level of the gut in unique yet overlapping distributions. The VGKC expression in GI smooth muscle was found to be limited to the esophagus. A small proportion of patients with GI dysfunction secondary to Chagas' disease have antibodies against VGKCs. The presence of these channels in the human enteric nervous system may have pathological relevance to the growing number of GINMDs with which anti-VGKC antibodies have been associated. © 2012 Blackwell Publishing Ltd.

  5. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis.

    PubMed

    Rahman, W; Patel, R; Dickenson, A H

    2015-10-01

    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2 mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6 g) and thermal (40, 45 and 45 °C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1 μg/50 μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60 g) and noxious thermal-(45 and 48 °C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60 g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased functional

  6. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis

    PubMed Central

    Rahman, W.; Patel, R.; Dickenson, A.H.

    2015-01-01

    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2 mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6 g) and thermal (40, 45 and 45 °C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1 μg/50 μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60 g) and noxious thermal-(45 and 48 °C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60 g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased

  7. Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator

    PubMed Central

    Treger, Jeremy S; Priest, Michael F; Bezanilla, Francisco

    2015-01-01

    Voltage-sensing domains (VSDs) underlie the movement of voltage-gated ion channels, as well as the voltage-sensitive fluorescent responses observed from a common class of genetically encoded voltage indicators (GEVIs). Despite the widespread use and potential utility of these GEVIs, the biophysical underpinnings of the relationship between VSD movement and fluorophore response remain unclear. We investigated the recently developed GEVI ArcLight, and its close variant Arclight', at both the single-molecule and macroscopic levels to better understand their characteristics and mechanisms of activity. These studies revealed a number of previously unobserved features of ArcLight's behavior, including millisecond-scale fluorescence fluctuations in single molecules as well as a previously unreported delay prior to macroscopic fluorescence onset. Finally, these mechanistic insights allowed us to improve the optical response of ArcLight to fast or repetitive pulses with the development of ArcLightning, a novel GEVI with improved kinetics. DOI: http://dx.doi.org/10.7554/eLife.10482.001 PMID:26599732

  8. Flammutoxin, a cytolysin from the edible mushroom Flammulina velutipes, forms two different types of voltage-gated channels in lipid bilayer membranes.

    PubMed

    Tadjibaeva, G; Sabirov, R; Tomita, T

    2000-08-25

    Flammutoxin, a 31-kDa cardiotoxic and cytolytic protein from the edible mushroom Flammulina velutipes, has been shown to assemble into a pore-forming annular oligomer with outer and inner diameters of 10 and 5 nm on the target cells [Tomita et al., Biochem. J. 333 (1998) 129-137]. Here we studied electrophysiological properties of flammutoxin channels using planar lipid bilayer technique, and found that flammutoxin formed two types of moderately cation-selective, voltage-gated channels with smaller and larger current amplitudes (1-4.5 pA and 20-30 pA, respectively, at 20 mV) in the lipid bilayers composed of phospholipid and cholesterol. The larger-conductance single channel showed the properties of a wide water-filled pore such as a linear relationship between channel conductance and salt concentration of the bathing solution. The functional diameter of the larger-conductance channel was estimated to be 4-5 nm by measuring the current conductance in the presence of polyethylene glycols of various sizes. In contrast, the smaller-conductance single channels showed a non-linear current to voltage curve and a saturating conductance to increasing salt concentration. These results suggest that the larger-conductance channel of flammutoxin corresponds to the hemolytic pore complex, while the smaller-conductance channel may reflect the intermediate state(s) of the assembling toxin.

  9. A-type potassium currents in smooth muscle.

    PubMed

    Amberg, Gregory C; Koh, Sang Don; Imaizumi, Yuji; Ohya, Susumu; Sanders, Kenton M

    2003-03-01

    A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.

  10. A-type voltage-gated K+ currents influence firing properties of isolectin B4-positive but not isolectin B4-negative primary sensory neurons.

    PubMed

    Vydyanathan, Amaresh; Wu, Zi-Zhen; Chen, Shao-Rui; Pan, Hui-Lin

    2005-06-01

    Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between isolectin B4 (IB4)-positive and -negative DRG neurons. Whole cell voltage- and current-clamp recordings were performed on acutely dissociated small DRG neurons of rats. The total Kv current density was significantly higher in IB+-positive than that in IB(4)-negative neurons. Also, 4-aminopyridine (4-AP) produced a significantly greater reduction in Kv currents in IB4-positive than in IB4-negative neurons. In contrast, IB4-negative neurons exhibited a larger proportion of tetraethylammonium-sensitive Kv currents. Furthermore, IB4-positive neurons showed a longer latency of firing and required a significantly larger amount of current injection to evoke action potentials. 4-AP significantly decreased the latency of firing and increased the firing frequency in IB4-positive but not in IB4-negative neurons. Additionally, IB4-positive neurons are immunoreactive to Kv1.4 but not to Kv1.1 and Kv1.2 subunits. Collectively, this study provides new information that 4-AP-sensitive A-type Kv currents are mainly present in IB4-positive DRG neurons and preferentially dampen the initiation of action potentials of this subpopulation of nociceptors. The difference in the density of A-type Kv currents contributes to the distinct electrophysiological properties of IB4-positive and -negative DRG neurons.

  11. Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites

    PubMed Central

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-01-01

    Summary In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. PMID:25220810

  12. Activity-dependent gating of calcium spikes by A-type K+ channels controls climbing fiber signaling in Purkinje cell dendrites.

    PubMed

    Otsu, Yo; Marcaggi, Païkan; Feltz, Anne; Isope, Philippe; Kollo, Mihaly; Nusser, Zoltan; Mathieu, Benjamin; Kano, Masanobu; Tsujita, Mika; Sakimura, Kenji; Dieudonné, Stéphane

    2014-10-01

    In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF stimulation evokes T-type calcium signaling displaying sharp proximodistal decrement. Combined mGluR1 receptor activation and depolarization, two activity-dependent signals, unlock P/Q calcium spikes initiation and propagation, mediating efficient CF signaling at distal sites. These spikes are initiated in proximal smooth dendrites, independently from somatic sodium action potentials, and evoke high-frequency bursts of all-or-none fast-rising calcium transients in PF spines. Gradual calcium spike burst unlocking arises from increasing inactivation of mGluR1-modulated low-threshold A-type potassium channels located in distal dendrites. Evidence for graded activity-dependent CF calcium signaling at PF synapses refines current views on cerebellar supervised learning rules. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Site-3 sea anemone toxins: molecular probes of gating mechanisms in voltage-dependent sodium channels.

    PubMed

    Smith, Jaime J; Blumenthal, Kenneth M

    2007-02-01

    Sea anemone toxins, whose biological function is the capture of marine prey, are invaluable tools for studying the structure and function of mammalian voltage-gated sodium channels. Their high degree of specificity and selectivity have allowed for detailed analysis of inactivation gating and assignment of molecular entities responsible for this process. Because of their ability to discriminate among channel isoforms, and their high degree of structural conservation, these toxins could serve as important lead compounds for future pharmaceutical design.

  14. A fully on-chip fast-transient NMOS low dropout voltage regulator with quasi floating gate pass element

    NASA Astrophysics Data System (ADS)

    Wang, Han; Gou, Chao; Luo, Kai

    2017-04-01

    This paper presents a fully on-chip NMOS low-dropout regulator (LDO) for portable applications with quasi floating gate pass element and fast transient response. The quasi floating gate structure makes the gate of the NMOS transistor only periodically charged or refreshed by the charge pump, which allows the charge pump to be a small economical circuit with small silicon area. In addition, a variable reference circuit is introduced enlarging the dynamic range of error amplifier during load transient. The proposed LDO has been implemented in a 0.35 μm BCD process. From experimental results, the regulator can operate with a minimum dropout voltage of 250 mV at a maximum 1 A load and {I}{{Q}} of 395 μA. Under full-range load current step, the voltage undershoot and overshoot of the proposed LDO are reduced to 50 and 26 mV, respectively.

  15. Molecular characterization of voltage-gated potassium channel (Kv) and its importance in functional dynamics in bull spermatozoa.

    PubMed

    Gupta, Rishi Kumar; Swain, Dilip Kumar; Singh, Vijay; Anand, Mukul; Choudhury, Soumen; Yadav, Sarvajeet; Saxena, Atul; Garg, Satish Kumar

    2018-07-01

    Present study was undertaken to characterize the voltage gated potassium channel (K v 1.1) in bull spermatozoa using sixty four ejaculates collected from four Hariana bulls. Functional characterization was undertaken using a selective blocker of Kv channel, 4-Aminopyridine (4-AP) while molecular presence of Kv on bull spermatozoa by immunoblotting and indirect immunofluorescence. Three sets of 100 μL diluted sperm samples namely-negative control (100 μL of sperm dilution medium (SDM) containing 10 × 10 6  cells), vehicle control (99 μL of SDM containing 10 × 10 6  cells, and DMSO- 1  μL) and 4-AP treatment group (99 μL of SDM containing 10 × 10 6  cells, and drug 1 μL 4-AP) were used in the study. Immunoblotting identified a single band of 56 kDa corresponding to Kv1.1 in Hariana bull spermatozoa. Immunolocalization showed the positive immunoreactivity at head, middle piece and principal piece of the spermatozoa for Kv 1.1. Blocking of Kv using 4-AP resulted in significant (p < 0.05) reduction in sperm progressive motility, per cent capacitated spermatozoa (B-pattern) and acrosome reacted (AR-pattern) spermatozoa, while significant (P < 0.05) increase in per cent swollen spermatozoa. Blocking of Kv channels resulted in significantly (P < 0.05) increased percentage of spermatozoa with lower mitochondrial transmembrane potential. Computer assisted semen analysis (CASA) of motion and kinematic parameters in 4-AP treated spermatozoa indicated reduction in sperm motion parameters like LIN, STR, VSL and VAP and higher ALH, VCL, and BCF indicating hyperactivity of spermatozoa. Based on our findings, it may be concluded that voltage-gated potassium channel (Kv) are present on bull spermatozoa and these are associated with functional dynamics of spermatozoa. However, based on our limited study, it is not possible to deduce that how these channels are associated with induction of hyperactivity. Therefore, further studies

  16. An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient

    NASA Astrophysics Data System (ADS)

    Hande, Vinayak; Shojaei Baghini, Maryam

    2015-08-01

    A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2

  17. Calcium signaling in taste cells: regulation required.

    PubMed

    Medler, Kathryn F

    2010-11-01

    Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.

  18. Power conditioning using dynamic voltage restorers under different voltage sag types.

    PubMed

    Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A

    2016-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.

  19. Power conditioning using dynamic voltage restorers under different voltage sag types

    PubMed Central

    Saeed, Ahmed M.; Abdel Aleem, Shady H.E.; Ibrahim, Ahmed M.; Balci, Murat E.; El-Zahab, Essam E.A.

    2015-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type. PMID:26843975

  20. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    PubMed

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  1. Sidedness of Carbamazepine Accessibility to Voltage-Gated Sodium Channels

    PubMed Central

    Jo, Sooyeon

    2014-01-01

    Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with external, but not internal, application, implying a major difference. We investigated this point using both whole-cell and inside-out patch recordings from human Nav1.7 channels in a stable cell line. In the whole-cell configuration, carbamazepine inhibited sodium current within seconds when applied externally, but had little or no effect when applied internally for up to 15 minutes, confirming previous results. However, carbamazepine inhibited sodium channels effectively and rapidly when applied to the internal face of the membrane using inside-out patch recording. We found that lidocaine also has little or no effect when applied intracellularly in whole-cell recording, but blocks effectively and rapidly when applied to the internal surface using inside-out patches. In contrast, the cationic lidocaine derivative QX-314 (N-ethyl-lidocaine) blocks effectively when applied internally with whole-cell dialysis, as well as when applied to inside-out patches. We conclude that carbamazepine and lidocaine access the sodium channel in similar ways and hypothesize that their lack of effect with internal dialysis in whole-cell recording reflects rapid exit through membrane near the pipette recording site. This effect likely limits the ability of any compound with significant membrane permeability to be applied intracellularly by whole-cell dialysis. PMID:24319110

  2. Calcium current in isolated neonatal rat ventricular myocytes.

    PubMed Central

    Cohen, N M; Lederer, W J

    1987-01-01

    1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004

  3. Low voltage operation of IGZO thin film transistors enabled by ultrathin Al2O3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Ma, Pengfei; Du, Lulu; Wang, Yiming; Jiang, Ran; Xin, Qian; Li, Yuxiang; Song, Aimin

    2018-01-01

    An ultrathin, 5 nm, Al2O3 film grown by atomic-layer deposition was used as a gate dielectric for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The Al2O3 layer showed a low surface roughness of 0.15 nm, a low leakage current, and a high breakdown voltage of 6 V. In particular, a very high gate capacitance of 720 nF/cm2 was achieved, making it possible for the a-IGZO TFTs to not only operate at a low voltage of 1 V but also exhibit desirable properties including a low threshold voltage of 0.3 V, a small subthreshold swing of 100 mV/decade, and a high on/off current ratio of 1.2 × 107. Furthermore, even under an ultralow operation voltage of 0.6 V, well-behaved transistor characteristics were still observed with an on/off ratio as high as 3 × 106. The electron transport through the Al2O3 layer has also been analyzed, indicating the Fowler-Nordheim tunneling mechanism.

  4. Trafficking Mechanisms Underlying Neuronal Voltage-gated Ion Channel Localization at the Axon Initial Segment

    PubMed Central

    Vacher, Helene; Trimmer, James S.

    2012-01-01

    Summary Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K+ (Kv) and Na+ (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials, Aberrant intrinsic excitability in individual neurons within networks contributes to synchronous neuronal activity leading to seizures. Mutations in ion channel genes gives rise to a variety of seizure-related “Channelopathies”, and many of the ion channel subunits associated with epilepsy mutations are localized at the AIS, making this a hotspot for epileptogenesis. Here we review the cellular mechanisms that underlie the trafficking of Kv and Nav channels found at the AIS, and how Kv and Nav channel mutations associated with epilepsy can alter these processes. PMID:23216576

  5. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    PubMed

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  6. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  7. Static Noise Margin Enhancement by Flex-Pass-Gate SRAM

    NASA Astrophysics Data System (ADS)

    O'Uchi, Shin-Ichi; Masahara, Meishoku; Sakamoto, Kunihiro; Endo, Kazuhiko; Liu, Yungxun; Matsukawa, Takashi; Sekigawa, Toshihiro; Koike, Hanpei; Suzuki, Eiichi

    A Flex-Pass-Gate SRAM, i.e. a fin-type-field-effect-transistor- (FinFET-) based SRAM, is proposed to enhance noise margin during both read and write operations. In its cell, the flip-flop is composed of usual three-terminal- (3T-) FinFETs while pass gates are composed of four-terminal- (4T-) FinFETs. The 4T-FinFETs enable to adopt a dynamic threshold-voltage control in the pass gates. During a write operation, the threshold voltage of the pass gates is lowered to enhance the writing speed and stability. During the read operation, on the other hand, the threshold voltage is raised to enhance the static noise margin. An asymmetric-oxide 4T-FinFET is helpful to manage the leakage current through the pass gate. In this paper, a design strategy of the pass gate with an asymmetric gate oxide is considered, and a TCAD-based Monte Carlo simulation reveals that the Flex-Pass-Gate SRAM based on that design strategy is expected to be effective in half-pitch 32-nm technology for low-standby-power (LSTP) applications, even taking into account the variability in the device performance.

  8. Altered expression of the voltage-gated calcium channel subunit α2δ-1: A comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain

    PubMed Central

    Nieto-Rostro, M.; Sandhu, G.; Bauer, C.S.; Jiruska, P.; Jefferys, J.G.R.; Dolphin, A.C.

    2014-01-01

    The auxiliary α2δ-1 subunit of voltage-gated calcium channels is up-regulated in dorsal root ganglion neurons following peripheral somatosensory nerve damage, in several animal models of neuropathic pain. The α2δ-1 protein has a mainly presynaptic localization, where it is associated with the calcium channels involved in neurotransmitter release. Relevant to the present study, α2δ-1 has been shown to be the therapeutic target of the gabapentinoid drugs in their alleviation of neuropathic pain. These drugs are also used in the treatment of certain epilepsies. In this study we therefore examined whether the level or distribution of α2δ-1 was altered in the hippocampus following experimental induction of epileptic seizures in rats, using both the kainic acid model of human temporal lobe epilepsy, in which status epilepticus is induced, and the tetanus toxin model in which status epilepticus is not involved. The main finding of this study is that we did not identify somatic overexpression of α2δ-1 in hippocampal neurons in either of the epilepsy models, unlike the upregulation of α2δ-1 that occurs following peripheral nerve damage to both somatosensory and motor neurons. However, we did observe local reorganization of α2δ-1 immunostaining in the hippocampus only in the kainic acid model, where it was associated with areas of neuronal cell loss, as indicated by absence of NeuN immunostaining, dendritic loss, as identified by areas where microtubule-associated protein-2 immunostaining was missing, and reactive gliosis, determined by regions of strong OX42 staining. PMID:24641886

  9. Synthesis, characterization, and application of cy-dye- and alexa-dye-labeled hongotoxin(1) analogues. The first high affinity fluorescence probes for voltage-gated K+ channels.

    PubMed

    Pragl, Bernt; Koschak, Alexandra; Trieb, Maria; Obermair, Gerald; Kaufmann, Walter A; Gerster, Uli; Blanc, Eric; Hahn, Christoph; Prinz, Heino; Schütz, Gerhard; Darbon, Herve; Gruber, Hermann J; Knaus, Hans-Günther

    2002-01-01

    Hongotoxin(1) (HgTX(1)), a 39-residue peptide recently isolated from the venom of Centruroides limbatus, blocks the voltage-gated K+ channels K(v)1.1, K(v)1.2, and K(v)1.3 at picomolar toxin concentrations (Koschak, A., Bugianesi, R. M., Mitterdorfer, J., Kaczorowski, G. J., Garcia, M. L., and Knaus, H. G. (1998) J. Biol. Chem. 273, 2639-2644). In this report, we determine the three-dimensional structure of HgTX(1) using NMR spectroscopy (PDB-code: 1HLY). HgTX(1) was found to possess a structure similar to previously characterized K+ channel toxins (e.g. margatoxin) consisting of a three-stranded antiparallel beta-sheet (residues 2-4, 26-30, and 33-37) and a helical conformation (part 3(10) helix and part alpha helix; residues 10-20). Due to the importance of residue Lys-28 for high-affinity interaction with the respective channels, lysine-reactive fluorescence dyes cannot be used to label wild-type HgTX(1). On the basis of previous studies (see above) and our NMR data, a HgTX(1) mutant (HgTX(1)-A19C) was engineered, expressed, and purified. HgTX(1)-A19C-SH was labeled using sulfhydryl-reactive Cy3-, Cy5-, and Alexa-dyes. Pharmacological characterization of fluorescently labeled HgTX(1)-A19C in radioligand binding studies indicated that these hongotoxin(1) analogues retain high-affinity for voltage-gated K+ channels and a respective pharmacological profile. Cy3- and Alexa-dye-labeled hongotoxin(1) analogues were used to investigate the localization of K+ channels in brain sections. The distribution of toxin binding closely follows the distribution of K(v)1.2 immunoreactivity with the highest expression levels in the cerebellar Purkinje cell layer. Taken together, these results demonstrate that fluorescently labeled HgTX(1) analogues comprise novel probes to characterize a subset of voltage-gated K+ channels.

  10. A rugged 650 V SOI-based high-voltage half-bridge IGBT gate driver IC for motor drive applications

    NASA Astrophysics Data System (ADS)

    Hua, Qing; Li, Zehong; Zhang, Bo; Chen, Weizhong; Huang, Xiangjun; Feng, Yuxiang

    2015-05-01

    This paper proposes a rugged high-voltage N-channel insulated gate bipolar transistor (IGBT) gate driver integrated circuit. The device integrates a high-side and a low-side output stages on a single chip, which is designed specifically for motor drive applications. High-voltage level shift technology enables the high-side stage of this device to operate up to 650 V. The logic inputs are complementary metal oxide semiconductor (CMOS)/transistor transistor logic compatible down to 3.3 V. Undervoltage protection functionality with hysteresis characteristic has also been integrated to enhance the device reliability. The device is fabricated in a 1.0 μm, 650 V high-voltage bipolar CMOS double-diffused metal oxide semiconductor (BCD) on silicon-on-insulator (SOI) process. Deep trench dielectric isolation technology is employed to provide complete electrical isolation with advantages such as reduced parasitic effects, excellent noise immunity and low leakage current. Experimental results show that the isolation voltage of this device can be up to approximately 779 V at 25°C, and the leakage current is only 5 nA at 650 V, which is 15% higher and 67% lower than the conventional ones. In addition, it delivers an excellent thermal stability and needs very low quiescent current and offers a high gate driver capability which is needed to adequately drive IGBTs that have large input capacitances.

  11. MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain

    PubMed Central

    Sakai, Atsushi; Saitow, Fumihito; Maruyama, Motoyo; Miyake, Noriko; Miyake, Koichi; Shimada, Takashi; Okada, Takashi; Suzuki, Hidenori

    2017-01-01

    miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia. PMID:28677679

  12. Conformational dynamics of the inner pore helix of voltage-gated potassium channels

    NASA Astrophysics Data System (ADS)

    Choe, Seungho; Grabe, Michael

    2009-06-01

    Voltage-gated potassium (Kv) channels control the electrical excitability of neurons and muscles. Despite this key role, how these channels open and close or gate is not fully understood. Gating is usually attributed to the bending and straightening of pore-lining helices at glycine and proline residues. In this work we focused on the role of proline in the Pro-Val-Pro (PVP) motif of the inner S6 helix in the Kv1.2 channel. We started by developing a simple hinged-rod model to fully explore the configurational space of bent helices and we related these configurations to the degree of pore opening. We then carried out fully atomistic simulations of the S6 helices and compared these simulations to the hinged-rod model. Both methods suggest that Kv1 channels are not tightly closed when the inner helices are straight, unlike what is seen in the non-PVP containing channels KcsA and KirBac. These results invite the possibility that the S6 helices may be kinked when Kv1 channels are closed. Our simulations indicate that the wild-type helix adopts multiple spatially distinct configurations, which is consistent with its role in adopting a closed state and an open state. The two most dominant configurational basins correspond to a 6 Å movement of the helix tail accompanied by the PVP region undergoing a local α-helix to 310-helix transition. We explored how single point mutations affect the propensity of the S6 helix to adopt particular configurations. Interestingly, mutating the first proline, P405 (P473 in Shaker), to alanine completely removed the bistable nature of the S6 helix possibly explaining why this mutation compromises the channel. Next, we considered four other mutations in the area known to affect channel gating and we saw similarly dramatic changes to the helix's dynamics and range of motion. Our results suggest a possible mechanism of helix pore closure and they suggest differences in the closed state of glycine-only channels, like KcsA, and PVP containing

  13. Switches from pi- to sigma-bonding complexes controlled by gate voltages.

    PubMed

    Matsui, Eriko; Harnack, Oliver; Matsuzawa, Nobuyuki N; Yasuda, Akio

    2005-10-01

    A conjugated polymer/metal ion/liquid-crystal molecular system was set between source and drain electrodes with a 100 nm gap. When gate voltage (Vg) increases, the current between source and drain electrodes increases. Infrared spectra show this system to be composed of pi and sigma complexes. At Vg = 0, the pi complex dominates the sigma complex, whereas the sigma complex becomes dominant when Vg is switched on. Calculations found that the pi complex has lower conductivity than the sigma complex.

  14. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  15. Decreased voltage-gated potassium currents in rat dorsal root ganglion neurons after chronic constriction injury.

    PubMed

    Xiao, Yun; Wu, Yang; Zhao, Bo; Xia, Zhongyuan

    2016-01-20

    Voltage-gated potassium channels (KV) regulate pain transmission by controlling neuronal excitability. Changes in KV expression patterns may thus contribute toward hyperalgesia following nerve injury. The aim of this study was to characterize KV current density in dorsal root ganglion (DRG) neurons following chronic constriction injury (CCI) of the right sciatic nerve, a robust model of post-traumatic neuropathic pain. The study examined changes in small-diameter potassium ion currents (<30 µm) in neurons in the L4-L6 DRG following CCI by whole-cell patch-clamping and the association with post-CCI mechanical and thermal nociceptive thresholds. Compared with the control group, 7 days after CCI, the mechanical force and temperature required to elicit ipsilateral foot withdrawal decreased significantly, indicating tactile allodynia and thermal hyperalgesia. Post-CCI neurons had a significantly lower rheobase current and depolarized resting membrane potential than controls, suggesting KV current downregulation. Some ipsilateral DRG neurons also had spontaneous action potentials and repetitive firing. There was a 55% reduction in the total KV current density caused by a 55% decrease in the sustained delayed rectifier potassium ion current (IK) density and a 17% decrease in the transient A-type potassium ion current (IA) density. These results indicated that changes in DRG neuron IK and IA current density and concomitant afferent hyperexcitability may contribute toward neuropathic pain following injury. The rat CCI model may prove valuable for examining pathogenic mechanisms and potential therapies, such as KV channel modulators.

  16. Interactions between voltage sensor and pore domains in a hERG K+ channel model from molecular simulations and the effects of a voltage sensor mutation.

    PubMed

    Colenso, Charlotte K; Sessions, Richard B; Zhang, Yi H; Hancox, Jules C; Dempsey, Christopher E

    2013-06-24

    The hERG K(+) channel is important for establishing normal electrical activity in the human heart. The channel's unique gating response to membrane potential changes indicates specific interactions between voltage sensor and pore domains that are poorly understood. In the absence of a crystal structure we constructed a homology model of the full hERG membrane domain and performed 0.5 μs molecular dynamics (MD) simulations in a hydrated membrane. The simulations identify potential interactions involving residues at the extracellular surface of S1 in the voltage sensor and at the N-terminal end of the pore helix in the hERG model. In addition, a diffuse interface involving hydrophobic residues on S4 (voltage sensor) and pore domain S5 of an adjacent subunit was stable during 0.5 μs of simulation. To assess the ability of the model to give insight into the effects of channel mutation we simulated a hERG mutant that contains a Leu to Pro substitution in the voltage sensor S4 helical segment (hERG L532P). Consistent with the retention of gated K(+) conductance, the L532P mutation was accommodated in the S4 helix with little disruption of helical structure. The mutation reduced the extent of interaction across the S4-S5 interface, suggesting a structural basis for the greatly enhanced deactivation rate in hERG L532P. The study indicates that pairwise comparison of wild-type and mutated channel models is a useful approach to interpreting functional data where uncertainty in model structures exist.

  17. [Effects of the monosaccharide derivative 8RN-DAGal on the putative P-type calcium channel expressed in Xenopus oocytes].

    PubMed

    Fournier, F; Charpentier, G; Lahyani, A; Bruner, J; Czternasty, G; Marlot, D; Ronco, G; Villa, P; Brule, G

    1993-01-01

    P-type calcium channels are expressed in Xenopus oocytes after injection of rat cerebellar mRNA. The FTX and omega-Aga-IVa toxins extracted from Agelenopsis aperta venom are known to inhibit the activity of this channel. The present results demonstrate that 8RN-DAGal is also a antagonist of P-type calcium channels. The inhibition of the current, obtained with Ba2+, as charge carrier, is voltage dependent.

  18. Anaesthetic Tricaine Acts Preferentially on Neural Voltage-Gated Sodium Channels and Fails to Block Directly Evoked Muscle Contraction

    PubMed Central

    Attili, Seetharamaiah; Hughes, Simon M.

    2014-01-01

    Movements in animals arise through concerted action of neurons and skeletal muscle. General anaesthetics prevent movement and cause loss of consciousness by blocking neural function. Anaesthetics of the amino amide-class are thought to act by blockade of voltage-gated sodium channels. In fish, the commonly used anaesthetic tricaine methanesulphonate, also known as 3-aminobenzoic acid ethyl ester, metacaine or MS-222, causes loss of consciousness. However, its role in blocking action potentials in distinct excitable cells is unclear, raising the possibility that tricaine could act as a neuromuscular blocking agent directly causing paralysis. Here we use evoked electrical stimulation to show that tricaine efficiently blocks neural action potentials, but does not prevent directly evoked muscle contraction. Nifedipine-sensitive L-type Cav channels affecting movement are also primarily neural, suggesting that muscle Nav channels are relatively insensitive to tricaine. These findings show that tricaine used at standard concentrations in zebrafish larvae does not paralyse muscle, thereby diminishing concern that a direct action on muscle could mask a lack of general anaesthesia. PMID:25090007

  19. Localization of P-type calcium channels in the central nervous system.

    PubMed Central

    Hillman, D; Chen, S; Aung, T T; Cherksey, B; Sugimori, M; Llinás, R R

    1991-01-01

    The distribution of the P-type calcium channel in the mammalian central nervous system has been demonstrated immunohistochemically by using a polyclonal specific antibody. This antibody was generated after P-channel isolation via a fraction from funnel-web spider toxin (FTX) that blocks the voltage-gated P channels in cerebellar Purkinje cells. In the cerebellar cortex, immunolabeling to the antibody appeared throughout the molecular layer, while all the other regions were negative. Intensely labeled patches of reactivity were seen on Purkinje cell dendrites, especially at bifurcations; much weaker reactivity was present in the soma and stem segment. Electron microscopic localization revealed labeled patches of plasma membrane on the soma, main dendrites, spiny branchlets, and spines; portions of the smooth endoplasmic reticulum were also labeled. Strong labeling was present in the periglomerular cells of the olfactory bulb and scattered neurons in the deep layer of the entorhinal and pyriform cortices. Neurons in the brainstem, habenula, nucleus of the trapezoid body and inferior olive and along the floor of the fourth ventricle were also labeled intensely. Medium-intensity reactions were observed in layer II pyramidal cells of the frontal cortex, the CA1 cells of the hippocampus, the lateral nucleus of the substantia nigra, lateral reticular nucleus, and spinal fifth nucleus. Light labeling was seen in the neocortex, striatum, and in some brainstem neurons. Images PMID:1651493

  20. Localization of P-type calcium channels in the central nervous system.

    PubMed

    Hillman, D; Chen, S; Aung, T T; Cherksey, B; Sugimori, M; Llinás, R R

    1991-08-15

    The distribution of the P-type calcium channel in the mammalian central nervous system has been demonstrated immunohistochemically by using a polyclonal specific antibody. This antibody was generated after P-channel isolation via a fraction from funnel-web spider toxin (FTX) that blocks the voltage-gated P channels in cerebellar Purkinje cells. In the cerebellar cortex, immunolabeling to the antibody appeared throughout the molecular layer, while all the other regions were negative. Intensely labeled patches of reactivity were seen on Purkinje cell dendrites, especially at bifurcations; much weaker reactivity was present in the soma and stem segment. Electron microscopic localization revealed labeled patches of plasma membrane on the soma, main dendrites, spiny branchlets, and spines; portions of the smooth endoplasmic reticulum were also labeled. Strong labeling was present in the periglomerular cells of the olfactory bulb and scattered neurons in the deep layer of the entorhinal and pyriform cortices. Neurons in the brainstem, habenula, nucleus of the trapezoid body and inferior olive and along the floor of the fourth ventricle were also labeled intensely. Medium-intensity reactions were observed in layer II pyramidal cells of the frontal cortex, the CA1 cells of the hippocampus, the lateral nucleus of the substantia nigra, lateral reticular nucleus, and spinal fifth nucleus. Light labeling was seen in the neocortex, striatum, and in some brainstem neurons.

  1. Molecular Characterization of Voltage-Gated Sodium Channels and Their Relations with Paralytic Shellfish Toxin Bioaccumulation in the Pacific Oyster Crassostrea gigas

    PubMed Central

    Boullot, Floriane; Castrec, Justine; Bidault, Adeline; Dantas, Natanael; Payton, Laura; Perrigault, Mickael; Tran, Damien; Amzil, Zouher; Boudry, Pierre; Soudant, Philippe; Hégaret, Hélène; Fabioux, Caroline

    2017-01-01

    Paralytic shellfish toxins (PST) bind to voltage-gated sodium channels (Nav) and block conduction of action potential in excitable cells. This study aimed to (i) characterize Nav sequences in Crassostrea gigas and (ii) investigate a putative relation between Nav and PST-bioaccumulation in oysters. The phylogenetic analysis highlighted two types of Nav in C. gigas: a Nav1 (CgNav1) and a Nav2 (CgNav2) with sequence properties of sodium-selective and sodium/calcium-selective channels, respectively. Three alternative splice transcripts of CgNav1 named A, B and C, were characterized. The expression of CgNav1, analyzed by in situ hybridization, is specific to nervous cells and to structures corresponding to neuromuscular junctions. Real-time PCR analyses showed a strong expression of CgNav1A in the striated muscle while CgNav1B is mainly expressed in visceral ganglia. CgNav1C expression is ubiquitous. The PST binding site (domain II) of CgNav1 variants possess an amino acid Q that could potentially confer a partial saxitoxin (STX)-resistance to the channel. The CgNav1 genotype or alternative splicing would not be the key point determining PST bioaccumulation level in oysters. PMID:28106838

  2. Inhibition of Neuronal Voltage-Gated Sodium Channels by Brilliant Blue G

    PubMed Central

    Jo, Sooyeon

    2011-01-01

    Brilliant blue G (BBG), best known as an antagonist of P2X7 receptors, was found to inhibit voltage-gated sodium currents in N1E-115 neuroblastoma cells. Sodium currents elicited from a holding potential of −60 mV were blocked with an IC50 of 2 μM. Block was enhanced in a use-dependent manner at higher stimulation rates. The voltage-dependence of inactivation was shifted in the hyperpolarizing direction, and recovery from inactivation was slowed by BBG. The most dramatic effect of BBG was to slow recovery from inactivation after long depolarizations, with 3 μM BBG increasing half-time for recovery (measured at −120 mV) from 24 to 854 ms after a 10-s step to 0 mV. These results were mimicked by a kinetic model in which BBG binds weakly to resting channels (Kd = 170 μM) but tightly to fast-inactivated channels (Kd = 5 μM) and even more tightly (Kd = 0.2 μM) to slow-inactivated channels. In contrast to BBG, the structurally related food-coloring dye Brilliant Blue FCF had very little effect at concentrations up to 30 μM. These results show that BBG inhibits voltage-gated sodium channels at micromolar concentrations. Although BBG inhibition of sodium channels is less potent than inhibition of P2X7 receptors, there may be significant inhibition of sodium channels at BBG concentrations achieved in spinal cord or brain during experimental treatment of spinal cord injury or Huntington's disease. Considered as a sodium channel blocker, BBG is remarkably potent, acting with more than 10-fold greater potency than lacosamide, another blocker thought to bind to slow-inactivated channels. PMID:21536754

  3. Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*

    PubMed Central

    Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren

    2014-01-01

    Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773

  4. Calcium responses to synaptically activated bursts of action potentials and their synapse-independent replay in cultured networks of hippocampal neurons.

    PubMed

    Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar

    2013-07-01

    Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  6. Components of gating charge movement and S4 voltage-sensor exposure during activation of hERG channels.

    PubMed

    Wang, Zhuren; Dou, Ying; Goodchild, Samuel J; Es-Salah-Lamoureux, Zeineb; Fedida, David

    2013-04-01

    The human ether-á-go-go-related gene (hERG) K(+) channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q(1) and Q(2), with V(1/2)'s of -55.7 (equivalent charge, z = 1.60) and -54.2 mV (z = 1.30), respectively, with the Q(2) charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q(1) and Q(2), decreasing to 4.3 ms for Q(2) at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V(1/2) of -64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q(1) and Q(2) charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.

  7. Calcium dependent current recordings in Xenopus laevis oocytes in microgravity

    NASA Astrophysics Data System (ADS)

    Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel

    2017-12-01

    Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.

  8. Simultaneous control of thermoelectric properties in p- and n-type materials by electric double-layer gating: New design for thermoelectric device

    NASA Astrophysics Data System (ADS)

    Takayanagi, Ryohei; Fujii, Takenori; Asamitsu, Atsushi

    2015-05-01

    We report a novel design of a thermoelectric device that can control the thermoelectric properties of p- and n-type materials simultaneously by electric double-layer gating. Here, p-type Cu2O and n-type ZnO were used as the positive and negative electrodes of the electric double-layer capacitor structure. When a gate voltage was applied between the two electrodes, holes and electrons accumulated on the surfaces of Cu2O and ZnO, respectively. The thermopower was measured by applying a thermal gradient along the accumulated layer on the electrodes. We demonstrate here that the accumulated layers worked as a p-n pair of the thermoelectric device.

  9. Fast calcium transients translate the distribution and conduction of neural activity in different regions of a single sensory neuron.

    PubMed

    Purali, Nuhan

    2017-09-01

    In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl 2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.

  10. Inhibitory effect of aniracetam on N-type calcium current in acutely isolated rat neuronal cells.

    PubMed

    Koike, H; Saito, H; Matsuki, N

    1993-04-01

    Effects of aniracetam on whole-cell calcium currents were studied in acutely isolated neuronal cells from postnatal rat ventromedial hypothalamus. There were three types of inward calcium currents, one low-threshold transient current and two high-threshold sustained currents. The nicardipine sensitive L-type current was activated at -20 mV or more depolarized potentials, and the omega-conotoxin sensitive N-type current was recorded at more positive potentials than the L-type. Aniracetam inhibited the N-type current in a dose-dependent manner without affecting the other two types of calcium currents. The effect appeared soon after the addition and lasted for several minutes during washing. Since the N-type current is thought to regulate the release of transmitters, the inhibitory effect may contribute to the nootropic property of aniracetam by modifying the neurotransmission.

  11. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials.

    PubMed

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models-of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells-to investigate the relative effects of reducing two important voltage-gated Ca currents-the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action.

  12. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials

    PubMed Central

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J.

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models—of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells—to investigate the relative effects of reducing two important voltage-gated Ca currents—the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action

  13. Exotic properties of a voltage-gated proton channel from the snail Helisoma trivolvis.

    PubMed

    Thomas, Sarah; Cherny, Vladimir V; Morgan, Deri; Artinian, Liana R; Rehder, Vincent; Smith, Susan M E; DeCoursey, Thomas E

    2018-06-04

    Voltage-gated proton channels, H V 1, were first reported in Helix aspersa snail neurons. These H + channels open very rapidly, two to three orders of magnitude faster than mammalian H V 1. Here we identify an H V 1 gene in the snail Helisoma trivolvis and verify protein level expression by Western blotting of H. trivolvis brain lysate. Expressed in mammalian cells, HtH V 1 currents in most respects resemble those described in other snails, including rapid activation, 476 times faster than hH V 1 (human) at pH o 7, between 50 and 90 mV. In contrast to most H V 1, activation of HtH V 1 is exponential, suggesting first-order kinetics. However, the large gating charge of ∼5.5 e 0 suggests that HtH V 1 functions as a dimer, evidently with highly cooperative gating. HtH V 1 opening is exquisitely sensitive to pH o , whereas closing is nearly independent of pH o Zn 2+ and Cd 2+ inhibit HtH V 1 currents in the micromolar range, slowing activation, shifting the proton conductance-voltage ( g H - V ) relationship to more positive potentials, and lowering the maximum conductance. This is consistent with HtH V 1 possessing three of the four amino acids that coordinate Zn 2+ in mammalian H V 1. All known H V 1 exhibit ΔpH-dependent gating that results in a 40-mV shift of the g H - V relationship for a unit change in either pH o or pH i This property is crucial for all the functions of H V 1 in many species and numerous human cells. The HtH V 1 channel exhibits normal or supernormal pH o dependence, but weak pH i dependence. Under favorable conditions, this might result in the HtH V 1 channel conducting inward currents and perhaps mediating a proton action potential. The anomalous ΔpH-dependent gating of HtH V 1 channels suggests a structural basis for this important property, which is further explored in this issue (Cherny et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201711968). © 2018 Thomas et al.

  14. Floating gate transistors as biosensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Frisbie, C. Daniel

    2016-11-01

    Electrolyte gated transistors (EGTs) are a sub-class of thin film transistors that are extremely promising for biological sensing applications. These devices employ a solid electrolyte as the gate insulator; the very large capacitance of the electrolyte results in low voltage operation and high transconductance or gain. This talk will describe the fabrication of floating gate EGTs and their use as ricin sensors. The critical performance metrics for EGTs compared with other types of TFTs will also be reviewed.

  15. Artificial phosphorylation sites modulate the activity of a voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-03-01

    The KvAP potassium channel is representative of a family of voltage-gated ion channels where the membrane potential is sensed by a transmembrane helix containing several positively charged arginines. Previous work by Wang and Zocchi [A. Wang and G. Zocchi, PLoS ONE 6, e18598 (2011), 10.1371/journal.pone.0018598] showed how a negatively charged polyelectrolyte attached in proximity to the voltage sensing element can bias the opening probability of the channel. Here we introduce three phosphorylation sites at the same location and show that the response curve of the channel shifts by about 20 mV upon phosphorylation, while other characteristics such as the single-channel conductance are unaffected. In summary, we construct an artificial phosphorylation site which confers allosteric regulation to the channel.

  16. Kcnh1 Voltage-gated Potassium Channels Are Essential for Early Zebrafish Development*

    PubMed Central

    Stengel, Rayk; Rivera-Milla, Eric; Sahoo, Nirakar; Ebert, Christina; Bollig, Frank; Heinemann, Stefan H.; Schönherr, Roland; Englert, Christoph

    2012-01-01

    The Kcnh1 gene encodes a voltage-gated potassium channel highly expressed in neurons and involved in tumor cell proliferation, yet its physiological roles remain unclear. We have used the zebrafish as a model to analyze Kcnh1 function in vitro and in vivo. We found that the kcnh1 gene is duplicated in teleost fish (i.e. kcnh1a and kcnh1b) and that both genes are maternally expressed during early development. In adult zebrafish, kcnh1a and kcnh1b have distinct expression patterns but share expression in brain and testis. Heterologous expression of both genes in Xenopus oocytes revealed a strong conservation of characteristic functional properties between human and fish channels, including a unique sensitivity to intracellular Ca2+/calmodulin and modulation of voltage-dependent gating by extracellular Mg2+. Using a morpholino antisense approach, we demonstrate a strong kcnh1 loss-of-function phenotype in developing zebrafish, characterized by growth retardation, delayed hindbrain formation, and embryonic lethality. This late phenotype was preceded by transcriptional up-regulation of known cell-cycle inhibitors (p21, p27, cdh2) and down-regulation of pro-proliferative factors, including cyclin D1, at 70% epiboly. These results reveal an unanticipated basic activity of kcnh1 that is crucial for early embryonic development and patterning. PMID:22927438

  17. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels

    PubMed Central

    Firth, Amy L.; Remillard, Carmelle V.; Platoshyn, Oleksandr; Fantozzi, Ivana; Ko, Eun A.; Yuan, Jason X.-J.

    2011-01-01

    The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K+ (Kv) channels, voltage-dependent Ca2+-activated K+ (Kca) channels, L- and T- type voltage-dependent Ca2+ channels, voltage-gated Na+ channels and voltage-gated proton channels. When cells are dialyzed with Ca2+-free K+- solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kvcurrents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K+ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na+ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca2+ channel α–subunit genes (α1A, α1B, α1X, α1D, α1Eand α1G) and many regulatory subunits (α2δ1, β1-4, and γ6), (c) 22 Kv channel α–subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv 6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α–subunit genes (Sloα1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na+ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca2+, membrane depolarization from a holding potential of -100 mV elicits a rapidly

  18. Molecular Dynamics Simulations of Voltage-Gated Cation Channels: Insights on Voltage-Sensor Domain Function and Modulation

    PubMed Central

    Delemotte, Lucie; Klein, Michael L.; Tarek, Mounir

    2012-01-01

    Since their discovery in the 1950s, the structure and function of voltage-gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy, and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through “classical” experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC’s voltage-sensor domain (VSD) highlighting: (1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; (2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and (3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases. PMID:22654756

  19. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel.

    PubMed

    Minor, D L; Lin, Y F; Mobley, B C; Avelar, A; Jan, Y N; Jan, L Y; Berger, J M

    2000-09-01

    Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusually polar interface. An isosteric mutation in this interface causes surprisingly little structural alteration while stabilizing the closed channel and increasing the stability of T1 tetramers. Replacing T1 with a tetrameric coiled-coil destabilizes the closed channel. Together, these data suggest that structural changes involving the buried polar T1 surfaces play a key role in the conformational changes leading to channel opening.

  20. Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.

    PubMed

    Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin

    2017-01-01

    The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (I Ca,L ) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). I Ca,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased I Ca,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced I Ca,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, I Ca,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.