Chen, Jing; Zhong, Caigao; Zeng, Ming; Liu, Xinmin; Deng, Yuanyuan; Xiao, Fang
2010-11-01
To explore the antagonistic effect of N-acetylcysteine (NAC) on hexevalent chromium (Cr(VI))-induced apoptosis in L-02 hepatocytes with or without caspase inhibitors. L-02 hepatocytes were randomly divided into a control group, and Cr( VI), Z-VAD-fmk + Cr(VI), NAC + Cr(VI), Z-VAD-fmk + NAC + Cr (VI) four treatment groups, in which L-02 hepatocytes were cultured with Cr (VI) at the dose of 20 micromol/L for 6h. The rates of apoptosis in all groups were detected by flow cytometry (FC) after staining with propidium iodide (PI). The changes of mitochondrial membrane potential (deltapsim) and permeability transition pore (PTP) were determined by fluorescent spectrometer. The DNA damages in hepatocytes were observed by the single cell gel electrophoresis (SCGE). Cr(VI) significantly induced apoptosis of L-02 hepatocytes at the dose of 20 micromol/L for 6 hours (P < 0.05). However, NAC significantly decreased the rates of apoptosis of L-02 hepatocytes and alleviated the damages to mitochondria and DNA caused by Cr(VI) in L-02 hepatocytes with or without caspase (P < 0.05). However, in comparition with the non caspase-inhibited group, the protective effects of NAC decreased in the caspase-inhibited group (P < 0.05). NAC could protect the apoptosis of L-02 hepatocyte induced with Cr(VI) with or without caspase inhibitor, and caspase could not play a decisive role in this process.
[Study on the interface of human hepatocyte/micropore polypropylene ultrafiltration membrane].
Peng, Cheng-Hong; Han, Bao-San; Gao, Chang-You; Ma, Zu-Wei; Zhao, Zhi-Ming; Wang, Yong; Liu, Hong; Zhang, Gui-di; Yang, Mei-Juan
2004-09-02
To found a new interface of human hepatocyte/micropore polypropylene ultrafiltration membrane (MPP) with good cytocompatibility so as to construct bioartificial bioreactor with polypropylene hollow fibers in future. MPP ultrafiltration membrane underwent chemical grafting modification through ultraviolet irradiation and Fe(2+) reduction. The contact angles of MPP and the modified MPP membranes were measured. Human hepatic cells L-02 were cultured. MPP and modified MPP membranes were spread on the wells of culture plate and human hepatic cells and cytodex 3 were inoculated on them. Different kinds of microscopy were used to observe the morphology of these cells. The water contact angle of MPP and the modified MPP membranes decreased from 78 degrees +/- 5 degrees to 27 degrees +/- 4 degrees (P < 0.05), which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L-02 did not adhere to and spread on the modified MPP membrane surface, and only grew on the microcarrier cytodex 3 with higher density and higher proliferation ratio measured by MTT. Grafting modification of acrylamide on MPP membrane is a good method to improve the human hepatocyte cytocompatibility with MPP ultrafiltration membrane.
He, Cheng-Hua; Fan, Yan-Hong; Wang, Ying; Huang, Chao-Ying; Wang, Xi-Chun; Zhang, Hai-Bin
2010-01-01
Aflatoxin B1 (AFB1) and deoxynivalenol (DON) are important food-borne mycotoxins that have been implicated in animal and human health. In this study, individual and combinative effects of AFB1 and DON were tested in primary hepatocytes of Cyprinus carpio. The results indicated that the combinative effects of AFB1 and DON (0.01 μg/mL AFB1 and 0.25 μg/mL DON; 0.02 μg/mL AFB1 and 0.25 μg/mL DON; 0.02 μg/mL AFB1 and 0.5 μg/mL DON) were higher than that of individual mycotoxin (P < 0.05). The activity of AST, ALT and LDH in cell supernatant was higher than that of control group (P < 0.05) when the mycotoxins were exposed to primary hepatocytes for 4 h. The decreased cell number was observed in tested group by inverted light microscopy. The mitochondrial swelling, endoplasmic reticulum dilation and a lot of lipid droplets were observed in primary hepatocytes by transmission electron microscope. Therefore, this combination was classified as an additive response of the two mycotoxins. PMID:21152299
Dai, Chongshan; Li, Bin; Zhou, Yan; Li, Daowen; Zhang, Shen; Li, Hui; Xiao, Xilong; Tang, Shusheng
2016-09-01
The potential toxicity of quinocetone (QCT) has raised widely concern, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on QCT induced apoptosis and the underlying mechanism in human hepatocyte L02 cells. The results showed that QCT treatment significantly decreased the cell viability of L02 cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by curcumin pre-treatment at 1.25, 2.5 and 5 μM. Compared to the QCT alone group, curcumin pre-treatment significantly attenuated QCT induced oxidative stress, mitochondrial dysfunction and apoptosis. In addition, curcumin pretreatment markedly attenuated QCT-induced increase of iNOS activity and NO production in a dose-dependent manner. Meanwhile, curcumin pretreatment markedly down-regulated the expression of nuclear factor -kB (NF-kB) and iNOS mRNAs, but up-regulated the expressions of Nrf2 and HO-1 mRNAs, compared to the QCT alone group. Zinc protoporphyrin IX, a HO-1 inhibitor, markedly partly abolished the cytoprotective effect of curcumin against QCT-induced caspase activation, NF-kB mRNA expression. These results indicate that curcumin could effectively inhibit QCT induced apoptosis and inflammatory response in L02 cells, which may involve the activation of Nrf2/HO-1 and inhibition of NF-kB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hu, Chao-Feng; Sun, Li-Ping; Yang, Qin-He; Lu, Da-Xiang; Luo, Sen
2017-06-01
To investigate the effect of ginsenosides from stems and leaves of ginseng on ethanol-induced lipid deposition in human L02 hepatocytes. L02 cells were exposed to ethanol for 36 h and treated with or without ginsenosides. The viability of L02 cells was evaluated by methylthiazolyldiphenyl-tetrazolium bromide assay and the triglyceride (TG) content was detected. Lipid droplets were determined by oil red O staining. Intracellular reactive oxygen species (ROS) production and the mitochondrial membrane potential were tested by flow cytometry. The ATP level was measured by reverse phase high performance liquid chromatography. The expression of cytochrome p450 2E1 (CYP2E1) and peroxisome proliferator-activated receptor α (PPARα) was detected by reverse transcriptase-polymerase chain reaction and Western blotting, respectively. Ethanol exposure resulted in the increase of TG level, lipid accumulation and ROS generation, and the decrease of mitochondrial membrane potential and ATP production in the cells. However, ginsenosides significantly reduced TG content (9.69±0.22 μg/mg protein vs. 4.93±0.49 μg/mg protein, P<0.01), and ROS formation (7254.8±385.7 vs. 5825.2±375.9, P<0.01). Meanwhile, improvements in mitochondrial membrane potential (10655.33±331.34 vs. 11129.52±262.35, P<0.05) and ATP level (1.20±0.18 nmol/mg protein vs. 2.53±0.25 nmol/mg protein, P<0.01) were observed by treatment with ginsenosides. Furthermore, ginsenosides could down-regulate CYP2E1 expression (P<0.01) and upregulate PPARα expression (P<0.01) in ethanol-treated cells. Ginsenosides could prevent ethanol-induced hepatocyte steatosis in vitro related to the inhibition of oxidative stress and the improvement of mitochondrial function. In addition, the modulation of CYP2E1 and PPARα expression may also play an important role in the protective effect of ginsenosides against lipid accumulation.
Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.
Yuan, Yang; Peng, Li; Gong-Hua, Hu; Lu, Dai; Xia-Li, Zhong; Yu, Zhou; Cai-Gao, Zhong
2012-06-01
This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.
Xu, Qingsong; Ma, Pan; Yu, Weiting; Tan, Chengyu; Liu, Hongtao; Xiong, Chuannan; Qiao, Ying; Du, Yuguang
2010-06-01
Chitooligosaccharides (COS) has many biological activities, such as antitumor activity and hepatoprotective effect. Herein, we investigated the protective effect of COS against hydrogen peroxide (H2O2)-induced oxidative stress on human embryonic hepatocytes (L02 cells) and its scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical in vitro. The results showed that the lost cell viability induced by H2O2 was markedly restored after 24 h pre-incubation with COS (0.1-0.4 mg/ml). This rescue effect could be related to the antioxidant property of COS, in which we showed that the radical scavenging activity of COS reached 80% at concentration of 2 mg/ml. In addition, COS could prevent cell apoptosis induced by H2O2, as shown by the inhibition of the cleavage of poly (adenosine diphosphate-ribose) polymerase and increased expression of the anti-apoptotic protein Bcl-xL. Furthermore, we have utilized confocal laser microscopy to observe cellular uptake of COS, an important step for COS to exert its effects on target cells. Taken together, our findings suggested that COS could effectively protect L02 cells against oxidative stress, which might be useful in clinical setting during the treatment of oxidative stress-related liver damages.
Afford, S C; Randhawa, S; Eliopoulos, A G; Hubscher, S G; Young, L S; Adams, D H
1999-01-18
We propose that a novel mechanism of hepatocyte apoptosis, involving a cooperative interaction between CD40 and Fas, is involved in the hepatocyte loss of chronic liver allograft rejection. We detected increased hepatocyte expression of Fas, Fas ligand (FasL), and CD40 associated with dropout of centrilobular (acinar zone 3) hepatocytes in chronic allograft rejection. Expression of CD40 ligand (CD40L) was also increased but was largely restricted to CD68(+) macrophages. A functional role for CD40 and Fas in hepatocyte apoptosis was demonstrated in vitro using primary human hepatocytes and the HepG2 cell line in both of which apoptosis was induced, not only by cross-linking Fas directly but also via CD40 activation. Our data suggest that CD40 activation induces apoptosis via Fas because (a) ligation of CD40 upregulated hepatocyte FasL expression, and (b) apoptosis induced via activation of CD40 was prevented by a neutralizing monoclonal antibody to FasL. Thus, CD40 engagement triggers apoptosis of human hepatocytes and might amplify Fas-dependent hepatocyte apoptosis in chronic rejection and other inflammatory liver diseases in which Fas-mediated apoptosis is involved.
Richert, Lysiane; Lamboley, Christelle; Viollon-Abadie, Catherine; Grass, Peter; Hartmann, Nicole; Laurent, Stephane; Heyd, Bruno; Mantion, Georges; Chibout, Salah-Dine; Staedtler, Frank
2003-09-01
The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1alpha (HNF1alpha) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis.
Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie
2012-07-01
To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.
Yin, Xueyao; Zheng, Fenping; Pan, Qianqian; Zhang, Saifei; Yu, Dan; Xu, Zhiye; Li, Hong
2015-12-01
Oxidative stress is considered to be an important factor in producing lethal hepatocyte injury associated with nonalcoholic fatty liver disease (NAFLD). Glucose fluctuation, more pronounced in patients with diabetes, has been recognized as an even stronger oxidative stress inducer than the sustained hyperglycemia. Here, we investigated the role of glucose variability in the development of the NAFLD based on hepatocyte apoptosis and possible mechanisms. To achieve this goal we studied C57BL/6J mice that were maintained on a high fat diet (HFD) and injected with glucose (3 g/kg) twice daily to induce intermittent high glucose (IHG). We also studied hepatic L02 cells incubated with palmitic acid (PA) to induce steatosis. The following experimental groups were compared: normal glucose (NG), sustained high glucose (SHG) and IHG with or without PA. We found that, although hepatic enzyme levels and liver lipid deposition were comparable between HFD mice injected with glucose or saline, the glucose injected mice displayed marked hepatocyte apoptosis and inflammation, accompanied by increased lipid peroxide in liver. In vitro, in the presence of PA, IHG increased L02 cell apoptosis and oxidative stress and produced pronounced mitochondrial dysfunction relative to the NG and SHG groups. Furthermore, treatment with the mitochondrial permeability transition (MPT) inhibitor, cyclosporin A (1.5 μmol/l), prevented mitochondrial dysfunction, oxidative stress and hepatocyte apoptosis. Our data suggests that IHG under lipotoxicity might contribute to the development of NAFLD by increasing oxidative stress and hepatocyte apoptosis via MPT and its related mitochondrial dysfunction. © 2015 Society for Endocrinology.
Effect of uric acid on mitochondrial function and oxidative stress in hepatocytes.
Yang, Y; Zhou, Y; Cheng, S; Sun, J L; Yao, H; Ma, L
2016-06-24
Here, we investigated the effect of uric acid (UA) on hepatocyte mitochondria. Hepatocytes cultured in vitro were treated with varying concentrations of UA. The change in apoptotic activity was detected by flow cytometry. The DNA damage index 8-hydroxy-deoxy-guanosine (8-OHdG) and mitochondrial function indices succinate dehydrogenase (SDH), cytochrome C oxidase (CCO), and adenosine triphosphate (ATP) were detected by enzyme assays. Reactive oxygen species (ROS) accumulation was confirmed by a dichloro-dihydro-fluorescein diacetate assay. We observed an increase in apoptotic activity, ROS accumulation, and 8-OHdG activity in hepatocytes treated with UA for extended periods, indicating DNA damage; specifically, we observed a significant increase in these activities 48, 72, and 96 h after UA addition, compared to those observed at 24 h (P < 0.05). Cells treated with 30 mg/dL UA for 96 h showed a peak in apoptotic activity. We also observed a significant decrease in ATP, SDH, and CCO activities with the increase in uric acid concentration over time. Cells treated with 30 mg/dL UA for 96 h showed the highest ATP levels, while SDH and CCO activities at 48, 72, and 96 h post-UA treatment were significantly lower than those at 24 h (P < 0.01). Moreover, cells treated with 30 mg/dL UA showed a 0.02 ± 0.02 and 0.15 ± 0.01 mmol/ mg/min decrease in SDH and CCO levels after 72 h. Therefore, we concluded that high concentrations of UA may induce oxidative stress in hepatocyte mitochondria, increasing ROS production and ultimately resulting in mitochondrial damage.
Chen, Tsan-Chi; Chang, Shu-Wen
2010-03-01
To investigate how mitomycin C (MMC) modulates hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) secretions in human corneal fibroblasts and regulates human corneal epithelial (HCE) cell migration. Primary human corneal fibroblasts were treated with MMC (0.05, 0.1, or 0.2 mg/mL for 5 minutes) and were cultivated with or without interleukin (IL)-1beta. Transcript and secretion of HGF and KGF were determined by quantitative real-time RT-PCR and Western blot analysis, respectively. The effect of MMC-treated fibroblasts on HCE cell migration was evaluated using a transwell migration assay. The influence of MMC on HGF expression/secretion and HCE cell migration was further confirmed by RNA interference. The number of IL-1 receptors (IL-1R) on the fibroblast surface was analyzed by flow cytometry. MMC alone did not affect endogenous HGF expression, whereas IL-1beta alone significantly upregulated HGF transcripts and secretion. By modifying IL-1R numbers, MMC further upregulated IL-1beta-related HGF expression at a concentration of 0.05 mg/mL but to a lesser extent at 0.1 and 0.2 mg/mL. KGF transcripts and intracellular expression were suppressed by MMC dose dependently in the presence or absence of IL-1beta, whereas KGF secretion was not affected. Conditioned medium from MMC-treated fibroblasts exerted a similar concentration-dependent effect on HCE cell migration, enhancing migration most significantly at 0.05 mg/mL MMC in the presence of IL-1beta. The MMC dose-dependent modulation of HCE cell migration was abolished in HGF-silenced fibroblasts. MMC differentially modulated IL-1R expression at various concentrations and regulated HGF and KGF differently. MMC alone did not alter HGF expression. In the presence of IL-1beta, MMC-treated corneal fibroblasts modified HCE cell migration through IL-1beta-induced HGF secretion.
Qu, Mei; Shen, Wei
2015-03-01
To investigate the roles of PI3K/Akt signaling in the unfolded protein response (UPR) and non-UPR signaling pathways of endoplasmic reticulum stress and apoptosis in hepatocytes under conditions of saturated fatty acid-induced steatosis. A steatosis model of hepatocytes (L02 cell and HepG2 cell line) was induced by palmitate sodium saturated fatty acids.The hepatocytes were divided into normal control group,experimental group (treated with palmitate sodium) and intervention group (treated with palmitate sodium and LY294002, a PI3K/Akt inhibitor). Cell apoptosis was detected by flow cytometry with Annexin V/PI double-staining.Western blot analysis was used to examine the protein expression of GRP78, PI3K, P-PI3K,Akt, P-Akt, CHOP and Bax.The F test and t-test were used in statistical analyses. Flow cytometry showed that palmitate sodium induced cell apoptosis in steatotic hepatocytes;moreover, a significant increase in cell apoptosis was observed in the palmitate sodium-induced steatotic hepatocytes in the presence of LY294002.For the normal control group, the experimental group and the intervention group, the apoptosis ratios of L02 cells were 4.41 ± 0.78% vs. 6.01 ± 1.49% vs. 19.50 ± 2.53% after 24 hours of treatment,and 12.56 ± 2.78% vs. 29.72 ± 6.39% vs. 44.60 ± 4.17% after 48 hours of treatment in respectively (all P < 0.05),and of HepG2 cells were 11.16 ± 1.15% vs. 17.50 ± 6.83% vs. 30.41 ± 3.62% after 24 hours of treatment, and 22.37 ± 1.24% vs. 33.85 ± 5.79% vs. 48.56 ± 4.21% after 48 hours of treatment (all P < 0.05). Western blot analysis showed that expression of GRP78 was significantly upregulated in the palmitate sodium-induced steatosis hepatocytes, indicating activation of endoplasmic reticulum stress. In addition, the palmitate sodium treatment also activated the PI3K/Akt pathway,induced expression of CHOP and Bax of the UPR and non-UPR signaling pathways respectively. Moreover, Pretreatment with LY294002 inhibited the palmitate sodium induced-phosphorylation of PI3K and Akt, and promoted upregulation of CHOP and Bax induced by palmitate sodium. The PI3K/Akt pathway may be involved in regulation of the UPR and non-UPR signaling pathways of endoplasmic reticulum stress and may promote apoptosis of hepatocytes by enhancing the expression of CHOP and Bax protein in saturated fatty acid-induced steatotic hepatocytes.
Okazaki, Akihito; Hiraga, Nobuhiko; Imamura, Michio; Hayes, C Nelson; Tsuge, Masataka; Takahashi, Shoichi; Aikata, Hiroshi; Abe, Hiromi; Miki, Daiki; Ochi, Hidenori; Tateno, Chise; Yoshizato, Katsutoshi; Ohdan, Hideki; Chayama, Kazuaki
2012-08-01
The necroinflammatory reaction plays a central role in hepatitis B virus (HBV) elimination. Cluster of differentiation (CD)8-positive cytotoxic T lymphocytes (CTLs) are thought to be a main player in the elimination of infected cells, and a recent report suggests that natural killer (NK) cells also play an important role. Here, we demonstrate the elimination of HBV-infected hepatocytes by NK cells and dendritic cells (DCs) using urokinase-type plasminogen activator/severe combined immunodeficiency mice, in which the livers were highly repopulated with human hepatocytes. After establishing HBV infection, we injected human peripheral blood mononuclear cells (PBMCs) into the mice and analyzed liver pathology and infiltrating human immune cells with flow cytometry. Severe hepatocyte degeneration was observed only in HBV-infected mice transplanted with human PBMCs. We provide the first direct evidence that massive liver cell death can be caused by Fas/Fas ligand (FasL) interaction provided by NK cells activated by DCs. Treatment of mice with anti-Fas antibody completely prevented severe hepatocyte degeneration. Furthermore, severe hepatocyte death can be prevented by depletion of DCs, whereas depletion of CD8-positive CTLs did not disturb the development of massive liver cell apoptosis. Our findings provide the first direct evidence that DC-activated NK cells induce massive HBV-infected hepatocyte degeneration through the Fas/FasL system and may indicate new therapeutic implications for acute severe/fulminant hepatitis B. Copyright © 2012 American Association for the Study of Liver Diseases.
Chen, Mingcang; Gu, Honggang; Ye, Yiyi; Lin, Bing; Sun, Lijuan; Deng, Weiping; Zhang, Jingzhe; Liu, Jianwen
2010-10-01
Increasing evidence regarding free radical generating agents and the inflammatory process suggest that accumulation of reactive oxygen species (ROS) could involve hepatotoxicity. Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to prevent tert-butyl hydroperoxide (t-BuOOH)-induced cell damage by augmenting cellular antioxidant defense. Hesperidin significantly protected hepatocytes against t-BuOOH-induced cell cytotoxicity, such as mitochondrial membrane potential (MMP) deplete and lactate dehydrogenase (LDH) release. Hesperidin also remarkably prevented indicators of oxidative stress, such as the ROS and lipid peroxidation level in a dose-dependent manner. Western blot showed that hesperidin facilitated ERK/MAPK phosphorylation which appeared to be responsible for nuclear translocation of Nrf2, thereby inducing cytoprotective heme oxygenase-1 (HO-1) expression. Based on the results described above, it suggested that hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocytes injury and liver dysfunctions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nagata, Hiromitsu; Hatano, Etsuro; Tada, Masaharu; Murata, Miki; Kitamura, Koji; Asechi, Hiroyuki; Narita, Masato; Yanagida, Atsuko; Tamaki, Nobuyuki; Yagi, Shintaro; Ikai, Iwao; Matsuzaki, Koichi; Uemoto, Shinji
2009-06-01
Transforming growth factor beta (TGF-beta) signaling involves both tumor-suppression and oncogenesis. TGF-beta activates the TGF-beta type I receptor (TbetaRI) and c-Jun N-terminal kinase (JNK), which differentially phosphorylate the mediator Smad3 to become COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). TbetaRI-dependent pSmad3C transmits a tumor-suppressive TGF-beta signal, while JNK-dependent pSmad3L promotes carcinogenesis in human chronic liver disorders. The aim of this study is to elucidate how SP600125, a JNK inhibitor, affected rat hepatocellular carcinoma (HCC) development, while focusing on the domain-specific phosphorylation of Smad3. The rats received subcutaneous injections of either SP600125 or vehicle 11 times weekly together with 100 ppm N-diethylnitrosamine (DEN) administration for 56 days and were sacrificed in order to evaluate HCC development 28 days after the last DEN administration. The number of tumor nodules greater than 3 mm in diameter and the liver weight/body weight ratio were significantly lower in the SP600125-treated rats than those in the vehicle-treated rats (7.9 +/- 0.8 versus 17.7 +/- 0.9: P < 0.001; 6.3 +/- 1.2 versus 7.1 +/- 0.2%: P < 0.05). SP600125 significantly prolonged the median survival time in rats with DEN-induced HCC (113 versus 97 days: log-rank P = 0.0018). JNK/pSmad3L/c-Myc was enhanced in the rat hepatocytes exposed to DEN. However, TbetaRI/pSmad3C/p21(WAF1) was impaired as DEN-induced HCC developed and progressed. The specific inhibition of JNK activity by SP600125 suppressed pSmad3L/c-Myc in the damaged hepatocytes and enhanced pSmad3C/p21(WAF1), acting as a tumor suppressor in normal hepatocytes. Administration of SP600125 to DEN-treated rats shifted hepatocytic Smad3-mediated signal from oncogenesis to tumor suppression, thus suggesting that JNK could be a therapeutic target of human HCC development and progression.
Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui
2016-07-29
Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160mg/kg) for 17days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce phosphorylation of JNK and ERK2, which suppresses inflammation, apoptosis and cholangiocyte proliferation during cholestasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2011-03-01
inflammation, hepatocyte degeneration, centrilobular hepatocyte hyper- trophy, increased mitoses, megakaryocytic hepatocytes, and bile duct ...of 2 g/L. However, TAG-MNT was cytotoxic to bacteria and a human liver cell line at 250 mg/L and greater. Unlike RDX, TAG-MNT did not have an...food intake, weight loss, increased kidney weight, leucopenia, and elevated blood urea nitrogen and creatinine levels. Leucopenia, increased liver mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Lili; Shanghai R and D Centre for Standardization of Traditional Chinese Medicines, Shanghai 201203; Chen Ying
2008-09-15
Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability.more » Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.« less
Liu, Zhixin; Dai, Xuechen; Wang, Tianci; Zhang, Chengcheng; Zhang, Wenjun; Zhang, Wei; Zhang, Qi; Wu, Kailang; Liu, Fang; Liu, Yingle; Wu, Jianguo
2017-08-01
Hepatitis B virus (HBV) is a major etiologic agent of hepatocellular carcinoma (HCC). However, the molecular mechanism by which HBV infection contributes to HCC development is not fully understood. Here, we initially showed that HBV stimulates the production of cancer stem cells (CSCs)-related markers (CD133, CD117 and CD90) and CSCs-related genes (Klf4, Sox2, Nanog, c-Myc and Oct4) and facilitates the self-renewal of CSCs in human hepatoma cells. Cellular and clinical studies revealed that HBV facilitates hepatoma cell growth and migration, enhances white blood cell (WBC) production in the sera of patients, stimulates CD133 and CD117 expression in HCC tissues, and promotes the CSCs generation of human hepatoma cells and clinical cancer tissues. Detailed studies revealed that PreS1 protein of HBV is required for HBV-mediated CSCs generation. PreS1 activates CD133, CD117 and CD90 expression in normal hepatocyte derived cell line (L02) and human hepatoma cell line (HepG2 and Huh-7); facilitates L02 cells migration, growth and sphere formation; and finally enhances the abilities of L02 cells and HepG2 cells to induce tumorigeneses in nude mice. Thus, PreS1 acts as a new oncoprotein to play a key role in the appearance and self-renewal of CSCs during HCC development. Copyright © 2017 Elsevier B.V. All rights reserved.
APPARENT SEXUAL DIFFERENCES IN METABOLISM OF INORGANIC ARSENIC IN HUMAN HEPATOCYTES
APPARENT SEXUAL DIFFERENCES IN METABOLISM OF INORGANIC ARSENIC IN HUMAN HEPATOCYTES. M Styblo1, G A Hamilton1, E L LeCluyse1 and D J Thomas2. 1University of North Carolina, Chapel Hill, NC, USA; 2US EPA, ORD, NHEERL, Research Triangle Park, NC, USA.
The liver is considered a m...
Takayama, Kazuo; Akita, Naoki; Mimura, Natsumi; Akahira, Rina; Taniguchi, Yukimasa; Ikeda, Makoto; Sakurai, Fuminori; Ohara, Osamu; Morio, Tomohiro
2017-01-01
Hepatocyte‐like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells are expected to be applied for regenerative medicine. In this study, we attempted to generate safe and therapeutically effective human iPS‐HLCs for hepatocyte transplantation. First, human iPS‐HLCs were generated from a human leukocyte antigen‐homozygous donor on the assumption that the allogenic transplantation might be carried out. Highly efficient hepatocyte differentiation was performed under a feeder‐free condition using human recombinant laminin 111, laminin 511, and type IV collagen. The percentage of asialoglycoprotein receptor 1‐positive cells was greater than 80%, while the percentage of residual undifferentiated cells was approximately 0.003%. In addition, no teratoma formation was observed even at 16 weeks after human iPS‐HLC transplantation. Furthermore, harmful genetic somatic single‐nucleotide substitutions were not observed during the hepatocyte differentiation process. We also developed a cryopreservation protocol for hepatoblast‐like cells without negatively affecting their hepatocyte differentiation potential by programming the freezing temperature. To evaluate the therapeutic potential of human iPS‐HLCs, these cells (1 × 106 cells/mouse) were intrasplenically transplanted into acute liver injury mice treated with 3 mL/kg CCl4 only once and chronic liver injury mice treated with 0.6 mL/kg CCl4 twice weekly for 8 weeks. By human iPS‐HLC transplantation, the survival rate of the acute liver injury mice was significantly increased and the liver fibrosis level of chronic liver injury mice was significantly decreased. Conclusion: We were able to generate safe and therapeutically effective human iPS‐HLCs for hepatocyte transplantation. (Hepatology Communications 2017;1:1058–1069) PMID:29404442
Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro
Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M.; Takala, Jukka; Djafarzadeh, Siamak
2015-01-01
Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner. PMID:25649304
Tamai, Miho; Aoki, Mami; Nishimura, Akihito; Morishita, Koji; Tagawa, Yoh-ichi
2013-12-01
Ammonia, a toxic metabolite, is converted to urea in hepatocytes via the urea cycle, a process necessary for cell/organismal survival. In liver, hepatocytes, polygonal and multipolar structures, have a few sides which face hepatic sinusoids and adjacent hepatocytes to form intercellular bile canaliculi connecting to the ductules. The critical nature of this three-dimensional environment should be related to the maintenance of hepatocyte function such as urea synthesis. Recently, we established an in vitro liver model derived from murine embryonic stem cells, IVL(mES), which included the hepatocyte layer and a surrounding sinusoid vascular-like network. The IVL(mES) culture, where the hepatocyte is polarized in a similar fashion to its in vivo counterpart, could successfully recapitulate in vivo results. L-Ornithine is an intermediate of the urea cycle, but supplemental L-ornithine does not activate the urea cycle in the apolar primary hepatocyte of monolayer culture. In the IVL(mES), supplemental L-ornithine could activate the urea cycle, and also protect against ammonium/alcohol-induced hepatocyte death. While the IVL(mES) displays architectural and functional properties similar to the liver, primary hepatocyte of monolayer culture fail to model critical functional aspects of liver physiology. We propose that the IVL(mES) will represent a useful, humane alternative to animal studies for drug toxicity and mechanistic studies of liver injury.
Javed, M Shahid; Yaqoob, Naeem; Iwamuro, Masaya; Kobayashi, Naoya; Fujiwara, Toshiyoshi
2014-02-01
To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. An experimental study. Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver-specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds.
Komoroski, Bernard J; Parise, Robert A; Egorin, Merrill J; Strom, Stephen C; Venkataramanan, Raman
2005-10-01
St. John's wort is a commonly used herbal medication that increases cytochrome P450 3A (CYP3A) activity. Because docetaxel is inactivated by CYP3A, we studied the effects of the St. John's wort constituent hyperforin on docetaxel metabolism in a human hepatocyte model. Hepatocytes, isolated from three donor livers, were exposed to hyperforin (0.1, 0.5, or 1.5 micromol/L) or rifampin (10 micromol/L) for 48 hours. After 48 hours, hyperforin- or rifampin-containing medium was replaced with medium containing 100 micromol/L docetaxel. After 1 hour, docetaxel metabolism was characterized by liquid chromatography-tandem mass spectrometry. Subsequent incubations characterized the specific cytochrome P450s that produced the docetaxel metabolites observed in hepatocyte incubations. Rifampin induced docetaxel metabolism 6.8- to 32-fold above docetaxel metabolism in control cultures. Hyperforin induced docetaxel metabolism in all three hepatocyte preparations. Hyperforin induction was dose-dependent and, at maximum, was 2.6- to 7-fold greater than that in controls. Docetaxel metabolites identified in rifampin- and hyperforin-treated hepatocyte preparations included the previously described tert-butyl-hydroxylated metabolite and two previously unidentified metabolites involving hydroxylation on the baccatin ring. CYP3A4 produced the tert-butyl-hydroxylated metabolite and the two ring-hydroxylated metabolites. CYP2C8 produced one of the newly described ring-hydroxylated metabolites. Exposure to the St. John's wort constituent hyperforin induces docetaxel metabolism in vitro. This implies that subtherapeutic docetaxel concentrations may result when docetaxel is administered to patients using St. John's wort on a chronic basis. The results also show induction of previously undescribed metabolic pathways for docetaxel, one of which may be analogous to the known 6-alpha-hydroxylation of paclitaxel by CYP2C8.
Chen, Hong-Qiang; Zhao, Ji; Li, Yan; He, Li-Xiong; Huang, Yu-Jing; Shu, Wei-Qun; Cao, Jia; Liu, Wen-Bin; Liu, Jin-Yi
2018-06-01
Microcystin (MC) is a cyclic heptapeptide compound which could lead to the development of hepatocellular carcinoma. However, the underlying epigenetic regulation mechanism is largely unknown. In this study, microcystin-LR (L: lysine, R: arginine, MC-LR) was used to induce the malignant transformation of human hepatocyte L02 cell line. The profile of gene expression, microRNA (miRNA) and DNA methylation were detected through high-throughput sequencing. Compared with control group, the expression of 826 genes and 187 miRNAs changed significantly in MC-LR treated group. DNA methylation sequencing analysis showed that 2592 CpG sites differentially methylated in promoter or the coding DNA sequence (CDS) of genes, while DNA methyltransferase 3 alpha (DNMT3a) and DNA methyltransferase 3 beta (DNMT3b) were dramatically up-regulated. Functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that significantly changed mRNAs and microRNAs were mainly involved in the formation of cancer, proliferation, invasion, migration and metabolism. MiRNA-mRNA network and mRNA-mRNA network analysis showed that hsa-miR-320a, hsa-miR-331-3p, hsa-miR-26a-5p, hsa-miR-196a-5p, hsa-miR-221-3p, coiled-coil domain containing 180 (CCDC180), melanoma antigen gene family member D1 (MAGED1), membrane spanning 4-domains A7 (MS4A7), hephaestin like 1 (HEPHL1), BH3 (Bcl-2 homology 3)-like motif containing, cell death inducer (BLID), matrix metallopeptidase 13 (MMP13), guanylate binding protein 5 (GBP5), adipogenesis regulatory factor (ADIRF), formin homology 2 domain containing 1 (FHDC1), protein kinase CAMP-dependent type II regulatory subunit beta (PRKAR2B), nodium leak channel, non-selective (NALCN), myosin light chain kinase 3 (MYLK3), epidermal growth factor receptor (EGFR) and zinc finger protein 704 (ZNF704) were key miRNAs and genes in the malignant transformation induced by MC-LR in L02 cells. Moreover, we found that expression of MYLK3, EGFR and ZNF704 were regulated by DNA methylation and miRNAs, and these genes affected the cell cycle and cell division. Our study suggested that characteristic gene alterations regulated by DNA methylation and miRNA could play an important role in environmental MC-LR induced hepatic carcinogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm
2014-01-01
The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands. PMID:24628888
Applications of human hepatitis B virus preS domain in bio- and nanotechnology.
Toita, Riki; Kawano, Takahito; Kang, Jeong-Hun; Murata, Masaharu
2015-06-28
Human hepatitis B virus (HBV) is a member of the family Hepadnaviridae, and causes acute and chronic infections of the liver. The hepatitis B surface antigen (HBsAg) contains the large (L), middle (M), and small (S) surface proteins. The L protein consists of the S protein, preS1, and preS2. In HBsAg, the preS domain (preS1 + preS2) plays a key role in the infection of hepatocytic cells by HBV and has several immunogenic epitopes. Based on these characteristics of preS, several preS-based diagnostic and therapeutic materials and systems have been developed. PreS1-specific monoclonal antibodies (e.g., MA18/7 and KR127) can be used to inhibit HBV infection. A myristoylated preS1 peptide (amino acids 2-48) also inhibits the attachment of HBV to HepaRG cells, primary human hepatocytes, and primary tupaia hepatocytes. Antibodies and antigens related to the components of HBsAg, preS (preS1 + preS2), or preS1 can be available as diagnostic markers of acute and chronic HBV infections. Hepatocyte-targeting delivery systems for therapeutic molecules (drugs, genes, or proteins) are very important for increasing the clinical efficacy of these molecules and in reducing their adverse effects on other organs. The selective delivery of diagnostic molecules to target hepatocytic cells can also improve the efficiency of diagnosis. In addition to the full-length HBV vector, preS (preS1 + preS2), preS1, and preS1-derived fragments can be useful in hepatocyte-specific targeting. In this review, we discuss the literature concerning the applications of the HBV preS domain in bio- and nanotechnology.
Murata, Miki; Matsuzaki, Koichi; Yoshida, Katsunori; Sekimoto, Go; Tahashi, Yoshiya; Mori, Shigeo; Uemura, Yoshiko; Sakaida, Noriko; Fujisawa, Junichi; Seki, Toshihito; Kobayashi, Kazuki; Yokote, Koutaro; Koike, Kazuhiko; Okazaki, Kazuichi
2009-04-01
Hepatitis B virus X (HBx) protein is suspected to participate in oncogenesis during chronic hepatitis B progression. Transforming growth factor beta (TGF-beta) signaling involves both tumor suppression and oncogenesis. TGF-beta activates TGF-beta type I receptor (TbetaRI) and c-Jun N-terminal kinase (JNK), which differentially phosphorylate the mediator Smad3 to become C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Reversible shifting of Smad3-mediated signaling between tumor suppression and oncogenesis in HBx-expressing hepatocytes indicated that TbetaRI-dependent pSmad3C transmitted a tumor-suppressive TGF-beta signal, while JNK-dependent pSmad3L promoted cell growth. We used immunostaining, immunoblotting, and in vitro kinase assay to compare pSmad3L- and pSmad3C-mediated signaling in biopsy specimens representing chronic hepatitis, cirrhosis, or hepatocellular carcinoma (HCC) from 90 patients chronically infected with hepatitis B virus (HBV) with signaling in liver specimens from HBx transgenic mice. In proportion to plasma HBV DNA levels, early chronic hepatitis B specimens showed prominence of pSmad3L in hepatocytic nuclei. HBx-activated JNK/pSmad3L/c-Myc oncogenic pathway was enhanced, while the TbetaRI/pSmad3C/p21(WAF1) tumor-suppressive pathway was impaired as human and mouse HBx-associated hepatocarcinogenesis progressed. Of 28 patients with chronic hepatitis B who showed strong oncogenic pSmad3L signaling, six developed HCC within 12 years; only one of 32 patients showing little pSmad3L developed HCC. In contrast, seven of 30 patients with little Smad3C phosphorylation developed HCC, while no patient who retained hepatocytic tumor-suppressive pSmad3C developed HCC within 12 years. HBx shifts hepatocytic TGF-beta signaling from the tumor-suppressive pSmad3C pathway to the oncogenic pSmad3L pathway in early carcinogenic process. Hepatocytic pSmad3L and pSmad3C assessment in HBV-infected liver specimens should prove clinically useful for predicting risk of HCC.
Human hepatocytes loaded in 3D bioprinting generate mini-liver.
Zhong, Cheng; Xie, Hai-Yang; Zhou, Lin; Xu, Xiao; Zheng, Shu-Sen
2016-10-01
Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. We fabricated 3D hydrogel scaffolds with a bioprinter. The biocompatibility of 3D hydrogel scaffolds was tested. Sixty nude mice were randomly divided into four groups, with 15 mice in each group: control, hydrogel, hydrogel with L02 (cell line HL-7702), and hydrogel with hepatocyte growth factor (HGF). Cells were cultured and deposited in scaffolds which were subsequently engrafted into livers after partial hepatectomy and radiation-induced liver damage (RILD). The engrafted tissues were examined after two weeks. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, total bilirubin, CYP1A2, CYP2C9, glutathione S-transferase (a-GST), and UDP-glucuronosyl transferase (UGT-2) were compared among the groups. Hematoxylin-eosin (HE) staining and immunohistochemistry of cKit and cytokeratin 18 (CK18) of engrafted tissues were evaluated. The survival time of the mice was also compared among the four groups. 3D hydrogel scaffolds did not impact the viability of cells. The levels of ALT, AST, albumin, total bilirubin, CYP1A2, CYP2C9, a-GST and UGT-2 were significantly improved in mice engrafted with 3D scaffold loaded with L02 compared with those in control and scaffold only (P<0.05). HE staining showed clear liver tissue and immunohistochemistry of cKit and CK18 were positive in the engrafted tissue. Mice treated with 3D scaffold+L02 cells had longer survival time compared with those in control and scaffold only (P<0.05). 3D scaffold has the potential of recreating liver tissue and partial liver functions and can be used in the reconstruction of liver tissues.
Meier, Anja; Mehrle, Stefan; Weiss, Thomas S; Mier, Walter; Urban, Stephan
2013-07-01
Chronic infection with the human hepatitis B virus (HBV) is a global health problem and a main cause of progressive liver diseases. HBV exhibits a narrow host range, replicating primarily in hepatocytes. Both host and hepatocyte specificity presumably involve specific receptor interactions on the target cell; however, direct evidence for this hypothesis is missing. Following the observation that HBV entry is specifically blocked by L-protein-derived preS1-lipopeptides, we visualized specific HBV receptor/ligand complexes on hepatic cells and quantified the turnover kinetics. Using fluorescein isothiocyanate-labeled, myristoylated HBV preS1-peptides we demonstrate (1) the presence of a highly specific HBV receptor on the plasma membrane of HBV-susceptible primary human and tupaia hepatocytes and HepaRG cells but also on hepatocytes from the nonsusceptible species mouse, rat, rabbit and dog; (2) the requirement of a differentiated state of the hepatocyte for specific preS1-binding; (3) the lack of detectable amounts of the receptor on HepG2 and HuH7 cells; (4) a slow receptor turnover at the hepatocyte membrane; and (5) an association of the receptor with actin microfilaments. The presence of the preS1-receptor in primary hepatocytes from some non-HBV-susceptible species indicates that the lack of susceptibility of these cells is owed to a postbinding step. These findings suggest that HBV hepatotropism is mediated by the highly selective expression of a yet unknown receptor* on differentiated hepatocytes, while species specificity of the HBV infection requires selective downstream events, e.g., the presence of host dependency or the absence of host restriction factors. The criteria defined here will allow narrowing down reasonable receptor candidates and provide a binding assay for HBV-receptor expression screens in hepatic cells. Copyright © 2012 American Association for the Study of Liver Diseases.
Yoshida, Katsunori; Murata, Miki; Yamaguchi, Takashi; Matsuzaki, Koichi; Okazaki, Kazuichi
2016-01-12
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are observed during both physiological liver wound healing and the pathological fibrotic/carcinogenic (fibro-carcinogenetic) process. TGF-β and pro-inflammatory cytokine are considered to be the major factors accelerating liver fibrosis and promoting liver carcinogenesis. Smads, consisting of intermediate linker regions connecting Mad homology domains, act as the intracellular mediators of the TGF-β signal transduction pathway. As the TGF-β receptors, c-Jun N-terminal kinase and cyclin-dependent kinase, differentially phosphorylate Smad2/3, we have generated numerous antibodies against linker (L) and C-terminal (C) phosphorylation sites in Smad2/3 and identified four types of phosphorylated forms: cytostatic COOH-terminally-phosphorylated Smad3 (pSmad3C), mitogenic pSmad3L (Ser-213) signaling, fibrogenic pSmad2L (Ser-245/250/255)/C signaling and migratory pSmad2/3L (Thr-220/179)/C signaling. After acute liver injury, TGF-β upregulates pSmad3C signaling and terminates pSmad3L (Ser-213)-mediated hepatocyte proliferation. TGF-β and pro-inflammatory cytokines cooperatively enhance collagen synthesis by upregulating pSmad2L (Thr-220)/C and pSmad3L (Thr-179)/C pathways in activated hepatic stellate cells. During chronic liver injuries, hepatocytes persistently affected by TGF-β and pro-inflammatory cytokines eventually become pre-neoplastic hepatocytes. Both myofibroblasts and pre-neoplastic hepatocyte exhibit the same carcinogenic (mitogenic) pSmad3L (Ser-213) and fibrogenic pSmad2L (Ser-245/250/255)/C signaling, with acquisition of fibro-carcinogenic properties and increasing risk of hepatocellular carcinoma (HCC). Firstly, we review phospho-Smad-isoform signalings in epithelial and mesenchymal cells in physiological and pathological conditions and then consider Smad linker phosphorylation as a potential target for pathological EMT during human fibro-carcinogenesis, because human Smad phospho-isoform signals can reverse from fibro-carcinogenesis to tumor-suppression in a process of MET after therapy.
Martin, Gregory G.; McIntosh, Avery L.; Huang, Huan; Gupta, Shipra; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm
2014-01-01
Although the human L-FABP T94A variant arises from the most commonly occurring SNP in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in complete loss of ligand binding ability and function analogous to L-FABP gene ablation. This possibility was addressed using recombinant human WT T94T and T94A variant L-FABP and cultured primary human hepatocytes. Non-conservative replacement of the medium sized, polar, uncharged T residue by a smaller, nonpolar, aliphatic A residue at position 94 of human L-FABP significantly increased L-FABP protein α-helical structure at the expense of β-sheet and concomitantly decreased thermal stability. T94A did not alter binding affinities for PPARα agonist ligands (phytanic acid, fenofibrate, fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on human L-FABP secondary structure, the active metabolite fenofibric acid altered T94A secondary structure much more than that of WT T94T L-FABP. Finally, in cultured primary human hepatocytes the T94A variant exhibited significantly reduced fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while T94A substitution did not alter the affinity of human L-FABP for PPARα agonist ligands, it significantly altered human L-FABP structure, stability, as well as conformational and functional response to fibrate. PMID:24299557
Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm
2014-05-01
The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands. © 2014 FEBS.
Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant
2017-12-01
There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50 = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50 = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50 = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wang; Shen, Xin-Yue; Zhang, Wen-wen
Di-(2-ethylhexyl)-phthalate (DEHP), a ubiquitous industrial pollutant in our daily life, has been reported to cause adverse effects on glucose homeostasis and insulin sensitivity in epidemiological studies previously. Recently, it has been reported to be an endocrine disrupter and ligand to peroxisome proliferator activated receptor, which could influence the homeostasis of liver metabolic systems and contribute to the development of type-2 diabetes. However, the potential mechanisms are not known yet. This study was designed to solve these problems with male SD rats and normal human hepatocyte line, L02 cells, exposed to DEHP for toxicological experiments. Adult male SD rats were dividedmore » into four groups, normal group fed with regular diets and three DEHP-treated groups (dissolved in olive oil at doses of 0.05, 5 and 500 mg/kg body weight, respectively, once daily through gastric intubations for 15 weeks). L02 cells were divided into 6 groups, normal group with 5, 10, 25, 50, and 100 μmol/l DEHP groups. DEHP-exposed rats exhibited significant liver damage, glucose tolerance, and insulin tolerance along with reduced expression of insulin receptor and GLUT4 proteins in the liver tissues. The results of in vitro experiments could determine that the DEHP-induced activation of peroxisome proliferator activated receptor γ (PPARγ) played a key role in the production of oxidative stress and down-regulated expression of insulin receptor and GLUT4 proteins in L02 cells. This conclusion could be supported by the results of in vitro experiments, in which the cells were exposed to DEHP with GW9662 (PPARγ inhibitor). In general, these results highlight the key role of PPARγ in the process of insulin resistance induced by DEHP. - Highlights: • DEHP exacerbates insulin resistance both in liver tissues and cells. • Expression of insulin receptor and GLUT4 were altered with PPARγ. • DEHP can induce oxidative stress to disrupt the metabolic homeostasis. • The dose of exposed DEHP is closed to daily exposure by human. • Determine the key role of PPARγ to insulin resistance.« less
Rau, Sibylle J; Hildt, Eberhard; Himmelsbach, Kiyoshi; Thimme, Robert; Wakita, Takaji; Blum, Hubert E; Fischer, Richard
2013-01-01
CD40, a member of the tumor necrosis factor receptor family, and its ligand, CD40L (CD154), are important regulators of the antiviral immune response. CD40L is up-regulated on lymphocytes and CD40 on hepatocytes during infection with hepatitis C virus (HCV); we investigated the role of CD40 signaling during HCV replication in hepatocytes. Viral replication was studied in primary human hepatocytes (PHH) and Huh7.5 cells using the infectious HCV Japanese fulminate hepatitis 1 isolate (JFH1) culture system, and in coculture with HCV antigen-specific CD8+ T cells. CD40L rapidly and transiently inhibits expression of the HCV nonstructural proteins NS3 and NS5A as well as HCV structural proteins core and E2 in Huh7.5 cells. Similarly, CD40L prevented replication of HCV in PHH, in synergy with interferon (IFN)-alpha. In Huh7.5 cells with replicating HCV, CD40L prevented production of infectious viral particles. When HCV antigen-specific CD8+ T cells were cocultured with HLA-A2-expressing Huh7 cells that had replicating virus, the T cells became activated, up-regulated CD40L, and inhibited HCV replication. Inhibition of CD40L partially prevented the antiviral activity of the CD8+ T cells. The antiviral effect of CD40L required activation of c-Jun N terminal kinases (JNK)1/2, but not induction of apoptosis or the JAK/STAT pathway that is necessary for the antiviral effects of IFNs. CD40 inhibits HCV replication by a novel, innate immune mechanism. This pathway might mediate viral clearance, and disruptions might be involved in the pathogenesis of HCV infection. Copyright © 2012 American Association for the Study of Liver Diseases.
Doll, Mark A; Salazar-González, Raúl A; Bodduluri, Srineil; Hein, David W
2017-07-01
Cryopreserved human hepatocytes were used to investigate the role of arylamine N -acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N -acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N -acetylation was measured by high performance liquid chromatography. INH N -acetylation rates in vitro exhibited a robust and highly significant ( P <0.005) NAT2 phenotype-dependent metabolism. N -acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly ( P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.
Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes
Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.
2009-01-01
Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dever, Joseph T.; Elfarra, Adnan A.
L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 {sup o}C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increasesmore » in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dongjing; Wu, Jilin, E-mail: 6296082@qq.com; Liu, Meizhou
Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulatedmore » miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the carcinogenesis and progression of HCC. • Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC.« less
Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M
2013-05-01
The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined. Copyright © 2012 John Wiley & Sons, Ltd.
Increased hepatocyte fas expression and apoptosis in HIV and hepatitis C virus coinfection.
Macias, Juan; Japón, Miguel A; Sáez, Carmen; Palacios, Rosa B; Mira, José A; García-García, José A; Merchante, Nicolás; Vergara, Salvador; Lozano, Fernando; Gómez-Mateos, Jesús; Pineda, Juan A
2005-11-01
Chronic hepatitis C disease (CHC) follows an accelerated course in human immunodeficiency virus (HIV) coinfection. The reasons for this are unclear. Fas-mediated hepatocyte apoptosis is involved in the pathogenesis of hepatitis C virus (HCV) infection. We sought to compare the expression of Fas on hepatocytes and irreversible apoptosis of hepatocytes among patients with CHC with and without HCV/HIV coinfection. Fas-immunostained hepatocytes were semiquantified, and apoptotic hepatocytes were detected by staining caspase-cleaved cytokeratin 18 filaments and counted across the entire section of liver-biopsy specimens from HCV-infected patients with and without HCV/HIV coinfection. One hundred thirty-four HCV/HIV-coinfected and 100 HCV-infected patients were included. HCV/HIV coinfection was associated with both diffuse distribution of Fas-stained hepatocytes (adjusted odds ratio [AOR], 7.4 [95% confidence interval {CI}, 3.8-14.4]) and with apoptotic hepatocyte counts greater than the median (AOR, 2.5 [95% CI, 1.5-4.5]). In HCV/HIV-coinfected patients, CD4+ cell nadir<200 cells/mL was associated with both Fas expression (AOR, 2.9 [95% CI, 1.3-6.8]) and hepatocyte apoptosis (AOR, 2.3 [95% CI, 1.1-4.9]). HCV/HIV-coinfected patients show higher levels of hepatocytes expressing Fas and undergoing irreversible apoptosis than do HCV-infected patients. However, low CD4+ cell nadirs in coinfected patients are associated with hepatocyte Fas expression and apoptosis.
Cryopreservation and gel collagen culture of porcine hepatocytes
Liu, Hong-Ling; Wang, Ying-Jie; Guo, Hai-Tao; Wang, Yu-Ming; Liu, Jun; Yu, Yue-Cheng
2004-01-01
AIM: To study the method of cryopreserving porcine hepatocytes and gel collagen culture measure after its cryopreservation. METHODS: Hepatocytes, isolated from Chinese experimental suckling mini-pigs by two-step perfusion with collagenase using an extra corporeal perfusion apparatus, were cryopreserved with 50 mL/L to 200 mL/L DMSO in liquid nitrogen for 4 mo, then thawed and seeded in 1 or between 2 layers of gel collagen. The expression of porcine albumin message RNA, cellular morphology and content of aspartate aminotransferase (AST) and urea nitrogen (UN) were examined during culture in gel. RESULTS: Viability of 150 mL/L DMSO group thawed hepatocytes was (83 ± 4)%, but after purification, its viability was (90 ± 5)%, attachment efficiency was (86 ± 7)%, the viability of thawed hepatocytes was near to fresh cells. When the thawed hepatocytes were cultivated in gel collagen with culture medium adding epidermal growth factor, the hepatocytes grew in various administrative levels in mixed collagen gel, and bunchy in the sandwich configuration cultures. For up to 10 days’ culture, the typical cellular morphological characteristics of cultivated hepatocytes could be observed. The leakage of AST was lower during culture in gel than that in common culture. At the same time, the UN synthesized by cells cultivated in mixed gel collagen was higher than that in other groups. CONCLUSION: Storage in liquid nitrogen can long keep hepatocytes’ activities, the concentration of 150 mL/L DMSO is fit for porcine hepatocytes’ cryopreservation. Thawed hepatocytes can be cultivated with collagenous matrix, which provides an environment that more closely resembles that in vivo and maintain the expression of certain liver-specific function of hepatocytes. PMID:15052684
Shen, C; Meng, Q; Zhang, G; Hu, W
2007-01-01
Background and purpose: Rifampicin has been extensively reported to exacerbate the hepatotoxicity of isoniazid in patients with tuberculosis. However, this was controversially claimed by previous reports using rat models. This study evaluated the effect of rifampicin on isoniazid-induced hepatocyte toxicity by using human and rat hepatocytes in tissue-like culture. Experimental approach: Hepatocytes in tissue-like gel entrapment were used to examine isoniazid toxicity, as shown by cell viability, intracellular glutathione content and albumin secretion. For demonstration of the differential effects of rifampicin on human and rat hepatocytes, induction by rifampicin of cytochrome P450 (CYP) 2E1, a major enzyme associated with isoniazid hepatotoxicity, was detected by 4-nitrocatechol formation and RT-PCR analysis. Key results: Rifampicin (12 μM) enhanced isoniazid-induced toxicity in human hepatocytes but not in rat hepatocytes. Enhanced CYP 2E1 enzymic activity and mRNA expression were similarly detected in human hepatocytes but not in rat hepatocytes. Both rat and human hepatocytes in gel entrapment were more sensitive to isoniazid treatment compared with the corresponding hepatocytes in a monolayer culture. Conclusions and implications: The difference in induction of CYP 2E1 by rifampicin between rat and human hepatocytes accounted for the difference in exacerbation of isoniazid hepatocyte toxicity by rifampicin, with more significant toxicity in gel entrapment than in monolayer cultures. Thus, human hepatocytes in tissue-like cultures (gel entrapment) could be an effective model for hepatotoxicity research in vitro, closer to the in vivo situation. PMID:18071298
Generation of functional hepatocytes from human spermatogonial stem cells.
Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping
2016-02-23
To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration.
Generation of functional hepatocytes from human spermatogonial stem cells
Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping
2016-01-01
To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458
Hepatocyte transplants improve liver function and encephalopathy in portacaval shunted rats.
Fogel, Wieslawa Agnieszka; Stasiak, Anna; Maksymowicz, Michał; Kobos, Jozef; Unzeta, Mercedes; Mussur, Miroslaw
2014-07-01
Rats with portacaval shunt (PCS) are useful experimental models of human hepatic encephalopathy in chronic liver dysfunction. We have previously shown that PCS modifies amine neurotransmitter systems in the CNS and increases voluntary alcohol intake by rats. Hepatocyte transplantation, used in acute liver failure, has recently also been applied to chronic liver diseases, which prompted us to investigate whether the altered brain amine system and the drinking behavior in long-term shunted rats could be normalized by hepatocyte transplants. Hepatocytes, isolated from syngeneic donors by collagenase digestion, were injected (3 × 10(6) cells/rat) into the pancreatic tail region, 6 months after PCS. Hepatic function was evaluated by measuring urine urea and plasma L-histidine concentrations. A free choice test with two bottles (tap water and 10% ethyl alcohol) was performed for 3 days to assess the rats' preference for alcohol. The rats were euthanized 2 months posttransplantation. Brain histamine and 5-hydroxyindoleacetic acid (5-HIAA) levels were measured by radioenzymatic assay and by HPLC-EC, respectively, N-tele-methylhistamine by GC/MS while MAOA and MAOB activities by isotopic procedures. Portacaval shunt rats with hepatocyte transplants gave more urea than before transplantation, with lower plasma L-His levels and higher body weight versus the PCS counterparts. Also, those rats consumed less alcohol. The CNS amines and 5-HIAA concentrations, as well as MAO-B activity, being abnormally high in untreated PCS rats, significantly reduced after PCS hepatocyte treatment. The results support the therapeutic values of hepatocyte transplants in chronic liver diseases and the temporary character of PCS-exerted CNS dysfunctions. © 2014 John Wiley & Sons Ltd.
He, Lei; Yuan, Fa-Hu; Chen, Ting; Huang, Qiang; Wang, Yu; Liu, Zhi-Guo
2017-04-01
Fibronectin containing extra domain A (EDA + FN), a functional glycoprotein participating in several cellular processes, correlates with chronic liver disease. Herein, we aim to investigate the expression and secretion of EDA + FN from hepatocytes in nonalcoholic fatty liver disease (NAFLD) and the underlying mechanisms. Circulating levels of EDA + FN were determined by ELISA in clinical samples. Western blotting and flow cytometry were performed on L02 and HepG2 cell lines to analyze whether the levels of EDA + FN were associated with endoplasmic reticulum (ER) stress-related cell death. Circulating levels of EDA + FN in NAFLD patients were significantly higher than those in control subjects, and positively related with severity of ultrasonographic steatosis score. In cultured hepatocytes, palmitate up-regulated the expression of EDA + FN in a dose-dependent manner. Conversely, when the cells were pretreated with 4-phenylbutyrate, a specific inhibitor of ER stress, up-regulation of EDA + FN could be abrogated. Moreover, silencing CHOP by shRNA enhanced the release of EDA + FN from hepatocytes following palmitate treatment, which was involved in ER stress-related cell damage. These findings suggest that the up-regulated level of EDA + FN is associated with liver damage in NAFLD, and ER stress-mediated cell damage contributes to the release of EDA + FN from hepatocytes.
Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua
2015-01-01
Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710
Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua
2015-01-01
Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.
Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal
2016-08-01
Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P < 0.05) ameliorated by Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. © 2015 Wiley Periodicals, Inc.
Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes.
Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui
2016-11-30
The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N -acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.
Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes
Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui
2016-01-01
The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes. PMID:27916916
Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora
2011-01-17
The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA-MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA-MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA-MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA-MWCNTs in a similar manner. Our results clearly show that HSA-MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.
Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora
2011-01-01
The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA–MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA–MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA–MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA–MWCNTs in a similar manner. Our results clearly show that HSA–MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. PMID:21289990
Cai, Yun-Feng; Zhen, Zuo-Jun; Min, Jun; Fang, Tian-Ling; Chu, Zhong-Hua; Chen, Ji-Sheng
2004-11-15
To explore the feasibility of direct separation, selective proliferation and differentiation of the bone marrow-derived liver stem cells (BDLSC) from bone marrow cells with a culture system containing cholestatic serum in vitro. Whole bone marrow cells of rats cultured in routine medium were replaced with conditioning selection media containing 20 mL/L, 50 mL/L, 70 mL/L, and 100 mL/L cholestatic sera, respectively, after they attached to the plates. The optimal concentration of cholestatic serum was determined according to the outcome of the selected cultures. Then the selected BDLSC were induced to proliferate and differentiate with the addition of hepatocyte growth factor (HGF). The morphology and phenotypic markers of BDLSC were characterized using immunohistochemistry, RT-PCR and electron microscopy. The metabolic functions of differentiated cells were also determined by glycogen staining and urea assay. Bone marrow cells formed fibroblast-like but not hepatocyte-like colonies in the presence of 20 mL/L cholestatic serum. In 70 mL/L cholestatic serum, BDLSC colonies could be selected but could not maintain good growth status. In 100 mL/L cholestatic serum, all of the bone marrow cells were unable to survive. A 50 mL/L cholestatic serum was the optimal concentration for the selection of BDLSC at which BDLSC could survive while the other populations of the bone marrow cells could not. The selected BDLSC proliferated and differentiated after HGF was added. Hepatocyte-like colony-forming units (H-CFU) then were formed. H-CFU expressed markers of embryonic hepatocytes (AFP, albumin and cytokeratin 8/18), biliary cells (cytokeratin 19), hepatocyte functional proteins (transthyretin and cytochrome P450-2b1), and hepatocyte nuclear factors (HNF-1alpha and HNF-3beta). They also had glycogen storage and urea synthesis functions, two of the critical features of hepatocytes. The selected medium containing cholestatic serum can select BDLSC from whole bone marrow cells. It will be a new way to provide a readily available alternate source of cells for clinical hepatocyte therapy.
Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C
2014-01-01
Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation.
Giri, Shibashish; Bader, Augustinus
2014-09-01
Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a conditional human fetal hepatocytes cell line with mesenchymal characteristics. Thus immortalization of human fetal hepatocytes cell line by telomerase biology offers a great challenge to examine basic biological mechanisms which are directly related to human and best cell source having unlimited population doubling for bioartificial support without any risk of replicative senescence and pathogenic risks.
Kehtari, Mousa; Zeynali, Bahman; Soleimani, Masoud; Kabiri, Mahboubeh; Seyedjafari, Ehsan
2018-04-27
Primary hepatocytes, as the gold standard cell type for in vitro models, lose their characteristic morphology and functions after few days. There is an urgent need to develop physiologically relevant models that recapitulate liver microenvironment to obtain mature hepatocyte from stem cells. We designed and fabricated a micro-bioreactor device mimicking the physiological shear stress and cell-cell interaction in liver sinusoid microenvironment. Induced pluripotent stem cells (iPSCs) were co-cultured with human umbilical vein endothelial cells (HUVECs) in the micro-bioreactor device with continuous perfusion of hepatic differentiation medium (100 μL/h). Simulation results showed that flow field inside our perfusion device was uniform and shear stress was adjusted to physiological condition (<2 dyne/cm 2 ). IPSCs-derived hepatocytes (iPSCs-Heps) that were cultured in micro-bioreactor device showed a higher level of hepatic markers compared to those in static condition. Flow cytometry and immunocytochemistry analysis revealed iPSCs cultured in the device sequentially acquired characteristics of definitive endodermal cells (SOX17 positive), hepatoblasts (AFP positive) and mature hepatocyte (ALB positive). Moreover, the albumin and urea secretion were significantly higher in micro-bioreactor device than those cultured in culture dishes during experiment. Thus, based on our results, we propose our micro-bioreactor as a beneficial device to generate mature hepatocytes for drug screening and basic research.
Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid.
Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund Cj; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W
2016-06-01
Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.
Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K
1999-02-01
Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.
Miccadei, Stefania; Di Venere, Donato; Cardinali, Angela; Romano, Ferdinando; Durazzo, Alessandra; Foddai, Maria Stella; Fraioli, Rocco; Mobarhan, Sohrab; Maiani, Giuseppe
2008-01-01
Cultured rat hepatocytes and human hepatoma HepG2 cells were used to evaluate the hepatoprotective properties of polyphenolic extracts from the edible part of artichoke (AE). The hepatocytes were exposed to H2O2generated in situ by glucose oxidase and were treated with either AE, or pure chlorogenic acid (ChA) or with the well known antioxidant, N, N'-diphenyl-p-phenilenediamine (DPPD). Addition of glucose oxidase to the culture medium caused depletion of intracellular glutathione (GSH) content, accumulation of malondialdehyde (MDA) in the cultures, as a lipid peroxidation indicator, and cell death. These results demonstrated that AE protected cells from the oxidative stress caused by glucose oxidase, comparable to DPPD. Furthermore, AE, as well as ChA, prevented the loss of total GSH and the accumulation of MDA. Treatment of HepG2 cells for 24 h with AE reduced cell viability in a dose-dependent manner, however, ChA had no prominent effects on the cell death rate. Similarly, AE rather than ChA induced apoptosis, measured by flow cytometric analysis of annexin and by activation of caspase-3, in HepG2 cells. Our findings indicate that AE had a marked antioxidative potential that protects hepatocytes from an oxidative stress. Furthermore, AE reduced cell viability and had an apoptotic activity on a human liver cancer cell line.
Masuoka, Howard C; Vuppalanchi, Raj; Deppe, Ross; Bybee, Phelan; Comerford, Megan; Liangpunsakul, Suthat; Ghabril, Marwan; Chalasani, Naga
2015-12-01
Hepatocyte apoptosis or necrosis from accumulation of bile salts may play an important role in the disease progression of primary sclerosing cholangitis (PSC). The aim of the current study was to measure serum markers of hepatocyte apoptosis (cytokeratin-18 fragments--K18) and necrosis (high-mobility group protein B1--HMGB1) in adults with PSC and examine the relationship with disease severity. We measured serum levels of K18 and HMGB1 in well-phenotyped PSC (N = 37) and 39 control subjects (N = 39). Severity of PSC was assessed biochemically, histologically, and PSC Mayo risk score. Quantification of hepatocyte apoptosis was performed using TUNEL assay. The mean age of the study cohort was 49.7 ± 13.3 years and comprised of 67% men and 93% Caucasian. Serum K18 levels were significantly higher in the PSC patients compared to control (217.4 ± 78.1 vs. 157.0 ± 58.2 U/L, p = 0.001). However, HMGB1 levels were not different between the two groups (5.38 ± 2.99 vs. 6.28 ± 2.85 ng/mL, p = 0.15). Within the PSC group, K18 levels significantly correlated with AST (r = 0.5, p = 0.002), alkaline phosphatase (r = 0.5, p = 0.001), total bilirubin (r = 0.61, p ≤ 0.001), and albumin (r = -0.4, p = 0.02). Serum K18 levels also correlated with the level of apoptosis present on the liver biopsy (r = 0.8, p ≤ 0.001) and Mayo risk score (r = 0.4, p = 0.015). Serum K18 but not HMGB1 levels were increased in PSC and associated with severity of underlying liver disease and the degree of hepatocyte apoptosis.
Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.
Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J
1997-01-01
Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to <25% of basal values, oligomycin (an ATP synthase inhibitor) did not inhibit apoptosis despite decreasing ATP to similar values. Fructose (10 mmol/L) decreased intracellular pH (pHi) by 0.2 U. However, extracellular acidification (pH 6.8), which decreased hepatocyte pHi 0.35 U and is known to inhibit necrosis, actually potentiated apoptosis 1.6-fold. Fructose cytoprotection also could not be explained by induction of bcl-2 transcription or metal chelation. Because we could not attribute fructose cytoprotection to metabolic effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.
Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H–R)
Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Bhatt, Anand N.; Adams, David H.; Afford, Simon C.
2011-01-01
Hypoxia and hypoxia–reoxygenation (H–R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H–R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H–R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies. PMID:21356211
Cytotoxicity evaluation using cryopreserved primary human hepatocytes in various culture formats.
Richert, Lysiane; Baze, Audrey; Parmentier, Céline; Gerets, Helga H J; Sison-Young, Rowena; Dorau, Martina; Lovatt, Cerys; Czich, Andreas; Goldring, Christopher; Park, B Kevin; Juhila, Satu; Foster, Alison J; Williams, Dominic P
2016-09-06
Sixteen training compounds selected in the IMI MIP-DILI consortium, 12 drug-induced liver injury (DILI) positive compounds and 4 non-DILI compounds, were assessed in cryopreserved primary human hepatocytes. When a ten-fold safety margin threshold was applied, the non-DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes (n=13 donors) in suspension and 14-days following repeat dose exposure (3 treatments) to an established 3D-microtissue co-culture (3D-MT co-culture, n=1 donor) consisting of human hepatocytes co-cultured with non-parenchymal cells (NPC). In contrast, only 5/12 DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes in suspension. Exposure of the 2D-sandwich culture human hepatocyte monocultures (2D-sw) for 3days resulted in the correct identification of 11/12 DILI-positive compounds, whereas exposure of the human 3D-MT co-cultures for 14days resulted in identification of 9/12 DILI-compounds; in addition to ximelagatran (also not identified by 2D-sw monocultures, Sison-Young et al., 2016), the 3D-MT co-cultures failed to detect amiodarone and bosentan. The sensitivity of the 2D human hepatocytes co-cultured with NPC to ximelagatran was increased in the presence of lipopolysaccharide (LPS), but only at high concentrations, therefore preventing its classification as a DILI positive compound. In conclusion (1) despite suspension human hepatocytes having the greatest metabolic capacity in the short term, they are the least predictive of clinical DILI across the MIP-DILI test compounds, (2) longer exposure periods than 72h of human hepatocytes do not allow to increase DILI-prediction rate, (3) co-cultures of human hepatocytes with NPC, in the presence of LPS during the 72h exposure period allow the assessment of innate immune system involvement of a given drug. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Edlund, G L; Halestrap, A P
1988-01-01
Time courses of L-lactate and pyruvate uptake into isolated rat hepatocytes were measured in a citrate-based medium to generate a pH gradient (alkaline inside), by using the silicone-oil-filtration technique at 0 degrees C to minimize metabolism. At low concentrations of lactate and pyruvate (0.5 mM), transport was inhibited by over 95% by 5 mM-alpha-cyano-4-hydroxycinnamate, whereas at higher concentrations (greater than 10 mM) a significant proportion of transport could not be inhibited. The rate of this non-inhibitable transport was linearly related to the substrate concentration, was less with pyruvate than with L-lactate, and appeared to be due to diffusion of undissociated acid. Uptake of D-lactate was not inhibited by alpha-cyano-4-hydroxycinnamate and occurred only by diffusion. Kinetic parameters for the carrier-mediated transport process were obtained after correction of the initial rates of uptake of lactate and pyruvate in the absence of 5 mM-alpha-cyano-4-hydroxycinnamate by that in the presence of inhibitor. Under the conditions used, the Km values for L-lactate and pyruvate were 2.4 and 0.6 mM respectively and the Ki for alpha-cyano-4-hydroxycinnamate as a competitive inhibitor was 0.11 mM. Km values for the transport of L-lactate and pyruvate into rat erythrocytes under similar conditions were 3.0 and 0.96 mM. The Vmax. of lactate and pyruvate transport into hepatocytes at 0 degrees C was 3 nmol/min per mg of protein. Carrier-mediated transport of 0.5 mM-L-lactate was inhibited by 0.2 mM-p-chloromercuribenzenesulphonate (greater than 90%), 0.5 mM-quercetin (80%), 0.6 mM-isobutylcarbonyl-lactyl anhydride (70%) and 0.5 mM-4,4'-di-isothiocyanostilbene-2,2'-disulphonate (50%). A similar pattern of inhibition of lactate transport is seen in erythrocytes. It is suggested that the same or a similar carrier protein exists in both tissues. The results also show that L-lactate transport into rat hepatocytes is very rapid at physiological temperatures and is unlikely to restrict the rate of its metabolism. Differences between our results and those of Fafournoux, Demigne & Remesy [(1985) J. Biol. Chem. 260, 292-299] are discussed. PMID:3342001
Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk
2016-07-25
The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
EVALUATION OF PERFLUOROALKYL ACID ACTIVITY USING PRIMARY MOUSE AND HUMAN HEPATOCYTES
While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is know about the biological activity of other environmental perfluoroalkyl acids (pFAAs). Using a transient transfection assay developed in COS-l cells, our group has previ...
Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H-R).
Bhogal, Ricky H; Weston, Christopher J; Curbishley, Stuart M; Bhatt, Anand N; Adams, David H; Afford, Simon C
2011-03-23
Hypoxia and hypoxia-reoxygenation (H-R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H-R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H-R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Ioannou, George N.; Van Rooyen, Derrick M.; Savard, Christopher; Haigh, W. Geoffrey; Yeh, Matthew M.; Teoh, Narci C.; Farrell, Geoffrey C.
2015-01-01
Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation. PMID:25520429
Ioannou, George N; Van Rooyen, Derrick M; Savard, Christopher; Haigh, W Geoffrey; Yeh, Matthew M; Teoh, Narci C; Farrell, Geoffrey C
2015-02-01
Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥ 3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation.
Kale, Vijay M; Miranda, Sonia R; Wilbanks, Mitchell S; Meyer, Sharon A
2008-02-01
Noncancerous adverse effects observed at the lowest dose for chloroacetanilide herbicides alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)-acetanilide] and acetochlor [2-chloro-2'-methyl-6'-ethyl-N-(ethoxymethyl)acetanilide], but not metolachlor [2-chloro-2'-ethyl-6'-methyl-N-(1-methyl-2-methoxymethyl)acetanilide], are hepatotoxicity in rats and dogs. Liver microsomal N-dealkylation, a step in the putative activating pathway, of acetochlor exceeds that of alachlor and is negligible for metolachlor. In the present investigation, cytotoxicity of the three chloroacetanilides was ranked using isolated rat and cryopreserved human hepatocytes to correlate this endpoint with CYP3A-dependent metabolism. Chloroacetanilide cytotoxicity in rat hepatocyte suspensions was time dependent (e.g., LC(50 - alachlor/2 h) vs. LC(50 - alachlor/4 h) = 765 vs. 325 muM). Alachlor and acetochlor were more potent than metolachlor after 2 and 4 h, times when N-dealkylated alachlor product 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) formation was readily detectable. Alachlor and acetochlor potencies with cryopreserved human hepatocytes at 2 h were comparable to freshly isolated rat hepatocytes, and alachlor metabolism to CDEPA was likewise detectable. Unlike rat hepatocytes, metolachlor potency was equivalent to acetochlor and alachlor in human hepatocytes. Furthermore, chloroacetanilide cytotoxicity from two sources of human hepatocytes varied inversely with CYP3A4 activity. Collectively, while cytotoxicity in rat hepatocytes was consistent with chloroacetanilide activation by CYP3A, an activating role for CYP3A4 was not supported with human hepatocytes. (c) 2008 Wiley Periodicals, Inc.
Wu, J; Liu, P; Zhu, J L; Maddukuri, S; Zern, M A
1998-03-01
To improve liposome-directed therapy of liver disease and gene delivery, it would be beneficial to selectively target hepatocytes. For this purpose, conventional liposomes (CL) were labeled with asialofetuin (AF), an asialoglycoprotein. The biodistribution of AF-labeled liposomes (AF-L) in mice and their incorporation into rat hepatocytes, and their potential use in acute liver injury, were investigated. AF-L displayed a quicker plasma clearance than CL, and 25.4%, 2.7%, and 1.2% of the injected dose remained in the plasma versus 47.0%, 26.1%, and 9.5% of CL, respectively at 2, 4, and 20 hours after the injection. Total liver uptake of AF-L (73%+/-3.9%) was markedly higher (P < .005) than CL (16.5%+/-1.8%) 4 hours after the injection. Liposomal radioactivity (cpm/mg) was greatly enhanced in the liver (11-fold) during the first 4 hours after the administration of 14C-AF-L, and was much higher than in 14C-CL-injected mice (1.5-fold). In vitro incubation of isolated rat hepatocytes with 14C-AF-L or intravenous injection of 14C-AF-L in rats resulted in higher hepatocyte-bound radioactivity compared with 14C-CL (P < .01-.005). AF-L-associated 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) fluorescent signals were not only located in Kupffer cells, but also in hepatocytes, in which bile canaliculus networks were imaged. Intravenous administration of vitamin E (VE)-associated CL (VE-CL, 1 mg/mouse) significantly lowered alanine transaminase (ALT) levels in CCl4-treated mice (196+/-79 vs. 2,107+/-235 U/mL; P < .01). The ALT level in CCl4 + VE-AF-L group was decreased to 38+/-16 units/mL, which was significantly lower than the CC14 + VE-CL group (P < .05). In conclusion, labeling liposomes with AF led to a shortened liposome plasma half-life and greatly enhanced uptake of AF-L liposome by the liver. The enhanced uptake resulted from an increased incorporation of hepatocytes with AF-L liposomes. VE-associated AF liposomes further improved the protective effect of VE liposomes on CC14-induced acute liver injury in mice. Preferential hepatocyte incorporation of AF-L liposomes suggests a useful hepatocyte-targeting approach for drug delivery and gene transfection.
Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T.; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A.; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W.; Malik, Hassan; Kitteringham, Neil R.; Goldring, Chris E.; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A.
2015-01-01
Background & Aims Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Methods Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. Results HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. Conclusions HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. PMID:25457200
Human but Not Mouse Hepatocytes Respond to Interferon-Lambda In Vivo
Hermant, Pascale; Demarez, Céline; Mahlakõiv, Tanel; Staeheli, Peter; Meuleman, Philip; Michiels, Thomas
2014-01-01
The type III interferon (IFN) receptor is preferentially expressed by epithelial cells. It is made of two subunits: IFNLR1, which is specific to IFN-lambda (IFN-λ) and IL10RB, which is shared by other cytokine receptors. Human hepatocytes express IFNLR1 and respond to IFN-λ. In contrast, the IFN-λ response of the mouse liver is very weak and IFNLR1 expression is hardly detectable in this organ. Here we investigated the IFN-λ response at the cellular level in the mouse liver and we tested whether human and mouse hepatocytes truly differ in responsiveness to IFN-λ. When monitoring expression of the IFN-responsive Mx genes by immunohistofluorescence, we observed that the IFN-λ response in mouse livers was restricted to cholangiocytes, which form the bile ducts, and that mouse hepatocytes were indeed not responsive to IFN-λ. The lack of mouse hepatocyte response to IFN-λ was observed in different experimental settings, including the infection with a hepatotropic strain of influenza A virus which triggered a strong local production of IFN-λ. With the help of chimeric mice containing transplanted human hepatocytes, we show that hepatocytes of human origin readily responded to IFN-λ in a murine environment. Thus, our data suggest that human but not mouse hepatocytes are responsive to IFN-λ in vivo. The non-responsiveness is an intrinsic property of mouse hepatocytes and is not due to the mouse liver micro-environment. PMID:24498220
Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells.
Yamashita, Tomoki; Takayama, Kazuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki
2018-02-19
Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells are expected to be utilized in drug screening and regenerative medicine. However, hepatocyte-like cells have not been fully used in such applications because it is difficult to produce such cells on a large scale. In this study, we tried to establish a method to mass produce hepatocyte-like cells using a three-dimensional (3D) cell culture bioreactor called the Rotary Cell Culture System (RCCS). RCCS enabled us to obtain homogenous hepatocyte-like cells on a billion scale (>10 9 cells). The gene expression levels of some hepatocyte markers (alpha-1 antitrypsin, cytochrome (CYP) 1A2, CYP2D6, and hepatocyte nuclear factor 4alpha) were higher in 3D-cultured hepatocyte-like cells than in 2D-cultured hepatocyte-like cells. This result suggests that RCCS could provide more suitable conditions for hepatocyte maturation than the conventional 2D cell culture conditions. In addition, more than 90% of hepatocyte-like cells were positive for albumin and could uptake low-density lipoprotein in the culture medium. We succeeded in the large-scale production of homogenous and functional hepatocyte-like cells from human iPS cells. This technology will be useful in drug screening and regenerative medicine, which require enormous numbers of hepatocyte-like cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Klette, K L; Anderson, C J; Poch, G K; Nimrod, A C; ElSohly, M A
2000-10-01
The metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) was investigated in liver microsomes and cyropreserved hepatocytes from humans. Previous studies have demonstrated that O-H-LSD is present in human urine at concentrations 16-43 times greater than LSD, the parent compound. Additionally, these studies have determined that O-H-LSD is not generated during the specimen extraction and analytical processes or due to parent compound degradation in aqueous urine samples. However, these studies have not been conclusive in demonstrating that O-H-LSD is uniquely produced during in vivo metabolism. Phase I drug metabolism was investigated by incubating human liver microsomes and cryopreserved human hepatocytes with LSD. The reaction was quenched at various time points, and the aliquots were extracted using liquid partitioning and analyzed by liquid chromatography-mass spectrometry. O-H-LSD was positively identified in all human liver microsomal and human hepatocyte fractions incubated with LSD. In addition, O-H-LSD was not detected in any microsomal or hepatocyte fraction not treated with LSD nor in LSD specimens devoid of microsomes or hepatocytes. This study provides definitive evidence that O-H-LSD is produced as a metabolic product following incubation of human liver microsomes and hepatocytes with LSD.
HBV life cycle is restricted in mouse hepatocytes expressing human NTCP.
Li, Hanjie; Zhuang, Qiuyu; Wang, Yuze; Zhang, Tianying; Zhao, Jinghua; Zhang, Yali; Zhang, Junfang; Lin, Yi; Yuan, Quan; Xia, Ningshao; Han, Jiahuai
2014-03-01
Recent studies have revealed that human sodium taurocholate cotransporting polypeptide (SLC10A1 or NTCP) is a functional cellular receptor for hepatitis B virus (HBV). However, whether human NTCP can support HBV infection in mouse hepatocyte cell lines has not been clarified. Because an HBV-permissible mouse model would be helpful for the study of HBV pathogenesis, it is necessary to investigate whether human NTCP supports the susceptibility of mouse hepatocyte cell lines to HBV. The results show that exogenous human NTCP expression can render non-susceptible HepG2 (human), Huh7 (human), Hepa1-6 (mouse), AML-12 (mouse) cell lines and primary mouse hepatocyte (PMH) cells susceptible to hepatitis D virus (HDV) which employs HBV envelope proteins. However, human NTCP could only introduce HBV susceptibility in human-derived HepG2 and Huh7 cells, but not in mouse-derived Hepa1-6, AML-12 or PMH cells. These data suggest that although human NTCP is a functional receptor that mediates HBV infection in human cells, it cannot support HBV infection in mouse hepatocytes. Our study indicated that the restriction of HBV in mouse hepatocytes likely occurs after viral entry but prior to viral transcription. We have excluded the role of mouse hepatocyte nuclear factors in the restriction of the HBV life cycle and showed that knockdown or inhibition of Sting, TBK1, IRF3 or IRF7, the components of the anti-viral signaling pathways, had no effect on HBV infection in mouse hepatocytes. Therefore, murine restriction factors that limit HBV infection need to be identified before a HBV-permissible mouse line can be created.
Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...
Bartlett, David C; Newsome, Philip N
2017-01-01
Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.
Modulation of TGF-beta signaling during progression of chronic liver diseases.
Matsuzaki, Koichi
2009-01-01
A large body of work has established roles for epithelial cells as important mediators of progressive fibrosis and carcinogenesis. Transforming growth factor-beta (TGF-beta) and pro-inflammatory cytokines are important inducers of fibro-carcinogenesis. TGF-beta signaling involves phosphorylation of Smad3 at middle linker and/or C-terminal regions. Reversible shifting of Smad3-dependent signaling between tumor-suppression and oncogenesis in hyperactive Ras-expressing epithelial cells indicates that Smad3 phosphorylated at the C-terminal region (pSmad3C) transmits a tumor-suppressive TGF-beta signal, while oncogenic activities such as cell proliferation and invasion are promoted by Smad3 phosphorylated at the linker region (pSmad3L). Notably, pSmad3L-mediated signaling promotes extracellular matrix deposition by activated mesenchymal cells. During progression of chronic liver diseases, hepatic epithelial hepatocytes undergo transition from the tumor-suppressive pSmad3C pathway to the fibrogenic/oncogenic pSmad3L pathway, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma. c-Jun N-terminal kinase activated by pro-inflammatory cytokines is mediating this perturbed hepatocytic TGF-beta signaling. Thus, TGF-beta signaling of hepatocytes affected by chronic inflammation offers a general framework for understanding the molecular mechanisms of human fibro-carcinogenesis during progression of chronic liver diseases.
Chronic exposure of μg/L range Bisphenol A to adult zebrafish (Danio rerio) leading to adipogenesis
NASA Astrophysics Data System (ADS)
Ngo, Mai Thi; Doan, Thao Thi-Phuong; Nguyen, Cong Thanh; Vo, Diem Thi-Ngoc; Do, Chi Hong-Lan; Le, Nga Phi
2017-09-01
Bisphenol A (BPA) is known as an endocrine disruptor compound and commonly found in food-packaging plastics and in aquatic environment. It is scientifically concerned that BPA may causes significant health risks to human and aquatic animals. In fact, most of scientific studies have been conducted with BPA-acute toxicity in early stages of animal development, while far lesser researches have been focused on BPA-chronic toxicity in adults. This study was to investigate the chronic effects of environmental 1, 10 and 100 µg/L BPA to four-week-old zebrafishes (Danio rerio) after 60 days of exposure in terms of changing of body morphology, hepatocyte morphology and the transcriptional expression of biomarker gene for lipid metabolism. As a result, significant effects were found in: 1/ the increase of body weight, but not body length; 2/ the increase in the number of vacuolated hepatocytes corresponding to relatively higher glycogen and lipid content; 3/ shifting hepatocyte morphology to basophilic cytoplasm and cytoplasmic and/or nuclear enlargement, but not inflammation signs (macrophages, granuloma, fibrosis/cirrhosis); 4/ the decrease of mRNA level of PPARγ and C/EBPα genes in liver. Our study here indicates that the exposure to μg/L range concentration of BPA leads to adipogensis in adult zebrafishes.
Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W; Malik, Hassan; Kitteringham, Neil R; Goldring, Chris E; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A
2015-03-01
Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
The potential of induced pluripotent stem cell derived hepatocytes.
Hannoun, Zara; Steichen, Clara; Dianat, Noushin; Weber, Anne; Dubart-Kupperschmitt, Anne
2016-07-01
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per
2015-08-07
Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.
Riquelme, Paloma; Wundt, Judith; Hutchinson, James A; Brulport, Marc; Jun, Yu; Sotnikova, Anna; Girreser, Ulrich; Braun, Felix; Gövert, Felix; Soria, Bernat; Nüssler, Andreas; Clement, Bernd; Hengstler, Jan G; Fändrich, Fred
2009-03-01
Under certain culture conditions human peripheral blood monocytes may be induced to express phenotypic markers of non-haematopoietic lineages, including hepatocyte-defining traits. One such example, the NeoHepatocyte, was previously shown to express a broad panel of hepatocyte-like marker antigens and metabolic activities, both in vitro and following engraftment in the liver of immunodeficient mice. In this report, a refined description of NeoHepatocytes, with regard to their expression of xenobiotic-metabolising enzymes, morphology, hepatocyte marker expression and cell surface phenotype, is presented in comparison with human macrophages in defined states of activation. Contrary to prior assertions, it would seem more likely that NeoHepatocytes express particular hepatocyte-defining genes during a normal programme of macrophage differentiation rather than undergoing a process of transdifferentiation to become hepatocyte-like cells.
Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Adams, David H.; Afford, Simon C.
2012-01-01
The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes. PMID:22302008
Kang, Hyun; Koppula, Sushruta
2014-01-01
Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent.
Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation.
Bhogal, Ricky Harminder; Curbishley, Stuart M; Weston, Christopher J; Adams, David H; Afford, Simon C
2010-11-01
Increasing evidence shows that reactive oxygen species (ROS) may be critical mediators of liver damage during the relative hypoxia of ischemia/reperfusion injury (IRI) associated with transplant surgery or of the tissue microenvironment created as a result of chronic hepatic inflammation or infection. Much work has been focused on Kupffer cells or liver resident macrophages with respect to the generation of ROS during IRI. However, little is known about the contribution of endogenous hepatocyte ROS production or its potential impact on the parenchymal cell death associated with IRI and chronic hepatic inflammation. For the first time, we show that human hepatocytes isolated from nondiseased liver tissue and human hepatocytes isolated from diseased liver tissue exhibit marked differences in ROS production in response to hypoxia/reoxygenation (H-R). Furthermore, several different antioxidants are able to abrogate hepatocyte ROS-induced cell death during hypoxia and H-R. These data provide clear evidence that endogenous ROS production by mitochondria and nicotinamide adenine dinucleotide phosphate oxidase drives human hepatocyte apoptosis and necrosis during hypoxia and H-R and may therefore play an important role in any hepatic diseases characterized by a relatively hypoxic liver microenvironment. In conclusion, these data strongly suggest that hepatocytes and hepatocyte-derived ROS are active participants driving hepatic inflammation. These novel findings highlight important functional/metabolic differences between hepatocytes isolated from normal donor livers, hepatocytes isolated from normal resected tissue obtained during surgery for malignant neoplasms, and hepatocytes isolated from livers with end-stage disease. Furthermore, the targeting of hepatocyte ROS generation with antioxidants may offer therapeutic potential for the adjunctive treatment of IRI and chronic inflammatory liver diseases. © 2010 AASLD.
Ebihara, T; Takeuchi, T; Moriya, Y; Tagawa, Y; Kondo, T; Moriwaki, T; Asahi, S
2016-06-01
TAK-475 (lapaquistat acetate) is a squalene synthase inhibitor and M-I is a pharmacologically active metabolite of TAK-475. Preclinical pharmacokinetic studies have demonstrated that most of the dosed TAK-475 was hydrolyzed to M-I during the absorption process and the concentrations of M-I in the liver, the main organ of cholesterol biosynthesis, were much higher than those in the plasma after oral administration to rats. In the present study, the mechanism of the hepatic uptake of M-I was investigated.The uptake studies of (14)C-labeled M-I into rat and human hepatocytes indicated that the uptakes of M-I were concentrative, temperature-dependent and saturable in both species with Km values of 4.7 and 2.8 μmol/L, respectively. M-I uptake was also inhibited by cyclosporin A, an inhibitor for hepatic uptake transporters including organic anion transporting polypeptide (OATP). In the human hepatocytes, M-I uptake was hardly inhibited by estrone 3-sulfate as an inhibitor for OATP1B1, and most of the M-I uptake was Na(+)-independent. Uptake studies using human transporter-expressing cells revealed the saturable uptake of M-I for OATP1B3 with a Km of 2.13 μmol/L. No obvious uptake of M-I was observed in the OATP1B1-expressing cells.These results indicated that M-I was taken up into hepatocytes via transporters in both rats and humans. OATP1B3 would be mainly involved in the hepatic uptake of M-I in humans. These findings suggested that hepatic uptake transporters might contribute to the liver-selective inhibition of cholesterol synthesis by TAK-475. This is the first to clarify a carrier-mediated hepatic uptake mechanism for squalene synthase inhibitors. © Georg Thieme Verlag KG Stuttgart · New York.
Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes
Tarlow, Branden D.; Pelz, Carl; Naugler, Willscott E.; Wakefield, Leslie; Wilson, Elizabeth M.; Finegold, Milton J.; Grompe, Markus
2014-01-01
Summary Adult liver progenitor cells are biliary-like epithelial cells that emerge only under injury conditions in the periportal region of the liver. They exhibit phenotypes of both hepatocytes and bile ducts. However, their origin and their significance to injury repair remain unclear. Here, we used a chimeric lineage tracing system to demonstrate that hepatocytes contribute to the progenitor pool. RNA-sequencing, ultrastructural analysis, and in vitro progenitor assays revealed that hepatocyte-derived progenitors were distinct from their biliary-derived counterparts. In vivo lineage tracing and serial transplantation assays showed that hepatocyte-derived proliferative ducts retained a memory of their origin and differentiated back into hepatocytes upon cessation of injury. Similarly, human hepatocytes in chimeric mice also gave rise to biliary progenitors in vivo. We conclude that human and mouse hepatocytes can undergo reversible ductal metaplasia in response to injury, expand as ducts and subsequently contribute to restoration of the hepatocyte mass. PMID:25312494
Prot, Jean Matthieu; Maciel, Luis; Bricks, Thibault; Merlier, Franck; Cotton, Jérôme; Paullier, Patrick; Bois, Fréderic Yves; Leclerc, Eric
2014-10-01
We developed a microfluidic platform to investigate paracetamol intestinal and liver first pass metabolism. This approach was coupled with a mathematical model to estimate intrinsic in vitro parameters and to predict in vivo processes. The kinetic modeling estimated the paracetamol and paracetamol sulfate permeabilities, the sulfate and glucuronide effluxes in the intestine compartment. Based on a gut model, we estimated intrinsic intestinal clearance of between 26 and 77 L/h for paracetamol in humans, a permeability of 10 L/h, and a gut availability between 0.17 and 0.53 (compared to 0.95-1 in vivo). The role played by the liver in paracetamol metabolism was estimated via in vitro intrinsic clearances of 7.6, 13.6, and 11.5 µL/min/10(6) cells for HepG2/C3a, rat primary hepatocytes, and human primary hepatocytes, respectively. Based on a parallel tube model to describe the liver, the paracetamol hepatic clearance, and the paracetamol hepatic availability in humans were estimated at 6.5 mL/min/kg of bodyweight (BDW) and 0.7, respectively (when compared to 5 mL/min/kg of BDW and 0.77 to 0.88 for in vivo values, respectively). The drug availability was predicted ranging between 0.24 and 0.41 (0.88 in vivo). The overall approach provided a first step in an integrated strategy combining in silico/in vitro methods based on microfluidic for evaluating drug absorption, distribution and metabolism processes. © 2014 Wiley Periodicals, Inc.
Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A
2004-08-01
In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.
Hyperinsulinemia is Associated with Increased Soluble Insulin Receptors Release from Hepatocytes.
Hiriart, Marcia; Sanchez-Soto, Carmen; Diaz-Garcia, Carlos Manlio; Castanares, Diana T; Avitia, Morena; Velasco, Myrian; Mas-Oliva, Jaime; Macias-Silva, Marina; González-Villalpando, Clicerio; Delgado-Coello, Blanca; Sosa-Garrocho, Marcela; Vidaltamayo, Román; Fuentes-Silva, Deyanira
2014-01-01
It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR) has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration, and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l(-1) insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia, the amount of this soluble receptor increases and this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.
Enosawa, Shin
2017-01-01
For the purpose of clinical research of hepatocyte transplantation, procedures for isolation, cryopreservation, thawing, and functional assessment of hepatocytes are described. Although demands for human hepatocytes are increasing in not only cell therapy but also drug development, it is highly difficult to obtain good lots of hepatocytes from human liver tissue. This chapter describes essential issues such as alleviation of warm ischemia, prevention of shear stress, optimization of cryopreservation, and functional assessment, along with securement of quality. All procedures described here are compliant with good manufacturing procedure (GMP) in cell processing facility, approved by the act on measures to ensure safety of regenerative medicine and ethical regulations in Japan.
[Hepatic cell transplantation. Technical and methodological aspects].
Pareja, Eugenia; Martínez, Amparo; Cortés, Miriam; Bonora, Ana; Moya, Angel; Sanjuán, Fernando; Gómez-Lechón, M José; Mir, José
2010-03-01
Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.
Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S
2012-07-30
The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Li, Yan; Pelah, Avishay; An, Jing; Yu, Ying-Xin; Zhang, Xin-Yu
2014-01-01
Isoprene, a possible carcinogen, is a petrochemical and a natural product being primarily produced by plants. It is biotransformed to 2-ethenyl-2-methyloxirane (IP-1,2-O) and 2-(1-methylethenyl)oxirane (IP-3,4-O), both of which can be further metabolized to 2-methyl-2,2'-bioxirane (MBO). MBO is mutagenic, but IP-1,2-O and IP-3,4-O are not. While IP-1,2-O has been reported being genotoxic, the genotoxicity of IP-3,4-O and MBO, and the cross-linking potential of MBO have not been examined. In the present study, we used the comet assay to investigate the concentration- and time-dependent genotoxicity profiles of the three metabolites and the cross-linking potential of MBO in human hepatocyte L02 cells. For the incubation time of 1 h, all metabolites showed positive concentration-dependent profiles with a potency rank order of IP-3,4-O > MBO > IP-1,2-O. In human hepatocellular carcinoma (HepG2) and human leukemia (HL60) cells, IP-3,4-O was still more potent in inducing DNA breaks than MBO at high concentrations (>200 μM), although at low concentrations (≤200 μM) IP-3,4-O exhibited slightly lower or similar potency to MBO. Interestingly, their time-dependent genotoxicity profiles (0.5-4 h) in L02 cells were different from each other: IP-1,2-O and MBO (200 μM) exhibited negative and positive profiles, respectively, with IP-3,4-O lying in between, namely, IP-3,4-O-caused DNA breaks did not change over the exposure time. Further experiments demonstrated that hydrolysis of IP-1,2-O contributed to the negative profile and MBO induced cross-links at high concentrations and long incubation times. Collectively, the results suggested that IP-3,4-O might play a significant role in the toxicity of isoprene.
Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.
Takayama, Kazuo; Mizuguchi, Hiroyuki
2017-02-01
Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Hang, Hua-Lian; Liu, Xin-Yu; Wang, Hai-Tian; Xu, Ning; Bian, Jian-Min; Zhang, Jian-Jun; Xia, Lei; Xia, Qiang
2017-11-15
Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF. Copyright © 2017 Elsevier Inc. All rights reserved.
Gómez-Lechón, María José; Tolosa, Laia
2016-09-01
Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages.
Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K
2016-08-01
Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.
Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.
Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with,more » or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury compared to rodents. • Primary human hepatocytes largely undergo necrosis in response to BA toxicity. • Cholestatic liver injury in vivo is predominantly necrotic with minor apoptosis. • Rodent models of bile acid toxicity may not recapitulate the injury in man.« less
Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki
2012-01-01
Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity. PMID:22068426
Mocan, Lucian; Matea, Cristian; Tabaran, Flaviu A; Mosteanu, Ofelia; Pop, Teodora; Mocan, Teodora; Iancu, Cornel
2015-01-01
We present a method of enhanced laser thermal ablation of HepG2 cells based on a simple gold nanoparticle (GNP) carrier system such as serum albumin (Alb), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. HepG2 or hepatocytes were treated with Alb-GNPs at various concentrations and various incubation times, and further irradiated using a 2 W, 808 nm laser. Darkfield microscopy and immunochemical staining was used to demonstrate the selective internalization of Alb-GNPs inside the HepG2 cells via Gp60 receptors targeting. The postirradiation apoptotic rate of HepG2 cells treated with Alb-GNPs ranged from 25.8% (for 5 μg/mL) to 48.2% (for 50 μg/mL) at 60 seconds, while at 30 minutes the necrotic rate increased from 35.7% (5 μg/mL) to 52.3% (50 μg/mL), P-value <0.001. Significantly lower necrotic rates were obtained when human hepatocytes were treated with Alb-GNPs in a similar manner. We also showed by means of immunocytochemistry that photothermal treatment of Alb-conjugated GNPs in liver cancer initiates Golgi apparatus-endoplasmic reticulum dysfunction with consequent caspase-3 apoptotic pathway activation and cellular apoptosis. The presented results may become a new method of treating cancer cells by selective therapeutic vectors using nanolocalized thermal ablation by laser heating.
Tateno, Hiroaki; Saito, Sayoko
2017-07-10
The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 μg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 μg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.
Green, Charlotte J; Charlton, Catriona A; Wang, Lai-Mun; Silva, Michael; Morten, Karl J; Hodson, Leanne
2017-12-01
Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.
Nakagawa, Yoshio; Suzuki, Toshinari; Inomata, Akiko
2018-02-01
Psychoactive compounds, N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB) and 3,4-methylenedioxy-N-methamphetamine (MDMA), are known to be hepatotoxic in humans and/or experimental animals. As previous studies suggested that these compounds elicited cytotoxicity via mitochondrial dysfunction and/or oxidative stress in rat hepatocytes, the protective effects of fructose and N-acetyl-l-cysteine (NAC) on 5-MAPB- and MDMA-induced toxicity were studied in rat hepatocytes. These drugs caused not only concentration-dependent (0-4 mm) and time-dependent (0-3 hours) cell death accompanied by the depletion of cellular levels of adenosine triphosphate (ATP) and glutathione (reduced form; GSH) but also an increase in the oxidized form of GSH. The toxic effects of 5-MAPB were greater than those of MDMA. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or NAC at a concentration of 2.5 mm prevented 5-MAPB-/MDMA-induced cytotoxicity. In addition, the exposure of hepatocytes to 5-MAPB/MDMA caused the loss of mitochondrial membrane potential, although the preventive effect of fructose was weaker than that of NAC. These results suggest that: (1) 5-MAPB-/MDMA-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were ameliorated, at least in part, by the addition of fructose; and (3) GSH loss via oxidative stress was prevented by NAC. Taken collectively, these results indicate that the onset of toxic effects caused by 5-MAPB/MDMA may be partially attributable to cellular energy stress as well as oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.
Masuoka, Howard C.; Vuppalanchi, Raj; Deppe, Ross; Bybee, Phelan; Comerford, Megan; Liangpunsakul, Suthat; Ghabril, Marwan; Chalasani, Naga
2015-01-01
Background and Aim Hepatocyte apoptosis or necrosis from accumulation of bile salts may play an important role in the disease progression of primary sclerosing cholangitis (PSC). The aim of the current study was to measure serum markers of hepatocyte apoptosis (cytokeratin 18 fragments - K18) and necrosis (high-mobility group protein B1 - HMGB1) in adults with PSC and examine the relationship with disease severity. Methods We measured serum levels of K18 and HMGB1 in well phenotyped PSC (N=37) and 39 control subjects (N=39). Severity of PSC was assessed biochemically, histologically and PSC Mayo Risk Score. Quantification of hepatocyte apoptosis was performed using TUNEL assay. Results The mean age of the study cohort was 49.7 ± 13.3 years and comprised of 67% men and 93% Caucasian. Serum K18 levels were significantly higher in the PSC patients compared to control (217.4 ± 78.1 vs. 157.0 ± 58.2 U/L, p-val=0.001). However, HMGB1 levels were not different between the two groups (5.38 ± 2.99 vs. 6.28 ± 2.85 ng/mL, p-val=0.15). Within the PSC group, K18 levels significantly correlated with AST (r=0.5, p-val=0.002), alkaline phosphatase (r=0.5, p-val=0.001), total bilirubin (r=0.61, p-val= <0.001), and albumin (r=−0.4, p-val =0.02). Serum K18 levels also correlated with the level of apoptosis present on the liver biopsy (r=0.8, p-val = <0.001) and Mayo Risk score (r=0.4, p-val=0.015). Conclusion Serum K18 but not HMGB1 levels were increased in PSC and associated with severity of underlying liver disease and the degree of hepatocyte apoptosis. PMID:26195313
3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing.
Takayama, Kazuo; Kawabata, Kenji; Nagamoto, Yasuhito; Kishimoto, Keisuke; Tashiro, Katsuhisa; Sakurai, Fuminori; Tachibana, Masashi; Kanda, Katsuhiro; Hayakawa, Takao; Furue, Miho Kusuda; Mizuguchi, Hiroyuki
2013-02-01
Although it is expected that hepatocyte-like cells differentiated from human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells will be utilized in drug toxicity testing, the actual applicability of hepatocyte-like cells in this context has not been well examined so far. To generate mature hepatocyte-like cells that would be applicable for drug toxicity testing, we established a hepatocyte differentiation method that employs not only stage-specific transient overexpression of hepatocyte-related transcription factors but also a three-dimensional spheroid culture system using a Nanopillar Plate. We succeeded in establishing protocol that could generate more matured hepatocyte-like cells than our previous protocol. In addition, our hepatocyte-like cells could sensitively predict drug-induced hepatotoxicity, including reactive metabolite-mediated toxicity. In conclusion, our hepatocyte-like cells differentiated from human ES cells or iPS cells have potential to be applied in drug toxicity testing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bhogal, Ricky H; Weston, Christopher J; Curbishley, Stuart M; Adams, David H; Afford, Simon C
2012-01-01
Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis. Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2',7'-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay. Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis. CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury.
Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Adams, David H.; Afford, Simon C.
2012-01-01
Background Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis. Methods Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2′,7′-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay. Results Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis. Conclusions CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury. PMID:22295117
Haines, Corinne; Elcombe, Barbara M; Chatham, Lynsey R; Vardy, Audrey; Higgins, Larry G; Elcombe, Clifford R; Lake, Brian G
2018-03-01
Phenobarbital (PB), a constitutive androstane receptor (CAR) activator, produces liver tumours in rodents by a mitogenic mode of action involving CAR activation. In this study, the hepatic effects of sodium phenobarbital (NaPB) were compared in male C57BL/6J wild type (WT) mice and in humanized mice, where both the mouse CAR and pregnane X receptor (PXR) have been replaced by their human counterparts (hCAR/hPXR mice). Investigations were also performed in cultured male C57BL/6J and CD-1 mouse, male Sprague-Dawley rat and male and female human hepatocytes. The treatment of WT and hCAR/hPXR mice with 186-984 ppm NaPB in the diet for 7 days resulted in increased relative liver weight, hypertrophy and induction of cytochrome P450 (CYP) enzyme activities. Treatment with NaPB also produced dose-dependent increases in hepatocyte replicative DNA synthesis (RDS), with the effect being more marked in WT than in hCAR/hPXR mice. While the treatment of cultured C57BL/6J and CD-1 mouse, Sprague-Dawley rat and human hepatocytes with 100 and/or 1000 μM NaPB for 4 days induced CYP enzyme activities, increased RDS was only observed in mouse and rat hepatocytes. However, as a positive control, epidermal growth factor increased RDS in hepatocytes from all three species. In summary, although human hepatocytes are refractory to the mitogenic effects of NaPB, treatment with NaPB induced RDS in vivo in hCAR/hPXR mice, which is presumably due to the human CAR and PXR receptors operating in a mouse hepatocyte regulatory environment. As the response of the hCAR/hPXR mouse to the CAR activator NaPB differs markedly from that of human hepatocytes, the hCAR/hPXR mouse is thus not a suitable animal model for studies on the hepatic effects of nongenotoxic rodent CAR activators. Copyright © 2018 Elsevier B.V. All rights reserved.
Pan, XiaoPing; Wang, Yini; Yu, XiaoPeng; Li, JianZhou; Zhou, Ning; Du, WeiBo; Zhang, YanHong; Cao, HongCui; Zhu, DanHua; Chen, Yu; Li, LanJuan
2015-01-01
The liver-specific functions of hepatocytes are improved by co-culturing hepatocytes with primary hepatic stellate cells (HSC). However, primary HSC have a short lifespan in vitro, which is considered a major limitation for their use in various applications. This study aimed to establish immortalized human HSC using the simian virus 40 large T antigen (SV40LT) for applications in co-culturing with hepatocytes and HSC in vitro. Primary human HSC were transfected with a recombinant retrovirus containing SV40LT. The immortalized human HSC were characterized by analyzing their gene expression and functional characteristics. The liver-specific functions of hepatocytes were evaluated in a co-culture system incorporating immortalized human hepatocytes with HSC-Li cells. The immortalized HSC line, HSC-Li, was obtained after infection with a recombinant retrovirus containing SV40LT. The HSC-Li cells were longitudinally spindle-like and had numerous fat droplets in their cytoplasm as shown using electron microscopy. Hepatocyte growth factor (HGF), VEGF Receptor 1(Flt-1), collagen type Iα1 and Iα2 mRNA expression levels were observed in the HSC-Li cells by RT-PCR. Immunofluorescence staining showed that the HSC-Li cells were positive for α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFR-β), vimentin, and SV40LT protein expression. The HSC-Li cells produced both HGF and transforming growth factor-beta1 (TGF-β1) in a time-dependent manner. Real-time PCR showed that albumin, CYP3A5, CYP2E1, and UGT2B7 mRNA expression generally increased in the co-culture system. The enzymatic activity of CYP1A2 under the co-culture conditions also generally increased as compared to the monoculture of immortalized human hepatocytes. We successfully established the immortalized human HSC cell line HSC-Li. It has the specific phenotypic and functional characteristics of primary human HSC, which would be a useful tool to develop anti-fibrotic therapies. Co-culturing with the HSC-Li cells improved the liver-specific functions of hepatocytes, which may be valuable and applicable for bioartificial liver systems.
Jeong, Jin Sook; Lee, Sang Hyeung; Jung, Kap Joong; Choi, Yong C; Park, Woong Yang; Kim, In Hoo; Kim, Sang Soon
2003-02-01
N-nitrosomorpholine (NNM) is a hepatotoxic and hepatocarcinogenic agent. This agent was administered in the form of drinking water which contained 200 mg of NNM/liter. Its time-dependent intake profile showed four phases over 20 weeks, followed by a fifth phase where only water was supplied. Most frequently, hepatocellular carcinoma appeared between the end of phase IV and the beginning of phase V. At 5 weeks of NNM administration, foci of altered hepatocytes (FAH) containing 100-1000 hepatocytes could be isolated together with free hepatocytes by the collagenase perfusion method. When these foci were grown on the William's Medium E containing hormonally defined medium, they were able to survive approximately twice as long as normal hepatocytes At 10 weeks of NNM administration, few FAH were isolated together with free hepatocytes. The hepatocytes which had been placed under extended chemical stress showed increased heat tolerance (7 to 8 h) at 43 degrees C, while normal hepatocytes could survive 3 to 4 h. At the neoplastic phase spanning the end of the 20 weeks of the NNM administration and water phase, the rats bearing hepatocellular carcinoma entered the terminal stage, where observable tumor masses could be isolated from the tumor bearing liver and tested for ex vivo growth in tissue culture. After stabilization of the isolated primary hepatoma cells through 10 passages of propagation on William's Medium E or minimal Eagle's medium containing 10% FBS, their gene expression profile was analyzed by DNA microarray and compared with the profile of normal hepatocytes. The comparison revealed that upregulation involved ribosome-dependent protein synthesis, including 40S ribosomal proteins (S4, S7, S18, S20), 60S ribosomal proteins (L6, L21, L32, L37, P1), initiation factor 4A, and elongation factor 1alpha.
Comparative Gene Expression Profiles Induced by PPARγ and PPARα/γ Agonists in Human Hepatocytes
Rogue, Alexandra; Lambert, Carine; Jossé, Rozenn; Antherieu, Sebastien; Spire, Catherine; Claude, Nancy; Guillouzo, André
2011-01-01
Background Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. Methodology/Principal Findings Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. Conclusions/Significance This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby supporting the occurrence of idiosyncratic toxicity in some patients. PMID:21533120
2011-01-01
Background The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. Results The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. Conclusion The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450. PMID:21961524
Assessment of amiodarone-induced phospholipidosis in chimeric mice with a humanized liver.
Sanoh, Seigo; Yamachika, Yuto; Tamura, Yuka; Kotake, Yaichiro; Yoshizane, Yasumi; Ishida, Yuji; Tateno, Chise; Ohta, Shigeru
2017-01-01
It is important to consider susceptibility to drug-induced toxicity between animals and humans. Chimeric mice with a humanized liver are expected to predict hepatotoxicity in humans. Drug-induced phospholipidosis (DIPL), in which phospholipids accumulate, is a known entity. In this study, we examined whether chimeric mice can reveal species differences in DIPL. Changes in various phosphatidylcholine (PhC) molecules were investigated in the liver of chimeric mice after administering amiodarone, which induces phospholipidosis. Liquid chromatography-tandem mass spectrometry revealed that levels of PhCs tended to increase in the liver after administration of amiodarone. The liver of chimeric mice consists of human hepatocytes and residual mouse hepatocytes. We used imaging mass spectrometry (IMS) to evaluate the increase of PhCs in human and mouse hepatocytes after administration of amiodarone. IMS visualizes localization of endogenous and exogenous molecules in tissues. The IMS analysis suggested that the localized levels of several PhCs tended to be higher in the human hepatocytes than those in mouse hepatocytes, and PhC levels changed in response to amiodarone. Chimeric mice with a humanized liver will be useful to evaluate species differences in DIPL between mice and humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inami, Yoshihiro; Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp; Izumi, Kousuke
2011-09-09
Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmentedmore » in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.« less
Sanoh, Seigo; Ohta, Shigeru
2014-03-01
Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.
Ding, Jianqiang; Yannam, Govardhana R; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I; Wong, Ronald J; Avsar, Yesim; Guha, Chandan; Perlmutter, David H; Fox, Ira J; Roy-Chowdhury, Jayanta
2011-05-01
α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.
Sia, Kian Chuan; Huynh, Hung; Chung, Alexander Yaw Fui; Ooi, London Lucien Peng Jin; Lim, Kiat Hon; Hui, Kam Man; Lam, Paula Yeng Po
2013-08-01
Gene regulation of many key cell-cycle players in S-, G(2) phase, and mitosis results from transcriptional repression in their respective promoter regions during the G(0) and G(1) phases of cell cycle. Within these promoter regions are phylogenetically conserved sequences known as the cell-cycle-dependent element (CDE) and cell-cycle genes homology regions (CHR) sites. Thus, we hypothesize that transcriptional regulation of cell-cycle regulation via the CDE/CHR region together with liver-specific apolipoprotein E (apoE)-hAAT promoter could bring about a selective transgene expression in proliferating human hepatocellular carcinoma. We show that the newly generated vector AH-6CC-L2C could mediate hepatocyte-targeted luciferase gene expression in tumor cells and freshly isolated short-term hepatocellular carcinoma cultures from patient biopsy. In contrast, normal murine and human hepatocytes infected with AH-6CC-L2C expressed minimal or low luciferase activities. In the presence of prodrug 5-fluorocytosine (5-FC), AH-6CC-L2C effectively suppressed the growth of orthotopic hepatocellular carcinoma patient-derived xenograft mouse model via the expression of yeast cytosine deaminase (yCD) that converts 5-FC to anticancer metabolite 5-fluoruracil. More importantly, we show that combination treatment of AH-6CC-L2C with an EZH2 inhibitor, DZNep, that targets EpCAM-positive hepatocellular carcinoma, can bring about a greater therapeutic efficacy compared with a single treatment of virus or inhibitor. Our study showed that targeting proliferating human hepatocellular carcinoma cells through the transcriptional control of therapeutic gene could represent a feasible approach against hepatocellular carcinoma.
Yamada, Tomoya; Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Takeuchi, Hayato; Nagahori, Hirohisa; Fukuda, Takako; Lake, Brian G; Cohen, Samuel M; Kawamura, Satoshi
2014-11-01
High doses of sodium phenobarbital (NaPB), a constitutive androstane receptor (CAR) activator, have been shown to produce hepatocellular tumors in rodents by a mitogenic mode of action (MOA) involving CAR activation. The effect of 1-week dietary treatment with NaPB on liver weight and histopathology, hepatic CYP2B enzyme activity and CYP2B/3A mRNA expression, replicative DNA synthesis and selected genes related to cell proliferation, and functional transcriptomic and metabolomic analyses was studied in male CD-1 mice, Wistar Hannover (WH) rats, and chimeric mice with human hepatocytes. The treatment of chimeric mice with 1000-1500-ppm NaPB resulted in plasma levels around 3-5-fold higher than those observed in human subjects given therapeutic doses of NaPB. NaPB produced dose-dependent increases in hepatic CYP2B activity and CYP2B/3A mRNA levels in all animal models. Integrated functional metabolomic and transcriptomic analyses demonstrated that the responses to NaPB in the human liver were clearly different from those in rodents. Although NaPB produced a dose-dependent increase in hepatocyte replicative DNA synthesis in CD-1 mice and WH rats, no increase in replicative DNA synthesis was observed in human hepatocyte-originated areas of chimeric mice. In addition, treatment with NaPB had no effect on Ki-67, PCNA, GADD45β, and MDM2 mRNA expression in chimeric mice, whereas significant increases were observed in CD-1 mice and/or WH rats. However, increases in hepatocyte replicative DNA synthesis were observed in chimeric mice both in vivo and in vitro after treatment epidermal growth factor. Thus, although NaPB could activate CAR in both rodent and human hepatocytes, NaPB did not increase replicative DNA synthesis in human hepatocytes of chimeric mice, whereas it was mitogenic to rat and mouse hepatocytes. As human hepatocytes are refractory to the mitogenic effects of NaPB, the MOA for NaPB-induced rodent liver tumor formation is thus not relevant for humans. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
[State of hepatocyte transplantation: a risk or a chance?].
Leckel, K; Blaheta, R A; Markus, B H
2003-04-01
Over the past few years, hepatocyte transplantation has been considered as an alternative method for orthotopic liver transplantation for the treatment of various liver diseases. Beside curative approach for genetic metabolic deficiencies (familial hypercholesterolemia, hemophilia, etc.), it could be a useful tool for bridging the waiting period until an appropriate donor organ is obtained. In preclinical animal studies, hepatocytes injected intraperitoneally, intraportally or into the spleen settle down in the diseased liver. This enables genetic modification to correct inborn metabolic deficiencies and improves survival in acute liver failure. In 1992, the first clinical transplantation of isolated hepatocytes in 10 patients was performed. In 1998, Fox and coworkers described the successful transplantation of allogeneic liver cells in a child with Crigler-Najjar syndrome. Accomplished studies of Strom et al. resp. Bilir et al. of the same year proved the effectiveness of liver cell transplantation for transient treatment of acute liver failure. Prerequisite of this cell-based therapeutic strategy is a sufficient amount of highly differentiated hepatocytes, hence, a well established in-vitro cell-culture technique is necessary to yield a reproducible number of proliferating hepatocytes and to preserve the physiological cell function. This review discusses the different experimental approaches regarding the cultivation of human hepatocytes and also the use of alternative cell sources (like animal hepatocytes, immortalized cells of human origin, progenitor cells from fetal human liver/liver stem cells) for hepatocyte transplantation.
Pan, XiaoPing; Wang, Yini; Yu, XiaoPeng; Li, JianZhou; Zhou, Ning; Du, WeiBo; Zhang, YanHong; Cao, HongCui; Zhu, DanHua; Chen, Yu; Li, LanJuan
2015-01-01
Background and objective. The liver-specific functions of hepatocytes are improved by co-culturing hepatocytes with primary hepatic stellate cells (HSC). However, primary HSC have a short lifespan in vitro, which is considered a major limitation for their use in various applications. This study aimed to establish immortalized human HSC using the simian virus 40 large T antigen (SV40LT) for applications in co-culturing with hepatocytes and HSC in vitro. Methods. Primary human HSC were transfected with a recombinant retrovirus containing SV40LT. The immortalized human HSC were characterized by analyzing their gene expression and functional characteristics. The liver-specific functions of hepatocytes were evaluated in a co-culture system incorporating immortalized human hepatocytes with HSC-Li cells. Results. The immortalized HSC line, HSC-Li, was obtained after infection with a recombinant retrovirus containing SV40LT. The HSC-Li cells were longitudinally spindle-like and had numerous fat droplets in their cytoplasm as shown using electron microscopy. Hepatocyte growth factor (HGF), VEGF Receptor 1(Flt-1), collagen type Iα1 and Iα2 mRNA expression levels were observed in the HSC-Li cells by RT-PCR. Immunofluorescence staining showed that the HSC-Li cells were positive for α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFR-β), vimentin, and SV40LT protein expression. The HSC-Li cells produced both HGF and transforming growth factor-beta1 (TGF-β1) in a time-dependent manner. Real-time PCR showed that albumin, CYP3A5, CYP2E1, and UGT2B7 mRNA expression generally increased in the co-culture system. The enzymatic activity of CYP1A2 under the co-culture conditions also generally increased as compared to the monoculture of immortalized human hepatocytes. Conclusions. We successfully established the immortalized human HSC cell line HSC-Li. It has the specific phenotypic and functional characteristics of primary human HSC, which would be a useful tool to develop anti-fibrotic therapies. Co-culturing with the HSC-Li cells improved the liver-specific functions of hepatocytes, which may be valuable and applicable for bioartificial liver systems. PMID:25678842
Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes
Joshi, Meghnad; Patil, Pradeep B.; He, Zhong; Holgersson, Jan; Olausson, Michael; Sumitran-Holgersson, Suchitra
2012-01-01
Background aims One important problem commonly encountered after hepatocyte transplantation is the low numbers of transplanted cells found in the graft. If hepatocyte transplantation is to be a viable therapeutic approach, significant liver parenchyma repopulation is required. Mesenchymal stromal cells (MSC) produce high levels of various growth factors, cytokines and metalloproteinases, and have immunomodulatory effects. We therefore hypothesized that co-transplantation of MSC with human fetal hepatocytes (hFH) could augment in vivo expansion after transplantation. We investigated the ability of human fetal liver MSC (hFLMSC) to augment expansion of phenotypically and functionally well-characterized hFH. Methods Two million hFH (passage 6) were either transplanted alone or together (1:1 ratio) with green fluorescence protein-expressing hFLMSC into the spleen of C57BL/6 nude mice with retrorsine-induced liver injury. Results After 4 weeks, engraftment of cells was detected by fluorescence in situ hybridization using a human-specific DNA probe. Significantly higher numbers of cells expressing human cytokeratin (CK)8, CK18, CK19, Cysteine-rich MNNG HOS Transforming gene (c-Met), alpha-fetoprotein (AFP), human nuclear antigen, mitochondrial antigen, hepatocyte-specific antigen and albumin (ALB) were present in the livers of recipient animals co-transplanted with hFLMSC compared with those without. Furthermore, expression of human hepatocyte nuclear factor (HNF)-4α and HNF-1β, and cytochrome P450 (CYP) 3A7 mRNA was demonstrated by reverse transcriptase-polymerase chain reaction (RT-PCR) in these animals. In addition, significantly increased amounts of human ALB were detected. Importantly, hFLMSC did not transdifferentiate into hepatocytes. Conclusions Our study reports the use of a novel strategy for enhanced liver repopulation and thereby advances this experimental procedure closer to clinical liver cell therapy. PMID:22424216
Ding, Jianqiang; Yannam, Govardhana R.; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I.; Wong, Ronald J.; Avsar, Yesim; Guha, Chandan; Perlmutter, David H.; Fox, Ira J.; Roy-Chowdhury, Jayanta
2011-01-01
α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z–expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%–98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z–expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals. PMID:21505264
Cryopreservation of Hepatocyte Microbeads for Clinical Transplantation
Jitraruch, Suttiruk; Hughes, Robin D.; Filippi, Celine; Lehec, Sharon C.; Glover, Leanne; Mitry, Ragai R.
2017-01-01
Intraperitoneal transplantation of hepatocyte microbeads is an attractive option for the management of acute liver failure. Encapsulation of hepatocytes in alginate microbeads supports their function and prevents immune attack of the cells. Establishment of banked cryopreserved hepatocyte microbeads is important for emergency use. The aim of this study was to develop an optimized protocol for cryopreservation of hepatocyte microbeads for clinical transplantation using modified freezing solutions. Four freezing solutions with potential for clinical application were investigated. Human and rat hepatocytes cryopreserved with University of Wisconsin (UW)/10% dimethyl sulfoxide (DMSO)/5% (300 mM) glucose and CryoStor CS10 showed better postthawing cell viability, attachment, and hepatocyte functions than with histidine–tryptophan–ketoglutarate/10% DMSO/5% glucose and Bambanker. The 2 freezing solutions that gave better results were studied with human and rat hepatocytes microbeads. Similar effects on cryopreserved microbead morphology (external and ultrastructural), viability, and hepatocyte-functions post thawing were observed over 7 d in culture. UW/DMSO/glucose, as a basal freezing medium, was used to investigate the additional effects of cytoprotectants: a pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone [ZVAD]), an antioxidant (desferoxamine [DFO]), and a buffering and mechanical protectant (human serum albumin [HSA]) on RMBs. ZVAD (60 µM) had a beneficial effect on cell viability that was greater than with DFO (1 mM), HSA (2%), and basal freezing medium alone. Improvements in the ultrastructure of encapsulated hepatocytes and a lower degree of cell apoptosis were observed with all 3 cytoprotectants, with ZVAD tending to provide the greatest effect. Cytochrome P450 activity was significantly higher in the 3 cytoprotectant groups than with fresh microbeads. In conclusion, developing an optimized cryopreservation protocol by adding cytoprotectants such as ZVAD could improve the outcome of cryopreserved hepatocyte microbeads for future clinical use. PMID:28901189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de; Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de; Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de
Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. Themore » aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.« less
Hu, Congli; Yang, Junqing; He, Qin; Luo, Ying; Chen, Zhihao; Yang, Lu; Yi, Honggang; Li, Huan; Xia, Hui; Ran, Dongzhi; Yang, Yang; Zhang, Jiahua; Li, Yuke; Wang, Hong
2018-05-07
Aluminum (Al) is a trivalent cation that can accumulate in animal organs, especially in the liver. We previously demonstrated that Al-overload could induce liver morphologic aberrations and dysfunction. However, the molecular mechanism underlying liver injury caused by Al-overload still remains unknown. In the present study, we investigated the relationship between leukotrienes receptors and the PI3K/AKT/mTOR pathway in Al-induced liver injury in vivo and in vitro. We demonstrated that Al-overload significantly increased the protein expression levels of CysLTR1, PI3K, AKT, mTOR, and p62, while significantly decreasing the LC3BII protein levels in rat liver; thus, suggesting that the autophagy process was inhibited in Al-overloaded rat liver. In addition, MK-571, an inhibitor of CysLTR1, effectively protected the human hepatocyte L02 cells against injury caused by Al exposure. Moreover, CysLTR1 blockage could significantly down-regulate the PI3K/AKT/mTOR pathway and activate autophagy. The effect of MK-571 on cell viability was abolished by the treatment with the autophagy inhibitor (wortmannin) but not with the autophagy agonist (rapamycin). Taken together, our results indicated that the blockage of the leukotriene receptor of CysLTR1 promotes autophagy and further reduces hepatocyte death through the PI3K/AKT/mTOR pathway inhibition. CysLTR1 thus could represent a potential target for the new drug development for chronic noninfective liver injury.
Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil
2018-06-01
Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.
Biessen, Erik A L; Sliedregt-Bol, Karen; 'T Hoen, Peter A Chr; Prince, Perry; Van der Bilt, Erica; Valentijn, A Rob P M; Meeuwenoord, Nico J; Princen, Hans; Bijsterbosch, Martin K; Van der Marel, Gijs A; Van Boom, Jacques H; Van Berkel, Theo J C
2002-01-01
In this study, we present the design and synthesis of an antisense peptide nucleic acid (asPNA) prodrug, which displays an improved biodistribution profile and an equally improved capacity to reduce the levels of target mRNA. The prodrug, K(GalNAc)(2)-asPNA, comprised of a 14-mer sequence complementary to the human microsomal triglyceride transfer protein (huMTP) gene, conjugated to a high-affinity tag for the hepatic asialoglycoprotein receptor (K(GalNAc)(2)). The prodrug was avidly bound and rapidly internalized by HepG2s. After iv injection into mice, K(GalNAc)(2)-asPNA accumulated in the parenchymal liver cells to a much greater extent than nonconjugated PNA (46% +/- 1% vs 3.1% +/- 0.5% of the injected dose, respectively). The prodrug was able to reduce MTP mRNA levels in HepG2 cells by 35-40% (P < 0.02) at 100 nM in an asialoglycoprotein receptor- and sequence-dependent fashion. In conclusion, hepatocyte-targeted PNA prodrugs combine a greatly improved tropism with an enhanced local intracellular availability and activity, making them attractive therapeutics to lower the expression level of hepatic target genes such as MTP.
Generation of Hepatocytes from Pluripotent Stem Cells for Drug Screening and Developmental Modeling.
Gieseck, Richard L; Vallier, Ludovic; Hannan, Nicholas R F
2015-01-01
Hepatocytes produced from the differentiation of human pluripotent stem cells can be used to study human development and liver disease, to investigate the toxicological response of novel drug candidates, and as an alternative source of primary cells for transplantation therapies. Here, we describe a method to produce hepatocytes by differentiating human pluripotent stem cells into definitive endoderm, patterning definitive endoderm into anterior definitive endoderm, specifying anterior definitive endoderm into hepatic endoderm, and differentiating hepatic endoderm into immature hepatocytes. These cells are further matured in either two-dimensional or three-dimensional culture conditions to produce cells capable of metabolizing xenobiotics and generating liver-specific proteins, such as albumin and alpha 1 antitrypsin.
Watashi, Koichi; Sluder, Ann; Daito, Takuji; Matsunaga, Satoko; Ryo, Akihide; Nagamori, Shushi; Iwamoto, Masashi; Nakajima, Syo; Tsukuda, Senko; Borroto-Esoda, Katyna; Sugiyama, Masaya; Tanaka, Yasuhito; Kanai, Yoshikatsu; Kusuhara, Hiroyuki; Mizokami, Masashi; Wakita, Takaji
2014-01-01
Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. Although nucleos(t)ide analogs inhibiting viral reverse transcriptase are clinically available as anti-HBV agents, emergence of drug-resistant viruses highlights the need for new anti-HBV agents interfering with other targets. Here we report that cyclosporin A (CsA) can inhibit HBV entry into cultured hepatocytes. The anti-HBV effect of CsA was independent of binding to cyclophilin and calcineurin. Rather, blockade of HBV infection correlated with the ability to inhibit the transporter activity of sodium taurocholate cotransporting polypeptide (NTCP). We also found that HBV infection-susceptible cells, differentiated HepaRG cells and primary human hepatocytes expressed NTCP, while nonsusceptible cell lines did not. A series of compounds targeting NTCP could inhibit HBV infection. CsA inhibited the binding between NTCP and large envelope protein in vitro. Evaluation of CsA analogs identified a compound with higher anti-HBV potency, having a median inhibitory concentration <0.2 μM. Conclusion: This study provides a proof of concept for the novel strategy to identify anti-HBV agents by targeting the candidate HBV receptor, NTCP, using CsA as a structural platform. (Hepatology 2014;59:1726–1737) PMID:24375637
Hikita, Hayato; Takehara, Tetsuo; Shimizu, Satoshi; Kodama, Takahiro; Li, Wei; Miyagi, Takuya; Hosui, Atsushi; Ishida, Hisashi; Ohkawa, Kazuyoshi; Kanto, Tatsuya; Hiramatsu, Naoki; Yin, Xiao-Ming; Hennighausen, Lothar; Tatsumi, Tomohide; Hayashi, Norio
2013-01-01
Anti-apoptotic members of the Bcl-2 family, including Bcl-2, Bcl-xL, Mcl-1, Bcl-w and Bfl-1, inhibit the mitochondrial pathway of apoptosis. Bcl-xL and Mcl-1 are constitutively expressed in the liver. Although previous research established Bcl-xL as a critical apoptosis antagonist in differentiated hepatocytes, the significance of Mcl-1 in the liver, especially in conjunction with Bcl-xL, has not been clear. To examine this question, we generated hepatocyte-specific Mcl-1– deficient mice by crossing mcl-1flox/flox mice and AlbCre mice and further crossed them with bcl-xflox/flox mice, giving Mcl-1/Bcl-xL– deficient mice. The mcl-1flox/flox AlbCre mice showed spontaneous apoptosis of hepatocytes after birth, as evidenced by elevated levels of serum alanine aminotransferase (ALT) and caspase-3/7 activity and an increased number of terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate nick-end labeling (TUNEL)-positive cells in the liver; these phenotypes were very close to those previously found in hepatocyte-specific Bcl-xL– deficient mice. Although mcl-1flox/+ AlbCre mice did not display apoptosis, their susceptibility to Fas-mediated liver injury significantly increased. Further crossing of Mcl-1 mice with Bcl-xL mice showed that bcl-xflox/+ mcl-1flox/+ AlbCre mice also showed spontaneous hepatocyte apoptosis similar to Bcl-xL– deficient or Mcl-1– deficient mice. In contrast, bcl-xflox/flox mcl-1flox/+ AlbCre, bcl-xflox/+ mcl-1flox/flox AlbCre, and bcl-xflox/flox mcl-1flox/flox AlbCre mice displayed a decreased number of hepatocytes and a reduced volume of the liver on day 18.5 of embryogenesis and rapidly died within 1 day after birth, developing hepatic failure evidenced by increased levels of blood ammonia and bilirubin. Conclusion: Mcl-1 is critical for blocking apoptosis in adult liver and, in the absence of Bcl-xL, is essential for normal liver development. Mcl-1 and Bcl-xL are two major anti-apoptotic Bcl-2 family proteins expressed in the liver and cooperatively control hepatic integrity during liver development and in adult liver homeostasis in a gene dose-dependent manner. PMID:19676108
Shen, Yi; Feng, Zi-Ming; Jiang, Jian-Shuang; Yang, Ya-Nan; Zhang, Pei-Cheng
2013-12-27
Twelve new dibenzoyl derivatives sophodibenzoside A-L (1-12) and five new isoflavone glycosides (13-17) have been isolated from the roots of Sophora flavescens together with eight known compounds (18-25). Notably, the use of acetic acid-d4 was required to enable identification of the dibenzoyl glycoside structures. Compounds 1, 2, 13, 14, and 19 exhibited weak inhibition of the cytotoxic effect of d-galactosamine on the human hepatic cell line HL-7702.
de Bruyn, Tom; Ufuk, Ayse; Cantrill, Carina; Kosa, Rachel E; Bi, Yi-An; Niosi, Mark; Modi, Sweta; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena Vs; Galetin, Aleksandra; Houston, J Brian
2018-05-02
This work explores the utility of the cynomolgus monkey as a preclinical model to predict hepatic uptake clearance mediated by organic anion transporting polypeptide (OATP) transporters. Nine OATP substrates (rosuvastatin, pravastatin, repaglinide, fexofenadine, cerivastatin, telmisartan, pitavastatin, bosentan and valsartan) were investigated in plated cynomolgus monkey and human hepatocytes. Total uptake clearance and passive diffusion were measured in vitro from initial rates in the absence and presence of the OATP inhibitor rifamycin SV, respectively. Total uptake clearance values in plated hepatocytes ranged over three orders of magnitude in both species with a similar rank order and good agreement in the relative contribution of active transport to total uptake between cynomolgus monkey and human. In vivo hepatic clearance for these nine drugs was determined in cynomolgus monkey after intravenous dosing. Hepatic clearances showed a similar range to human parameters and good predictions from respective hepatocyte parameters (with 2.7 and 3.8-fold bias on average, respectively). The use of cross species empirical scaling factors (based on either dataset average or individual drug scaling factor from cynomolgus monkey data) improved prediction (less bias, better concordance) of human hepatic clearance from human hepatocyte data alone. In vitro intracellular binding in hepatocytes also correlated well between species. It is concluded that the minimal species differences observed for the current dataset between cynomolgus monkey and human hepatocyte uptake, both in vitro and in vivo, support future use of this preclinical model to delineate drug hepatic uptake and enable prediction of human in vivo intrinsic hepatic clearance. The American Society for Pharmacology and Experimental Therapeutics.
Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm
2012-04-15
A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes.
Three Dimensional Primary Hepatocyte Culture
NASA Technical Reports Server (NTRS)
Yoffe, Boris
1998-01-01
Our results demonstrated for the first time the feasibility of culturing PHH in microgravity bioreactors that exceeded the longest period obtained using other methods. Within the first week of culture, isolated hepatocytes started to form aggregates, which continuously increased in size (up to 1 cm) and macroscopically appeared as a multidimensional tissue-like assembly. To improve oxygenation and nutrition within the spheroids we performed experiments with the biodegradable nonwoven fiber-based polymers made from PolyGlycolic Acid (PGA). It has been shown that PGA scaffolds stimulate isolated cells to regenerate tissue with defined sizes and shapes and are currently being studied for various tissue-engineering applications. Our data demonstrated that culturing hepatocytes in the presence of PGA scaffolds resulted in more efficient cell assembly and formations of larger cell spheroids (up to 3 cm in length, see figure). The histology of cell aggregates cultured with PGA showed polymer fibers with attached hepatocytes. We initiated experiments to co-culture primary human hepatocytes with human microvascular endothelial cells in the bioreactor. The presence of endothelial cells in co-cultures were established by immunohistochemistry using anti-CD34 monoclonal Ab. Our preliminary data demonstrated that cultures of purified hepatocytes with human microvascular endothelial cells exhibited better growth and expressed higher levels of albumin MRNA for a longer period of time than cultures of ppfified, primary human hepatocytes cultured alone. We also evaluated microsomal deethylation activity of hepatocytes cultured in the presence of endothelial cells.In summary, we have established liver cell culture, which mimicked the structure and function of the parent tissue.
Zuo, Rongjun; Li, Feng; Parikh, Sweta; Cao, Li; Cooper, Kirsten L; Hong, Yulong; Liu, Jin; Faris, Ronald A; Li, Daochuan; Wang, Hongbing
2017-02-01
Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing. Copyright © 2017 by The Author(s).
Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro.
Ng, Shengyong; March, Sandra; Galstian, Ani; Hanson, Kirsten; Carvalho, Tânia; Mota, Maria M; Bhatia, Sangeeta N
2014-02-01
Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo, cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei, Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1α activator, dimethyloxalylglycine, also enhance P. berghei infection, suggesting that the effect of hypoxia on infection is mediated in part by host-dependent HIF-1α mechanisms.
Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F.; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida
2018-01-01
Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time– and bile-acid-concentration–dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. PMID:27000539
Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida
2016-08-05
Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. Published by Elsevier Ireland Ltd.
Yan, Xiao-Di; Yao, Min; Wang, Li; Zhang, Hai-Jian; Yan, Mei-Juan; Gu, Xing; Shi, Yun; Chen, Jie; Dong, Zhi-Zhen; Yao, Deng-Fu
2013-01-01
AIM: To investigate the dynamic features of insulin-like growth factor-I receptor (IGF-IR) expression in rat hepatocarcinogenesis, and the relationship between IGF-IR and hepatocytes malignant transformation at mRNA or protein level. METHODS: Hepatoma models were made by inducing with 2-fluorenylacetamide (2-FAA) on male Sprague-Dawley rats. Morphological changes of hepatocytes were observed by pathological Hematoxylin and eosin staining, the dynamic expressions of liver and serum IGF-IR were quantitatively analyzed by an enzyme-linked immunosorbent assay. The distribution of hepatic IGF-IR was located by immunohistochemistry. The fragments of IGF-IR gene were amplified by reverse transcription-polymerase chain reaction, and confirmed by sequencing. RESULTS: Rat hepatocytes after induced by 2-FAA were changed dynamically from granule-like degeneration, precancerous to hepatoma formation with the progressing increasing of hepatic mRNA or IGF-IR expression. The incidences of liver IGF-IR, IGF-IR mRNA, specific IGF-IR concentration (ng/mg wet liver), and serum IGF-IR level (ng/mL) were 0.0%, 0.0%, 0.63 ± 0.17, and 1.33 ± 0.47 in the control; 50.0%, 61.1%, 0.65 ± 0.2, and 1.51 ± 0.46 in the degeneration; 88.9%, 100%, 0.66 ± 0.14, and 1.92 ± 0.29 in the precancerosis; and 100%, 100%, 0.96 ± 0.09, and 2.43 ± 0.57 in the cancerous group, respectively. IGF-IR expression in the cancerous group was significantly higher (P < 0.01) than that in any of other groups at mRNA or protein level. The closely positive IGF-IR relationship was found between livers and sera (r = 0.91, t = 14.222, P < 0.01), respectively. CONCLUSION: IGF-IR expression may participate in rat hepatocarcinogenesis and its abnormality should be an early marker for hepatocytes malignant transformation. PMID:24106410
Dong, Jia; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K.N.; Knobeloch, Daniel; Gerlach, Jörg C.; Zeilinger, Katrin
2008-01-01
Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes. PMID:19003182
Dong, Jia; Mandenius, Carl-Fredrik; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K N; Knobeloch, Daniel; Gerlach, Jörg C; Zeilinger, Katrin
2008-07-01
Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes.
[Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide].
Kuleshova, L G; Gordienko, E A; Kovalenko, I F
2014-01-01
We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes κ1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients κ1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/l) and DMSO (2250 mOsm/l) the filtration coefficient L(p) in the presence of a penetrating cryoprotectant (L(pDMSO) = (4.45 ± 0.04) x 10(-14) m3/Ns) is 3 orders lower compared to the case with electrolyte (L(pNaCl) = (2.25 ± 0.25) x 10(-11) m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.
Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes.
Ramboer, Eva; Vanhaecke, Tamara; Rogiers, Vera; Vinken, Mathieu
2015-01-01
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Gómez-Lechón, María José; Lahoz, Agustín; Jiménez, Nuria; Bonora, Ana; Castell, José V; Donato, María Teresa
2008-01-01
Hepatocyte transplantation has been proposed as a method to support patients with liver insufficiency. Key factors for clinical cell transplantation to progress is to prevent hepatocyte damage, loss of viability and cell functionality, factors that depend on the nature of the tissue used for isolation to a large extent. The main sources of tissue for hepatocyte isolation are marginal livers that are unsuitable for transplantation, and segments from reduced cadaveric grafts. Hepatocellular transplantation requires infusing human hepatocytes in suspension over a period of minutes to hours. The beneficial effect of hypothermic preservation of hepatocytes in infusion medium has been reported, but how critical issues towards the success of cell transplantation, such as the composition of infusion medium and duration of hepatocyte storage will affect hepatocyte quality for clinical cell infusion has not been systematically investigated. Infusion media composition is phosphate-buffered saline containing anticoagulants and human serum albumin. The supplementation of infusion media with glucose or N-acetyl-cystein, or with both components at the same time, has been investigated. After isolation, hepatocytes were suspended in each infusion medium and a sample at the 0 time point was harvested for cell viability and functional assessment. Thereafter, cells were incubated in different infusion media agitated on a rocker platform to simulate the clinical infusion technique. The time course of hepatocyte viability, funtionality (drug-metabolizing enzymes, ureogenic capability, ATP, glycogen, and GSH levels), apoptosis (caspase-3 activation), and attachment and monolayer formation were analyzed. The optimal preservation of cell viability, attaching capacity, and functionality, particularly GSH and glycogen levels, as well as drug-metabolizing cytochrome P450 enzymes, was found in infusion media supplemented with 2 mM N-acetyl-cystein and 15 mM glucose.
Zhang, Yuanyuan; LaCerte, Carl; Kansra, Sanjay; Jackson, Jonathan P; Brouwer, Kenneth R; Edwards, Jeffrey E
2017-12-01
Obeticholic acid (OCA) is a semisynthetic farnesoid X receptor (FXR) agonist, an analogue of chenodeoxycholic acid (CDCA) which is indicated for the treatment of primary biliary cholangitis (PBC) in combination with ursodeoxycholic acid (UDCA). OCA efficiently inhibits bile acid synthesis and promotes bile acid efflux via activating FXR-mediated mechanisms in a physiologically relevant in vitro cell system, Sandwich-cultured Transporter Certified ™ human primary hepatocytes (SCHH). The study herein evaluated the effects of UDCA alone or in combination with OCA in SCHH. UDCA (≤100 μmol/L) alone did not inhibit CYP7A1 mRNA, and thus, no reduction in the endogenous bile acid pool observed. UDCA ≤100 μmol/L concomitantly administered with 0.1 μmol/L OCA had no effect on bile acid synthesis beyond what was observed with OCA alone. Furthermore, this study evaluated human Caco-2 cells (clone C2BBe1) as in vitro intestinal models. Glycine conjugate of OCA increased mRNA levels of FXR target genes in Caco-2 cells, FGF-19, SHP, OSTα/β, and IBABP, but not ASBT, in a concentration-dependent manner, while glycine conjugate of UDCA had no effect on the expression of these genes. The results suggested that UDCA ≤100 μmol/L did not activate FXR in human primary hepatocytes or intestinal cell line Caco-2. Thus, co-administration of UDCA with OCA did not affect OCA-dependent pharmacological effects. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
In vitro metabolism of [14C]-benalaxyl in hepatocytes of rats, dogs and humans.
Nallani, Gopinath C; ElNaggar, Shaaban F; Shen, Li; Chandrasekaran, Appavu
2017-03-01
The in vitro comparative animal metabolism study is now a data requirement under EU Directive 1107/2009 for registration of plant protection products. This type of study helps determine the extent of metabolism of a chemical in each surrogate species and whether any unique human metabolite(s) are formed. In the present study, metabolism of racemic [ 14 C]-benalaxyl, a fungicide was investigated in cryopreserved rat, dog and human hepatocytes. The metabolites generated were identified/characterized by LC/MS/MS with radiometric detection and comparison with reference standards. [ 14 C]-glucuronide conjugates of benalaxyl metabolites in rat, dog and human hepatocytes were confirmed via additional experiments in which known reference standards were incubated with dog liver microsomes in the presence of UDPGA. After 4 h of incubation, benalaxyl was extensively metabolized in all the species with the following trend: dog (100%) > human (86%) > rat (75%). In all species, the major metabolic pathways consisted of hydroxylation of the methyl group in the xylene moiety to 2-hydroxymethyl-benalaxyl, further oxidation to its carboxylic acid analogue (benalaxyl-2-benzoic acid), and hydrolysis of the methyl ester to yield benalaxyl acid or 2-hydroxymethyl benalaxyl acid. In addition, glucuronidation of phase I metabolites occurred in all species, to a higher extent in dog hepatocytes in which 2-hydroxymethyl-benalaxyl-glucuronide conjugate constituted the most significant metabolite. No major unique metabolite was observed in human hepatocytes. Also, benalaxyl did not undergo stereo-selective metabolism in rat or human hepatocytes. Copyright © 2016 Elsevier Inc. All rights reserved.
Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation
Weerasinghe, Sujith V.W.; Singla, Amika; Leonard, Jessica M.; Hanada, Shinichiro; Andrews, Philip C.; Lok, Anna S.; Omary, M. Bishr
2011-01-01
Genetic factors impact liver injury susceptibility and disease progression. Prominent histological features of some chronic human liver diseases are hepatocyte ballooning and Mallory-Denk bodies. In mice, these features are induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a strain-dependent manner, with the C57BL and C3H strains showing high and low susceptibility, respectively. To identify modifiers of DDC-induced liver injury, we compared C57BL and C3H mice using proteomic, biochemical, and cell biological tools. DDC elevated reactive oxygen species (ROS) and oxidative stress enzymes preferentially in C57BL livers and isolated hepatocytes. C57BL livers and hepatocytes also manifested significant down-regulation, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDH knockdown depleted bioenergetic and antioxidant enzymes and elevated hepatocyte ROS, whereas GAPDH overexpression decreased hepatocyte ROS. On the other hand, C3H livers had higher expression and activity of the energy-generating nucleoside-diphosphate kinase (NDPK), and knockdown of hepatocyte NDPK augmented DDC-induced ROS formation. Consistent with these findings, cirrhotic, but not normal, human livers contained GAPDH aggregates and NDPK complexes. We propose that GAPDH and NDPK are genetic modifiers of murine DDC-induced liver injury and potentially human liver disease. PMID:22006949
Maglova, L M; Jackson, A M; Meng, X J; Carruth, M W; Schteingart, C D; Ton-Nu, H T; Hofmann, A F; Weinman, S A
1995-08-01
The transport properties of three different synthetically prepared fluorescent conjugated bile acid analogs (FBA), all with the fluorophore on the side chain, were determined using isolated rat hepatocytes and hepatocyte couplets. The compounds studied were cholylglycylamidofluorescein (CGamF), cholyl(N epsilon-nitrobenzoxadiazolyl [NBD])-lysine (C-NBD-L), and chenodeoxycholyl-(N epsilon-NBD)-lysine (CDC-NBD-L). When hepatocytes were incubated at 37 degrees C with 0.3 mumol/L of FBA and 0.15 mol/L of Na+, cell fluorescence increased linearly with time at a rate (U/min) of 7.8 +/- 0.5 for CGamF, 7.2 +/- 0.3 for C-NBD-L, and 13.7 +/- 1.0 for CDC-NBD-L (mean, +/- SE; n = 40 to 90). Uptake was concentration dependent for concentrations less than 20 mumol/L and was saturable. The Michaelis constant (Km) value (mumol/L) for CGamF was 10.8, for C-NBD-L was 3.8, and for CDC-NBD-L was 3.0. In the absence of Na+, the uptake rate was decreased by 50% for CGamF and by 38% for C-NBD-L; but uptake of CDC-NBD-L was unchanged and thus Na+ independent. Cellular uptake of all three derivatives was specific to hepatocytes and was absent in several nonhepatocyte cell lines. For CGamF and C-NBD-L, both Na(+)-dependent and Na(+)-independent uptake was inhibited by 200-fold excess concentrations of cholyltaurine, dehydrocholyltaurine, and cholate, but for CDC-NBD-L, these nonfluorescent bile acids did not inhibit initial uptake. The intracellular fluorescence of CGamF was strongly pH dependent at an excitation wavelength of 495 nm, but pH independent at 440 nm excitation. In contrast, intracellular fluorescence of C-NBD-L and CDC-NBD-L was pH independent. All three FBA were secreted into the canalicular space of approximately 50% to 60% of couplets. Cellular adenosine triphosphate (ATP) depletion with either CN- or atractyloside inhibited secretion of all three FBA. The multispecific organic anion transporter (MOAT) inhibitor, chlorodinitrobenzene, blocked secretion of fluorescent MOAT substrates at a concentration of 1 mumol/L. At this concentration it did not affect secretion of the three FBA. At higher concentrations, chlorodinitrobenzene partially inhibited the canalicular secretion of CGamF but not the other two FBA. In conclusion, all three FBA are secreted by canalicular membrane bile acid transporters, but the sinusoidal uptake characteristics of CGamF and C-NBD-L are more similar than those of CDC-NBD-L to the transport properties of cholyltaurine. Therefore, C-NBD-L appears to be the best of the three for studies of conjugated trihydroxy-bile acid transport in hepatocytes.
Ulvestad, Maria; Darnell, Malin; Molden, Espen; Ellis, Ewa; Åsberg, Anders; Andersson, Tommy B
2012-10-01
The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.
Experience of microbiological screening of human hepatocytes for clinical transplantation.
Lehec, Sharon C; Hughes, Robin D; Mitry, Ragai R; Graver, Michelle A; Verma, Anita; Wade, Jim J; Dhawan, Anil
2009-01-01
Hepatocyte transplantation is being used in patients with liver-based metabolic disorders and acute liver failure. Hepatocytes are isolated from unused donor liver tissue under GMP conditions. Cells must be free of microbiological contamination to be safe for human use. The experience of microbiological screening during 72 hepatocyte isolation procedures at one center is reported. Samples were taken at different stages of the process and tested using a blood culture bottle system and Gram stain. Bacterial contamination was detected in 37.5% of the UW organ preservative solutions used to transport the liver tissue to the Cell Isolation Unit. After tissue processing the contamination was reduced to 7% overall in the final hepatocyte product, irrespective of the presence of initial contamination of the transport solution. The most common organisms recovered were coagulase-negative staphylococci, a skin commensal. A total of 41 preparations of fresh or cryopreserved hepatocytes were used for cell transplantation in children with liver-based metabolic disorders without any evidence of sepsis due to infusion of hepatocytes. In conclusion, the incidence of bacterial contamination of the final product was low, confirming the suitability of the organs used, hepatocyte isolation procedure, and the environmental conditions of the clean room.
INTERINDIVIDUAL VARIATION IN THE METABOLISM OF ARSENIC IN HUMAN HEPATOCYTES
The liver is the major site for the enzymatic methylation of inorganic arsenic (iAs) in humans. Primary cultures of normal human hepatocytes isolated from tissue obtained at surgery or from donor livers have been used to study interindividual variation in the capacity of live...
Ma, Yan; Li, Wei; Li, Xiaobo; Bao, Dongmei; Lu, Jianpei
2016-12-25
To obtain sufficient purified and active fusion protein-hepatocyte-targeting peptide-human endostatin (HTP-rES), we studied the growth curve and the optimal induction timing of BL21/pET21b-HTP-rES. Different conditions of pH value, induction time, induction concentration and induction temperature were optimized by univariate analysis. After washing, refolding and purifying, the activity of fusion protein was identified by flow cytometry and 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT). Results show that the logarithmic growth phase of BL21/pET21b-HTP-rES was from 1.5 h to 3.5 h, the optimum expression conditions were pH 8.0, 0.06 mmol/L IPTG, at 42 ℃ for 5 h. The purity of inclusion bodies was up to 60% after washing. The purity of target protein was more than 95% after refolding and purification. Our findings provide the foundation for further biological activity and drug development.
Maximising the use of freshly isolated human hepatocytes.
Evans, Peter J
2016-01-01
Freshly isolated human hepatocytes are the best model for predicting adverse drug reactions. However, their preparation and use present the investigator with many variables that are beyond their control. These include operation continuity and timing, size and number of cut surfaces on liver tissue and the prior history of the patient. To exploit the potential of freshly isolated human hepatocytes a method is required to preserve the cells in their initial in vivo like state. This experimental pausing allows experiments to be prioritised at convenient times of the day. A novel approach for selecting viable human hepatocytes by functional attachment to a gelatin gel is described rather than relying on their physical characteristics. The cells are preserved as a monolayer on the semi-solid support at 10°C as single spherical entities. The hepatocytes can be released into suspension, when required, by a temperature transition to 37°C for 20min. The cells can be used in suspension or as a monolayer. The length of preservation depends upon the source tissue. Hepatocytes from normal liver can be maintained for at least 4days and demonstrated to have the same level of CYP3A4 and the enzymes involved in glucuronidation and sulphation as freshly isolated cells. Cells from fatty liver, attached to gelatin, vary in their preservation time but it is at least 24h and so confluent monolayers, that survive at 37°C can be generated the following day. The technique enables freshly isolated human hepatocytes to be used more effectively. They can be preserved in times of plenty so more experimentation is possible. Alternatively, with poorer fatty cells the initial attachment on gelatin enables confluent monolayers of lipid rich cells to be studied. Copyright © 2015 Elsevier Inc. All rights reserved.
Cable, E. E.; Connor, J. R.; Isom, H. C.
1998-01-01
We have previously shown that hepatocytes in long-term dimethylsulfoxide (DMSO) culture, fed a chemically defined medium, are highly differentiated and an excellent in vitro model of adult liver. Hepatocytes in long-term DMSO culture can be iron loaded by exposure to non-transferrin-bound iron (NTBI) in the form of ferrous sulfate (FeSO4), ferric nitrilotriacetate, or trimethylhexanoyl (TMH)-ferrocene. Holotransferrin, at equivalent times and concentrations, was unable to load hepatocytes. Of the iron compounds tested, TMH-ferrocene most accurately simulated the morphological features of iron-loaded hepatocytes in vivo. When exposed to 25 micromol/L TMH-ferrocene, hepatocytes loaded increasing amounts of iron for 2 months before the cells died. When exposed to lower concentrations of TMH-ferrocene (as low as 2.5 micromol/L), hepatocytes continuously loaded iron and remained viable for more than 2 months. The cellular deposition of iron was different in hepatocytes exposed to TMH-ferrocene compared with those exposed to FeSO4; exposure to TMH-ferrocene resulted in the presence of more ferritin cores within lysosomes than were seen with FeSO4. When the concentration of TMH-ferrocene was increased, a greater number of ferritin cores were observed within the lysosome, and total cellular ferritin, as assessed by Western blot, increased. The formation of hemosiderin was also observed. Furthermore, nuclear shape was distorted in iron-loaded hepatocytes. The extent of deviation from circularity in the nucleus correlated with increasing concentrations of TMH-ferrocene and was greater in hepatocytes exposed to FeSO4 than an equivalent concentration of TMH-ferrocene. The deviation from circularity was smallest in hepatocytes that contained well formed ferritin cores and increased in hepatocytes that contained greater amounts of hemosiderin. Furthermore, in hepatocytes treated with FeSO4, a large amount of cell-associated iron was detected but without a significant increase in the total amount of ferritin. The deviation from circularity was the largest in FeSO4-treated hepatocytes, indicating that iron not properly incorporated into ferritin caused more cellular damage. We conclude that iron-loaded hepatocytes in long-term DMSO culture represent a flexible system for studying the effects of chronic iron loading on hepatocytes. Images Figure 1 Figure 2 Figure 5 Figure 7 PMID:9502420
Immortalized human hepatic cell lines for in vitro testing and research purposes
Ramboer, Eva; Vanhaecke, Tamara; Rogiers, Vera; Vinken, Mathieu
2015-01-01
Summary The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications. PMID:26272134
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N
2015-12-01
The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A.; Shlomai, Amir; Mota, Maria; Fleming, Heather E.; Khetani, Salman R.; Rice, Charles M.; Bhatia, Sangeeta N.
2018-01-01
Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development. PMID:26584444
Tetsuka, Kazuhiro; Ohbuchi, Masato; Tabata, Kenji
2017-09-01
Tissue engineering technology has provided many useful culture models. This article reviews the merits of this technology in a hepatocyte culture system and describes the applications of the sandwich-cultured hepatocyte model in drug discovery. In addition, we also review recent investigations of the utility of the 3-dimensional bioprinted human liver tissue model and spheroid model. Finally, we present the future direction and developmental challenges of a hepatocyte culture model for the successful establishment of a microphysiological system, represented as an organ-on-a-chip and even as a human-on-a-chip. A merit of advanced culture models is their potential use for detecting hepatotoxicity through repeated exposure to chemicals as they allow long-term culture while maintaining hepatocyte functionality. As a future direction, such advanced hepatocyte culture systems can be connected to other tissue models for evaluating tissue-to-tissue interaction beyond cell-to-cell interaction. This combination of culture models could represent parts of the human body in a microphysiological system. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Effects of Mangifera indica L. aqueous extract (Vimang) on primary culture of rat hepatocytes.
Rodeiro, I; Donato, M T; Jiménez, N; Garrido, G; Delgado, R; Gómez-Lechón, M J
2007-12-01
Vimang is an aqueous extract from stem bark of Mangifera indica L. (Mango) with pharmacological properties. It is a mixture of polyphenols (as main components), terpenoids, steroids, fatty acids and microelements. In the present work we studied the cytotoxic effects of Vimang on rat hepatocytes, possible interactions of the extract with drug-metabolizing enzymes and its effects on GSH levels and lipid peroxidation. No cytotoxic effects were observed after 24 h exposure to Vimang of up to 1000 microg/mL, while a moderate cytotoxicity was observed after 48 and 72 h of exposure at higher concentrations (500 and 1000 microg/mL). The effect of the extract (50-400 microg/mL) on several P450 isozymes was evaluated. Exposure of hepatocytes to Vimang at concentrations of up to 100 microg/mL produced a significant reduction (60%) in 7-methoxyresorufin-O-demethylase (MROD; CYP1A2) activity, an increase (50%) in 7-penthoxyresorufin-O-depentylase (PROD; CYP2B1) activity, while no significant effect was observed with other isozymes. To our knowledge, this is the first report regarding the modulation of the activity of the P450 system by an extract of Mangifera indica L. The antioxidant properties of Vimang were also evaluated in t-butyl-hydroperoxide-treated hepatocytes. A 36-h pre-treatment of cells with Vimang (25-200 microg/mL) strongly inhibited the decrease of GSH levels and lipid peroxidation induced by t-butyl-hydroperoxide dose- and time-dependently.
Tee, Jing Yang; Vaghjiani, Vijesh; Liu, Yu Han; Murthi, Padma; Chan, James; Manuelpillai, Ursula
2013-01-01
Hepatocyte transplantation is being trialled as an alternative to whole organ transplant for patients with acute liver failure and liver specific metabolic diseases. Due to the scarcity of human hepatocytes, hepatocyte-like cells (HLC) generated from stem cells may become a viable alternative to hepatocyte transplantation. Human amniotic epithelial cells (hAEC) from the placenta have stem cell-like properties and can be differentiated into HLC. Naïve hAEC have low immunogenicity and exert immunomodulatory effects that may facilitate allogeneic transplantation. However, whether the immunogenicity and immunomodulatory properties alter with differentiation into HLC are unknown. We further characterized HLC generated from hAEC, examined changes in human leucocyte antigens (HLA) and co-stimulatory molecules and effects exerted by the HLC on human peripheral blood mononuclear cells (PBMC). HLC derived from hAEC expressed proteins found in hepatocytes, had CYP3A4 drug metabolizing enzyme activity and secreted urea. IFN-γ treatment increased HLA Class IA, Class II and co-stimulatory molecule CD40 expression in the HLC. IFN-γ treated HLC stimulated proliferation of PBMC in one-way mixed lymphocyte reactions and were more immunogenic than undifferentiated hAEC. However, the HLC showed immunomodulatory properties and inhibited mitogen induced PBMC proliferation in vitro. PBMC proliferation may have been inhibited by IL-6, TGF-β1, PGE2 and HLA-G secreted by the HLC. The retention of immunomodulatory properties may enable HLC grafts to survive for longer periods despite the immunogenicity of the HLC.
Liver uptake of biguanides in rats.
Sogame, Yoshihisa; Kitamura, Atsushi; Yabuki, Masashi; Komuro, Setsuko
2011-09-01
Metformin is an oral antihyperglycaemic agent widely used in the management of non-insulin-dependent diabetes mellitus. The liver is the primary target, metformin being taken up into human and rat hepatocytes via an active transport mechanism. The present study was designed to compare hepatic uptake of two biguanides, metformin and phenformin, in vitro and in vivo. In in vitro experiments, performed using rat cryopreserved hepatocytes, phenformin exhibited a much higher affinity and transport than metformin, with marked differences in kinetics. The K(m) values for metformin and phenformin were 404 and 5.17μM, respectively, with CLint (V(max)/K(m)) values 1.58μl/min per 10(6) cells and 34.7μl/min per 10(6) cells. In in vivo experiments, when (14)C-metformin and (14)C-phenformin were given orally to male rats at a dose of 50mg/kg, the liver concentrations of radioactivity at 0.5 hour after dosing were 21.5μg eq./g with metformin but 147.1μg eq./g for phenformin, ratios of liver to plasma concentrations being 4.2 and 61.3, respectively. In conclusion, the results suggest that uptake of biguanides by rat hepatocytes is in line with the liver distribution found in vivo, phenformin being more efficiently taken up by liver than metformin after oral administration. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Zanelli, Ugo; Michna, Thomas; Petersson, Carl
2018-03-26
1. A novel method utilizing an internal standard in hepatocytes incubations has been developed and demonstrated to decrease the variability in the determination of intrinsic clearance (CL int ) in this system. The reduced variability was shown to allow differentiation of lower elimination rate constants from noise. 2. The suggested method was able to compensate for a small but systematic error (0.5 µL/min/10 6 cells) caused by an evaporation of approximately 15% of the volume during the incubation time. 3. The approach was validated using six commercial drugs (ketoprofen, tolbutamide, phenacetin, etodolac and quinidine) which were metabolized by different pathways. 4. The suggested internal standard, MSC1815677, was extensively characterized and the acquired data suggest that it fulfills the requirements of an internal standard present during the incubation. The proposed internal standard was stable during the incubation and showed a low potential to inhibit drug metabolizing enzymes and transporters. With MSC1815677 we propose a novel simple, robust and cost-effective method to address the challenges in the estimation of low clearance in hepatocyte incubations.
El Baz, Hanan; Demerdash, Zeinab; Kamel, Manal; Atta, Shimaa; Salah, Faten; Hassan, Salwa; Hammam, Olfat; Khalil, Heba; Meshaal, Safa; Raafat, Inas
2018-02-01
Liver transplant is the cornerstone line of treatment for chronic liver diseases; however, the long list of complications and obstacles stand against this operation. Searching for new modalities for treatment of chronic liver illness is a must. In the present research, we aimed to compare the effects of transplant of undifferentiated human mesenchymal stem cells, in vitro differentiated mesenchymal stem cells, and adult hepatocytes in an experimental model of chronic liver failure. Undifferentiated human cord blood mesenchymal stem cells were isolated, pro-pagated, and characterized by morphology, gene expression analysis, and flow cytometry of surface markers and in vitro differentiated into hepatocyte-like cells. Rat hepatocytes were isolated by double perfusion technique. An animal model of chronic liver failure was developed, and undifferentiated human cord blood mesenchymal stem cells, in vitro hepato-genically differentiated mesenchymal stem cells, or freshly isolated rat hepatocytes were transplanted into a CCL4 cirrhotic experimental model. Animals were killed 3 months after transplant, and liver functions and histopathology were assessed. Compared with the cirrhotic control group, the 3 cell-treated groups showed improved alanine aminotransferase, aspartate aminotransferase, albumin, and bilirubin levels, with best results shown in the hepatocyte-treated group. Histopathologic examination of the treated groups showed improved fibrosis, with best results obtained in the undifferentiated mesenchymal stem cell-treated group. Both adult hepatocytes and cord blood mesenchymal stem cells proved to be promising candidates for cell-based therapy in liver regeneration on an experimental level. Improved liver function was evident in the hepatocyte-treated group, and fibrosis control was more evident in the undifferentiated mesenchymal stem cell-treated group.
Hueging, Kathrin; Weller, Romy; Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W R; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas
2015-01-01
Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to distinct characteristics of these apolipoproteins that influence HCV assembly and cell entry. This will guide future research to precisely pinpoint how apolipoproteins function during virus assembly and cell entry.
Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W. R.; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas
2015-01-01
Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to distinct characteristics of these apolipoproteins that influence HCV assembly and cell entry. This will guide future research to precisely pinpoint how apolipoproteins function during virus assembly and cell entry. PMID:26226615
Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H
1987-01-01
One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978
Heslop, James A; Rowe, Cliff; Walsh, Joanne; Sison-Young, Rowena; Jenkins, Roz; Kamalian, Laleh; Kia, Richard; Hay, David; Jones, Robert P; Malik, Hassan Z; Fenwick, Stephen; Chadwick, Amy E; Mills, John; Kitteringham, Neil R; Goldring, Chris E P; Kevin Park, B
2017-01-01
The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems.
HIGH GLUCOSE POTENTIATES L-FABP MEDIATED FIBRATE INDUCTION OF PPARα IN MOUSE HEPATOCYTES
Petrescu, Anca D.; McIntosh, Avery L.; Storey, Stephen M.; Huang, Huan; Martin, Gregory G.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm
2013-01-01
Although liver fatty acid binding protein (L-FABP) binds fibrates and PPARα in vitro and enhances fibrate induction of PPARα in transformed cells, the functional significance of these findings is unclear, especially in normal hepatocytes. Studies with cultured primary mouse hepatocytes show that: 1) At physiological (6 mM) glucose, fibrates (bezafibrate, fenofibrate) only weakly activated PPARα transcription of genes in LCFA β-oxidation; 2) High (11–20 mM) glucose, but not maltose (osmotic control), significantly potentiated fibrate-induction of mRNA of these and other PPARα target genes to increase LCFA β-oxidation. These effects were associated with fibrate-mediated redistribution of L-FABP into nuclei—an effect prolonged by high glucose—but not with increased de novo fatty acid synthesis from glucose; 3) Potentiation of bezafibrate action by high glucose required an intact L-FABP/PPARα signaling pathway as shown with L-FABP null, PPARα null, PPARα inhibitor-treated WT, or PPARα-specific fenofibrate-treated WT hepatocytes. High glucose alone in the absence of fibrate was ineffective. Thus, high glucose potentiation of PPARα occurred through FABP/PPARα rather than indirectly through other PPARs or glucose induced signaling pathways. These data indicated L-FABP’s importance in fibrate-induction of hepatic PPARα LCFA β-oxidative genes, especially in the context of high glucose levels. PMID:23747828
Bachleda, Petr; Vrzal, Radim; Pivnicka, Jakub; Cvek, Boris; Dvorak, Zdenek
2009-12-01
A hypnotic drug Zolpidem is used in clinical practice for more than 25 years. Surprisingly, the effects of Zolpidem on the expression of drug-metabolizing cytochromes P450 (CYPs) were not examined yet. Recently, the unexpected capacity of several "old drugs", such as valproic acid or azoles, to induce CYPs was reported. Therefore, we tested whether Zolpidem induces the expression of important CYPs in primary cultures of human hepatocytes. Cells were treated for 24h with Zolpidem in therapeutic (0.1mg/L) and toxic (1mg/L) concentrations. The levels of CYP1A1, CYP1A2, CY2C9 and CYP3A4 mRNAs were not altered by Zolpidem, whereas model inducers dioxin and rifampicin significantly induced CYP1A and CYP2/3 gene expression, respectively. Consistently, Zolpidem did not activate aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR), the key regulators of cytochromes P450s, as revealed by transient transfection gene reporter assays using HepG2 cells. We conclude Zolpidem be considered a safe drug with respect to the possible interactions through AhR- and PXR-dependent induction of drug-metabolizing CYPs.
Peters, Derek T.; Henderson, Christopher A.; Warren, Curtis R.; Friesen, Max; Xia, Fang; Becker, Caroline E.; Musunuru, Kiran; Cowan, Chad A.
2016-01-01
ABSTRACT Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754
Im, Ilkyun; Jang, Mi-jin; Park, Seung Ju; Lee, Sang-Hee; Choi, Jin-Ho; Yoo, Han-Wook; Kim, Seyun; Han, Yong-Mahn
2015-01-01
A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD+/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver. PMID:26491018
NASA Astrophysics Data System (ADS)
Wang, Zilang; Wu, Yuanyuan; Fu, Yan; Li, Mingxue; Tai, Yanxue; Li, Yanke
2015-11-01
A 2-thiophene N(4)-phenylthiosemicarbazone (HL) ligand and its three metal derivatives [CuL2 ] (1), [NiL2] (2) and [PdL2] (3) are synthesized and characterized by elemental analysis, IR spectra, mass spectra as well as the single-crystal X-ray diffraction. Compounds 1-3 have the identical architectures in which the Schiff bases L- ions act as the bibasic chelating ligands with thiolate S and imine N atoms as the donor sites. Cytotoxic studies carried out in vitro against human liver hepatocellular carcinoma HepG2 cells and human normal hepatocyte QSG7701 cells show that 1 can be able to inhibit cell proliferation growth. Compound 1 promotes a dose-dependent apoptosis in HepG2 cells. The potential structure-activity relationships among HL and 1-3 are further investigated by Hirshfeld surface combining fingerprint plots.
Watashi, Koichi; Sluder, Ann; Daito, Takuji; Matsunaga, Satoko; Ryo, Akihide; Nagamori, Shushi; Iwamoto, Masashi; Nakajima, Syo; Tsukuda, Senko; Borroto-Esoda, Katyna; Sugiyama, Masaya; Tanaka, Yasuhito; Kanai, Yoshikatsu; Kusuhara, Hiroyuki; Mizokami, Masashi; Wakita, Takaji
2014-05-01
Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. Although nucleos(t)ide analogs inhibiting viral reverse transcriptase are clinically available as anti-HBV agents, emergence of drug-resistant viruses highlights the need for new anti-HBV agents interfering with other targets. Here we report that cyclosporin A (CsA) can inhibit HBV entry into cultured hepatocytes. The anti-HBV effect of CsA was independent of binding to cyclophilin and calcineurin. Rather, blockade of HBV infection correlated with the ability to inhibit the transporter activity of sodium taurocholate cotransporting polypeptide (NTCP). We also found that HBV infection-susceptible cells, differentiated HepaRG cells and primary human hepatocytes expressed NTCP, while nonsusceptible cell lines did not. A series of compounds targeting NTCP could inhibit HBV infection. CsA inhibited the binding between NTCP and large envelope protein in vitro. Evaluation of CsA analogs identified a compound with higher anti-HBV potency, having a median inhibitory concentration <0.2 μM. This study provides a proof of concept for the novel strategy to identify anti-HBV agents by targeting the candidate HBV receptor, NTCP, using CsA as a structural platform. Copyright © 2014 The Authors. Hepatology published by Wiley on behalf of the American Association for the Study of Liver Diseases.
Sauer, Vanessa; Tchaikovskaya, Tatyana; Wang, Xia; Li, Yanfeng; Zhang, Wei; Tar, Krisztina; Polgar, Zsuzsanna; Ding, Jianqiang; Guha, Chandan; Fox, Ira J; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta
2016-12-13
Although several types of somatic cells have been reprogrammed into induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (iHeps), the method for generating such cells from renal tubular epithelial cells shed in human urine and transplanting them into animal livers has not been described systematically. We report reprogramming of human urinary epithelial cells into iPSCs and subsequent hepatic differentiation, followed by a detailed characterization of the newly generated iHeps. The epithelial cells were reprogrammed into iPSCs by delivering the pluripotency factors OCT3/4, SOX2, KLF4, and MYC using methods that do not involve transgene integration, such as nucleofection of episomal (oriP/EBNA-1) plasmids or infection with recombinant Sendai viruses. After characterization of stable iPSC lines, a three-step differentiation toward hepatocytes was performed. The iHeps expressed a large number of hepatocyte-preferred genes, including nuclear receptors that regulate genes involved in cholesterol homeostasis, bile acid transport, and detoxification. MicroRNA profile of the iHeps largely paralleled that of primary human hepatocytes. The iHeps engrafted into the livers of Scid mice transgenic for mutant human SERPINA1 after intrasplenic injection. Thus, urine is a readily available source for generating human iHeps that could be potentially useful for disease modeling, pharmacological development, and regenerative medicine.
Ørntoft, Nikolaj Worm; Munk, Ole Lajord; Frisch, Kim; Ott, Peter; Keiding, Susanne; Sørensen, Michael
2017-08-01
Hepatobiliary secretion of bile acids is an important liver function. Here, we quantified the hepatic transport kinetics of conjugated bile acids using the bile acid tracer [N-methyl- 11 C]cholylsarcosine ( 11 C-CSar) and positron emission tomography (PET). Nine healthy participants and eight patients with varying degrees of cholestasis were examined with 11 C-CSar PET and measurement of arterial and hepatic venous blood concentrations of 11 C-CSar. Results are presented as median (range). The hepatic intrinsic clearance was 1.50 (1.20-1.76) ml blood/min/ml liver tissue in healthy participants and 0.46 (0.13-0.91) in patients. In healthy participants, the rate constant for secretion of 11 C-CSar from hepatocytes to bile was 0.36 (0.30-0.62)min -1 , 20 times higher than the rate constant for backflux from hepatocytes to blood (0.02, 0.005-0.07min -1 ). In the patients, rate constant for transport from hepatocyte to bile was reduced to 0.12 (0.006-0.27)min -1 , 2.3times higher than the rate constant for backflux to blood (0.05, 0.04-0.09). The increased backflux did not fully normalize exposure of the hepatocyte to bile acids as mean hepatocyte residence time of 11 C-CSar was 2.5 (1.6-3.1)min in healthy participants and 6.4 (3.1-23.7)min in patients. The rate constant for transport of 11 C-CSar from intrahepatic to extrahepatic bile was 0.057 (0.023-0.11)min -1 in healthy participants and only slightly reduced in patients 0.039 (0.017-0.066). This first in vivo quantification of individual steps involved in the hepatobiliary secretion of a conjugated bile acid in humans provided new insight into cholestatic disease. Positron emission tomography (PET) using the radiolabelled bile acid ( 11 C-CSar) enabled quantification of the individual steps of the hepatic transport of bile acids from blood to bile in man. Cholestasis reduced uptake and secretion and increased backflux to blood. These findings improve our understanding of cholestatic liver diseases and may support therapeutic decisions. The trial is registered at ClinicalTrials.gov (NCT01879735). Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun
Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytesmore » were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.« less
Wu, Chao; Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming
2009-01-01
Harmaline is a β-carboline alkaloid showing neuroprotective and neurotoxic properties. Our recent studies have revealed an important role for cytochrome P450 2D6 (CYP2D6) in harmaline O-demethylation. This study, therefore, aimed to delineate the effects of CYP2D6 phenotype/genotype on harmaline metabolism, pharmacokinetics (PK) and pharmacodynamics (PD), and to develop a pharmacogenetics mechanism-based compartmental PK model. In vitro kinetic studies on metabolite formation in human CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) hepatocytes indicated that harmaline O-demethylase activity (Vmax/Km) was about 9-fold higher in EM hepatocytes. Substrate depletion showed mono-exponential decay trait, and estimated in vitro harmaline clearance (CLint, μL/min/106 cells) was significantly lower in PM hepatocytes (28.5) than EM hepatocytes (71.1). In vivo studies in CYP2D6-humanized and wild-type mouse models showed that wild-type mice were subjected to higher and longer exposure to harmaline (5 and 15 mg/kg; i.v. and i.p.), and more severe hypothermic responses. The PK/PD data were nicely described by our pharmacogenetics-based PK model involving the clearance of drug by CYP2D6 (CLCYP2D6) and other mechanisms (CLother), and an indirect response PD model, respectively. Wild-type mice were also more sensitive to harmaline in marble-burying tests, as manifested by significantly lower ED50 and steeper Hill slope. These findings suggest that distinct CYP2D6 status may cause considerable variations in harmaline metabolism, PK and PD. In addition, the pharmacogenetics-based PK model may be extended to define PK difference caused by other polymorphic drug-metabolizing enzyme in different populations. PMID:19445902
Effect of tamoxifen on cholesterol synthesis in HepG2 cells and cultured rat hepatocytes.
Holleran, A L; Lindenthal, B; Aldaghlas, T A; Kelleher, J K
1998-12-01
The objective of this study was to investigate the mechanisms by which tamoxifen modifies cholesterol metabolism in cellular models of liver metabolism, HepG2 cells and rat hepatocytes. The effect of tamoxifen on cholesterol and triglyceride-palmitate synthesis was measured using isotopomer spectral analysis (ISA) and gas chromatography-mass spectrometry (GC-MS) and compared with the effects of progesterone, estradiol, the antiestrogen ICI 182,780, and an oxysterol, 25-hydroxycholesterol (25OHC). Cholesterol synthesis in cells incubated in the presence of either [1-(13)C]acetate, [U-13C]glucose, or [4,5-(13)C]mevalonate for 48 hours was reduced in the presence of 10 micromol/L tamoxifen and 12.4 micromol/L 25OHC in both HepG2 cells and rat hepatocytes. The ISA methodology allowed a clear distinction between effects on synthesis and effects on precursor enrichment, and indicated that these compounds did not affect enrichment of the precursors of squalene. Progesterone was effective in both cell types at 30 micromol/L and only in HepG2 cells at 10 micromol/L. Estradiol and ICI 182,780 at 10 micromol/L did not inhibit cholesterol synthesis. None of the compounds altered the synthesis of triglyceride-palmitate in either cell type. Treatment of cells with tamoxifen produced accumulation of three sterol precursors of cholesterol, zymosterol, desmosterol, and delta8 cholesterol. This pattern of precursors indicates inhibition of delta24,25 reduction in addition to the previously described inhibition of delta8 isomerase. We conclude that tamoxifen is an effective inhibitor of the conversion of lanosterol to cholesterol in cellular models at concentrations comparable to those present in the plasma of tamoxifen-treated individuals. Our findings indicate that this mechanism may contribute to the effect of tamoxifen in reducing plasma cholesterol in humans.
Hikosaka, Keisuke; Noritake, Hidenao; Kimura, Wataru; Sultana, Nishat; Sharkar, Mohammad T K; Tagawa, Yoh-Ichi; Uezato, Tadayoshi; Kobayashi, Yoshimasa; Wakita, Takaji; Miura, Naoyuki
2011-04-01
No suitable mouse model is available for studying chronic liver disease caused by hepatitis C virus (HCV). CD81, claudin-1, scavenger receptor class B type I, and occludin were recently reported to be the important factors in HCV entry into hepatocytes. We made transgenic mice (Alb-CCSO) expressing the four human proteins and examined whether HCV from a patient serum or HCV pseudoparticles (HCVpp) were capable of infecting them. HCV was not detected in the mouse serum after injecting the mice with HCV from a patient serum. We also found no indications of HCVpp entry into primary hepatocytes from Alb-CCSO mice. In addition, HCV-infectible Hep3B cells were fused with HCV-resistant primary mouse hepatocytes and the fused cells showed 35-fold lower infectivity compared to wild-type Hep3B cells, indicating that primary mouse hepatocytes have the inhibitory factor(s) in HCVpp entry. Our results suggest that the expression of the human factors does not confer susceptibility to HCV entry into the liver.
Xue, Gai; Han, Xiaolei; Ma, Xin; Wu, Honghai; Qin, Yabin; Liu, Jianfang; Hu, Yuqin; Hong, Yang; Hou, Yanning
2016-01-01
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo. PMID:27088093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josse, Rozenn; Dumont, Julie; Fautrel, Alain
Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cellmore » cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered by other genotoxic compounds requiring or not bioactivation.« less
Sajan, M.P.; Farese, R. V.
2012-01-01
Aims/Hypothesis We examined the role of the protein kinase C-τ (PKC-ι) in mediating alterations in expression of enzymes in hepatocytes of type 2 diabetic humans that contribute importantly to development of lipid and carbohydrate abnormalities in type 2 diabetes. Methods We examined insulin signalling in isolated hepatocytes of non-diabetic and type 2 diabetic humans, and effects of two newly developed small molecule PKC-ι inhibitors on aberrant signalling and downstream processes. Results Opposite to PKC-ι deficiency in diabetic muscle, which diminishes glucose transport, "PKC-ι in diabetic hepatocytes was overexpressed and overactive, basally and following insulin treatment, and, moreover, was accompanied by increased expression of "PKC-ι-dependent lipogenic, proinflammatory and gluconeogenic enzymes. Heightened "PKC-ι activity most likely reflected heightened activity of insulin receptor substrate(IRS)-2-dependent phosphatidylinositol-3-kinase (PI3K), as IRS-1 levels and IRS-1/PI3K activity were markedly diminished.. Importantly, insulin stimulated "PKC-ι expression and its overexpression in diabetic hepatocytes was reversed in vitro by both insulin deprivation and "PKC-ι inhibitors; this suggested operation of an insulin-driven, feed-forward/positive-feedback mechanism. In contrast to "PKC-ι, Akt2 activity and activation by insulin was diminished, apparently reflecting IRS-1 deficiency. Treatment of diabetic hepatocytes with "PKC-ι/λ inhibitors diminished expression of lipogenic, proinflammatory and gluconeogenic enzymes. Conclusions/Interpretations Our findings suggest that a vicious cycle of "PKC-ι overactivity and overexpression exists in hepatocytes of type 2 diabetic humans and contributes importantly to maintaining overactivity of lipogenic, proinflammatory and gluconeogenic pathways that underlie lipid and carbohydrate abnormalities in type 2 diabetes. PMID:22349071
Sajan, M P; Farese, R V
2012-05-01
We examined the role of protein kinase C-ι (PKC-ι) in mediating alterations in the abundance of enzymes in hepatocytes of type 2 diabetic humans that contribute importantly to the development of lipid and carbohydrate abnormalities in type 2 diabetes. We examined (1) insulin signalling in isolated hepatocytes of non-diabetic and type 2 diabetic humans and (2) the effects of two newly developed small molecule PKC-ι inhibitors on aberrant signalling and downstream processes. In contrast with PKC-ι deficiency in diabetic muscle, which diminishes glucose transport, PKC-ι in diabetic hepatocytes was overproduced and overactive, basally and after insulin treatment, and, moreover, was accompanied by increased abundance of PKC-ι-dependent lipogenic, proinflammatory and gluconeogenic enzymes. Heightened PKC-ι activity most likely reflected heightened activity of IRS-2-dependent phosphatidylinositol 3-kinase (PI3K), as IRS-1 levels and IRS-1/PI3K activity were markedly diminished. Importantly, insulin-stimulated PKC-ι abundance and its overabundance in diabetic hepatocytes was reversed in vitro by both insulin deprivation and PKC-ι inhibitors; this suggested operation of an insulin-driven, feed-forward/positive-feedback mechanism. In contrast with PKC-ι, protein kinase B (Akt2) activity and activation by insulin was diminished, apparently reflecting IRS-1 deficiency. Treatment of diabetic hepatocytes with PKC-ι/λ inhibitors diminished abundance of lipogenic, proinflammatory and gluconeogenic enzymes. Our findings suggest that a vicious cycle of PKC-ι overactivity and overproduction exists in hepatocytes of humans with type 2 diabetes and contributes importantly to maintaining overactivity of lipogenic, proinflammatory and gluconeogenic pathways, which underlies the lipid and carbohydrate abnormalities in type 2 diabetes.
Hepatitis B virus evasion from cGAS sensing in human hepatocytes.
Verrier, Eloi R; Yim, Seung-Ae; Heydmann, Laura; El Saghire, Houssein; Bach, Charlotte; Turon-Lagot, Vincent; Mailly, Laurent; Durand, Sarah C; Lucifora, Julie; Durantel, David; Pessaux, Patrick; Manel, Nicolas; Hirsch, Ivan; Zeisel, Mirjam B; Pochet, Nathalie; Schuster, Catherine; Baumert, Thomas F
2018-04-20
Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP synthase (cGAS) was identified as a DNA sensor. In this study, we aimed to investigate the functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss- and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes and HBV-infected human liver chimeric mice. Here we show that cGAS is expressed in the human liver, primary human hepatocytes and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral cccDNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
DeTemple, Daphne E; Oldhafer, Felix; Falk, Christine S; Chen-Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael; Vondran, Florian W R
2018-03-01
Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4 + CD25 high CD127 low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4 + T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8 + T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4 + T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD. © 2018 The Authors. Liver Transplantation published by Wiley Periodicals, Inc. on behalf of American Association for the Study of Liver Diseases.
Human Hepatocyte Isolation: Does Portal Vein Embolization Affect the Outcome?
Kluge, Martin; Reutzel-Selke, Anja; Napierala, Hendrik; Hillebrandt, Karl Herbert; Major, Rebeka Dalma; Struecker, Benjamin; Leder, Annekatrin; Siefert, Jeffrey; Tang, Peter; Lippert, Steffen; Sallmon, Hannes; Seehofer, Daniel; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael
2016-01-01
Primary human hepatocytes are widely used for basic research, pharmaceutical testing, and therapeutic concepts in regenerative medicine. Human hepatocytes can be isolated from resected liver tissue. Preoperative portal vein embolization (PVE) is increasingly used to decrease the risk of delayed postoperative liver regeneration by induction of selective hypertrophy of the future remnant liver tissue. The aim of this study was to investigate the effect of PVE on the outcome of hepatocyte isolation. Primary human hepatocytes were isolated from liver tissue obtained from partial hepatectomies (n = 190) using the two-step collagenase perfusion technique followed by Percoll purification. Of these hepatectomies, 27 isolations (14.2%) were performed using liver tissue obtained from patients undergoing PVE before surgery. All isolations were characterized using parameters that had been described in the literature as relevant for the outcome of hepatocyte isolation. The isolation outcomes of the PVE and the non-PVE groups were then compared before and after Percoll purification. Metabolic parameters (transaminases, urea, albumin, and vascular endothelial growth factor secretion) were measured in the supernatant of cultured hepatocytes for more than 6 days (PVE: n = 4 and non-PVE: n = 3). The PVE and non-PVE groups were similar in regard to donor parameters (sex, age, and indication for surgery), isolation parameters (liver weight and cold ischemia time), and the quality of the liver tissue. The mean initial viable cell yield did not differ between the PVE and non-PVE groups (10.16 ± 2.03 × 10(6) cells/g vs. 9.70 ± 0.73 × 10(6) cells/g, p = 0.499). The initial viability was slightly better in the PVE group (77.8% ± 2.03% vs. 74.4% ± 1.06%). The mean viable cell yield (p = 0.819) and the mean viability (p = 0.141) after Percoll purification did not differ between the groups. PVE had no effect on enzyme leakage and metabolic activity of cultured hepatocytes. Although PVE leads to drastic metabolic alterations and changes in hepatic blood flow, embolized liver tissue is a suitable source for the isolation of primary human hepatocytes and is equivalent to untreated liver tissue in regard to cell yield and viability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, J.; Curran, R.D.; Ochoa, J.B.
1991-02-01
Nitric oxide, a highly reactive radical, was recently identified as an intermediate of L-arginine metabolism in mammalian cells. We have shown that nitric oxide synthesis is induced in vitro in cultured hepatocytes by supernatants from activated Kupffer cells or in vivo by injecting rats with nonviable Corynebacterium parvum. In both cases, nitric oxide biosynthesis in hepatocytes was associated with suppression of total protein synthesis. This study attempts to determine the effect of nitric oxide biosynthesis on the activity of specific hepatocytic mitochondrial enzymes and to determine whether inhibition of protein synthesis is caused by suppression of energy metabolism. Exposure ofmore » hepatocytes to supernatants from activated Kupffer cells led to a 30% decrease of aconitase (Krebs cycle) and complex I (mitochondrial electron transport chain) activity. Using NG-monomethyl-L-arginine, an inhibitor of nitric oxide synthesis, we demonstrated that the inhibition of mitochondrial aconitase activity was due, in part, to the action of nitric oxide. In contrast, in vivo nitric oxide synthesis of hepatocytes from Corynebacterium parvum-treated animals had no effect on mitochondrial respiration. This suggests that inhibition of protein synthesis by nitric oxide is not likely to be mediated by inhibition of energy metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalfe, S.A.; Neal, G.E.
Isolated rat hepatocytes, an intact cellular system capable of performing phase I and phase II metabolism, have been used to investigate metabolism of aflatoxin B1. These cells were found to metabolise (/sup 14/C)aflatoxin B1 to aflatoxins M1 and Q1, and to radiolabelled polar material, presumably conjugates, as analysed by h.p.l.c., t.l.c. and radioactive determination. In vivo administration of the mixed function oxidase inducers, phenobarbitone and 3-methylcholanthrene, resulted in enhanced hepatocyte phase I (microsomal) metabolism of aflatoxin B1. In contrast to metabolism of AFB1 by in vitro subcellular systems increased production of polar material (conjugated metabolites) derived from (/sup 14/C)aflatoxin B1more » was also detected in hepatocytes isolated from these pretreated animals. Formation of aflatoxin Q1 by isolated hepatocytes appeared to be mediated by cytochrome P450-linked enzymes whereas cytochrome P448-linked enzymes were apparently involved in aflatoxin M1 production. Chronic feeding of aflatoxin B1 to rats enhanced hepatocyte production of conjugated material only and did not elevate cellular cytochrome P450 levels, thus suggesting that aflatoxin B1 is not an inducer of its own primary metabolism.« less
Interspecies differences in metabolism of arsenic by cultured primary hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.
2010-05-15
Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAsmore » methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [{sup 73}As]arsenite (iAs{sup III}; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs{sup III} to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs{sup III} than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs{sup III} was associated with inhibition of DMAs production by moderate concentrations of iAs{sup III} and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences in the hepatocyte capacity to methylate iAs.« less
Leckel, Kerstin; Strey, Christoph; Bechstein, Wolf O; Boost, Kim A; Auth, Marcus K H; El Makhfi, Amal; Juengel, Eva; Wedel, Steffen; Jones, Jon; Jonas, Dietger; Blaheta, Roman A
2008-05-01
Isolated human hepatocytes are of great value in investigating cell transplantation, liver physiology, pathology, and drug metabolism. Though hepatocytes possess a tremendous proliferative capacity in vivo, their ability to grow in culture is severely limited. We postulated that repeated medium change, common to most in vitro systems, may prevent long-term maintenance of hepato-specific functions and growth capacity. To verify our hypotheses we compared the DNA synthesis and differentiation status of isolated human hepatocytes, cultured in medium which was renewed every day or was not changed for 3 weeks ('autocrine' setting). Daily medium change led to rapid hepatocellular de-differentiation without any signs of DNA replication. In contrast, the autocrine setting allowed hepatocytes to become highly differentiated, demonstrated by an elevated ASGPr expression level, and increased albumin and fibrinogen synthesis and release. Cytokeratin 18 filaments were stably expressed, whereas cytokeratin 19 remained undetectable. Hepatocytes growing in an autocrine fashion were activated in the presence of hepatocyte growth factor (HGF), evidenced by c-Met phosphorylation. However, HGF response was not achieved when the culture medium was renewed daily. Furthermore, the autocrine setting evoked a late but strong interleukin 6 release into the culture supernatant, reaching maximum values after a 10-day cultivation period, and intense BrdU incorporation after a further 5-day period. Our data suggest that preservation of the same medium creates environmental conditions which allow hepatocytes to control their differentiation status and DNA synthesis in an autocrine fashion. Further studies are necessary to identify the key mediators involved in autocrine communication and to design the optimal culture configuration for clinical application.
Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.
Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K
2017-08-01
Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.
Comparative Metabolism of Furan in Rodent and Human Cryopreserved Hepatocytes
Gates, Leah A.; Phillips, Martin B.; Matter, Brock A.
2014-01-01
Furan is a liver toxicant and carcinogen in rodents. Although humans are most likely exposed to furan through a variety of sources, the effect of furan exposure on human health is still unknown. In rodents, furan requires metabolism to exert its toxic effects. The initial product of the cytochrome P450 2E1-catalyzed oxidation is a reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). BDA is toxic and mutagenic and consequently is considered responsible for the toxic effects of furan. The urinary metabolites of furan in rats are derived from the reaction of BDA with cellular nucleophiles, and precursors to these metabolites are detected in furan-exposed hepatocytes. Many of these precursors are 2-(S-glutathionyl)butanedial-amine cross-links in which the amines are amino acids and polyamines. Because these metabolites are derived from the reaction of BDA with cellular nucleophiles, their levels are a measure of the internal dose of this reactive metabolite. To compare the ability of human hepatocytes to convert furan to the same metabolites as rodent hepatocytes, furan was incubated with cryopreserved human and rodent hepatocytes. A semiquantitative liquid chromatography with tandem mass spectrometry assay was developed for a number of the previously characterized furan metabolites. Qualitative and semiquantitative analysis of the metabolites demonstrated that furan is metabolized in a similar manner in all three species. These results indicate that humans may be susceptible to the toxic effects of furan. PMID:24751574
Chang, Wen-Chang; Shen, Szu-Chuan
2013-02-01
This study investigated the glucose uptake activity of the water extracts from the leaves and fruit of edible Myrtaceae plants, including guava (Psidium guajava Linn.), wax apples [Syzygium samarangense (Blume) Merr. and L.M. Perry], Pu-Tau [Syzygium jambo (L.) Alston], and Kan-Shi Pu-Tau (Syzygium cumini Linn.) in FL83B mouse hepatocytes. The fluorescent dye 2-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose was used to estimate the uptake ability of the cells. Glucose uptake test showed that pink wax apple fruit extract (PWFE) exhibits the highest glucose uptake activity, at an increment of 21% in the insulin-resistant FL83B mouse hepatocytes as compared with the TNF-α-treated control group. Vescalagin was isolated using column chromatography of PWFE. This compound, at the concentration of 6.25 µg/mL, exhibits the same glucose uptake improvement in insulin-resistant cells as PWFE at a 100-µg/mL dose. We postulate that vescalagin is an active component in PWFE that may alleviate the insulin resistance in mouse hepatocytes. Copyright © 2012 John Wiley & Sons, Ltd.
Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A
2016-05-01
Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. © 2016. Published by The Company of Biologists Ltd.
In Vitro Metabolism of 3,4-Methylenedioxymethamphetamine in Human Hepatocytes
Ramaley, Corinne; Leonard, Susan C.; Miller, Jeffrey D.; Wilson, Denita Takesha-Mashia; Chang, Sai Y.; Chen, Qingyu; Li, Feng; Du, Chengan
2014-01-01
Users of the illicit drug, 3,4-methylenedioxymethamphetamine (MDMA), show signs of neurotoxicity. However, the precise mechanism of neurotoxicity caused by use of MDMA has not yet been elucidated. Synthetic glutathione (GSH) conjugates of MDMA are transported into the brain by the GSH transporter and subsequently produce neurotoxicity. The objective of this research is to show direct evidence of the formation of GSH adducts of MDMA in human hepatocytes. High-performance liquid chromatography coupled with tandem mass spectrometry was utilized to examine in vitro incubations of MDMA with cryopreserved human hepatocytes. The use of hydrophilic liquid chromatography in combination with linear ion trap mass spectrometry permitted the identification of two possible GSH metabolites. Enhanced product ion scans of m/z = 499 and 487 amu of extracts from hepatocytes treated with 1.0 mM MDMA show a distinct fragmentation pattern (m/z 194.2, 163, 135, 105), suggesting the formation of MDMA–GSH conjugate, MDMA-SG and 3,4-dihydroxymethamphetamine-SG. The formation of an MDMA–GSH conjugate was further supported by the apparent lack of the same fragmentation pattern from hepatocyte samples without MDMA treatment. The results generated from this study yield valuable qualitative and quantitative information about the neurotoxic thioether metabolites formed from MDMA in humans. PMID:24682111
The Role of Gastrointestinal Hormones in Hepatic Lipid Metabolism
Mells, Jamie Eugene; Anania, Frank A.
2014-01-01
Hepatocellular accumulation of free fatty acids (FFAs) in the form of triglycerides constitutes the metabolic basis for the development of nonalcoholic fatty liver disease (NAFLD). Recent data demonstrate that excess FFA hepatocyte storage is likely to lead to lipotoxicity and hepatocyte apoptosis. Hence, FFA-mediated hepatocyte injury is a key contributor to the pathogenesis of nonalcoholic steatohepatitis (NASH). Nonalcoholic steatohepatitis, obesity, type 2 diabetes, essential hypertension, and other common medical problems together comprise metabolic syndrome. Evidence suggests that peptide hormones from the L cells of the distal small intestine, which comprise the core of the enteroendocrine system (EES), play two key roles, serving either as incretins, or as mediators of appetite and satiety in the central nervous system. Recent data related to glucagon-like peptide-1 (GLP-1) and other known L-cell hormones have accumulated due to the increasing frequency of bariatric surgery, which increase delivery of bile salts to the hindgut. Bile acids are a key stimulus for the TGR5 receptor of the L cells. Enhanced bile-salt flow and subsequent EES stimulation may be central to elimination of hepatic steatosis following bariatric surgery. Although GLP-1 is a clinically relevant pharmacological analogue that drives pancreatic β-cell insulin output, GLP-1 analogues also have independent benefits via their effects on hepatocellular FFA metabolism. The authors also discuss recent data regarding the role of the major peptides released by the EES, which promote satiety and modulate energy homeostasis and utilization, as well as those that control fat absorption and intestinal permeability. Taken together, elucidating novel functions for EES-related peptides and pharmacologic development of peptide analogues offer potential far-ranging treatment for obesity-related human disease. PMID:24222092
DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes
Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.
2011-01-01
DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541
Interleukin-1β induces tumor necrosis factor-α secretion from rat hepatocytes.
Yoshigai, Emi; Hara, Takafumi; Inaba, Hiroyuki; Hashimoto, Iwao; Tanaka, Yoshito; Kaibori, Masaki; Kimura, Tominori; Okumura, Tadayoshi; Kwon, A-Hon; Nishizawa, Mikio
2014-05-01
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine involved in various inflammatory diseases. The only production of TNF-α in the liver is thought to be from hepatic macrophages known as Kupffer cells, predominantly in response to bacterial lipopolysaccharide (LPS). Primary cultured rat hepatocytes were used to analyze TNF-α expression in response to the pro-inflammatory cytokine, interleukin-1β (IL-1β). Livers of rats subjected to LPS-induced endotoxemia were analyzed. Immunocytochemistry and enzyme-linked immunosorbent assays demonstrated that IL-1β-treated rat hepatocytes secreted TNF-α, and RNA analyses indicated that TNF-α mRNA was induced specifically by IL-1β. Northern blot analysis showed that not only mRNA, but also a natural antisense transcript (asRNA), was transcribed from the rat Tnf gene in IL-1β-treated hepatocytes. TNF-α was detected in the hepatocytes of LPS-treated rats. Both TNF-α mRNA and asRNA were expressed in the hepatocytes of LPS-treated rats, human hepatocellular carcinoma and human monocyte/macrophage cells. To disrupt the interaction between TNF-α asRNA and TNF-α mRNA, sense oligonucleotides corresponding to TNF-α mRNA were introduced into rat hepatocytes resulting in significantly increased levels of TNF-α mRNA. One of these sense oligonucleotides increased a half-life of TNF-α mRNA, suggesting that the TNF-α asRNA may reduce the stability of TNF-α mRNA. IL-1β-stimulated rat hepatocytes are a newly identified source of TNF-α in the liver. TNF-α mRNA and asRNA are expressed in rats and humans, and the TNF-α asRNA reduces the stability of the TNF-α mRNA. Hepatocytes and TNF-α asRNA may be therapeutic targets to regulate levels of TNF-α mRNA. © 2013 The Japan Society of Hepatology.
2013-01-01
Background Many studies have suggested that the immune response may play a crucial role in the progression of hepatocellular carcinoma (HCC). Therefore, our aim was to establish a (i) functional culture of primary human tumor hepatocytes and non-tumor from patients with hepatocellular carcinoma (HCC) and (ii) a co-culture system of HCC and non-HCC hepatocytes with autologous peripheral blood mononuclear cells (PBMCs) in order to study in vitro cell-to-cell interactions. Methods Tumor (HCC) and non-tumor (non-HCC) hepatocytes were isolated from the liver resection specimens of 11 patients operated for HCC, while PBMCs were retrieved immediately prior to surgery. Four biopsies were obtained from patients with no liver disease who had surgery for non malignant tumor (normal hepatocytes). Hepatocytes were either cultured alone (monoculture) or co-cultured with PBMCs. Flow cytometry measurements for MHC class II expression, apoptosis, necrosis and viability (7AAD) were performed 24 h, 48 h and 72 h in co-culture and monocultures. Results HCC and non-HCC hepatocytes exhibited increased MHC-II expression at 48h and 72h in co-culture with PBMCs as compared to monoculture, with MHC II-expressing HCC hepatocytes showing increased viability at 72 h. PBMCs showed increased MHC-II expression (activation) in co-culture with HCC as compared to non-HCC hepatocytes at all time points. Moreover, CD8+ T cells had significantly increased apoptosis and necrosis at 48h in co-culture with HCC hepatocytes as compared to monocultures. Interestingly, MHC-II expression on both HCC and non-HCC hepatocytes in co-culture was positively correlated with the respective activated CD8+ T cells. Conclusions We have established an in vitro co-culture model to study interactions between autologous PBMCs and primary HCC and non-HCC hepatocytes. This direct interaction leads to increased antigen presenting ability of HCC hepatocytes, activation of PBMCs with a concomitant apoptosis of activated CD8+ T cells. Although, a partially effective immune response against HCC exists, still tumor hepatocytes manage to escape. PMID:23331458
Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.
Calabro, Sarah R; Maczurek, Annette E; Morgan, Alison J; Tu, Thomas; Wen, Victoria W; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A; McCaughan, Geoffrey W; Warner, Fiona J; McLennan, Susan V; Shackel, Nicholas A
2014-01-01
The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by future anti-fibrogenic agents.
Juchno, Dorota; Lackowska, Bozena; Boron, Alicja; Kilarski, Wincenty
2010-09-01
We analyzed the DNA content of hepatocyte and erythrocyte nuclei of the spined loach Cobitis taenia (diploid) and its allopolyploid forms. Twenty triploid females and one tetraploid were used. At least 20,000 hepatocyte and erythrocyte nuclei were acquired and analyzed by flow cytometry. C. taenia erythrocyte nuclei contain 3.15 +/- 0.21 pg of DNA and the hepatocyte nuclei 4.45 +/- 0.46 pg of DNA. Triploid Cobitis have 5.08 +/- 0.41 pg of DNA in erythrocyte nuclei and 6.11 +/- 0.40 pg of DNA in hepatocyte nuclei, whereas the tetraploid erythrocyte and hepatocyte nuclei contained 6.60 and 7.40 pg of DNA, respectively. In general, the DNA contents correlate positively with the ploidy level of the fish investigated. The DNA content variation in the hepatocyte and erythrocyte nuclei may be due to differences in extent of chromatin condensation, which is more pronounced in the erythrocyte than hepatocyte nuclei, or to the several orders of ploidy that occur in the parenchymal liver cells.
Wu, Yi-Hang; Hu, Shao-Qing; Liu, Jun; Cao, Hong-Cui; Xu, Wei; Li, Yong-Jun; Li, Lan-Juan
2014-06-01
Apoptosis plays a role in the normal development of liver. However, overactivation thereof may lead to hepatocellular damage. The aim of this study was to assess D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced hepatocyte apoptotic changes in mice and clarify the mechanisms involved in this process. DNA ladder detection was employed to determine the induction condition of hepatic apoptosis. An initial test indicated that typical hepatocyte apoptosis was observed at 6-10 h after the intraperitoneal injection of D-GalN (700 mg/kg) and LPS (10 µg/kg). Subsequently, we evaluated hepatocyte apoptosis at 8 h after administering D-GalN/LPS by histopathological analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end‑labeling (TUNEL) detection, flow cytometry and electron microscopy analysis. To clarify the apoptosis-related gene expression, the expression levels of tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), caspase-3, and Fas/Fas ligand (FasL) were determined by serum enzyme immunoassay, immunohistochemistry and western blot analysis. Strong apoptotic positive signals following D-GalN/LPS injection were observed from the results of the serum analysis, histopathological and immunohistochemical analyses, DNA ladder detection, TUNEL detection, flow cytometry and electron microscopy analysis. Additionally, apoptotic hepatocytes were mainly at the late stage of cell apoptosis. The expression of TNF-α, TGF-β1, caspase-3 and Fas/FasL was significantly increased. In conclusion, this study evaluated the D-GalN/LPS-induced hepatocyte apoptotic changes and clarified the apoptosis-related gene expression in mice. The hepatocyte apoptosis induced by D-GalN/LPS may be mainly regulated by the death receptor pathway. TGF-β signaling pathway may also play a vital role in this process of hepatocyte apoptosis.
Goldring, Christopher; Antoine, Daniel J; Bonner, Frank; Crozier, Jonathan; Denning, Chris; Fontana, Robert J; Hanley, Neil A; Hay, David C; Ingelman-Sundberg, Magnus; Juhila, Satu; Kitteringham, Neil; Silva-Lima, Beatriz; Norris, Alan; Pridgeon, Chris; Ross, James A; Young, Rowena Sison; Tagle, Danilo; Tornesi, Belen; van de Water, Bob; Weaver, Richard J; Zhang, Fang; Park, B Kevin
2017-02-01
Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721). © 2016 by the American Association for the Study of Liver Diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanada, Takahiro; Tsukiyama-Kohara, Kyoko, E-mail: kkohara@vet.kagoshima-u.ac.jp; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Kagoshima 890-0065
The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10{sup 5} copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogenmore » activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10{sup 4}-10{sup 6} copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10{sup 3} copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.« less
Weerasinghe, Sujith V W; Jang, You-Jin; Fontana, Robert J; Omary, M Bishr
2014-08-01
Several serum markers are used to assess hepatocyte damage, but they have limitations related to etiology specificity and prognostication. Identification of novel hepatocyte-specific biomarkers could provide important prognostic information and better pathogenesis classification. We tested the hypothesis that hepatocyte-selective biomarkers are released after subjecting isolated mouse hepatocytes to Fas-ligand-mediated apoptosis. Proteomic analysis of hepatocyte culture medium identified the mitochondrial matrix protein carbamoyl phosphate synthetase-1 (CPS1) among the most readily detected proteins that are released by apoptotic hepatocytes. CPS1 was also detected in mouse serum upon acute challenge with Fas-ligand or acetaminophen and in hepatocytes upon hypoosmotic stress, independent of hepatocyte caspase activation. Furthermore, CPS1 was observed in sera of mice chronically fed the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Mouse CPS1 detectability was similar in serum and plasma, and its half-life was 126 ± 9 min. Immune staining showed that CPS1 localized to mouse hepatocytes but not ductal cells. Analysis of a few serum samples from patients with acute liver failure (ALF) due to acetaminophen, Wilson disease, or ischemia showed readily detectable CPS1 that was not observed in several patients with chronic viral hepatitis or in control donors. Notably, CPS1 rapidly decreased to undetectable levels in sera of patients with acetaminophen-related ALF who ultimately recovered, while alanine aminotransferase levels remained elevated. Therefore, CPS1 becomes readily detectable upon hepatocyte apoptotic and necrotic death in culture or in vivo. Its abundance and short serum half-life, compared with alanine aminotransferase, suggest that it may be a useful prognostic biomarker in human and mouse liver injury. Copyright © 2014 the American Physiological Society.
Zakrzewska, Karolina Ewa; Samluk, Anna; Wencel, Agnieszka; Dudek, Krzysztof; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz
2017-01-01
Cell-based therapies that could provide an alternative treatment for the end-stage liver disease require an adequate source of functional hepatocytes. There is little scientific evidence for the influence of patient's age, sex, and chemotherapy on the cell isolation efficiency and metabolic activity of the harvested hepatocytes. The purpose of this study was to investigate whether hepatocytes derived from different sources display differential viability and biosynthetic capacity. Liver cells were isolated from 41 different human tissue specimens. Hepatocytes were labeled using specific antibodies and analyzed using flow cytometry. Multiparametric analysis of the acquired data revealed statistically significant differences between some studied groups of patients. Generally, populations of cells isolated from the male specimens had greater percentage of biosynthetically active hepatocytes than those from the female ones regardless of age and previous chemotherapy of the patient. Based on the albumin staining (and partially on the α-1-antitrypsin labeling) after donor liver exclusion (6 out of 41 samples), our results indicated that: 1. samples obtained from males gave a greater percentage of active hepatocytes than those from females (p = 0.034), and 2. specimens from the males after chemotherapy greater than those from the treated females (p = 0.032).
Cell Expansion During Directed Differentiation of Stem Cells Toward the Hepatic Lineage.
Raju, Ravali; Chau, David; Cho, Dong Seong; Park, Yonsil; Verfaillie, Catherine M; Hu, Wei-Shou
2017-02-15
The differentiation of human pluripotent stem cells toward the hepatocyte lineage can potentially provide an unlimited source of functional hepatocytes for transplantation and extracorporeal bioartificial liver applications. It is anticipated that the quantities of cells needed for these applications will be in the order of 10 9 -10 10 cells, because of the size of the liver. An ideal differentiation protocol would be to enable directed differentiation to the hepatocyte lineage with simultaneous cell expansion. We introduced a cell expansion stage after the commitment of human embryonic stem cells to the endodermal lineage, to allow for at least an eightfold increase in cell number, with continuation of cell maturation toward the hepatocyte lineage. The progressive changes in the transcriptome were measured by expression array, and the expression dynamics of certain lineage markers was measured by mass cytometry during the differentiation and expansion process. The findings revealed that while cells were expanding they were also capable of progressing in their differentiation toward the hepatocyte lineage. In addition, our transcriptome, protein and functional studies, including albumin secretion, drug-induced CYP450 expression and urea production, all indicated that the hepatocyte-like cells obtained with or without cell expansion are very similar. This method of simultaneous cell expansion and hepatocyte differentiation should facilitate obtaining large quantities of cells for liver cell applications.
Prasad, Bhagwat; Evers, Raymond; Gupta, Anshul; Hop, Cornelis E. C. A.; Salphati, Laurent; Shukla, Suneet; Ambudkar, Suresh V.
2014-01-01
Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling. PMID:24122874
Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D
2015-03-01
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.
de Almeida, Terezinha M B; Leitão, Regina C; Andrade, Joyce D; Beçak, Willy; Carrilho, Flair J; Sonohara, Shigueko
2004-04-01
Human cirrhosis is considered an important factor in hepatocarcinogenesis. The lack of substantial genetics and cytogenetics data in human cirrhosis led us to investigate spontaneous micronuclei formation, as an indicator of chromosomal damage. The analysis was performed in hepatocytes of regenerative, macroregenerative, and tumoral nodules from 30 cases of cirrhosis (paraffin-embedded archival material), retrospectively selected: cryptogenic, hepatitis C virus, and hepatitis C virus associated with hepatocellular carcinoma (HCC). Thirteen control liver samples of healthy organ donors were included. Micronucleated hepatocytes were analyzed with Feulgen-fast-green dyeing techniques. The spontaneous frequency of micronucleated hepatocytes in both regenerative and macroregenerative nodules of all cirrhotic patients was significantly higher than for the normal control group. There was no significant difference in frequency of micronucleated hepatocytes in regenerative nodules compared with macroregenerative nodules for all cases analyzed, whereas a significantly higher frequency of micronucleated hepatocytes was detected in tumoral nodules, compared with cirrhotic regenerative nodules and normal parenchyma. A higher frequency of the nuclear anomalies termed broken-eggs was observed in hepatitis C virus-related samples. Chromatinic losses and genotoxicity already existed in the cirrhotic regenerative nodules, which might predispose to development of HCC.
Dickensheets, Harold; Sheikh, Faruk; Park, Ogyi; Gao, Bin; Donnelly, Raymond P.
2013-01-01
This study compared the ability of IFN-α and IFN-λ to induce signal transduction and gene expression in primary human hepatocytes, PBLs, and monocytes. IFN-α drug products are widely used to treat chronic HCV infection; however, IFN-α therapy often induces hematologic toxicities as a result of the broad expression of IFNARs on many cell types, including most leukocytes. rIFN-λ1 is currently being tested as a potential alternative to IFN-α for treating chronic HCV. Although IFN-λ has been shown to be active on hepatoma cell lines, such as HepG2 and Huh-7, its ability to induce responses in primary human hepatocytes or leukocytes has not been examined. We found that IFN-λ induces activation of Jak/STAT signaling in mouse and human hepatocytes, and the ability of IFN-λ to induce STAT activation correlates with induction of numerous ISGs. Although the magnitude of ISG expression induced by IFN-λ in hepatocytes was generally lower than that induced by IFN-α, the repertoire of regulated genes was quite similar. Our findings demonstrate that although IFN-α and IFN-λ signal through distinct receptors, they induce expression of a common set of ISGs in hepatocytes. However, unlike IFN-α, IFN-λ did not induce STAT activation or ISG expression by purified lymphocytes or monocytes. This important functional difference may provide a clinical advantage for IFN-λ as a treatment for chronic HCV infection, as it is less likely to induce the leukopenias that are often associated with IFN-α therapy. PMID:23258595
Akesson, B; Sundler, R; Nilsson, A
1976-03-16
Hepatocytes isolated from rat or pig by collagenase perfusion were incubated with [3H]glcyerol and different albumin-bount fatty acids. Among C22 fatty acids docosahexaenoic acid stimulated phosphatidylethanolamine synthesis in rat hepatocytes most effectively. Addition of docosahexaenoic acid plus either palmitic or stearic acid resulted almost in the same stimulation whereas combinations of this acid with lauric or myristic acid had no effect. Lauric acid and myristic acid alone inhibited phosphatidylethanolamine synthesis. The chain length specificity for monoenoic fatty acids was similar, the hexadecenoic and octadecenoic acids (both cis and trans) being most stimulatory. The addition of 0.2 mM ethanolamine markedly stimulated phosphatidylethanolamine synthesis, but most effects of fatty acids were similar in its presence or absence.
Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.
Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise
2015-08-01
We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Measurement of Blood Coagulation Factor Synthesis in Cultures of Human Hepatocytes.
Heinz, Stefan; Braspenning, Joris
2015-01-01
An important function of the liver is the synthesis and secretion of blood coagulation factors. Within the liver, hepatocytes are involved in the synthesis of most blood coagulation factors, such as fibrinogen, prothrombin, factor V, VII, IX, X, XI, XII, as well as protein C and S, and antithrombin, whereas liver sinusoidal endothelial cells produce factor VIII and von Willebrand factor. Here, we describe methods for the detection and quantification of most blood coagulation factors in hepatocytes in vitro. Hepatocyte cultures indeed provide a valuable tool to study blood coagulation factors. In addition, the generation and expansion of hepatocytes or hepatocyte-like cells may be used in future for cell-based therapies of liver diseases, including blood coagulation factor deficiencies.
Switch from type II to I Fas/CD95 death signaling upon in vitro culturing of primary hepatocytes
Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph
2010-01-01
Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the pro-apoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. Here we report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel™, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, FasL activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from TNFα/ActD-induced apoptosis. Conclusion Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling which favours mitochondria-independent type I apoptosis induction. PMID:19003879
Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes.
Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph
2008-12-01
Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the proapoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. We report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, Fas ligand (FasL) activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from tumor necrosis factor alpha/actinomycin D (TNFalpha/ActD)-induced apoptosis. Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling that favors mitochondria-independent type I apoptosis induction.
van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J
1992-06-01
A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.
Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Gong, E-mail: gong-feng@northwestern.edu; Anong Biotech Institute, Tianjin; Li Ying
Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularinmore » induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.« less
Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes.
Yanhong, Fan; Chenghua, He; Guofang, Liu; Haibin, Zhang
2008-10-01
The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO(2)), or L-15 (cultured without 5% CO(2)) medium then cultured at 17, 27, or 37 degrees C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 x 10(8) per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO(2)) or L-15 (cultured without 5% CO(2)). The optimum culture temperature was 27 degrees C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition.
Glu-Phe from onion (Allium Cepa L.) attenuates lipogenesis in hepatocytes.
Lee, Yu Geon; Cho, Jeong-Yong; Hwang, Eom Ji; Jeon, Tae-Il; Moon, Jae-Hak
2017-07-01
A Glu-Phe (EF) was isolated from onion (Allium cepa L. cv. Sunpower). The chemical structure of EF was determined by nuclear magnetic resonance and electrospray ionization-mass (ESI-MS) spectroscopy. We showed that EF reduced lipid accumulation in mouse hepatocytes by inhibiting the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its lipogenic target genes. We also found that AMP-activated protein kinase (AMPK) was required for the inhibitory effect of EF on lipid accumulation in mouse hepatocytes. Furthermore, EF was qualified in nine onion cultivars by selective multiple reaction-monitoring detection of liquid chromatography-ESI-MS. These results suggest that EF could contribute to the beneficial effect of onion supplement in maintaining hepatic lipid homeostasis.
Production of thrombopoietin (TPO) by rat hepatocytes and hepatoma cell lines.
Shimada, Y; Kato, T; Ogami, K; Horie, K; Kokubo, A; Kudo, Y; Maeda, E; Sohma, Y; Akahori, H; Kawamura, K
1995-12-01
Recently, we purified rat thrombopoietin (TPO) from plasma of irradiated rats (XRP) by measuring its activity that stimulated the production of megakaryocytes from megakaryocyte progenitor cells (CFU-MK) in vitro. We then cloned the cDNAs for rat and human TPO. In this study, we found the production of TPO by hepatocytes isolated with the collagenase perfusion method from both normal and thrombocytopenic rats, by a two-step fractionation of hepatocyte culture medium (CM). Subsequently, CM of rat hepatoma cell lines was screened for the presence of TPO; three cell lines, H4-II-E, McA-RH8994, and HTC, were found to produce TPO. According to the purification procedure for TPO from XRP, TPO was partially purified from 2 L CM of each of three cell lines with a six-step procedure. In the final reverse-phase column, TPO from each cell line was eluted with the same retention time as that from XRP, and the TPO fraction exhibited megakaryocyte colony-stimulating activity (Meg-CSA). TPO-active fraction eluted from the final reverse-phase column was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), extracted from the gel, and assayed. TPO activity from each cell line was found in the respective molecular weight region, indicating the heterogeneity of the TPO molecule. Using reverse transcriptase-polymerase chain reaction (RT-PCR), we detected the expression of TPO mRNA in hepatocytes, three hepatoma cell lines, normal rat liver, and X-irradiated rat liver. Northern blot analysis showed that TPO mRNA was expressed mainly in liver among the various organs tested. These data demonstrate that TPO is produced by rat hepatocytes and hepatoma cell lines and suggest that liver may be the primary organ that produces TPO.
Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA.
Lehmann-Werman, Roni; Magenheim, Judith; Moss, Joshua; Neiman, Daniel; Abraham, Ofri; Piyanzin, Sheina; Zemmour, Hai; Fox, Ilana; Dor, Talya; Grompe, Markus; Landesberg, Giora; Loza, Bao-Li; Shaked, Abraham; Olthoff, Kim; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval
2018-06-21
Liver damage is typically inferred from serum measurements of cytoplasmic liver enzymes. DNA molecules released from dying hepatocytes are an alternative biomarker, unexplored so far, potentially allowing for quantitative assessment of liver cell death. Here we describe a method for detecting acute hepatocyte death, based on quantification of circulating, cell-free DNA (cfDNA) fragments carrying hepatocyte-specific methylation patterns. We identified 3 genomic loci that are unmethylated specifically in hepatocytes, and used bisulfite conversion, PCR, and massively parallel sequencing to quantify the concentration of hepatocyte-derived DNA in mixed samples. Healthy donors had, on average, 30 hepatocyte genomes/ml plasma, reflective of basal cell turnover in the liver. We identified elevations of hepatocyte cfDNA in patients shortly after liver transplantation, during acute rejection of an established liver transplant, and also in healthy individuals after partial hepatectomy. Furthermore, patients with sepsis had high levels of hepatocyte cfDNA, which correlated with levels of liver enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Duchenne muscular dystrophy patients, in which elevated AST and ALT derive from damaged muscle rather than liver, did not have elevated hepatocyte cfDNA. We conclude that measurements of hepatocyte-derived cfDNA can provide specific and sensitive information on hepatocyte death, for monitoring human liver dynamics, disease, and toxicity.
ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes.
Monestier, Marie; Charbonnier, Peggy; Gateau, Christelle; Cuillel, Martine; Robert, Faustine; Lebrun, Colette; Mintz, Elisabeth; Renaudet, Olivier; Delangle, Pascale
2016-04-01
Liver cells are an essential target for drug delivery in many diseases. The hepatocytes express the asialoglycoprotein receptor (ASGPR), which promotes specific uptake by means of N-acetylgalactosamine (GalNAc) recognition. In this work, we designed two different chemical architectures to treat Wilson's disease by intracellular copper chelation. Two glycoconjugates functionalized with three or four GalNAc units each were shown to enter hepatic cells and chelate copper. Here, we studied two series of compounds derived from these glycoconjugates to find key parameters for the targeting of human hepatocytes. Efficient cellular uptake was demonstrated by flow cytometry using HepG2 human heptic cells that express the human oligomeric ASGPR. Dissociation constants in the nanomolar range showed efficient multivalent interactions with the receptor. Both architectures were therefore concluded to be able to compete with endogeneous asialoglycoproteins and serve as good vehicles for drug delivery in hepatocytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liver-specific gene expression in cultured human hematopoietic stem cells.
Fiegel, Henning C; Lioznov, Michael V; Cortes-Dericks, Lourdes; Lange, Claudia; Kluth, Dietrich; Fehse, Boris; Zander, Axel R
2003-01-01
Hematopoietic and hepatic stem cells share characteristic markers such as CD34, c-kit, and Thy1. Based on the recent observations that hepatocytes may originate from bone marrow, we investigated the potential of CD34(+) bone marrow cells to differentiate into hepatocytic cells in vitro. CD34(+) and CD34(-) human bone marrow cells were separated by magnetic cell sorting. Cells were cultured on a collagen matrix in a defined medium containing hepatocyte growth factor. Cell count and size were measured by flow cytometry, and reverse transcription polymerase chain reaction was carried out for the liver-specific markers CK-19 and albumin. During cell culture, CD34(+) cells showed an increasing cell number and proliferative activity as assessed by Ki-67 staining. Under the specified culture conditions, CD34(+) cells expressed albumin RNA and CK-19 RNA after 28 days, whereas CD34(-) cells did not show liver-specific gene expression. The results indicate that CD34(+) adult human bone marrow stem cells can differentiate into hepatocytic cells in vitro.
Holtzinger, Audrey; Streeter, Philip R.; Sarangi, Farida; Hillborn, Scott; Niapour, Maryam; Ogawa, Shinichiro; Keller, Gordon
2015-01-01
The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population, broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study, we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach, we identified two endoderm-specific antibodies, HDE1 and HDE2, which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential, whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination, the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line. PMID:26493401
Avior, Yishai; Levy, Gahl; Zimerman, Michal; Kitsberg, Daniel; Schwartz, Robert; Sadeh, Ronen; Moussaieff, Arieh; Cohen, Merav; Itskovitz-Eldor, Joseph; Nahmias, Yaakov
2015-07-01
The liver is the main organ responsible for the modification, clearance, and transformational toxicity of most xenobiotics owing to its abundance in cytochrome P450 (CYP450) enzymes. However, the scarcity and variability of primary hepatocytes currently limits their utility. Human pluripotent stem cells (hPSCs) represent an excellent source of differentiated hepatocytes; however, current protocols still produce fetal-like hepatocytes with limited mature function. Interestingly, fetal hepatocytes acquire mature CYP450 expression only postpartum, suggesting that nutritional cues may drive hepatic maturation. We show that vitamin K2 and lithocholic acid, a by-product of intestinal flora, activate pregnane X receptor (PXR) and subsequent CYP3A4 and CYP2C9 expression in hPSC-derived and isolated fetal hepatocytes. Differentiated cells produce albumin and apolipoprotein B100 at levels equivalent to primary human hepatocytes, while demonstrating an 8-fold induction of CYP450 activity in response to aryl hydrocarbon receptor (AhR) agonist omeprazole and a 10-fold induction in response to PXR agonist rifampicin. Flow cytometry showed that over 83% of cells were albumin and hepatocyte nuclear factor 4 alpha (HNF4α) positive, permitting high-content screening in a 96-well plate format. Analysis of 12 compounds showed an R(2) correlation of 0.94 between TC50 values obtained in stem cell-derived hepatocytes and primary cells, compared to 0.62 for HepG2 cells. Finally, stem cell-derived hepatocytes demonstrate all toxicological endpoints examined, including steatosis, apoptosis, and cholestasis, when exposed to nine known hepatotoxins. Our work provides fresh insights into liver development, suggesting that microbial-derived cues may drive the maturation of CYP450 enzymes postpartum. Addition of these cues results in the first functional, inducible, hPSC-derived hepatocyte for predictive toxicology. © 2015 by the American Association for the Study of Liver Diseases.
Mechanism of toxicity of the antimelanoma drug 4-hydroxyanisole in mouse hepatocytes.
Schiller, C D; Gescher, A; Jheeta, P
1991-01-01
To elucidate the mechanism of the hepatotoxicity of 4-hydroxyanisole (4-HA), its effect on the viability of mouse hepatocytes in suspension was investigated. Cell viability was assessed by measurement of release of lactate dehydrogenase into the medium. 4-HA was cytotoxic in a concentration-dependent and time-dependent fashion with an IC50 of 0.26 mmol/l after 4 h incubation. Almost all cells were killed after exposure to 4-HA for 4 h at 0.5 mmol/l or for 2 h at 1.0 mmol/l. At 5 and 10 mmol/l, 4-HA caused less cytotoxicity and 1 mmol/l or below. On coincubation with the P450 inhibitor octylamine, 4-HA cytotoxcity was reduced, which suggests the involvement of cytochrome P450 in the hepatocytotoxicity of this drug. Induction of P450 isoenzymes IA, IIB and IIE1 by pretreatment of mice with phenobarbitone, 3-methylcholanthrene or acetone had no significant effect on the toxicity of 4-HA towards hepatocytes. Depletion of hepatic glutathione by pretreatment of mice with buthionine sulphoximine (1.6 g/kg, intraperitoneally) 4 h before cell isolation led to an increase in 4-HA cytotoxicity. Incubation with N-acetylcysteine (10 mmol/l) abolished the cytotoxicity of 4-HA (1 mmol/l). Both these results are consistent with the intermediacy of a reactive metabolite of 4-HA. Production of hydroquinone by oxidative demethylation of 4-HA as toxication mechanism can be excluded as formation of formaldehyde was not observed on incubation of 4-HA with mouse liver microsomes. 3,4-diacetoxyanisole, a prodrug of the known 4-HA metabolite 3,4-dihydroxyanisole, was not more cytotoxic towards hepatocytes than 4-HA.(ABSTRACT TRUNCATED AT 250 WORDS)
Feng, Wan-Yong; Wen, Jenny; Stauber, Kathe
2018-04-18
Recently, it has been an increasing concern on the bioactivation and adverse reactions associated with consumption of herbal and nature products such as coumarin family. 7-ethoxycoumarin is one of coumarin family compounds, but little information is available regarding its potential reactive metabolites. In this study, we investigated its metabolism in cryopreserved male/female mixed human, male Cynomolgus monkey, male Beagle dog and male Sprague Dawley rat hepatocytes. Following the incubation of 7-ethoxylcoumarin in the hepatocytes for 2 hr, 28 metabolites were detected and identified using high resolution LC-Q-Exactive system in the positive ion and negative ion modes. O-deethylation, glucuronidation, sulfation, oxygenation, oxidative ring-opening, hydrogenation, glutathionation, dehydrogenation, cysteination, glucosidation, methylation, and hydrolysis were observed. At least sixteen metabolites were newly identified. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3 (O-deethylation and glucuronidation), M5 (hydrolysis and mono-oxygenation), M14 (Odeethylation), M16 (hydrolysis), M22 (oxidative ring-opening and oxygenation) and M27 (mono-oxygenation) appeared to be major metabolites in human hepatocytes. M3, M5, M8, M13 (mono-oxygenation), M14, M16, M18 (O-deethylation and sulfation), M22 and M27 appeared to be major metabolites in monkey hepatocytes. M14, M16, M18, M20 (glutathionation and dehydrogenation) and M27 appeared to be major metabolites in dog hepatocytes. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3, M5, M13, M14, M16, M17 (cysteination), M18, M20, and M22 appeared to be major metabolites in rat hepatocytes. Species differences in metabolism of 7-ethoxylcoumarin in hepatocytes were observed across humans, monkeys, dogs and rats. The analysis of metabolites suggests that 7-ethoxylcoumarin may undergo 3,4-epoxidation responsible for formation of glutathione and its derived cysteine conjugates, and carboxylic acid and its glucuronides, glucosides and sulfate, besides well-known 7-hydroxycoumarin, coumarin-7-O-glucuronide, and coumarin-7-O-glucuronide. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Dynamic regulation of EZH2 from HPSc to hepatocyte-like cell fate
Helsen, Nicky; Vanhove, Jolien; Boon, Ruben; Xu, Zhuofei; Ordovas, Laura; Verfaillie, Catherine M.
2017-01-01
Currently, drug metabolization and toxicity studies rely on the use of primary human hepatocytes and hepatoma cell lines, which both have conceivable limitations. Human pluripotent stem cell (hPSC)—derived hepatocyte-like cells (HLCs) are an alternative and valuable source of hepatocytes that can overcome these limitations. EZH2 (enhancer of zeste homolog 2), a transcriptional repressor of the polycomb repressive complex 2 (PRC2), may play an important role in hepatocyte development, but its role during in vitro hPSC-HLC differentiation has not yet been assessed. We here demonstrate dynamic regulation of EZH2 during hepatic differentiation of hPSC. To enhance EZH2 expression, we inducibly overexpressed EZH2 between d0 and d8, demonstrating a significant improvement in definitive endoderm formation, and improved generation of HLCs. Despite induction of EZH2 overexpression until d8, EZH2 transcript and protein levels decreased from d4 onwards, which might be caused by expression of microRNAs predicted to inhibit EZH2 expression. In conclusion, our studies demonstrate that EZH2 plays a role in endoderm formation and hepatocyte differentiation, but its expression is tightly post-transcriptionally regulated during this process. PMID:29091973
Li, Xiaohu; Huang, Haiyan; Liu, Xirong; Xia, Hongxia; Li, Mincai
2015-03-01
To observe the differentiation of the neonatal rat bone marrow mesenchymal stem cells (MSCs) into insulin-producing cells and detect the expressions of insulin, pancreatic duodenal homebox-1 (PDX-1) and nestin. MSCs were isolated from the neonatal rats and cultured in the modified medium composed of 10 μg/L human epidermal growth factor (EGF), 10 μg/L basic fibroblast growth factor (bFGF), 10 μg/L hepatocyte growth factor (HGF), 10 μg/L human B cell regulin, 20 mmol/L nicotinamide and 20 g/L B27. After the induction, the mRNA expressions of insulin, PDX-1 and nestin were examined by reverse transcription-PCR, and the insulin, PDX-1 and nestin protein levels were detected by immunocytochemistry. The insulin and PDX-1 mRNA expressions increased and the nestin mRNA expression decreased in the differentiation of the neonatal rat MSCs into insulin-producing cells. The nestin, PDX-1 and insulin proteins were co-expressed in insulin-producing cells. MSCs can be induced to differentiate into insulin-producing cells.
Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes.
Gueguen, Yann; Rouas, Caroline; Monin, Audrey; Manens, Line; Stefani, Johanna; Delissen, Olivia; Grison, Stéphane; Dublineau, Isabelle
2014-02-01
Enzymes that metabolize xenobiotics (XME) are well recognized in experimental models as representative indicators of organ detoxification functions and of exposure to toxicants. As several in vivo studies have shown, uranium can alter XME in the rat liver or kidneys after either acute or chronic exposure. To determine how length or level of exposure affects these changes in XME, we continued our investigation of chronic rat exposure to depleted uranium (DU, uranyl nitrate). The first study examined the effect of duration (1-18 months) of chronic exposure to DU, the second evaluated dose dependence, from a level close to that found in the environment near mining sites (0.2 mg/L) to a supra-environmental dose (120 mg/L, 10 times the highest level naturally found in the environment), and the third was an in vitro assessment of whether DU exposure directly affects XME and, in particular, CYP3A. The experimental in vivo models used here demonstrated that CYP3A is the enzyme modified to the greatest extent: high gene expression changed after 6 and 9 months. The most substantial effects were observed in the liver of rats after 9 months of exposure to 120 mg/L of DU: CYP3A gene and protein expression and enzyme activity all decreased by more than 40 %. Nonetheless, no direct effect of DU by itself was observed after in vitro exposure of rat microsomal preparations, HepG2 cells, or human primary hepatocytes. Overall, these results probably indicate the occurrence of regulatory or adaptive mechanisms that could explain the indirect effect observed in vivo after chronic exposure.
Heslop, James A; Kia, Richard; Pridgeon, Christopher S; Sison-Young, Rowena L; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W; Mills, John S; Kitteringham, Neil R; Goldring, Chris E; Park, Bong K
2017-05-01
Drug-induced liver injury is the greatest cause of post-marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this "resetting" is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte- and dermal fibroblast-derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC-derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast-derived iPSCs. We conclude that the donor and inter-clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC-derived HLCs. Stem Cells Translational Medicine 2017;6:1321-1331. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Cultures of primary human hepatocytes have been shown to be dynamic in vitro model systems that retain liver-like functionality (e.g. metabolism, transport, induction). We have utilized these culture models to interrogate 309 ToxCast chemicals. The study design characterized both...
Mobasher, Maysa Ahmed; de Toro-Martín, Juan; González-Rodríguez, Águeda; Ramos, Sonia; Letzig, Lynda G.; James, Laura P.; Muntané, Jordi; Álvarez, Carmen; Valverde, Ángela M.
2014-01-01
Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B−/− mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver. PMID:25204659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Helinor J., E-mail: h.johnston@napier.ac.u; Semmler-Behnke, Manuela; Brown, David M.
2010-01-01
Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged 'live' during particle exposure or after exposure within fixed cells. Comparisons between the uptakemore » of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.« less
Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu
2017-02-13
Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.
Cell Expansion During Directed Differentiation of Stem Cells Toward the Hepatic Lineage
Raju, Ravali; Chau, David; Cho, Dong Seong; Park, Yonsil; Verfaillie, Catherine M.
2017-01-01
The differentiation of human pluripotent stem cells toward the hepatocyte lineage can potentially provide an unlimited source of functional hepatocytes for transplantation and extracorporeal bioartificial liver applications. It is anticipated that the quantities of cells needed for these applications will be in the order of 109–1010 cells, because of the size of the liver. An ideal differentiation protocol would be to enable directed differentiation to the hepatocyte lineage with simultaneous cell expansion. We introduced a cell expansion stage after the commitment of human embryonic stem cells to the endodermal lineage, to allow for at least an eightfold increase in cell number, with continuation of cell maturation toward the hepatocyte lineage. The progressive changes in the transcriptome were measured by expression array, and the expression dynamics of certain lineage markers was measured by mass cytometry during the differentiation and expansion process. The findings revealed that while cells were expanding they were also capable of progressing in their differentiation toward the hepatocyte lineage. In addition, our transcriptome, protein and functional studies, including albumin secretion, drug-induced CYP450 expression and urea production, all indicated that the hepatocyte-like cells obtained with or without cell expansion are very similar. This method of simultaneous cell expansion and hepatocyte differentiation should facilitate obtaining large quantities of cells for liver cell applications. PMID:27806669
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang
2007-06-15
We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver.more » More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.« less
Nikolaou, Nikolaos; Green, Charlotte J; Gunn, Pippa J; Hodson, Leanne; Tomlinson, Jeremy W
2016-11-01
Primary human hepatocytes are considered to be the "gold standard" cellular model for studying hepatic fatty acid and glucose metabolism; however, they come with limitations. Although the HepG2 cell line retains many of the primary hepatocyte metabolic functions they have a malignant origin and low rates of triglyceride secretion. The aim of this study was to investigate whether dimethyl sulfoxide supplementation in the media of HepG2 cells would enhance metabolic functionality leading to the development of an improved in vitro cell model that closely recapitulates primary human hepatocyte metabolism. HepG2 cells were cultured in media containing 1% dimethyl sulfoxide for 2, 4, 7, 14, and 21 days. Gene expression, protein levels, intracellular triglyceride, and media concentrations of triglyceride, urea, and 3-hydroxybutyrate concentrations were measured. Dimethyl sulfoxide treatment altered the expression of genes involved in lipid (FAS, ACC1, ACC2, DGAT1, DGAT2, SCD) and glucose (PEPCK, G6Pase) metabolism as well as liver functionality (albumin, alpha-1-antitrypsin, AFP). mRNA changes were paralleled by alterations at the protein level. DMSO treatment decreased intracellular triglyceride content and lactate production and increased triglyceride and 3-hydroxybutyrate concentrations in the media in a time-dependent manner. We have demonstrated that the addition of 1% dimethyl sulfoxide to culture media changes the metabolic phenotype of HepG2 cells toward a more primary human hepatocyte phenotype. This will enhance the currently available in vitro model systems for the study of hepatocyte biology related to pathological processes that contribute to disease and their response to specific therapeutic interventions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.
2012-01-01
Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208
DeTemple, Daphne E.; Oldhafer, Felix; Falk, Christine S.; Chen‐Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael
2018-01-01
Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune‐mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte‐induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+CD25highCD127low Tregs were added to cocultures in single‐/trans‐well setups with/without supplementation of anti‐interferon γ (IFNγ) antibodies. Hepatocyte‐induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ‐induced major histocompatibility complex (MHC) class II up‐regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up‐regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte‐induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up‐regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407–419 2018 AASLD. PMID:29365365
Shi, Xiao-Lei; Gu, Jin-Yang; Zhang, Yue; Han, Bing; Xiao, Jiang-Qiang; Yuan, Xian-Wen; Zhang, Ning; Ding, Yi-Tao
2011-01-01
AIM: To investigate whether the function of hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs) could be maintained in serum from acute-on-chronic liver failure (ACLF) patients. METHODS: Hepatocyte supportive functions and cytotoxicity of sera from 18 patients with viral hepatitis B-induced ACLF and 18 healthy volunteers were evaluated for porcine hepatocytes co-cultured with MSCs and hepatocyte mono-layered culture, respectively. Chemokine profile was also examined for the normal serum and liver failure serum. RESULTS: Hepatocyte growth factor (HGF) and Tumor necrosis factor; tumor necrosis factor (TNF)-α were remarkably elevated in response to ACLF while epidermal growth factor (EGF) and VEGF levels were significantly decreased. Liver failure serum samples induced a higher detachment rate, lower viability and decreased liver support functions in the homo-hepatocyte culture. Hepatocytes co-cultured with MSCs could tolerate the cytotoxicity of the serum from ACLF patients and had similar liver support functions compared with the hepatocytes cultured with healthy human serum in vitro. In addition, co-cultured hepatocytes maintained a proliferative capability despite of the insult from liver failure serum. CONCLUSION: ACLF serum does not impair the cell morphology, viability, proliferation and overall metabolic capacities of hepatocyte co-cultured with MSCs in vitro. PMID:21633639
Hepatocyte Produced Matrix Metalloproteinases Are Regulated by CD147 in Liver Fibrogenesis
Morgan, Alison J.; Tu, Thomas; Wen, Victoria W.; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A.; McCaughan, Geoffrey W.; Warner, Fiona J.; McLennan, Susan V.; Shackel, Nicholas A.
2014-01-01
Background The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Methods Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. Results In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. Conclusion We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by future anti-fibrogenic agents. PMID:25076423
Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E
2017-08-01
Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OST α ) and OST β increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OST α and OST β, by OCA reduced the intracellular concentrations of d 8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
Clastogenic effects of bisphenol A on human cultured lymphocytes.
Santovito, A; Cannarsa, E; Schleicherova, D; Cervella, P
2018-01-01
Bisphenol A is an endocrine disrupting compound widely used in the production of polycarbonate plastics and epoxy resins. It is ubiquitously present in the environment, mostly in aquatic environments, with consequent risks to the health of aquatic organisms and humans. In the present study, we analysed the cytogenetic effects of bisphenol A on human lymphocytes using in vitro chromosomal aberrations and micronuclei assays. Lymphocyte cultures were exposed to five different concentrations of BP-A (0.20, 0.10, 0.05, 0.02 and 0.01 μg/mL) for 24 h (for chromosomal aberrations test) and 48 h (for micronuclei test). The concentration of 0.05 µg/mL represents the reference dose established by United States Environmental Protection Agency (US EPA); 0.02 μg/mL represents the higher concentration of unconjugated BP-A found in human serum and 0.01 μg/mL represents the tolerable daily intake established by European Union. Data obtained from both assays showed significant genotoxic effects of the bisphenol A at concentrations of 0.20, 0.10 and 0.05 μg/mL, whereas at the concentration of 0.02 μg/mL, we observed only a significant increase in the micronuclei frequency. Finally, at the concentration of 0.01 μg/mL, no cytogenetic effects were observed, indicating this latter as a more tolerable concentration for human health with respect to 0.05 μg/mL, the reference dose established by US EPA.
Lübberstedt, Marc; Müller-Vieira, Ursula; Mayer, Manuela; Biemel, Klaus M; Knöspel, Fanny; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Zeilinger, Katrin
2011-01-01
Primary human hepatocytes are considered as a highly predictive in vitro model for preclinical drug metabolism studies. Due to the limited availability of human liver tissue for cell isolation, there is a need of alternative cell sources for pharmaceutical research. In this study, the metabolic activity and long-term stability of the human hepatoma cell line HepaRG were investigated in comparison to primary human hepatocytes (pHH). Hepatocyte-specific parameters (albumin and urea synthesis, galactose and sorbitol elimination) and the activity of human-relevant cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) were assayed in both groups over a period of 14 days subsequently to a two week culture period in differentiated state in case of the HepaRG cells, and compared with those of cryopreserved hepatocytes in suspension. In addition, the inducibility of CYP enzymes and the intrinsic clearances of eleven reference drugs were determined. The results show overall stable metabolic activity of HepaRG cells over the monitored time period. Higher albumin production and galactose/sorbitol elimination rates were observed compared with pHH, while urea production was not detected. CYP enzyme-dependent drug metabolic capacities were shown to be stable over the cultivation time in HepaRG cells and were comparable or even higher (CYP2C9, CYP2D6, CYP3A4) than in pHH, whereas commercially available hepatocytes showed a different pattern The intrinsic clearance rates of reference drugs and enzyme induction of most CYP enzymes were similar in HepaRG cells and pHH. CYP1A2 activity was highly inducible in HepaRG by β-naphthoflavone. In conclusion, the results from this study indicate that HepaRG cells could provide a suitable alternative to pHH in pharmaceutical research and development for metabolism studies such as CYP induction or sub-chronic to chronic hepatotoxicity studies. Copyright © 2010 Elsevier Inc. All rights reserved.
Fischer, C P; Bode, B P; Takahashi, K; Tanabe, K K; Souba, W W
1996-05-01
The authors studied the effects of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) on glutamine and alanine transport in isolated human hepatocytes. They also evaluated the role of dexamethasone in modulating this response and its effects on the expression of the plasma membrane high-affinity IL-6 receptor. Animal studies indicate that cytokines are important mediators of the increased hepatic amino acid uptake that occurs during cancer and sepsis, but studies in human tissues are lacking. The control of transport by cytokines and cytokine receptor expression in the liver may provide a mechanism by which hepatocytes can modulate amino acid availability during catabolic disease states. Human hepatocytes were isolated from wedge biopsy specimens and plated in 24-well trays. Interleukin-6 and TNF-alpha, in combination with the synthetic glucocorticoid dexamethasone, were added to hepatocytes in culture, and the transport of radiolabeled glutamine and alanine was measured. Fluorescent-activated cell sorter (FACS) analysis was used to study the effects of dexamethasone on IL-6 receptor number in the well-differentiated human hepatoma HepG2. Both IL-6 and TNF-alpha exerted a small stimulatory effect on alanine and glutamine transport. Dexamethasone alone did not alter transport rates, but pretreatment of cells augmented the effects of both cytokines on carrier-mediated amino acid uptake. Dexamethasone pretreatment and a combination of IL-6 and TNF-alpha resulted in a greater than twofold increase in transport activity. Fluorescent-activated cell sorter analysis demonstrated that dexamethasone induced a threefold increase in the expression of high-affinity IL-6 receptors. Interleukin-6 and TNF-alpha work coordinately with glucocorticoids to stimulate amino acid uptake in human hepatocytes. Dexamethasone exerts a permissive effect on cytokine-mediated increases in transport by increasing IL-6 receptor expression on the cell surface. It is likely that this upregulation of IL-6 receptors "primes" human liver cells for subsequent stimulation by cytokines. The resulting increase in hepatic amino acid transport provides the liver with substrate to support key metabolic pathways during catabolic states.
Qiu, Xi; Bi, Yi-An; Balogh, Larissa M; Lai, Yurong
2013-09-01
Species differences among membrane transporters can be remarkable and difficult to properly assess by conventional methods. Herein, we employed the first use of stable isotope labeling in mammals or stable isotope-labeled peptides combined with mass spectrometry to identify species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) protein expression in liver tissue and to characterize the modulation of protein expression in sandwich-cultured human (SCHH) and rat hepatocytes (SCRH). The lower limit of quantification was established to be 5 fmol on column with a standard curve that was linear up to 2000 fmol. The accuracy and precision were evaluated with three quality control samples and known amounts of synthetic proteotypic peptides that were spiked into the membrane protein extracts. The overall relative error and coefficient of variation were less than 10%. The expression of Ntcp in mouse and rat was significant higher than that in human (five-fold) and monkey (two-fold) and ranked as mouse > rat > monkey > human. In the cultured hepatocytes, although significant downregulation of Ntcp expression in SCRH at day 5 after the culture was detected, NTCP expression in SCHH was comparable to the suspension hepatocytes. The results suggested that NTCP/Ntcp modulation in cultured hepatocytes is species specific. Copyright © 2013 Wiley Periodicals, Inc.
Pluripotent stem cell derived hepatocyte like cells and their potential in toxicity screening.
Greenhough, Sebastian; Medine, Claire N; Hay, David C
2010-12-30
Despite considerable progress in modelling human liver toxicity, the requirement still exists for efficient, predictive and cost effective in vitro models to reduce attrition during drug development. Thousands of compounds fail in this process, with hepatotoxicity being one of the significant causes of failure. The cost of clinical studies is substantial, therefore it is essential that toxicological screening is performed early on in the drug development process. Human hepatocytes represent the gold standard model for evaluating drug toxicity, but are a limited resource. Current alternative models are based on immortalised cell lines and animal tissue, but these are limited by poor function, exhibit species variability and show instability in culture. Pluripotent stem cells are an attractive alternative as they are capable of self-renewal and differentiation to all three germ layers, and thereby represent a potentially inexhaustible source of somatic cells. The differentiation of human embryonic stem cells and induced pluripotent stem cells to functional hepatocyte like cells has recently been reported. Further development of this technology could lead to the scalable production of hepatocyte like cells for liver toxicity screening and clinical therapies. Additionally, induced pluripotent stem cell derived hepatocyte like cells may permit in vitro modelling of gene polymorphisms and genetic diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes.
Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L; Berrueta, Lisbeth; Salmen, Siham
2016-05-01
Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Recellularization of Rat Liver Scaffolds by Human Liver Stem Cells
Navarro-Tableros, Victor; Herrera Sanchez, Maria Beatriz; Figliolini, Federico; Romagnoli, Renato; Tetta, Ciro
2015-01-01
In the present study, rat liver acellular scaffolds were used as biological support to guide the differentiation of human liver stem-like cells (HLSC) to hepatocytes. Once recellularized, the scaffolds were maintained for 21 days in different culture conditions to evaluate hepatocyte differentiation. HLSC lost the embryonic markers (alpha-fetoprotein, nestin, nanog, sox2, Musashi1, Oct 3/4, and pax2), increased the expression of albumin, and acquired the expression of lactate dehydrogenase and three subtypes of cytochrome P450. The presence of urea nitrogen in the culture medium confirmed their metabolic activity. In addition, cells attached to tubular remnant matrix structures expressed cytokeratin 19, CD31, and vimentin. The rat extracellular matrix (ECM) provides not only a favorable environment for differentiation of HLSC in functional hepatocytes (hepatocyte like) but also promoted the generation of some epithelial-like and endothelial-like cells. When fibroblast growth factor–epidermal growth factor or HLSC-derived conditioned medium was added to the perfusate, an improvement of survival rate was observed. The conditioned medium from HLSC potentiated also the metabolic activity of hepatocyte-like cells repopulating the acellular liver. In conclusion, HLSC have the potential, in association with the natural ECM, to generate in vitro a functional “humanized liver-like tissue.” PMID:25794768
DebRoy, Swati; Hiraga, Nobuhiko; Imamura, Michio; ...
2016-06-08
Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle ( Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. In this paper, to elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and humanmore » albumin (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median ε = 77%). However, the rate of HCV-infected hepatocyte decline, δ, was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. Finally, the results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DebRoy, Swati; Hiraga, Nobuhiko; Imamura, Michio
Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle ( Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. In this paper, to elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and humanmore » albumin (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median ε = 77%). However, the rate of HCV-infected hepatocyte decline, δ, was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. Finally, the results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes.« less
Lee, Jin Kyung; Chung, Hye Jin; Fischer, Liam; Fischer, James; Gonzalez, Frank J.
2014-01-01
The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes. PMID:24408518
Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu
2018-03-05
Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3 cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes
Yanhong, Fan; Chenghua, He; Guofang, Liu
2008-01-01
The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO2), or L-15 (cultured without 5% CO2) medium then cultured at 17, 27, or 37 °C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 × 108 per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO2) or L-15 (cultured without 5% CO2). The optimum culture temperature was 27 °C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition. PMID:19002769
Komatsu, Haruki; Inui, Ayano; Murano, Takeyoshi; Tsunoda, Tomoyuki; Sogo, Tsuyoshi; Fujisawa, Tomoo
2015-08-20
Body fluids such as saliva and tears from patients with hepatitis B virus (HBV) infection are known as infectious agents. The infectivity of feces from patients with HBV infection has not been established. The aim of this study was to determine whether feces from HBV carriers can be a source of HBV infection. Thirty-three children and 17 adults (ages 0-49 years, median age 13 years) who were chronically infected with HBV were enrolled. The levels of HBV DNA in the feces from these patients were quantified by real-time PCR, and the levels of fecal HBsAg were measured. Isolated human hepatocytes from chimeric mice with humanized livers were co-cultured with serum, tears and feces from the HBV carriers. Four chimeric mice were inoculated intravenously with sterilized feces from HBV carriers. HBV DNA was detected in the feces of 37 (74%) of the 50 patients. The fecal HBV DNA levels ranged from 2.8 to 8.4 log copies/mL (mean ± SD = 5.6 ± 1.2 log copies/mL). A significant correlation was observed in the levels of HBV DNA between serum and feces (r = 0.54, p < 0.05). Of the 13 HBV carries, 7 (54%) were positive for fecal HBsAg. The fecal HBsAg levels ranged from 0.06 to 1.0 IU/mL (median 0.28 IU/mL). Immunogold electron microscopy showed Dane particles in feces. HBV DNA was detected in the human hepatocytes co-cultured with serum and tears, but not in those co-cultured with feces. HBV DNA was not detected in the serum of the chimeric mice after oral or intravenous inoculation with sterilized fecal samples, which contained 5 log copies/mL of HBV DNA levels. Although the positive rate of fecal HBV DNA was high, the fecal HBsAg levels were extremely low. The chimeric mice were not infected with HBV after oral or intravenous inoculation with sterilized fecal samples. Therefore, feces from HBV carriers seem not to serve as an infectious vehicle for the transmission of HBV.
Lee, Chia-Chen; Hsu, Wei-Hsuan; Shen, Siou-Ru; Cheng, Yu-Hsiang; Wu, She-Ching
2012-01-01
Fagopyrum tataricum (buckwheat) is used for the treatment of type 2 diabetes mellitus in Taiwan. This study was to evaluate the antihyperglycemic and anti-insulin resistance effects of 75% ethanol extracts of buckwheat (EEB) in FL83B hepatocytes by high-glucose (33 mM) induction and in C57BL/6 mice by fructose-rich diet (FRD; 60%) induction. The active compounds of EEB (100 μg/mL; 50 mg/kg bw), quercetin (6 μg/mL; 3 mg/kg bw), and rutin (23 μg/mL; 11.5 mg/kg bw) were also employed to treat FL83B hepatocytes and animal. Results indicated that EEB, rutin, and quercetin + rutin significantly improved 2-NBDG uptake via promoting Akt phosphorylation and preventing PPARγ degradation caused by high-glucose induction for 48 h in FL83B hepatocytes. We also found that EEB could elevate hepatic antioxidant enzymes activities to attenuate insulin resistance as well as its antioxidation caused by rutin and quercetin. Finally, EEB also inhibited increases in blood glucose and insulin levels of C57BL/6 mice induced by FRD. PMID:22548048
Reversal of hepatocyte senescence after continuous in vivo cell proliferation.
Wang, Min-Jun; Chen, Fei; Li, Jian-Xiu; Liu, Chang-Cheng; Zhang, Hai-Bin; Xia, Yong; Yu, Bing; You, Pu; Xiang, Dao; Lu, Lian; Yao, Hao; Borjigin, Uyunbilig; Yang, Guang-Shun; Wangensteen, Kirk J; He, Zhi-Ying; Wang, Xin; Hu, Yi-Ping
2014-07-01
A better understanding of hepatocyte senescence could be used to treat age-dependent disease processes of the liver. Whether continuously proliferating hepatocytes could avoid or reverse senescence has not yet been fully elucidated. We confirmed that the livers of aged mice accumulated senescent and polyploid hepatocytes, which is associated with accumulation of DNA damage and activation of p53-p21 and p16(ink4a)-pRB pathways. Induction of multiple rounds continuous cell division is hard to apply in any animal model. Taking advantage of serial hepatocyte transplantation assays in the fumarylacetoacetate hydrolase-deficient (Fah(-/-)) mouse, we studied the senescence of hepatocytes that had undergone continuous cell proliferation over a long time period, up to 12 rounds of serial transplantations. We demonstrated that the continuously proliferating hepatocytes avoided senescence and always maintained a youthful state. The reactivation of telomerase in hepatocytes after serial transplantation correlated with reversal of senescence. Moreover, senescent hepatocytes harvested from aged mice became rejuvenated upon serial transplantation, with full restoration of proliferative capacity. The same findings were also true for human hepatocytes. After serial transplantation, the high initial proportion of octoploid hepatocytes decreased to match the low level of youthful liver. These findings suggest that the hepatocyte "ploidy conveyer" is regulated differently during aging and regeneration. The findings of reversal of hepatocyte senescence could enable future studies on liver aging and cell therapy. © 2014 by the American Association for the Study of Liver Diseases.
Povero, Davide; Eguchi, Akiko; Niesman, Ingrid R.; Andronikou, Nektaria; de Mollerat du Jeu, Xavier; Mulya, Anny; Berk, Michael; Lazic, Milos; Thapaliya, Samjana; Parola, Maurizio; Patel, Hemal H.; Feldstein, Ariel E.
2014-01-01
Angiogenesis is a key pathological feature of experimental and human steatohepatitis, a common chronic liver disease that is associated with obesity. We demonstrated that hepatocytes generated a type of membrane-bound vesicle, microparticles, in response to conditions that mimicked the lipid accumulation that occurs in the liver in some forms of steatohepatitis and that these microparticles promoted angiogenesis. When applied to an endothelial cell line, medium conditioned by murine hepatocytes or a human hepatocyte cell line exposed to saturated free fatty acids induced migration and tube formation, two processes required for angiogenesis. Medium from hepatocytes in which caspase 3 was inhibited or medium in which the microparticles were removed by ultracentrifugation lacked proangiogenic activity. Isolated hepatocyte-derived microparticles induced migration and tube formation of an endothelial cell line in vitro and angiogenesis in mice, processes that depended on internalization of microparticles. Microparticle internalization required the interaction of the ectoenzyme Vanin-1 (VNN1), an abundant surface protein on the microparticles, with lipid raft domains of endothelial cells. Large quantities of hepatocyte-derived microparticles were detected in the blood of mice with diet-induced steatohepatitis, and microparticle quantity correlated with disease severity. Genetic ablation of caspase 3 or RNA interference directed against VNN1 protected mice from steatohepatitis-induced pathological angiogenesis in the liver and resulted in a loss of the proangiogenic effects of microparticles. Our data identify hepatocyte-derived microparticles as critical signals that contribute to angiogenesis and liver damage in steatohepatitis and suggest a therapeutic target for this condition. PMID:24106341
Song, Xinxin; Kim, Han-Cheon; Kim, Seog-Young; Basse, Per; Park, Bae-Hang; Lee, Byeong-Chel; Lee, Yong J.
2012-01-01
Colorectal cancer is the third leading cause of cancer-related mortality in the world; death usually results from uncontrolled metastatic disease. Previously, we developed a novel strategy of TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) in combination with hyperthermia to treat hepatic colorectal metastases. However, previous studies suggest a potential hepatocyte cytotoxicity with TRAIL. Unlike TRAIL, anti-human TRAIL receptor antibody induces apoptosis without hepatocyte toxicity. In this study, we evaluated the anti-tumor efficacy of humanized anti-death receptor 4 (DR4) antibody mapatumumab (Mapa) by comparing it with TRAIL in combination with hyperthermia. TRAIL, which binds to both DR4 and death receptor 5 (DR5), was approximately 10-fold more effective than Mapa in inducing apoptosis. However, hyperthermia enhances apoptosis induced by either agent. We observed that the synergistic effect was mediated through elevation of reactive oxygen species, c-Jun N-terminal kinase activation, Bax oligomerization and translocalization to the mitochondria, loss of mitochondrial membrane potential, release of cytochrome c to cytosol, activation of caspases and increase in poly(ADP-ribose) polymerase cleavage. We believe that the successful outcome of this study will support the application of Mapa in combination with hyperthermia to colorectal hepatic metastases. PMID:22174016
Song, Xinxin; Kim, Han-Cheon; Kim, Seog-Young; Basse, Per; Park, Bae-Hang; Lee, Byeong-Chel; Lee, Yong J
2012-05-01
Colorectal cancer is the third leading cause of cancer-related mortality in the world; death usually results from uncontrolled metastatic disease. Previously, we developed a novel strategy of TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) in combination with hyperthermia to treat hepatic colorectal metastases. However, previous studies suggest a potential hepatocyte cytotoxicity with TRAIL. Unlike TRAIL, anti-human TRAIL receptor antibody induces apoptosis without hepatocyte toxicity. In this study, we evaluated the anti-tumor efficacy of humanized anti-death receptor 4 (DR4) antibody mapatumumab (Mapa) by comparing it with TRAIL in combination with hyperthermia. TRAIL, which binds to both DR4 and death receptor 5 (DR5), was approximately tenfold more effective than Mapa in inducing apoptosis. However, hyperthermia enhances apoptosis induced by either agent. We observed that the synergistic effect was mediated through elevation of reactive oxygen species, c-Jun N-terminal kinase activation, Bax oligomerization, and translocalization to the mitochondria, loss of mitochondrial membrane potential, release of cytochrome c to cytosol, activation of caspases, and increase in poly(ADP-ribose) polymerase cleavage. We believe that the successful outcome of this study will support the application of Mapa in combination with hyperthermia to colorectal hepatic metastases. Copyright © 2011 Wiley Periodicals, Inc.
Matsuzaki, Koichi
2012-01-01
Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis.
Proliferative human cell sources applied as biocomponent in bioartificial livers: a review.
Nibourg, Geert A A; Chamuleau, Robert A F M; van Gulik, Thomas M; Hoekstra, Ruurdtje
2012-07-01
Bioartificial livers (BALs) are urgently needed to bridge severe liver failure patients to liver transplantation or liver regeneration. When based on primary hepatocytes, their efficacy has been shown in animal experiments and their safety was confirmed in clinical trials. However, a proliferative human cell source with therapeutic functionality is needed to secure availability and move BAL application forward. This review compares the performance of BALs based on proliferative human biocomponents and primary hepatocytes. This review evaluates relevant studies identified by searching the MEDLINE database until July 2011 and some of our own unpublished data. All the discussed hepatocyte-like biocomponents show deficiencies in their hepatic functionality compared with primary hepatocytes, particularly functions occurring late in liver development. Nonetheless, the HepaRG, HepG2-GS-CYP3A4, and mesenchymal stem cells show efficacy in a statistically well-powered animal model of acute liver failure, when applied in a BAL device. Various methods to gain higher functionality of BALs, including genetic modification, the usage of combinatory cell sources, and improvement of culture methods, have scarcely been applied, but may further pave the path for BAL application. Clinical implementation of a BAL based on a human proliferative biocomponent is still several years away.
Gigrich, James; Sarkani, Shahryar; Holzer, Thomas
2017-03-01
There is an increasing backlog of potentially toxic compounds that cannot be evaluated with current animal-based approaches in a cost-effective and expeditious manner, thus putting human health at risk. Extrapolation of animal-based test results for human risk assessment often leads to different physiological outcomes. This article introduces the use of quantitative tools and methods from systems engineering to evaluate the risk of toxic compounds by the analysis of the amount of stress that human hepatocytes undergo in vitro when metabolizing GW7647 1 over extended times and concentrations. Hepatocytes are exceedingly connected systems that make it challenging to understand the highly varied dimensional genomics data to determine risk of exposure. Gene expression data of peroxisome proliferator-activated receptor-α (PPARα) 2 binding was measured over multiple concentrations and varied times of GW7647 exposure and leveraging mahalanombis distance to establish toxicity threshold risk levels. The application of these novel systems engineering tools provides new insight into the intricate workings of human hepatocytes to determine risk threshold levels from exposure. This approach is beneficial to decision makers and scientists, and it can help reduce the backlog of untested chemical compounds due to the high cost and inefficiency of animal-based models.
3D Cultivation Techniques for Primary Human Hepatocytes
Bachmann, Anastasia; Moll, Matthias; Gottwald, Eric; Nies, Cordula; Zantl, Roman; Wagner, Helga; Burkhardt, Britta; Sánchez, Juan J. Martínez; Ladurner, Ruth; Thasler, Wolfgang; Damm, Georg; Nussler, Andreas K.
2015-01-01
One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device. PMID:27600213
Elcombe, C R; Mitchell, A M
1986-01-01
The exposure of cultured rat hepatocytes to mono(2-ethylhexyl)phthalate (MEHP) for 72 hr resulted in marked induction of peroxisomal enzyme activity (beta-oxidation; cyanide-insensitive palmitoyl CoA oxidase) and concomitant increases in the number of peroxisomes. Similar treatment of cultured guinea pig, marmoset, or human hepatocytes revealed little or no effect of MEHP. In order to eliminate possible confounding influences of biotransformation, the proximate peroxisome proliferator(s) derived from MEHP have been identified. Using cultured hepatocytes these agents were found to be metabolite VI [mono(2-ethyl-5-oxohexyl) phthalate] and metabolite IX [mono(2-ethyl-5-hydroxyhexyl) phthalate]. The addition of these "active" metabolites to cultured guinea pig, marmoset, or human hepatocytes again revealed little effect upon peroxisomes or related enzyme activities (peroxisomal beta-oxidation or microsomal lauric acid hydroxylation). These studies demonstrate a marked species difference in the response of hepatocytes to MEHP-elicited peroxisome proliferation. Preliminary studies have also suggested that peroxisome proliferation due to MEHP may be due to an initial biochemical lesion of fatty acid metabolism. Images FIGURE 4. a FIGURE 4. b PMID:3104023
Selective Toxicity of Apigenin on Cancerous Hepatocytes by Directly Targeting their Mitochondria.
Seydi, Enayatollah; Rasekh, Hamid R; Salimi, Ahmad; Mohsenifar, Zhaleh; Pourahmad, Jalal
2016-01-01
hepatocellular carcinoma (HCC) is the third cause of mortality due to cancer throughout the world. The main goal of the current research was to evaluate the selective toxicity of apigenin (APG) on hepatocytes and mitochondria obtained from the liver of HCC rats). In this research, HCC induced by a single dose of diethylnitrosamine (DEN); 200 mg/kg, i.p, and 2-acetylaminofluorene (2-AAF) (0.02%, through dietary) for 14 days. For confirmation of HCC, histopathological evaluations and determination of serum concentrations of liver toxicity enzymes and specific liver cancer marker; alpha-fetoprotein (AFP) were performed. Then, cancerous and non- cancerous hepatocytes were isolated by using the collagen perfusion method. Eventually, mitochondria isolated from HCC and normal hepatocytes were tested for every eventual toxic effects of APG. After confirmation of HCC, the results of this research showed that APG (10, 20 and 40 μM) increased mitochondrial parameters such as, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) level, mitochondrial swelling and cytochrome c expulsion only in cancerous hepatocytes. Apoptotic effect of APG on HCC cells was confirmed by caspase-3 activation and Annexin V-FITC and PI double staining analysis. These results propose the eligibility of the flavonoid APG as a complementary therapeutic agent for patients with hepatocellular carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atienzar, Franck A., E-mail: franck.atienzar@ucb.com; Novik, Eric I.; Gerets, Helga H.
Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine modelmore » along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.« less
Inoue, Shinjiro; Okita, Yoichi; de Toledo, Andreia; Miyazaki, Hiroyuki; Hirano, Eiichi; Morinaga, Tetsuo
2015-01-01
We purified pyroglutamic acid from human placental extract and identified it as a potent stimulator of rat primary hepatocyte DNA synthesis. Pyroglutamic acid dose-dependently stimulated DNA synthesis, and this effect was inhibited by PD98059, a dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) inhibitor. Therefore, pyroglutamic acid stimulated DNA synthesis in rat primary hepatocytes via MAPK signaling.
Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin
2016-10-01
Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.
DEVELOPMENT OF AN INTACT HEPATOCYTE ACTIVATION SYSTEM FOR ROUTINE USE WITH THE MOUSE LYMPHOMA ASSAY
The authors have developed a method for cocultivating primary rat hepatocytes with L5178Y/TK+/- 3.7.2C mouse lymphoma cells. The system should provide a means to simulate more closely in vivo metabolism compared to metabolism by liver homogenates, while still being useful for rou...
ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES
ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.
S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...
Leite, Sofia B; Teixeira, Ana P; Miranda, Joana P; Tostões, Rui M; Clemente, João J; Sousa, Marcos F; Carrondo, Manuel J T; Alves, Paula M
2011-06-01
During the last years an increasing number of in vitro models have been developed for drug screening and toxicity testing. Primary cultures of hepatocytes are, by far, the model of choice for those high-throughput studies but their spontaneous dedifferentiation after some time in culture hinders long-term studies. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long term in vitro studies are required. It has been shown that hepatocytes functionality can be improved and extended in time when cultured as 3D-cell aggregates in environmental controlled stirred bioreactors. In this work, aiming at further improving hepatocytes functionality in such 3D cellular structures, co-cultures with fibroblasts were performed. An inoculum concentration of 1.2×10(5) cell/mL and a 1:2 hepatocyte:mouse embryonic fibroblast ratio allowed to improve significantly the albumin secretion rate and both ECOD (phase I) and UGT (phase II) enzymatic activities in 3D co-cultures, as compared to the routinely used 2D hepatocyte monocultures. Significant improvements were also observed in relation to 3D monocultures of hepatocytes. Furthermore, hepatocytes were able to respond to the addition of beta-Naphtoflavone by increasing ECOD activity showing CYP1A inducibility. The dependence of CYP activity on oxygen concentration was also observed. In summary, the improved hepatocyte specific functions during long term incubation of 3D co-cultures of hepatocytes with fibroblasts indicate that this system is a promising in vitro model for long term toxicological studies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cultures of human liver cells in simulated microgravity environment
NASA Astrophysics Data System (ADS)
Yoffe, B.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Khaoustov, V. I.
1999-01-01
We used microgravity-simulated bioreactors that create the unique environment of low shear force and high-mass transfer to establish long-term cultures of primary human liver cells (HLC). To assess the feasibility of establishing HLC cultures, human liver cells obtained either from cells dissociated by collagenase perfusion or minced tissues were cultured in rotating vessels. Formation of multidimensional tissue-like spheroids (up to 1.0 cm) comprised of hepatocytes and biliary epithelial cells that arranged as bile duct-like structures along newly formed vascular sprouts were observed. Electron microscopy revealed clusters of round hepatocytes and bile canaliculi with multiple microvilli and tight junctions. Scanning EM revealed rounded hepatocytes that were organized in tight clusters surrounded by a complex mesh of extracellular matrix. Also, we observed that co-culture of hepatocytes with endothelial cells stimulate albumin mRNA expression. In summary, a simulated microgravity environment is conducive for the establishment of long-term HLC cultures and allows the dissection of the mechanism of liver regeneration and cell-to-cell interactions that resembles in vivo conditions.
Ding, Lin; Liu, Jun-Lin; Hassan, Waseem; Wang, Lu-Lu; Yan, Fang-Rong; Shang, Jing
2014-01-01
To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of non-alcoholic fatty liver disease (NAFLD), we have made use of Cichorium glandulosum Boiss et Huet (CG), a traditional Chinese herbal medicine that has been proven to be effective in treating hepatic diseases. Here, we report that the extract of CG effectively reduced lipid accumulation under conditions of lipid overloading in vivo and in vitro (in a rat high-fat diet model and a hepG2 cell model of free fatty acid treatment). CG extract also protected hepatocytes from injury and inflammation to aid its lipid-lowering properties (in a rat high-fat diet model and a L02 cell model of acetaminophen treatment). Serum chemistry analysis accompanied by in vitro drug screening confirmed that CG-4, CG-10 and CG-14 are the lipo-effective components of CG. Western blotting analysis revealed that these components can regulate key lipid targets at the molecular level, including CD36, FATP5 and PPAR-α, thus the lipid oxidation and lipid absorption pathways. Finally, we adopted the experimental design and statistical method to calculate the best combination proportion (CG-4: CG-10: CG-14 = 2.065: 1.782: 2.153) to optimize its therapeutic effect. PMID:24797163
Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss.
Bains, Onkar S; Kennedy, Christopher J
2004-04-28
The respiratory costs of pyrene exposure and biotransformation were examined in isolated hepatocytes of adult rainbow trout, Oncorhynchus mykiss. Baseline oxygen consumption rates measured at an acclimation temperature of 7.5 degrees C and during an acute temperature increase to 15 degrees C were 10.1 +/- 0.1 and 22.6 +/- 0.4 ng O(2)/min/mg cells, respectively. Hepatocytes exposed to pyrene at 1, 5 and 10 microg/ml exhibited concentration-dependent increases in oxygen consumption. Respiration rates of cells exposed to these concentrations at their acclimation temperature were 12.5 +/- 0.1, 14.7 +/- 0.1 and 17.1 +/- 0.2 ng O(2)/min/mg cells, respectively. Exposure of cells to pyrene at 15 degrees C also elevated oxygen consumption to a maximum of 34.4 +/- 0.3 ng O(2)/min/mg cells, however, the relationship with pyrene concentration was biphasic. The major metabolite identified through a series of solvent extractions, acid hydrolysis, and synchronous fluorometric spectroscopy was conjugated 1-hydroxypyrene. At 7.5 degrees C, increased pyrene metabolism correlated with increased hepatocyte respiration rates. At 15 degrees C, however, pyrene metabolism reached a maximum at 5 microg/ml, suggesting saturation of detoxification enzymes, which correlated with maximum respiration rates at this concentration. Measures of respiration by isolated mitochondria indicated that changes in hepatocyte oxygen consumption were not through direct effects of pyrene on mitochondria. This study indicates that significant respiratory costs may be accrued by teleost hepatocytes actively metabolizing and secreting xenobiotic compounds.
Selective insulin resistance in hepatocyte senescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas
Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied inmore » three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.« less
Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells.
Fu, Yanli; Deng, Jie; Jiang, Qingyuan; Wang, Yuan; Zhang, Yujing; Yao, Yunqi; Cheng, Fuyi; Chen, Xiaolei; Xu, Fen; Huang, Meijuan; Yang, Yang; Zhang, Shuang; Yu, Dechao; Zhao, Robert Chunhua; Wei, Yuquan; Deng, Hongxin
2016-08-05
Liver disease is a major cause of death worldwide. Orthotropic liver transplantation (OLT) represents the only effective treatment for patients with liver failure, but the increasing demand for organs is unfortunately so great that its application is limited. Hepatocyte transplantation is a promising alternative to OLT for the treatment of some liver-based metabolic disorders or acute liver failure. Unfortunately, the lack of donor livers also makes it difficult to obtain enough viable hepatocytes for hepatocyte-based therapies. Currently, a fundamental solution to this key problem is still lacking. Here we show a novel non-transgenic protocol that facilitates the rapid generation of functional induced hepatocytes (iHeps) from human adipose-derived stem cells (hADSCs), providing a source of available cells for autologous hepatocytes to treat liver disease. We used collagenase digestion to isolate hADSCs. The surface marker was detected by flow cytometry. The multipotential differentiation potency was detected by induction into adipocytes, osteocytes, and chondrocytes. Passage 3-7 hADSCs were induced into iHeps using an induction culture system composed of small molecule compounds and cell factors. Primary cultured hADSCs presented a fusiform or polygon appearance that became fibroblast-like after passage 3. More than 95 % of the cells expressed the mesenchymal cell markers CD29, CD44, CD166, CD105, and CD90. hADSCs possessed multipotential differentiation towards adipocytes, osteocytes, and chondrocytes. We rapidly induced hADSCs into iHeps within 10 days in vitro; the cellular morphology changed from fusiform to close-connected cubiform, which was similar to hepatocytes. After induction, most of the iHeps co-expressed albumin and alpha-1 antitrypsin; they also expressed mature hepatocyte special genes and achieved the basic functions of hepatocyte. Moreover, iHep transplantation could improve the liver function of acute liver-injured NPG mice and prolong life. We isolated highly purified hADSCs and rapidly induced them into functional hepatocyte-like cells within 10 days. These results provide a source of available cells for autologous hepatocytes to treat liver disease.
ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...
Clerc, T.; Sbarra, V.; Domingo, N.; Rault, J. P.; Diaconescu, N.; Moutardier, V.; Hasselot, N.; Lafont, H.; Jadot, G.; Laruelle, C.; Chanussot, F.
1996-01-01
1. The objective of this study was to compare in cultured human hepatocytes or Hep G2 cells, changes in the fate of unesterified low density lipoprotein (LDL)-cholesterol induced by crilvastatin, a new cholesterol lowering drug and a reference statin, simvastatin. 2. The experiments were carried out for 20 h, each well contained 4.2 x 10(5)/cm2 Hep G2 cells or 0.5 x 10(5)/Cm2 human hepatocytes, 130 microM ursodeoxycholate, 0.68 microCi or 1.59 microCi unesterified human [14C]-LDL-cholesterol, crilvastatin or simvastatin at 0 or 50 microM (both cell types) or 300 microM (Hep-G2 cells). Incubation with the two drugs resulted in increased amounts of unesterified [14C]-LDL-cholesterol taken by the two cell types, compared to control. 3. Crilvastatin 50 microM led to significantly higher quantities of [14C]-glyco-tauro-conjugated bile salts, compared to simvastatin. Statins reduced the apo B100 level secreted by the two cell types (simvastatin) or human hepatocytes (crilvastatin). Crilvastatin enhanced both the level of apo A1 secreted by the Hep G2 cells and the level of APF, a high density lipoprotein (HDL) and biliary apoprotein. 4. Crilvastatin not only acts by stimulating LDL-cholesterol uptake by hepatocytes, but also by enhancing the catabolism of LDL-cholesterol in bile salts and probably by stimulating HDL and/or bile component secretion. Such a mechanism was not previously described for HMG CoA reductase inhibitors. Our results on APF show that this apoprotein could be considered also as an indicator of changes in bile and/or HDL compartments. 5. The human hepatocyte model appeared to be a suitable and relevant model in the pharmacological-metabolic experiments carried out in this study. It led to more consistent data than those obtained with Hep G2 cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8842455
Nauwelaërs, Gwendoline; Bellamri, Medjda; Fessard, Valérie; Turesky, Robert J; Langouët, Sophie
2013-09-16
Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25-100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ∼5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a 10,000-fold concentration range (1 nM-10 μM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes suggest that AαC can contribute to DNA damage and the risk of hepatocellular cancer in smokers.
Nauwelaërs, Gwendoline; Bellamri, Medjda; Fessard, Valérie; Turesky, Robert J.; Langouët, Sophie
2013-01-01
Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25–100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ~5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a ten thousand-fold concentration range (1 nM – 10 µM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes, suggests that AαC can contribute to DNA damage and the risk of hepatocellular cancer in smokers. PMID:23898916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinitt, C.A.M.; Wood, J.; Lee, S.S.
2010-08-01
Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF)more » in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.« less
Glucocorticoid-induced pancreatic-hepatic trans-differentiation in a human cell line in vitro.
Fairhall, Emma A; Leitch, Alistair C; Lakey, Anne F; Probert, Philip M E; Richardson, Gabriella; De Santis, Carol; Wright, Matthew C
2018-05-22
The rodent pancreatic AR42J-B13 (B-13) cell line differentiates into non-replicative hepatocyte-like cells in response to glucocorticoid mediated via the glucocorticoid receptor (GR). The aims of this study were to identify a human cell line that responds similarly and investigate the mechanisms underpinning any alteration in differentiation. Exposing the human pancreatic adenocarcinoma (HPAC) cell line to 1-10 µM concentrations of dexamethasone (DEX) resulted an inhibition of proliferation, suppressed carcinoembryonic antigen expression, limited expression of pancreatic acinar and hepatic gene expression and significant induction of the constitutively-expressed hepatic CYP3A5 mRNA transcript. These changes were associated with a pulse of genomic DNA methylation and suppressed notch signalling activity. HPAC cells expressed high levels of GR transcript in contrast to other nuclear receptors - such as the glucocorticoid-activated pregnane X receptor (PXR) - and GR transcriptional function was activated by DEX in HPAC cells. Expression of selected hepatocyte transcripts in response to DEX was blocked by co-treatment with the GR antagonist RU486. These data indicate that the HPAC response to glucocorticoid exposure includes an inhibition in proliferation, alterations in notch signalling and a limited change in the expression of genes associated with an acinar and hepatic phenotype. This is the first demonstration of a human cell responding to similarly to the rodent B-13 cell regarding formation of hepatocyte-like cells in response to glucocorticoid. Identifying and modulating the ablating factor(s) may enhance the hepatocyte-like forming capacity of HPAC cells after exposure to glucocorticoid and generate an unlimited in vitro supply of human hepatocytes for toxicology studies and a variety of clinical applications. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Takano, Takashi; Tsukiyama-Kohara, Kyoko; Hayashi, Masahiro; Hirata, Yuichi; Satoh, Masaaki; Tokunaga, Yuko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Funata, Nobuaki; Sudoh, Masayuki; Kohara, Michinori
2011-09-01
We characterized the role of 24-dehydrocholesterol reductase (DHCR24) in hepatitis C virus infection (HCV). DHCR24 is a cholesterol biosynthetic enzyme and cholesterol is a major component of lipid rafts, which is reported to play an important role in HCV replication. Therefore, we examined the potential of DHCR24 as a target for novel HCV therapeutic agents. We examined DHCR24 expression in human hepatocytes in both the livers of HCV-infected patients and those of chimeric mice with human hepatocytes. We targeted DHCR24 with siRNA and U18666A which is an inhibitor of both DHCR24 and cholesterol synthesis. We measured the level of HCV replication in these HCV replicon cell lines and HCV infected cells. U18666A was administrated into chimeric mice with humanized liver, and anti-viral effects were assessed. Expression of DHCR24 was induced by HCV infection in human hepatocytes in vitro, and in human hepatocytes of chimeric mouse liver. Silencing of DHCR24 by siRNA decreased HCV replication in replicon cell lines and HCV JFH-1 strain-infected cells. Treatment with U18666A suppressed HCV replication in the replicon cell lines. Moreover, to evaluate the anti-viral effect of U18666A in vivo, we administrated U18666A with or without pegylated interferon to chimeric mice and observed an inhibitory effect of U18666A on HCV infection and a synergistic effect with interferon. DHCR24 is an essential host factor which augmented its expression by HCV infection, and plays a significant role in HCV replication. DHCR24 may serve as a novel anti-HCV drug target. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Rebelo, Sofia P; Costa, Rita; Silva, Marta M; Marcelino, Paulo; Brito, Catarina; Alves, Paula M
2017-07-01
The development of human cell models that can efficiently restore hepatic functionality and cope with the reproducibility and scalability required for preclinical development poses a significant effort in tissue engineering and biotechnology. Primary cultures of human hepatocytes (HHs), the preferred model for in vitro toxicity testing, dedifferentiate and have short-term viability in two-dimensional (2D) cultures. In this study, hepatocytes isolated from human liver tissue were co-cultured with human bone marrow mesenchymal stem cells (BM-MSCs) as spheroids in automated, computer-controlled, stirred-tank bioreactors with perfusion operation mode. A dual-step inoculation strategy was used, resulting in an inner core of parenchymal liver tissue with an outer layer of stromal cells. Hepatocyte polarization and morphology as well as the mesenchymal phenotype of BM-MSCs were maintained throughout the culture period and the crosstalk between the two cell types was depicted. The viability, compact morphology and phenotypic stability of hepatocytes were enhanced in co-cultures in comparison to monocultures. Gene expression of phase I and II enzymes was higher and CYP3A4 and CYP1A2 activity was inducible until week 2 of culture, being applicable for repeated-dose toxicity testing. Moreover, the excretory activity was maintained in co-cultures and the biosynthetic hepatocellular functions (albumin and urea secretion) were not affected by the presence of BM-MSCs. This strategy might be extended to other hepatic cell sources and the characterization performed brings knowledge on the interplay between the two cell types, which may be relevant for therapeutic applications. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.
Schott, Micah B; Rasineni, Karuna; Weller, Shaun G; Schulze, Ryan J; Sletten, Arthur C; Casey, Carol A; McNiven, Mark A
2017-07-14
In liver steatosis ( i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.
Flow Cytometry Based Detection and Isolation of Plasmodium falciparum Liver Stages In Vitro.
Dumoulin, Peter C; Trop, Stefanie A; Ma, Jinxia; Zhang, Hao; Sherman, Matthew A; Levitskaya, Jelena
2015-01-01
Malaria, the disease caused by Plasmodium parasites, remains a major global health burden. The liver stage of Plasmodium falciparum infection is a leading target for immunological and pharmacological interventions. Therefore, novel approaches providing specific detection and isolation of live P. falciparum exoerythrocytic forms (EEFs) are warranted. Utilizing a recently generated parasite strain expressing green fluorescent protein (GFP) we established a method which, allows for detection and isolation of developing live P. falciparum liver stages by flow cytometry. Using this technique we compared the susceptibility of five immortalized human hepatocyte cell lines and primary hepatocyte cultures from three donors to infection by P. falciparum sporozoites. Here, we show that EEFs can be detected and isolated from in vitro infected cultures of the HC-04 cell line and primary human hepatocytes. We confirmed the presence of developing parasites in sorted live human hepatocytes and characterized their morphology by fluorescence microscopy. Finally, we validated the practical applications of our approach by re-examining the importance of host ligand CD81 for hepatocyte infection by P. falciparum sporozoites in vitro and assessment of the inhibitory activity of anti-sporozoite antibodies. This methodology provides us with the tools to study both, the basic biology of the P. falciparum liver stage and the effects of host-derived factors on the development of P. falciparum EEFs.
Flow Cytometry Based Detection and Isolation of Plasmodium falciparum Liver Stages In Vitro
Dumoulin, Peter C.; Trop, Stefanie A.; Ma, Jinxia; Zhang, Hao; Sherman, Matthew A.; Levitskaya, Jelena
2015-01-01
Malaria, the disease caused by Plasmodium parasites, remains a major global health burden. The liver stage of Plasmodium falciparum infection is a leading target for immunological and pharmacological interventions. Therefore, novel approaches providing specific detection and isolation of live P. falciparum exoerythrocytic forms (EEFs) are warranted. Utilizing a recently generated parasite strain expressing green fluorescent protein (GFP) we established a method which, allows for detection and isolation of developing live P. falciparum liver stages by flow cytometry. Using this technique we compared the susceptibility of five immortalized human hepatocyte cell lines and primary hepatocyte cultures from three donors to infection by P. falciparum sporozoites. Here, we show that EEFs can be detected and isolated from in vitro infected cultures of the HC-04 cell line and primary human hepatocytes. We confirmed the presence of developing parasites in sorted live human hepatocytes and characterized their morphology by fluorescence microscopy. Finally, we validated the practical applications of our approach by re-examining the importance of host ligand CD81 for hepatocyte infection by P. falciparum sporozoites in vitro and assessment of the inhibitory activity of anti-sporozoite antibodies. This methodology provides us with the tools to study both, the basic biology of the P. falciparum liver stage and the effects of host-derived factors on the development of P. falciparum EEFs. PMID:26070149
Koyama, Satoshi; Arakawa, Hiroshi; Itoh, Manabu; Masuda, Norio; Yano, Kentaro; Kojima, Hajime; Ogihara, Takuo
2018-04-01
The NanoCulture Plate (NCP) is a novel microstructural plate designed as a base for the three-dimensional culture of cells/tissues. This study examined whether or not the metabolic capability of human primary hepatocytes is well maintained during culture on NCPs. The hepatocytes formed aggregates after seeding and their ATP content was well maintained during culture for 21 days. Expression of CYP1A2, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 mRNAs was detected throughout the 21-day culture period. Addition of CYP substrate drugs (midazolam, diclofenac, lamotrigine and acetaminophen) resulted in the formation of multiple metabolites with a corresponding decrease in the amounts of the unchanged compounds. The inducers omeprazole, phenobarbital and rifampicin increased the levels of CYP1A2, 2B6 and 3A4 mRNAs by 110-fold, 12.5-fold and 5.4-fold, respectively, at day 2, compared with control human hepatocytes. CYP activities were also increased at 2 days after inducer treatment (CYP1A2, 2.2-fold; CYP2B6, 20.6-fold; CYP3A4, 3.3-fold). The results indicate that the hepatocyte spheroids on NCP have detectable and inducible metabolic abilities during the 7-day culture period. Copyright © 2018 John Wiley & Sons, Ltd.
Sane, Rucha S; Buckley, Donna J; Buckley, Arthur R; Nallani, Srikanth C; Desai, Pankaj B
2008-05-01
Previously we observed that the antiestrogens tamoxifen and 4-hydroxytamoxifen (4OHT) induce CYP3A4 in primary human hepatocytes and activate human pregnane X receptor (PXR) in cell-based reporter assays. Given the complex cross-talk between nuclear receptors, tissue-specific expression of CYP3A4, and the potential for tamoxifen and 4OHT to interact with a myriad of receptors, this study was undertaken to gain mechanistic insights into the inductive effects of tamoxifen and 4OHT. First, we observed that transfection of the primary cultures of human hepatocytes with PXR-specific small interfering RNA reduced the PXR mRNA expression and the extent of CYP3A4 induction by tamoxifen and 4OHT by 50%. Second, in LS174T colon carcinoma cells, which were observed to have significantly lower PXR expression relative to human hepatocytes, neither tamoxifen nor 4OHT induced CYP3A4. Third, N-desmethyltamoxifen, which did not induce CYP3A4 in human hepatocytes, also did not activate PXR in LS174T cells. We then used cell-based reporter assay to evaluate the effects of other receptors such as glucocorticoid receptor GR alpha and estrogen receptor ER alpha on the transcriptional activation of PXR. The cotransfection of GR alpha in LS174T cells augmented PXR activation by tamoxifen and 4OHT. On the other hand, the presence of ER alpha inhibited PXR-mediated basal activation of CYP3A4 promoter, possibly via competing for common cofactors such as steroid receptor coactivator 1 and glucocorticoid receptor interacting protein 1. Collectively, our findings suggest that the CYP3A4 induction by tamoxifen and 4OHT is primarily mediated by PXR but the overall stoichiometry of other nuclear receptors and transcription cofactors also contributes to the extent of the inductive effect.
Zhang, Shiqiang; Chen, Shen; Li, Wen; Guo, Xiangpeng; Zhao, Ping; Xu, Jianyong; Chen, Yan; Pan, Qiong; Liu, Xiaorong; Zychlinski, Daniela; Lu, Hai; Tortorella, Micky D; Schambach, Axel; Wang, Yan; Pei, Duanqing; Esteban, Miguel A
2011-08-15
Directed hepatocyte differentiation from human induced pluripotent stem cells (iPSCs) potentially provides a unique platform for modeling liver genetic diseases and performing drug-toxicity screening in vitro. Wilson's disease is a genetic disease caused by mutations in the ATP7B gene, whose product is a liver transporter protein responsible for coordinated copper export into bile and blood. Interestingly, the spectrum of ATP7B mutations is vast and can influence clinical presentation (a variable spectrum of hepatic and neural manifestations), though the reason is not well understood. We describe the generation of iPSCs from a Chinese patient with Wilson's disease that bears the R778L Chinese hotspot mutation in the ATP7B gene. These iPSCs were pluripotent and could be readily differentiated into hepatocyte-like cells that displayed abnormal cytoplasmic localization of mutated ATP7B and defective copper transport. Moreover, gene correction using a self-inactivating lentiviral vector that expresses codon optimized-ATP7B or treatment with the chaperone drug curcumin could reverse the functional defect in vitro. Hence, our work describes an attractive model for studying the pathogenesis of Wilson's disease that is valuable for screening compounds or gene therapy approaches aimed to correct the abnormality. In the future, once relevant safety concerns (including the stability of the mature liver-like phenotype) and technical issues for the transplantation procedure are solved, hepatocyte-like cells from similarly genetically corrected iPSCs could be an option for autologous transplantation in Wilson's disease.
Choi, Kyoungju; Ortega, Maria T; Jeffery, Brett; Riviere, Jim E; Monteiro-Riviere, Nancy A
2016-01-22
In vitro cell culture systems are a useful tool to rapidly assess the potential safety or toxicity of chemical constituents of food. Here, we investigated oxidative stress and organ-specific antioxidant responses by 7 potential dietary ingredients using canine in vitro culture of hepatocytes, proximal tubule cells (CPTC), bone marrow-derived mesenchymal stem cells (BMSC) and enterocyte-like cells (ELC). Cellular production of free radical species by denatonium benzoate (DB), epigallocatechin gallate (EPI), eucalyptol (EUC), green tea catechin extract (GTE) and sodium copper chlorophyllin (SCC), tetrahydroisohumulone (TRA) as well as xylitol (XYL) were continuously measured for reactive oxygen/nitrogen species (ROS/RNS) and superoxide (SO) for up to 24h. DB and TRA showed strong prooxidant activities in hepatocytes and to a lesser degree in ELC. DB was a weak prooxidant in BMSC. In contrast DB and TRA were antioxidants in CPTC. EPI was prooxidant in hepatocytes and BMSC but showed prooxidant and antioxidant activity in CPTC. SCC in hepatocytes (12.5mg/mL) and CPTC (0.78mg/mL) showed strong prooxidant and antioxidant activity in a concentration-dependent manner. GTE was effective antioxidant only in ELC. EUC and XYL did not induce ROS/RNS in all 4 cell types. SO production by EPI and TRA increased in hepatocytes but decreased by SCC in hepatocytes and ELC. These results suggest that organ-specific responses to oxidative stress by these potential prooxidant compounds may implicate a mechanism of their toxicities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Smith, Sherri A; Gagnon, Sandra; Waters, Nigel J
2017-03-01
1. The plasma clearance of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was shown to be markedly lower in human compared to the preclinical species, mouse, rat and dog. 2. This led to vertical allometry where various interspecies scaling methods were applied to the data, with fold-errors between 4 and 13. We had previously reported the elimination and metabolic pathways of EPZ-5676 were similar across species. Therefore, the aim of this work was to explore the mechanistic basis for the species difference in clearance for EPZ-5676, focusing on other aspects of disposition. 3. The protein binding of EPZ-5676 in human plasma demonstrated a non-linear relationship suggesting saturable binding at physiologically relevant concentrations. Saturation of protein binding was not observed in plasma from preclinical species. Kinetic determinations using purified serum albumin and alpha-1-acid glycoprotein (AAG) confirmed that EPZ-5676 is a high affinity ligand for AAG with a dissociation constant (K d ) of 0.24 μM. 4. Permeability limited uptake was also considered since hepatocyte CL int was much lower in human relative to preclinical species. Passive unbound CL int for EPZ-5676 was estimated using a correlation analysis of logD and data previously reported on seven drugs in sandwich cultured human hepatocytes. 5. Incorporation of AAG binding and permeability limited hepatic uptake into the well-stirred liver model gave rise to a predicted clearance for EPZ-5676 within 2-fold of the observed value of 1.4 mL min -1 kg -1 . This analysis suggests that the marked species difference in EPZ-5676 clearance is driven by high affinity binding to human AAG as well as species-specific hepatic uptake invoking the role of transporters.
Nakabori, Tasuku; Hikita, Hayato; Murai, Kazuhiro; Nozaki, Yasutoshi; Kai, Yugo; Makino, Yuki; Saito, Yoshinobu; Tanaka, Satoshi; Wada, Hiroshi; Eguchi, Hidetoshi; Takahashi, Takeshi; Suemizu, Hiroshi; Sakamori, Ryotaro; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo
2016-01-01
Sodium taurocholate cotransporting polypeptide (NTCP) is a recently discovered hepatitis B virus (HBV) receptor. In the present study, we used TK-NOG mice with a humanized liver to examine the impact of endogenous NTCP expression on HBV infection. Upon inoculation with HBV, these mice exhibited clear viremia in 2 weeks, and serum HBV DNA levels gradually increased. The frequency of HBsAg-positive hepatocytes in the liver was 5.1 ± 0.6% at 2 weeks and increased with increasing HBV DNA levels, reaching 92.9 ± 2.8% at 10 to 12 weeks. In vivo siRNA-mediated NTCP knockdown before and after HBV inoculation significantly suppressed the levels of HBV replication and the frequency of HBsAg-positive hepatocytes at 2 weeks, whereas NTCP knockdown 13 weeks after infection did not affect these parameters. Similar to the humanized mouse livers in the early phase of HBV infection, human liver samples from chronic hepatitis B patients, especially those treated with nucleos(t)ide analogues, contained a considerable number of hepatocytes that were negative for the anti-HBs antibody. In conclusion, NTCP inhibition prevents the spread of HBV-infected hepatocytes in mice with a humanized liver. NTCP-targeted therapy has potential for regulating HBV infection in patients with chronic hepatitis B. PMID:27278060
Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes.
Petit, Elise; Langouet, Sophie; Akhdar, Hanane; Nicolas-Nicolaz, Christophe; Guillouzo, André; Morel, Fabrice
2008-04-01
Thiopurines (azathioprine, 6-mercaptopurine and 6-thioguanine) are therapeutic compounds widely administered in the clinic for their multiple uses (autoimmune diseases, post-transplant immunosuppression and cancer). Despite these advantages, their therapeutic potential is limited by occasional adverse effects (myelotoxicity and hepatotoxicity) and by a relatively frequent lack of efficacy. Previous studies have demonstrated that azathioprine decreased the viability of rat hepatocytes. In order to investigate cytotoxic effects of thiopurines in human liver, we used primary human hepatocytes and a highly differentiated human hepatoma cell line, HepaRG, treated or not with azathioprine, 6-mercaptopurine and 6-thioguanine. In parallel, expression of the genes involved in the metabolism of thiopurines, glutathione synthesis and antioxidant defences was measured by quantitative PCR. We clearly demonstrate that human liver parenchymal cells were much less sensitive than rat hepatocytes to thiopurine treatments. The toxic effects appeared after 96 h of treatment while ATP depletion was observed after a 24 h incubation with azathioprine and 6-mercaptopurine. Toxic effects were more pronounced for azathioprine and 6-mercaptopurine, when compared to 6-thioguanine, and might explain glutathione synthesis and antioxidant enzyme induction only by these two drugs. Finally, we also demonstrate for the first time an up-regulation by azathioprine and 6-mercaptopurine of inosine monophosphate dehydrogenase which might have consequences on the de novo biosynthesis of guanine nucleotides and thiopurines metabolism.
A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes.
Sogame, Yoshihisa; Kitamura, Atsushi; Yabuki, Masashi; Komuro, Setsuko
2009-11-01
Metformin, a biguanide that has been used to treat type 2 diabetes mellitus, is reportedly transported into human hepatocytes by human organic cation transporter 1 (hOCT1). The objective of this study was to investigate differences in the hepatic uptake of metformin and phenformin, a biguanide derivative similar to metformin. Special focus was on the role of active transport into cells. Experiments were therefore performed using human cryopreserved hepatocytes and hOCT1 expressing oocytes. Both biguanides proved to be good substrates for hOCT1. However, phenformin exhibited a much higher affinity and transport activity, with a marked difference in uptake kinetics compared with metformin. Both biguanides were transported actively by hOCT1, with the active transport components much greater than passive transport components in both cases, suggesting that functional changes in hOCT1 might affect the transport of both compounds to the same degree. This study for the first time produced detailed comparative findings for uptake profiles of metformin and phenformin in human hepatocytes and hOCT1 expressing oocytes. It is considered that hOCT1 may not be the only key factor that determines the frequency of metformin and phenformin toxicity, considering the major contribution of this transporter to the total hepatic uptake and comparable width of their therapeutic concentrations.
Hallifax, D; Houston, J B
2009-03-01
Mechanistic prediction of unbound drug clearance from human hepatic microsomes and hepatocytes correlates with in vivo clearance but is both systematically low (10 - 20 % of in vivo clearance) and highly variable, based on detailed assessments of published studies. Metabolic capacity (Vmax) of commercially available human hepatic microsomes and cryopreserved hepatocytes is log-normally distributed within wide (30 - 150-fold) ranges; Km is also log-normally distributed and effectively independent of Vmax, implying considerable variability in intrinsic clearance. Despite wide overlap, average capacity is 2 - 20-fold (dependent on P450 enzyme) greater in microsomes than hepatocytes, when both are normalised (scaled to whole liver). The in vitro ranges contrast with relatively narrow ranges of clearance among clinical studies. The high in vitro variation probably reflects unresolved phenotypical variability among liver donors and practicalities in processing of human liver into in vitro systems. A significant contribution from the latter is supported by evidence of low reproducibility (several fold) of activity in cryopreserved hepatocytes and microsomes prepared from the same cells, between separate occasions of thawing of cells from the same liver. The large uncertainty which exists in human hepatic in vitro systems appears to dominate the overall uncertainty of in vitro-in vivo extrapolation, including uncertainties within scaling, modelling and drug dependent effects. As such, any notion of quantitative prediction of clearance appears severely challenged.
ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...
Hartman, J Craig; Brouwer, Kenneth; Mandagere, Arun; Melvin, Lawrence; Gorczynski, Richard
2010-06-01
To evaluate potential mechanisms of clinical hepatotoxicity, 4 endothelin receptor antagonists (ERAs) were examined for substrate activity and inhibition of hepatic uptake and efflux transporters in sandwich-cultured human hepatocytes. The 4 transporters studied were sodium-dependent taurocholate cotransporter (NTCP), organic anion transporter (OATP), bile salt export pump (BSEP), and multidrug resistance-associated protein 2 (MRP2). ERA transporter inhibition was examined using the substrates taurocholate (for NTCP and BSEP), [(3)H]estradiol-17beta-D-glucuronide (for OATP), and [2-D-penicillamine, 5-D-penicillamine]enkephalin (for MRP2). ERA substrate activity was evaluated using probe inhibitors ritonavir (OATP and BSEP), bromosulfalein (OATP), erythromycin (P-glycoprotein), probenecid (MRP2 and OATP), and cyclosporin (NTCP). ERAs were tested at 2, 20, and 100 micromol*L-1 for inhibition and at 2 micromol*L-1 as substrates. OATP, NTCP, or BSEP transport activity was not reduced by ambrisentan or darusentan. Bosentan and sitaxsentan attenuated NTCP transport at higher concentrations. Only sitaxsentan decreased OATP transport (52%), and only bosentan reduced BSEP transport (78%). MRP2 transport activity was unaltered. OATP inhibitors decreased influx of all ERAs. Darusentan influx was least affected (84%-100% of control), whereas bosentan was most affected (32%-58% of control). NTCP did not contribute to influx of ERAs. Only bosentan and darusentan were shown as substrates for both BSEP and P-glycoprotein efflux. All ERAs tested were substrates for at least one hepatic transporter. Bosentan and sitaxsentan, but not ambrisentan and darusentan, inhibited human hepatic transporters, which provides a potential mechanism for the increased hepatotoxicity observed for these agents in the clinical setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammad, Mohammad K.; Alcohol Research Center, University of Louisville; Avila, Diana
2012-11-15
Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidantmore » capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of acrolein-induced ER stress ► Acrolein fails to activate ER stress-induced protective responses. ► Combinatorial therapies may be needed for preventing acrolein hepatotoxicity.« less
Hepatocyte transplantation for liver-based metabolic disorders.
Dhawan, Anil; Mitry, Ragai R; Hughes, Robin D
2006-01-01
Hepatocyte transplantation is being investigated as an alternative to orthotopic liver transplantation in patients with liver-based metabolic disorders. The progress made in this field to date is reviewed. Protocols have been developed using collagenase perfusion to isolate human hepatocytes from unused donor liver tissue. Hepatocytes with a high viability can often be obtained and can be cryopreserved for later use, though with loss of function on thawing. For clinical use, hepatocytes must be prepared in clean GMP conditions with cells meeting criteria of function and lack of microbial contamination before patient use. Hepatocytes are infused intraportally into the patient's liver, where a proportion of cells will engraft and replace the deficient metabolic function without the need for major surgery. Twenty patients have now received hepatocyte transplantation, including eight children at King's College Hospital. There was a range of aetiologies of liver disease: familial hypercholesterolaemia, Crigler-Najjar syndrome type 1, urea cycle defects, infantile Refsum disease, glycogen storage disease type Ia, inherited factor VII deficiency and progressive familial intrahepatic cholestasis type 2. Clinical improvement and partial correction of the metabolic abnormality was observed in most cases. Considerable progress has been made in developing the technique, but hepatocyte transplantation is limited by the available supply of liver tissue. Hepatocytes derived from stem cells could provide alternative sources of cells in the future.
Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes
Gomes-Santos, Carina S. S.; Itoe, Maurice A.; Afonso, Cristina; Henriques, Ricardo; Gardner, Rui; Sepúlveda, Nuno; Simões, Pedro D.; Raquel, Helena; Almeida, António Paulo; Moita, Luis F.; Frischknecht, Friedrich; Mota, Maria M.
2012-01-01
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver. PMID:22238609
Liang, Si-Cheng; Xia, Yang-Liu; Hou, Jie; Ge, Guang-Bo; Zhang, Jiang-Wei; He, Yu-Qi; Wang, Jia-Yue; Qi, Xiao-Yi; Yang, Ling
2016-02-01
Our previous study demonstrated that daphnetin is subject to glucuronidation in vitro. However, daphnetin metabolism is still poorly documented. This study aimed to investigate daphnetin metabolism and its consequent effect on the bioactivity. Metabolic profiles obtained by human liver S9 fractions and human hepatocytes showed that daphnetin was metabolized by glucuronidation, sulfonation, and methylation to form 6 conjugates which were synthesized and identified as 7-O-glucuronide, 8-O-glucuronide, 7-O-sulfate and 8-O-sulfate, 8-O-methylate, and 7-O-suflo-8-O-methylate. Regioselective 8-O-methylation of daphnetin was investigated using in silico docking calculations, and the results suggested that a close proximity (2.03 Å) of 8-OH to the critical residue Lysine 144 might be the responsible mechanism. Compared with glucuronidation and sulfonation pathways, the methylation of daphnetin had a high clearance rate (470 μL/min/mg) in human liver S9 fractions and contributed to a large amount (37.3%) of the methyl-derived metabolites in human hepatocyte. Reaction phenotyping studies showed the major role of SULT1A1, -1A2, and -1A3 in daphnetin sulfonation, and soluble COMT in daphnetin 8-O-methylation. Of the metabolites, only 8-O-methyldaphnetin exhibited an inhibitory activity on lymphocyte proliferation comparable to that of daphnetin. In conclusion, methylation is a crucial pathway for daphnetin clearance and might be involved in pharmacologic actions of daphnetin in humans. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Scottoni, Federico; Crowley, Claire; Fiadeiro, Rebeca; Maghsoudlou, Panagiotis; Pellegata, Alessandro Filippo; Mazzacuva, Francesca; Gjinovci, Asllan; Lyne, Anne-Marie; Zulini, Justine; Little, Daniel; Mosaku, Olukunbi; Kelly, Deirdre; De Coppi, Paolo; Gissen, Paul
2017-01-01
Liver transplantation is the definitive treatment of liver failure but donor organ shortage limits its availability. Stem cells are highly expandable and have the potential to differentiate into any specialist cell. Use of patient-derived induced Pluripotent Stem Cells (hiPSCs) has the additional advantage for organ regeneration therapies by removing the need for immunosuppression. We compared hepatocyte differentiation of human embryonic stem cells (hESCs) and hiPSCs in a mouse decellularised liver scaffold (3D) with standard in vitro protocol (2D). Mouse livers were decellularised preserving micro-architecture, blood vessel network and extracellular matrix. hESCs and hiPSCs were primed towards the definitive endoderm. Cells were then seeded either in 3D or 2D cultures and the hepatocyte differentiation was continued. Both hESCs and hiPSCs differentiated more efficiently in 3D than in 2D, with higher and earlier expression of mature hepatocyte marker albumin, lipid and glycogen synthesis associated with a decrease in expression of fetal hepatocyte marker alpha-fetoprotein. Thus we conclude that stem cell hepatocyte differentiation in 3D culture promotes faster cell maturation. This finding suggests that optimised 3D protocols could allow generation of mature liver cells not achieved so far in standard 2D conditions and lead to improvement in cell models of liver disease and regenerative medicine applications. PMID:29261712
Tasnim, Farah; Phan, Derek; Toh, Yi-Chin; Yu, Hanry
2015-11-01
Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yuchao; McGill, Mitchell R.; Du, Kuo
3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated the absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT)more » release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adduct formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves the formation of mitochondrial protein adducts and mitochondrial dysfunction. - Highlights: • AMAP induces cell death in primary human hepatocytes (PHH). • AMAP does not cause cell death in primary mouse hepatocytes (PMH). • AMAP leads to mitochondria dysfunction in PHH but not PMH. • Protein adduct formation and dysfunction in mitochondria correlate with toxicity.« less
Qin, Harry H; Filippi, Céline; Sun, Song; Lehec, Sharon; Dhawan, Anil; Hughes, Robin D
2015-12-01
Mesenchymal stem/stromal cells (MSCs) improve the metabolic function of co-cultured hepatocytes. The present study aimed to further enhance the trophic effects of co-culture with hepatocytes using hypoxic preconditioning (HPc) of the MSCs and also to investigate the underlying molecular mechanisms involved. Human adipose tissue-derived MSCs were subjected to hypoxia (2 % O2; HPc) or normoxia (20 % O2) for 24 h and then co-cultured with isolated human hepatocytes. Assays of metabolic function and apoptosis were performed to investigate the hepatotrophic and anti-apoptotic effects of co-culture. Indirect co-cultures and co-culture with MSC-conditioned medium investigated the role of paracrine factors in the hepatotrophic effects of co-culture. Reactive oxygen species (ROS) activity was antagonised with N-acetylcysteine to investigate whether HPc potentiated the effects of MSCs by intracellular ROS-dependent mechanisms. Tumour necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, and extracellular collagen production was determined and CASP9 and BAX/BCL-2 signalling pathways analysed to investigate the role of soluble factors, extracellular matrix deposition, and apoptosis-associated gene signalling in the effects of co-culture. HPc potentiated the hepatotrophic and anti-apoptotic effects of co-culture by ROS-dependent mechanisms. There was increased MSC TGF-β1 production, and enhanced MSC deposition of extracellular collagen, with reduced synthesis of TNF-α, as well as a downregulation of the expression of pro-apoptotic CASP9, BAX, BID and BLK genes and upregulated expression of anti-apoptotic BCL-2 in hepatocytes. HPc potentiated the trophic and anti-apoptotic effects of MSCs on hepatocytes via mechanisms including intracellular ROS, autocrine TGF-β, extracellular collagen and caspase and BAX/BCL-2 signalling pathways.
Menstrual blood-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells*
Mou, Xiao-zhou; Lin, Jian; Chen, Jin-yang; Li, Yi-fei; Wu, Xiao-xing; Xiang, Bing-yu; Li, Cai-yun; Ma, Ju-ming; Xiang, Charlie
2013-01-01
Orthotopic liver transplantation (OLT) is the only proven effective treatment for both end-stage and metabolic liver diseases. Hepatocyte transplantation is a promising alternative for OLT, but the lack of available donor livers has hampered its clinical application. Hepatocyte-like cells (HLCs) differentiated from many multi-potential stem cells can help repair damaged liver tissue. Yet almost suitable cells currently identified for human use are difficult to harvest and involve invasive procedures. Recently, a novel mesenchymal stem cell derived from human menstrual blood (MenSC) has been discovered and obtained easily and repeatedly. In this study, we examined whether the MenSCs are able to differentiate into functional HLCs in vitro. After three weeks of incubation in hepatogenic differentiation medium containing hepatocyte growth factor (HGF), fibroblast growth factor-4 (FGF-4), and oncostain M (OSM), cuboidal HLCs were observed, and cells also expressed hepatocyte-specific marker genes including albumin (ALB), α-fetoprotein (AFP), cytokeratin 18/19 (CK18/19), and cytochrome P450 1A1/3A4 (CYP1A1/3A4). Differentiated cells further demonstrated in vitro mature hepatocyte functions such as urea synthesis, glycogen storage, and indocyanine green (ICG) uptake. After intrasplenic transplantation into mice with 2/3 partial hepatectomy, the MenSC-derived HLCs were detected in recipient livers and expressed human ALB protein. We also showed that MenSC-derived HLC transplantation could restore the serum ALB level and significantly suppressed transaminase activity of liver injury animals. In conclusion, MenSCs may serve as an ideal, easily accessible source of material for tissue engineering and cell therapy of liver tissues. PMID:24190442
Elaut, G; Laus, G; Alexandre, E; Richert, L; Bachellier, P; Tourwé, D; Rogiers, V; Vanhaecke, T
2007-04-01
Hydroxamic acid (HA)-based histone deacetylase (HDAC) inhibitors, with trichostatin A (TSA) as the reference compound, are potential antitumoral drugs and show promise in the creation of long-term primary cell cultures. However, their metabolic properties have barely been investigated. TSA is rapidly inactivated in rodents both in vitro and in vivo. We previously found that 5-(4-dimethylaminobenzoyl)aminovaleric acid hydroxyamide or 4-Me2N-BAVAH (compound 1) is metabolically more stable upon incubation with rat hepatocyte suspensions. In this study, we show that human hepatocytes also metabolize TSA more rapidly than compound 1 and that similar pathways are involved. Furthermore, structural analogs of compound 1 (compounds 2-9) are reported to have the same favorable metabolic properties. Removal of the dimethylamino substituent of compound 1 creates a very stable but 50% less potent inhibitor. Chain lengthening (4 to 5 carbon spacer) slightly improves both potency and metabolic stability, favoring HA reduction to hydrolysis. On the other hand, Calpha-unsaturation and spacer methylation not only reduce HDAC inhibition but also increase the rate of metabolic inactivation approximately 2-fold, mainly through HA reduction. However, in rat hepatocyte monolayer cultures, compound 1 is shown to be extensively metabolized by phase II conjugation. In conclusion, this study suggests that simple structural modifications of amide-linked TSA analogs can improve their phase I metabolic stability in both rat and human hepatocyte suspensions. Phase II glucuronidation, however, can compensate for their lower phase I metabolism in rat hepatocyte monolayers and could play a yet unidentified role in the determination of their in vivo clearance.
Du, Hong; Zhao, Ting; Ding, Xinchun; Yan, Cong
2016-01-01
The liver is a major organ for lipid synthesis and metabolism. Deficiency of lysosomal acid lipase (LAL; official name Lipa, encoded by Lipa) in mice (lal−/−) results in enlarged liver size due to neutral lipid storage in hepatocytes and Kupffer cells. To test the functional role of LAL in hepatocyte, hepatocyte-specific expression of human LAL (hLAL) in lal−/− mice was established by cross-breeding of liver-activated promoter (LAP)–driven tTA transgene and (tetO)7-CMV-hLAL transgene with lal−/− knockout (KO) (LAP-Tg/KO) triple mice. Hepatocyte-specific expression of hLAL in LAP-Tg/KO triple mice reduced the liver size to the normal level by decreasing lipid storage in both hepatocytes and Kupffer cells. hLAL expression reduced tumor-promoting myeloid-derived suppressive cells in the liver of lal−/− mice. As a result, B16 melanoma metastasis to the liver was almost completely blocked. Expression and secretion of multiple tumor-promoting cytokines or chemokines in the liver were also significantly reduced. Because hLAL is a secretory protein, lal−/− phenotypes in other compartments (eg, blood, spleen, and lung) also ameliorated, including systemic reduction of myeloid-derived suppressive cells, an increase in CD4+ and CD8+ T and B lymphocytes, and reduced B16 melanoma metastasis in the lung. These results support a concept that LAL in hepatocytes is a critical metabolic enzyme in controlling neutral lipid metabolism, liver homeostasis, immune response, and tumor metastasis. PMID:26212911
Property of hepatitis B virus replication in Tupaia belangeri hepatocytes.
Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori
2016-01-08
The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3-6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10(5) copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10(4)-10(6) copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10(3) copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells.
Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu
2016-08-01
Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.
Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells
NASA Astrophysics Data System (ADS)
Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu
2016-08-01
Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.
Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Petzold-Quinque, Stefanie; Damm, Georg; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje
2014-01-01
Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells) and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells. PMID:24603648
CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
Wang, Xiao; Raghavan, Avanthi; Chen, Tao; Qiao, Lyon; Zhang, Yongxian; Ding, Qiurong; Musunuru, Kiran
2016-05-01
Although early proof-of-concept studies of somatic in vivo genome editing of the mouse ortholog of proprotein convertase subtilisin/kexin type 9 (Pcsk9) in mice have established its therapeutic potential for the prevention of cardiovascular disease, the unique nature of genome-editing technology-permanent alteration of genomic DNA sequences-mandates that it be tested in vivo against human genes in normal human cells with human genomes to give reliable preclinical insights into the efficacy (on-target mutagenesis) and safety (lack of off-target mutagenesis) of genome-editing therapy before it can be used in patients. We used a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) 9 genome-editing system to target the human PCSK9 gene in chimeric liver-humanized mice bearing human hepatocytes. We demonstrated high on-target mutagenesis (approaching 50%), greatly reduced blood levels of human PCSK9 protein, and minimal off-target mutagenesis. This work yields important information on the efficacy and safety of CRISPR-Cas9 therapy targeting the human PCSK9 gene in human hepatocytes in vivo, and it establishes humanized mice as a useful platform for the preclinical assessment of applications of somatic in vivo genome editing. © 2016 American Heart Association, Inc.
Cast, Ashley; Valanejad, Leila; Wright, Mary; Nguyen, Phuong; Gupta, Anita; Zhu, Liqin; Shin, Soona; Timchenko, Nikolai
2018-05-01
Recent publications show that classic hepatoblastoma (HBL) is the result of failure of hepatic stem cells to differentiate into hepatocytes, while hepatocellular carcinoma (HCC) is caused by the dedifferentiation of hepatocytes into cancer stem cells. However, the mechanisms of aggressive HBL and the mechanisms that cause dedifferentiation of hepatocytes into cancer stem cells are unknown. We found that, similar to HCC but opposite to classic HBL, aggressive HBL is the result of dedifferentiation of hepatocytes into cancer stem cells. In both cases of liver cancer, the dephosphorylation of tumor suppressor protein CCAAT/enhancer binding protein α (C/EBPα) at Ser193 (Ser190 in human protein) or mutation of Ser193 to Ala results in a modified protein with oncogenic activities. We have investigated liver cancer in a mouse model C/EBPα-S193A, in a large cohort of human HBL samples, and in Pten/p53 double knockout mice and found that these cancers are characterized by elevation of C/EBPα that is dephosphorylated at Ser190/193. We found that dephosphorylated C/EBPα creates preneoplastic foci with cancer stem cells that give rise to HCC and aggressive HBL. C/EBPα-dependent dedifferentiation of hepatocytes into cancer stem cells includes increased proliferation of hepatocytes, followed by generation of multinucleated hepatocytes and subsequent appearance of hepatocytes with delta-like 1 homolog-positive intranuclear inclusions. We further isolated C/EBPα-dependent multinucleated hepatocytes and found that they possess characteristics of tumor-initiating cells, including elevation of stem cell markers. C/EBPα-dependent cancer stem cells are observed in patients with aggressive HBL and in patients with a predisposition for liver cancer. The earliest steps of adult HCC and aggressive pediatric liver cancer have identical features that include conversion of the tumor suppressor C/EBPα into an oncogenic isoform, which further creates preneoplastic foci where hepatocytes dedifferentiate into cancer cells, giving rise to liver cancer. (Hepatology 2018;67:1857-1871). © 2017 by the American Association for the Study of Liver Diseases.
Hepatocyte polyploidization and its association with pathophysiological processes.
Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping
2017-05-18
A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered.
YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression.
Fitamant, Julien; Kottakis, Filippos; Benhamouche, Samira; Tian, Helen S; Chuvin, Nicolas; Parachoniak, Christine A; Nagle, Julia M; Perera, Rushika M; Lapouge, Marjorie; Deshpande, Vikram; Zhu, Andrew X; Lai, Albert; Min, Bosun; Hoshida, Yujin; Avruch, Joseph; Sia, Daniela; Campreciós, Genís; McClatchey, Andrea I; Llovet, Josep M; Morrissey, David; Raj, Lakshmi; Bardeesy, Nabeel
2015-03-10
Defective Hippo/YAP signaling in the liver results in tissue overgrowth and development of hepatocellular carcinoma (HCC). Here, we uncover mechanisms of YAP-mediated hepatocyte reprogramming and HCC pathogenesis. YAP functions as a rheostat in maintaining metabolic specialization, differentiation, and quiescence within the hepatocyte compartment. Increased or decreased YAP activity reprograms subsets of hepatocytes to different fates associated with deregulation of the HNF4A, CTNNB1, and E2F transcriptional programs that control hepatocyte quiescence and differentiation. Importantly, treatment with small interfering RNA-lipid nanoparticles (siRNA-LNPs) targeting YAP restores hepatocyte differentiation and causes pronounced tumor regression in a genetically engineered mouse HCC model. Furthermore, YAP targets are enriched in an aggressive human HCC subtype characterized by a proliferative signature and absence of CTNNB1 mutations. Thus, our work reveals Hippo signaling as a key regulator of the positional identity of hepatocytes, supports targeting of YAP using siRNA-LNPs as a paradigm of differentiation-based therapy, and identifies an HCC subtype that is potentially responsive to this approach. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hepatocyte polyploidization and its association with pathophysiological processes
Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping
2017-01-01
A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered. PMID:28518148
Cellular uptake and cytotoxicity of a near-IR fluorescent corrole-TiO2 nanoconjugate.
Blumenfeld, Carl M; Sadtler, Bryce F; Fernandez, G Esteban; Dara, Lily; Nguyen, Cathie; Alonso-Valenteen, Felix; Medina-Kauwe, Lali; Moats, Rex A; Lewis, Nathan S; Grubbs, Robert H; Gray, Harry B; Sorasaenee, Karn
2014-11-01
We are investigating the biological and biomedical imaging roles and impacts of fluorescent metallocorrole-TiO2 nanoconjugates as potential near-infrared optical contrast agents in vitro in cancer and normal cell lines. The TiO2 nanoconjugate labeled with the small molecule 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrolato aluminum(III) (1-Al-TiO2) was prepared. The nanoparticle 1-Al-TiO2 was characterized by transmission electron microscopy (TEM) and integrating-sphere electronic absorption spectroscopy. TEM images of three different samples of TiO2 nanoparticles (bare, H2O2 etched, and 1-Al functionalized) showed similarity in shapes and sizes with an average diameter of 29nm for 1-Al-TiO2. Loading of 1-Al on the TiO2 surfaces was determined to be ca. 20-40mg 1-Al/g TiO2. Confocal fluorescence microscopy (CFM) studies of luciferase-transfected primary human glioblastoma U87-Luc cells treated with the nanoconjugate 1-Al-TiO2 as the contrast agent in various concentrations were performed. The CFM images revealed that 1-Al-TiO2 was found inside the cancer cells even at low doses (0.02-2μg/mL) and localized in the cytosol. Bioluminescence studies of the U87-Luc cells exposed to various amounts of 1-Al-TiO2 showed minimal cytotoxic effects even at higher doses (2-2000μg/mL) after 24h. A similar observation was made using primary mouse hepatocytes (PMH) treated with 1-Al-TiO2 at low doses (0.0003-3μg/mL). Longer incubation times (after 48 and 72h for U87-Luc) and higher doses (>20μg/mL 1-Al-TiO2 for U87-Luc and >3μg/mL 1-Al-TiO2 for PMH) showed decreased cell viability. Copyright © 2014 Elsevier Inc. All rights reserved.
Wohlfarth, Ariane; Pang, Shaokun; Zhu, Mingshe; Gandhi, Adarsh S; Scheidweiler, Karl B; Huestis, Marilyn A
2015-01-01
Background Since 2008, synthetic cannabinoids are major new designer drugs of abuse. They are extensively metabolized and excreted in urine, but limited human metabolism data are available. As there are no reports on the metabolism of RCS-8, a scheduled phenylacetylindole synthetic cannabinoid with an N-cyclohexylethyl moiety, we investigated metabolism of this new designer drug by human hepatocytes and high resolution MS. Methods After human hepatocyte incubation with RCS-8, samples were analyzed on a TripleTOF 5600+ mass spectrometer with time-of-flight survey scan and information-dependent acquisition triggered product ion scans. Data mining of the accurate mass full scan and product ion spectra employed different data processing algorithms. Results and Conclusion More than 20 RCS-8 metabolites were identified, products of oxidation, demethylation, and glucuronidation. Major metabolites and targets for analytical methods were hydroxyphenyl RCS - 8 glucuronide, a variety of hydroxycyclohexyl-hydroxyphenyl RCS-8 glucuronides, hydroxyphenyl RCS-8, as well as the demethyl-hydroxycyclohexyl RCS-8 glucuronide. PMID:24946920
Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.
Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea
2009-06-01
People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.
Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.
Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F
1993-06-01
LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal sequence of the P450IID6 molecule that could explain a translocation of the molecule to the luminal side of the ER, allowing its expression on the cell surface. These results indicate that, in all likelihood, P450IID6 molecule is not present on the cell surface of normal rat and human hepatocytes. Other mechanisms than antibody-mediated cell lysis directed against membrane P450IID6 antigenic determinants must be found to account for the destruction of hepatocytes observed in this disease.
Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.
Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F
1993-01-01
LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal sequence of the P450IID6 molecule that could explain a translocation of the molecule to the luminal side of the ER, allowing its expression on the cell surface. These results indicate that, in all likelihood, P450IID6 molecule is not present on the cell surface of normal rat and human hepatocytes. Other mechanisms than antibody-mediated cell lysis directed against membrane P450IID6 antigenic determinants must be found to account for the destruction of hepatocytes observed in this disease. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:7685669
TRANSPLANTATION OF HEPATOCYTES FROM GENETICALLY-ENGINEERED PIGS IN BABOONS
Iwase, Hayato; Liu, Hong; Schmelzer, Eva; Ezzelarab, Mohamed; Wijkstrom, Martin; Hara, Hidetaka; Lee, Whayoung; Singh, Jagjit; Long, Cassandra; Lagasse, Eric; Gerlach, Jörg C.; Cooper, David K.C.; Gridelli, Bruno
2017-01-01
Background Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically-engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. Methods Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by measurement of anti-nonGal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. Results Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low – 500–1,000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5,000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. Discussion and Conclusions As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient’s intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically-engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken. PMID:28130881
Transplantation of hepatocytes from genetically engineered pigs into baboons.
Iwase, Hayato; Liu, Hong; Schmelzer, Eva; Ezzelarab, Mohamed; Wijkstrom, Martin; Hara, Hidetaka; Lee, Whayoung; Singh, Jagjit; Long, Cassandra; Lagasse, Eric; Gerlach, Jörg C; Cooper, David K C; Gridelli, Bruno
2017-03-01
Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by the measurement of anti-non-Gal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low-500-1000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Haga, Sanae; Kanno, Akira; Ozawa, Takeaki; Morita, Naoki; Asano, Mami; Ozaki, Michitaka
2017-07-21
Liver injury is often observed in various pathological conditions including posthepatectomy state and cancer chemotherapy. It occurs mainly as a consequence of the combined necrotic and apoptotic types of cell death. In order to study liver/hepatocyte injury by necrotic type of cell death, we studied signal-regulated necrosis (necroptosis) by newly developing an optic probe detecting receptor-interacting protein (RIP)1/RIP3 binding, an essential process for necroptosis induction. In the mouse hepatocyte cell line, TIB-73 cells, TNF-a/cycloheximide (T/C) induced RIP1/3 binding only when caspase activity was suppressed by z-VAD-fmk (zVAD), a caspase-specific inhibitor. T/C/zVADinduced RIP1/3-binding was inhibited by necrostatin-1 (Nec-1), an allosteric inhibitor of RIP1. The reduced cell survival by T/C/zVAD was improved by Nec-1. These facts indicate that T/C induces necroptosis of hepatocytes when apoptotic pathway is inhibited/unavailable. FasL also induced cell death which was only partially inhibited by zVAD, indicating the possible involvement of necroptosis other than apoptosis. FasL activated caspase-3 and, similarly, induced RIP1/3-binding when caspases were inactivated. Interestingly, FasL-induced RIP1/3 binding was significantly suppressed by the antioxidants, Trolox and N-acetyl cysteine (NAC), suggesting the involvement of reactive oxygen species (ROS) in FasL-induced necroptotic cellular processes. H₂O₂, by itself, induced RIP1/3 binding that was suppressed by Nec-1, but not by zVAD. Hypoxia induced RIP1/3 binding after reoxygenation, which was suppressed by Nec-1 or by the antioxidants. Cell death induced by hypoxia/reoxygenation (H/R) was also improved by Nec-1. Similar to H₂O₂, H/R did not require caspase inhibition for RIP1/3 binding, suggesting the involvement of a caspase-independent mechanism for non-ligand induced and/or redox-mediated necroptosis. These data indicate that ROS induce necroptosis, and mediate the FasL- and hypoxia-induced necroptosis via a molecular mechanism that differs from a conventional caspase-dependent pathway. In conclusion, necroptosis is potentially involved in liver/hepatocyte injury induced by oxidative stress and FasL, other than apoptosis.
Montanholi, Yuri Regis; Haas, Livia Sadocco; Swanson, Kendall Carl; Coomber, Brenda Lynn; Yamashiro, Shigeto; Miller, Stephen Paul
2017-04-26
Feed costs are a major expense in the production of beef cattle. Individual variation in the efficiency of feed utilization may be evident through feed efficiency-related phenotypes such as those related to major energetic sinks. Our objectives were to assess the relationships between feed efficiency with liver morphometry and metabolic blood profile in feedlot beef cattle. Two populations (A = 112 and B = 45) of steers were tested for feed efficiency. Blood from the 12 most (efficient) and 12 least feed inefficient (inefficient) steers from population A was sampled hourly over the circadian period. Blood plasma samples were submitted for analysis on albumin, aspartate aminotransferase, γ-glutamyl transpeptidase urea, cholesterol, creatinine, alkaline phosphatase, creatine kinase, lipase, carbon dioxide, β-hydroxybutyrate, acetate and bile acids. Liver tissue was also harvested from 24 steers that were blood sampled from population A and the 10 steers with divergent feed efficiency in each tail of population B was sampled for microscopy at slaughter. Photomicroscopy images were taken using the portal triad and central vein as landmarks. Histological quantifications included cross-sectional hepatocyte perimeter and area, hepatocyte nuclear area and nuclei area as proportion of the hepatocyte area. The least square means comparison between efficient and inefficient steers for productive performance and liver morphometry and for blood analytes data were analyzed using general linear model and mixed model procedures of SAS, respectively. No differences were observed for liver weight; however, efficient steers had larger hepatocyte (i.e. hepatocyte area at the porta triad 323.31 vs. 286.37 µm 2 ) and nuclei dimensions at portal triad and central vein regions, compared with inefficient steers. The metabolic profile indicated efficient steers had lower albumin (36.18 vs. 37.65 g/l) and cholesterol (2.62 vs. 3.05 mmol/l) and higher creatinine (118.59 vs. 110.50 mmol/l) and carbon dioxide (24.36 vs. 23.65 mmol/l) than inefficient steers. Improved feed efficiency is associated with increased metabolism by the liver (enlarged hepatocytes and no difference on organ size), muscle (higher creatinine) and whole body (higher carbon dioxide); additionally, efficient steers had reduced bloodstream pools of albumin and cholesterol. These metabolic discrepancies between feed efficient and inefficient cattle may be determinants of productive performance.
Schreiber, R; Häussinger, D
1995-01-01
Short-term cultivated rat hepatocytes were allowed to endocytose fluorescein isothiocyanate (FITC)-coupled dextran and the apparent vesicular pH (pHves) was measured by single-cell fluorescence. After 2 h of exposure to FITC-dextran, the apparent pH in the vesicular compartments accessible to endocytosed FITC-dextran was 6.01 +/- 0.05 (n = 39) in normo-osmotic media. Hypo-osmotic exposure increased, whereas hyper-osmotic exposure decreased apparent pHves. by 0.18 +/- 0.02 (n = 26) and 0.12 +/- 0.01 (n = 23) respectively. Incubation of the cells with unlabelled dextran for 2h before a 2-h FITC-dextran exposure had no effect on apparent pHves and its osmosensitivity. When, however, hepatocytes were exposed to unlabelled dextran for 5 h after a 2 h exposure to FITC-dextran, in order to allow transport of endocytosed FITC-dextran to late endocytotic/lysosomal compartments, apparent pHves. decreased to 5.38 +/- 0.04 (n = 12) and the apparent pH in the vesicular compartment containing the dye was no longer sensitive to aniso-osmotic exposure. These findings indicate that the osomosensitivity of pHves. is apparently restricted to early endocytotic compartments. Aniso-osmotic regulation of apparent pHves. in freshly FITC-loaded hepatocytes was not accompanied by aniso-osmolarity-induced changes of the cytosolic free calcium concentration, and neither vasopressin nor extracellular ATP, which provoked a marked Ca2+ signal, affected apparent pHves. Dibutyryl-cyclic AMP (cAMP) or vanadate (0.5 mmol/l) were without effect on apparent pHves. and its osmosensitivity. However, pertussis toxin-treatment or genistein (but not daidzein) or the erbstatin analogue methyl 2,5-dihydroxycinnamate fully abolished the osmo-sensitivity of apparent pHves., but did not affect apparent pHves. It is concluded that regulation of pHves. by cell volume occurs in early endocytotic compartments, but probably not in lysosomes, and is mediated by a G-protein and tyrosine kinase-dependent, but Ca2+- and cAMP-independent mechanism. PMID:7542446
Entrapment of hepatocyte spheroids in a hollow fiber bioreactor as a potential bioartificial liver.
Wu, F J; Peshwa, M V; Cerra, F B; Hu, W S
1995-01-01
A bioartificial liver (BAL) employing xenogeneic hepatocytes has been developed as a potential interim support for patients in hepatic failure. For application in human therapy, the BAL requires a substantial increase in liver-specific functions. Cultivation of hepatocytes as spheroids leads to enhanced liver specific functions. We explored the possibility of entrapping spheroids into the BAL in order to improve device performance. Rat hepatocyte spheroids were entrapped in collagen gel within the lumen fibers of the BAL. The morphology and ultrastructure of collagen-entrapped spheroids resembled those of suspended spheroids formed on petri dishes. Albumin synthesis and P-450 enzyme activity were measured as markers of liver specific functions of spheroids entrapped in the BAL. At least a 4-fold improvement in these functions was observed compared to BAL devices entrapped with dispersed hepatocytes in collagen gels.
Induction of three-dimensional assembly of human liver cells by simulated microgravity
NASA Technical Reports Server (NTRS)
Khaoustov, V. I.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Yoffe, B.
1999-01-01
The establishment of long-term cultures of functional primary human liver cells (PHLC) is formidable. Developed at NASA, the Rotary Cell Culture System (RCCS) allows the creation of the unique microgravity environment of low shear force, high-mass transfer, and 3-dimensional cell culture of dissimilar cell types. The aim of our study was to establish long-term hepatocyte cultures in simulated microgravity. PHLC were harvested from human livers by collagenase perfusion and were cultured in RCCS. PHLC aggregates were readily formed and increased up to 1 cm long. The expansion of PHLC in bioreactors was further evaluated with microcarriers and biodegradable scaffolds. While microcarriers were not conducive to formation of spheroids, PHLC cultured with biodegradable scaffolds formed aggregates up to 3 cm long. Analyses of PHLC spheroids revealed tissue-like structures composed of hepatocytes, biliary epithelial cells, and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes surrounded by complex stromal structures and reticulin fibers, bile canaliculi with multiple microvilli, and tight cellular junctions. Albumin mRNA was expressed throughout the 60-d culture. A simulated microgravity environment is conducive to maintaining long-term cultures of functional hepatocytes. This model system will assist in developing improved protocols for autologous hepatocyte transplantation, gene therapy, and liver assist devices, and facilitate studies of liver regeneration and cell-to-cell interactions that occur in vivo.
Matsuzaki, Koichi; Murata, Miki; Yoshida, Katsunori; Sekimoto, Go; Uemura, Yoshiko; Sakaida, Noriko; Kaibori, Masaki; Kamiyama, Yasuo; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi; Seki, Toshihito
2007-07-01
Many patients with chronic hepatitis caused by hepatitis C virus (HCV) infection develop liver fibrosis with high risk for hepatocellular carcinoma (HCC), but the mechanism underling this process is unclear. Conversely, transforming growth factor beta (TGF-beta) activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which convert the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Whereas the TbetaRI/pSmad3C pathway suppresses epithelial cell growth by upregulating p21(WAF1) transcription, JNK/pSmad3L-mediated signaling promotes extracellular matrix deposition, partly, by upregulating plasminogen activator inhibitor 1 (PAI-1). We studied the domain-specific Smad3 phosphorylation in biopsy specimens representing chronic hepatitis, cirrhosis, or HCC from 100 patients chronically infected with HCV, and correlated Smad3 phosphorylation with clinical course. As HCV-infected livers progressed from chronic hepatitis through cirrhosis to HCC, hepatocytic pSmad3L/PAI-1 increased with fibrotic stage and necroinflammatory grade, and pSmad3C/p21(WAF1) decreased. Of 14 patients with chronic hepatitis C with strong hepatocytic pSmad3L positivity, 8 developed HCC within 12 years; only 1 of 12 showing little pSmad3L positivity developed HCC. We further sought molecular mechanisms in vitro. JNK activation by the pro-inflammatory cytokine interleukin-1beta stimulated the pSmad3L/PAI-1 pathway in facilitating hepatocytic invasion, in the meantime reducing TGF-beta-dependent tumor-suppressive activity by the pSmad3C/p21(WAF1) pathway. These results indicate that chronic inflammation associated with HCV infection shifts hepatocytic TGF-beta signaling from tumor-suppression to fibrogenesis, accelerating liver fibrosis and increasing risk for HCC.
Yu, Hai-Ying; Zhu, Man-Hua; Xiang, Dai-Rong; Li, Jun; Sheng, Ji-Fang
2014-01-01
Background Augmenter of liver regeneration (ALR) is an important polypeptide that participates in the process of liver regeneration. Two forms of ALR proteins are expressed in hepatocytes. Previous data have shown that ALR is essential for cell survival and has potential antimetastatic properties in hepatocellular carcinoma (HCC). Aims The study aimed to evaluate the expression levels of two forms of ALR proteins in HCC and their possible significance in HCC development. Methods Balb/c mouse monoclonal antibody against ALR protein was prepared in order to detect the ALR protein in HCC by Western blotting and immunohistochemistry. ALR mRNA expression levels were measured by real-time polymerase chain reaction in HCC tissues and compared to paracancerous liver tissues in 22 HCC patients. Results ALR mRNA expression in HCC liver tissues (1.51×106 copies/μL) was higher than in paracancerous tissues (1.04×104 copies/μL). ALR protein expression was also enhanced in HCC liver tissues. The enhanced ALR protein was shown to be 23 kDa by Western blotting. Immunohistochemical analysis showed that the 23 kDa ALR protein mainly existed in the hepatocyte cytosol. Conclusion The 23 kDa ALR protein was highly expressed in HCC and may play an important role in hepatocarcinogenesis. PMID:24940072
Koike, Kazuko; Takaki, Akinobu; Yagi, Takahito; Iwasaki, Yoshiaki; Yasunaka, Tetsuya; Sadamori, Hiroshi; Shinoura, Susumu; Umeda, Yuzo; Yoshida, Ryuichi; Sato, Daisuke; Nobuoka, Daisuke; Utsumi, Masashi; Miyake, Yasuhiro; Ikeda, Fusao; Shiraha, Hidenori; Fujiwara, Toshiyoshi; Yamamoto, Kazuhide
2015-01-01
Background Post orthotopic liver transplantation (OLT) viral hepatitis is an immunological condition where immune cells induce hepatitis during conditions of immune-suppression. The immune-regulatory programmed death-1 (PD-1)/PD-ligand 1 system is acknowledged to play important roles in immune-mediated diseases. However, the PD-1/PD-L2 interaction is not well characterized, with PD-L2 also exhibiting an immunostimulatory function. We hypothesized that this atypical molecule could affect the recurrence of post-OLT hepatitis. To test this hypothesis, we conducted immunohistochemical staining analysis and in vitro analysis of PD-L2. Methods The expression of PD-L2 was evaluated in liver biopsy specimens from patients with chronic hepatitis B (n = 15), post-OLT hepatitis B (n = 8), chronic hepatitis C (n = 48), and post-OLT hepatitis C (CH-C-OLT) (n = 14). The effect of calcineurin inhibitors (CNIs) and hepatitis C virus (HCV) on PD-L2 expression was investigated in hepatoma cell lines. Results The PD-L2 was highly expressed on CH-C-OLT hepatocytes. Treatment of hepatoma cell lines with CNIs resulted in increased PD-L2 expression, especially in combination with HCV core or NS3 protein. Transfection of cell lines with PD-L2 containing plasmid resulted in high intercellular adhesion molecule-1 (ICAM-1) expression, which might enhance hepatitis activity. Conclusions The PD-L2 is highly expressed on CH-C-OLT hepatocytes, whereas HCV proteins, in combination with CNIs, induce high expression of PD-L2 resulting in elevated expression of ICAM-1. These findings demonstrate the effect of CNIs on inducing PD-L2 and subsequent ICAM-1 expression, effects that may produce inflammatory cell infiltration in post-OLT hepatitis C. PMID:25675203
Petrescu, Anca D.; Huang, Huan; Martin, Gregory G.; McIntosh, Avery L.; Storey, Stephen M.; Landrock, Danilo; Kier, Ann B.
2013-01-01
Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα-regulated LCFA β-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose, a sugar not taken up, correlated with higher protein levels of these LCFA β-oxidative enzymes and with increased LCFA β-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes, especially at high glucose. Finally, the PUFA-enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid β-oxidation but also the significance of a high glucose enhancement effect in diabetes. PMID:23238934
Donato, M Teresa; Hallifax, David; Picazo, Laura; Castell, José V; Houston, J Brian; Gomez-Lechón, M José; Lahoz, Agustin
2010-09-01
Cryopreserved human hepatocytes and other in vitro systems often underpredict in vivo intrinsic clearance (CL(int)). The aim of this study was to explore the potential utility of HepG2 cells transduced with adenovirus vectors expressing a single cytochrome P450 enzyme (Ad-CYP1A2, Ad-CYP2C9, or Ad-CYP3A4) for metabolic clearance predictions. The kinetics of metabolite formation from phenacetin, tolbutamide, and alprazolam and midazolam, selected as substrates probes for CYP1A2, CYP2C9, and CYP3A4, respectively, were characterized in this in vitro system. The magnitude of the K(m) or S(50) values observed in Ad-P450 cells was similar to those found in the literature for other human liver-derived systems. For each substrate, CL(int) (or CL(max)), values from Ad-P450 systems were scaled to human hepatocytes in primary culture using the relative activity factor (RAF) approach. Scaled Ad-P450 CL(int) values were approximately 3- to 6-fold higher (for phenacetin O-deethylation, tolbutamide 4-hydroxylation, and alprazolam 4-hydroxyaltion) or lower (midazolam 1'-hydroxylation) than those reported for human cryopreserved hepatocytes in suspension. Comparison with the in vivo data reveals that Ad-P450 cells provide a favorable prediction of CL(int) for the substrates studied (in a range of 20-200% in vivo observed CL(int)). This is an improvement compared with the consistent underpredictions (<10-50% in in vivo observed CL(int)) found in cryopreserved hepatocyte studies with the same substrates. These results suggest that the Ad-P450 cell is a promising in vitro system for clearance predictions of P450-metabolized drugs.
Riccardi, Keith; Li, Zhenhong; Brown, Janice A; Gorgoglione, Matthew F; Niosi, Mark; Gosset, James; Huard, Kim; Erion, Derek M; Di, Li
2016-10-01
Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Ménochet, Karelle; Kenworthy, Kathryn E.; Houston, J. Brian
2012-01-01
Interindividual variability in activity of uptake transporters is evident in vivo, yet limited data exist in vitro, confounding in vitro-in vivo extrapolation. The uptake kinetics of seven organic anion-transporting polypeptide substrates was investigated over a concentration range in plated cryopreserved human hepatocytes. Active uptake clearance (CLactive, u), bidirectional passive diffusion (Pdiff), intracellular binding, and metabolism were estimated for bosentan, pitavastatin, pravastatin, repaglinide, rosuvastatin, telmisartan, and valsartan in HU4122 donor using a mechanistic two-compartment model in Matlab. Full uptake kinetics of rosuvastatin and repaglinide were also characterized in two additional donors, whereas for the remaining drugs CLactive, u was estimated at a single concentration. The unbound affinity constant (Km, u) and Pdiff values were consistent across donors, whereas Vmax was on average up to 2.8-fold greater in donor HU4122. Consistency in Km, u values allowed extrapolation of single concentration uptake activity data and assessment of interindividual variability in CLactive across donors. The maximal contribution of active transport to total uptake differed among donors, for example, 85 to 96% and 68 to 87% for rosuvastatin and repaglinide, respectively; however, in all cases the active process was the major contributor. In vitro-in vivo extrapolation indicated a general underprediction of hepatic intrinsic clearance, an average empirical scaling factor of 17.1 was estimated on the basis of seven drugs investigated in three hepatocyte donors, and donor-specific differences in empirical factors are discussed. Uptake Km, u and CLactive, u were on average 4.3- and 7.1-fold lower in human hepatocytes compared with our previously published rat data. A strategy for the use of rat uptake data to facilitate the experimental design in human hepatocytes is discussed. PMID:22665271
Isolated hepatocytes--past, present and future.
Berry, M N; Grivell, A R; Grivell, M B; Phillips, J W
1997-07-01
The first technique for large-scale preparation of isolated hepatocytes was described in 1953 and involved perfusion of rat liver under pressure with a Ca(2+)-free solution containing a chelating agent. Various modifications of this technique were in use over the next ten years, until it was demonstrated that cells prepared in this manner were grossly damaged, losing most of their cytoplasmic enzymes during the preparative procedure. The successful preparation of intact isolated hepatocytes by collagenase-treatment of liver was achieved in 1967, and the widespread use of intact hepatocyte suspensions was accelerated by the development soon after of high-yield preparative techniques involving perfusion of the liver with a medium containing collagenase. The introduction of the isolated hepatocyte preparation has enabled experimental studies that otherwise would not be feasible. Important advances have been the use of cultured hepatocytes, frequently of human origin, for the investigation of the metabolism and toxicology of potential therapeutic agents. Success in this field has been achieved through the steady improvement in techniques for the maintenance in culture of differentiated hepatocytes, and in particular their cytochrome P450 complexes. Another area showing considerable promise is the employment of hepatocytes, generally from a porcine source, in temporary support systems for patients with acute liver failure. Our own studies have concentrated on the demonstration of long-range interactions between hepatocyte compartments which suggest that energy transfer between cell compartments can take place without ATP turnover.
Das, Parikshit C; Cao, Yan; Rose, Randy L; Cherrington, Nathan; Hodgson, Ernest
2008-01-01
Xenobiotics, including drugs and environmental chemicals, can influence cytochrome P450 (CYP) levels by altering the transcription of CYP genes. To minimize potential drug-pesticide and pesticide-pesticide interactions it is important to evaluate the potential of pesticides to induce CYP isoforms and to cause cytotoxicity in humans. The present study was designed to examine chlorpyrifos and DEET mediated induction of CYP isoforms and also to characterize their potential cytotoxic effects on primary human hepatocytes. DEET significantly induced CYP3A4, CYP2B6, CYP2A6 and CYP1A2 mRNA expression while chlorpyrifos induced CYP1A1, CYP1A2 and CYP3A4 mRNA, and to a lesser extent, CYP1B1 and CYP2B6 mRNA in primary human hepatocytes. Chlorpyrifos and DEET also mediated the expression of CYP isoforms, particularly CYP3A4, CYP2B6 and CYP1A1, as shown by CYP3A4-specific protein expression, testosterone metabolism and CYP1Al-specific activity assays. DEET is a mild, while chlorpyrifos is a relatively potent, inducer of adenylate kinase and caspase-3/7, an indicator of apoptosis, while inducing 15-20% and 25-30% cell death, respectively. Therefore, DEET and chlorpyrifos mediated induction of CYP mRNA and functional CYP isoforms together with their cytotoxic potential in human hepatocytes suggests that exposure to chlorpyrifos and/or DEET should be considered in human health impact analysis.
In vitro and in vivo drug disposition of cilengitide in animals and human.
Dolgos, Hugues; Freisleben, Achim; Wimmer, Elmar; Scheible, Holger; Krätzer, Friedrich; Yamagata, Tetsuo; Gallemann, Dieter; Fluck, Markus
2016-04-01
Cilengitide is very low permeable (1.0 nm/sec) stable cyclic pentapeptide containing an Arg-Gly-Asp motif responsible for selective binding to αvβ3 and αvβ5 integrins administered intravenously (i.v.). In vivo studies in the mouse and Cynomolgus monkeys showed the major component in plasma was unchanged drug (>85%). These results, together with the absence of metabolism in vitro and in animals, indicate minimal metabolism in both species. The excretion of [(14)C]-cilengitide showed profound species differences, with a high renal excretion of the parent drug observed in Cynomolgus monkey (50% dose), but not in mouse (7 and 28%: m/f). Consistently fecal (biliary) secretion was high in mouse (87 and 66% dose: m/f) but low in Cynomolgus monkey (36.5%). Human volunteers administrated with [(14)C]-cilengitide showed that most of the dose was recovered in urine as unchanged drug (77.5%, referred to Becker et al. 2015), indicating that the Cynomolgus monkey was the closer species to human. In order to better understand the species difference between human and mouse, the hepatobiliary disposition of [(14)C]-cilengitide was determined in sandwich-cultured hepatocytes. Cilengitide exhibited modest biliary efflux (30-40%) in mouse, while in human hepatocytes this was negligible. Furthermore, it was confirmed that the uptake of cilengitide into human hepatocytes was minor and appeared to be passive. In summary, the extent of renal and biliary secretion of cilengitide appears to be highly species specific and is qualitatively well explained using sandwich hepatocyte culture models.
Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy.
Austin, Laura S; Kaushansky, Alexis; Kappe, Stefan H I
2014-05-01
Plasmodium parasites infect hepatocytes of their mammalian hosts and undergo obligate liver stage development. The specific host cell attributes that are important for liver infection remain largely unknown. Several host signalling pathways are perturbed in infected hepatocytes, some of which are important in the generation of hepatocyte polyploidy. To test the functional consequence of polyploidy on liver infection, we infected hepatocytes with the rodent malaria parasite Plasmodium yoelii both in vitro and in vivo and examined the ploidy of infected and uninfected hepatocytes by flow cytometry. In both hepatoma cell lines and in the mouse liver, the fraction of polyploid cells was higher in the infected cell population than in the uninfected cell population. When the data were reanalysed by comparing the extent of Plasmodium infection within each ploidy subset, we found that infection rates were elevated in more highly polyploid cells and lower in diploid cells. Furthermore, we found that the parasite's preference for host cells with high ploidy is conserved among rodent malaria species and the human malaria parasite Plasmodium falciparum. This parasite preference for host cells of high ploidy cannot be explained by differences in hepatocyte size or DNA replication. We conclude that Plasmodium preferentially infects and develops in polyploid hepatocytes. © 2014 John Wiley & Sons Ltd.
Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy
Austin, Laura S.; Kaushansky, Alexis; Kappe, Stefan H.I.
2014-01-01
Summary Plasmodium parasites infect hepatocytes of their mammalian hosts and within undergo obligate liver stage development. The specific host cell attributes that are important for liver infection remain largely unknown. Several host signaling pathways are perturbed in infected hepatocytes, some of which are important in the generation of hepatocyte polyploidy. To test the functional consequence of polyploidy in liver infection, we infected hepatocytes with the rodent malaria parasite Plasmodium yoelii both in vitro and in vivo and examined the ploidy of infected and uninfected hepatocytes by flow cytometry. In both hepatoma cell lines and in the mouse liver, the fraction of polyploid cells was higher in the infected cell population than in the uninfected cell population. When the data were reanalyzed by comparing the extent of Plasmodium infection within each ploidy subset, we found that infection rates were elevated in more highly polyploid cells and lower in diploid cells. Furthermore, we found that the parasite’s preference for host cells with high ploidy is conserved among rodent malaria species and the human malaria parasite Plasmodium falciparum. This parasite preference for host cells of high ploidy cannot be explained by differences in hepatocyte size or DNA replication. We conclude that Plasmodium preferentially infects and develops in polyploid hepatocytes. PMID:24612025
Chattopadhyay, Pronobesh; Shukla, Gunjan; Wahi, Arun Kumar
2009-01-01
To study the effect of L-arginine on apoptosis and necrosis induced by 1-h ischemia followed by 3-h reperfusion. Adult Wistar rats underwent 60 min of partial liver ischemia followed by 3-h reperfusion. Eighteen Wistar rats were divided into sham-operated control group (I) (n = 6), ischemia and reperfusion (I/R) group (0.9 % saline (5 mL/kg, orally) for 7 days) (II) (n = 6), and L-arginine-treated group (10 mg/kg body weight daily orally for 7 days before inducing ischemia-reperfusion maneuver) (III) (n = 6). Apoptotic and necrotic hepatocytes, nitric oxide levels in hepatocytes, Bcl-2 mRNA, and Bcl-2 protein were measured. Liver injury was assessed by plasma alanine transaminases (ALT), aspartate transaminases (AST), liver histopathology, and electron microscopy. An ischemic and reperfusion hepatocellular injury occurred as was indicated by increased serum ALT, AST, histopathology, and electron microscopy. Apoptosis and necrosis associated marker gene Bcl-2 mRNA and protein expression were decreased in I/R group. Pretreatment with L-arginine significantly decreased serum ALT and AST level and apoptotic and necrotic cells after 1 h ischemia followed by 3 h of reperfusion. Nitric oxide production in hepatocytes was increased twofold by L-arginine treatment when compared with I/R group. Histopathology and transmission electron microscopy (TEM) studies showed markedly diminished hepatocellular injury in L-arginine-pretreated rats during the hepatic I/R. Thus, it may be concluded that L-arginine afforded significant protection from necrosis and apoptosis in I/R injury by upregulated Bcl-2 gene and nitric oxide production.
Ultrasound-targeted hepatic delivery of factor IX in hemophiliac mice.
Anderson, C D; Moisyadi, S; Avelar, A; Walton, C B; Shohet, R V
2016-06-01
Ultrasound-targeted microbubble destruction (UTMD) was used to direct the delivery of plasmid and transposase-based vectors encoding human factor IX (hFIX) to the livers of hemophilia B (FIX-/-) mice. The DNA vectors were incorporated into cationic lipid microbubbles, injected intravenously, and transfected into hepatocytes by acoustic cavitation of the bubbles as they transited the liver. Ultrasound parameters were identified that produced transfection of hepatocytes in vivo without substantial damage or bleeding in the livers of the FIX-deficient mice. These mice were treated with a conventional expression plasmid, or one containing a piggyBac transposon construct, and hFIX levels in the plasma and liver were evaluated at multiple time points after UTMD. We detected hFIX in the plasma by western blotting from mice treated with either plasmid during the 12 days after UTMD, and in the hepatocytes of treated livers by immunofluorescence. Reductions in clotting time and improvements in the percentage of FIX activity were observed for both plasmids, conventional (4.15±1.98%), and transposon based (2.70±.75%), 4 to 5 days after UTMD compared with untreated FIX (-/-) control mice (0.92±0.78%) (P=0.001 and P=0.012, respectively). Reduced clotting times persisted for both plasmids 12 days after treatment (reflecting percentage FIX activity of 3.12±1.56%, P=0.02 and 3.08±0.10%, P=0.001, respectively). Clotting times from an additional set of mice treated with pmGENIE3-hFIX were evaluated for long-term effects and demonstrated a persistent reduction in average clotting time 160 days after a single treatment. These data suggest that UTMD could be a minimally invasive, nonviral approach to enhance hepatic FIX expression in patients with hemophilia.
Gandhi, Adarsh S.; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Castaneto, Marisol; Scheidweiler, Karl B.; Huestis, Marilyn A.
2014-01-01
N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolic profiles. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 μmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h phase I metabolites predominated, while at 3 h phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 μmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 7.2±0.6 min and intrinsic clearance (CLint) was 93.6 mL·min−1·kg−1. This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing. PMID:24827428
Optimization of upcyte® human hepatocytes for the in vitro micronucleus assay.
Nörenberg, Astrid; Heinz, Stefan; Scheller, Katharina; Hewitt, Nicola J; Braspenning, Joris; Ott, Michael
2013-12-12
"Upcyte(®) human hepatocytes" have the unique property of combining proliferation with the expression of drug metabolising activities. In our current study, we evaluated whether these cells would be suitable for early in vitro micronucleus (MN) tests. A treatment period of 96 h without a recovery period was most reliable for detecting MN formation in upcyte(®) hepatocytes from Donor 740. The basal MN rate in upcyte(®) hepatocytes varied considerably between donors (7-28%); therefore, modifications to the assay medium were tested to determine whether they could decrease inherent MN formation. Optimal medium supplements were 10 ng/ml oncostatin M for the pre-culture and recovery periods and 25 ng/ml epidermal growth factor and 10 ng/ml oncostatin M for the treatment period. Using the optimised conditions and outcome criteria, the upcyte(®) hepatocyte MN assay could correctly identify directly acting (e.g. mitomycin C, etoposide) and metabolically activated genotoxins (e.g. benzo[a]pyrene, cyclophosphamide). "True negative" and "false positive" compounds were also correctly identified as negative. The basal %MN in upcyte(®) hepatocytes from Donor 740 treated with DMSO, cyclophosphamide or MMC, was essentially unaffected by the growth stage ranging from population doublings of 14-61, suggesting that billions of cells could be produced from a single donor for standardised drug toxicity testing. In conclusion, we have established and optimised an in vitro MN test by using upcyte(®) hepatocytes to correctly identify known direct and metabolically activated genotoxicants as well as "false positives" and true negative compounds. The almost unlimited supply of cells from a single donor and optimised test conditions increase reproducibility in early and more predictive in vitro MN tests. Copyright © 2013 Elsevier B.V. All rights reserved.
Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K
2017-03-15
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Kung-Yen; Lin, Jui-An; Yao, Han-Yun; Hsu, An-Chih; Tai, Yu-Ting; Chen, Jui-Tai; Hsieh, Mao-Chih; Shen, Tang-Long; Hsu, Ren-Yi; Wu, Hong-Tan; Wang, Guey Horng; Ho, Bing-Ying; Chen, Yu-Pei
2018-04-01
Arctigenin (ATG), a lignin extracted from Arctium lappa (L.), exerts antioxidant and anti-inflammatory effects. We hypothesized that ATG exerts a protective effect on hepatocytes by preventing nonalcoholic fatty liver disease (NAFLD) progression associated with lipid oxidation-associated lipotoxicity and inflammation. We established an in vitro NAFLD cell model by using normal WRL68 hepatocytes to investigate oleic acid (OA) accumulation and the potential bioactive role of ATG. The results revealed that ATG inhibited OA-induced lipid accumulation, lipid peroxidation, and inflammation in WRL68 hepatocytes, as determined using Oil Red O staining, thiobarbituric acid reactive substance assay, and inflammation antibody array assays. Quantitative RT-PCR analysis demonstrated that ATG significantly mitigated the expression of acetylcoenzyme A carboxylase 1 and sterol regulatory element-binding protein-1 and significantly increased the expression of carnitine palmitoyltransferase 1 and peroxisome proliferator-activated receptor alpha. The 40 targets of the Human Inflammation Antibody Array indicated that ATG significantly inhibited the elevation of the U937 lymphocyte chemoattractant, ICAM-1, IL-1β, IL-6, IL-6sR, IL-7, and IL-8. ATG could activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK) pathways and could increase the phosphorylation levels of Akt and AMPK to mediate cell survival, lipid metabolism, oxidation stress, and inflammation. Thus, we demonstrated that ATG could inhibit NAFLD progression associated with lipid oxidation-associated lipotoxicity and inflammation, and we provided insights into the underlying mechanisms and revealed potential targets to enable a thorough understanding of NAFLD progression. Copyright © 2018 Elsevier Inc. All rights reserved.
GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qin; Sha, Sha; Sun, Lei
The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and inducedmore » hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. -- Highlights: •Liraglutide reduces lipid accumulation in hepatic steatosis both in vivo and in vitro. •Autophagy was involved in relieving effects of liraglutide on hepatic steatosis. •AMPK/mTOR pathway was involved in liraglutide-induced autophagy.« less
Chen, Guo
2010-01-01
Hepatic hollow fiber (HF) bioreactors constitute one type of extracorporeal bioartificial liver assist device (BLAD). Ideally, cultured hepatocytes in a BLAD should closely mimic the in vivo oxygenation environment of the liver sinusoid to yield a device with optimal performance. However, most BLADs, including hepatic HF bioreactors, suffer from O2 limited transport toward cultured hepatocytes, which reduces their performance. We hypothesize that supplementation of hemoglobin-based O2 carriers into the circulating cell culture medium of hepatic HF bioreactors is a feasible and effective strategy to improve bioreactor oxygenation and performance. We examined the effect of bovine hemoglobin (BvHb) supplementation (15 g/L) in the circulating cell culture medium of hepatic HF bioreactors on hepatocyte proliferation, metabolism, and varied liver functions, including biosynthesis, detoxification, and biotransformation. It was observed that BvHb supplementation supported the maintenance of a higher cell mass in the extracapillary space, improved hepatocyte metabolic efficiency (i.e., hepatocytes consumed much less glucose), improved hepatocyte capacity for drug metabolism, and conserved both albumin synthesis and ammonia detoxification functions compared to controls (no BvHb supplementation) under the same experimental conditions. PMID:20528678
Chen, Li; Liu, Tao; Zhang, Bo; Xiang, Dedong; Wang, Zhengguo
2012-01-01
There is increasing evidence that mesenchymal stem cells (MSCs) derived from different tissues could act as an alternative source of mature hepatocytes for treatment of acute liver failure (ALF). Human umbilical cord matrix stem cells (hUCMSCs) represent a novel source of MSCs. We examined the therapeutic potential and the different mechanisms of hUCMSCs by their transplantation into nonobese diabetic severe combined-immunodeficient (NOD-SCID) mice with carbon tetrachloride (CCl4)-induced ALF in comparison to adult human hepatocytes (AHHs). The characteristics of isolated hUCMSCs were determined from MSCs and hepatocyte marker expression, hepatic function, and differentiation. Native hUCMSCs constitutively expressed some hepatic markers, though weaker hepatocyte-specific functions were observed when compared to AHHs. When native hUCMSCs or AHHs were transplanted into livers of NOD-SCID mice with ALF induced by CCl4, both hUCMSCs and AHHs provided a significant survival benefit and prevented the release of liver injury biomarkers. hUCMSCs were found to engraft within the recipient liver and differentiated into functional hepatocytes, whereas the HepPar1-/albumin (ALB)-positive cells of the hUCMSC group were less than the AHH group in the recipient liver. Higher values of human ALB in the serum of mice-transplanted AHHs were determined in comparison with levels in mice-transplanted hUCMSCs. The analysis of mouse serum cytokine levels showed that hUCMSC transplantation was even more effective than treatment with AHHs and successfully downregulated the systemic inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-10, and IL-1 receptor antagonist (IL-1RA). Furthermore, paracrine effects produced by hUCMSCs were identified by indirect coculture with damaged mouse hepatocytes (MHs) induced by CCl4. Coculture with hUCMSCs significantly increased the viability, ALB secretion of damaged MHs, and greatly enhanced the regeneration of MHs in vitro when compared with AHHs. These data suggest that direct transplantation of native hUCMSCs can rescue ALF and repopulate livers of mice through paracrine effects to stimulate endogenous liver regeneration rather than hepatic differentiation for compensated liver function, which is the primary effect of AHHs. Thus, hUCMSCs can be a potential alternative source of AHHs for cell therapy of ALF and eliminate the shortage of hepatocytes. PMID:22519429
Accurate Prediction of Drug-Induced Liver Injury Using Stem Cell-Derived Populations
Szkolnicka, Dagmara; Farnworth, Sarah L.; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P.; Flint, Oliver
2014-01-01
Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies. PMID:24375539
Bolger, Gordon T; Licollari, Albert; Tan, Aimin; Greil, Richard; Vcelar, Brigitta; Majeed, Muhammad; Helson, Lawrence
2017-07-01
The aim of this study was to investigate the distribution of curcumin (in the form of Lipocurc™) and its major metabolite tetrahydrocurcumin (THC) in Beagle dog and human red blood cells, peripheral blood mononuclear cells (PBMC) and hepatocytes. Lipocurc™ was used as the source of curcumin for the cell distribution assays. In vitro findings with red blood cells were also compared to in vivo pharmacokinetic data available from preclinical studies in dogs and phase I clinical studies in humans. High levels of curcumin were measured in PBMCs (625.5 ng/g w.w. cell pellet or 7,297 pg/10 6 cells in dog and 353.7 ng/g w.w. cell pellet or 6,809 pg/10 6 cells in human) and in hepatocytes (414.5 ng/g w.w. cell pellet or 14,005 pg/10 6 cells in dog and 813.5 ng/g w.w. cell pellet or 13,780 pg/10 6 cells in human). Lower curcumin levels were measured in red blood cells (dog: 78.4 ng/g w.w. cell pellet or 7.2 pg/10 6 cells, human: 201.5 ng/g w.w. cell pellet or 18.6 pg/10 6 cells). A decrease in the medium concentration of curcumin was observed in red blood cells and hepatocytes, but not in PBMCs. Red blood cell levels of THC were ~5-fold higher in dog compared to human and similar between dog and human for hepatocytes and PBMCs. The ratio of THC to curcumin found in the red blood cell medium following incubation was 6.3 for dog compared to 0.006 for human, while for PBMCs and hepatocytes the ratio of THC to curcumin in the medium did not display such marked species differences. There was an excellent correlation between the in vitro disposition of curcumin and THC following incubation with red blood cells and in vivo plasma levels of curcumin and THC in dog and human following intravenous infusion. The disposition of curcumin in blood cells is, therefore, species-dependent and of pharmacokinetic relevance. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Fox, I J; Chowdhury, N R; Gupta, S; Kondapalli, R; Schilsky, M L; Stockert, R J; Chowdhury, J R
1995-03-01
Viral vectors and protein carriers utilizing asialoglycoprotein receptor (ASGR)-mediated endocytosis are being developed to transfer genes for the correction of bilirubin-UDP-glucuronosyltransferase (bilirubin-UGT) deficiency. Ex vivo evaluation of these gene transfer vectors would be facilitated by a cell system that lacks bilirubin-UGT, but expresses differentiated liver functions, including ASGR. We immortalized primary Gunn rat hepatocytes by transduction with a recombinant Moloney murine leukemia virus expressing a thermolabile mutant SV40 large T antigen (tsA58). At 33 degrees C, the immortalized hepatocyte clones expressed SV40 large T antigen, synthesized DNA, and doubled in number every 2 to 3 days. At this temperature, differentiated hepatocyte markers, e.g., albumin, ASGR, and androsterone-UGT, were expressed at 5% to 10% of the levels found in primary hepatocytes maintained in culture for 24 hours. Glutathione-S-transferase Yp (GST-Yp), an oncofetal protein, was expressed in these cells at 33 degrees C, but was undetectable in primary hepatocytes. In contrast, when the cells were cultured at 39 degrees C or 37 degrees C, the large T antigen was degraded, DNA synthesis and cell growth stopped, and morphologic characteristics of differentiated hepatocytes were observed. The expression of albumin, ASGR, and androsterone-UGT, and their corresponding mRNAs, increased to 25% to 40% of the level in primary hepatocytes, whereas GST-Yp expression decreased. Functionality of ASGR was demonstrated by internalization of Texas red-labeled asialoorosomucoid, and binding and degradation of 125I-asialoorosomucoid. After liposome-mediated transfer of a plasmid containing the coding region of human bilirubin-UGT1, driven by the SV40 large T promoter, active human bilirubin-UGT1 was expressed in these cells. The immortalized cells were not tumorigenic after transplantation into severe combined immunodeficiency mice. These conditionally immortalized cells will be useful for ex vivo evaluation of bilirubin-UGT gene transfer vectors.
Du, Yingdong; Li, Dawei; Han, Conghui; Wu, Haoyu; Xu, Longmei; Zhang, Ming; Zhang, Jianjun; Chen, Xiaosong
2017-01-01
This study aimed to evaluate the effects of exosomes produced by human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs-Exo) on hepatic ischemia-reperfusion (I/R) injury, as well as the underlying mechanisms. Exosomes derived from hiPSC-MSCs were isolated and characterized both biochemically and biophysically. hiPSC-MSCs-Exo were injected systemically into a murine ischemia/reperfusion injury model via the inferior vena cava, and then the therapeutic effects were evaluated. The serum levels of transaminases (aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as histological changes were examined. Primary hepatocytes and human hepatocyte cell line HL7702 were used to test whether exosomes could induce hepatocytes proliferation in vitro. In addition, the expression levels of proliferation markers (proliferation cell nuclear antigen, PCNA; Phosphohistone-H3, PHH3) were measured by immunohistochemistry and Western blot. Moreover, SK inhibitor (SKI-II) and S1P1 receptor antagonist (VPC23019) were used to investigate the role of sphingosine kinase and sphingosine-1-phosphate-dependent pathway in the effects of hiPSC-MSCs-Exo on hepatocytes. hiPSCs were efficiently induced into hiPSC-MSCs that had typical MSC characteristics. hiPSC-MSCs-Exo had diameters ranging from 100 to 200 nm and expressed exosome markers (Alix, CD63 and CD81). After hiPSC-MSCs-Exo administration, hepatocyte necrosis and sinusoidal congestion were markedly suppressed in the ischemia/reperfusion injury model, with lower histopathological scores. The levels of hepatocyte injury markers AST and ALT were significantly lower in the treatment group compared to control, and the expression levels of proliferation markers (PCNA and PHH3) were greatly induced after hiPSC-MSCs-Exo administration. Moreover, hiPSC-MSCs-Exo also induced primary hepatocytes and HL7702 cells proliferation in vitro in a dose-dependent manner. We found that hiPSC-MSCs-Exo could directly fuse with target hepatocytes or HL7702 cells and increase the activity of sphingosine kinase and synthesis of sphingosine-1-phosphate (S1P). Furthermore, the inhibition of SK1 or S1P1 receptor completely abolished the protective and proliferative effects of hiPSC-MSCs-Exo on hepatocytes, both in vitro and in vivo. Our results demonstrated that hiPSC-MSCs-Exo could alleviate hepatic I/R injury via activating sphingosine kinase and sphingosine-1-phosphate pathway in hepatocytes and promote cell proliferation. These findings represent a novel mechanism that potentially contributes to liver regeneration and have important implications for new therapeutic approaches to acute liver disease. © 2017 The Author(s). Published by S. Karger AG, Basel.
Biohybrid Membrane Systems and Bioreactors as Tools for In Vitro Drug Testing.
Salerno, Simona; Bartolo, Loredana De
2017-01-01
In drug development, in vitro human model systems are absolutely essential prior to the clinical trials, considering the increasing number of chemical compounds in need of testing, and, keeping in mind that animals cannot predict all the adverse human health effects and reactions, due to the species-specific differences in metabolic pathways. The liver plays a central role in the clearance and biotransformation of chemicals and xenobiotics. In vitro liver model systems by using highly differentiated human cells could have a great impact in preclinical trials. Membrane biohybrid systems constituted of human hepatocytes and micro- and nano-structured membranes, represent valuable tools for studying drug metabolism and toxicity. Membranes act as an extracellular matrix for the adhesion of hepatocytes, and compartmentalise them in a well-defined physical and chemical microenvironment with high selectivity. Advanced 3-D tissue cultures are furthermore achieved by using membrane bioreactors (MBR), which ensure the continuous perfusion of cells protecting them from shear stress. MBRs with different configurations allow the culturing of cells at high density and under closely monitored high perfusion, similarly to the natural liver. These devices that promote the long-term maintenance and differentiation of primary human hepatocytes with preserved liver specific functions can be employed in drug testing for prolonged exposure to chemical compounds and for assessing repeated-dose toxicity. The use of primary human hepatocytes in MBRs is the only system providing a faster and more cost-effective method of analysis for the prediction of in vitro human drug metabolism and enzyme induction alternative and/or complementary to the animal experimentation. In this paper, in vitro models for studying drug metabolism and toxicity as advanced biohybrid membrane systems and MBRs will be reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Noel, Gregory; Le Vee, Marc; Moreau, Amélie; Stieger, Bruno; Parmentier, Yannick; Fardel, Olivier
2013-04-11
Primary hepatocyte cultures are now considered as convenient models for in vitro analyzing liver drug transport. However, if primary human and rat hepatocytes have been well-characterized with respect to drug transporter expression and regulation, much less is known for primary mouse hepatocytes. The present study was therefore designed to gain insights about this point. The profile of sinusoidal and canalicular drug transporter mRNA expression in short time (4h)-cultured mouse hepatocytes was found to be highly correlated with that of freshly isolated hepatocytes; by contrast, those of counterparts cultured for a longer time (until 4 days) either in monolayer configurations on plastic or collagen or in sandwich configuration with matrigel were profoundly altered: uptake drug transporters such as Oct1, Oatps and Oat2 were thus down-regulated, whereas most of efflux transporters such as Mdr1a/b, Mrp3, Mrp4 and Bcrp were induced. Moreover, short time-cultured hepatocytes exhibited the highest levels of sinusoidal influx transporter activities. Transporter-mediated drug secretion into canalicular networks was however only observed in sandwich-cultured hepatocytes. Mouse hepatocytes cultured either in monolayer or sandwich configurations were finally shown to exhibit up-regulation of referent transporters in response to exposure to prototypical activators of the drug sensing receptors pregnane X receptor, aryl hydrocarbon receptor or constitutive androstane receptor. Taken together, these data demonstrate the feasibility of using primary mouse hepatocytes for investigating potential interactions of xenobiotics with hepatic transporter activity or regulation, provided that adequate culture conditions are retained. Copyright © 2013 Elsevier B.V. All rights reserved.
Ren, Hong-ying; Zhao, Qin-jun; Xing, Wen; Yang, Shao-guang; Lu, Shi-hong; Ren, Qian; Zhang, Lei; Han, Zhong-chao
2010-04-01
To investigate the biological function of hepatocyte-like cells derived from mesenchymal stem cells that isolated from human umbilical cord UC-MSCs in vitro, and to detect the changes in the immunogenicity of the differentiated hepatocyte-like cells (DHC). Transdifferentiation of UC-MSCs into hepatic lineage in vitro was induced in modified two-step induction medium. The expressions of hepatic specific markers were detected by RT-PCR analysis and immunofluorescence staining at different time points after induction. The levels of albumin and urea in the supernatants of cultures were measured by enzyme-linked immunosorbent assay. Furthermore, the immunosuppressive property of DHC was detected by one-way mixed lymphocyte culture. The mRNA and proteins of alpha fetoprotein (AFP), albumin (ALB),and cytokeratin-19 (CK-19) were expressed in naive UC-MSCs at low levels. DHC highly expressed hepatic markers AFP, ALB, CK-19, and tryptophan 2, 3-dioxygenase 14 and 28 days after hepatic differentiation and were accompanied by an increased production of ALB and urea in supernatant in a time-dependent manner. DHC did not express human leukocyte antigen DR antigen and significantly decreased the lymphocyte proliferation. UC-MSCs are able to differentiate into functional hepatocyte-like cells in vitro, while the immunogenicity of DHC remains low.
Yuan, Lunzhi; Liu, Xuan; Zhang, Liang; Li, Xiaoling; Zhang, Yali; Wu, Kun; Chen, Yao; Cao, Jiali; Hou, Wangheng; Zhang, Jun; Zhu, Hua; Yuan, Quan; Tang, Qiyi; Cheng, Tong; Xia, Ningshao
2018-01-01
Humanized mouse model generated by grafting primary human hepatocytes (PHHs) to immunodeficient mouse has contributed invaluably to understanding the pathogenesis of hepatitis B virus (HBV). However, the source of PHHs is limited, which necessitates the search for alternatives. Recently, hepatocyte-like cells (HLCs) generated from human induced pluripotent stem cells (hiPSCs) have been used for in vitro HBV infection. Herein, we developed a robust human liver chimeric animal model to study in vivo HBV infection by engrafting the hiPSC-HLCs to Fah-/-Rag2-/-IL-2Rγc-/- SCID (FRGS) mice. After being optimized by a small molecule, XMU-MP-1, the hiPSC-HLCs engrafted FRGS (hHLC-FRGS) mice displayed approximately 40% liver chimerism at week 6 after engraftment and maintained at this level for at least 14 weeks. Viremia and HBV infection markers include antigens, RNA, DNA, and covalently closed circular DNA were detectable in HBV infected hHLC-FRGS mice. Furthermore, hiPSC-HLCs and hHLC-FRGS mice were successfully used to evaluate different antivirals. Therefore, we established a humanized mouse model for not only investigating HBV pathogenesis but also testing the effects of the anti-HBV drugs. Highlights: (1) The implanted hiPSC-HLCs established a long-term chimerism in FRGS mice liver. (2) hHLC-FRGS mice are adequate to support chronic HBV infection with a full viral life cycle. (3) hiPSC-HLCs and hHLC-FRGS mice are useful tools for evaluation of antivirals against HBV infection in vitro and in vivo. Research in Context To overcome the disadvantages of using primary human hepatocytes, we induced human pluripotent stem cells to hepatocyte-like cells (hiPSC-HLCs) that developed the capability to express important liver functional markers and critical host factors for HBV infection. The hiPSC-HLCs were permissive for the HBV infection and supported a full HBV replication. The hiPSC-HLCs were then engrafted to immunodeficient mouse to establish a chimeric liver mouse model, which was capable of supporting HBV infection in vivo and evaluating the effects of antiviral drugs. Our results shed light into improving the cellular and animal models for studying HBV and other hepatotropic viruses. PMID:29867819
Vosough, Massoud; Omidinia, Eskandar; Kadivar, Mehdi; Shokrgozar, Mohammad-Ali; Pournasr, Behshad; Aghdami, Nasser; Baharvand, Hossein
2013-10-15
Recent advances in human embryonic and induced pluripotent stem cell-based therapies in animal models of hepatic failure have led to an increased appreciation of the need to translate the proof-of-principle concepts into more practical and feasible protocols for scale up and manufacturing of functional hepatocytes. In this study, we describe a scalable stirred-suspension bioreactor culture of functional hepatocyte-like cells (HLCs) from the human pluripotent stem cells (hPSCs). To promote the initial differentiation of hPSCs in a carrier-free suspension stirred bioreactor into definitive endoderm, we used rapamycin for "priming" phase and activin A for induction. The cells were further differentiated into HLCs in the same system. HLCs were characterized and then purified based on their physiological function, the uptake of DiI-acetylated low-density lipoprotein (LDL) by flow cytometry without genetic manipulation or antibody labeling. The sorted cells were transplanted into the spleens of mice with acute liver injury from carbon tetrachloride. The differentiated HLCs had multiple features of primary hepatocytes, for example, the expression patterns of liver-specific marker genes, albumin secretion, urea production, collagen synthesis, indocyanin green and LDL uptake, glycogen storage, and inducible cytochrome P450 activity. They increased the survival rate, engrafted successfully into the liver, and continued to present hepatic function (i.e., albumin secretion after implantation). This amenable scaling up and outlined enrichment strategy provides a new platform for generating functional HLCs. This integrated approach may facilitate biomedical applications of the hPSC-derived hepatocytes.
Transformation of primary human hepatocytes in hepatocellular carcinoma.
Montalbano, Mauro; Rastellini, Cristiana; Wang, Xiaofu; Corsello, Tiziana; Eltorky, Mahmoud A; Vento, Renza; Cicalese, Luca
2016-03-01
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Currently, there is limited knowledge of neoplastic transformation of hepatocytes in HCC. In clinical practice, the high rate of HCC local recurrence suggests the presence of different hepatocyte populations within the liver and particularly in the tumor proximity. The present study investigated primary human hepatocyte cultures obtained from liver specimens of patients affected by cirrhosis and HCC, their proliferation and transformation. Liver samples were obtained from seven HCC cirrhotic patients and from three patients with normal liver (NL). Immediately after surgery, cell outgrowth and primary cultures were obtained from the HCC lesion, the cirrhotic tissue proximal (CP, 1-3 cm) and distal (CD, >5 cm) to the margin of the neoplastic lesion, or from NL. Cells were kept in culture for 16 weeks. Morphologic analyses were performed and proliferation rate of the different cell populations compared over time. Glypican-3, Heppar1, Arginase1 and CD-44 positivity were tested. The degree of invasiveness of cells acquiring neoplastic characteristics was studied with a transwell migration assay. We observed that HCC cells maintained their morphology and unmodified neoplastic characteristics when cultured. Cells isolated from CP, showed a progressive morphologic transformation in HCC-like cells accompanied by modification of markers expression with signs of invasiveness. Absence of HCC contamination in the CP isolates was confirmed. In CD samples some of these characteristics were present and at significantly lower levels. With the present study, we are the first to have identified and describe the existence of human hepatocytes near the cancerous lesion that can transform in HCC in vitro.
da Silva, Regiane Pereira; Jacociunas, Laura Vicedo; de Carli, Raíne Fogliati; de Abreu, Bianca Regina Ribas; Lehmann, Mauricio; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Dihl, Rafael Rodrigues
2017-10-01
Cynara scolymus L., popularly known as artichoke, is consumed as food and used as tea infusions for pharmacological purposes to treat liver dysfunctions and other conditions. Scientific data on the safety and protective effect of artichoke in human-derived liver cells is missing. This study investigated the genotoxic and modulatory effect of a liophilized extract suspended in water of C. scolymus L. leaves. Four extract concentrations (0.62, 1.25, 2.5 and 5.0 mg/mL) were evaluated using the comet assay on human hepatocyte cultures, HepG2 cells. Genotoxicity was assessed after two treatment periods, 1 and 24 h. Antigenotoxicity was evaluated against oxidative lesions induced by hydrogen peroxide in pre-, simultaneous and post-treatment protocols. Artichoke leaves aqueous extract induced genotoxic effects in HepG2 cells after 1- and 24-h treatments. In turn, extract concentrations of 0.62, 1.25 and 2.5 mg/mL, exhibited a protective effect in pretreatment, compared to hydrogen peroxide alone. However, in simultaneous and post-treatment protocols, only the lowest concentration reduced the frequency of DNA damage induced by hydrogen peroxide. In addition, in the simultaneous treatment protocol, the highest artichoke extract concentration increased hydrogen peroxide genotoxicity. It can be concluded that artichoke is genotoxic, in vitro, to HepG2 cells, but can also modulate hydrogen peroxide DNA damage.
Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi
2015-10-13
To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y.; Tanaka, Minoru; Miyajima, Atsushi
2015-01-01
Summary To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM+ cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM+ cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM+ cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. PMID:26365514
Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function
Sen, Supriya; Jumaa, Hassan; Webster, Nicholas J.G.
2015-01-01
SR family RNA binding proteins regulate splicing of nascent RNAs in vitro but their physiological role in vivo is largely unexplored, as genetic deletion of many SR protein genes results in embryonic lethality. Here we show that SRSF3HKO mice carrying a hepatocyte-specific deletion of Srsf3 (homologous to human SRSF3/SRp20) have a disrupted hepatic architecture and show pre- and postnatal growth retardation. SRSF3HKO mice exhibit impaired hepatocyte maturation with alterations in glucose and lipid homeostasis characterized by reduced glycogen storage, fasting hypoglycemia, increased insulin sensitivity and reduced cholesterol synthesis. We identify various splicing alterations in the SRSF3HKO liver that explain the in vivo phenotype. In particular, loss of SRSF3 causes aberrant splicing of Hnf1α, Ern1, Hmgcs1, Dhcr7 and Scap genes, which are critical regulators of glucose and lipid metabolism. Our study provides the first evidence for a SRSF3-driven genetic programme required for morphological and functional differentiation of hepatocytes that may have relevance for human liver disease and metabolic dysregulation. PMID:23299886
Methamphetamine enhances Hepatitis C virus replication in human hepatocytes
Ye, L.; Peng, J. S.; Wang, X.; Wang, Y. J.; Luo, G. X.; Ho, W. Z.
2009-01-01
SUMMARY Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease. PMID:18307590
Takayama, Kazuo; Morisaki, Yuta; Kuno, Shuichi; Nagamoto, Yasuhito; Harada, Kazuo; Furukawa, Norihisa; Ohtaka, Manami; Nishimura, Ken; Imagawa, Kazuo; Sakurai, Fuminori; Tachibana, Masashi; Sumazaki, Ryo; Noguchi, Emiko; Nakanishi, Mahito; Hirata, Kazumasa; Kawabata, Kenji; Mizuguchi, Hiroyuki
2014-11-25
Interindividual differences in hepatic metabolism, which are mainly due to genetic polymorphism in its gene, have a large influence on individual drug efficacy and adverse reaction. Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells have the potential to predict interindividual differences in drug metabolism capacity and drug response. However, it remains uncertain whether human iPSC-derived HLCs can reproduce the interindividual difference in hepatic metabolism and drug response. We found that cytochrome P450 (CYP) metabolism capacity and drug responsiveness of the primary human hepatocytes (PHH)-iPS-HLCs were highly correlated with those of PHHs, suggesting that the PHH-iPS-HLCs retained donor-specific CYP metabolism capacity and drug responsiveness. We also demonstrated that the interindividual differences, which are due to the diversity of individual SNPs in the CYP gene, could also be reproduced in PHH-iPS-HLCs. We succeeded in establishing, to our knowledge, the first PHH-iPS-HLC panel that reflects the interindividual differences of hepatic drug-metabolizing capacity and drug responsiveness.
Venkataramanan, R; Ramachandran, V; Komoroski, B J; Zhang, S; Schiff, P L; Strom, S C
2000-11-01
Milk thistle extract is one of the most commonly used nontraditional therapies, particularly in Germany. Milk thistle is known to contain a number of flavonolignans. We evaluated the effect of silymarin, on the activity of various hepatic drug-metabolizing enzymes in human hepatocyte cultures. Treatment with silymarin (0.1 and 0.25 mM) significantly reduced the activity of CYP3A4 enzyme (by 50 and 100%, respectively) as determined by the formation of 6-beta-hydroxy testosterone and the activity of uridine diphosphoglucuronosyl transferase (UGT1A6/9) (by 65 and 100%, respectively) as measured by the formation of 4-methylumbelliferone glucuronide. Silymarin (0.5 mM) also significantly decreased mitochondrial respiration as determined by MTT reduction in human hepatocytes. These observations point to the potential of silymarin to impair hepatic metabolism of certain coadministered drugs in humans. Indiscriminate use of herbal products may lead to altered pharmacokinetics of certain drugs and may result in increased toxicity of certain drugs.
[Crabtree effect caused by ketoses in isolated rat hepatocytes].
Martínez, P; Carrascosa, J M; Núñez de Castro, I
1982-01-01
Oxygen uptake and glycolytic activity were studied in hepatocytes isolated from fed rats. The addition of fructose or tagatose resulted in a 38% and 31% inhibition of cellular respiration respectively. The addition of 10 mM D-glyceraldehyde caused a slight Crabtree effect. Glucose, L-sorbose, or glycerol failed to modify oxygen consumption. Only incubation in the presence of fructose showed a high aerobic glycolysis measured by lactate production.
Yiannikouris, Frederique; Wang, Yu; Shoemaker, Robin; Larian, Nika; Thompson, Joel; English, Victoria L; Charnigo, Richard; Su, Wen; Gong, Ming; Cassis, Lisa A
2015-10-01
We recently demonstrated that adipocyte deficiency of angiotensinogen (AGT) ablated high-fat diet-induced elevations in plasma angiotensin II (Ang II) concentrations and obesity-hypertension in male mice. Hepatocytes are the predominant source of systemic AGT. Therefore, in this study, we defined the contribution of hepatocyte-derived AGT to obesity-induced elevations in plasma AGT concentrations and hypertension. Male Agt(fl/fl) mice expressing albumin-driven Cre recombinase were bred to female Agt(fl/fl) mice to generate Agt(fl/fl) or hepatocyte AGT-deficient male mice (Agt(Alb)). Mice were fed a low-fat or high-fat diet for 16 weeks. Hepatocyte AGT deficiency had no significant effect on body weight. Plasma AGT concentrations were increased in obese Agt(fl/fl) mice. Hepatocyte AGT deficiency markedly reduced plasma AGT and Ang II concentrations in lean and obese mice. Moreover, hepatocyte AGT deficiency reduced the content and release of AGT from adipose explants. Systolic blood pressure was markedly decreased in lean (by 18 mm Hg) and obese Agt(Alb) mice (by 54 mm Hg) compared with Agt(fl/fl) controls. To define mechanisms, we quantified effects of Ang II on mRNA abundance of megalin, an AGT uptake transporter, in 3T3-L1 adipocytes. Ang II stimulated adipocyte megalin mRNA abundance and decreased media AGT concentrations. These results demonstrate that hepatocytes are the predominant source of systemic AGT in both lean and obese mice. Moreover, reductions in plasma angiotensin concentrations in obese hepatocyte AGT-deficient mice may have limited megalin-dependent uptake of AGT into adipocytes for the production of Ang II in the development of obesity-hypertension. © 2015 American Heart Association, Inc.
Banerjee, Bodhisattwa; Koner, Debaprasad; Lal, Priyanka; Saha, Nirmalendu
2017-07-30
Arginase (ARG) catalyzes the final step of ornithine-urea cycle (OUC) leading to a conversion of L-arginine to L-ornithine and urea. Several isoforms of ARG have been reported in vertebrates, out of which the two predominant isoforms are the cytosolic ARG1 and the mitochondrial ARG2. The air-breathing walking catfish (Clarias batrachus) is frequently being challenged by different environmental insults such as hyper-ammonia, dehydration and osmotic stresses in their natural habitats throughout the year. The present study investigated the active presence of ARG1 and ARG2 isoforms in hepatocytes along with unique localization of both the isoforms inside the mitochondria, and also their specific expression patterns under hyper-ammonia stress (5mM NH 4 Cl) in isolated hepatocytes of walking catfish. Initially, full length sequences of both arg1 and arg2 genes were obtained by RACE-PCR. Studies on molecular characterization demonstrated the presence of all the conserved amino acids required for stability and activity of binuclear metal center in both the isoforms. Phylogenetic analysis of the amino acid sequences of ARG isoforms showed a differentiation of the ARG1 and ARG2 into two distinct clusters with their respective isoforms from other species. Most interestingly, both the isoforms of ARG in hepatocytes were found to be localized inside the mitochondria as evidenced by the presence of mitochondrial target peptide (mTP) in N-terminal of the derived amino acid sequences, and exclusive localization of ARG activity in the mitochondrial fraction. This was additionally confirmed by Western blot analysis of ARGs in mitochondrial and cytosolic fractions, and by immunocytochemical analysis in isolated hepatocytes. Although the possible reasons associated with the presence of both the isoforms of ARGs inside the mitochondria is not clearly understood, perhaps this mitochondrial localization of ARG is functionally advantageous in this catfish for the synthesis of N-acetyl-l-glutamate, the allosteric regulator for the first OUC enzyme, the carbamoyl phosphate synthetase III, and for supplying ornithine required for citrulline synthesis intramitochondrially. Furthermore, the ammonia stress, due to exposure to high external ammonia, led to greater synthesis of urea-N probably as a consequence of induction of ureogenesis, as evidenced by a larger accumulation of urea-N in hepatocytes and higher secretion in culture media parallel to the increased concentration of ammonia-N in hepatocytes. Ammonia stress also led to specific coordinated patterns of induction of both the arg genes in isolated hepatocytes of walking catfish. Copyright © 2017 Elsevier B.V. All rights reserved.
Yovchev, Mladen; Jaber, Fadi L.; Lu, Zhonglei; Patel, Shachi; Locker, Joseph; Rogler, Leslie E.; Murray, John W.; Sudol, Marius; Dabeva, Mariana D.; Zhu, Liang; Shafritz, David A.
2016-01-01
Liver repopulation by transplanted hepatocytes has not been achieved previously in a normal liver microenvironment. Here we report that adult rat hepatocytes transduced ex vivo with a lentivirus expressing a human YapERT2 fusion protein (hYapERT2) under control of the hepatocyte-specific transthyretin (TTR) promoter repopulate normal rat liver in a tamoxifen-dependent manner. Transplanted hepatocytes expand very slowly but progressively to produce 10% repopulation at 6 months, showing clusters of mature hepatocytes that are fully integrated into hepatic parenchyma, with no evidence for dedifferentiation, dysplasia or malignant transformation. Thus, we have developed the first vector designed to regulate the growth control properties of Yap that renders it capable of producing effective cell therapy. The level of liver repopulation achieved has significant translational implications, as it is 2-3x the level required to cure many monogenic disorders of liver function that have no underlying hepatic pathology and is potentially applicable to diseases of other tissues and organs. PMID:26763940
Preventing hepatocyte oxidative stress cytotoxicity with Mangifera indica L. extract (Vimang).
Remirez, Diadelis; Tafazoli, Shahrzad; Delgado, Rene; Harandi, Asghar A; O'Brien, Peter J
2005-01-01
Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from inflammatory diseases. In the present study we evaluated the effects of Vimang at preventing reactive oxygen species (ROS) formation and lipid peroxidation in intact isolated rat hepatocytes. Vimang at 20, 50 and 100 microg/ml inhibited hepatocyte ROS formation induced by glucose-glucose oxidase. Hepatocyte cytotoxicity and lipid peroxidation induced by cumene hydroperoxide was also inhibited by Vimang in a dose and time dependent manner at the same concentration. Vimang also inhibited superoxide radical formation by xanthine oxidase and hypoxanthine. The superoxide radical scavenging and antioxidant activity of the Vimang extract was likely related to its gallates, catechins and mangiferin content. To our knowledge, this is the first report of cytoprotective antioxidant effects of Vimang in cellular oxidative stress models.
Katsube, Akira; Hayashi, Hisamitsu; Kusuhara, Hiroyuki
2016-12-01
ATP-binding cassette transporter A1 (ABCA1) exerts an atheroprotective action through the biogenesis of high-density lipoprotein in hepatocytes and prevents the formation of foam cells from macrophages. Controlling ABCA1 is a rational approach to improving atherosclerotic cardiovascular disease. Although much is known about the regulatory mechanism of ABCA1 synthesis, the molecular mechanism underpinning its degradation remains to be clearly described. ABCA1 possesses potential sites of phosphorylation by serine/threonine-protein kinase Pim-1 (Pim-1). Pim-1 depletion decreased the expression of cell surface-resident ABCA1 (csABCA1) and apolipoprotein A-I-mediated [ 3 H]cholesterol efflux in the human hepatoma cell line HepG2, but not in peritoneal macrophages from mice. In vitro kinase assay, immunoprecipitation, and immunocytochemistry suggested phosphorylation of csABCA1 by the long form of Pim-1 (Pim-1L). Cell surface biotinylation indicated that Pim-1L inhibited lysosomal degradation of csABCA1 involving the liver X receptor β, which interacts with csABCA1 and thereby protects it from ubiquitination and subsequent lysosomal degradation. Cell surface coimmunoprecipitation with COS-1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that Pim-1L-mediated phosphorylation of csABCA1 facilitated the interaction between csABCA1 and liver X receptor β and thereby stabilized the csABCA1-Pim-1L complex. Mice deficient in Pim-1 kinase activity showed lower expression of ABCA1 in liver plasma membranes and lower plasma high-density lipoprotein levels than control mice. Pim-1L protects hepatic csABCA1 from lysosomal degradation by facilitating the physical interaction between csABCA1 and liver X receptor β and subsequent stabilization of the csABCA1-Pim-1L complex and thereby regulates the circulating level of high-density lipoprotein. Our findings may aid the development of high-density lipoprotein-targeted therapy. © 2016 American Heart Association, Inc.
Mandal, Arundhati; Raju, Sheena; Viswanathan, Chandra
2016-02-01
Human embryonic stem cells (hESCs) are predicted to be an unlimited source of hepatocytes which can pave the way for applications such as cell replacement therapies or as a model of human development or even to predict the hepatotoxicity of drug compounds. We have optimized a 23-d differentiation protocol to generate hepatocyte-like cells (HLCs) from hESCs, obtaining a relatively pure population which expresses the major hepatic markers and is functional and mature. The stability of the HLCs in terms of hepato-specific marker expression and functionality was found to be intact even after an extended period of in vitro culture and cryopreservation. The hESC-derived HLCs have shown the capability to display sensitivity and an alteration in the level of CYP enzyme upon drug induction. This illustrates the potential of such assays in predicting the hepatotoxicity of a drug compound leading to advancement of pharmacology.
Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver
Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans
2015-01-01
Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785
Recent studies on the developing human hepatocellular carcinoma.
Gerber, M A
1986-01-01
From our knowledge of characteristic phenotypic changes of the preneoplastic lesions during the stepwise evolution of hepatocellular carcinoma (HCC) in experimental models, we are now beginning to define the structural, histochemical, biochemical, antigenic and molecular properties of early HCC and of the putative preneoplastic changes in human liver. Histological, ultrastructural, morphometric and immunohistochemical studies suggest that adenomatous nodules of regenerating and hyperplastic hepatocytes are more likely to represent direct precursors of HCC than dysplastic hepatocytes. Histochemical and immunomorphological investigations show appreciable functional and phenotypic heterogeneity of human HCC as previously recognized in experimental hepatocarcinogenesis. Studies of altered expression of oncogenes in the regenerating liver and HCC are beginning to define the molecular mechanisms in cell growth and malignant transformation. Although integration of Hepadna viral DNA sequences frequently occurs during persistent infection in man and animals, the exact mechanism of viral oncogenesis remains to be elucidated. It is likely that the development of monoclonal antibodies to surface antigens on transformed hepatocytes will be useful for exploring lineage relationships between the cell populations involved in hepatocarcinogenesis.
Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi
2014-11-01
Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.
Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Gupta, Pawan Kumar; Bhonde, Ramesh
2012-01-01
The in vitro derived hepatocytes from human embryonic stem cells (hESC) is a promising tool to acquire improved knowledge of the cellular and molecular events underlying early human liver development under physiological and pathological conditions. Here we report a simple two-step protocol employing conditioned medium (CM) from human hepatocellular carcinoma cell line, HepG2 to generate functional hepatocyte-like cells from hESC. Immunocytochemistry, flow cytometry, quantitative RT-PCR, and biochemical analyses revealed that the endodermal progenitors appeared as pockets in culture, and the cascade of genes associated with the formation of definitive endoderm (HNF-3β, SOX-17, DLX-5, CXCR4) was consistent and in concurrence with the up-regulation of the markers for hepatic progenitors [alpha-feto protein (AFP), HNF-4α, CK-19, albumin, alpha-1-antitrypsin (AAT)], followed by maturation into functional hepatocytes [tyrosine transferase (TAT), tryptophan-2, 3-dioxygenase (TDO), glucose 6-phosphate (G6P), CYP3A4, CYP7A1]. We witnessed that the gene expression profile during this differentiation process recapitulated in vivo liver development demonstrating a gradual down-regulation of extra embryonic endodermal markers (SOX-7, HNF-1β, SNAIL-1, LAMININ-1, CDX2), and the generated hepatic cells performed multiple liver functions. Since prenatal alcohol exposure is known to provoke irreversible abnormalities in the fetal cells and developing tissues, we exposed in vitro generated hepatocytes to ethanol (EtOH) and found that EtOH treatment not only impairs the survival and proliferation, but also induces apoptosis and perturbs differentiation of progenitor cells into hepatocytes. This disruption was accompanied by alterations in the expression of genes and proteins involved in hepatogenesis. Our results provide new insights into the wider range of destruction caused by alcohol on the dynamic process of liver organogenesis. Copyright © 2011 Wiley Periodicals, Inc.
Hepatocyte-based in vitro model for assessment of drug-induced cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be; Richert, Lysiane, E-mail: l.richert@kaly-cell.com; Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be
Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation bymore » hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug-induced cholestasis index (DICI) as measure of a drug's cholestatic signature • In vitro findings correlate well with clinical reports on cholestasis.« less
Duparc, Thibaut; Plovier, Hubert; Marrachelli, Vannina G; Van Hul, Matthias; Essaghir, Ahmed; Ståhlman, Marcus; Matamoros, Sébastien; Geurts, Lucie; Pardo-Tendero, Mercedes M; Druart, Céline; Delzenne, Nathalie M; Demoulin, Jean-Baptiste; van der Merwe, Schalk W; van Pelt, Jos; Bäckhed, Fredrik; Monleon, Daniel; Everard, Amandine; Cani, Patrice D
2017-04-01
To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88 . We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Duparc, Thibaut; Plovier, Hubert; Marrachelli, Vannina G; Van Hul, Matthias; Essaghir, Ahmed; Ståhlman, Marcus; Matamoros, Sébastien; Geurts, Lucie; Pardo-Tendero, Mercedes M; Druart, Céline; Delzenne, Nathalie M; Demoulin, Jean-Baptiste; van der Merwe, Schalk W; van Pelt, Jos; Bäckhed, Fredrik; Monleon, Daniel; Everard, Amandine; Cani, Patrice D
2017-01-01
Objective To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. Design To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88. We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). Results Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. Conclusions Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans. PMID:27196572
Receptor-Mediated and Fluid-Phase Transcytosis of Horseradish Peroxidase across Rat Hepatocytes
Ellinger, Isabella; Fuchs, Renate
2010-01-01
Horseradish peroxidase (HRP) is often used as a fluid-phase marker to characterize endocytic and transcytotic processes. Likewise, it has been applied to investigate the mechanisms of biliary secretion of fluid in rat liver hepatocytes. However, HRP contains mannose residues and thus binds to mannose receptors (MRs) on liver cells, including hepatocytes. To study the role of MR-mediated endocytosis of HRP transport in hepatocytes, we determined the influence of the oligosaccharid mannan on HRP biliary secretion in the isolated perfused rat liver. A 1-minute pulse of HRP was applied followed by marker-free perfusion. HRP appeared in bile with biphasic kinetics: a first peak at 7 minutes and a second peak at 15 minutes after labeling. Perfusion with 0.8 mg/mL HRP in the presence of a twofold excess of mannan reduced the first peak by 41% without effect on the second one. Together with recently published data on MR expression in rat hepatocytes this demonstrates two different mechanisms for HRP transcytosis: a rapid, receptor-mediated transport and a slower fluid-phase transport. PMID:20168981
Sanal, Madhusudana Girija
2015-06-07
Hepatocyte transplantation is an alternative to liver transplantation in certain disorders such as inherited liver diseases and liver failure. It is a relatively less complicated surgical procedure, and has the advantage that it can be repeated several times if unsuccessful. Another advantage is that hepatocytes can be isolated from partly damaged livers which are not suitable for liver transplantation. Despite these advantages hepatocyte transplantation is less popular. Important issues are poor engraftment of the transplanted cells and the scarcity of donor hepatocytes. Generation of "hepatocyte like cells"/iHeps from embryonic stem cells (ES) and induced pluripotent stem cells (iPSCs) by directed differentiation is an emerging solution to the latter issue. Direct conversation or trans-differentiation of fibroblasts to "hepatocyte like cells" is another way which is, being explored. However this method has several inherent and technical disadvantages compared to the directed differentiation from ES or iPSC. There are several methods claiming to be "highly efficient" for generating "highly functional" "hepatocyte like cells". Currently different groups are working independently and coming up with differentiation protocols and each group claiming an advantage for their protocol. Directed differentiation protocols need to be designed, compared, analyzed and tweaked systematically and logically than empirically. There is a need for a well-coordinated global initiative comparable to the Human Genome Project to achieve this goal in the near future.
In Vitro and In Vivo Human Metabolism of Synthetic Cannabinoids FDU-PB-22 and FUB-PB-22.
Diao, Xingxing; Scheidweiler, Karl B; Wohlfarth, Ariane; Pang, Shaokun; Kronstrand, Robert; Huestis, Marilyn A
2016-03-01
In 2014, FDU-PB-22 and FUB-PB-22, two novel synthetic cannabinoids, were detected in herbal blends in Japan, Russia, and Germany and were quickly added to their scheduled drugs list. Unfortunately, no human metabolism data are currently available, making it challenging to confirm their intake. The present study aims to identify appropriate analytical markers by investigating FDU-PB-22 and FUB-PB-22 metabolism in human hepatocytes and confirm the results in authentic urine specimens. For metabolic stability, 1 μM FDU-PB-22 and FUB-PB-22 was incubated with human liver microsomes for up to 1 h; for metabolite profiling, 10 μM was incubated with human hepatocytes for 3 h. Two authentic urine specimens from FDU-PB-22 and FUB-PB-22 positive cases were analyzed after β-glucuronidase hydrolysis. Metabolite identification in hepatocyte samples and urine specimens was accomplished by high-resolution mass spectrometry using information-dependent acquisition. Both FDU-PB-22 and FUB-PB-22 were rapidly metabolized in HLM with half-lives of 12.4 and 11.5 min, respectively. In human hepatocyte samples, we identified seven metabolites for both compounds, generated by ester hydrolysis and further hydroxylation and/or glucuronidation. After ester hydrolysis, FDU-PB-22 and FUB-PB-22 yielded the same metabolite M7, fluorobenzylindole-3-carboxylic acid (FBI-COOH). M7 and M6 (hydroxylated FBI-COOH) were the major metabolites. In authentic urine specimens after β-glucuronidase hydrolysis, M6 and M7 also were the predominant metabolites. Based on our study, we recommend M6 (hydroxylated FBI-COOH) and M7 (FBI-COOH) as suitable urinary markers for documenting FDU-PB-22 and/or FUB-PB-22 intake.
Measuring functioning hepatocytes using Tc-99m galactosylneoglycoalbumin (Tc-NGA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadalnik, R.C.; Vera, D.R.; Quadro, R.E.
1984-01-01
Tc-NGA is a synthetic ligand which binds only to hepatic binding protein (HBP), a receptor found only in the liver. It exhibits the properties of high tissue specificity, affinity-dependent uptake, and dose-dependent uptake. Tc-NGA provides an opportunity to study the functioning hepatocyte. The authors evaluated the usefulness of this technique in patients with hepatitis and hepatoma. After intravenous administration of 5 mCi Tc-NGA, dynamic images were acquired for 30 minutes followed by static views. Estimates of HBP concentrations were obtained by kinetic analysis of blood and liver time-activity curves. Kinetic estimates (reduced chi-squares < 3.0) of HBP correlated well withmore » the clinical course and histology. For example, a patient with hepatoma whose calculated receptor population (functioning hepatocytes) was 3.0 +- 0.9 x 10/sup -7/ mole, which is the normal range, is doing well undergoing chemotherapy. Liver biopsy demonstrated normal liver tissue except for the hepatoma. Another patient with hepatoma who had a severely depressed receptor population, 1.2 +- 0.2 x 10/sup -8/ mole, expired one week after the study. Liver biopsy demonstrated practically no normal tissue. Thus, by means of a complementary, receptor radiopharmaceutical and mathematical model, one should be able to quantitatively follow hepatocyte function and predict response to a therapeutic regimen.« less
Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma.
Zamboni, Camila G; Kozielski, Kristen L; Vaughan, Hannah J; Nakata, Maisa M; Kim, Jayoung; Higgins, Luke J; Pomper, Martin G; Green, Jordan J
2017-10-10
Hepatocellular carcinoma (HCC) is the third most deadly cancer in the US, with a meager 5-year survival rate of <20%. Such unfavorable numbers are closely related to the heterogeneity of the disease and the unsatisfactory therapies currently used to manage patients with invasive HCC. Outside of the clinic, gene therapy research is evolving to overcome the poor responses and toxicity associated with standard treatments. The inadequacy of gene delivery vectors, including poor intracellular delivery and cell specificity, are major barriers in the gene therapy field. Herein, we described a non-viral strategy for effective and cancer-specific DNA delivery to human HCC using biodegradable poly(beta-amino ester) (PBAE) nanoparticles (NPs). Varied PBAE NP formulations were evaluated for transfection efficacy and cytotoxicity to a range of human HCC cells as well as healthy human hepatocytes. To address HCC heterogeneity, nine different sources of human HCC cells were utilized. The polymeric NPs composed of 2-((3-aminopropyl)amino) ethanol end-modified poly(1,5-pentanediol diacrylate-co-3-amino-1-propanol) ('536') at a 25 polymer-to-DNA weight-to-weight ratio led to high transfection efficacy to all of the liver cancer lines, but not to hepatocytes. Each individual HCC line had a significantly higher percentage of exogenous gene expression than the healthy liver cells (P<0.01). Notably, this biodegradable end-modified PBAE gene delivery vector was not cytotoxic and maintained the viability of hepatocytes above 80%. In a HCC/hepatocyte co-culture model, in which cancerous and healthy cells share the same micro-environment, 536 25 w/w NPs specifically transfected cancer cells. PBAE NP administration to a subcutaneous HCC mouse model, established with one of the human lines tested in vitro, confirmed effective DNA transfection in vivo. PBAE-based NPs enabled high and preferential DNA delivery to HCC cells, sparing healthy hepatocytes. These biodegradable and liver cancer-selective NPs are a promising technology to deliver therapeutic genes to liver cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Cheng, K-C; Li, Cheng; Hsieh, Yunsheng; Montgomery, Diana; Liu, Tongtong; White, Ronald E
2006-01-01
Previously, we have shown that a novel Caco-2/human hepatocyte system is a useful model for the prediction of oral bioavailability in humans. In this study, we attempted to use a similar system in a high-throughput screening mode for the selection of new compound entities (NCE) in drug discovery. A total of 72 compounds randomly selected from three different chemotypes were dosed orally in rats. In vivo plasma area under the concentration versus time curve (AUC) from 0-6 h of the parent compound was determined. The same compounds were also tested in the Caco-2/rat hepatocyte system. In vitro AUC from 0-3 h in the Caco-2 rat hepatocyte system was determined. The predictive usefulness of the Caco-2/rat hepatocyte system was evaluated by comparing the in vivo plasma AUC and the in vitro AUC. Linear regression analysis showed a reasonable correlation (R2 = 0.5) between the in vivo AUC and the in vitro AUC. Using 0.4 microM h in vivo AUC as a cut-off, compounds were categorized as either low or high AUC. The in vitro AUC successfully matched the corresponding in vivo category for sixty-three out of seventy-two compounds. The results presented in this study suggest that the Caco-2/rat hepatocyte system may be used as a high-throughput screen in drug discovery for pharmacokinetic behaviors of compounds in rats.
Cardouat, G; Duparc, T; Fried, S; Perret, B; Najib, S; Martinez, L O
2017-09-01
Ecto-F 1 -ATPase is a complex related to mitochondrial ATP synthase which has been identified as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), and has been shown to contribute to HDL endocytosis in several cell types. On hepatocytes, apoA-I binding to ecto-F 1 -ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y 13 -mediated HDL endocytosis pathway. Interestingly, other mitochondrial proteins have been found to be expressed at the plasma membrane of several cell types. Among these, adenine nucleotide translocase (ANT) is an ADP/ATP carrier but its role in controlling extracellular ADP levels and F 1 -ATPase-mediated HDL endocytosis has never been investigated. Here we confirmed the presence of ANT at the plasma membrane of human hepatocytes. We then showed that ecto-ANT activity increases or reduces extracellular ADP level, depending on the extracellular ADP/ATP ratio. Interestingly, ecto-ANT co-localized with ecto-F 1 -ATPase at the hepatocyte plasma membrane and pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F 1 -ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis on human hepatocytes. This study thus uncovered a new location and function of ANT for which activity at the cell surface of hepatocytes modulates the concentration of extracellular ADP and regulates HDL endocytosis. Copyright © 2017. Published by Elsevier B.V.
Zhao, Qinjun; Ren, Hongying; Li, Xiyuan; Chen, Zhong; Zhang, Xiangyu; Gong, Wei; Liu, Yongjun; Pang, Tianxiang; Han, Zhong Chao
2009-01-01
Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.
Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei
2017-06-01
Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.
Doll, Mark A; Hein, David W
2017-07-01
Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.
Wang, Yonggang; Aker, Winfred G.; Hwang, Huey-min; Yedjou, Clement G.; Yu, Hongtao; Tchounwou, Paul B.
2011-01-01
Nanoparticles (NPs), including nano metal oxides, are being used in diverse applications such as medicine, clothing, cosmetics and food. In order to promote the safe development of nanotechnology, it is essential to assess the potential adverse health consequences associated with human exposure. The liver is a target site for NP toxicity, due to NP accumulation within it after ingestion, inhalation or absorption. The toxicity of nano-ZnO, TiO2, CuO and Co3O4 was investigated using a primary culture of channel catfish hepatocytes and human HepG2 cells as in vitro model systems for assessing the impact of metal oxide NPs on human and environmental health. Some mechanisms of nanotoxicity were determined by using phase contrast inverted microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, reactive oxygen species (ROS) assays, and flow cytometric assays. Nano-CuO and ZnO showed significant toxicity in both HepG2 cells and catfish primary hepatocytes. The results demonstrate that HepG2 cells are more sensitive than catfish primary hepatocytes to the toxicity of metal oxide NPs. The overall ranking of the toxicity of metal oxides to the test cells is as follows: TiO2 < Co3O4< ZnO < CuO. The toxicity is due not only to ROS-induced cell death, but also damages to cell and mitochondrial membranes. PMID:21851965
Drucker, Claudia; Parzefall, Wolfram; Teufelhofer, Olga; Grusch, Michael; Ellinger, Adolf; Schulte-Hermann, Rolf; Grasl-Kraupp, Bettina
2006-01-01
Hepatocellular carcinoma almost always arises in chronically inflamed livers. We developed a culture model to study the role of non-parenchymal cells (NPCs) for inflammation-driven hepatocarcinogenesis. Rats were treated with the carcinogen N-nitrosomorpholine, which induced initiated hepatocytes expressing the marker placental glutathione-S-transferase (GSTp). After 21 days two preparations of hepatocytes were made: (i) conventional ones (Hep-conv) containing NPCs and (ii) hepatocytes purified of NPCs (Hep-pur). Initiated hepatocytes, being positive for GSTp (GSTp-pos) were present in both preparations and were cultured along with normal hepatocytes, being negative for GSTp (GSTp-neg). Under any culture condition DNA synthesis was approximately 4-fold higher in GSTp-pos than in GSTp-neg hepatocytes demonstrating the inherent growth advantage of the first stages of hepatocarcinogenesis. Hepatocytes showed approximately 3-fold lower rates of DNA synthesis in Hep-pur than in Hep-conv, which was elevated above Hep-conv levels by addition of NPC or NPC-supernatant. Pretreatment of NPCs with proinflammatory lipopolysaccharide (LPS) further increased DNA synthesis. Thus, NPCs release soluble growth stimulators. Next we investigated the effect of specific cytokines produced by NPCs. Tumour necrosis factor alpha and interleukin 6 barely altered DNA synthesis, whereas hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and the heparin-binding epidermal growth factor-like growth factor (HB-EGF) were potent inducers of DNA replication in both, GSTp-neg and GSTp-pos cells. In conclusion, DNA synthesis of hepatocytes is increased by factors released from NPCs, an effect augmented by LPS-stimulation. NPC-derived cytokines, such as KGF, HGF and HB-EGF, stimulate DNA synthesis preferentially in initiated hepatocytes, presumably resulting in tumour promotion. Similar mechanisms may contribute to carcinogenesis in human inflammatory liver diseases.
Vectorial Entry and Release of Hepatitis A Virus in Polarized Human Hepatocytes ▿
Snooks, Michelle J.; Bhat, Purnima; Mackenzie, Jason; Counihan, Natalie A.; Vaughan, Nicola; Anderson, David A.
2008-01-01
Hepatitis A virus (HAV) is an enterically transmitted virus that replicates predominantly in hepatocytes within the liver before excretion via bile through feces. Hepatocytes are polarized epithelial cells, and it has been assumed that the virus load in bile results from direct export of HAV via the apical domain of polarized hepatocytes. We have developed a subclone of hepatocyte-derived HepG2 cells (clone N6) that maintains functional characteristics of polarized hepatocytes but displays morphology typical of columnar epithelial cells, rather than the complex morphology that is typical of hepatocytes. N6 cells form microcolonies of polarized cells when grown on glass and confluent monolayers of polarized cells on semipermeable membranes. When N6 microcolonies were exposed to HAV, infection was restricted to peripheral cells of polarized colonies, whereas all cells could be infected in colonies of nonpolarized HepG2 cells (clone C11) or following disruption of tight junctions in N6 colonies with EGTA. This suggests that viral entry occurs predominantly via the basolateral plasma membrane, consistent with uptake of virus from the bloodstream after enteric exposure, as expected. Viral export was also found to be markedly vectorial in N6 but not C11 cells. However, rather than being exported from the apical domain as expected, more than 95% of HAV was exported via the basolateral domain of N6 cells, suggesting that virus is first excreted from infected hepatocytes into the bloodstream rather than to the biliary tree. Enteric excretion of HAV may therefore rely on reuptake and transcytosis of progeny HAV across hepatocytes into the bile. These studies provide the first example of the interactions between viruses and polarized hepatocytes. PMID:18579610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Heng; Verovski, Valeri N.; Leonard, Wim
2013-03-01
Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assessmore » hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.« less
Leal, Silvana Gomes; Romano, Alessandro Pecego Martins; Monteiro, Rafael Veríssimo; Melo, Cristiano Barros de; Vasconcelos, Pedro Fernando da Costa; Castro, Márcio Botelho de
2016-02-01
Due to the importance that Howler monkeys have on the yellow fever (YF) epidemiological sylvatic cycle in Brazil, more accurate morphological diagnostic criteria needs to be established, especially considering the differences that may exist between the genera of Brazilian non-human primates (NHPs) involved in yellow fever virus (YFV) epizootics. Records of YF epizootics in NHPs in Brazil between 2007 and 2009 were obtained from the Brazilian Ministry of Health database to select YF positive (n=98) Howler monkeys (Alouatta sp.) for this study. The changes described in the histopathological reports were categorized by organ and their frequencies calculated. The most frequent lesions observed in the animals with YF were hepatocyte apoptosis (Councilman body formation), midzonal hepatocyte necrosis, steatosis, liver hemorrhage, inflammatory mononuclear cell infiltration of the liver, renal acute tubular necrosis and interstitial nephritis. Midzonal hepatocyte necrosis, steatosis and hemorrhage presented positive correlations with apoptosis of hepatocytes, suggesting strong YFV pathogenic effect association; they were also the main histopathological changes in the Alouatta sp. A pronounced negative correlation between apoptosis of hepatocytes and hepatic mononuclear cell infiltration pointed to significant histopathological differences between YFV infection in Howler monkeys and humans. The results warn that NHPs may exhibit different response patterns following YFV infection and require a more careful diagnosis. Presumptive diagnosis based on primate histopathological lesions may contribute to public health service control.
Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis
Johnson, Tory A.; Pfeffer, Suzanne R.
2016-01-01
Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173
Gu, Xing; Ji, Xin; Shi, Le-Hua; Yi, Chang-Hong; Zhao, Yun-Peng; Wang, Ai-Hua; Lu, Lun-Gen; Yu, Wen-Bo; Gao, Chun-Fang
2012-11-01
Our previous work revealed transforming growth factor beta1 (TGFβ1) gene polymorphisms are associated with susceptibility to hepatocellular carcinoma and liver cirrhosis. However, no further study of functional substitution in hepatic cells has yet been reported. This study was designed to uncover the functional mechanisms of TGFβ1 gene polymorphisms in the pathogenesis of liver diseases. Two recombinant TGFβ1 expression plasmids containing TGFβ1 codon 10 Leu/Pro variation were constructed with CMV promoter and transfected into human hepatoma cell lines (HepG2 and SMMU 7721), hepatic stellate cells (LX-2), and immortalized hepatocytes (L02). The secretion capacities of TGFβ1 protein in the transfected cells were determined by ELISA. Apoptosis, proliferative activity, and expression of CD 105, CD83, and CD80 were also measured by use of flow cytometry. The ELISA results showed that cells transfected with CMV-Pro10 were more capable of TGFβ1 secretion than those transfected with CMV-Leu10. Functionally, CMV-Pro10 was more apoptosis-protective and induced more proliferation than CMV-Leu10 in transfected hepatic cells. Pro10 up-regulated expression of CD105 and down-regulated expression of CD83. TGFβ1 gene Leu10Pro variation in signal peptide has significant effects on TGFβ1 secretion and functions in hepatic cells.
1991-06-14
ALT is either being degraded or the activity is inhibited by something in the 133 media. AST activity in cocultures of NPCs and hepatocytes was... Paracetamol Hepatotoxicity: IN VITRO Studies in Isolated Mouse Hepatocytes. Toxicology Letters. 2229: 37-48. Casini, A. M., P. A. Ferrali and M...Acute Liver Necrosis Following Overdose of Paracetamol . British Medical Journal. 2: 497-499. Decker, T., M. L. Lohmann-Matthes, U. Karck, T. Peters
How Ebola and Marburg Viruses Battle the Immune System
2007-07-01
macrophages, neutrophils) Asialoglycoprotein receptor ( hepatocytes ) TLR Other? NP VP35 VP40 GP VP30 VP24 L 3′ 5′ Cell-surface GP Filovirus Matrix... hepatocytes are particularly susceptible, elevated liver enzymes are among the first telling signs of disease and liver damage seems to account for much...of monocytic origin (such as immature DCs) also promotes filoviral entry10. Another C-type lectin, the asialoglycoprotein *US Army Medical Research
Quantitative PET of liver functions
Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord
2018-01-01
Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841
Quantitative PET of liver functions.
Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord
2018-01-01
Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.
Srivastava, Jyoti; Robertson, Chadia L.; Gredler, Rachel; Siddiq, Ayesha; Rajasekaran, Devaraja; Akiel, Maaged A.; Emdad, Luni; Mas, Valeria; Mukhopadhyay, Nitai D.; Fisher, Paul B.; Sarkar, Devanand
2015-01-01
Non-thyroidal illness syndrome (NTIS), characterized by low serum 3,5,3′-triiodothyronine (T3) with normal l-thyroxine (T4) levels, is associated with malignancy. Decreased activity of type I 5′-deiodinase (DIO1), which converts T4 to T3, contributes to NTIS. T3 binds to thyroid hormone receptor, which heterodimerizes with retinoid X receptor (RXR) and regulates transcription of target genes, such as DIO1. NF-κB activation by inflammatory cytokines inhibits DIO1 expression. The oncogene astrocyte elevated gene-1 (AEG-1) inhibits RXR-dependent transcription and activates NF-κB. Here, we interrogated the role of AEG-1 in NTIS in the context of hepatocellular carcinoma (HCC). T3-mediated gene regulation was analyzed in human HCC cells, with overexpression or knockdown of AEG-1, and primary hepatocytes from AEG-1 transgenic (Alb/AEG-1) and AEG-1 knock-out (AEG-1KO) mice. Serum T3 and T4 levels were checked in Alb/AEG-1 mice and human HCC patients. AEG-1 and DIO1 levels in human HCC samples were analyzed by immunohistochemistry. AEG-1 inhibited T3-mediated gene regulation in human HCC cells and mouse hepatocytes. AEG-1 overexpression repressed and AEG-1 knockdown induced DIO1 expression. An inverse correlation was observed between AEG-1 and DIO1 levels in human HCC patients. Low T3 with normal T4 was observed in the sera of HCC patients and Alb/AEG-1 mice. Inhibition of co-activator recruitment to RXR and activation of NF-κB were identified to play a role in AEG-1-mediated down-regulation of DIO1. AEG-1 thus might play a role in NTIS associated with HCC and other cancers. PMID:25944909
Major, Rebeka D; Kluge, Martin; Jara, Maximilian; Nösser, Maximilian; Horner, Rosa; Gassner, Joseph; Struecker, Benjamin; Tang, Peter; Lippert, Steffen; Reutzel-Selke, Anja; Geisel, Dominik; Denecke, Timm; Stockmann, Martin; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael
2018-03-01
The need for primary human hepatocytes is constantly growing for basic research, as well as for therapeutic applications. However, the isolation outcome strongly depends on the quality of liver tissue, and we are still lacking a preoperative test that allows the prediction of the hepatocyte isolation outcome. In this study, we evaluated the "maximal liver function capacity test" (LiMAx) as predictive test for the quantitative and qualitative outcome of hepatocyte isolation. This test is already used in clinical routine to measure preoperative and to predict postoperative liver function. The patient's preoperative mean LiMAx was obtained from the patient records, and preoperative computed tomography and magnetic resonance images were used to calculate the whole liver volume to adjust the mean LiMAx. The outcome parameters of the hepatocyte isolation procedures were analyzed in correlation with the adjusted mean LiMAx. Primary human hepatocytes were isolated from partial hepatectomies (n = 64). From these 64 hepatectomies we included 48 to our study and correlated their isolation outcome parameters with volume corrected LiMAx values. From a total of 11 hepatocyte isolation procedures, metabolic parameters (albumin, urea, and aspartate aminotransferase or AST) were assessed during the hepatocyte cultivation period of 5 days. The volume adjusted mean LiMAx showed a significant positive correlation with the total cell yield (p = 0.049; r = 0.242; n = 48). The correlations of volume adjusted LiMAx values with viable cell yield and cell viability did not reach statistical significance. To create a more homogenous study group regarding tumor entities, subgroup analyses were performed. A subgroup analysis of isolations from patients with colorectal metastasis revealed a significant correlation between volume adjusted mean LiMAx and total cell yield (p = 0.012; r = 0.488; n = 21) and viable cell yield (p = 0.034; r = 0.405; n = 21), whereas a subgroup analysis of isolations of patients with carcinoma of the biliary tree showed significant correlations of volume adjusted mean LiMAx with cell viability (r = 0.387; p = 0.046; n = 20) and lacked significant correlations with total cell yield (r = -0.060; p = 0.401; n = 20) and viable cell yield (r = 0.012; p = 0.480; n = 20). The volume-adjusted mean LiMAx did not show a significant correlation with any of the metabolic parameters. In conclusion, the LiMAx test might be a useful tool to predict the quantitative outcome of hepatocyte isolation, as long as underlying liver disease is taken into consideration.
Kosugi, Yohei; Hirabayashi, Hideki; Igari, Tomoko; Fujioka, Yasushi; Okuda, Teruaki; Moriwaki, Toshiya
2014-04-01
1. This study optimized the reported approach for the prediction of drug-drug interactions (DDIs) using hepatocytes suspended in serum (HHSS) and provided a practical usage of HHSS in the early and late phases of drug discovery. 2. First, the IC50 was determined using HHSS and evaluated as a qualitative index for DDI risks in the early phase. A retrospective study on clinical DDI cases revealed that inhibitors with IC50 < 100 μmol/L caused clinical DDIs while those with IC50 > 100 μmol/L showed weak or no potential for DDIs. Meanwhile, a pragmatic cutoff value could not be determined using previously reported Ki values of recombinant human cytochrome P450s. 3. Second, for a more substantial DDI risk assessment in the later phase, quantitative predictions of clinical DDI based on a static model were attempted by optimizing the most appropriate inhibitor concentration ([I]). The use of hepatic input plasma concentrations as a surrogate for [I] achieved the most successful predictions of the magnitude of increase in the AUC (within a 2-fold range of the observed values for 93.8% of inhibitors). 4. Through this study, we proposed the practical application of HHSS for an effective workflow to explore and profile candidates with less DDI liability.
Kudriavtseva, M V; Bezborodkina, N N; Okovityĭ, S V; Ivanova, O V; Kudriavtsev, B N
2002-01-01
Effect of actoprotector bemithyl (2-ethylthiobenzimidazole hydrobromide) on glycogen metabolism in hepatocytes of patients with chronic hepatitis and liver cirrhosis was investigated. Using cytofluorimetric method, the content of glycogen and its fractions in isolated hepatocytes was measured. The treatment with bemithyl resulted in a decrease in glycogen levels in hepatocytes, and in a marked restoration of fractional glycogen composition as compared to the basic therapy. Besides, it was established that the degree of glycogen decrease in cells of patients with chronic hepatitis depended on the increase of glucose-6-phosphatase activity (r = 0.75, P < 0.05), and on the levels of glycogen in hepatocytes prior to bemitil treatment (r = = 0.87, P < 0.01). Positive changes in glycogen metabolism after bemithyl treatment are pronounced in patients with chronic hepatitis. These positive alterations take place simultaneously with the conservation of basic structural disturbances in the liver parenchyma. However, even in this case, the indices of glycogen metabolism do not reach the normal levels.
Constant serum levels of secreted asialoglycoprotein receptor sH2a and decrease with cirrhosis
Benyair, Ron; Kondratyev, Maria; Veselkin, Elena; Tolchinsky, Sandra; Shenkman, Marina; Lurie, Yoav; Lederkremer, Gerardo Z
2011-01-01
AIM: To investigate the existence and levels of sH2a, a soluble secreted form of the asialoglycoprotein receptor in human serum. METHODS: Production of recombinant sH2a and development of a monoclonal antibody and an enzyme-linked immunosorbent assay (ELISA). This assay was used to determine the presence and concentration of sH2a in human sera of individuals of both sexes and a wide range of ages. RESULTS: The recombinant protein was produced successfully and a specific ELISA assay was developed. The levels of sH2a in sera from 62 healthy individuals varied minimally (147 ± 19 ng/mL). In contrast, 5 hepatitis C patients with cirrhosis showed much decreased sH2a levels (50 ± 9 ng/mL). CONCLUSION: Constant sH2a levels suggest constitutive secretion from hepatocytes in healthy individuals. This constant level and the decrease with cirrhosis suggest a diagnostic potential. PMID:22219600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan
2008-03-15
Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less
Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey
2018-01-01
Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.
Perttilä, Julia; Huaman-Samanez, Carolina; Caron, Sandrine; Tanhuanpää, Kimmo; Staels, Bart; Yki-Järvinen, Hannele; Olkkonen, Vesa M
2012-05-15
Liver fat is increased in carriers of the minor G allele in rs738409 (I148M amino acid substitution) in patatin-like phospholipase domain-containing 3 (PNPLA3)/adiponutrin. We studied transcriptional regulation of PNPLA3 in immortalized human hepatocytes (IHH) and human hepatoma cells (HuH7) and the impact of PNPLA3 I148M mutant on hepatocyte triglyceride metabolism. Studies in IHH showed that silencing of the carbohydrate response element-binding protein (ChREBP) abolished induction of PNPLA3 mRNA by glucose. Glucose-dependent binding of ChREBP to a newly identified carbohydrate response element in the PNPLA3 promoter was demonstrated by chromatin immunoprecipitation. Adenoviral overexpression of mouse ChREBP in IHH failed to induce PNPLA3 mRNA. [(3)H]acetate or [(3)H]oleate incorporation with 1-h pulse labeling or 18-h [(3)H]oleate labeling in HuH7 cells showed no effect of PNPLA3 I148M on triglyceride (TG) synthesis in the absence of free fatty acid (FFA) loading. Increased [(3)H]oleate accumulation into triglycerides in I148M-expressing cells was observed after 18 h of labeling in the presence of 200 μM FFA-albumin complexes. This was accompanied by increased PNPLA3 protein levels. The rate of hydrolysis of [(3)H]TG during lipid depletion was decreased significantly by PNPLA3 I148M. Our results suggest that PNPLA3 is regulated in human hepatocytes by glucose via ChREBP. PNPLA3 I148M enhances cellular accumulation of [(3)H]TG in the presence of excess FFA, which is known to stabilize PNPLA3 protein. These data do not exclude an effect of PNPLA3 I148M on hepatocyte lipogenesis but show that the mutant increases the stability of triglycerides.
Bronfman, M; Morales, M N; Amigo, L; Orellana, A; Nuñez, L; Cárdenas, L; Hidalgo, P C
1992-01-01
The formation of acyl-CoA esters of the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate and nafenopin was studied in isolated rat hepatocytes. The concentration of ciprofibroyl-CoA in the liver of ciprofibrate-treated rats was in the range of 10-30 microM. The three drugs formed acyl-CoA esters when incubated with isolated hepatocytes. Their formation was saturable and reached a plateau after 30 min incubation. Maximal intracellular concentrations of ciprofibroyl-CoA and clofibroyl-CoA (100 microM and 55 microM respectively) were attained at 0.5 mM of the free drugs in the incubation medium, whereas for nafenopin-CoA, the maximal intracellular concentration (9 microM) was reached at 1 mM-nafenopin. At low concentrations of the hypolipidaemic compounds in the incubation medium a significant proportion of the total intracellular drug was present as its acyl-CoA ester (25-35% for ciprofibrate). When isolated hepatocytes were incubated with a ciprofibrate concentration comparable with that observed in the blood of drug-treated rats (0.1 mM), ciprofibroyl-CoA attained an intracellular concentration similar to that previously observed in the liver of treated rats. The formation of ciprofibroyl-CoA by isolated rat hepatocytes was stimulated by the addition of carnitine and partially inhibited by the addition of palmitate. Further, it was shown that human liver homogenates synthesized ciprofibroyl-CoA at a rate similar to that observed for rat liver homogenates. Solubilized human platelets also formed ciprofibroyl-CoA, although at a rate two orders of magnitude lower than that of liver. The results support the view that acyl-CoA esters of hypolipidaemic peroxisome proliferators may be the pharmacologically active species of the drugs. PMID:1599408
Nakanishi, Chihiro; Moriuchi, Akihiro; Ido, Akio; Numata, Masatsugu; Kim, Il-Deok; Kusumoto, Kazunori; Hasuike, Satoru; Abe, Hiroo; Nagata, Kenji; Akiyama, Yutaka; Uto, Hirofumi; Kataoka, Hiroaki; Tsubouchi, Hirohito
2006-07-01
Hepatocyte growth factor (HGF) is a promising agent for the treatment of intractable liver disease, due to its mitogenic, anti-apoptotic, and anti-fibrotic effects. We investigated the effect of recombinant human HGF (rh-HGF) on the development of both hepatocellular carcinoma (HCC) and preneoplastic nodules in rats fed a choline-deficient L-amino acid-defined (CDAA) diet, an animal model of hepatocarcinogenesis resembling human development of HCC with cirrhosis. From weeks 13 to 48 of the CDAA diet, rh-HGF (0.1 or 0.5 mg/kg/day) was administered intravenously to rats in four-week cycles, with treatment for five consecutive days of each week for two weeks, followed by a two-week washout period. Treatment with rh-HGF significantly inhibited the development of preneoplastic nodules in a dose-dependent manner at 24 weeks. Although the numbers and areas of the preneoplastic nodules in rats treated with rh-HGF were equivalent to those in mock-treated rats by 60 weeks, the incidence of HCC was reduced by HGF treatment. Although one rat treated with low-dose rh-HGF exhibited a massive HCC, which occupied almost the whole liver, and lung metastases, HGF treatment did not increase the overall frequency of HCC. Administration of high-dose rh-HGF, however, induced an increase in the urinary excretion of albumin, leading to decreased serum albumin at 60 weeks. These results indicate that long-term administration of rh-HGF does not accelerate hepatocarcinogenesis in rats fed a CDAA diet. However, these findings do not completely exclude the potential of HGF-induced hepatocarcinogenesis; this issue must be resolved before rh-HGF can be used for patients with intractable liver diseases, especially those with cirrhosis.
Kegel, Victoria; Pfeiffer, Elisa; Burkhardt, Britta; Liu, Jia L.; Zeilinger, Katrin; Nüssler, Andreas K.; Seehofer, Daniel; Damm, Georg
2015-01-01
Drug induced liver injury (DILI) is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC) sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2 ± 0.9 × 106 cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay) and cell activity (XTT assay). The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production. PMID:26491234
Lock, Edward A; Reed, Celia J; McMillan, JoEllyn M; Oatis, John R; Schnellmann, Rick G
2007-01-01
The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3–3mM CH for 3 days or 0.03–3mM CH for 10 days respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolised CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and 3-fold greater capacity than HRPTC to form TCE-OH and TCA respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days (Lock et al., 2006) supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity. PMID:17161896
Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans
NASA Technical Reports Server (NTRS)
Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.
2000-01-01
It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.
Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation.
Watanabe, Natsumi; Tanaka, Minoru; Suzuki, Kaori; Kumanogoh, Atsushi; Kikutani, Hitoshi; Miyajima, Atsushi
2007-05-01
Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.
Diao, Xingxing; Scheidweiler, Karl B; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Huestis, Marilyn A
Since 2013, a new drugs-of-abuse trend attempts to bypass drug legislation by marketing isomers of scheduled synthetic cannabinoids (SCs), e.g., FUBIMINA (BIM-2201) and THJ-2201. It is much more challenging to confirm a specific isomer's intake and distinguish it from its structural analog because the isomers and their major metabolites usually have identical molecular weights and display the same product ions. Here, we investigated isomers FUBIMINA and THJ-2201 and propose strategies to distinguish their consumption. THJ-2201 was scheduled in the US, Japan, and Europe; however, FUBIMINA is easily available on the Internet. We previously investigated THJ-2201 metabolism in human hepatocytes, but human FUBIMINA metabolism is unknown. We aim to characterize FUBIMINA metabolism in human hepatocytes, recommend optimal metabolites to confirm its consumption, and propose strategies to distinguish between intakes of FUBIMINA and THJ-2201. FUBIMINA (10 μM) was incubated in human hepatocytes for 3 h, and metabolites were characterized with high-resolution mass spectrometry (HR-MS). We identified 35 metabolites generated by oxidative defluorination, further carboxylation, hydroxylation, dihydrodiol formation, glucuronidation, and their combinations. We recommend 5'-OH-BIM-018 (M34), BIM-018 pentanoic acid (M33), and BIM-018 pentanoic acid dihydrodiol (M7) as FUBIMINA specific metabolites. THJ-2201 produced specific metabolite markers 5'-OH-THJ-018 (F26), THJ-018 pentanoic acid (F25), and hydroxylated THJ-2201 (F13). Optimized chromatographic conditions to achieve different retention times and careful selection of specific product ion spectra enabled differentiation of isomeric metabolites, in this case FUBIMINA from THJ-2201. Our HR-MS approach should be applicable for differentiating future isomeric SCs, which is especially important when different isomers have different legal status.
Lübberstedt, Marc; Müller-Vieira, Ursula; Biemel, Klaus M; Darnell, Malin; Hoffmann, Stefan A; Knöspel, Fanny; Wönne, Eva C; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Andersson, Tommy B; Zeilinger, Katrin
2015-09-01
Primary human hepatocytes represent an important cell source for in vitro investigation of hepatic drug metabolism and disposition. In this study, a multi-compartment capillary membrane-based bioreactor technology for three-dimensional (3D) perfusion culture was further developed and miniaturized to a volume of less than 0.5 ml to reduce demand for cells. The miniaturized bioreactor was composed of two capillary layers, each made of alternately arranged oxygen and medium capillaries serving as a 3D culture for the cells. Metabolic activity and stability of primary human hepatocytes was studied in this bioreactor in the presence of 2.5% fetal calf serum (FCS) under serum-free conditions over a culture period of 10 days. The miniaturized bioreactor showed functions comparable to previously reported data for larger variants. Glucose and lactate metabolism, urea production, albumin synthesis and release of intracellular enzymes (AST, ALT, GLDH) showed no significant differences between serum-free and serum-supplemented bioreactors. Activities of human-relevant cytochrome P450 (CYP) isoenzymes (CYP1A2, CYP3A4/5, CYP2C9, CYP2D6, CYP2B6) analyzed by determination of product formation rates from selective probe substrates were also comparable in both groups. Gene expression analysis showed moderately higher expression in the majority of CYP enzymes, transport proteins and enzymes of Phase II metabolism in the serum-free bioreactors compared to those maintained with FCS. In conclusion, the miniaturized bioreactor maintained stable function over the investigated period and thus provides a suitable system for pharmacological studies on primary human hepatocytes under defined serum-free conditions. Copyright © 2012 John Wiley & Sons, Ltd.
Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng
2007-03-01
To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.
Vrba, Jiri; Vrublova, Eva; Modriansky, Martin; Ulrichova, Jitka
2011-06-10
The isoquinoline alkaloids protopine and allocryptopine are present in phytopreparations from medicinal plants, such as Fumaria officinalis. Since nothing is known about effects of the alkaloids on the expression of xenobiotic-metabolizing enzymes, we examined whether protopine or allocryptopine affect the expression of cytochromes P450 (CYPs) 1A1 and 1A2 in primary cultures of human hepatocytes and human hepatoma HepG2 cells. In HepG2 cells, protopine and allocryptopine significantly increased CYP1A1 mRNA levels after 24h exposure at concentrations from 25 and 10 μM, respectively, as shown by real-time PCR. Both protopine and allocryptopine also dose-dependently increased CYP1A1 and CYP1A2 mRNA levels in human hepatocytes. However, the effects of the tested alkaloids on both cell models were much lower than the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a prototypical CYP1A inducer. Using gene reporter assays performed in transiently transfected HepG2 cells, we demonstrated that the induction of CYP1A1 expression by either protopine or allocryptopine was associated with mild or negligible activation of the aryl hydrocarbon receptor. In contrast to TCDD, CYP1A mRNA levels induced by protopine or allocryptopine in both HepG2 cells and human hepatocytes did not result in elevated CYP1A protein or activity levels as shown by western blotting and EROD assays, respectively. We conclude that the use of products containing protopine and/or allocryptopine may be considered safe in terms of possible induction of CYP1A enzymes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wood, F L; Houston, J B; Hallifax, D
2017-11-01
Although prediction of clearance using hepatocytes and liver microsomes has long played a decisive role in drug discovery, it is widely acknowledged that reliably accurate prediction is not yet achievable despite the predominance of hepatically cleared drugs. Physiologically mechanistic methodology tends to underpredict clearance by several fold, and empirical correction of this bias is confounded by imprecision across drugs. Understanding the causes of prediction uncertainty has been slow, possibly reflecting poor resolution of variables associated with donor source and experimental methods, particularly for the human situation. It has been reported that among published human hepatocyte predictions there was a tendency for underprediction to increase with increasing in vivo intrinsic clearance, suggesting an inherent limitation using this particular system. This implied an artifactual rate limitation in vitro, although preparative effects on cell stability and performance were not yet resolved from assay design limitations. Here, to resolve these issues further, we present an up-to-date and comprehensive examination of predictions from published rat as well as human studies (where n = 128 and 101 hepatocytes and n = 71 and 83 microsomes, respectively) to assess system performance more independently. We report a clear trend of increasing underprediction with increasing in vivo intrinsic clearance, which is similar both between species and between in vitro systems. Hence, prior concerns arising specifically from human in vitro systems may be unfounded and the focus of investigation in the future should be to minimize the potential in vitro assay limitations common to whole cells and subcellular fractions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes.
Brownell, Jessica; Wagoner, Jessica; Lovelace, Erica S; Thirstrup, Derek; Mohar, Isaac; Smith, Wesley; Giugliano, Silvia; Li, Kui; Crispe, I Nicholas; Rosen, Hugo R; Polyak, Stephen J
2013-10-01
The pro-inflammatory chemokine CXCL10 is induced by HCV infection in vitro and in vivo, and is associated with outcome of IFN (interferon)-based therapy. We studied how hepatocyte sensing of early HCV infection via TLR3 (Toll-like receptor 3) and RIG-I (retinoic acid inducible gene I) led to expression of CXCL10. CXCL10, type I IFN, and type III IFN mRNAs and proteins were measured in PHH (primary human hepatocytes) and hepatocyte lines harboring functional or non-functional TLR3 and RIG-I pathways following HCV infection or exposure to receptor-specific stimuli. HuH7 human hepatoma cells expressing both TLR3 and RIG-I produced maximal CXCL10 during early HCV infection. Neutralization of type I and type III IFNs had no impact on virus-induced CXCL10 expression in TLR3+/RIG-I+ HuH7 cells, but reduced CXCL10 expression in PHH. PHH cultures were positive for monocyte, macrophage, and dendritic cell mRNAs. Immunodepletion of non-parenchymal cells (NPCs) eliminated marker expression in PHH cultures, which then showed no IFN requirement for CXCL10 induction during HCV infection. Immunofluorescence studies also revealed a positive correlation between intracellular HCV Core and CXCL10 protein expression (r(2) = 0.88, p ≤ 0.001). While CXCL10 induction in hepatocytes during the initial phase of HCV infection is independent of hepatocyte-derived type I and type III IFNs, NPC-derived IFNs contribute to CXCL10 induction during HCV infection in PHH cultures. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Mohammad, Mohammad K; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati
2012-11-15
Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. Copyright © 2012 Elsevier Inc. All rights reserved.
Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C
2017-10-15
Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.
Quaresma, Juarez A S; Barros, Vera L R S; Pagliari, Carla; Fernandes, Elaine R; Guedes, Fernanda; Takakura, Cleusa F H; Andrade, Heitor F; Vasconcelos, Pedro F C; Duarte, Maria I S
2006-02-05
Flavivirus infection as dengue and yellow fever persists as a terrible menace to pandemics, due to Aedes prevalence in the Americas. Yellow fever is characterized by hepatocyte damage, with steatosis, apoptosis and necrosis, mainly in the midzonal region of the liver, but the injury mechanism has not been studied at the light of recent knowledge, such as the advances in cell death mechanisms, inflammatory response and cytokine cell expression tools. We studied 53 human liver paraffin embedded blocks from patients who died with yellow fever, all with histological demonstration of higher prevalence of apoptosis over necrosis and mild disproportionate inflammatory response. Viral antigens were found most frequently in hepatocytes from the midzonal area than other lobule areas, as detected by specific immunohistochemistry. Infiltrating cell subpopulations showed mainly CD4+ T lymphocytes, with small numbers of CD8+ cytotoxic lymphocytes, CD20+ B lymphocytes, NKT+ cells and S100+ dendritic cells in the sites of inflammation, as compared to normal and leptospirosis liver blocks. Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever. Most affected hepatocyte presented apoptosis markers that appear at the cell death main pathway in this infection. Viral antigens, which production could interfere in hepatocyte biology, could induce the activation of apoptosis cascade, but TGF-beta was also an apoptosis promoter. Our finding supports the key effect of the yellow fever virus in hepatocyte injury, resulting in prevalence of apoptosis over necrosis, aside from a TGF-beta action induced by the inflammatory response.
Arakawa, Hiroshi; Kamioka, Hiroki; Jomura, Tomoko; Koyama, Satoshi; Idota, Yoko; Yano, Kentaro; Kojima, Hajime; Ogihara, Takuo
2017-01-01
Drug-induced liver injury (DILI) is a common reason for withdrawal of candidate drugs from clinical trials, or of approved drugs from the market. DILI may be induced not only by intact parental drugs, but also by metabolites or intermediates, and therefore should be evaluated in the enzyme-induced state. Here, we present a protocol for assay of drug-metabolizing enzyme-inducing potential using three-dimensional (3D) primary cultures of human hepatocytes (hepatocyte spheroids). Hepatocyte spheroids could be used up to 21 d after seeding (pre-culture for 7 d and exposure to inducer for up to 14 d), based on preliminary evaluation of basal activities of CYP subtypes and mRNA expression of the corresponding transcription factor and xenobiotic receptors (aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane X receptor (PXR)). After 2 d exposure of hepatocyte spheroids to omeprazole, phenobarbital and rifampicin (typical inducers of CYP1A2, 2B6 and 3A4, respectively), CYP1A2, 2B6 and 3A4 mRNA expression levels were significantly increased. The mRNA induction of CYP2B6 remained reasonably stable between days 2 and 14 of exposure to inducers, while induction of both CYP1A2 and 3A4 continued to increase up to day 14. These enzyme activities were all significantly increased compared with the control until day 14. Our findings indicate that our 3D hepatocyte spheroids system would be especially suitable for long-term testing of enzyme activity induction by drugs, either to predict or to verify clinical events.
Lipopolysaccharide Stimulates p62-Dependent Autophagy-Like Aggregate Clearance in Hepatocytes
Deng, Meihong; Sun, Qian; Loughran, Patricia; Billiar, Timothy R.; Scott, Melanie J.
2014-01-01
Impairment of autophagy has been associated with liver injury. TLR4-stimulation by LPS upregulates autophagy in hepatocytes, although the signaling pathways involved remain elusive. The objective of this study was to determine the signaling pathway leading to LPS-stimulated autophagy in hepatocytes. Cell lysates from livers of wild type (WT; C57BL/6) mice given LPS (5 mg/kg-IP) and hepatocytes from WT, TLR4ko, and MyD88ko mice treated with LPS (100 ng/mL) up to 24 h were collected. LC3II, p62/SQSTM1, Nrf2, and beclin1 levels were determined by immunoblot, immunofluorescence, and qPCR. Autophagy-like activation was measured by GFP-LC3-puncta formation and LC3II-expression. Beclin1, Nrf2, p62, MyD88, and TIRAP were knocked-down using siRNA. LC3II-expression increased in both liver and hepatocytes after LPS and was dependent on TLR4. Beclin1 expression did not increase after LPS in hepatocytes and beclin1-knockdown did not affect LC3II levels. In hepatocytes given LPS, expression of p62 increased and p62 colocalized with LC3. p62-knockdown prevented LC3II puncta formation. LPS-induced LC3II/p62-puncta also required MyD88/TIRAP signaling and localization of both Nrf2 and NFκB transcription factors to the nucleus to upregulate p62-expression. Therefore, TLR4-activation by LPS in hepatocytes induces a p62-mediated, not beclin1-mediated, autophagy-like clearance pathway that is hepatoprotective by clearing aggregate-prone or misfolded proteins from the cytosol and preserving energy homeostasis under stress. PMID:24683544
Lipopolysaccharide stimulates p62-dependent autophagy-like aggregate clearance in hepatocytes.
Chen, Christine; Deng, Meihong; Sun, Qian; Loughran, Patricia; Billiar, Timothy R; Scott, Melanie J
2014-01-01
Impairment of autophagy has been associated with liver injury. TLR4-stimulation by LPS upregulates autophagy in hepatocytes, although the signaling pathways involved remain elusive. The objective of this study was to determine the signaling pathway leading to LPS-stimulated autophagy in hepatocytes. Cell lysates from livers of wild type (WT; C57BL/6) mice given LPS (5 mg/kg-IP) and hepatocytes from WT, TLR4ko, and MyD88ko mice treated with LPS (100 ng/mL) up to 24 h were collected. LC3II, p62/SQSTM1, Nrf2, and beclin1 levels were determined by immunoblot, immunofluorescence, and qPCR. Autophagy-like activation was measured by GFP-LC3-puncta formation and LC3II-expression. Beclin1, Nrf2, p62, MyD88, and TIRAP were knocked-down using siRNA. LC3II-expression increased in both liver and hepatocytes after LPS and was dependent on TLR4. Beclin1 expression did not increase after LPS in hepatocytes and beclin1-knockdown did not affect LC3II levels. In hepatocytes given LPS, expression of p62 increased and p62 colocalized with LC3. p62-knockdown prevented LC3II puncta formation. LPS-induced LC3II/p62-puncta also required MyD88/TIRAP signaling and localization of both Nrf2 and NF κ B transcription factors to the nucleus to upregulate p62-expression. Therefore, TLR4-activation by LPS in hepatocytes induces a p62-mediated, not beclin1-mediated, autophagy-like clearance pathway that is hepatoprotective by clearing aggregate-prone or misfolded proteins from the cytosol and preserving energy homeostasis under stress.
[Effect of inducible nitric oxide on intracellular homeostasis of hepatocytes].
Tang, Xi-Feng; Zhou, Dong-Yao; Kang, Ge-Fei
2002-02-01
To investigate the effects of inducible nitric oxide (NO) and exogenous NO on the intracellular homeostasis of the hepatocytes. Endogenous NO was induced by combined action of lipopolysaccharide (LPS) and cytokines in cultured rat hepatocytes, and exogenous NO was supplied by sodium nitroprusside (SNP) to stimulate the hepatocytes. The changes in intracellular malondialdehyde (MDA), reduced glutathione(GSH) and free calcium ([Ca2+]i) were observed. substantial increase by 7.97 times in intracellular MDA level and a decrease by 57.9% in GSH occurred in the hepatocytes after the cells had been incubated with LPS and cytokines for 24 h, which were reversed by 43.5% and 98.4% respectively by treatment with N(G)-monomethyl-L-arginine (NMMA), a competitive nitric oxide synthase (NOS) inhibitor. Verapamil significantly reduced both endogenous NO production and oxidative stress, while the effect of A23187 was not conspicuous. Incubation with chlorpromazine and Vitamine E (VitE), however, did not result in decreased release of NO by LPS- and cytokines-induced hepatocytes. After SNP exposure of the hepatocytes, the oxidative status was reversibly enhanced in a time-dependent manner. Short exposure to SNP led to a concentration-dependent inhibition of the rapid and transient increase in free calcium induced by K(+) depolarization and hepatopoietin-coupled calcium mobilization. Inducible NO may initiate and play a key role in the latter stages of metabolic and functional stress responses of hepatocytes against endotoxin and cytokines, when the reduction occurs in the capacity of NO to independently mediate lipid peroxidation and counteract oxidation. The inhibitory effect of NO on [Ca2+]i mobilization may be an important autoregulatory mechanism by means of negative feedback on protein kinase C-associated NOS induction.
Dopamine-induced SULT1A3/4 promotes EMT and cancer stemness in hepatocellular carcinoma.
Zou, Juan; Li, Hong; Huang, Qianling; Liu, Xiaomin; Qi, Xiaoxiao; Wang, Ying; Lu, Linlin; Liu, Zhongqiu
2017-10-01
Hepatocellular carcinoma has the second highest incidence rate among malignant cancers in China. Hepatocellular carcinoma development is complex because of the metabolism disequilibrium involving SULT1A3/4, a predominant sulfotransferase that metabolizes sulfonic xenobiotics and endogenous catecholamines. However, the correlation between SULT1A3/4 and hepatocellular carcinoma progression is unclear. By utilizing immunofluorescence and immunohistochemical analysis, we found that in nine hepatocellular carcinoma clinical specimens, SULT1A3/4 was abundantly expressed in tumor tissues compared to that in the adjacent tissues. Moreover, liver cancer cells (HepG2, MHCC97-L, and MHCC97-H) had higher basal expression of SULT1A3/4 than immortalized liver cells (L02 and Chang liver). Ultra-high-pressure liquid chromatography-tandem mass spectrometry assay results further revealed that the concentration of dopamine (a substrate of SULT1A3/4) was negatively correlated with SULT1A3/4 protein expression. As a transcriptional regulator of SULT1A3/4 in turn, dopamine was used to induce SULT1A3/4 in vitro. Interestingly, dopamine significantly induced SULT1A3/4 expression in liver cancer HepG2 cells, while decreased that in L02 cells. More importantly, the expression levels of epithelial-mesenchymal transition biomarkers (N-cadherin and vimentin) and cell stemness biomarkers (nanog, sox2, and oct3/4) considerably increased in HepG2 with dopamine-induced SULT1A3/4, whereas in L02, epithelial-mesenchymal transition and cancer stem cell-associated proteins were contrarily decreased. Furthermore, invasion and migration assays further revealed that dopamine-induced SULT1A3/4 dramatically stimulated the metastatic capacity of HepG2 cells. Our results implied that SULT1A3/4 exhibited bidirectional effect on tumor and normal hepatocytes and may thus provide a novel strategy for hepatocellular carcinoma clinical targeting. In addition, SULT1A3/4 re-expression could serve as a biomarker for hepatocellular carcinoma prognosis.
Choi, Young-Jun; Kim, Hyemin; Kim, Ji-Woo; Yoon, Seokjoo; Park, Han-Jin
2018-05-01
The aim of the study is to generate a spherical three-dimensional (3D) aggregate of hepatocyte-like cells (HLCs) differentiated from human embryonic stem cells and to investigate the effect of the 3D environment on hepatic maturation and drug metabolism. Quantitative real-time PCR analysis indicated that gene expression of mature hepatocyte markers, drug-metabolizing enzymes, and hepatic transporters was significantly higher in HLCs cultured in the 3D system than in those cultured in a two-dimensional system (p < 0.001). Moreover, hepatocyte-specific functions, including albumin secretion and bile canaliculi formation, were increased in HLCs cultured in the 3D system. In particular, 3D spheroidal culture increased expression of CES1 and BCHE, which encode hepatic esterases (p < 0.001). The enhanced activities of these hepatic esterases were confirmed by the cholinesterase activity assay and the increased susceptibility of HLCs to oseltamivir, which is metabolized by CES1. 3D spheroidal culture enhances the maturation and drug metabolism of stem cell-derived HLCs, and this may help to optimize hepatic differentiation protocols for hepatotoxicity testing.
Human oocyte cryopreservation as an adjunct to IVF-embryo transfer cycles.
Boldt, Jeffrey; Cline, Donald; McLaughlin, David
2003-06-01
The purpose of this work was to develop methods for successful cryopreservation of human oocytes. Two cryopreservation procedures were used. Method 1 involved use of 1.5 mol/l propanediol (PrOH)-0.1 mol/l sucrose with medium containing sodium (Na) as cryoprotectant medium, seeding at -7 degrees C, and stepwise dilution of cryoprotectant post-thaw. Method 2 used Na-depleted media with 1.5 mol/l PrOH-0.2 mol/l sucrose for freezing, seeding at -6 degrees C, and use of high sucrose (0.5 and 0.2 mol/l) for cryoprotectant removal. The first method was used in seven patients, and gave poor (12.3%) survival results and no pregnancies. The second method was used in 15 patients (16 cycles), and yielded good survival and fertilization rates (74.4 and 59% respectively), with four pregnancies and five healthy infants born to 11 women receiving an embryo transfer. Using Na-depleted media along with other alterations in freezing and thawing procedures, human oocyte cryopreservation can provide excellent survival and pregnancy rates.
Yanagi, Satoshi; Kato, Chika; Takashima, Ryokichi; Kobayashi, Eiji; Hagiwara, Keitaro; Ochiya, Takahiro
2015-01-01
Preparing targeted cells for medical applications from human induced pluripotent stem cells (hiPSCs) using growth factors, compounds, or gene transfer has been challenging. Here, we report that human induced hepatic lineage-oriented stem cells (hiHSCs) were generated and expanded as a new type of hiPSC under non-typical coculture with feeder cells in a chemically defined hiPSC medium at a very high density. Self-renewing hiHSCs expressed markers of both human embryonic stem cells (hESCs) and hepatocytes. Those cells were highly expandable, markedly enhancing gene expression of serum hepatic proteins and cytochrome P450 enzymes with the omission of FGF-2 from an undefined hiPSC medium. The hepatic specification of hiHSCs was not attributable to the genetic and epigenetic backgrounds of the starting cells, as they were established from distinct donors and different types of cells. Approximately 90% of hiHSCs autonomously differentiated to hepatocyte-like cells, even in a defined minimum medium without any of the exogenous growth factors necessary for hepatic specification. After 12 days of this culture, the differentiated cells significantly enhanced gene expression of serum hepatic proteins (ALB, SERPINA1, TTR, TF, FABP1, FGG, AGT, RBP4, and AHSG), conjugating enzymes (UGT2B4, UGT2B7, UGT2B10, GSTA2, and GSTA5), transporters (SULT2A1, SLC13A5, and SLCO2B1), and urea cycle-related enzymes (ARG1 and CPS1). In addition, the hepatocyte-like cells performed key functions of urea synthesis, albumin secretion, glycogen storage, indocyanine green uptake, and low-density lipoprotein uptake. The autonomous hepatic specification of hiHSCs was due to their culture conditions (coculture with feeder cells in a defined hiPSC medium at a very high density) in self-renewal rather than in differentiation. These results suggest the feasibility of preparing large quantities of hepatocytes as a convenient and inexpensive hiPSC differentiation. Our study also suggests the necessity of optimizing culture conditions to generate other specific lineage-oriented hiPSCs, allowing for a very simple differentiation. PMID:25875613
Promotion of Cancer Stem-Like Cell Properties in Hepatitis C Virus-Infected Hepatocytes
Kwon, Young-Chan; Bose, Sandip K.; Steele, Robert; Meyer, Keith; Di Bisceglie, Adrian M.; Ray, Ratna B.
2015-01-01
ABSTRACT We have previously reported that hepatitis C virus (HCV) infection of primary human hepatocytes (PHH) induces the epithelial mesenchymal transition (EMT) state and extends hepatocyte life span (S. K. Bose, K. Meyer, A. M. Di Bisceglie, R. B. Ray, and R. Ray, J Virol 86:13621–13628, 2012, http://dx.doi.org/10.1128/JVI.02016-12). These hepatocytes displayed sphere formation on ultralow binding plates and survived for more than 12 weeks. The sphere-forming hepatocytes expressed a number of cancer stem-like cell (CSC) markers, including high levels of the stem cell factor receptor c-Kit. The c-Kit receptor is regarded as one of the CSC markers in hepatocellular carcinoma (HCC). Analysis of c-Kit mRNA displayed a significant increase in the liver biopsy specimens of chronically HCV-infected patients. We also found c-Kit is highly expressed in transformed human hepatocytes (THH) infected in vitro with cell culture-grown HCV genotype 2a. Further studies suggested that HCV core protein significantly upregulates c-Kit expression at the transcriptional level. HCV infection of THH led to a significant increase in the number of spheres displayed on ultralow binding plates and in enhanced EMT and CSC markers and tumor growth in immunodeficient mice. The use of imatinib or dasatinib as a c-Kit inhibitor reduced the level of sphere-forming cells in culture. The sphere-forming cells were sensitive to treatment with sorafenib, a multikinase inhibitor, that is used for HCC treatment. Further, stattic, an inhibitor of the Stat3 molecule, induced sphere-forming cell death. A combination of sorafenib and stattic had a significantly stronger effect, leading to cell death. These results suggested that HCV infection potentiates CSC generation, and selected drugs can be targeted to efficiently inhibit cell growth. IMPORTANCE HCV infection may develop into HCC as an end-stage liver disease. We focused on understanding the mechanism for the risk of HCC from chronic HCV infection and identified targets for treatment. HCV-infected primary and transformed human hepatocytes (PHH or THH) generated CSC. HCV-induced spheres were highly sensitive to cell death from sorafenib and stattic treatment. Thus, our study is highly significant for HCV-associated HCC, with the potential for developing a target-specific strategy for improved therapies. PMID:26355082
Mary, Verónica S; Arias, Silvina L; Otaiza, Santiago N; Velez, Pilar A; Rubinstein, Héctor R; Theumer, Martín G
2017-06-01
Human oral exposure to aflatoxin B 1 (AFB 1 ) and fumonisin B 1 (FB 1 ) is associated with increased hepatocellular carcinoma. Although evidence suggested interactive AFB 1 -FB 1 hepatotoxicity, the underlying mechanisms remain mostly unidentified. This work was aimed at evaluating the possible AFB 1 -FB 1 interplay to induce genetic and cell cycle toxicities in BRL-3A rat hepatocytes, reactive oxygen species (ROS) involvement, and the AFB 1 metabolizing pathways cytochrome P450 (CYP) and arachidonic acid (ArAc) metabolism as ROS contributors. Flow cytometry of stained BRL-3A hepatocytes was used to study the cell cycle (propidium iodide), ROS intracellular production (DCFH-DA, HE, DAF-2 DA), and phospholipase A activity (staining with bis-BODIPY FL C11-PC). The CYP1A activity was assessed by the 7-ethoxyresorufin-O-deethylase (EROD) assay. Despite a 48-h exposure to FB 1 (30 μM) not being genotoxic, the AFB 1 (20 μM)-induced micronucleus frequency was overcome by the AFB 1 -FB 1 mixture (MIX), presumably showing toxin interaction. The mycotoxins blocked G1/S-phase, but only MIX caused cell death. Overall, the oxidative stress led these alterations as the pretreatment with N-acetyl-l-cysteine reduced such toxic effects. While AFB 1 had a major input to the MIX pro-oxidant activity, with CYP and ArAc metabolism being ROS contributors, these pathways were not involved in the FB 1 -elicited weak oxidative stress. The MIX-induced micronucleus frequency in N-acetyl-l-cysteine pretreated cells was greater than that caused by AFB 1 without antioxidants, suggesting enhanced AFB 1 direct genotoxicity probably owing to the higher CYP activity and ArAc metabolism found in MIX. The metabolic pathways modulation by AFB 1 -FB 1 mixtures could raise its hepatocarcinogenic properties. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Rubio, Sandra; Linares, Clara I.; Bello, Rosario I.
The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca{sup 2+} on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca{sup 2+} pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca{sup 2+} entrance was induced by A23187 in HepG2. Cell death, Ca{sup 2+} mobilization, NOS-1, -2 and -3 expression, AP-1 activation,more » and NO production were evaluated. GCDCA reduced intracellular Ca{sup 2+} concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca{sup 2+} entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca{sup 2+} entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca{sup 2+} concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca{sup 2+}-dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.« less
Assessment of Growth Factors Secreted by Human Breastmilk Mesenchymal Stem Cells.
Kaingade, Pankaj Mahipatrao; Somasundaram, Indumathi; Nikam, Amar Babaso; Sarang, Shabari Amit; Patel, Jagdish Shantilal
2016-01-01
Human breastmilk is a dynamic, multifaceted biological fluid containing nutrients, bioactive substances, and growth factors. It is effective in supporting growth and development of an infant. As breastmilk has been found to possess mesenchymal stem cells, the importance of the components of breastmilk and their physiological roles is increasing day by day. The present study was intended to identify the secretions of growth factors, mainly vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), from human breastmilk mesenchymal stem cells under basal conditions of in vitro cell culture using synthetic media and human cord serum. The growth factors were analyzed with the enzyme-linked immunosorbent assay technique. The cultured mesenchymal stem cells of breastmilk without serum revealed significant differences in secretions of the VEGF and HGF growth factors (8.55 ± 2.26402 pg/mL and 230.8 ± 45.9861 pg/mL, respectively) compared with mesenchymal stem cells of breastmilk with serum (21.31 ± 4.69 pg/mL and 2,404.42 ± 481.593 pg/mL, respectively). Results obtained from our study demonstrate that both VEGF and HGF are secreted in vitro by human breastmilk mesenchymal stem cells. The roles of VEGF and HGF in surfactant secretion, pulmonary maturation, and neonatal maturity have been well established. Thus, we emphasize that breastmilk-derived MSCs could be a potent therapeutic source in treating neonatal diseases. Besides, due to its immense potency, the study also emphasizes the importance of breastfeeding, which is promoted by organizations like the World Heatlh Organization and UNICEF.
Shri, Meena; Agrawal, Himanshu; Rani, Payal; Singh, Dheer; Onteru, Suneel Kumar
2017-04-26
Livestock, having close resemblance to humans, could be a better source of primary hepatocytes than rodents. Herein, we successfully developed three-dimensional (3D) culturing system for primary sheep and buffalo hepatocytes. The 3D-structures of sheep hepatocytes were formed on the fifth-day and maintained until the tenth-day on polyHEMA-coated plates and in hanging drops with William's E media (HDW). Between the cultured and fresh cells, we observed a similar expression of GAPDH, HNF4α, ALB, CYP1A1, CK8 and CK18. Interestingly, a statistically significant increase was noted in the TAT, CPS, AFP, AAT, GSP and PCNA expression. In buffalo hepatocytes culture, 3D-like structures were formed on the third-day and maintained until the sixth-day on polyHEMA and HDW. The expression of HNF4α, GSP, CPS, AFP, AAT, PCNA and CK18 was similar between cultured and fresh cells. Further, a statistically significant increase in the TAT and CK8 expression, and a decrease in the GAPDH, CYP1A1 and ALB expression were noted. Among the culture systems, HDW maintained the liver transcript markers more or less similar to the fresh hepatocytes of the sheep and buffalo for ten and six days, respectively. Taken together, hanging drop is an efficient method for 3D culturing of primary sheep and buffalo hepatocytes.
Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro.
Loneker, Abigail E; Faulk, Denver M; Hussey, George S; D'Amore, Antonio; Badylak, Stephen F
2016-04-01
Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubilized, and then used as a media supplement for primary rat hepatocytes (PRH). The four species of LECM investigated were human, porcine, canine and rat. Cell morphology, albumin secretion, and ammonia metabolism were used to assess maintenance of hepatocyte phenotype. Biochemical and mechanical characterization of each LECM were also conducted. Results showed that PRH's supplemented with canine and porcine LECM maintained their phenotype to a greater extent compared to all other groups. PRH's supplemented with canine and porcine LECM showed increased bile production, increased albumin production, and the formation of multinucleate cells. The findings of the present study suggest that solubilized liver ECM can support in-vitro hepatocyte culture and should be considered for therapeutic and diagnostic techniques that utilize hepatocytes. © 2016 Wiley Periodicals, Inc.
MicroRNAs control hepatocyte proliferation during liver regeneration.
Song, Guisheng; Sharma, Amar Deep; Roll, Garrett R; Ng, Raymond; Lee, Andrew Y; Blelloch, Robert H; Frandsen, Niels M; Willenbring, Holger
2010-05-01
MicroRNAs (miRNAs) constitute a new class of regulators of gene expression. Among other actions, miRNAs have been shown to control cell proliferation in development and cancer. However, whether miRNAs regulate hepatocyte proliferation during liver regeneration is unknown. We addressed this question by performing 2/3 partial hepatectomy (2/3 PH) on mice with hepatocyte-specific inactivation of DiGeorge syndrome critical region gene 8 (DGCR8), an essential component of the miRNA processing pathway. Hepatocytes of these mice were miRNA-deficient and exhibited a delay in cell cycle progression involving the G(1) to S phase transition. Examination of livers of wildtype mice after 2/3 PH revealed differential expression of a subset of miRNAs, notably an induction of miR-21 and repression of miR-378. We further discovered that miR-21 directly inhibits Btg2, a cell cycle inhibitor that prevents activation of forkhead box M1 (FoxM1), which is essential for DNA synthesis in hepatocytes after 2/3 PH. In addition, we found that miR-378 directly inhibits ornithine decarboxylase (Odc1), which is known to promote DNA synthesis in hepatocytes after 2/3 PH. Our results show that miRNAs are critical regulators of hepatocyte proliferation during liver regeneration. Because these miRNAs and target gene interactions are conserved, our findings may also be relevant to human liver regeneration.
The instant blood-mediated inflammatory reaction characterized in hepatocyte transplantation.
Gustafson, Elisabet K; Elgue, Graciela; Hughes, Robin D; Mitry, Ragai R; Sanchez, Javier; Haglund, Ulf; Meurling, Staffan; Dhawan, Anil; Korsgren, Olle; Nilsson, Bo
2011-03-27
Hepatocyte transplantation (HcTx) has proven to be a safe procedure, although the functional results have been unsatisfactory, probably due to insufficient engraftment or a loss of transplanted mass or function. In this study, we investigate whether hepatocytes in contact with blood induce an inflammatory reaction leading to, similar to what happens in clinical islet transplantation, an instant blood-mediated inflammatory reaction (IBMIR) resulting in an early loss of transplanted cells. By using an experimental model that mimics the portal vein blood flow, we could study different parameters reflecting the effects on the innate immunity elicited by hepatocytes in contact with ABO-matched human blood. We report that all aspects of the IBMIR such as platelet and granulocyte consumption, coagulation, and complement activation were demonstrated. Addition of various specific inhibitors of coagulation allowed us to clearly delineate the various stages of the hepatocyte-triggered IBMIR and show that the reaction was triggered by tissue factor. Analysis of a case of clinical HcTx showed that hepatocyte-induced IBMIR also occurs in vivo. Both the inflammatory and the coagulation aspects were controlled by low-molecular-weight dextran sulfate. Isolated hepatocytes in contact with blood induce the IBMIR in vitro, and there are indications that these events are also relevant in vivo. According to these findings, HcTx would benefit from controlling a wider range of signals from the innate immune system.
Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan
2017-11-01
The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The Cell-Surface N-Glycome of Human Embryonic Stem Cells and Differentiated Hepatic Cells thereof.
Montacir, Houda; Freyer, Nora; Knöspel, Fanny; Urbaniak, Thomas; Dedova, Tereza; Berger, Markus; Damm, Georg; Tauber, Rudolf; Zeilinger, Katrin; Blanchard, Véronique
2017-07-04
Human embryonic stem cells (hESCs) are pluripotent stem cells that offer a wide range of applications in regenerative medicine. In addition, they have been proposed as an appropriate alternative source of hepatocytes. In this work, hESCs were differentiated into definitive endodermal cells (DECs), followed by maturation into hepatocyte-like cells (HLCs). Their cell-surface N-glycome was profiled and also compared with that of primary human hepatocytes (PHHs). Undifferentiated hESCs contained large amounts of high-mannose N-glycans. In contrast, complex-type N-glycans such as asialylated or monosialylated biantennary and triantennary N-glycans were dominant in HLCs, and fully galactosylated structures were significantly more abundant than in undifferentiated hESCs. The cell-surface N-glycosylation of PHHs was more biologically processed than that of HLCs, with bisialylated biantennary and trisialylated triantennary structures predominant. This is the first report of the cell surface N-glycome of PHHs and of HLCs being directly generated from hESCs without embryoid body formation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A
2014-01-01
Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048
Deng, Y-R; Yoshida, K; Jin, Q L; Murata, M; Yamaguchi, T; Tsuneyama, K; Moritoki, Y; Niu, J Q; Matsuzaki, K; Lian, Z-X
2014-04-01
Transforming growth factor (TGF)-β, type I receptor (TβRI) and c-Jun N-terminal kinases (JNK) phosphorylate Smad3 differentially to create 2 isoforms phosphorylated (p) at the COOH-terminus (C) or at the linker region (L) and regulate hepatocytic fibrocarcinogenesis. This study aimed to compare the differences between how hepatitis B virus (HBV) infection affected hepatocytic Smad3 phosphorylated isoforms before and after anti-viral therapy. To clarify the relationship between Smad3 phosphorylation and liver disease progression, we studied 10 random patients in each stage of HBV-related fibrotic liver disease (F1-4) and also 10 patients with HBV-associated HCC. To examine changes in phosphorylated Smad3 signalling before and after anti-HBV therapies, we chose 27 patients with chronic hepatitis B who underwent baseline and follow-up biopsies at 52 weeks from the start of nucleoside analogue treatments (Lamivudine 100 mg daily or Telbivudine 600 mg daily). Fibrosis stage, inflammatory activity and phosphorylated Smad3 positivity in the paired biopsy samples were compared. Hepatocytic pSmad3C signalling shifted to fibrocarcinogenic pSmad3L signalling as the livers progressed from chronic hepatitis B infection to HCC. After nucleoside analogue treatment, serum alanine aminotransferase (ALT) and HBV-DNA levels in 27 patients with HBV-related chronic liver diseases were decreased dramatically. Decrease in HBV-DNA restored pSmad3C signalling in hepatocytes, while eliminating prior fibrocarcinogenic pSmad3L signalling. Oral nucleoside analogue therapies can suppress fibrosis and reduce HCC incidence by successfully reversing phosphorylated Smad3 signalling; even liver disease progressed to cirrhosis in chronic hepatitis B patients. © 2013 British Society for Immunology.
Ultrastructure of the hepatocytes in a vertebrate liver without bile ducts.
Youson, J H; Sidon, E W; Peek, W D; Shivers, R R
1985-01-01
Thin sections and freeze fracture replicas were used to study the structure of the hepatocytes of the parasitic adult lamprey (Petromyzon marinus L.). Despite the absence of bile ducts and bile canaliculi, the hepatocytes have some features which resemble those of cells in the livers of other vertebrates. Hepatocytes are characterised by large gap junctions, many cytoplasmic inclusions, and large deposits of iron. The latter is present throughout the cytoplasmic matrix and within large inclusion bodies which may arise through sequestration of parts of the cytoplasm by membrane isolation. There is no evidence for the involvement of hepatocytes in glucose metabolism but their fine structure reflects the production of bile products and the processing of lipoproteins. The accumulation of bile products within cytoplasmic inclusions resembles the situation resulting from biliary atresia or other cholestatic conditions in higher organisms. There is little folding of the plasma membrane facing the perivascular space (of Dissé), perhaps indicating limited involvement of this surface in the transport of bile products. Nerve endings in close apposition to hepatocytes suggest possible nervous control or metabolic function or the presence of sensory receptors in lamprey liver. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:2999046
Chen, Li; Zhang, Feng; Kong, Desong; Zhu, Xiaojing; Chen, Wenxing; Wang, Aiyun; Zheng, Shizhong
2013-10-25
Herbal hepatotoxicity has been increasingly reported in clinical context, but the underlying mechanisms are poorly understood. Saikosaponin D (SSD) is a major component of saikosaponins isolated from Bupleurum falactum, a herb that has been linked to hepatotoxicity. Our current study was to examine the toxic effect of SSD on human hepatocyte LO2 cells and explore the possible mechanism. The results demonstrated that SSD reduced cell viability and led to dramatic morphological alterations in LO2 cells. Hoechst staining and flow cytometry analyses showed that SSD stimulated hepatocyte apoptosis. SSD-treated cells exhibited apparent nuclear condensation and fragmentation, and the apoptotic cells were increased by SSD dose-dependently. Subsequent experiments showed that SSD decreased mitochondrial membrane potential and downregulated Bcl-2 but upregulated Bax. Moreover, caspase-9 and caspase-3 were activated in SSD-treated LO2 cells. These data consistently indicated that SSD stimulated mitochondrial apoptosis in hepatocytes. Mechanistic investigations showed that SSD disrupted p38 signaling and that p38 specific inhibitor SB203580 mimicked the pro-apoptotic effect of SSD. In addition, platelet-derived growth factor-β receptor (PDGF-βR) blocker imatinib reduced p38 phosphorylation and also mimicked the pro-apoptotic effect of SSD in LO2 cells. These data collectively indicated that SSD induced apoptosis by interrupting PDGF-βR/p38 pathway in LO2 hepatocytes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Uronen, Riikka-Liisa; Lundmark, Per; Orho-Melander, Marju; Jauhiainen, Matti; Larsson, Kristina; Siegbahn, Agneta; Wallentin, Lars; Zethelius, Björn; Melander, Olle; Syvänen, Ann-Christine; Ikonen, Elina
2010-08-01
To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 single-nucleotide polymorphisms with circulating TGs in humans. TGs were reduced in Npc1(-/-) mouse serum and hepatocytes. In Npc1(-/-) hepatocytes, the incorporation of [3H]oleic acid and [3H]acetate into TG was decreased, but shunting of oleic acid- or acetate-derived [3H]carbons into cholesterol was increased. Inhibition of cholesterol synthesis normalized TG synthesis, content, and secretion in Npc1(-/-) hepatocytes, suggesting increased hepatic cholesterol neogenesis as a cause for the reduced TG content and secretion. We found a significant association between serum TG levels and 5 common NPC1 single-nucleotide polymorphisms in a cohort of 1053 men, with the lowest P=8.7 x 10(-4) for the single-nucleotide polymorphism rs1429934. The association between the rs1429934 A allele and higher TG levels was replicated in 2 additional cohorts, which included 8041 individuals. This study provides evidence of the following: (1) in mice, loss of NPC1 function reduces hepatocyte TG content and secretion by increasing the metabolic flux of carbons into cholesterol synthesis; and (2) common variation in NPC1 contributes to serum TG levels in humans.
TWEAK induces liver progenitor cell proliferation
Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.
2005-01-01
Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324
Calcagno, Andrea; Cusato, Jessica; Simiele, Marco; Motta, Ilaria; Audagnotto, Sabrina; Bracchi, Margherita; D'Avolio, Antonio; Di Perri, Giovanni; Bonora, Stefano
2014-01-01
To analyse the determinants of raltegravir CSF penetration, including the pharmacogenetics of drug transporters located at the blood-brain barrier or blood-CSF barrier. Plasma and CSF raltegravir concentrations were determined by a validated HPLC coupled with mass spectrometry method in adults on raltegravir-based combination antiretroviral therapy undergoing a lumbar puncture. Single nucleotide polymorphisms in the genes encoding drugs transporters (ABCB1 3435, SLCO1A2, ABCC2 and SLC22A6) and the gene encoding hepatocyte nuclear factor 4 α (HNF4α) were determined by real-time PCR. In 41 patients (73.2% male, 95.1% Caucasians), the median raltegravir plasma and CSF concentrations were 165 ng/mL (83-552) and 31 ng/mL (21-56), respectively. CSF-to-plasma ratios (CPRs) ranged from 0.005 to 1.33 (median 0.20, IQR 0.04-0.36). Raltegravir trough CSF concentrations (n = 35) correlated with raltegravir plasma levels (ρ = 0.395, P = 0.019); CPRs were higher in patients with blood-brain barrier damage (0.47 versus 0.18, P = 0.02). HNF4α 613 CG genotype carriers had lower trough CSF concentrations (20 versus 37 ng/mL, P = 0.03) and CPRs (0.12 versus 0.27, P = 0.02). Following multivariate linear regression analysis, the CSF-to-serum albumin ratio was the only independent predictor of raltegravir penetration into the CSF. Raltegravir penetration into the CSF shows a large interpatient variability, although CSF concentrations were above the wild-type IC50 in all patients (and above IC95 in 28.6%). In this cohort, blood-brain barrier permeability is the only independent predictor of raltegravir CPR. The impact of single nucleotide polymorphisms in selected genes on raltegravir penetration warrants further studies.
Krajka-Kuźniak, Violetta; Paluszczak, Jarosław; Oszmiański, Jan; Baer-Dubowska, Wanda
2014-04-01
Hawthorn (Crataegus oxyacantha L.), a plant used in traditional medicine, is a rich source of procyanidins which have been reported to exhibit antioxidant and anti-carcinogenic activity. In this study, we assessed the effect of hawthorn bark extract (HBE) on Nrf2 pathway activation in THLE-2 and HepG2 cells. Treatment with 1.1 µg/mL, 5.5 µg/mL and 11 µg/mL of HBE resulted in the translocation of Nrf2 from the cytosol to the nucleus in both cell lines; however, the accumulation of phosphorylated Nrf2 was observed only in THLE-2. Accordingly, treatment of cells with HBE was associated with an increase in the mRNA and protein level of such Nrf2-dependent genes as glutathione S-transferases (GSTA, GSTP, GSTM, GSTT), NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) (0.2-1.1-fold change, p < 0.05), however, only in normal THLE-2 hepatocytes. The induction of NQO1 correlated with an increased level of p53 (0.21-0.42-fold change, p < 0.05). These effects may be related to induction of phosphorylation of upstream ERK and JNK kinases. Collectively, the results suggest that the Nrf2/ARE pathway may play an important role in the regulation of procyanidin-mediated antioxidant/detoxifying effects in hepatocytes, and this may explain the hepatoprotective and chemopreventive properties of these phytochemicals. Copyright © 2013 John Wiley & Sons, Ltd.
Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula
2012-01-01
Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.
Bukong, Terence N; Lo, Tracie; Szabo, Gyongyi; Dolganiuc, Angela
2012-05-01
Liver diseases are common in the United States and often require liver transplantation; however, donated organs are limited and thus alternative sources for liver cells are in high demand. Embryonic stem cells (ESC) can provide a continuous and readily available source of liver cells. ESC differentiation to liver cells is yet to be fully understood and comprehensive differentiation protocols are yet to be defined. Here, we aimed to achieve human (h)ESC differentiation into mature hepatocytes using defined recombinant differentiation factors and metabolites. Embryonic stem cell H1 line was sub-cultured on feeder layer. We induced hESCs into endodermal differentiation succeeded by early/late hepatic specification and finally into hepatocyte maturation using step combinations of Activin A and fibroblast growth factor (FGF)-2 for 7 days; followed by FGF-4 and bone morphogenic protein 2 (BMP2) for 7 days, succeeded by FGF-10 + hepatocyte growth factor 4 + epidermal growth factor for 14 days. Specific inhibitors/stimulators were added sequentially throughout differentiation. Cells were analysed by PCR, flow cytometry, microscopy or functional assays. Our hESC differentiation protocol resulted in viable cells with hepatocyte shape and morphology. We observed gradual changes in cell transcriptome, including up-regulation of differentiation-promoting GATA4, GATA6, POU5F1 and HNF4 transcription factors, steady levels of stemness-promoting SOX-2 and low levels of Nanog, as defined by PCR. The hESC-derived hepatocytes expressed alpha-antitrypsin, CD81, cytokeratin 8 and low density lipoprotein (LDL) receptor. The levels of alpha-fetoprotein and proliferation marker Ki-67 in hESC-derived hepatocytes remained elevated. Unlike stem cells, the hESC-derived hepatocytes performed LDL uptake, produced albumin and alanine aminotransferase and had functional alcohol dehydrogenase. We report a novel protocol for hESC differentiation into morphological and functional yet immature hepatocytes as an alternative method for hepatocyte generation. © 2012 John Wiley & Sons A/S.
Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice.
Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean-François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique
2015-07-24
Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans.
Fluopsin C induces oncosis of human breast adenocarcinoma cells.
Ma, Li-sha; Jiang, Chang-you; Cui, Min; Lu, Rong; Liu, Shan-shan; Zheng, Bei-bei; Li, Lin; Li, Xia
2013-08-01
Fluopsin C, an antibiotic isolated from Pseudomonas jinanesis, has shown antitumor effects on several cancer cell lines. In the current study, the oncotic cell death induced by fluopsin C was investigated in human breast adenocarcinoma cells in vitro. Human breast adenocarcinoma cell lines MCF-7 and MD-MBA-231 were used. The cytotoxicity was evaluated using MTT assay. Time-lapse microscopy and transmission electron microscopy were used to observe the morphological changes. Cell membrane integrity was assessed with propidium iodide (PI) uptake and lactate dehydrogenase (LDH) assay. Flow cytometry was used to measure reactive oxygen species (ROS) level and mitochondrial membrane potential (Δψm). A multimode microplate reader was used to analyze the intracellular ATP level. The changes in cytoskeletal system were investigated with Western blotting and immunostaining. Fluopsin C (0.5-8 μmol/L) reduced the cell viability in dose- and time-dependent manners. Its IC50 values in MCF-7 and MD-MBA-231 cells at 24 h were 0.9 and 1.03 μmol/L, respectively. Fluopsin C (2 μmol/L) induced oncosis in both the breast adenocarcinoma cells characterized by membrane blebbing and swelling, which was blocked by pretreatment with the pan-caspase inhibitor Z-VAD-fmk. In MCF-7 cells, fluopsin C caused PI uptake into the cells, significantly increased LDH release, induced cytoskeletal system degradation and ROS accumulation, decreased the intracellular ATP level and Δψm. Noticeably, fluopsin C exerted comparable cytotoxicity against the normal human hepatocytes (HL7702) and human mammary epithelial cells with the IC50 values at 24 h of 2.7 and 2.4 μmol/L, respectively. Oncotic cell death was involved in the anticancer effects of fluopsin C on human breast adenocarcinoma cells in vitro. The hepatoxicity of fluopsin C should not be ignored.
Hecht, Stephen S; Berg, Jeannette Zinggeler; Hochalter, J Bradley
2009-03-16
Bay region diol epoxides are recognized ultimate carcinogens of polycyclic aromatic hydrocarbons (PAH), and in vitro studies have demonstrated that they can be detoxified by conjugation with glutathione, leading to the widely investigated hypothesis that individuals with low activity forms of glutathione-S-transferases are at higher risk of PAH induced cancer, a hypothesis that has found at most weak support in molecular epidemiology studies. A weakness in this hypothesis was that the mercapturic acids resulting from the conjugation of PAH bay region diol epoxides had never been identified in human urine. We recently analyzed smokers' urine for mercapturic acids derived from phenanthrene, the simplest PAH with a bay region. The only phenanthrene diol epoxide-derived mercapturic acid in smokers' urine was produced from the reverse diol epoxide, anti-phenanthrene-3,4-diol-1,2-epoxide (11), not the bay region diol epoxide, anti-phenanthrene-1,2-diol-3,4-epoxide (10), which does not support the hypothesis noted above. In this study, we extended these results by examining the conjugation of phenanthrene metabolites with glutathione in human hepatocytes. We identified the mercapturic acid N-acetyl-S-(r-4,t-2,3-trihydroxy-1,2,3,4-tetrahydro-c-1-phenanthryl)-L-cysteine (14a), (0.33-35.9 pmol/mL at 10 microM 8, 24 h incubation, N = 10) in all incubations with phenanthrene-3,4-diol (8) and the corresponding diol epoxide 11, but no mercapturic acids were detected in incubations with phenanthrene-1,2-diol (7), and only trace amounts were observed in incubations with the corresponding bay region diol epoxide 10. Taken together with our previous results, these studies clearly demonstrate that glutathione conjugation of a reverse diol epoxide of phenanthrene is favored over conjugation of a bay region diol epoxide. Since reverse diol epoxides of PAH are generally weakly or nonmutagenic/carcinogenic, these results, if generalizable to other PAH, do not support the widely held assumption that glutathione-S-transferases are important in the detoxification of PAH in humans.
Crespo, A; Peydró, A; Dasí, F; Benet, M; Calvete, J J; Revert, F; Aliño, S F
2005-06-01
The present study contributes to clarify the mechanism underlying the high efficacy of hepatocyte gene transfer mediated by hydrodynamic injection. Gene transfer experiments were performed employing the hAAT gene, and the efficacy and differential identification in mouse plasma of human transgene versus mouse gene was assessed by ELISA and proteomic procedures, respectively. By applying different experimental strategies such as cumulative dose-response efficacy, hemodynamic changes reflected by venous pressures, intravital microscopy, and morphological changes established by transmission electron microscopy, we found that: (a) cumulative multiple doses of transgene by hydrodynamic injection are efficient and well tolerated, resulting in therapeutic plasma levels of hAAT; (b) hydrodynamic injection mediates a transient inversion of intrahepatic blood flow, with circulatory stasis for a few minutes mainly in pericentral vein sinusoids; (c) transmission electron microscopy shows hydrodynamic injection to promote massive megafluid endocytic vesicles among hepatocytes around the central vein but not in hepatocytes around the periportal vein. We suggest that the mechanism of hydrodynamic liver gene transfer involves transient inversion of intrahepatic flow, sinusoidal blood stasis, and massive fluid endocytic vesicles in pericentral vein hepatocytes.
Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946
Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.
An ecotoxicological characterization of nanocrystalline cellulose (NCC).
Kovacs, Tibor; Naish, Valerie; O'Connor, Brian; Blaise, Christian; Gagné, Francois; Hall, Lauren; Trudeau, Vance; Martel, Pierre
2010-09-01
The pulp and paper industry in Canada is developing technology for the production and use of nanocrystalline cellulose (NCC). A key component of the developmental work is an assessment of potential environmental risks. Towards this goal, NCC samples as well as carboxyl methyl cellulose (CMC), a surrogate of the parent cellulosic material, were subjected to an ecotoxicological evaluation. This involved toxicity tests with rainbow trout hepatocytes and nine aquatic species. The hepatocytes were most sensitive (EC20s between 10 and 200 mg/l) to NCC, although neither NCC nor CMC caused genotoxicity. In tests with the nine species, NCC affected the reproduction of the fathead minnow at (IC25) 0.29 g/l, but no other effects on endpoints such as survival and growth occurred in the other species at concentrations below 1 g/l, which was comparable to CMC. Based on this ecotoxicological characterization, NCC was found to have low toxicity potential and environmental risk.
Willemin, M-E; Kadar, A; de Sousa, G; Leclerc, E; Rahmani, R; Brochot, C
2015-06-01
In vitro metabolism of permethrin, a pyrethroid insecticide, was assessed in primary human hepatocytes. In vitro kinetic experiments were performed to estimate the Michaelis-Menten parameters and the clearances or formation rates of the permethrin isomers (cis- and trans-) and three metabolites, cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- and trans-DCCA) and 3-phenoxybenzoic acid (3-PBA). Non-specific binding and the activity of the enzymes involved in permethrin's metabolism (cytochromes P450 and carboxylesterases) were quantified. Trans-permethrin was cleared more rapidly than cis-permethrin with a 2.6-factor (25.7±0.6 and 10.1±0.3 μL/min/10(6) cells respectively). A 3-factor was observed between the formation rates of DCCA and 3-PBA obtained from trans- and cis-permethrin. For both isomers, the rate of formation of DCCA was higher than the one of 3-PBA. The metabolism of the isomers in mixture was also quantified. The co-incubation of isomers at different ratios showed the low inhibitory potential of cis- and trans-permethrin on each other. The estimates of the clearances and the formation rates in the co-incubation condition did not differ from the estimates obtained with a separate incubation. These metabolic parameters may be integrated in physiologically based pharmacokinetic (PBPK) models to predict the fate of permethrin and metabolites in the human body. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma.
Valletta, Daniela; Czech, Barbara; Spruss, Thilo; Ikenberg, Kristian; Wild, Peter; Hartmann, Arndt; Weiss, Thomas S; Oefner, Peter J; Müller, Martina; Bosserhoff, Anja-Katrin; Hellerbrand, Claus
2014-06-01
In human cancers, giant cadherin FAT1 may function both, as an oncogene and a tumor suppressor. Here, we investigated the expression and function of FAT1 in hepatocellular carcinoma (HCC). FAT1 expression was increased in human HCC cell lines and tissues compared with primary human hepatocytes and non-tumorous liver tissue as assessed by quantitative PCR and western blot analysis. Combined immunohistochemical and tissue microarray analysis showed a significant correlation of FAT1 expression with tumor stage and proliferation. Suppression of FAT1 expression by short hairpin RNA impaired proliferation and migration as well as apoptosis resistance of HCC cells in vitro. In nude mice, tumors formed by FAT1-suppressed HCC cells showed a delayed onset and more apoptosis compared with tumors of control cells. Both hepatocyte growth factor and hypoxia-mediated hypoxia-inducible factor 1 alpha activation were identified as strong inducers of FAT1 in HCC. Moreover, demethylating agents induced FAT1 expression in HCC cells. Hypoxia lead to reduced levels of the methyl group donor S-adenosyl-L-methionine (SAM) and hypoxia-induced FAT1 expression was inhibited by SAM supplementation in HCC cells. Together, these findings indicate that FAT1 expression in HCC is regulated via promotor methylation. FAT1 appears as relevant mediator of hypoxia and growth receptor signaling to critical tumorigenic pathways in HCC. This knowledge may facilitate the rational design of novel therapeutics against this highly aggressive malignancy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zanoni, Paolo; Khetarpal, Sumeet A; Larach, Daniel B; Hancock-Cerutti, William F; Millar, John S; Cuchel, Marina; DerOhannessian, Stephanie; Kontush, Anatol; Surendran, Praveen; Saleheen, Danish; Trompet, Stella; Jukema, J Wouter; De Craen, Anton; Deloukas, Panos; Sattar, Naveed; Ford, Ian; Packard, Chris; Majumder, Abdullah al Shafi; Alam, Dewan S; Di Angelantonio, Emanuele; Abecasis, Goncalo; Chowdhury, Rajiv; Erdmann, Jeanette; Nordestgaard, Børge G; Nielsen, Sune F; Tybjærg-Hansen, Anne; Schmidt, Ruth Frikke; Kuulasmaa, Kari; Liu, Dajiang J; Perola, Markus; Blankenberg, Stefan; Salomaa, Veikko; Männistö, Satu; Amouyel, Philippe; Arveiler, Dominique; Ferrieres, Jean; Müller-Nurasyid, Martina; Ferrario, Marco; Kee, Frank; Willer, Cristen J; Samani, Nilesh; Schunkert, Heribert; Butterworth, Adam S; Howson, Joanna M M; Peloso, Gina M; Stitziel, Nathan O; Danesh, John; Kathiresan, Sekar; Rader, Daniel J
2016-03-11
Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant). Copyright © 2016, American Association for the Advancement of Science.
Hanson, Kirsten K.; March, Sandra; Ng, Shengyong; Bhatia, Sangeeta N.
2014-01-01
Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection. PMID:25416236
Yamaguchi, Takashi; Matsuzaki, Koichi; Inokuchi, Ryosuke; Kawamura, Rinako; Yoshida, Katsunori; Murata, Miki; Fujisawa, Junichi; Fukushima, Nobuyoshi; Sata, Michio; Kage, Masayoshi; Nakashima, Osamu; Tamori, Akihiro; Kawada, Norifumi; Tsuneyama, Koichi; Dooley, Steven; Seki, Toshihito; Okazaki, Kazuichi
2013-12-01
Insight into hepatic fibrogenesis and carcinogenesis (fibro-carcinogenesis) caused by hepatitis C virus (HCV) infection has come from recent analyses of transforming growth factor (TGF)-β signaling. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create C-terminally (C), linker (L) or dually (L/C) phosphorylated (p) isoforms. This study aimed to elucidate how HCV infection affected hepatic fibro-carcinogenesis, particularly via phospho-Smad signaling. We first studied phospho-Smad2/3 positivity of 100 patients in different stages of HCV-related chronic liver disease. To examine changes in phospho-Smad2/3 after HCV clearance, we analyzed 32 paired liver biopsy samples obtained before and after sustained virological response (SVR), dividing patients into two groups: 20 patients not developing hepatocellular carcinoma (HCC) after attaining SVR (non-HCC group), and 12 patients who developed HCC despite SVR (HCC group). Hepatocytic tumor-suppressive pSmad3C signaling shifted to carcinogenic pSmad3L and fibrogenic pSmad2L/C signaling as liver diseases progressed. In the non-HCC group, 13 patients (65%) displayed fibrotic regression and inflammation reduction after SVR. Interestingly, SVR restored cytostatic pSmad3C signaling in hepatocytes, while eliminating prior carcinogenic pSmad3L and fibrogenic pSmad2L/C signaling. In the HCC group, seven patients (58%) displayed unchanged or even progressed fibrosis despite smoothened inflammatory activity, reflecting persistently high numbers of hepatocytes with pSmad3L- and pSmad2L/C-signaling and low pSmad3C-signaling. HCV clearance limits fibrosis and reduces HCC incidence by switching inflammation-dependent phospho-Smad signaling from fibro-carcinogenesis to tumor suppression. However, progression to HCC would occur in severely fibrotic livers if an inflammation-independent fibro-carcinogenic process has already begun before HCV clearance. © 2013 The Japan Society of Hepatology.
[Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].
Liao, R Y; Liu, S
2016-06-20
To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, P<0.05). The L02 cells in the 0.8~3.2 mmol/L trichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (P<0.05) , as well as the oncogenes c-myc, c-fos, and k-ras (P<0.05). Compared with the L02 cells, the cells with CYP3A4 gene defect showed significant reductions in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 and the oncogenes c-myc, c-fos, and k-ras (P<0.05). Trichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.
Wang, Shao-Ning; Deng, Yi-Hui; Xu, Hui; Wu, Hong-Bing; Qiu, Ying-Kun; Chen, Da-Wei
2006-01-01
This paper described the synthesis of a novel galactosylated lipid with mono-galactoside moiety, (5-Cholesten-3beta-yl) 4-oxo-4-[2-(lactobionyl amido) ethylamido] butanoate (CHS-ED-LA), and the targetability of doxorubicin (DOX), a model drug, in liposomes containing 10% mol/mol CHS-ED-LA (galactosylated liposomes, GalL) to the liver was studied. The weighted-average overall drug targeting efficiency (Te(*)) was used to evaluate the liver targetability of GalL DOX. The results showed that GalL DOX gave a relatively high (Te(*))(liver) value of 64.6%, while DOX in conventional liposome (CL DOX) only gave a (Te(*))(liver) value of 21.8%. In the liver, the GalL DOX was mainly taken up by parenchymal cells (88% of the total hepatic uptake). Moreover, preinjection of asialofetuin significantly inhibited the liver uptake of GalL DOX (from 70 to 12% of the total injected dose). It was suggested that liposomes containing such novel galactosylated lipid, CHS-ED-LA, had a great potential as drug delivery carriers for hepatocyte-selective targeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beggs, Kevin M., E-mail: kbeggs2@kumc.edu
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of globalmore » gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. - Highlights: • PFOA and PFOS cause decreased HNF4α protein expression in human hepatocytes. • PFOA and PFOS promote changes associated with lipid metabolism and carcinogenesis. • PFOA and PFOS induced changes in gene expression associated with cellular dedifferentiation. • PFOA and PFOS induce expression of Nanog, a transcription factor involved in stem cell development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa
2008-12-01
As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanidemore » toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.« less
Dykens, James A; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A; Will, Yvonne
2008-12-01
As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.
Heslop, James A.; Kia, Richard; Pridgeon, Christopher S.; Sison‐Young, Rowena L.; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W.; Mills, John S.; Kitteringham, Neil R.; Park, Bong K.
2017-01-01
Abstract Drug‐induced liver injury is the greatest cause of post‐marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)‐derived hepatocyte‐like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this “resetting” is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte‐ and dermal fibroblast‐derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC‐derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast‐derived iPSCs. We conclude that the donor and inter‐clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC‐derived HLCs. Stem Cells Translational Medicine 2017;6:1321–1331 PMID:28456008
Studies demonstrate that exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) and 2,2',4,4',5,5'· hexachlorobiphenyl (PCB 153) decrease serum thyroxine (T4)levels in laboratory animals 1,2,3. The T4 decrease in rodents is thought to occur through the induction of UDP-glucurono...
Correia, Margareta P; Cardoso, Elsa M; Pereira, Carlos F; Neves, Rui; Uhrberg, Markus; Arosa, Fernando A
2009-05-15
Human intrahepatic lymphocytes are enriched in CD1d-unrestricted T cells coexpressing NKR. Although the origin of this population remains controversial, it is possible to speculate that the hepatic microenvironment, namely epithelial cells or the cytokine milieu, may play a role in its shaping. IL-15 is constitutively expressed in the liver and has a key role in activation and survival of innate and tissue-associated immune cells. In this in vitro study, we examined whether hepatocyte cell lines and/or IL-15 could play a role in the generation of NK-like T cells. The results show that both HepG2 cells and a human immortalized hepatocyte cell line increase survival and drive basal proliferation of T cells. In addition, IL-15 was capable of inducing Ag-independent up-regulation of NKR, including NKG2A, Ig-like receptors, and de novo expression of CD56 and NKp46 in CD8(+)CD56(-) T cells. In conclusion, our study suggests that hepatocytes and IL-15 create a favorable microenvironment for T cells to growth and survive. It can be proposed that the increased percentage of intrahepatic nonclassical NKT cells could be in part due to a local CD8(+) T cell differentiation.
Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture
Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin
2017-01-01
The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase (p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation. PMID:28783133
Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture.
Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin
2017-08-07
The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase ( p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation.
Polyamines are traps for reactive intermediates in furan metabolism
Peterson, Lisa A.; Phillips, Martin B.; Lu, Ding; Sullivan, Mathilde M.
2011-01-01
Furan is toxic and carcinogenic in rodents. Because of the large potential for human exposure, furan is classified as a possible human carcinogen. The detailed mechanism by which furan causes toxicity and cancer is not yet known. Since furan toxicity requires cytochrome P450-catalyzed oxidation of furan, we have characterized the urinary and hepatocyte metabolites of furan to gain insight into the chemical nature of the reactive intermediate. Previous studies in hepatocytes indicated that furan is oxidized to the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA), which reacts with glutathione (GSH) to form 2-(S-glutathionyl)-succinaldehyde (GSH-BDA). This intermediate forms pyrrole cross-links with cellular amines such as lysine and glutamine. In this report, we demonstrate that GSH-BDA also forms cross-links with ornithine, putrescine and spermidine when furan is incubated with rat hepatocytes. The relative levels of these metabolites are not completely explained by hepatocellular levels of the amines or by their reactivity with GSH-BDA. Mercapturic acid derivatives of the spermidine cross-links were detected in the urine of furan-treated rats, which indicates that this metabolic pathway occurs in vivo. Their detection in furan-treated hepatocytes and in urine from furan-treated rats indicates that polyamines may play an important role in the toxicity of furan PMID:21842885
Aneuploidy as a mechanism for stress-induced liver adaptation
Duncan, Andrew W.; Hanlon Newell, Amy E.; Bi, Weimin; Finegold, Milton J.; Olson, Susan B.; Beaudet, Arthur L.; Grompe, Markus
2012-01-01
Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16–specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation. PMID:22863619
Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation.
Zhao, Shu-Guang; Li, Qiang; Liu, Zhen-Xiong; Wang, Jing-Jie; Wang, Xv-Xia; Qin, Ming; Wen, Qin-Sheng
2011-01-01
NF-E2-Related Factor-2 (Nrf2) is a transcription factor that plays a crucial role in the cellular protection against oxidative stress. Curcumin has been reported to induce Nrf2 nuclear translocation and upregulate the expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes in hepatocytes. This study was designed to investigate whether curcumin-induced Nrf2 nuclear translocation could reduce ROS-mediated insulin resistance in cultured LO2 hepatocytes. Human LO2 hepatocytes were incubated with curcumine and glucose oxidase (GO) in the presence/absence of wortmannin (a phosphatidyinositol 3-kinase (PI3K) inhibitor), oxidative stress, cellular damage, Nrf2 nuclear translocation and insulin resistance were measured. GO exposure significantly increased intracellular ROS, glutathione (GSH) depletion, malondialdehyde (MDA) formation, and increased activities of cellular lactate dehydrogenase (LDH) and aspartate amino transferase (AST), as well as causing insulin resistance. Curcumin pretreatment significantly attenuated these disturbances in intracellular ROS, liver enzyme activity and significantly antagonized the lipid peroxidation, GSH depletion and insulin resistance induced by GO in LO2 hepatocytes. These effects paralleled Nrf2 nuclear translocation induced by curcumin. Wortmannin partially blocked curcumin-induced Nrf2 nuclear translocation. In addition, wortmannin prevented curcumin-induced improvements in intracellular ROS, MDA formation, GSH depletion, liver enzyme activity and insulin resistance in cultured LO2 hepatocytes. These findings suggest that curcumin could reduce ROS-mediated insulin resistance in hepatocytes, at least in part through nuclear translocation of Nrf2.
Mueller, Daniel; Tascher, Georg; Müller-Vieira, Ursula; Knobeloch, Daniel; Nuessler, Andreas K; Zeilinger, Katrin; Heinzle, Elmar; Noor, Fozia
2011-08-01
As the major research focus is shifting to three-dimensional (3D) cultivation techniques, hollow-fiber bioreactors, allowing the formation of tissue-like structures, show immense potential as they permit controlled in vitro cultivation while supporting the in vivo environment. In this study we carried out a systematic and detailed physiological characterization of human liver cells in a 3D hollow-fiber bioreactor system continuously run for > 2 weeks. Primary human hepatocytes were maintained viable and functional over the whole period of cultivation. Both general cellular functions, e.g. oxygen uptake, amino acid metabolism and substrate consumption, and liver-specific functions, such as drug-metabolizing capacities and the production of liver-specific metabolites were found to be stable for > 2 weeks. As expected, donor-to-donor variability was observed in liver-specific functions, namely urea and albumin production. Moreover, we show the maintenance of primary human hepatocytes in serum-free conditions in this set-up. The stable basal cytochrome P450 activity 3 weeks after isolation of the cells demonstrates the potential of such a system for pharmacological applications. Liver cells in the presented 3D bioreactor system could eventually be used not only for long-term metabolic and toxicity studies but also for chronic repeated dose toxicity assessment. Copyright © 2011 John Wiley & Sons, Ltd.
Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek
2013-12-01
Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vrzal, Radim; Knoppová, Barbora; Bachleda, Petr; Dvořák, Zdeněk
2013-12-01
Sibutramine is a serotonin-norepinephrine reuptake inhibitor that was used for weight-loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight-loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine. © 2013 Wiley Periodicals, Inc.
A microfluidically perfused three dimensional human liver model.
Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S
2015-12-01
Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Hong; Fu, Wentao; Wetter, Jill; Xu, Hongyu; Guan, Zhiwen; Stuart, Patricia
2014-06-01
1. Metabolism and disposition of ABT-894 was investigated in hepatocytes, in mice and monkeys receiving [(14)C]ABT-894. 2. In hepatocytes, turnover rate of ABT-894 was slow in all species with more than 90% of parent remaining. M3 (carbamoyl glucuronide) and M6 (mono-oxidation) were detected across species. 3. ABT-894 showed species-specific disposition profiles. ABT-894 was primarily eliminated by renal secretion in mice. Whereas, monkey mainly cleared ABT-894 metabolically. 4. ABT-894 underwent two primary routes of metabolism in monkeys: N-carbamoyl glucuronidation to form M3 and oxidation product M1. M3 was the major metabolite in monkey excreta. M3 was observed in mice urine. Circulating levels of M3 in terms of M3/ABT-894 ratios were essentially absent in mice, but were high in monkeys. 5. Understanding the species difference in the clearance mechanism is the key to the accurate projection of the human clearance and preclinical safety assessment. Lack of species difference in the metabolism of ABT-894 in hepatocytes certainly creates a challenge in predicting its metabolism and pharmacokinetics in human. Based on available metabolism and pharmacokinetic data of ABT-894 in human, monkey is the preferred species in predicting human clearance since it presents a similar clearance mechanism from that observed in human.
Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.
2014-01-01
Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566
Zhang, Zhaowei; Fang, Tianzi; Zhou, Hongyun; Yuan, Jie; Liu, Qingwang
2018-01-01
Evodiamine is an indoloquinazoline alkaloid isolated from the fruit of Evodia rutaecarpa, which has a wide range of pharmacological effects like anti-tumor and anti-inflammatory effects. This study was intended to investigate the metabolic characteristics of evodiamine in human liver microsomes and hepatocytes by ultra-high performance liquid chromatography coupled with a Q Exactive mass spectrometer. A total of 12 phase I metabolites were detected in human liver microsomes; whereas in human hepatocytes 19 metabolites, including seven phase II metabolites were detected. The structures of the metabolites were characterized based on their accurate masses, fragment ions, and chromatographic retention times. Four metabolites (M1, M2, M5, and M7) were further unambiguously confirmed by matching their retention times, accurate masses, and fragment ions with those of their reference standards. Among these metabolites, 12 metabolites are first identified (M2, M5–M8, M10–M13, and M17–M19). The current study revealed that oxygenation, N-demethylation, dehydrogenation, glucuronidation, and GSH conjugation were the major metabolic pathways for evodiamine. This study elucidated the detailed metabolite profiles of evodiamine, which is helpful in predicting in vivo metabolism of evodiamine in human and in understanding the elimination mechanism of evodiamine and in turn, the effectiveness and toxicity. PMID:29520234
Wolenski, Francis S; Xia, Cindy Q; Ma, Bingli; Han, Tae H; Shyu, Wen C; Balani, Suresh K
2018-06-01
Monomethyl auristatin E (MMAE), the toxin linked to CD30-specific monoclonal antibody of Adcetris ® (brentuximab vedotin), is a potent anti-microtubule agent. Brentuximab vedotin has been approved for the treatment of relapsed or refractory Hodgkin lymphoma and anaplastic large cell lymphoma. Cytochrome P450 (CYP) induction assessment of MMAE was conducted in human hepatocytes to assess DDI potentials and its translation to clinic. MMAE was incubated at 1-1000 nM with cultured primary human hepatocytes for 72 h, and CYP1A2, CYP2B6, and CYP3A4 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction and CYP-specific probe substrate by liquid chromatography coupled with mass spectrometry, along with microtubule disruption by immunofluorescence staining using anti-β-tubulin antibody and imaging. MMAE up to 10 nM had no significant effect on CYP1A2, CYP2B6, and CYP3A4 mRNA expression and activity, whereas at higher concentrations of 100- and 1000-nM MMAE, the CYP mRNA expression and activity were diminished substantially. Further investigation showed that the degree of CYP suppression was paralleled by that of microtubule disruption by MMAE, as measured by increase in the number of β-tubulin-positive aggregates. At the clinical dose, the concentration of MMAE was 7 nM which did not show any significant CYP suppression or microtubule disruption in hepatocytes. MMAE was not a CYP inducer in human hepatocytes. However, it caused a concentration-dependent CYP mRNA suppression and activity. The CYP suppression was associated with microtubule disruption, supporting the reports that intact microtubule architecture is required for CYP regulations. The absence of CYP suppression and microtubule disruption in vitro at the clinical plasma concentrations of MMAE (< 10 nM) explains the lack of pharmacokinetic drug interaction between brentuximab vedotin and midazolam, a sensitive CYP3A substrate, reported in patients.
Shi, Xiao-Lei; Mancham, Shanta; Hansen, Bettina E; de Knegt, Robert J; de Jonge, Jeroen; van der Laan, Luc J W; Rivadeneira, Fernando; Metselaar, Herold J; Kwekkeboom, Jaap
2016-06-01
Co-inhibitory receptor-ligand interactions fine-tune immune responses by negatively regulating T cell functions. Our aim is to examine the involvement of co-inhibitory receptor-ligand pair PD-1/PD-L1 in regulating rejection after liver transplantation (LT) in humans. PD-L1/PD-1 expression in liver allograft was determined by immunohistochemistry or flow cytometry, and the effect of blockade was studied using graft-infiltrating T cells ex vivo. Five single nucleotide polymorphisms within PD-1 and PD-L1 genes were genotyped in 528 LT recipients and 410 donors, and associations with both early (⩽6months) and late (>6months) acute rejection were analyzed using Cox proportional-hazards regression model. The effect of PD-L1 rs4143815 on PD-L1 expression was analyzed using donor hepatic leukocytes. PD-L1 was expressed by hepatocytes, cholangiocytes and along the sinusoids in post-transplant liver allografts, and PD-1 was abundantly expressed on allograft-infiltrating T cells. PD-L1 blockade enhanced allogeneic proliferative responses of graft-infiltrating T cells. In the genetic association analysis, donor PD-L1 rs4143815 (CC/CG vs. GG; HR=0.230; p=0.002) and recipient PD-1 rs11568821 (AA/AG vs. GG; HR=3.739; p=0.004) were associated with acute rejection late after LT in multivariate analysis. Recipients carrying the PD-1 rs11568821 A allele who were transplanted with liver grafts of PD-L1 rs4143815 GG homozygous donors showed the highest risk for late acute rejection. PD-L1 rs4143815 is associated with differential PD-L1 expression on donor hepatic dendritic cells upon IFN-γ stimulation. Our data suggest that interplay between donor PD-L1 and recipient PD-1 counter-regulates rejection activity against liver grafts in humans. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.