Science.gov

Sample records for l1 regulates transendothelial

  1. Localized signals that regulate transendothelial migration.

    PubMed

    Muller, William A

    2016-02-01

    Transendothelial migration (TEM) of leukocytes is the step in leukocyte emigration in which the leukocyte actually leaves the blood vessel to carry out its role in the inflammatory response. It is therefore, arguably the most critical step in emigration. This review focuses on two of the many aspects of this process that have seen important recent developments. The adhesion molecules, PECAM (CD31) and CD99 that regulate two major steps in TEM, do so by regulating specific signals. PECAM initiates the signaling pathway responsible for the calcium flux that is required for TEM. Calcium enters through the cation channel TRPC6 and recruits the first wave of trafficking of membrane from the lateral border recycling compartment (LBRC). CD99 signals through soluble adenylate cyclase to activate protein kinase A to recruit a second wave of LBRC trafficking. Another process that is critical for TEM is transient removal of VE-cadherin from the site of TEM. However, the local signaling pathways that are responsible for this appear to be different from those that open the junctions to increase vascular permeability.

  2. The regulation of transendothelial migration: new knowledge and new questions.

    PubMed

    Muller, William A

    2015-08-01

    Leucocyte transendothelial migration (TEM) involves a co-operative series of interactions between surface molecules on the leucocyte and cognate counter-ligands on the endothelial cell. These interactions set up a cascade of signalling events inside the endothelial cell that both allow for the junctions to loosen and for membrane to be recruited from the lateral border recycling compartment (LBRC). The LBRC is thought to provide an increased surface area and unligated receptors to the leucocyte to continue the process. The relative importance of the individual adhesion/signalling molecules that promote transmigration may vary depending on the type of leucocyte, the vascular bed, the inflammatory stimulus, and the stage of the inflammatory response. However, the molecular interactions between leucocyte and endothelial cell activate signalling pathways that disengage the adherens and tight junctions and recruit the LBRC to the site of transmigration. With the exception of disengaging the junctions, similar molecules and mechanisms promote transcellular migration as paracellular migration of leucocytes. This review will discuss the molecular interactions and signalling pathways that regulate transmigration, and the common themes that emerge from studying TEM of different leucocyte subsets under different inflammatory conditions. We will also raise some unanswered questions in need of future research.

  3. The regulation of transendothelial migration: new knowledge and new questions

    PubMed Central

    Muller, William A.

    2015-01-01

    Leucocyte transendothelial migration (TEM) involves a co-operative series of interactions between surface molecules on the leucocyte and cognate counter-ligands on the endothelial cell. These interactions set up a cascade of signalling events inside the endothelial cell that both allow for the junctions to loosen and for membrane to be recruited from the lateral border recycling compartment (LBRC). The LBRC is thought to provide an increased surface area and unligated receptors to the leucocyte to continue the process. The relative importance of the individual adhesion/signalling molecules that promote transmigration may vary depending on the type of leucocyte, the vascular bed, the inflammatory stimulus, and the stage of the inflammatory response. However, the molecular interactions between leucocyte and endothelial cell activate signalling pathways that disengage the adherens and tight junctions and recruit the LBRC to the site of transmigration. With the exception of disengaging the junctions, similar molecules and mechanisms promote transcellular migration as paracellular migration of leucocytes. This review will discuss the molecular interactions and signalling pathways that regulate transmigration, and the common themes that emerge from studying TEM of different leucocyte subsets under different inflammatory conditions. We will also raise some unanswered questions in need of future research. PMID:25987544

  4. Epithin/PRSS14 proteolytically regulates angiopoietin receptor Tie2 during transendothelial migration.

    PubMed

    Kim, Chungho; Lee, Hyo Seon; Lee, Deokjae; Lee, Sang Don; Cho, Eun-Gyung; Yang, Soo Jung; Kim, Sang Bum; Park, Dongeun; Kim, Moon Gyo

    2011-01-27

    Epithin/PRSS14, a type II transmembrane serine protease, is involved in normal epithelial development and tumor progression. Here we report, as an interacting substrate of epithin, a receptor tyrosine kinase Tie2 that is well known for important roles in the vessel stability. Epithin interacts with and degrades the Tie2 extracellular portion that contains the ligand-binding domain. Epithin is located in the neighbor of Tie2-expressing vessels in normal tissue. Furthermore, epithin can cleave and degrade Tie2 not only in the same cell but also from neighboring cells nearby, resulting in the degradation of the Tie2 ectodomain. The remaining Tie2 fragment was highly phosphorylated and was able to recruit a downstream effector, phosphatidylinositol 3-kinase. Knocking down epithin expression using short hairpin RNA in thymoma cell severely impaired the migration through endothelial cells that show the actin rearrangement during the process. The diminution of epithin protein expression in 4T1 breast cancer cells caused the significant decrease in the number of transendothelial migrating cells in vitro as well as in those of metastasizing tumor nodules in vivo, Therefore, we propose that epithin, which regulates endothelial Tie2 functions, plays a critical role in the fine tuning of transendothelial migration for normal and cancer cells.

  5. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration

    PubMed Central

    Watson, Richard L.; Buck, Jochen; Levin, Lonny R.; Winger, Ryan C.; Wang, Jing; Arase, Hisashi

    2015-01-01

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM. PMID:26101266

  6. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration.

    PubMed

    Watson, Richard L; Buck, Jochen; Levin, Lonny R; Winger, Ryan C; Wang, Jing; Arase, Hisashi; Muller, William A

    2015-06-29

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM.

  7. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo.

    PubMed

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M; Rainger, G Ed; Meda, Paolo; Imhof, Beat A; Nourshargh, Sussan

    2011-06-26

    The migration of neutrophils into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarized migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial migration (TEM)) in a luminal-to-abluminal direction. By real-time confocal imaging, we found that neutrophils had disrupted polarized TEM ('hesitant' and 'reverse') in vivo. We noted these events in inflammation after ischemia-reperfusion injury, characterized by lower expression of junctional adhesion molecule C (JAM-C) at EC junctions, and they were enhanced by blockade or genetic deletion of JAM-C in ECs. Our results identify JAM-C as a key regulator of polarized neutrophil TEM in vivo and suggest that reverse TEM of neutrophils can contribute to the dissemination of systemic inflammation.

  8. Poliovirus receptor (CD155) regulates a step in transendothelial migration between PECAM and CD99.

    PubMed

    Sullivan, David P; Seidman, Michael A; Muller, William A

    2013-03-01

    The movement of leukocytes across endothelium [referred to as diapedesis or transendothelial migration (TEM)] is a critical step in the inflammatory process. Recently, it was demonstrated that treatment of endothelial cells and monocytes with antibodies against poliovirus receptor (PVR; CD155) and DNAX-associated molecule-1 (DNAM-1; CD226) arrested monocytes over endothelial junctions and prevented TEM, suggesting that these molecules are involved in diapedesis. However, nothing was known about the mechanism by which PVR and DNAM-1 work in TEM. Herein, we show that, similar to endothelial PECAM interacting with leukocyte PECAM, activation of endothelial PVR with anti-PVR antibodies or interaction with its ligand, DNAM-1, results in recruitment of the tyrosine phosphatase Shp-2, and this process is dependent on Src kinases. Furthermore, differential and sequential treatment with blocking antibodies directed against PVR, DNAM-1, PECAM, and CD99 showed that endothelial PVR and monocyte DNAM-1 interact at and regulate a step between those regulated by PECAM and CD99. Further studies demonstrate that PVR resides in the recently identified lateral border recycling compartment, similar to PECAM and CD99. These findings suggest that the localization of adhesion/signaling molecules to the lateral border recycling compartment and the recruitment of Shp-2 may be common mechanisms for the regulation of TEM by endothelial cells.

  9. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response

    PubMed Central

    Weber, Evan W.; Han, Fei; Tauseef, Mohammad; Birnbaumer, Lutz; Mehta, Dolly

    2015-01-01

    Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca2+]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca2+]i regulates TEM and the channels mediating this ↑[Ca2+]i are unknown. Buffering ↑[Ca2+]i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca2+]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca2+ channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca2+]i required for TEM at a step downstream of PECAM homophilic interactions. PMID:26392222

  10. Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration

    PubMed Central

    Estin, Miriam L.; Thompson, Scott B.; Traxinger, Brianna; Fisher, Marlie H.; Friedman, Rachel S.; Jacobelli, Jordan

    2017-01-01

    Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP–like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner. PMID:28320969

  11. Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration.

    PubMed

    Estin, Miriam L; Thompson, Scott B; Traxinger, Brianna; Fisher, Marlie H; Friedman, Rachel S; Jacobelli, Jordan

    2017-04-04

    Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP-like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner.

  12. L1 expression and regulation in humans and rodents

    PubMed Central

    Rosser, James M.; An, Wenfeng

    2015-01-01

    Long interspersed elements type 1 (LINE-1s, or L1s) have impacted mammalian genomes at multiple levels. L1 transcription is mainly controlled by its 5’ untranslated region (5’UTR), which differs significantly among active human and rodent L1 families. In this review, L1 expression and its regulation are examined in the context of human and rodent development. First, endogenous L1 expression patterns in three different species—human, rat, and mouse—are compared and contrasted. A detailed account of relevant experimental evidence is presented according to the source material, such as cell lines, tumors, and normal somatic and germline tissues from different developmental stages. Second, factors involved in the regulation of L1 expression at both transcriptional and posttranscriptional levels are discussed. These include transcription factors, DNA methylation, PIWI-interacting RNAs (piRNAs), RNA interference (RNAi), and posttranscriptional host factors. Similarities and differences between human and rodent L1s are highlighted. Third, recent findings from transgenic mouse models of L1 are summarized and contrasted with those from endogenous L1 studies. Finally, the challenges and opportunities for L1 mouse models are discussed. PMID:22202032

  13. MIP-1α enhances Jurkat cell transendothelial migration by up-regulating endothelial adhesion molecules VCAM-1 and ICAM-1.

    PubMed

    Ma, Yi-Ran; Ma, Ying-Huan

    2014-11-01

    The aim of this study is to evaluate the expression of macrophage inflammatory protein-1α (MIP-1α) in Jurkat cells and its effect on transendothelial migration. In the present study, human acute lymphoblastic leukemia Jurkat cells (Jurkat cells) were used as a model of T cells in human T-cell acute lymphoblastic leukemia (T-ALL), which demonstrated significantly higher MIP-1α expression compared with that in normal T-cell controls. The ability of Jurkat cells to cross a human brain microvascular endothelial cell (HBMEC) monolayer was almost completely abrogated by MIP-1α siRNA. In addition, the overexpression of MIP-1α resulted in the up-regulated expression of endothelial adhesion molecules, which enhanced the migration of Jurkat cells through a monolayer of HBMEC. MIP-1α levels in Jurkat cells appeared to be an important factor for its transendothelial migration, which may provide the theoretical basis to understand the mechanisms of brain metastases of T-ALL at cellular and molecular levels.

  14. Evolutionally dynamic L1 regulation in embryonic stem cells

    PubMed Central

    Castro-Diaz, Nathaly; Ecco, Gabriela; Coluccio, Andrea; Kapopoulou, Adamandia; Yazdanpanah, Benyamin; Friedli, Marc; Duc, Julien; Jang, Suk Min; Turelli, Priscilla; Trono, Didier

    2014-01-01

    Mobile elements are important evolutionary forces that challenge genomic integrity. Long interspersed element-1 (L1, also known as LINE-1) is the only autonomous transposon still active in the human genome. It displays an unusual pattern of evolution, with, at any given time, a single active L1 lineage amplifying to thousands of copies before getting replaced by a new lineage, likely under pressure of host restriction factors, which act notably by silencing L1 expression during early embryogenesis. Here, we demonstrate that in human embryonic stem (hES) cells, KAP1 (KRAB [Krüppel-associated box domain]-associated protein 1), the master cofactor of KRAB-containing zinc finger proteins (KRAB-ZFPs) previously implicated in the restriction of endogenous retroviruses, represses a discrete subset of L1 lineages predicted to have entered the ancestral genome between 26.8 million and 7.6 million years ago. In mice, we documented a similar chronologically conditioned pattern, albeit with a much contracted time scale. We could further identify an L1-binding KRAB-ZFP, suggesting that this rapidly evolving protein family is more globally responsible for L1 recognition. KAP1 knockdown in hES cells induced the expression of KAP1-bound L1 elements, but their younger, human-specific counterparts (L1Hs) were unaffected. Instead, they were stimulated by depleting DNA methyltransferases, consistent with recent evidence demonstrating that the PIWI–piRNA (PIWI-interacting RNA) pathway regulates L1Hs in hES cells. Altogether, these data indicate that the early embryonic control of L1 is an evolutionarily dynamic process and support a model in which newly emerged lineages are first suppressed by DNA methylation-inducing small RNA-based mechanisms before KAP1-recruiting protein repressors are selected. PMID:24939876

  15. Endothelial Src kinase regulates membrane recycling from the lateral border recycling compartment during leukocyte transendothelial migration.

    PubMed

    Dasgupta, Bidisha; Muller, William A

    2008-12-01

    When leukocytes cross endothelial cells during the inflammatory response, membrane from the recently described lateral border recycling compartment (LBRC) is selectively targeted around diapedesing leukocytes. This "targeted recycling" is critical for leukocyte transendothelial migration. Blocking homophilic PECAM interactions between leukocytes and endothelial cells blocks targeted recycling from the LBRC and blocks diapedesis. However, the cellular signaling pathways that trigger targeted recycling are not known. We show that targeted recycling from the LBRC is dependent on Src kinase. The selective Src kinase inhibitor PP2 blocked targeted recycling and blocked diapedesis by over 70%. However, Src kinase inhibition did not affect the structure or normal constitutive recycling of membrane from the LBRC in the absence of leukocytes. PECAM, a Src kinase substrate, traffics between the LBRC and the endothelial surface at the cell border. However, virtually all of the PECAM in the cell that was phosphorylated on tyrosine residues was found in the LBRC. These findings demonstrate that Src kinase activity is critical for the targeted recycling of membrane from the LBRC to the site of transendothelial migration and that the PECAM in the LBRC is qualitatively different from the PECAM on the surface of endothelial cells.

  16. Stanniocalcin-1 regulates endothelial gene expression and modulates trans-endothelial migration of leukocytes

    USDA-ARS?s Scientific Manuscript database

    The mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) inhibits monocyte chemotactic protein-1- and stromal-derived factor-1alpha (SDF-1alpha)-mediated chemotaxis and diminishes chemokinesis in macrophage-like RAW264.7 and U937 cells in a manner that may involve atte...

  17. Chemoresistance induces enhanced adhesion and transendothelial penetration of neuroblastoma cells by down-regulating NCAM surface expression

    PubMed Central

    Blaheta, Roman A; Daher, Frederick H; Michaelis, Martin; Hasenberg, Christoph; Weich, Eva M; Jonas, Dietger; Kotchetkov, Rouslan; Doerr, Hans Willhelm; Cinatl, Jindrich

    2006-01-01

    Background Drug resistance to chemotherapy is often associated with increased malignancy in neuroblastoma (NB). One explanation for the link between resistance and malignancy might be that resistance facilitates cancer progression and invasion. To investigate this hypothesis, adhesion, transendothelial penetration and NCAM (CD56) adhesion receptor expression of drug-resistant versus drug-sensitive NB tumor cells were evaluated. Methods Acquired drug resistance was mimicked by exposing parental UKF-NB-2, UKF-NB-3 or IMR-32 tumor cells to increasing concentrations of vincristine- (VCR) or doxorubicin (DOX) to establish the resistant tumor cell sublines UKF-NB-2VCR, UKF-NB-2DOX, UKF-NB-3VCR, UKF-NB-3DOX, IMR-32VCR and IMR-32DOX. Additionally, the malignant behaviour of UKF-NB-4, which already possessed the intrinsic multidrug resistance (MDR) phenotype, was analyzed. UKF-NB-4 exposed to VCR or DOX were designated UKF-NB-4VCR or UKF-NB-4DOX. Combined phase contrast – reflection interference contrast microscopy was used to separately evaluate NB cell adhesion and penetration. NCAM was analyzed by flow cytometry, western blot and RT-PCR. Results VCR and DOX resistant tumor sublines showed enhanced adhesion and penetration capacity, compared to their drug naïve controls. Strongest effects were seen with UKF-NB-2VCR, UKF-NB-3VCR and IMR-32DOX. DOX or VCR treatment also evoked increased invasive behaviour of UKF-NB-4. The process of accelerated tumor invasion was accompanied by decreased NCAM surface and protein expression, and down-regulation of NCAM coding mRNA. Transfection of UKF-NB-4VCR cells with NCAM cDNA led to a significant receptor up-regulation, paralleled by diminished adhesion to an endothelial cell monolayer. Conclusion It is concluded that NB cells resistant to anticancer drugs acquire increased invasive capacity relative to non-resistant parental cells, and that enhanced invasion is caused by strong down-regulation of NCAM adhesion receptors. PMID

  18. VEGF-A Regulates Cellular Localization of SR-BI as Well as Transendothelial Transport of HDL but Not LDL.

    PubMed

    Velagapudi, Srividya; Yalcinkaya, Mustafa; Piemontese, Antonio; Meier, Roger; Nørrelykke, Simon Flyvbjerg; Perisa, Damir; Rzepiela, Andrzej; Stebler, Michael; Stoma, Szymon; Zanoni, Paolo; Rohrer, Lucia; von Eckardstein, Arnold

    2017-05-01

    Low- and high-density lipoproteins (LDL and HDL) must pass the endothelial layer to exert pro- and antiatherogenic activities, respectively, within the vascular wall. However, the rate-limiting factors that mediate transendothelial transport of lipoproteins are yet little known. Therefore, we performed a high-throughput screen with kinase drug inhibitors to identify modulators of transendothelial LDL and HDL transport. Microscopy-based high-content screening was performed by incubating human aortic endothelial cells with 141 kinase-inhibiting drugs and fluorescent-labeled LDL or HDL. Inhibitors of vascular endothelial growth factor (VEGF) receptors (VEGFR) significantly decreased the uptake of HDL but not LDL. Silencing of VEGF receptor 2 significantly decreased cellular binding, association, and transendothelial transport of (125)I-HDL but not (125)I-LDL. RNA interference with VEGF receptor 1 or VEGF receptor 3 had no effect. Binding, uptake, and transport of HDL but not LDL were strongly reduced in the absence of VEGF-A from the cell culture medium and were restored by the addition of VEGF-A. The restoring effect of VEGF-A on endothelial binding, uptake, and transport of HDL was abrogated by pharmacological inhibition of phosphatidyl-inositol 3 kinase/protein kinase B or p38 mitogen-activated protein kinase, as well as silencing of scavenger receptor BI. Moreover, the presence of VEGF-A was found to be a prerequisite for the localization of scavenger receptor BI in the plasma membrane of endothelial cells. The identification of VEGF as a regulatory factor of transendothelial transport of HDL but not LDL supports the concept that the endothelium is a specific and, hence, druggable barrier for the entry of lipoproteins into the vascular wall. © 2017 American Heart Association, Inc.

  19. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition.

    PubMed

    Languino, L R; Duperray, A; Joganic, K J; Fornaro, M; Thornton, G B; Altieri, D C

    1995-02-28

    Although primarily recognized for its role in hemostasis, fibrinogen is also required for competent inflammatory reactions in vivo. It is now shown that fibrinogen promotes adhesion to and migration across an endothelial monolayer of terminally differentiated myelomonocytic cells. This process does not require chemotactic/haptotactic gradients or cytokine stimulation of the endothelium and is specific for the association of fibrinogen with intercellular adhesion molecule 1 (ICAM-1) on endothelium. Among other adhesive plasma proteins, fibronectin fails to increase the binding of leukocytes to endothelium, or transendothelial migration, whereas vitronectin promotes the binding but not the migration. The fibrinogen-mediated leukocyte adhesion and transendothelial migration could be inhibited by a peptide from the fibrinogen gamma-chain sequence N117NQKIVNL-KEKVAQLEA133, which blocks the binding of fibrinogen to ICAM-1. This interaction could also be inhibited by new anti-ICAM-1 monoclonal antibodies that did not affect the ICAM-1-CD11a/CD18 recognition, thus suggesting that the fibrinogen binding site on ICAM-1 may be structurally distinct from regions previously implicated in leukocyte-endothelium interaction. Therefore, binding of fibrinogen to vascular cell receptors is sufficient to initiate (i) increased leukocyte adhesion to endothelium and (ii) leukocyte transendothelial migration. These two processes are the earliest events of immune inflammatory responses and may also contribute to atherosclerosis.

  20. Transcriptional profiling of human monocytes identifies the inhibitory receptor CD300a as regulator of transendothelial migration.

    PubMed

    Ghavampour, Sharang; Lange, Carsten; Bottino, Cristina; Gerke, Volker

    2013-01-01

    Local inflammatory responses are characterized by the recruitment of circulating leukocytes from the blood to sites of inflammation, a process requiring the directed migration of leukocytes across the vessel wall and hence a penetration of the endothelial lining. To identify underlying signalling events and novel factors involved in these processes we screened for genes differentially expressed in human monocytes following their adhesion to and passage through an endothelial monolayer. Functional annotation clustering of the genes identified revealed an overrepresentation of those associated with inflammation/immune response, in particular early monocyte to macrophage differentiation. Among the gene products so far not implicated in monocyte transendothelial migration was the inhibitory immune receptor CD300a. CD300a mRNA and protein levels were upregulated following transmigration and engagement of the receptor by anti-CD300a antibodies markedly reduced monocyte transendothelial migration. In contrast, siRNA mediated downregulation of CD300a in human monocytes increased their rate of migration. CD300a colocalized and cosedimented with actin filaments and, when activated, caused F-actin cytoskeleton alterations. Thus, monocyte transendothelial migration is accompanied by an elevation of CD300a which serves an inhibitory function possibly required for termination of the actual transmigration.

  1. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity.

    PubMed

    Burr, Marian L; Sparbier, Christina E; Chan, Yih-Chih; Williamson, James C; Woods, Katherine; Beavis, Paul A; Lam, Enid Y N; Henderson, Melissa A; Bell, Charles C; Stolzenburg, Sabine; Gilan, Omer; Bloor, Stuart; Noori, Tahereh; Morgens, David W; Bassik, Michael C; Neeson, Paul J; Behren, Andreas; Darcy, Phillip K; Dawson, Sarah-Jane; Voskoboinik, Ilia; Trapani, Joseph A; Cebon, Jonathan; Lehner, Paul J; Dawson, Mark A

    2017-09-07

    Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.

  2. L1 adhesion molecule on mouse leukocytes: regulation and involvement in endothelial cell binding.

    PubMed

    Hubbe, M; Kowitz, A; Schirrmacher, V; Schachner, M; Altevogt, P

    1993-11-01

    L1 is a cell surface glycoprotein of the immunoglobulin superfamily which was initially shown to mediate adhesion between neural cells. Recently we have reported that L1 is expressed by bone marrow cells and the majority of mature lymphocytes (Kowitz et al., Eur. J. Immunol. 1992. 22: 1199-1205). To analyze the function of L1 on leukocytes we studied its regulation following cell activation. In vitro activation of B lymphocytes with lipopolysaccharide or T lymphocytes with phorbol 12-myristate 13-acetate/Ca2+ ionophore, concanavalin A or anti-CD3 monoclonal antibody as well as in vivo activation of V beta 8+ T cells with staphylococcal enterotoxin B (SEB) revealed a down-regulation of L1 within 48 h. A rapid loss of L1 expression was seen when mouse neutrophils were activated with PMA alone. This rapid loss paralleled the shedding of L-selectin. We also studied a possible role of L1 in the binding of leukocytes to endothelial cells. ESb-MP lymphoma cells with a high expression of L1 (L1hi) could bind to bend3 endothelioma cells without prior activation with inflammatory cytokines. The interaction was inhibited by anti-L1 antibodies. In contrast, ESb-MP cells with low L1 expression (L1lo) were only marginally bound. Latex beads coated with affinity-isolated L1 antigen were also able to bind to the endothelioma cells in a specific fashion. The binding of ESb-MP lymphoma cells required Ca2+ and Mg2+ ions and was sensitive to cold temperature. Since the endothelioma cells did not express L1 the binding mechanism studied here is distinct from the established L1-L1 homotypic interaction. It is possible that the novel L1-mediated adhesion pathway involves an unidentified ligand and could play a role in leukocyte migration.

  3. Sequential regulation of alpha 4 beta 1 and alpha 5 beta 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis

    PubMed Central

    1996-01-01

    Leukocyte emigration possibly requires dynamic regulation of integrin adhesiveness for endothelial and extracellular matrix ligands. Adhesion assays on purified vascular cell adhension molecule (VCAM)-1, fibronectin, and fibronectin fragments revealed distinct kinetic patterns for the regulation of very late antigen (VLA)-4 (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) avidity by the CC chemokines monocyte inflammatory protein (MIP)-1 alpha, RANTES (regulated on activation, normal T expressed and secreted), or monocyte chemoattractant protein (MCP)-1 in monocytes. CC chemokines induced early activation and subsequent deactivation of VLA-4, whereas upregulation of VLA-5 avidity occurred later and persisted. Controlled detachment assays in shear flow suggested that adhesive strength of VLA-4 for VCAM-1 or the 40-kD fragment of fibronectin (FN40) is more rapidly increased and subsequently reduced by MCP-1 than by MIP-1 alpha, and confirmed late and sustained activation of the adhesive strength of VLA-5 for the 120- kD fragment of fibronectin (FN120). Mn2+ or the stimulating beta 1 mAb TS2/16 strongly and stably enhanced monocyte binding to VCAM-1 or fibronectin, and locked beta 1 integrins in a high avidity state, which was not further modulated by CC chemokines. Mn2+ and mAb TS2/16 inhibited CC chemokine-induced transendothelial migration, particularly chemotaxis across stimulated endothelium that involved VLA-4 and VCAM- 1. VLA-4 on Jurkat cells is of constitutively high avidity and interfered with migration across barriers expressing VCAM-1. Low but not high site densities of VCAM-1 or FN40 promoted, while FN120 impaired, beta 1 integrin-dependent monocyte chemotaxis to MCP-1 across filters coated with these substrates. Thus, we show that CC chemokines can differentially and selectively regulate avidity of integrins sharing common beta subunits. Transient activation and deactivation of VLA-4 may serve to facilitate transendothelial diapedesis, whereas late and

  4. Regulation of ribosomal protein synthesis in an Escherichia coli mutant missing ribosomal protein L1.

    PubMed Central

    Jinks-Robertson, S; Nomura, M

    1981-01-01

    In an Escherichia coli B strain missing ribosomal protein L1, the synthesis rate of L11 is 50% greater than that of other ribosomal proteins. This finding is in agreement with the previous conclusion that L1 regulates synthesis of itself and L11 and indicates that this regulation is important for maintaining the balanced synthesis of ribosomal proteins under physiological conditions. PMID:7009590

  5. Mechanisms of leukocyte transendothelial migration.

    PubMed

    Muller, William A

    2011-01-01

    Neither the innate nor adaptive immune system "responds" unless leukocytes cross blood vessels. This process occurs through diapedesis, in which the leukocyte moves in an ameboid fashion through tightly apposed endothelial borders and, in some cases, through the endothelial cell itself. This review focuses on the active role of the endothelial cell in diapedesis. Several mechanisms play a critical role in transendothelial migration, including signals derived from clustering of apically disposed intercellular adhesion molecule 1 and vascular cell adhesion molecule 1, disruption or loosening of adherens junctions, and targeted recycling of platelet/endothelial cell adhesion molecule and other molecules from the recently described lateral border recycling compartment. Surprisingly, many of the same molecules and mechanisms that regulate paracellular migration also control transcellular migration. A hypothesis that integrates the various known mechanisms of transmigration is proposed.

  6. Mechanisms of Leukocyte Transendothelial Migration

    PubMed Central

    Muller, William A.

    2013-01-01

    Neither the innate nor adaptive immune system “responds” unless leukocytes cross blood vessels. This process occurs through diapedesis, in which the leukocyte moves in an ameboid fashion through tightly apposed endothelial borders and, in some cases, through the endothelial cell itself. This review focuses on the active role of the endothelial cell in diapedesis. Several mechanisms play a critical role in transendothelial migration, including signals derived from clustering of apically disposed intercellular adhesion molecule 1 and vascular cell adhesion molecule 1, disruption or loosening of adherens junctions, and targeted recycling of platelet/endothelial cell adhesion molecule and other molecules from the recently described lateral border recycling compartment. Surprisingly, many of the same molecules and mechanisms that regulate paracellular migration also control transcellular migration. A hypothesis that integrates the various known mechanisms of transmigration is proposed. PMID:21073340

  7. Transcription factor CREB3L1 regulates vasopressin gene expression in the rat hypothalamus.

    PubMed

    Greenwood, Mingkwan; Bordieri, Loredana; Greenwood, Michael P; Rosso Melo, Mariana; Colombari, Debora S A; Colombari, Eduardo; Paton, Julian F R; Murphy, David

    2014-03-12

    Arginine vasopressin (AVP) is a neurohypophysial hormone regulating hydromineral homeostasis. Here we show that the mRNA encoding cAMP responsive element-binding protein-3 like-1 (CREB3L1), a transcription factor of the CREB/activating transcription factor (ATF) family, increases in expression in parallel with AVP expression in supraoptic nuclei (SONs) and paraventicular nuclei (PVNs) of dehydrated (DH) and salt-loaded (SL) rats, compared with euhydrated (EH) controls. In EH animals, CREB3L1 protein is expressed in glial cells, but only at a low level in SON and PVN neurons, whereas robust upregulation in AVP neurons accompanied DH and SL rats. Concomitantly, CREB3L1 is activated by cleavage, with the N-terminal domain translocating from the Golgi, via the cytosol, to the nucleus. We also show that CREB3L1 mRNA levels correlate with AVP transcription level in SONs and PVNs following sodium depletion, and as a consequence of diurnal rhythm in the suprachiasmatic nucleus. We tested the hypothesis that CREB3L1 activates AVP gene transcription. Both full-length and constitutively active forms of CREB3L1 (CREB3L1CA) induce the expression of rat AVP promoter-luciferase reporter constructs, whereas a dominant-negative mutant reduces expression. Rat AVP promoter deletion constructs revealed that CRE-like and G-box sequences in the region between -170 and -120 bp are important for CREB3L1 actions. Direct binding of CREB3L1 to the AVP promoter was shown by chromatin immunoprecipitation both in vitro and in the SON itself. Injection of a lentiviral vector expressing CREB3L1CA into rat SONs and PVNs resulted in increased AVP biosynthesis. We thus identify CREB3L1 as a regulator of AVP transcription in the rat hypothalamus.

  8. Transcription Factor CREB3L1 Regulates Vasopressin Gene Expression in the Rat Hypothalamus

    PubMed Central

    Greenwood, Mingkwan; Bordieri, Loredana; Greenwood, Michael P.; Rosso Melo, Mariana; Colombari, Debora S. A.; Colombari, Eduardo; Paton, Julian F. R.

    2014-01-01

    Arginine vasopressin (AVP) is a neurohypophysial hormone regulating hydromineral homeostasis. Here we show that the mRNA encoding cAMP responsive element-binding protein-3 like-1 (CREB3L1), a transcription factor of the CREB/activating transcription factor (ATF) family, increases in expression in parallel with AVP expression in supraoptic nuclei (SONs) and paraventicular nuclei (PVNs) of dehydrated (DH) and salt-loaded (SL) rats, compared with euhydrated (EH) controls. In EH animals, CREB3L1 protein is expressed in glial cells, but only at a low level in SON and PVN neurons, whereas robust upregulation in AVP neurons accompanied DH and SL rats. Concomitantly, CREB3L1 is activated by cleavage, with the N-terminal domain translocating from the Golgi, via the cytosol, to the nucleus. We also show that CREB3L1 mRNA levels correlate with AVP transcription level in SONs and PVNs following sodium depletion, and as a consequence of diurnal rhythm in the suprachiasmatic nucleus. We tested the hypothesis that CREB3L1 activates AVP gene transcription. Both full-length and constitutively active forms of CREB3L1 (CREB3L1CA) induce the expression of rat AVP promoter-luciferase reporter constructs, whereas a dominant-negative mutant reduces expression. Rat AVP promoter deletion constructs revealed that CRE-like and G-box sequences in the region between −170 and −120 bp are important for CREB3L1 actions. Direct binding of CREB3L1 to the AVP promoter was shown by chromatin immunoprecipitation both in vitro and in the SON itself. Injection of a lentiviral vector expressing CREB3L1CA into rat SONs and PVNs resulted in increased AVP biosynthesis. We thus identify CREB3L1 as a regulator of AVP transcription in the rat hypothalamus. PMID:24623760

  9. Rho GTPases and cancer cell transendothelial migration.

    PubMed

    Reymond, Nicolas; Riou, Philippe; Ridley, Anne J

    2012-01-01

    Small Rho GTPases are major regulators of actin cytoskeleton dynamics and influence cell shape and migration. The expression of several Rho GTPases is often up-regulated in tumors and this frequently correlates with a poor prognosis for patients. Migration of cancer cells through endothelial cells that line the blood vessels, called transendothelial migration or extravasation, is a critical step during the metastasis process. The use of siRNA technology to target specifically each Rho family member coupled with imaging techniques allows the roles of individual Rho GTPases to be investigated. In this chapter we describe methods to assess how Rho GTPases affect the different steps of cancer cell transendothelial cell migration in vitro.

  10. FIP200 regulates targeting of Atg16L1 to the isolation membrane.

    PubMed

    Nishimura, Taki; Kaizuka, Takeshi; Cadwell, Ken; Sahani, Mayurbhai H; Saitoh, Tatsuya; Akira, Shizuo; Virgin, Herbert W; Mizushima, Noboru

    2013-03-01

    Autophagosome formation is a dynamic process that is strictly controlled by autophagy-related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14- and phosphatidylinositol 3-kinase-independent manner. Atg16L1 deletion mutants, which lack the FIP200-interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.

  11. Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1.

    PubMed

    Meray, Robin K; Lansbury, Peter T

    2007-04-06

    Deubiquitinating enzymes (DUBs) are negative regulators of protein ubiquitination and play an important role in ubiquitin-dependent processes. Recent studies have found that diverse cellular mechanisms are employed to control the activity of DUBs. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a highly expressed neuronal DUB linked to Parkinson disease; however, little is known about its specific functions or modes of regulation. Here, we demonstrate that UCH-L1 is post-translationally modified by monoubiquitin in cells, at lysine residues near the active site. This modification restricts enzyme activity by preventing binding to ubiquitinated targets, and permanent monoubiquitination, as mimicked by a ubiquitin-UCH-L1 fusion, inhibits UCH-L1 in its capacity to increase free ubiquitin levels in cells. Interestingly, UCH-L1 catalyzes its own deubiquitination in an intramolecular manner, thereby regulating the lifetime of this modification. Our results illustrate monoubiquitination as a reversible regulatory mechanism for DUB activity involving auto-deubiquitination.

  12. Human NPC1L1 expression is positively regulated by PPARα.

    PubMed

    Iwayanagi, Yuki; Takada, Tappei; Tomura, Fumiya; Yamanashi, Yoshihide; Terada, Tomohiro; Inui, Ken-ichi; Suzuki, Hiroshi

    2011-02-01

    Niemann-Pick C1-like 1 (NPC1L1), a pharmacological target of ezetimibe, is responsible for cholesterol absorption in enterocytes and hepatocytes. In the present study, the involvement of peroxisome proliferator-activated receptor α (PPARα) and its cofactor, PPARγ coactivator 1α (PGC1α) in the transcriptional regulation of human NPC1L1 was analyzed. Reporter gene assays and electrophoretic mobility shift assays (EMSAs) were performed with the 5'-flanking region of the human NPC1L1 gene and the effect of siPPARα was examined. PPARα-mediated transactivation was observed with human NPC1L1 promoter constructs. Detailed analyses using deletion- and mutated-promoter constructs revealed the presence of a functional PPARα-response element (PPRE) upstream of the human NPC1L1 gene (-846/-834), a direct binding of PPARα and RXRα to which was confirmed by EMSAs. Moreover, PPARα-specific knockdown resulted in a significant decrease in the endogenous expression of NPC1L1 mRNA and protein in human-derived HepG2 cells. Furthermore, cotransfection of PGC1α stimulated the SREBP2/HNF4α- and PPARα/RXRα-mediated activation of the human NPC1L1 promoter. We found that PPARα positively regulates human NPC1L1 transcription via direct binding to a PPRE. Additionally, PGC1α stimulates the SREBP2/HNF4α- and PPARα/RXRα-mediated transactivation of human NPC1L1. These findings may provide new insights into the close relationship of glucose, fatty acids and cholesterol homeostasis.

  13. Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation.

    PubMed

    Teneng, Ivo; Montoya-Durango, Diego E; Quertermous, James L; Lacy, Mary E; Ramos, Kenneth S

    2011-03-01

    Benzo(a)pyrene (BaP), is an environmental pollutant present in tobacco smoke and a byproduct of fossil fuel combustion which likely contributes to the tumorigenic processes in human cancers including lung and esophageal. Long Interspersed Nuclear Element-1 (LINE-1) or L1 is a mobile element within the mammalian genome that propagates via a "copy-and-paste" mechanism using reverse transcriptase and RNA intermediates. L1 is strongly expressed during early embryogenesis and then silenced as cells initiate differentiation programming. Although the complex transcriptional control mechanisms of L1 are not well understood, L1 reactivation has been described in several human cancers and following exposure of mouse or human cells to BaP. In this study we investigated the molecular mechanisms and epigenetic events that regulate L1 reactivation following BaP exposure. We show that challenge of HeLa cells with BaP induces early enrichment of the transcriptionally-active chromatin markers histone H3 trimethylated at lysine 4 (H3K4Me3) and histone H3 acetylated at lysine 9 (H3K9Ac), and reduces association of DNA methyltransferase-1 (DNMT1) with the L1 promoter. These changes are followed by proteasome-dependent decreases in cellular DNMT1 expression and sustained reduction of cytosine methylation within the L1 promoter CpG island. Pharmacological inhibition of the proteasome signaling pathway with the inhibitor MG132 blocks degradation of DNMT1 and alters BaP-mediated histone epigenetic modifications. We conclude that genetic reactivation of L1 by BaP involves an ordered cascade of epigenetic events that begin with nucleosomal histone modifications and is completed with alterations in DNMT1 recruitment to the L1 promoter and reduced DNA methylation of CpG islands.

  14. Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation

    PubMed Central

    Quertermous, James L; Lacy, Mary E

    2011-01-01

    Benzo(a)pyrene (BaP), is an environmental pollutant present in tobacco smoke and a byproduct of fossil fuel combustion that likely contributes to the tumorigenic processes in human cancers including lung and esophageal. Long Interspersed Nuclear Element-1 (LINE-1) or L1 is a mobile element within the mammalian genome that propagates via a “copy-and-paste” mechanism using reverse transcriptase and RNA intermediates. L1 is strongly expressed during early embryogenesis and then silenced as cells initiate differentiation programming. Although the complex transcriptional control mechanisms of L1 are not well understood, L1 reactivation has been described in several human cancers and following exposure of mouse or human cells to BaP. In this study we investigated the molecular mechanisms and epigenetic events that regulate L1 reactivation following BaP exposure. We show that challenge of HeLa cells with BaP induces early enrichment of the transcriptionally-active chromatin markers histone H3 trimethylated at lysine 4 (H3K4Me3) and histone H3 acetylated at lysine 9 (H3K9Ac), and reduces association of DNA methyltransferase-1 (DNMT1) with the L1 promoter. These changes are followed by proteasome-dependent decreases in cellular DNMT1 expression and sustained reduction of cytosine methylation within the L1 promoter CpG island. Pharmacological inhibition of the proteasome signaling pathway with the inhibitor MG132 blocks degradation of DNMT1 and alters BaP-mediated histone epigenetic modifications. We conclude that genetic reactivation of L1 by BaP involves an ordered cascade of epigenetic events that begin with nucleosomal histone modifications and is completed with alterations in DNMT1 recruitment to the L1 promoter and reduced DNA methylation of CpG islands. PMID:21150308

  15. RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism.

    PubMed

    Tarling, Elizabeth J; Clifford, Bethan L; Cheng, Joan; Morand, Pauline; Cheng, Angela; Lester, Ellen; Sallam, Tamer; Turner, Martin; de Aguiar Vallim, Thomas Q

    2017-10-02

    Bile acids function not only as detergents that facilitate lipid absorption but also as signaling molecules that activate the nuclear receptor farnesoid X receptor (FXR). FXR agonists are currently being evaluated as therapeutic agents for a number of hepatic diseases due to their lipid-lowering and antiinflammatory properties. FXR is also essential for maintaining bile acid homeostasis and prevents the accumulation of bile acids. Elevated bile acids activate FXR, which in turn switches off bile acid synthesis by reducing the mRNA levels of bile acid synthesis genes, including cholesterol 7α-hydroxylase (Cyp7a1). Here, we show that FXR activation triggers a rapid posttranscriptional mechanism to degrade Cyp7a1 mRNA. We identified the RNA-binding protein Zfp36l1 as an FXR target gene and determined that gain and loss of function of ZFP36L1 reciprocally regulate Cyp7a1 mRNA and bile acid levels in vivo. Moreover, we found that mice lacking hepatic ZFP36L1 were protected from diet-induced obesity and steatosis. The reduced adiposity and antisteatotic effects observed in ZFP36L1-deficient mice were accompanied by impaired lipid absorption that was consistent with altered bile acid metabolism. Thus, the ZFP36L1-dependent regulation of bile acid metabolism is an important metabolic contributor to obesity and hepatosteatosis.

  16. Polarized Targeting of L1-CAM Regulates Axonal and Dendritic Bundling in vitro

    PubMed Central

    Barry, Joshua; Gu, Yuanzheng; Gu, Chen

    2010-01-01

    Proper axonal and dendritic bundling is essential for the establishment of neuronal connections and the synchronization of synaptic inputs, respectively. Cell adhesion molecules of the L1-CAM family regulate axon guidance and fasciculation, neuron migration, dendrite morphology, and synaptic plasticity. How these molecules play so many different roles remains unclear. Here we show that polarized axon-dendrite targeting of an avian L1-CAM protein, NgCAM, can regulate the switch of bundling of the two major compartments of neurons. Using a new in vitro model for studying neurite-neurite interactions, we found that expressed axonal NgCAM induced robust axonal bundling via the trans-homophilic interaction of immunoglobulin (Ig) domains. Interestingly, dendritic bundling was induced by the dendritic targeting of NgCAM, caused by either deleting its fibronectin (FN) repeats or blocking activities of protein kinases. Consistent with the NgCAM results, expression of mouse L1CAM also induced axonal bundling and blocking kinase activities disrupted its axonal targeting. Furthermore, the trans-homophilic interaction stabilized the bundle formation, likely through recruiting NgCAM proteins to contact sites and promoting guided axon outgrowth. Taken together, our results suggest that precise localization of L1-CAM is important for establishing proper cell-cell contacts in neural circuits. PMID:20964729

  17. Association between PD-1/PD-L1 and T regulate cells in early recurrent miscarriage.

    PubMed

    Li, Guiyu; Lu, Caixia; Gao, Jing; Wang, Xietong; Wu, Huanling; Lee, Chao; Xing, Baoxiang; Zhang, Qi

    2015-01-01

    In this study, we try to testify the relationship between the programmed cell death receptor-1 (PD-1)/programmed cell death ligand 1 (PD-L1) passway and Treg cells in maternal-fetal immune regulation through PD-1 blockade on lymphocytes of normal early pregnancy in vitro and investigation of the PD-1 and PD-L1 changes in early recurrent miscarriage patients. CD4+ CD25+ Treg cells and PD-1 (CD279) positive cell were detected in deciduas in early recurrent miscarriage patients by flow cytometry. And the normal early pregnant women were as controls. Meanwhile the mRNA level of PD-1 and molecular expression of PD-L1 in deciduas of early recurrent miscarriage patients were detected by real time RT-PCR test and Immunohistochemical staining respectively. Also through antibody blocking assay to block PD-1 on lymphocytes of normal early pregnancy in vitro further testify the relationship between PD-1/PD-L1 and Treg cells, the results were analyzed by flow cytometry. CD4+ CD25+ Treg cells decreased both in deciduas in RM (P < 0.05), and for all almost 100% Treg cells (CD4+ CD25+) expressed PD-1, but there was no difference between the PD-1 positive cells in decidual lymphocytes in RM and that in normal pregnancy women (P > 0.05). PD-L1 mRNA in deciduas decreased in RM (P < 0.001), but PD-1 mRNA no difference (P > 0.1). After PD-1 blockade there was no change in CD4+ CD25+ Treg cells percentage, while the CD4+ T cell percentage increased (P < 0.01), as well as the level of IFN-gamma in cells supernatant (P < 0.01). PD-1 blockade has a little influence on the number of Treg cells, and may lead to impaired Treg cells function, the decrease of PD-L1 may closely relates to the occurrence of early recurrent miscarriage and implies that Treg cells may through PD-1/PD-L1 pathway play a role of immunosuppression regulation, and the impairment of Treg cells function in recurrent early abortion cases may be due to PD-L1 decrease in deciduas or trophoblast cells rather than PD-1 change.

  18. Differential L1 regulation in pluripotent stem cells of humans and apes.

    PubMed

    Marchetto, Maria C N; Narvaiza, Iñigo; Denli, Ahmet M; Benner, Christopher; Lazzarini, Thomas A; Nathanson, Jason L; Paquola, Apuã C M; Desai, Keval N; Herai, Roberto H; Weitzman, Matthew D; Yeo, Gene W; Muotri, Alysson R; Gage, Fred H

    2013-11-28

    Identifying cellular and molecular differences between human and non-human primates (NHPs) is essential to the basic understanding of the evolution and diversity of our own species. Until now, preserved tissues have been the main source for most comparative studies between humans, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, these tissue samples do not fairly represent the distinctive traits of live cell behaviour and are not amenable to genetic manipulation. We propose that induced pluripotent stem (iPS) cells could be a unique biological resource to determine relevant phenotypical differences between human and NHPs, and that those differences could have potential adaptation and speciation value. Here we describe the generation and initial characterization of iPS cells from chimpanzees and bonobos as new tools to explore factors that may have contributed to great ape evolution. Comparative gene expression analysis of human and NHP iPS cells revealed differences in the regulation of long interspersed element-1 (L1, also known as LINE-1) transposons. A force of change in mammalian evolution, L1 elements are retrotransposons that have remained active during primate evolution. Decreased levels of L1-restricting factors APOBEC3B (also known as A3B) and PIWIL2 (ref. 7) in NHP iPS cells correlated with increased L1 mobility and endogenous L1 messenger RNA levels. Moreover, results from the manipulation of A3B and PIWIL2 levels in iPS cells supported a causal inverse relationship between levels of these proteins and L1 retrotransposition. Finally, we found increased copy numbers of species-specific L1 elements in the genome of chimpanzees compared to humans, supporting the idea that increased L1 mobility in NHPs is not limited to iPS cells in culture and may have also occurred in the germ line or embryonic cells developmentally upstream to germline specification during primate evolution. We propose that differences in L1 mobility may have

  19. Atypical calcium regulation of the PKD2-L1 polycystin ion channel

    PubMed Central

    DeCaen, Paul G; Liu, Xiaowen; Abiria, Sunday; Clapham, David E

    2016-01-01

    Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca2+) moving into the cell, but blocked by high internal Ca2+concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca2+-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca2+ ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca2+ flow, enabling Ca2+ to enter but not leave small compartments such as the cilium. DOI: http://dx.doi.org/10.7554/eLife.13413.001 PMID:27348301

  20. Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling.

    PubMed

    Bheda, Anjali; Yue, Wei; Gullapalli, Anuradha; Whitehurst, Chris; Liu, Renshui; Pagano, Joseph S; Shackelford, Julia

    2009-06-18

    Deubiquitinating enzymes (DUBs) are involved in the regulation of distinct critical cellular processes. Ubiquitin C-terminal Hydrolase L1 (UCH L1) has been linked to several neurological diseases as well as human cancer, but the physiological targets and the regulation of UCH L1 expression in vivo have been largely unexplored. Here we demonstrate that UCH L1 up-regulates beta-catenin/TCF signaling: UCH L1 forms endogenous complexes with beta-catenin, stabilizes it and up-regulates beta-catenin/TCF-dependent transcription. We also show that, reciprocally, beta-catenin/TCF signaling up-regulates expression of endogenous UCH L1 mRNA and protein. Moreover, using ChIP assay and direct mutagenesis we identify two TCF4-binding sites on the uch l1 promoter that are involved in this regulation. Since the expression and deubiquitinating activity of UCH L1 are required for its own basic promoter activity, we propose that UCH L1 up-regulates its expression by activation of the oncogenic beta-catenin/TCF signaling in transformed cells.

  1. Positive Reciprocal Regulation of Ubiquitin C-Terminal Hydrolase L1 and β-Catenin/TCF Signaling

    PubMed Central

    Bheda, Anjali; Yue, Wei; Gullapalli, Anuradha; Whitehurst, Chris; Liu, Renshui; Pagano, Joseph S.; Shackelford, Julia

    2009-01-01

    Deubiquitinating enzymes (DUBs) are involved in the regulation of distinct critical cellular processes. Ubiquitin C-terminal Hydrolase L1 (UCH L1) has been linked to several neurological diseases as well as human cancer, but the physiological targets and the regulation of UCH L1 expression in vivo have been largely unexplored. Here we demonstrate that UCH L1 up-regulates β-catenin/TCF signaling: UCH L1 forms endogenous complexes with β-catenin, stabilizes it and up-regulates β-catenin/TCF-dependent transcription. We also show that, reciprocally, β-catenin/TCF signaling up-regulates expression of endogenous UCH L1 mRNA and protein. Moreover, using ChIP assay and direct mutagenesis we identify two TCF4-binding sites on the uch l1 promoter that are involved in this regulation. Since the expression and deubiquitinating activity of UCH L1 are required for its own basic promoter activity, we propose that UCH L1 up-regulates its expression by activation of the oncogenic β-catenin/TCF signaling in transformed cells. PMID:19536331

  2. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells.

    PubMed

    Yu, Bangning; Cook, Carla; Santanam, Nalini

    2009-10-01

    Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor (PPAR)-gamma, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H(2)O(2)) (100 microM) or tumor necrosis factor-alpha (TNFalpha) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5-100 microM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARgamma, and C/EBPalpha to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H(2)O(2) or TNFalpha and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5-25 microM) having a larger inductive effect compared to higher concentrations (50-100 microM). Boldine treatment alone in the absence of H(2)O(2) or TNFalpha was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease.

  3. The Aporphine Alkaloid Boldine Induces Adiponectin Expression and Regulation in 3T3-L1 Cells

    PubMed Central

    Yu, Bangning; Cook, Carla

    2009-01-01

    Abstract Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor (PPAR)-γ, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H2O2) (100 μM) or tumor necrosis factor-α (TNFα) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5–100 μM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARγ, and C/EBPα to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H2O2 or TNFα and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5–25 μM) having a larger inductive effect compared to higher concentrations (50–100 μM). Boldine treatment alone in the absence of H2O2 or TNFα was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  4. The RNA stability regulator HuR regulates L1 protein expression in vivo in differentiating cervical epithelial cells

    SciTech Connect

    Cumming, S.A.; Chuen-Im, T.; Zhang, J.; Graham, S.V.

    2009-01-05

    Human papillomavirus (HPV) L1 and L2 capsid protein expression is restricted to the granular layer of infected, stratified epithelia and is regulated at least partly at post-transcriptional levels. For HPV16, a 79 nt late regulatory element (LRE) is involved in this control. Using W12 cells as a model for HPV16-infected differentiating cervical epithelial cells we show that HuR, a key cellular protein that controls mRNA stability, binds the LRE most efficiently in nuclear and cytoplasmic extracts of differentiated cells. Further, HuR binds the 3' U-rich portion of the LRE directly in vitro. Overexpression of HuR in undifferentiated W12 cells results in an increase in L1 mRNA and protein levels while siRNA knock-down of HuR in differentiated W12 cells depletes L1 expression. In differentiated cervical epithelial cells HuR may bind and stabilise L1 mRNAs aiding translation of L1 protein.

  5. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    SciTech Connect

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  6. Epigenetic regulation of L1CAM in endometrial carcinoma: comparison to cancer–testis (CT-X) antigens

    PubMed Central

    2013-01-01

    Background L1CAM was originally identified as an adhesion molecule involved in neural development. In many human carcinomas L1CAM is over-expressed and is associated with a bad prognosis. We previously reported that L1CAM was absent in the vast majority of endometrioid endometrial carcinomas (ECs) (type 1) but was strongly expressed in the more aggressive serous and clear-cell ECs (termed type 2). The differential regulation of L1CAM in ECs is not well understood. Recent evidence suggests that it can be regulated by epigenetic mechanisms. Here we investigated the role of DNA-methylation of the L1CAM promoter for expression. We also studied the relationship to cancer testis (CT-X) antigens that co-localize with L1CAM on chromosome Xq28, a region that is often activated in human tumors. Methods We used EC cell lines and primary tumor tissues for our analysis. For expression analysis we employed RT-PCR and Western blotting. DNA-Methylation of the L1CAM promoter was determined after bisulfite conversation and DNA sequencing. Tumor tissues were examined by immunohistochemical (IHC) staining. Results We demonstrate that the treatment of L1CAM low/negative expressing EC cell lines with 5′-Azacytidine (5-AzaC) or knock-down of DNMT1 (DNA methyltransferase 1) as well as the HDAC (histone deacetylase) inhibitor Trichostatin A (TSA) up-regulated L1CAM at the mRNA and protein level. The L1CAM gene has two promoter regions with two distinct CpG islands. We observed that the expression of L1CAM correlated with hypermethylation in promoter 1 and 5-AzaC treatment affected the DNA-methylation pattern in this region. The CT-X antigens NY-ESO-1, MAGE-A3 and MAGE-A4 were also strongly up-regulated by 5-AzaC or knock-down of DNMT1 but did not respond to treatment with TSA. Primary EC tumor tissues showed a variable methylation pattern of the L1CAM promoter. No striking differences in promoter methylation were observed between tumor areas with L1CAM expression and those without

  7. The expression and regulation of STATs during 3T3-L1 adipocyte differentiation.

    PubMed

    Stephens, J M; Morrison, R F; Pilch, P F

    1996-05-03

    STATs (Signal Transducers and Activators of Transcription) comprise a family of transcription factors that reside in the cytoplasm of resting cells. In response to a variety of stimuli, STATs become tyrosine-phosphorylated and translocate to the nucleus where they mediate transcriptional regulation. We have used the 3T3-L1 murine cell line to examine the expression of STAT proteins as a function of their differentiation into adipocytes. The expression of STATs 1, 3, and 5, but not of STAT 6, is markedly elevated in adipocytes as compared with their fibroblast precursors. Exposure of 3T3-L1 preadipocytes to tumor necrosis factor alpha (TNF alpha) blocks their differentiation into adipocytes. Therefore, we examined STAT expression as a function of differentiation in the presence of this cytokine. The expression of STATs 1 and 5 is markedly attenuated in the presence of TNF alpha, whereas STAT 3 expression is unaffected by this treatment. Only STAT 1 is down-regulated by TNF alpha in fully differentiated cells. Thus, although the expression of STATs 1, 3, and 5 is markedly enhanced upon differentiation, only STAT 5 expression is tightly correlated with the adipocyte phenotype. These data suggest that STAT 5, and possibly STAT 1, could be potential inducers of tissue-specific genes, which contribute to the development and maintenance of the adipocyte phenotype.

  8. Nuclear Factor Erythroid-2 Like 1 (NFE2L1): Structure, function and regulation.

    PubMed

    Kim, Hyun Min; Han, Jeong Woo; Chan, Jefferson Y

    2016-06-10

    Nrf1 (also referred to as NFE2L1) is a member of the CNC-bZIP family of transcription factors that are characterized by a highly conserved CNC-domain, and a basic-leucine zipper domain required for dimerization and DNA binding. Nrf1 is ubiquitously expressed across tissue and cell types as various isoforms, and is induced by stress signals from a broad spectrum of stimuli. Evidence indicates that Nrf1 plays an important role in regulating a range of cellular functions including oxidative stress response, differentiation, inflammatory response, metabolism, and maintaining proteostasis. Thus, Nrf1 has been implicated in the pathogenesis of various disease processes including cancer development, and degenerative and metabolic disorders. This review summarizes our current understanding of Nrf1 and the molecular mechanism underlying its regulation and action in different cellular functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. miR-21-3p is a positive regulator of L1CAM in several human carcinomas.

    PubMed

    Doberstein, Kai; Bretz, Niko P; Schirmer, Uwe; Fiegl, Heidi; Blaheta, Roman; Breunig, Christian; Müller-Holzner, Elisabeth; Reimer, Dan; Zeimet, Alain G; Altevogt, Peter

    2014-11-28

    Expression of L1 cell adhesion molecule (L1CAM) occurs frequently in human cancers and is associated with poor prognosis in cancers such as ovarian, endometrial, breast, renal cell carcinoma and pancreatic ductal adenocarcinoma. L1CAM promotes cell motility, invasion, chemoresistance and metastasis formation. Elucidating genetic processes involved in the expression of L1CAM in cancers is of considerable importance. Transcription factors such as SLUG, β-catenin/TCF-LEF, PAX8 and VHL have been implicated in the re-activation of L1CAM in various types of cancers. There is increasing evidence that micro-RNAs can also have strong effects on gene expression. Here we have identified miR-21-3p as a positive regulator of L1CAM expression. Over-expression of miR-21-3p (miR-21*) but not the complementary sequence miR-21-5p (miR-21) could strongly augment L1CAM expression in renal, endometrial and ovarian carcinoma derived cell lines by an unknown mechanism involving transcriptional activation of the L1CAM gene. In patient cohorts from renal, endometrial and ovarian cancers we observed a strong positive correlation of L1CAM and miR-21-3p expressions. Although L1CAM alone was a reliable marker for overall and disease free survival, the combination of L1CAM and miR-21-3p expressions strongly enhanced the predictive power. Our findings shed new light on the complex regulation of L1CAM in cancers and advocate the use of L1CAM/miR-21-3p for diagnostic application.

  10. Ubiquitin C-terminal hydrolase-L1 protects cystic fibrosis transmembrane conductance regulator from early stages of proteasomal degradation.

    PubMed

    Henderson, Mark J; Vij, Neeraj; Zeitlin, Pamela L

    2010-04-09

    DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) degradation involves ubiquitin modification and efficient proteasomal targeting of the nascent misfolded protein. We show that a deubiquitinating enzyme, ubiquitin C-terminal hydrolase-L1 (UCH-L1), is highly expressed in cystic fibrosis (CF) airway epithelial cells in vitro and in vivo. We hypothesized that the elevation in UCH-L1 in CF cells represents a cellular adaptation to counterbalance excessive proteasomal degradation. The bronchial epithelial cell lines IB3-1 (CF, high UCH-L1 expression) and S9 (non-CF, low UCH-L1 expression) were transiently transfected with wild type (WT) or DeltaF508 CFTR, WT UCH-L1 or small interfering RNA-UCH-L1, and a variety of ubiquitin mutants. We observed a positive correlation between UCH-L1 expression and steady state levels of WT- or DeltaF508-CFTR, and this stabilizing effect was confined to the early stages of CFTR synthesis. Immunolocalization of UCH-L1 by confocal microscopy revealed a partial co-localization with a ribosomal subunit and the endoplasmic reticulum. The UCH-L1-associated increase in CFTR levels was correlated with an increase in ubiquitinated CFTR (CFTR-Ub). Co-transfection with mutant ubiquitins and treatment with proteasome inhibitors suggested that UCH-L1 was reducing the proteasomal targeting of CFTR during synthesis by shortening conjugated polyubiquitin chains. Although not sufficient by itself to rescue mutant CFTR therapeutically, the elevation of UCH-L1 and its effect on CFTR processing provides insight into its potential roles in CF and other diseases.

  11. The L1TD1 protein interactome reveals the importance of post-transcriptional regulation in human pluripotency.

    PubMed

    Emani, Maheswara Reddy; Närvä, Elisa; Stubb, Aki; Chakroborty, Deepankar; Viitala, Miro; Rokka, Anne; Rahkonen, Nelly; Moulder, Robert; Denessiouk, Konstantin; Trokovic, Ras; Lund, Riikka; Elo, Laura L; Lahesmaa, Riitta

    2015-03-10

    The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs) and provide insights into the interactome network constructed in human pluripotent cells. Our data reveal that L1TD1 has an important role in RNA splicing, translation, protein traffic, and degradation. L1TD1 interacts with multiple stem-cell-specific proteins, many of which are still uncharacterized in the context of development. Further, we show that L1TD1 is a part of the pluripotency interactome network of OCT4, SOX2, and NANOG, bridging nuclear and cytoplasmic regulation and highlighting the importance of RNA biology in pluripotency.

  12. Down-Regulation of Type I Runx2 Mediated by Dexamethasone Is Required for 3T3-L1 Adipogenesis

    PubMed Central

    Zhang, You-you; Li, Xi; Qian, Shu-wen; Guo, Liang; Huang, Hai-yan; He, Qun; Liu, Yuan; Ma, Chun-gu

    2012-01-01

    Runx2, a runt-related transcriptional factor family member, is involved in the regulation of osteoblast differentiation. Interestingly, it is abundant in growth-arrested 3T3-L1 preadipocytes and was dramatically down-regulated during adipocyte differentiation. Knockdown of Runx2 expression promoted 3T3-L1 adipocyte differentiation, whereas overexpression inhibited adipocyte differentiation and promoted the trans-differentiation of 3T3-L1 preadipocytes to bone cells. Runx2 was down-regulated specifically by dexamethasone (DEX). Only type I Runx2 was expressed in 3T3-L1 preadipocytes. Using luciferase assay and chromatin immunoprecipitation-quantitative PCR analysis, it was found that DEX repressed this type of Runx2 at the transcriptional level through direct binding of the glucocorticoid receptor (GR) to a GR-binding element in the Runx2 P2 promoter. Further studies indicated that GR recruited histone deacetylase 1 to the Runx2 P2 promoter which then mediated the deacetylation of histone H4 and down-regulated Runx2 expression. Runx2 might play its repressive role through the induction of p27 expression, which blocked 3T3-L1 adipocyte differentiation by inhibiting mitotic clonal expansion. Taken together, we identified Runx2 as a new downstream target of DEX and explored a new pathway between DEX, Runx2, and p27 which contributed to the mechanism of the 3T3-L1 adipocyte differentiation. PMID:22422618

  13. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    PubMed Central

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  14. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  15. Hormone and pharmaceutical regulation of ASP production in 3T3-L1 adipocytes.

    PubMed

    Gao, Ying; Gauvreau, Danny; Cianflone, Katherine

    2010-04-01

    Several studies have demonstrated increases in acylation stimulating protein (ASP), and precursor protein C3 in obesity, diabetes and dyslipidemia, however the nature of the regulation is unknown. To evaluate chronic hormonal and pharmaceutical mediated changes in ASP and potential mechanisms, 3T3-L1 adipocytes were treated with physiological concentrations of relevant hormones and drugs currently used in treatment of metabolic diseases for 48 h. Medium ASP production and C3 secretion were evaluated in relation to changes in adipocyte lipid metabolism (cellular triglyceride (TG) mass, non-esterified fatty acid (NEFA) release and real-time FA uptake). Chylomicrons increased ASP production (up to 411 +/- 133% P < 0.05), while leptin, triiodothyronine, and beta-blockers atenolol and propranolol had no effect. Dexamethasone, lovastatin, rosiglitazone and rimonabant decreased ASP production (-53 to -85%, P < 0.05), associated with a decrease in the precursor protein C3 (-37% to -65%, P < 0.01). By contrast, epinephrine, progesterone, testosterone, angiotensin II and metformin also decreased ASP (-54% to -100%, P < 0.05), but without change in precursor protein C3, suggesting a direct effect on convertase activity, possibly mediated by interference (except metformin) due to marked increases in NEFA (5.6-31-fold, increased P < 0.05). Both lovastatin and metformin induced decreases in ASP were also associated with decreased TG mass (maximal -60%, P < 0.05) and real-time FA uptake (maximum -75%, P < 0.05), suggesting a change in adipocyte differentiation status. These in vitro results are consistent with in vivo ASP profiles in subjects, and suggest that ASP may be regulated through precursor C3 availability, convertase activity and differentiation status.

  16. The Wheat GT Factor TaGT2L1D Negatively Regulates Drought Tolerance and Plant Development

    PubMed Central

    Zheng, Xin; Liu, Haipei; Ji, Hongtao; Wang, Youning; Dong, Baodi; Qiao, Yunzhou; Liu, Mengyu; Li, Xia

    2016-01-01

    GT factors are trihelix transcription factors that specifically regulate plant development and stress responses. Recently, several GT factors have been characterized in different plant species; however, little is known about the role of GT factors in wheat. Here, we show that TaGT2L1A, TaGT2L1B, and TaGT2L1D are highly homologous in hexaploid wheat, and are localized to wheat chromosomes 2A, 2B, and 2D, respectively. These TaGT2L1 genes encode proteins containing two SANT domains and one central helix. All three homologs were ubiquitously expressed during wheat development and were responsive to osmotic stress. Functional analyses demonstrated that TaGT2L1D acts as a transcriptional repressor; it was able to suppress the expression of AtSDD1 in Arabidopsis by binding directly to the GT3 box in its promoter that negatively regulates drought tolerance. TaGT2L1D overexpression markedly increased the number of stomata and reduced drought tolerance in gtl1-3 plants. Notably, ectopic expression of TaGT2L1D also affected floral organ development and overall plant growth. These results demonstrate that TaGT2L1 is an ortholog of AtGTL1, and that it plays an evolutionarily conserved role in drought resistance by fine tuning stomatal density in wheat. Our data also highlight the role of TaGT2L1 in plant growth and development. PMID:27245096

  17. Microgravity Effects on Transendothelial Transport

    NASA Technical Reports Server (NTRS)

    Tarbell, John M.

    1996-01-01

    The Endothelial Cell (EC) layer which lines blood vessels from the aorta to the capillaries provides the principal barrier to transport of water and solutes between blood and underlying tissue. Endothelial cells are continuously exposed to the mechanical shearing force (shear stress) and normal force (pressure) imposed by flowing blood on their surface, and they are adapted to this mechanical environment. When the cardiovascular system is exposed to microgravity, the mechanical environmental of endothelial cells is perturbed drastically and the transport properties of EC layers are altered in response. We have shown recently that step changes in shear stress have an acute effect on transport properties of EC layers in a cell culture model, and several recent studies in different vessels of live animals have confirmed the shear-dependent transport properties of the endothelium. We hypothesize that alterations in mechanical forces induced by microgravity and their resultant influence on transendothelial transport of water and solutes are, in large measure, responsible for the characteristic cephalad fluid shift observed in humans experiencing microgravity. To study the effects of altered mechanical forces on transendothelial transport and to test pharmacologic agents as counter measures to microgravity induced fluid shifts we have proposed ground-based studies using well defined cell culture models.

  18. Regulation of PD-L1 expression in a high-grade invasive human oral squamous cell carcinoma microenvironment.

    PubMed

    Hirai, Mariko; Kitahara, Hiroko; Kobayashi, Yutaka; Kato, Koroku; Bou-Gharios, George; Nakamura, Hiroyuki; Kawashiri, Shuichi

    2017-01-01

    Blockade of the programmed-death 1 receptor (PD-1)/programmed-death ligand (PD-L1) pathway efficiently reduces tumour growth and improves survival. Durable tumour regression with blockade of the PD-1/PD-L1 checkpoint has been demonstrated in recent clinical studies. Oral squamous cell carcinoma (OSCC) is highly immunosuppressive, and PD-L1 expression has been proposed as a potential mechanism responsible for this phenotype. Despite the fact that anti-PD-1 treatment can produce durable responses, such therapy appears to benefit only a subset of patients. Thus, it is important to understand the mechanisms underlying regulation of PD-L1 expression in the OSCC microenvironment. In this study, we showed that PD-L1 expression in high-grade invasive OSCC cell lines was lower than that in a low-grade invasive OSCC line and found a close correlation between PD-L1 expression and the epithelial-mesenchymal transition (EMT). PD-L1 expression was upregulated in macrophages and dendritic cells (DCs) in high-grade invasive human OSCC tissues or co-cultured with mesenchymal-phenotype OSCC cells in vitro. TLR4-inhibitory peptide successfully suppressed PD-L1 upregulation on macrophages and DCs co-cultured with mesenchymal-phenotype OSCC cells, suggesting that some EMT-induced tumour antigen is critical for PD-L1 induction on tumour-associated macrophages and DCs. Further studies are necessary to explore the impact of EMT on the tumour immune microenvironment and to identify potential biomarkers for selecting patients who might preferentially benefit from PD-1/PD-L1 blockade or immunotherapies more broadly.

  19. Regulation of PD-L1 expression in a high-grade invasive human oral squamous cell carcinoma microenvironment

    PubMed Central

    Hirai, Mariko; Kitahara, Hiroko; Kobayashi, Yutaka; Kato, Koroku; Bou-Gharios, George; Nakamura, Hiroyuki; Kawashiri, Shuichi

    2017-01-01

    Blockade of the programmed-death 1 receptor (PD-1)/programmed-death ligand (PD-L1) pathway efficiently reduces tumour growth and improves survival. Durable tumour regression with blockade of the PD-1/PD-L1 checkpoint has been demonstrated in recent clinical studies. Oral squamous cell carcinoma (OSCC) is highly immunosuppressive, and PD-L1 expression has been proposed as a potential mechanism responsible for this phenotype. Despite the fact that anti-PD-1 treatment can produce durable responses, such therapy appears to benefit only a subset of patients. Thus, it is important to understand the mechanisms underlying regulation of PD-L1 expression in the OSCC microenvironment. In this study, we showed that PD-L1 expression in high-grade invasive OSCC cell lines was lower than that in a low-grade invasive OSCC line and found a close correlation between PD-L1 expression and the epithelial-mesenchymal transition (EMT). PD-L1 expression was upregulated in macrophages and dendritic cells (DCs) in high-grade invasive human OSCC tissues or co-cultured with mesenchymal-phenotype OSCC cells in vitro. TLR4-inhibitory peptide successfully suppressed PD-L1 upregulation on macrophages and DCs co-cultured with mesenchymal-phenotype OSCC cells, suggesting that some EMT-induced tumour antigen is critical for PD-L1 induction on tumour-associated macrophages and DCs. Further studies are necessary to explore the impact of EMT on the tumour immune microenvironment and to identify potential biomarkers for selecting patients who might preferentially benefit from PD-1/PD-L1 blockade or immunotherapies more broadly. PMID:27922697

  20. Myeloid ZFP36L1 Does Not Regulate Inflammation or Host Defense in Mouse Models of Acute Bacterial Infection

    PubMed Central

    Hyatt, Lynnae D.; Wasserman, Gregory A.; Rah, Yoon J.; Matsuura, Kori Y.; Coleman, Fadie T.; Hilliard, Kristie L.; Pepper-Cunningham, Zachary Ash; Ieong, Michael; Stumpo, Deborah J.; Blackshear, Perry J.; Quinton, Lee J.; Mizgerd, Joseph P.; Jones, Matthew R.

    2014-01-01

    Zinc finger protein 36, C3H type-like 1 (ZFP36L1) is one of several Zinc Finger Protein 36 (Zfp36) family members, which bind AU rich elements within 3′ untranslated regions (UTRs) to negatively regulate the post-transcriptional expression of targeted mRNAs. The prototypical member of the family, Tristetraprolin (TTP or ZFP36), has been well-studied in the context of inflammation and plays an important role in repressing pro-inflammatory transcripts such as TNF-α. Much less is known about the other family members, and none have been studied in the context of infection. Using macrophage cell lines and primary alveolar macrophages we demonstrated that, like ZFP36, ZFP36L1 is prominently induced by infection. To test our hypothesis that macrophage production of ZFP36L1 is necessary for regulation of the inflammatory response of the lung during pneumonia, we generated mice with a myeloid-specific deficiency of ZFP36L1. Surprisingly, we found that myeloid deficiency of ZFP36L1 did not result in alteration of lung cytokine production after infection, altered clearance of bacteria, or increased inflammatory lung injury. Although alveolar macrophages are critical components of the innate defense against respiratory pathogens, we concluded that myeloid ZFP36L1 is not essential for appropriate responses to bacteria in the lungs. Based on studies conducted with myeloid-deficient ZFP36 mice, our data indicate that, of the Zfp36 family, ZFP36 is the predominant negative regulator of cytokine expression in macrophages. In conclusion, these results imply that myeloid ZFP36 may fully compensate for loss of ZFP36L1 or that Zfp36l1-dependent mRNA expression does not play an integral role in the host defense against bacterial pneumonia. PMID:25299049

  1. Regulation of Tcf7l1 DNA binding and protein stability as principal mechanisms of Wnt/β-catenin signaling.

    PubMed

    Shy, Brian R; Wu, Chun-I; Khramtsova, Galina F; Zhang, Jenny Y; Olopade, Olufunmilayo I; Goss, Kathleen H; Merrill, Bradley J

    2013-07-11

    Wnt/β-catenin signal transduction requires direct binding of β-catenin to Tcf/Lef proteins, an event that is classically associated with stimulating transcription by recruiting coactivators. This molecular cascade plays critical roles throughout embryonic development and normal postnatal life by affecting stem cell characteristics and tumor formation. Here, we show that this pathway utilizes a fundamentally different mechanism to regulate Tcf7l1 (formerly named Tcf3) activity. β-catenin inactivates Tcf7l1 without a switch to a coactivator complex by removing it from DNA, which leads to Tcf7l1 protein degradation. Mouse genetic experiments demonstrate that Tcf7l1 inactivation is the only required effect of the Tcf7l1-β-catenin interaction. Given the expression of Tcf7l1 in pluripotent embryonic and adult stem cells, as well as in poorly differentiated breast cancer, these findings provide mechanistic insights into the regulation of pluripotency and the role of Wnt/β-catenin in breast cancer. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. TLR3-Induced Maturation of Murine Dendritic Cells Regulates CTL Responses by Modulating PD-L1 Trafficking

    PubMed Central

    Varthaman, Aditi; Moreau, Hélène D.; Maurin, Mathieu; Benaroch, Philippe

    2016-01-01

    Targeting TLR3 through formulations of polyI:C is widely studied as an adjuvant in cancer immunotherapy. The efficacy of such targeting has been shown to increase in combination with anti-PD-L1 treatment. Nevertheless, the mechanistic details of the effect of polyI:C on DC maturation and the impact on T-DC interactions upon PD-L1 blockade is largely unknown. Here we found that although DC treatment with polyI:C induced a potent inflammatory response including the production of type I interferon, polyI:C treatment of DCs impaired activation of peptide specific CD8+ T cells mainly due to PD-L1. Interestingly, we found that PD-L1 trafficking to the cell surface is regulated in two waves in polyI:C-treated DCs. One induced upon overnight treatment and a second more rapid one, specific to polyI:C treatment, was induced upon CD40 signaling leading to a further increase in surface PD-L1 in DCs. The polyI:C-induced cell surface PD-L1 reduced the times of contact between DCs and T cells, potentially accounting for limited T cell activation. Our results reveal a novel CD40-dependent regulation of PD-L1 trafficking induced upon TLR3 signaling that dictates its inhibitory activity. These results provide a mechanistic framework to understand the efficacy of anti-PD-L1 cancer immunotherapy combined with TLR agonists. PMID:27911948

  3. The interaction between cell adhesion molecule L1, matrix metalloproteinase 14, and adenine nucleotide translocator at the plasma membrane regulates L1-mediated neurite outgrowth of murine cerebellar neurons.

    PubMed

    Loers, Gabriele; Makhina, Tatjana; Bork, Ute; Dörner, Andrea; Schachner, Melitta; Kleene, Ralf

    2012-03-14

    We have identified the adenine nucleotide translocator (ANT) isoforms ANT1 and ANT2 that are present in the plasma membrane of mouse cerebellar neurons as novel binding partners of the cell adhesion molecule L1. The direct interaction between ANT and L1 is mediated by sites within the fibronectin type III domains of L1 and the first and third extracellular loops of the ANT proteins. We also show that L1 interacts with the ANT binding partner matrix metalloprotease 14 (MMP14) and that the ANT proteins bind directly to the L1 interaction partner glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Moreover, we provide evidence that the functional interplay between L1, ANT proteins, MMP14, and GAPDH at the plasma membrane mediates L1-induced neurite outgrowth of cerebellar neurons. Disruption of this interplay by ANT inhibitors, ANT-derived synthetic peptides, and/or function-blocking MMP14 and ANT antibodies leads to alterations in L1-dependent neurite outgrowth. Stimulation of L1-mediated signaling in cerebellar neurons triggers transient ATP secretion via ANT proteins and leads to transient src family-dependent tyrosine phosphorylation of L1, ANT1, ANT2, and MMP14. Thus, our results indicate that plasma membrane-localized ANT1 and ANT2 regulate L1-mediated neurite outgrowth in conjunction with MMP14.

  4. TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells.

    PubMed

    Boes, Marianne; Meyer-Wentrup, Friederike

    2015-05-28

    Neuroblastoma is the most common extracranial solid tumor in children, causing 12% of all pediatric cancer mortality. Neuroblastoma specific T-cells have been detected in patients, but usually fail to attack and eradicate the tumors. Tumor immune evasion may thus play an important role in neuroblastoma pathogenicity. Recent research in adult cancer patients shows that targeting T-cell check-point molecules PD-1/PD-L1 (or CD279/CD274) may bolster immune reactivity against solid tumors. Also, infections can be associated with spontaneous neuroblastoma regression. In our current study, we therefore investigated if antibody targeting of PD-L1 and triggering of selective pathogen-receptor Toll-like receptors (TLRs) potentiates immunogenicity of neuroblastoma cells. We find this to be the case. TLR3 triggering induced strong upregulation of both MHC class I and PD-L1 on neuroblastoma cells. At the same time TGF-β levels decreased and IL-8 secretion was induced. The combined neuroblastoma cell treatment using PD-L1 blockade and TLR3 triggering using virus analog poly(I:C) moreover induced CD4(+) and CD8(+) T-cell activation. Thus, we propose combined treatment using PD-L1 blockade with synthetic TLR ligands as an avenue toward new immunotherapy against human neuroblastoma.

  5. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control.

    PubMed

    Schwartz, Christian; Khan, Adnan R; Floudas, Achilleas; Saunders, Sean P; Hams, Emily; Rodewald, Hans-Reimer; McKenzie, Andrew N J; Fallon, Padraic G

    2017-09-04

    Group 2 innate lymphoid cells (ILC2s) are important effector cells driving the initiation of type 2 immune responses leading to adaptive T helper 2 (Th2) immunity. Here we show that ILC2s dynamically express the checkpoint inhibitor molecule PD-L1 during type 2 pulmonary responses. Surprisingly, PD-L1:PD-1 interaction between ILC2s and CD4(+) T cells did not inhibit the T cell response, but PD-L1-expressing ILC2s stimulated increased expression of GATA3 and production of IL-13 by Th2 cells both in vitro and in vivo. Conditional deletion of PD-L1 on ILC2s impaired early Th2 polarization and cytokine production, leading to delayed worm expulsion during infection with the gastrointestinal helminth Nippostrongylus brasiliensis Our results identify a novel PD-L1-controlled mechanism for type 2 polarization, with ILC2s mediating an innate checkpoint to control adaptive T helper responses, which has important implications for the treatment of type 2 inflammation. © 2017 Schwartz et al.

  6. EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells.

    PubMed

    Nakajo, Atsuhiro; Yoshimura, Shin-ichiro; Togawa, Hiroko; Kunii, Masataka; Iwano, Tomohiko; Izumi, Ayaka; Noguchi, Yuria; Watanabe, Ayako; Goto, Ayako; Sato, Toshiro; Harada, Akihiro

    2016-02-01

    The highly conserved Rab guanosine triphosphatase (GTPase) Rab8 plays a role in exocytosis toward the polarized plasma membrane in eukaryotic cells. In murine Rab8-deficient small intestine cells, apical proteins are missorted into lysosomes. In this study, we identified a novel Rab8-interacting protein complex containing an EH domain-binding protein 1-like 1 (EHBP1L1), Bin1/amphiphysin II, and dynamin. Biochemical analyses showed that EHBP1L1 directly bound to GTP-loaded Rab8 and Bin1. The spatial dependency of these complexes at the endocytic recycling compartment (ERC) was demonstrated through overexpression and knockdown experiments. EHBP1L1- or Bin1-depleted or dynamin-inhibited small intestine organoids significantly accumulated apical membrane proteins but not basolateral membrane proteins in lysosomes. Furthermore, in EHBP1L1-deficient mice, small intestine cells displayed truncated and sparse microvilli, suggesting that EHBP1L1 maintains the apical plasma membrane by regulating apical transport. In summary, our data demonstrate that EHBP1L1 links Rab8 and the Bin1-dynamin complex, which generates membrane curvature and excises the vesicle at the ERC for apical transport.

  7. EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells

    PubMed Central

    Nakajo, Atsuhiro; Togawa, Hiroko; Kunii, Masataka; Iwano, Tomohiko; Izumi, Ayaka; Noguchi, Yuria; Watanabe, Ayako; Goto, Ayako; Sato, Toshiro

    2016-01-01

    The highly conserved Rab guanosine triphosphatase (GTPase) Rab8 plays a role in exocytosis toward the polarized plasma membrane in eukaryotic cells. In murine Rab8-deficient small intestine cells, apical proteins are missorted into lysosomes. In this study, we identified a novel Rab8-interacting protein complex containing an EH domain–binding protein 1–like 1 (EHBP1L1), Bin1/amphiphysin II, and dynamin. Biochemical analyses showed that EHBP1L1 directly bound to GTP-loaded Rab8 and Bin1. The spatial dependency of these complexes at the endocytic recycling compartment (ERC) was demonstrated through overexpression and knockdown experiments. EHBP1L1- or Bin1-depleted or dynamin-inhibited small intestine organoids significantly accumulated apical membrane proteins but not basolateral membrane proteins in lysosomes. Furthermore, in EHBP1L1-deficient mice, small intestine cells displayed truncated and sparse microvilli, suggesting that EHBP1L1 maintains the apical plasma membrane by regulating apical transport. In summary, our data demonstrate that EHBP1L1 links Rab8 and the Bin1–dynamin complex, which generates membrane curvature and excises the vesicle at the ERC for apical transport. PMID:26833786

  8. SPAG6 and L1TD1 are transcriptionally regulated by DNA methylation in non-small cell lung cancers.

    PubMed

    Altenberger, Corinna; Heller, Gerwin; Ziegler, Barbara; Tomasich, Erwin; Marhold, Maximilian; Topakian, Thais; Müllauer, Leonhard; Heffeter, Petra; Lang, György; End-Pfützenreuter, Adelheid; Döme, Balazs; Arns, Britt-Madeleine; Klepetko, Walter; Zielinski, Christoph C; Zöchbauer-Müller, Sabine

    2017-01-05

    DNA methylation regulates together with other epigenetic mechanisms the transcriptional activity of genes and is involved in the pathogenesis of malignant diseases including lung cancer. In non-small cell lung cancer (NSCLC) various tumor suppressor genes are already known to be tumor-specifically methylated. However, from the vast majority of a large number of genes which were identified to be tumor-specifically methylated, tumor-specific methylation was unknown so far. Thus, the major aim of this study was to investigate in detail the mechanism(s) responsible for transcriptional regulation of the genes SPAG6 and L1TD1 in NSCLCs. We analysed publically available RNA-sequencing data and performed gene expression analyses by RT-PCR. DNA methylation analyses were done by methylation-sensitive high-resolution melt analyses and bisulfite genomic sequencing. We additionally investigated protein expression using immunohistochemistry. Cell culture experiments included tumor cell growth, proliferation, viability as well as colony formation assays. Moreover, we performed xenograft experiments using immunodeficient mice. We observed frequent downregulation of SPAG6 and L1TD1 mRNA expression in primary tumor (TU) samples compared to corresponding non-malignant lung tissue (NL) samples of NSCLC patients. We furthermore observed re-expression of both genes after treatment with epigenetically active drugs in most NSCLC cell lines with downregulated SPAG6 and L1TD1 mRNA expression. Frequent tumor-specific DNA methylation of SPAG6 and L1TD1 was detected when we analysed TU and corresponding NL samples of NSCLC patients. ROC curve analyses demonstrated that methylation of both genes is able to distinguish between TU and NL samples of these patients. Immunohistochemistry revealed a close association between SPAG6/L1TD1 methylation and downregulated protein expression of these genes. Moreover, by performing functional assays we observed reduced cell growth, proliferation and

  9. Ginsenoside Rb1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes.

    PubMed

    Mu, Qianqian; Fang, Xin; Li, Xiaoke; Zhao, Dandan; Mo, Fangfang; Jiang, Guangjian; Yu, Na; Zhang, Yi; Guo, Yubo; Fu, Min; Liu, Jun-Li; Zhang, Dongwei; Gao, Sihua

    2015-10-23

    Browning of white adipocyte tissue (WAT) has received considerable attention due to its potential implication in preventing obesity and related comorbidities. Ginsenoside Rb1 is reported to improve glycolipid metabolism and reduce body weight in obese animals. However whether the body reducing effect mediates by browning effect remains unclear. For this purpose, 3T3-L1 adipocytes were used to study the effect of ginsenoside Rb1 on browning adipocytes specific genes and oxygen consumptions. The results demonstrate that 10 μM of ginsenoside Rb1 increases basal glucose uptake and promoted browning evidenced by significant increases in mRNA expressions of UCP-1, PGC-1α and PRDM16 in 3T3-L1 mature adipocytes. Further, ginsenoside Rb1 also increases PPARγ activity. And the browning effect is abrogated by GW9692, a PPARγ antagonist. In addition, ginsenoside Rb1 increases basal respiration rate, ATP production and uncoupling capacity in 3T3-L1 adipocytes. Those effects are also blunted by GW9692. The results suggest that ginsenoside Rb1 promote browning of 3T3-L1 adipocytes through induction of PPARγ. Our finding offer a new source to discover browning agonists and also useful to understand and extend the applications of ginseng and its constituents. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Sustained Induction of Collagen Synthesis by TGF-β Requires Regulated Intramembrane Proteolysis of CREB3L1

    PubMed Central

    Chen, Qiuyue; Lee, Ching-En; Denard, Bray; Ye, Jin

    2014-01-01

    CREB3L1 (cAMP response element binding protein 3-like 1), a transcription factor synthesized as a membrane-bound precursor and activated through Regulated Intramembrane Proteolysis (RIP), is essential for collagen production by osteoblasts during bone development. Here, we show that TGF-β (transforming growth factor-β), a cytokine known to stimulate production of collagen during wound healing and fibrotic diseases, induces proteolytic activation of CREB3L1 in human A549 cells. This activation results from inhibition of expression of TM4SF20 (transmembrane 4 L6 family member 20), which normally inhibits RIP of CREB3L1. Cleavage of CREB3L1 releases its NH2-terminal domain from membranes, allowing it to enter the nucleus where it binds to Smad4 to activate transcription of genes encoding proteins required for assembly of collagen-containing extracellular matrix. Our findings raise the possibility that inhibition of RIP of CREB3L1 could prevent excess deposition of collagen in certain fibrotic diseases. PMID:25310401

  11. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts

    PubMed Central

    Kuwahara, Tomoki; Inoue, Keiichi; D’Agati, Vivette D.; Fujimoto, Tetta; Eguchi, Tomoya; Saha, Shamol; Wolozin, Benjamin; Iwatsubo, Takeshi; Abeliovich, Asa

    2016-01-01

    Leucine-rich repeat kinase 2 (LRRK2) has been linked to several clinical disorders including Parkinson’s disease (PD), Crohn’s disease, and leprosy. Furthermore in rodents, LRRK2 deficiency or inhibition leads to lysosomal pathology in kidney and lung. Here we provide evidence that LRRK2 functions together with a second PD-associated gene, RAB7L1, within an evolutionarily conserved genetic module in diverse cellular contexts. In C. elegans neurons, orthologues of LRRK2 and RAB7L1 act coordinately in an ordered genetic pathway to regulate axonal elongation. Further genetic studies implicated the AP-3 complex, which is a known regulator of axonal morphology as well as of intracellular protein trafficking to the lysosome compartment, as a physiological downstream effector of LRRK2 and RAB7L1. Additional cell-based studies implicated LRRK2 in the AP-3 complex-related intracellular trafficking of lysosomal membrane proteins. In mice, deficiency of either RAB7L1 or LRRK2 leads to prominent age-associated lysosomal defects in kidney proximal tubule cells, in the absence of frank CNS pathology. We hypothesize that defects in this evolutionarily conserved genetic pathway underlie the diverse pathologies associated with LRRK2 in humans and in animal models. PMID:27424887

  12. Transcription Factor CREB3L1 Regulates Endoplasmic Reticulum Stress Response Genes in the Osmotically Challenged Rat Hypothalamus

    PubMed Central

    Greenwood, Mingkwan; Greenwood, Michael Paul; Paton, Julian F. R.; Murphy, David

    2015-01-01

    Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON. PMID:25915053

  13. The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis

    PubMed Central

    2013-01-01

    Background In apoptosis, proteolysis by caspases is the primary mechanism for both initiation and execution of programmed cell death (PCD). In contrast, the impact of proteolysis on the regulation and execution of caspase-independent forms of PCD (programmed necrosis, necroptosis) is only marginally understood. Likewise, the identity of the involved proteases has remained largely obscure. Here, we have investigated the impact of proteases in TNF-induced necroptosis. Results The serine protease inhibitor TPKC protected from TNF-induced necroptosis in multiple murine and human cells systems whereas inhibitors of metalloproteinases or calpain/cysteine and cathepsin proteases had no effect. A screen for proteins labeled by a fluorescent TPCK derivative in necroptotic cells identified HtrA2/Omi (a serine protease previously implicated in PCD) as a promising candidate. Demonstrating its functional impact, pharmacological inhibition or genetic deletion of HtrA2/Omi protected from TNF-induced necroptosis. Unlike in apoptosis, HtrA2/Omi did not cleave another protease, ubiquitin C-terminal hydrolase (UCH-L1) during TNF-induced necroptosis, but rather induced monoubiquitination indicative for UCH-L1 activation. Correspondingly, pharmacologic or RNA interference-mediated inhibition of UCH-L1 protected from TNF-induced necroptosis. We found that UCH-L1 is a mediator of caspase-independent, non-apoptotic cell death also in diseased kidney podocytes by measuring cleavage of the protein PARP-1, caspase activity, cell death and cell morphology. Indicating a role of TNF in this process, podocytes with stably downregulated UCH-L1 proved resistant to TNF-induced necroptosis. Conclusions The proteases HtrA2/Omi and UCH-L1 represent two key components of TNF-induced necroptosis, validating the relevance of proteolysis not only for apoptosis, but also for caspase-independent PCD. Since UCH-L1 clearly contributes to the non-apoptotic death of podocytes, interference with the necroptotic

  14. [Techniques to study transendothelial migration in vitro].

    PubMed

    Knopfová, L; Bouchal, P; Smarda, J

    2014-01-01

    The most dangerous aspect of cancer is the metastatic spread to other parts of the body. Cancer cells frequently use circulation to spread to secondary locations. By entering the blood-stream (in a process called intravasation) and by crossing the vessel walls at the metastatic sites (extravasation) tumor cells disseminate to distal organs and eventually form life  threatening metastases. Crossing the vessel walls (transendothelial migration) is a vital step of metastatic cascade and the elucidation of mechanisms involved in transendothelial migration might inspire new strategies of targeted antimetastatic therapy. There are several methods to study transendothelial migration in living models (in vivo). Although they offer complex physiological microenvironment, they are expensive and technically demanding, therefore not widely used. As an alternative, sophisticated techniques to investigate transendothelial migration in vitro have been developed. They are generally more available and feasible, but there is still considerable variability in the difficulty of performance, the requirements for specialized devices, accuracy of in vivo simulation and relevance for oncological applications. The classification, various modifications, pros and cons of in vitro techniques for studying transendothelial migration are summarized in this review.

  15. Ubiquitin Ligase NEDD4 Regulates PPARγ Stability and Adipocyte Differentiation in 3T3-L1 Cells

    PubMed Central

    Li, Jing Jing; Wang, Ruishan; Lama, Rati; Wang, Xinjiang; Floyd, Z. Elizabeth; Park, Edwards A.; Liao, Francesca-Fang

    2016-01-01

    Peroxisome proliferator–activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor which controls lipid and glucose metabolism. It is also the master regulator of adipogenesis. In adipocytes, ligand-dependent PPARγ activation is associated with proteasomal degradation; therefore, regulation of PPARγ degradation may modulate its transcriptional activity. Here, we show that neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ubiquitin ligase, interacts with the hinge and ligand binding domains of PPARγ and is a bona fide E3 ligase for PPARγ. NEDD4 increases PPARγ stability through the inhibition of its proteasomal degradation. Knockdown of NEDD4 in 3T3-L1 adipocytes reduces PPARγ protein levels and suppresses adipocyte conversion. PPARγ correlates positively with NEDD4 in obese adipose tissue. Together, these findings support NEDD4 as a novel regulator of adipogenesis by modulating the stability of PPARγ. PMID:27917940

  16. TNF-α and TGF-β Counter-Regulate PD-L1 Expression on Monocytes in Systemic Lupus Erythematosus

    PubMed Central

    Ou, Jing-Ni; Wiedeman, Alice E.; Stevens, Anne M.

    2012-01-01

    Monocytes in patients with systemic lupus erythematosus (SLE) are hyperstimulatory for T lymphocytes. We previously found that the normal program for expression of a negative costimulatory molecule programmed death ligand-1 (PD-L1) is defective in SLE patients with active disease. Here, we investigated the mechanism for PD-L1 dysregulation on lupus monocytes. We found that PD-L1 expression on cultured SLE monocytes correlated with TNF-α expression. Exogenous TNF-α restored PD-L1 expression on lupus monocytes. Conversely, TGF-β inversely correlated with PD-L1 in SLE and suppressed expression of PD-L1 on healthy monocytes. Therefore, PD-L1 expression in monocytes is regulated by opposing actions of TNF-α and TGF-β. As PD-L1 functions to fine tune lymphocyte activation, dysregulation of cytokines resulting in reduced expression could lead to loss of peripheral T cell tolerance. PMID:22389764

  17. Regulation of Nodule Glutamine Synthetase by CO2 Levels in Bean (Phaseolus vulgaris L.) 1

    PubMed Central

    Ortega, José-Luis; Sánchez, Federico; Soberón, Mario; Flores, Miguel Lara

    1992-01-01

    Nodulated bean (Phaseolus vulgaris) plants were grown for 17 days after infection in normal (0.02%) CO2 and from day 8 to 17 in high (0.1%) CO2 in order to increase nitrogen fixation and define how nodule glutamine synthetase (GS) isoforms are regulated by the ammonia derived from the bacteroid. Nitrogenase activity was detected by day 10, and by day 17 activity was over twofold higher in 0.1% of CO2 compared with plants grown in 0.02% CO2 and inoculated with Rhizobium wild-type strain CE3. Likewise, plant fresh weight increased in response to increased CO2, particularly in plants inoculated with the Rhizobium phaseoli mutant strain CFN037. Glutamine synthetase specific activity increased 2.5- to 6.5-fold from day 11 to 17. However, increased CO2 did not appear to have an effect on GS specific activity. Analysis of the nodule GS polypeptide composition revealed that the γ polypeptide was significantly reduced in response to high CO2, whereas the β polypeptide was not affected. The significance of this result in relation to the regulation of GS isoforms and their role in the assimilation of ammonia in the nodule is discussed in this paper. ImagesFigure 4 PMID:16668681

  18. Interactions between the L1 cell adhesion molecule and ezrin support traction-force generation and can be regulated by tyrosine phosphorylation.

    PubMed

    Sakurai, Takeshi; Gil, Orlando D; Whittard, John D; Gazdoiu, Mihaela; Joseph, Todd; Wu, James; Waksman, Adam; Benson, Deanna L; Salton, Stephen R; Felsenfeld, Dan P

    2008-09-01

    An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1. (c) 2008 Wiley-Liss, Inc.

  19. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNF{alpha}-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    SciTech Connect

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D.; Tang, Dong-Qi; Li, Dong-Sheng; Cui, Taixing

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  20. C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia.

    PubMed

    Aoki, Yoshitsugu; Manzano, Raquel; Lee, Yi; Dafinca, Ruxandra; Aoki, Misako; Douglas, Andrew G L; Varela, Miguel A; Sathyaprakash, Chaitra; Scaber, Jakub; Barbagallo, Paola; Vader, Pieter; Mäger, Imre; Ezzat, Kariem; Turner, Martin R; Ito, Naoki; Gasco, Samanta; Ohbayashi, Norihiko; El Andaloussi, Samir; Takeda, Shin'ichi; Fukuda, Mitsunori; Talbot, Kevin; Wood, Matthew J A

    2017-04-01

    A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Essential role of HDAC6 in the regulation of PD-L1 in melanoma.

    PubMed

    M, Lienlaf; P, Perez-Villarroel; T, Knox; M, Pabon; E, Sahakian; J, Powers; K V, Woan; C, Lee; F, Cheng; S, Deng; M, Smalley K S; M, Montecino; A, Kozikowski; J, Pinilla-Ibarz; A, Sarnaik; E, Seto; J, Weber; E M, Sotomayor; A, Villagra

    2016-05-01

    Histone deacetylases (HDACs), originally described as histone modifiers, have more recently been demonstrated to target a variety of other proteins unrelated to the chromatin environment. In this context, our present work demonstrates that the pharmacological or genetic abrogation of HDAC6 in primary melanoma samples and cell lines, down-regulates the expression of PD-L1, an important co-stimulatory molecule expressed in cancer cells, which activates the inhibitory regulatory pathway PD-1 in T-cells. Our data suggests that this novel mechanism of PD-L1 regulation is mainly mediated by the influence of HDAC6 over the recruitment and activation of STAT3. Additionally, we observed that selective HDAC6 inhibitors impairs tumor growth and reduce the in vivo expression of several inhibitory check-point molecules and other regulatory pathways involved in immunosurveillance. Most importantly, these results provide a key pre-clinical rationale and justification to further study isotype selective HDAC6 inhibitors as potential immuno-modulatory agents in cancer. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Regulation of Assimilatory Sulfate Reduction by Herbicide Safeners in Zea mays L. 1

    PubMed Central

    Farago, S.; Brunold, C.

    1990-01-01

    Effects of the herbicide safeners N,N-diallyl-2,2-dichloroacetamide and 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzooxazin (CGA 154281) on the contents in cysteine and glutathione, on the assimilation of 35SO42−, and on the enzymes of assimilatory sulfate reduction were analyzed in roots and primary leaves of maize (Zea mays) seedlings. Both safeners induced an increase in cysteine and glutathione. In labeling experiments using 35SO42−, roots of plants cultivated in the presence of safeners contained an increased level of radioactivity in glutathione and cysteine as compared with controls. A significant increase in uptake of sulfate was only detected in the presence of CGA 154281. One millimolar N,N-diallyl-2,2-dichloroacetamide applied to the roots for 6 days increased the activity of adenosine 5′-phosphosulfate sulfotransferase about 20- and threefold in the roots and leaves, respectively, compared with controls. CGA 154281 at 10 micromolar caused a sevenfold increase of this enzyme activity in the roots, but did not affect it significantly in the leaves. A significant increase in ATP-sulfurylase (EC 2.7.7.4) activity was only detected in the roots cultivated in the presence of 10 micromolar CGA 154281. Both safeners had no effect on the activity of sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8). The herbicide metolachlor alone or combined with the safeners induced levels of adenosine 5′-phosphosulfate sulfotransferase, which were higher than those of the appropriate controls. Taken together these results show that the herbicide safeners increased both the level of adenosine 5′-phosphosulfate sulfotransferase activity and of the thiols cysteine and glutathione. This indicates that these safeners may be involved in eliminating the previously proposed regulatory mechanism, in which increased concentrations of thiols regulate assimilatory sulfate reduction by decreasing the activities of the enzymes involved. PMID

  3. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway

    PubMed Central

    Toriuchi, Yuriko; Aki, Yuka; Mizuno, Yuto; Kawakami, Takashige; Nakaya, Tomoko; Sato, Masao; Suzuki, Shinya

    2017-01-01

    Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes. PMID:28426713

  4. β-Amyloid (Aβ) Oligomers Impair Brain-derived Neurotrophic Factor Retrograde Trafficking by Down-regulating Ubiquitin C-terminal Hydrolase, UCH-L1*

    PubMed Central

    Poon, Wayne W.; Carlos, Anthony J.; Aguilar, Brittany L.; Berchtold, Nicole C.; Kawano, Crystal K.; Zograbyan, Vahe; Yaopruke, Tim; Shelanski, Michael; Cotman, Carl W.

    2013-01-01

    We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival. PMID:23599427

  5. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1.

    PubMed

    Poon, Wayne W; Carlos, Anthony J; Aguilar, Brittany L; Berchtold, Nicole C; Kawano, Crystal K; Zograbyan, Vahe; Yaopruke, Tim; Shelanski, Michael; Cotman, Carl W

    2013-06-07

    We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.

  6. Kefir inhibits 3T3-L1 adipocyte differentiation through down-regulation of adipogenic transcription factor expression.

    PubMed

    Ho, Jin-Nyoung; Choi, Jae-Woo; Lim, Won-Chul; Kim, Mi-Kyoung; Lee, In-Young; Cho, Hong-Yon

    2013-02-01

    Kefir, a traditional fermented milk composed of microbial symbionts, is reported to have various health benefits such as anti-tumour, anti-inflammatory, anti-neoplastic and pro-digestive effects. In this study, to elucidate the effects of kefir on adipocyte differentiation and lipid accumulation, three fractions were prepared from kefir culture broth. The inhibitory effects of kefir liquid culture broth fraction (Fr-1), soluble fraction (Fr-2) and insoluble fraction (Fr-3), prepared by sonication of kefir solid culture broth, on adipocyte differentiation in 3T3-L1 preadipocytes were examined. Fr-3 (0.1 mg mL(-1)) significantly decreased lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity by 60 and 68% respectively without affecting cell viability. In addition, Fr-3 treatment down-regulated the mRNA expression of adipogenic transcription factors including C/EBPα (32%), PPARγ (46%) and SREBP-1c (34%) during adipocyte differentiation compared with untreated control cells. The mRNA expression of adipocyte-specific genes (aP2, FAS and ACC) was also clearly decreased. The results suggest that the insoluble fraction of kefir (Fr-3) mediates anti-adipogenic effects through the inhibition of adipocyte differentiation, partly via suppression of the C/EBPα-, SREBP-1c- and PPARγ-dependent pathways. Copyright © 2012 Society of Chemical Industry.

  7. Increased soluble and membrane-bound PD-L1 contributes to immune regulation and disease progression in patients with tuberculous pleural effusion

    PubMed Central

    Pan, Xue; Zhong, Anyuan; Xing, Yufei; Shi, Minhua; Qian, Bin; Zhou, Tong; Chen, Yongjing; Zhang, Xueguang

    2016-01-01

    Soluble and membrane-bound programmed death ligand-1 (sPD-L1 and mPD-L1, respectively) have been demonstrated to participate in the immune suppression of non-small cell lung cancer. However, the contribution of sPD-L1 and mPD-L1 to immune regulation and disease progression in patients with pleural effusions remains unknown. The present study evaluated the levels of sPD-L1 and membrane-bound PD-1/PD-L1 in the peripheral blood and pleural effusions of patients with tuberculous pleural effusion (TPE), malignant pleural effusion (MPE) and non-tuberculous non-malignant pleural effusion (n-TB n-M). Furthermore, selected T lymphocytes and cluster of differentiation (CD)14+ monocytes were co-cultured to investigate the potential effect of the PD-1/PD-L1 pathway in TPE. Levels of sPD-L1 and PD-L1 on CD14+ monocytes were increased in the TPE group, as compared with the MPE and n-TB n-M groups. Furthermore, sPD-L1 levels and the expression levels of PD-L1 on CD14+ monocytes were demonstrated to be positively correlated with interferon (IFN)-γ concentration in pleural effusions. Therefore, IFN-γ may increase the expression of PD-L1 on CD14+ monocytes in vitro. Cell counting kit-8 analysis demonstrated that anti-PD-L1 antibody was able to partially reverse the proliferation of T lymphocytes in the co-culture system. The results of the present study indicated that sPD-L1 or mPD-L1 are associated with the immune regulation and disease progression of TPE, and may serve as possible biomarkers of TPE. Furthermore, sPD-L1 and the PD-1/PD-L1 pathway of TPE may be associated with the Th1 immune response; therefore, an anti-PD-1/PD-L1 pathway suggests a potential immune therapy strategy for the treatment of TPE. PMID:27698705

  8. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators.

    PubMed

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone; Dai, Jie; Rogowska-Wrzesinska, Adelina; Mandrup, Susanne; Jensen, Ole N

    2017-03-01

    Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency are associated with adverse metabolic function. Adipogenesis is the process whereby preadipocyte precursor cells differentiate into lipid-laden mature adipocytes. This process is driven by a network of transcriptional regulators (TRs). We hypothesized that protein PTMs, in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied MS-based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early stages (4 h) of preadipocyte differentiation. We identified a total of 4072 proteins including 2434 phosphorylated proteins, a majority of which were assigned as regulators of gene expression. Our results demonstrate that adipogenic stimuli increase the nuclear abundance and/or the phosphorylation levels of proteins involved in gene expression, cell organization, and oxidation-reduction pathways. Furthermore, proteins acting as negative modulators involved in negative regulation of gene expression, insulin stimulated glucose uptake, and cytoskeletal organization showed a decrease in their nuclear abundance and/or phosphorylation levels during the first 4 h of adipogenesis. Among 288 identified TRs, 49 were regulated within 4 h of adipogenic stimulation including several known and many novel potential adipogenic regulators. We created a kinase-substrate database for 3T3-L1 preadipocytes by investigating the relationship between protein kinases and protein phosphorylation sites identified in our dataset. A majority of the putative protein kinases belong to the cyclin-dependent kinase family and the mitogen-activated protein kinase family including P38 and c-Jun N-terminal kinases, suggesting that these kinases act as orchestrators of early adipogenesis.

  9. Regulation of L1 expression and retrotransposition by melatonin and its receptor: implications for cancer risk associated with light exposure at night.

    PubMed

    deHaro, Dawn; Kines, Kristine J; Sokolowski, Mark; Dauchy, Robert T; Streva, Vincent A; Hill, Steven M; Hanifin, John P; Brainard, George C; Blask, David E; Belancio, Victoria P

    2014-07-01

    Expression of long interspersed element-1 (L1) is upregulated in many human malignancies. L1 can introduce genomic instability via insertional mutagenesis and DNA double-strand breaks, both of which may promote cancer. Light exposure at night, a recently recognized carcinogen, is associated with an increased risk of cancer in shift workers. We report that melatonin receptor 1 inhibits mobilization of L1 in cultured cells through downregulation of L1 mRNA and ORF1 protein. The addition of melatonin receptor antagonists abolishes the MT1 effect on retrotransposition in a dose-dependent manner. Furthermore, melatonin-rich, but not melatonin-poor, human blood collected at different times during the circadian cycle suppresses endogenous L1 mRNA during in situ perfusion of tissue-isolated xenografts of human cancer. Supplementation of human blood with exogenous melatonin or melatonin receptor antagonist during the in situ perfusion establishes a receptor-mediated action of melatonin on L1 expression. Combined tissue culture and in vivo data support that environmental light exposure of the host regulates expression of L1 elements in tumors. Our data imply that light-induced suppression of melatonin production in shift workers may increase L1-induced genomic instability in their genomes and suggest a possible connection between L1 activity and increased incidence of cancer associated with circadian disruption.

  10. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice.

    PubMed

    López-Yoldi, Miguel; Marcos-Gomez, Beatriz; Romero-Lozano, María Asunción; Sáinz, Neira; Prieto, Jesús; Martínez, Jose Alfredo; Bustos, Matilde; Moreno-Aliaga, Maria J

    2017-09-01

    Cardiotrophin-1 (CT-1) belongs to the IL-6 family of cytokines. Previous studies of our group revealed that CT-1 is a key regulator of glucose and lipid metabolism. The aim of the present study was to analyze the in vitro and in vivo effects of CT-1 on the production of several adipokines involved in body weight regulation, nutrient metabolism, and inflammation. For this purpose, 3T3-L1 adipocytes were incubated with recombinant protein CT-1 (rCT-1) (1-40 ng/ml) for 1 and 18 h. Moreover, the acute effects of rCT-1 administration (0.2 mg/kg, i.v.) for 30 min and 3 h on adipokines levels were also evaluated in high-fat fed obese mice. In 3T3-L1 adipocytes, rCT-1 treatment downregulated the expression and secretion of leptin, resistin, and visfatin. However, rCT-1 significantly stimulated apelin mRNA and secretion. rCT-1 (18 h) also promoted the activation by phosphorylation of AKT, ERK 1/2, and STAT3. Interestingly, pre-treatment with the PI3K inhibitor LY294002 reversed the stimulatory effects of rCT-1 on apelin expression, suggesting that this pathway could be mediating the effects of rCT-1 on apelin production. In contrast, acute administration of rCT-1 (30 min and 3 h) to diet-induced obese mice downregulated leptin and resistin, without significantly modifying apelin or visfatin mRNA in adipose tissue. Furthermore, CT-1 null mice exhibited altered expression of adipokines in adipose tissue. The present study demonstrates that rCT-1 modulates the production of adipokines in vitro and in vivo, suggesting that the regulation of the secretory function of adipocytes could be involved in the metabolic actions of this cytokine. J. Cell. Physiol. 232: 2469-2477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. AKT-STAT3 Pathway as a Downstream Target of EGFR Signaling to Regulate PD-L1 Expression on NSCLC cells.

    PubMed

    Abdelhamed, Sherif; Ogura, Keisuke; Yokoyama, Satoru; Saiki, Ikuo; Hayakawa, Yoshihiro

    2016-01-01

    While cancer development and progression can be controlled by cytotoxic T cells, it is also known that tumor-specific CD8(+)T cells become functionally impaired by acquiring a group of inhibitory receptors known as immune checkpoints. Amongst those, programmed death-1 (PD-1) is one of the most recognized negative regulators of T cell function. In non-small lung cancers (NSCLCs), the aberrant activation of epidermal growth factor receptor (EGFR) is known to induce PD-L1 expression and further the treatment with gefitinib, a tyrosine kinase inhibitor (TKI) for EGFR, decrease the expression of PD-L1 on NSCLC. Given the acquired resistance to gefitinib treatment frequently observed by developing secondary-site mutations limiting its efficacy, it is important to understand the downstream mechanism of activated-EGFR signaling for regulating PD-L1 in NSCLC. In this study, we demonstrated that AKT-STAT3 pathway could be a potential target for regulating the surface expression of PD-L1 on NSCLCs with aberrant EGFR activity and, further, the inhibition of AKT or STAT3 activity could down-regulate the expression of PD-L1 even in gefitinib-resistant NSCLCs. These results highlight an importance of AKT-STAT3 pathway as a promising target for potentiating anti-tumor immune responses by regulating PD-L1 expression on cancer cells with aberrant EGFR activity.

  12. Transcription factor CREB3L1 mediates cAMP and glucocorticoid regulation of arginine vasopressin gene transcription in the rat hypothalamus.

    PubMed

    Greenwood, Mingkwan; Greenwood, Michael P; Mecawi, Andre S; Loh, Su Yi; Rodrigues, José Antunes; Paton, Julian F R; Murphy, David

    2015-10-26

    Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. An increase in plasma osmolality stimulates secretion of AVP to blood circulation and induces AVP synthesis in these nuclei. Although studies on mechanism of AVP transcriptional regulation in hypothalamus proposed that cAMP and glucocorticoids positively and negatively regulate Avp expression, respectively, the molecular mechanisms have remained elusive. Recently, we identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. However the mechanism of how CREB3L1 is regulated in response of hyperosmotic stress in the neurons of hypothalamus has never been reported. This study aims to investigate effect of previously reported regulators (cAMP and glucocorticoid) of Avp transcription on transcription factor CREB3L1 in order to establish a molecular explanation for cAMP and glucocorticoids effect on AVP expression. The effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress. Here we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP

  13. GCN5L1 modulates cross-talk between mitochondria and cell signaling to regulate FoxO1 stability and gluconeogenesis.

    PubMed

    Wang, Lingdi; Scott, Iain; Zhu, Lu; Wu, Kaiyuan; Han, Kim; Chen, Yong; Gucek, Marjan; Sack, Michael N

    2017-09-12

    The mitochondrial enriched GCN5-like 1 (GCN5L1) protein has been shown to modulate mitochondrial protein acetylation, mitochondrial content and mitochondrial retrograde signaling. Here we show that hepatic GCN5L1 ablation reduces fasting glucose levels and blunts hepatic gluconeogenesis without affecting systemic glucose tolerance. PEPCK and G6Pase transcript levels are downregulated in hepatocytes from GCN5L1 liver specific knockout mice and their upstream regulator, FoxO1 protein levels are decreased via proteasome-dependent degradation and via reactive oxygen species mediated ERK-1/2 phosphorylation. ERK inhibition restores FoxO1, gluconeogenic enzyme expression and glucose production. Reconstitution of mitochondrial-targeted GCN5L1 blunts mitochondrial ROS, ERK activation and increases FoxO1, gluconeogenic enzyme expression and hepatocyte glucose production. We suggest that mitochondrial GCN5L1 modulates post-translational control of FoxO1, regulates gluconeogenesis and controls metabolic pathways via mitochondrial ROS mediated ERK activation. Exploring mechanisms underpinning GCN5L1 mediated ROS signaling may expand our understanding of the role of mitochondria in gluconeogenesis control.Hepatic gluconeogenesis is tightly regulated at transcriptional level and is essential for survival during prolonged fasting. Here Wang et al. show that the mitochondrial enriched GCN5-like 1 protein controls hepatic glucose production by regulating FoxO1 protein levels via proteasome-dependent degradation and, in turn, gluconeogenic gene expression.

  14. WHSC1L1 drives cell cycle progression through transcriptional regulation of CDC6 and CDK2 in squamous cell carcinoma of the head and neck

    PubMed Central

    Saloura, Vassiliki; Vougiouklakis, Theodore; Zewde, Makda; Kiyotani, Kazuma; Park, Jae-Hyun; Gao, Guimin; Karrison, Theodore; Lingen, Mark; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-01-01

    Wolf-Hisrchhorn Syndrome Candidate 1-Like 1 (WHSC1L1) is a protein lysine methyltransferase that is recurrently amplified (8p11.23) in patients with squamous cell carcinoma of the head and neck (SCCHN). In this study, we investigated the oncogenic role of WHSC1L1 in SCCHN. Using immunohistochemistry on tissue microarrays of patients with locoregionally advanced SCCHN, we found that WHSC1L1 is significantly overexpressed in patients with SCCHN, and is associated with poor grade and heavy smoking history. Knockdown of WHSC1L1 expression resulted in significant growth suppression and reduction of H3K36 dimethylation (H3K36me2) in SCCHN cells. Chromatin immunoprecipitation analysis showed that WHSC1L1 and H3K36me2 are enriched in the gene bodies of the cell cycle-related genes CDC6 and CDK2, implying that WHSC1L1 directly regulates the transcription of these genes. According to the importance of CDC6 and CDK2 for G1 to S transition, WHSC1L1 knockdown induced strong G0/G1 arrest which was rescued by introduction of wild-type WHSC1L1 but not by that of enzyme-inactive WHSC1L1. Our results imply that WHSC1L1 and its product H3K36me2 are essential for the transition from G1 to S phase in SCCHN cells and that WHSC1L1 could serve as a rational target for anticancer drug development for patients with head and neck cancer. PMID:27285764

  15. Regulation of Adipogenesis and Key Adipogenic Gene Expression by 1, 25-Dihydroxyvitamin D in 3T3-L1 Cells.

    PubMed

    Ji, Shuhan; Doumit, Matthew E; Hill, Rodney A

    2015-01-01

    The functions of 1, 25-dihydroxyvitamin D (1, 25-(OH)2D3) in regulating adipogenesis, adipocyte differentiation and key adipogenic gene expression were studied in 3T3-L1 preadipocytes. Five concentrations (0.01, 0.1, 1, 10, 100 nM) of 1, 25-(OH)2D3 were studied and lipid accumulation measured by Oil Red O staining and expression of adipogenic genes quantified using quantitative real-time PCR. Adipogenic responses to 1, 25-(OH)2D3 were determined on 6, and 12 h, and days 1-10 after induction of adipogenesis by a hormonal cocktail with or without 1, 25-(OH)2D3. In response to 1, 25-(OH)2D3 (1, 10, and 100 nM), lipid accumulation and the expression of PPARγ, C/EBPα, FABP4 and SCD-1 were inhibited through day 10, and vitamin D receptor expression was inhibited in the early time points. The greatest inhibitory effect was upon expression of FABP4. Expression of SREBP-1c was only affected on day 2. The lowest concentrations of 1, 25-(OH)2D3 tested did not affect adipocyte differentiation or adipogenic gene expression. The C/EBPα promoter activity response to 1, 25-(OH)2D3 was also tested, with no effect detected. These results indicate that 1, 25-(OH)2D3 inhibited adipogenesis via suppressing adipogenic-specific genes, and is invoked either during PPARγ activation or immediately up-stream thereof. Gene expression down-stream of PPARγ especially FABP4 was strongly inhibited, and we suggest that the role of 1, 25-(OH)2D3 in regulating adipogenesis will be informed by further studies of adipogenic-specific gene promoter activity.

  16. A novel nondevelopmental role of the sax-7/L1CAM cell adhesion molecule in synaptic regulation in Caenorhabditis elegans.

    PubMed

    Opperman, Karla; Moseley-Alldredge, Melinda; Yochem, John; Bell, Leslie; Kanayinkal, Tony; Chen, Lihsia

    2015-02-01

    The L1CAM family of cell adhesion molecules is a conserved set of single-pass transmembrane proteins that play diverse roles required for proper nervous system development and function. Mutations in L1CAMs can cause the neurological L1 syndrome and are associated with autism and neuropsychiatric disorders. L1CAM expression in the mature nervous system suggests additional functions besides the well-characterized developmental roles. In this study, we demonstrate that the gene encoding the Caenorhabditis elegans L1CAM, sax-7, genetically interacts with gtl-2, as well as with unc-13 and rab-3, genes that function in neurotransmission. These sax-7 genetic interactions result in synthetic phenotypes that are consistent with abnormal synaptic function. Using an inducible sax-7 expression system and pharmacological reagents that interfere with cholinergic transmission, we uncovered a previously uncharacterized nondevelopmental role for sax-7 that impinges on synaptic function.

  17. Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration.

    PubMed

    Locard-Paulet, Marie; Lim, Lindsay; Veluscek, Giulia; McMahon, Kelly; Sinclair, John; van Weverwijk, Antoinette; Worboys, Jonathan D; Yuan, Yinyin; Isacke, Clare M; Jørgensen, Claus

    2016-02-09

    The exit of metastasizing tumor cells from the vasculature, extravasation, is regulated by their dynamic interactions with the endothelial cells that line the internal surface of vessels. To elucidate signals controlling tumor cell adhesion to the endothelium and subsequent transendothelial migration, we performed phosphoproteomic analysis to map cell-specific changes in protein phosphorylation that were triggered by contact between metastatic MDA-MB-231 breast cancer cells and endothelial cells. From the 2669 unique phosphorylation sites identified, 77 and 43 were differentially phosphorylated in the tumor cells and endothelial cells, respectively. The receptor tyrosine kinase ephrin type A receptor 2 (EPHA2) exhibited decreased Tyr(772) phosphorylation in the cancer cells upon endothelial contact. Knockdown of EPHA2 increased adhesion of the breast cancer cells to human umbilical vein endothelial cells (HUVECs) and their transendothelial migration in coculture cell assays, as well as early-stage lung colonization in vivo. EPHA2-mediated inhibition of transendothelial migration of breast cancer cells depended on interaction with the ligand ephrinA1 on HUVECs and phosphorylation of EPHA2-Tyr(772). When EPHA2 phosphorylation dynamics were compared between cell lines of different metastatic ability, EPHA2-Tyr(772) was rapidly dephosphorylated after ephrinA1 stimulation specifically in cells targeting the lung. Knockdown of the phosphatase LMW-PTP reduced adhesion and transendothelial migration of the breast cancer cells. Overall, cell-specific phosphoproteomic analysis provides a bidirectional map of contact-initiated signaling between tumor and endothelial cells that can be further investigated to identify mechanisms controlling the transendothelial cell migration of cancer cells.

  18. Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation

    PubMed Central

    Pignatelli, Jeanine; Bravo-Cordero, Jose Javier; Roh-Johnson, Minna; Gandhi, Saumil J.; Wang, Yarong; Chen, Xiaoming; Eddy, Robert J.; Xue, Alice; Singer, Robert H.; Hodgson, Louis; Oktay, Maja H.; Condeelis, John S.

    2016-01-01

    The process of intravasation involving transendothelial migration is a key step in metastatic spread. How the triple cell complex composed of a macrophage, Mena over-expressing tumor cell and endothelial cell, called the tumor microenvironment of metastasis (TMEM), facilitates tumor cell transendothelial migration is not completely understood. Previous work has shown that the physical contact between a macrophage and tumor cell results in the formation of invadopodia, actin-rich matrix degrading protrusions, important for tumor cell invasion and transendothelial migration and tumor cell dissemination. Herein, we show that the macrophage-induced invadopodium is formed through a Notch1/MenaINV signaling pathway in the tumor cell upon macrophage contact. This heterotypic tumor cell – macrophage interaction results in the upregulation of MenaINV through the activation of MENA transcription. Notch1 and MenaINV expression are required for tumor cell transendothelial migration, a necessary step during intravasation. Inhibition of the Notch signaling pathway blocked macrophage-induced invadopodium formation in vitro and the dissemination of tumor cells from the primary tumor in vivo. Our findings indicate a novel role for Notch1 signaling in the regulation of MenaINV expression and transendothelial migration and provide mechanistic information essential to the use of therapeutic inhibitors of metastasis. PMID:27901093

  19. miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity.

    PubMed

    Jia, Long; Xi, Qing; Wang, Huafeng; Zhang, Zimu; Liu, Hongkun; Cheng, Yingnan; Guo, Xiangdong; Zhang, Jieyou; Zhang, Qi; Zhang, Lijuan; Xue, Zhenyi; Li, Yan; Da, Yurong; Zhao, Peng; Zhang, Rongxin

    2017-06-24

    Cancer immunotherapy has many great achievements in recent years. One of the most promising cancer immunotherapies is PD-1/PD-L1 pathway blockade. miRNAs (MicroRNAs) belongs to small noncoding RNA and can regulate gene expression by binding to the 3'UTR. Many miRNAs can inhibit cancer growth by regulating the PD-L1 expression in cancer cells. Herein, we firstly found that PD-L1 could be the target of miR-142-5p by using bioinformatics methods, then we conduct luciferase activity assay, RT-PCR and western blot experiments to demonstrate that miR-142-5p can regulate PD-L1 expression by binding to its 3'UTR. And in vivo experiments certified that miR-142-5p overexpression can inhibit pancreatic cancer growth. Flow cytometry and RT-PCR experiment demonstrated that miR-142-5p overexpression on tumor cells inhibits the expression of PD-L1 on tumor cells which result in the increase of CD4(+) T lymphocytes and CD8(+) T lymphocytes, the decrease of PD-1(+) T lymphocytes and increase of IFN-γ and TNF-α. So, miR-142-5p overexpression can enhance anti-tumor immunity by blocking PD-L1/PD-1 pathway. Our results identify a novel mechanism by which PD-L1 is regulated by miR-142-5p and overexpression of miR-142-5p could enhance the anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression.

    PubMed

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K; Freeman, Gordon; Pal, Soumitro

    2015-03-27

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1.

  1. Novel Roles of c-Met in the Survival of Renal Cancer Cells through the Regulation of HO-1 and PD-L1 Expression*

    PubMed Central

    Balan, Murugabaskar; Mier y Teran, Eduardo; Waaga-Gasser, Ana Maria; Gasser, Martin; Choueiri, Toni K.; Freeman, Gordon; Pal, Soumitro

    2015-01-01

    The receptor tyrosine kinase c-Met is overexpressed in renal cancer cells and can play major role in the growth and survival of tumor. We investigated how the c-Met-mediated signaling through binding to its ligand hepatocyte growth factor (HGF) can modulate the apoptosis and immune escape mechanism(s) of renal cancer cells by the regulations of novel molecules heme oxygenase-1 (HO-1) and programmed death-1 ligand 1 (PD-L1). We found that HGF/c-Met-mediated signaling activated the Ras/Raf pathway and down-regulated cancer cell apoptosis; and it was associated with the overexpression of cytoprotective HO-1 and anti-apoptotic Bcl-2/Bcl-xL. c-Met-induced HO-1 overexpression was regulated at the transcriptional level. Next, we observed that c-Met induction markedly up-regulated the expression of the negative co-stimulatory molecule PD-L1, and this can be prevented following treatment of the cells with pharmacological inhibitors of c-Met. Interestingly, HGF/c-Met-mediated signaling could not induce PD-L1 at the optimum level when either Ras or HO-1 was knocked down. To study the functional significance of c-Met-induced PD-L1 expression, we performed a co-culture assay using mouse splenocytes (expressing PD-L1 receptor PD-1) and murine renal cancer cells (RENCA, expressing high PD-L1). We observed that the splenocyte-mediated apoptosis of cancer cells during co-culture was markedly increased in the presence of either c-Met inhibitor or PD-L1 neutralizing antibody. Finally, we found that both c-Met and PD-L1 are significantly up-regulated and co-localized in human renal cancer tissues. Together, our study suggests a novel mechanism(s) by which c-Met can promote increased survival of renal cancer cells through the regulation of HO-1 and PD-L1. PMID:25645920

  2. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells.

    PubMed

    Prima, Victor; Kaliberova, Lyudmila N; Kaliberov, Sergey; Curiel, David T; Kusmartsev, Sergei

    2017-01-31

    In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)-mediated inhibition of activated PD-1(+) T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti-PD-L1 and -PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow-derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80(+) macrophages and Ly-6C(+) myeloid-derived suppressor cells. These PD-L1-expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1(+) cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host.

  3. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    SciTech Connect

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui; Zhang, Jun; Xia, Ning-Shao; Miao, Ji; Zhao, Qinjian

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  4. Kisspeptin-10 inhibits proliferation and regulates lipolysis and lipogenesis processes in 3T3-L1 cells and isolated rat adipocytes.

    PubMed

    Pruszyńska-Oszmałek, Ewa; Kołodziejski, Paweł A; Sassek, Maciej; Sliwowska, Joanna H

    2017-04-01

    Kisspeptin, which is encoded by the KISS1 gene and acts via GPR54, plays a role in the regulation of reproductive functions. Expression of KISS1 and GRPR54 has been found in peripheral tissues, including adipose tissue, and was shown to be influenced by metabolic status. We hypothesized that kisspeptin could be involved in regulation of lipid metabolism in the mouse 3T3-L1 cell line and in isolated rat adipocytes. First, we characterized expression profiles of KISS1 and GPR54 mRNA and proteins in adipose cells isolated from male rats. Secondly, we studied the effects of kisspeptin-10 on cell proliferation and survival in 3T3-L1 cells. Thirdly, we assessed the rapid action of kisspeptin-10 on lipid metabolism and glucose uptake using 3T3-L1 cells and rat primary adipocytes. Finally, we examined the effects of kisspeptin-10 on the secretion of leptin and adiponectin in rat adipocytes. We have found that: (1) KISS1 and GPR54 were expressed in mouse 3T3-L1 cells and isolated rat adipocytes; (2) kisspeptin-10: (i) inhibited cell proliferation, viability and adipogenesis in 3T3-L1 and decreased expression of PPAR-γ and CEBPβ-genes, which are involved in the differentiation processes and adipogenesis; (ii) increased lipolysis in 3T3-L1 cells and rat adipocytes by enhancing expression of periliphin and hormone-sensitive lipase; (iii) modulated glucose uptake and lipogenesis; (iv) stimulated leptin and decreased adiponectin secretion from rat adipocytes. Kisspeptin-10 could play a role in the regulation of lipid metabolism in mouse 3T3-L1 cells and rat adipocytes.

  5. Bisphenol A promotes cholesterol absorption in Caco-2 cells by up-regulation of NPC1L1 expression.

    PubMed

    Feng, Dan; Zou, Jun; Zhang, Shanshan; Li, Xuechun; Li, Peiyang; Lu, Minqi

    2017-01-06

    Bisphenol A (BPA), an commonly exposed environmental chemicals in humans, has been shown to have a hypercholesterolemic effect with molecular mechanism not clear. Since intestinal cholesterol absorption plays a major role in maintaining total body cholesterol homeostasis, the present study is to investigate whether BPA affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with BPA at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and sterol regulatory element binding protein-2 (SREBP-2) was analyzed by Western blot and qPCR. We found that confluent Caco-2 cells expressed NPC1L1, and the absorption of cholesterol in the cells was inhibited by ezetimibe, a specific inhibitor of NPC1L1. We then pretreated the cells with 0.1-10 nM BPA for 24 h and found that BPA at 1 and 10 nM doses promoted cholesterol absorption. In addition, we found that the BPA-induced promotion of cholesterol absorption was associated with significant increase in the levels of NPC1L1 protein and NPC1L1 mRNA. Moreover, the stimulatory effects of BPA on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the SREBP-2 pathway. This study provides the first evidence that BPA promotes cholesterol absorption in the intestinal cells and the stimulatory effect of BPA is mediated, at least in part, by SREBP-2-NPC1L1 signaling pathway.

  6. Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca2+

    PubMed Central

    Hussein, Shaimaa; Zheng, Wang; Dyte, Chris; Wang, Qian; Yang, JungWoo; Zhang, Fan; Tang, Jingfeng; Cao, Ying; Chen, Xing-Zhen

    2015-01-01

    Polycystic kidney disease (PKD) protein 2 Like 1 (PKD2L1), also called transient receptor potential polycystin-3 (TRPP3), regulates Ca2+-dependent hedgehog signalling in primary cilia, intestinal development and sour tasting but with an unclear mechanism. PKD2L1 is a Ca2+-permeable cation channel that is activated by extracellular Ca2+ (on-response) in Xenopus oocytes. PKD2L1 co-expressed with PKD protein 1 Like 3 (PKD1L3) exhibits extracellular acid-induced activation (off-response, i.e., activation following acid removal) but whether PKD1L3 participates in acid sensing remains unclear. Here we used the two-microelectrode voltage-clamp, site directed mutagenesis, Western blotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence, and showed that PKD2L1 expressed in oocytes exhibits sustained off-response currents in the absence of PKD1L3. PKD1L3 co-expression augmented the PKD2L1 plasma membrane localization but did not alter the observed properties of the off-response. PKD2L1 off-response was inhibited by an increase in intracellular Ca2+. We also identified two intra-membrane residues aspartic acid 349 (D349) and glutamic acid 356 (E356) in the third transmembrane domain that are critical for PKD2L1 channel function. Our study suggests that PKD2L1 may itself sense acids and defines off-response properties in the absence of PKD1L3. PMID:26502994

  7. NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy.

    PubMed

    Takada, Tappei; Yamanashi, Yoshihide; Konishi, Kentaro; Yamamoto, Takehito; Toyoda, Yu; Masuo, Yusuke; Yamamoto, Hideaki; Suzuki, Hiroshi

    2015-02-18

    Vitamin K (VK) is a micronutrient that facilitates blood coagulation. VK antagonists, such as warfarin, are used in the clinic to prevent thromboembolism. Because VK is not synthesized in the body, its intestinal absorption is crucial for maintaining whole-body VK levels. However, the molecular mechanism of this absorption is unclear. We demonstrate that Niemann-Pick C1-like 1 (NPC1L1) protein, a cholesterol transporter, plays a central role in intestinal VK uptake and modulates the anticoagulant effect of warfarin. In vitro studies using NPC1L1-overexpressing intestinal cells and in vivo studies with Npc1l1-knockout mice revealed that intestinal VK absorption is NPC1L1-dependent and inhibited by ezetimibe, an NPC1L1-selective inhibitor clinically used for dyslipidemia. In addition, in vivo pharmacological studies demonstrated that the coadministration of ezetimibe and warfarin caused a reduction in hepatic VK levels and enhanced the pharmacological effect of warfarin. Adverse events caused by the coadministration of ezetimibe and warfarin were rescued by oral VK supplementation, suggesting that the drug-drug interaction effects observed were the consequence of ezetimibe-mediated VK malabsorption. This mechanism was supported by a retrospective evaluation of clinical data showing that, in more than 85% of warfarin-treated patients, the anticoagulant activity was enhanced by cotreatment with ezetimibe. Our findings provide insight into the molecular mechanism of VK absorption. This new drug-drug interaction mechanism between ezetimibe (a cholesterol transport inhibitor) and warfarin (a VK antagonist and anticoagulant) could inform clinical care of patients on these medications, such as by altering the kinetics of essential, fat-soluble vitamins.

  8. Annexin A2 Limits Neutrophil Transendothelial Migration by Organizing the Spatial Distribution of ICAM-1.

    PubMed

    Heemskerk, Niels; Asimuddin, Mohammed; Oort, Chantal; van Rijssel, Jos; van Buul, Jaap D

    2016-03-15

    ICAM-1 is required for firm adhesion of leukocytes to the endothelium. However, how the spatial organization of endothelial ICAM-1 regulates leukocyte adhesion is not well understood. In this study, we identified the calcium-effector protein annexin A2 as a novel binding partner for ICAM-1. ICAM-1 clustering promotes the ICAM-1-annexin A2 interaction and induces translocation of ICAM-1 into caveolin-1-rich membrane domains. Depletion of endothelial annexin A2 using RNA interference enhances ICAM-1 membrane mobility and prevents the translocation of ICAM-1 into caveolin-1-rich membrane domains. Surprisingly, this results in increased neutrophil adhesion and transendothelial migration under flow conditions and reduced crawling time, velocity, and lateral migration distance of neutrophils on the endothelium. In conclusion, our data show that annexin A2 limits neutrophil transendothelial migration by organizing the spatial distribution of ICAM-1.

  9. Modulation of integrin α4β1 by ADAM28 promotes lymphocyte adhesion and transendothelial migration.

    PubMed

    McGinn, Owen J; English, William R; Roberts, Stephanie; Ager, Ann; Newham, Peter; Murphy, Gillian

    2011-10-01

    ADAMs (a disintegrin and metalloproteinase) are a family of type I transmembrane glycoproteins related to snake venom metalloproteases and disintegrins. They are regulatory proteins that modulate intercellular adhesion and the bioavailability of growth factors, and have been implicated in many disease states, including cancer, immunity and inflammation. One member of the ADAM family, ADAM28, has been reported to bind to the integrin α4β1 in humans; however, the distribution of ADAM28 and the biological consequences of ADAM28-α4β1 interactions are yet to be fully elucidated. The expression of ADAM28 in human and murine tissues was examined by multiple Affymetrix microarray analyses, real-time RT-PCR (reverse transcription-PCR) and immunohistochemical staining. We found that ADAM28 has a relatively restricted expression pattern in mouse and human and is highly expressed in the B-lymphocyte lineage, including chronic lymphocytic leukaemic B-cells. The murine B-lymphoma line L1-2 and recombinant soluble murine ADAM28 were used to investigate ADAM28-α4β1 interactions. Our data reveal that ADAM28 binding to α4β1 is typical of integrin-ligand interactions, since it is attenuated by anti-functional integrin antibodies, and is enhanced by Mn2+ and the integrin mAb (monoclonal antibody) 9EG7. However, a key finding was that soluble ADAM28 unexpectedly enhanced α4β1-dependent cell adhesion to VCAM-1 (vascular cell adhesion molecule-1). In so doing ADAM28 was able to influence lymphocyte adhesion to, and migration through, endothelial monolayers, suggesting a physiological role for ADAM28 in regulating the specific spatial and temporal transendothelial migration of lymphocytes.

  10. Differential transendothelial transport of adiponectin complexes

    PubMed Central

    2014-01-01

    Background Adiponectin’s effects on systemic physiology and cell-specific responses are well-defined, but little is known about how this insulin-sensitizing and anti-inflammatory adipokine reaches its target cells. All molecules face active and passive transport limitations, but adiponectin is particularly noteworthy due to the diverse size range and high molecular weights of its oligomers. Additionally, its metabolic target organs possess a range of endothelial permeability. Methods Full-length recombinant murine adiponectin was produced and oligomer fractions isolated by gel filtration. Adiponectin complex sizes were measured by dynamic light scattering to determine Stokes radii. Transendothelial transport of purified oligomers was quantitatively assessed under a number of different conditions in vitro using murine endothelial cells and in vivo using several mouse models of altered endothelial function. Results Adiponectin oligomers exhibit large transport radii that limit transendothelial transport. Oligomerization is a significant determinant of flux across endothelial monolayers in vitro; low molecular weight adiponectin is preferentially transported. In vivo sampled sera from the heart, liver, and tail vein demonstrated significantly different complex distribution of lower molecular weight oligomers. Pharmacological interventions, such as PPARγ agonist treatment, differentially affect adiponectin plasma clearance and tissue uptake. Exercise induces enhanced adiponectin uptake to oxidative skeletal muscles, wherein adiponectin potently lowers ceramide levels. In total, endothelial barriers control adiponectin transport in a cell- and tissue-specific manner. Conclusions Adiponectin oligomer efficacy in a given tissue may therefore be endothelial transport mediated. Targeting endothelial dysfunction in the metabolic syndrome through exercise and pharmaceuticals may afford an effective approach to increasing adiponectin’s beneficial effects. PMID:24552349

  11. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation

    PubMed Central

    Kabat, Agnieszka M; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4+ T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3+ Treg cells. Specific ablation of Atg16l1 in Foxp3+ Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. DOI: http://dx.doi.org/10.7554/eLife.12444.001 PMID:26910010

  12. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis.

    PubMed

    Choi, Eun Jeong; Jung, Jae Yeon; Kim, Gun-Hee

    2014-08-01

    The present study investigated the effect of the phytochemical genistein on the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of estrogen receptor-α (ERα) expression and the induction of apoptosis. When MCF-7 human breast cancer cells were treated with 50, 100, 150 and 200 μM genistein for 24, 48 or 72 h, cell growth was significantly decreased in a concentration-dependent manner. Notably, the patterns of ERα expression and proliferation in MCF-7 cells treated with genistein were similar. Furthermore, ERα expression in differentiating 3T3-L1 cells was significantly inhibited by 48 h treatment with 50 μM genistein, which was selected based on the results of cytotoxicity assays on 3T3-L1 preadipocytes [lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays]. Under the same conditions, genistein-induced apoptotic features were observed in MCF-7 and differentiating 3T3-L1 cells. This observation is supported by the finding that B-cell lymphoma 2 (Bcl-2) expression was reduced while that of Bcl-2-associated X protein (Bax) was induced by genistein. The results of the present study suggest that an ERα-related pathway and the induction of apoptosis are involved in the proliferation of MCF-7 cells and the differentiation of 3T3-L1 cells.

  13. Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis

    USDA-ARS?s Scientific Manuscript database

    Transendothelial migration of neutrophils induces phenotypic changes that influence the interactions of neutrophils with extravascular tissue components. To assess the influence of transmigration on neutrophil chemokinetic motility, we used polyethylene glycol hydrogels covalently modified with spec...

  14. Galangin induces apoptosis in gastric cancer cells via regulation of ubiquitin carboxy-terminal hydrolase isozyme L1 and glutathione S-transferase P.

    PubMed

    Kim, Deuk Ae; Jeon, Young Keul; Nam, Myeong Jin

    2012-03-01

    Galangin has been shown to have anti-cancer property against several types of cancer cells. Many studies have described the anti-oxidant and apoptotic effects of galangin. However, the mechanism of galangin-induced apoptosis has not yet been studied for human gastric cancer cells. We investigated galangin-induced apoptosis of human gastric cancer SNU-484 cells. Galangin inhibited proliferation of SNU-484 cells in a dose- and time-dependent manner. The results showed that galangin significantly decreased the viability of SNU-484 cells at 50-200 μM for 24 h and 48 h. Galangin-induced cell death was characterized with the changes in cell morphology, DNA fragmentation, cell cycle, activation of caspase-3/-9, poly (ADP-ribose) polymerase (PARP) cleavage, and expression of MAP kinase such as ERK1/2 and JNK. For identification of proteins potentially involved in apoptosis, a two-dimensional electrophoresis was employed. Proteomic analysis showed that several proteins were associated with anti-cancer properties of galangin. Of particular interest, these proteins included ubiquitin carboxy-terminal hydrolase isozyme L1 (Uch-L1) and glutathione S-transferase P (GSTP), which are involved in apoptosis of SNU-484 cells. Western blot analysis confirmed up-regulation of Uch-L1 and down-regulation of GSTP following galangin treatment. Our results suggest that Uch-L1 and GSTP be involved in galangin-induced apoptosis in human gastric cancer SNU-484 cells.

  15. Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence

    SciTech Connect

    Ma, Liwei; Zhao, Wenting; Zheng, Quanhui; Chen, Tianda; Qi, Ji; Li, Guodong; Tong, Tanjun

    2016-01-15

    The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis. We previously showed that CSIG plays an important role in regulating cell proliferation and cellular senescence progression through inhibiting PTEN, however, which domain or region of CSIG contributes to this function? To clarify this question, we investigated the functional importance of ribosomal L1 domain and lysine (Lys) -rich region of CSIG. The data showed that expression of CSIG potently reduced PTEN expression, increased cell proliferation rates, and reduced the senescent phenotype (lower SA-β-gal activity). By contrast, neither the expression of CSIG N- terminal (NT) fragment containing the ribosomal L1 domain nor C-terminal (CT) fragment containing Lys-rich region could significantly altered the levels of PTEN; instead of promoting cell proliferation and delaying cellular senescence, expression of CSIG-NT or CSIG-CT inhibited cell proliferation and accelerated cell senescence (increased SA-β-gal activity) compared to either CSIG over-expressing or control (empty vector transfected) cells. The further immunofluorescence analysis showed that CSIG-CT and CSIG-NT truncated proteins exhibited different subcellular distribution with that of wild-type CSIG. Conclusively, both ribosomal L1 domain and Lys-rich region of CSIG are critical for CSIG to act as a regulator of cell proliferation and cellular senescence. - Highlights: • The ribosomal L1 domain and lysine-rich region of CSIG were expressed. • They are critical for CSIG to regulate proliferation and senescence. • CSIG and its domains exhibit different subcellular distribution.

  16. HSD1 and AQP7 short-term gene regulation by cortisone in 3T3-L1 adipocytes.

    PubMed

    Quesada-López, Tania; González-Dávalos, Laura; Piña, Enrique; Mora, Ofelia

    2016-01-01

    Adipose Tissue (AT) is a complex organ with a crucial regulatory role in energy metabolism and in the development of obesity and the Metabolic Syndrome (MS). Modified responses and the metabolism of hormones have been observed in visceral adiposity during obesity, specifically as related with cortisone. The objective of this study was to assess, in the 3T3-L1 adipocyte cell line, the short-term effect of cortisone on the expression of 11β-Hydroxysteroid dehydrogenase 1 (Hsd1), which is responsible for activation of cortisone into cortisol, and for Aquaporin 7 (Aqp7), involved in glycerol transport through the cell membrane. Total RNA (tRNA) and complementary DNA (cDNA) were obtained from cell samples treated with cortisone (0.1, 1, and 10 μM) during different times (0, 5, 10, 15, and 20 min, and 48 h) to quantify the expression of the aforementioned genes by real time PCR employing MnSOD and Ppia as housekeeping genes. There was a time-dependent response of Aqp7, a dose-dependent response of Hsd1, and an increase observed in the expression of both genes during min 1 of treatment (5- and 6-fold, respectively), followed by a decrease during the following 5-10 min (P < 0.05). With the 1-μM cortisone treatment, both genes showed cubic tendencies in their expression; the Hsd1 tendency is described by the equation y = 0.18×(3)-1.65×(2)+3.59x+1.31, while the Aqp7 tendency is described by y = 0.33×(3)-2.67×(2)+4.93x+1.84. There are immediate and quantitatively important actions of cortisone on the expression of Aqp7 and Hsd1 in 3T3-L1 adipocytes.

  17. Transendothelial Transport and Its Role in Therapeutics

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, channels, and transporters in transport of vital molecules in maintenance of homeostasis and normal body functions have been described in detail. Major role of integral membrane proteins, carriers, or transporters in drug transport is highlighted. Both diffusion and carrier mediated transport mechanisms which facilitate molecular trafficking through transcellular route to maintain influx and outflux of important nutrients and metabolic substances are elucidated. Present review paper aims to emphasize role of important transport systems with their recent advancements in CNS protection mainly for providing a rapid clinical aid to patients. This review also suggests requirement of new well-designed therapeutic strategies mainly potential techniques, appropriate drug formulations, and new transport systems for quick, easy, and safe delivery of drugs across blood brain barrier to save the life of tumor and virus infected patients. PMID:27355037

  18. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  19. Pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside suppresses adipogenesis and regulates lipid metabolism in 3T3-L1 adipocytes.

    PubMed

    Peng, Li; Lu, Yanting; Xu, Yuhui; Hu, Jing; Wang, Fang; Zhang, Yumei; Xiong, Wenyong

    2017-06-01

    Obesity is crucially involved in many metabolic diseases, such as type 2 diabetes, cardiovascular disease and cancer. Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity. In this study, we investigated the effect of pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside (PAQG), a 27-nor-oleanolic acid saponin extracted from Metadina trichotoma, on adipogenesis and lipid metabolism in 3T3-L1 adipocytes. The 3T3-L1 pre-adipocytes were incubated with vehicle or PAQG for 6 days in differentiation process. PAQG significantly reduced the adipogenesis, adiponectin secretion and the expression level of key transcription factors related to adipogenesis, such as PPARγ, C/EBPβ, C/EBPα, and FABP4. Moreover, PAQG increased the levels of FFA and glycerol in medium and reduced TG level in mature adipocytes. Interestingly, PAQG not only promoted the activation of AMPK and genes involved in fatty oxidation including PDK4 and CPT1a, but also inhibited those genes involved in fatty acid biosynthesis, such as SREBP1c, FAS, ACCα and SCD1. In conclusion, PAQG inhibits the differentiation and regulates lipid metabolism of 3T3-L1 cells via AMPK pathway, suggesting that PAQG may be a novel and promising natural product for the treatment of obesity and hyperlipidemia.

  20. Mesenchymal stem cells increase skin graft survival time and up-regulate PD-L1 expression in splenocytes of mice.

    PubMed

    Moravej, Ali; Geramizadeh, Bita; Azarpira, Negar; Zarnani, Amir-Hassan; Yaghobi, Ramin; Kalani, Mehdi; Khosravi, Maryam; Kouhpayeh, Amin; Karimi, Mohammad-Hossein

    2017-02-01

    Recently, mesenchymal stem cells (MSCs) have gained considerable interests as hopeful therapeutic cells in transplantation due to their immunoregulatory functions. But exact mechanisms underlying MSCs immunoregulatory function is not fully understood. Herein, in addition to investigate the ability of MSCs to prolong graft survival time, the effects of them on the expression of PD-L1 and IDO immunomodulatory molecules in splenocytes of skin graft recipient mice was clarified. To achieve this goal, full-thickness skins were transplanted from C57BL/6 to BALB/c mice. MSCs were isolated from bone marrow of BALB/c mice and injected to the recipient mice. Skin graft survival was monitored daily to determine graft rejection time. On days 2, 5 and 10 post skin transplantation, serum cytokine levels and expression of PD-L1 and IDO mRNA and protein in the splenocytes of recipient mice were evaluated. The results showed that administration of MSCs prolonged skin graft survival time from 11 to 14 days. On days 2 and 5 post transplantation, splenocytes PD-L1 expression and IL-10 serum level in MSCs treated mice were higher than those in the controls, while IL-2 and IFN-γ levels were lower. Rejection in MSCs treated mice was accompanied by an increase in IL-2 and IFN-γ, and decrease in PD-L1 expression and IL-10 level. No difference in the expression of IDO between MSCs treated mice and controls was observed. In conclusion, we found that one of the mechanisms underlying MSCs immunomodulatory function could be up-regulating PD-L1 expression.

  1. A novel IRS-1-associated protein, DGKζ regulates GLUT4 translocation in 3T3-L1 adipocytes

    PubMed Central

    Liu, TingYu; Yu, BuChin; Kakino, Mamoru; Fujimoto, Hitoshi; Ando, Yasutoshi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-01-01

    Insulin receptor substrates (IRSs) are major targets of insulin receptor tyrosine kinases. Here we identified diacylglycerol kinase zeta (DGKζ) as an IRS-1-associated protein, and examined roles of DGKζ in glucose transporter 4 (GLUT4) translocation to the plasma membrane. When DGKζ was knocked-down in 3T3-L1 adipocytes, insulin-induced GLUT4 translocation was inhibited without affecting other mediators of insulin-dependent signaling. Similarly, knockdown of phosphatidylinositol 4-phosphate 5-kinase 1α (PIP5K1α), which had been reported to interact with DGKζ, also inhibited insulin-induced GLUT4 translocation. Moreover, DGKζ interacted with IRS-1 without insulin stimulation, but insulin stimulation decreased this interaction. Over-expression of sDGKζ (short-form DGKζ), which competed out DGKζ from IRS-1, enhanced GLUT4 translocation without insulin stimulation. Taking these results together with the data showing that cellular PIP5K activity was correlated with GLUT4 translocation ability, we concluded that IRS-1-associated DGKζ prevents GLUT4 translocation in the absence of insulin and that the DGKζ dissociated from IRS-1 by insulin stimulation enhances GLUT4 translocation through PIP5K1α activity. PMID:27739494

  2. A novel IRS-1-associated protein, DGKζ regulates GLUT4 translocation in 3T3-L1 adipocytes.

    PubMed

    Liu, TingYu; Yu, BuChin; Kakino, Mamoru; Fujimoto, Hitoshi; Ando, Yasutoshi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-10-14

    Insulin receptor substrates (IRSs) are major targets of insulin receptor tyrosine kinases. Here we identified diacylglycerol kinase zeta (DGKζ) as an IRS-1-associated protein, and examined roles of DGKζ in glucose transporter 4 (GLUT4) translocation to the plasma membrane. When DGKζ was knocked-down in 3T3-L1 adipocytes, insulin-induced GLUT4 translocation was inhibited without affecting other mediators of insulin-dependent signaling. Similarly, knockdown of phosphatidylinositol 4-phosphate 5-kinase 1α (PIP5K1α), which had been reported to interact with DGKζ, also inhibited insulin-induced GLUT4 translocation. Moreover, DGKζ interacted with IRS-1 without insulin stimulation, but insulin stimulation decreased this interaction. Over-expression of sDGKζ (short-form DGKζ), which competed out DGKζ from IRS-1, enhanced GLUT4 translocation without insulin stimulation. Taking these results together with the data showing that cellular PIP5K activity was correlated with GLUT4 translocation ability, we concluded that IRS-1-associated DGKζ prevents GLUT4 translocation in the absence of insulin and that the DGKζ dissociated from IRS-1 by insulin stimulation enhances GLUT4 translocation through PIP5K1α activity.

  3. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10.

    PubMed

    Suh, Leejee H; Oster, Stephen F; Soehrman, Sophia S; Grenningloh, Gabriele; Sretavan, David W

    2004-02-25

    During development, EphB proteins serve as axon guidance molecules for retinal ganglion cell axon pathfinding toward the optic nerve head and in midbrain targets. To better understand the mechanisms by which EphB proteins influence retinal growth cone behavior, we investigated how axon responses to EphB were modulated by laminin and L1, two guidance molecules that retinal axons encounter during in vivo pathfinding. Unlike EphB stimulation in the presence of laminin, which triggers typical growth cone collapse, growth cones co-stimulated by L1 did not respond to EphB. Moreover, EphB exposure in the presence of both laminin and L1 resulted in a novel growth cone inhibition manifested as a pause in axon elongation with maintenance of normal growth cone morphology and filopodial activity. Pauses were not associated with loss of growth cone actin but were accompanied by a redistribution of the microtubule cytoskeleton with increased numbers of microtubules extending into filopodia and to the peripheral edge of the growth cone. This phenomenon was accompanied by reduced levels of the growth cone microtubule destabilizing protein SCG10. Antibody blockade of SCG10 function in growth cones resulted in both changes in microtubule distribution and pause responses mirroring those elicited by EphB in the presence of laminin and L1. These results demonstrate that retinal growth cone responsiveness to EphB is regulated by co-impinging signals from other axon guidance molecules. Furthermore, the results are consistent with EphB-mediated axon guidance mechanisms that involve the SCG10-mediated regulation of the growth cone microtubule cytoskeleton.

  4. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells.

    PubMed

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down-regulation of HSL, perilipin, PPARγ, PDE3B, and Gia1.BPP is a novel

  5. BET-Bromodomain Inhibitors Engage the Host Immune System and Regulate Expression of the Immune Checkpoint Ligand PD-L1.

    PubMed

    Hogg, Simon J; Vervoort, Stephin J; Deswal, Sumit; Ott, Christopher J; Li, Jason; Cluse, Leonie A; Beavis, Paul A; Darcy, Phillip K; Martin, Benjamin P; Spencer, Andrew; Traunbauer, Anna K; Sadovnik, Irina; Bauer, Karin; Valent, Peter; Bradner, James E; Zuber, Johannes; Shortt, Jake; Johnstone, Ricky W

    2017-02-28

    BET inhibitors (BETi) target bromodomain-containing proteins and are currently being evaluated as anti-cancer agents. We find that maximal therapeutic effects of BETi in a Myc-driven B cell lymphoma model required an intact host immune system. Genome-wide analysis of the BETi-induced transcriptional response identified the immune checkpoint ligand Cd274 (Pd-l1) as a Myc-independent, BETi target-gene. BETi directly repressed constitutively expressed and interferon-gamma (IFN-γ) induced CD274 expression across different human and mouse tumor cell lines and primary patient samples. Mechanistically, BETi decreased Brd4 occupancy at the Cd274 locus without any change in Myc occupancy, resulting in transcriptional pausing and rapid loss of Cd274 mRNA production. Finally, targeted inhibition of the PD-1/PD-L1 axis by combining anti-PD-1 antibodies and the BETi JQ1 caused synergistic responses in mice bearing Myc-driven lymphomas. Our data uncover an interaction between BETi and the PD-1/PD-L1 immune-checkpoint and provide mechanistic insight into the transcriptional regulation of CD274. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. CD169+ macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection

    PubMed Central

    Shaabani, Namir; Duhan, Vikas; Khairnar, Vishal; Gassa, Asmae; Ferrer-Tur, Rita; Häussinger, Dieter; Recher, Mike; Zelinskyy, Gennadiy; Liu, Jia; Dittmer, Ulf; Trilling, Mirko; Scheu, Stefanie; Hardt, Cornelia; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-01-01

    Upon infection with persistence-prone virus, type I interferon (IFN-I) mediates antiviral activity and also upregulates the expression of programmed death ligand 1 (PD-L1), and this upregulation can lead to CD8+ T-cell exhaustion. How these very diverse functions are regulated remains unknown. This study, using the lymphocytic choriomeningitis virus, showed that a subset of CD169+ macrophages in murine spleen and lymph nodes produced high amounts of IFN-I upon infection. Absence of CD169+ macrophages led to insufficient production of IFN-I, lower antiviral activity and persistence of virus. Lack of CD169+ macrophages also limited the IFN-I-dependent expression of PD-L1. Enhanced viral replication in the absence of PD-L1 led to persistence of virus and prevented CD8+ T-cell exhaustion. As a consequence, mice exhibited severe immunopathology and died quickly after infection. Therefore, CD169+ macrophages are important contributors to the IFN-I response and thereby influence antiviral activity, CD8+ T-cell exhaustion and immunopathology. PMID:27809306

  7. CD163(+)CD204(+) tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma.

    PubMed

    Kubota, Keigo; Moriyama, Masafumi; Furukawa, Sachiko; Rafiul, Haque A S M; Maruse, Yasuyuki; Jinno, Teppei; Tanaka, Akihiko; Ohta, Miho; Ishiguro, Noriko; Yamauchi, Masaaki; Sakamoto, Mizuki; Maehara, Takashi; Hayashida, Jun-Nosuke; Kawano, Shintaro; Kiyoshima, Tamotsu; Nakamura, Seiji

    2017-05-11

    Tumor-associated macrophages (TAMs) promote cancer cell proliferation, invasion, and metastasis by producing various mediators. Although preclinical studies demonstrated that TAMs preferentially express CD163 and CD204, the TAM subsets in oral squamous cell carcinoma (OSCC) remain unknown. In this study, we examined the expression and role of TAM subsets in OSCC. Forty-six patients with OSCC were analyzed for expression of TAMs in biopsy samples by immunohistochemistry. We examined TAM subsets and their production of immune suppressive molecules (IL-10 and PD-L1) in peripheral blood mononuclear cells from three OSCC patients by flow cytometry. CD163 was detected around the tumor or connective tissue, while CD204 was detected in/around the tumors. Flow cytometric analysis revealed that CD163(+)CD204(+) TAMs strongly produced IL-10 and PD-L1 in comparison with CD163(+)CD204(-) and CD163(-)CD204(+) TAMs. Furthermore, the number of activated CD3(+) T cells after co-culture with CD163(+)CD204(+) TAMs was significantly lower than that after co-culture with other TAM subsets. In clinical findings, the number of CD163(+)CD204(+) TAMs was negatively correlated with that of CD25(+) cells and 5-year progression-free survival. These results suggest that CD163(+)CD204(+) TAMs possibly play a key role in the invasion and metastasis of OSCC by T-cell regulation via IL-10 and PD-L1 production.

  8. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M.

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  9. Effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 pathway.

    PubMed

    Zhang, Song-An; Niyazi, Hu-Er-Xi-Dan; Hong, Wen; Tuluwengjiang, Gu-Li-Xian; Zhang, Lei; Zhang, Yang; Su, Wei-Peng; Bao, Yong-Xing

    2017-03-01

    This study aimed to investigate the effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 signaling pathway. A total of 43 adult female Wistar rats were selected and injected with HeLa cells in the caudal vein to construct a rat model of cervical cancer. All model rats were randomly divided into the radiotherapy group ( n = 31) and the control group ( n = 12). The immunophenotype of Treg cells was detected by the flow cytometry. The protein expressions of EBI3, PD-1, and PD-L1 in cervical cancer tissues were tested by the streptavidin-peroxidase method. HeLa cells in the logarithmic growth phase were divided into four groups: the blank, the negative control group, the EBI3 mimics group, and the EBI3 inhibitors group. Western blotting was used to detect PD-1 and PD-L1 protein expressions. MTT assay was performed to measure the proliferation of Treg cells. Flow cytometry was used to detect cell cycle and apoptosis, and CD4(+)/CD8(+) T cell ratio in each group. Compared with before and 1 week after radiotherapy, the percentages of CD4(+)T cells and CD8(+)T cells were significantly decreased in the radiotherapy group at 1 month after radiotherapy. Furthermore, down-regulation of EBI3 and up-regulation of PD-1 and PD-L1 were observed in cervical cancer tissues at 1 month after radiotherapy. In comparison to the blank and negative control groups, increased expression of EBI3 and decreased expressions of PD-1 and PD-L1 were found in the EBI3 mimics group. However, the EBI3 inhibitors group had a lower expression of EBI3 and higher expressions of PD-1 and PD-L1 than those in the blank and negative control groups. The EBI3 mimics group showed an increase in the optical density value (0.43 ± 0.05), while a decrease in the optical density value (0.31 ± 0.02) was found in the EBI3 inhibitors group. Moreover, compared with the blank and negative control groups, the apoptosis rates

  10. Effect of short hairpin RNA-mediated adiponectin/Acrp30 down-regulation on insulin signaling and glucose uptake in the 3T3-L1 adipocytes.

    PubMed

    Li, K; Li, L; Yang, G Y; Liu, H; Li, S B; Boden, G

    2010-02-01

    Adiponectin is a polypeptide hormone that is secreted by adipocytes with insulin-sensitizing and anti-inflammatory properties. The current study was to further investigate the role of adiponectin on glucose uptake and its underlying mechanism by down-regulation of adiponectin in 3T3-L1 adipocytes. Transfection of short hairpin RNA (shRNA)-vector significantly decreased adiponectin mRNA expression and its protein level in the cells. The down-regulation of adiponectin markedly reduced the cellular glucose uptake rate and increased intracellular triglyceride content. To study the mechanism of the physiologic action of adiponectin, several key regulatory factors in insulin signaling pathway were examined. The mRNA expression of insulin receptor substrate (IRS)-1 in both basal and insulin-stimulated states were down-regulated in the transfected cells (72% and 52% of controls, respectively), and the insulin-stimulated IRS-1 tyrosine phosphorylation was also significantly decreased. Adiponectin-deficient cells showed marked down-regulations of peroxisome proliferator-activated receptor alpha, glucose transporter (GLUT)-1, GLUT-4, hormone-sensitive lipase (HSL), and adipose triglyceride lipase. These results thus demonstrated that transfection of shRNA-vector effectively reduced the expression of adiponectin in 3T3-L1 adipocytes accompanied with a significant decrease in cellular glucose uptake rate and an increase in intracellular triglyceride content. Our data also suggested that adiponectin deficiency impair insulin action in vitro probably through the IRS-1 pathway, and increase intracellular fat accumulation partially through HSL down-regulation.

  11. Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Wei; Liu, Xiaoling; Liu, Weiwei; Wang, Hongju; Yao, Guodong; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-09-01

    Primary cilium is a cellular antenna, signalling as a sensory organelle. Numerous pathological manifestation is associated with change of its length. Although the interaction between autophagy and primary cilia has been suggested, the role of autophagy in primary cilia length is largely unknown. In this study the primary cilia were immunostained and observed by using confocal fluorescence microscopy, and we found that silibinin, a natural flavonoid, shortened the length of primary cilia, meanwhile it also induced autophagy in 3T3-L1 cells. This study was designed to investigate the significance of silibinin-induced autophagy in primary ciliary structure in confluent mouse embryo fibroblast 3T3-L1 cells. Either blocking the autophagic flux with pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), or transfection of siRNA targeting LC3 inhibited the reduction of cilia length caused by silibinin exposure. Autophagy induced by silibinin decreased expressions of the cilia-associated proteins, such as IFT88, KIF3a and Ac-tubulin, while 3-MA restored it, indicating that autophagy induced by silibinin led to a reduction of primary cilia length. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy, was up-regulated by silibinin in a time-dependent manner. In addition, 3T3-L1 cells treated with siRNA against HDAC6 had a reduced autophagic level and were protected from silibinin-induced cilia shortening. Taken together, we conclude that the HDAC6-mediated autophagy negatively regulates primary cilia length during silibinin treatment and has the potential to serve as a therapeutic target for primary cilia-associated ciliopathies. These findings thus provide new information about the potential link between autophagy and primary cilia.

  12. Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation.

    PubMed Central

    Francisco, L; Wang, W; Chan, C S

    1994-01-01

    The IPL1 gene is required for high-fidelity chromosome segregation in the budding yeast Saccharomyces cerevisiae. Conditional ipl1ts mutants missegregate chromosomes severely at 37 degrees C. Here, we report that IPL1 encodes an essential putative protein kinase whose function is required during the later part of each cell cycle. At 26 degrees C, the permissive growth temperature, ipl1 mutant cells are defective in the recovery from a transient G2/M-phase arrest caused by the antimicrotubule drug nocodazole. In an effort to identify additional gene products that participate with the Ipl1 protein kinase in regulating chromosome segregation in yeast, a truncated version of the previously identified DIS2S1/GLC7 gene was isolated as a dosage-dependent suppressor of ipl1ts mutations. DIS2S1/GLC7 is predicted to encode a catalytic subunit (PP1C) of type 1 protein phosphatase. Overexpression of the full-length DIS2S1/GLC7 gene results in chromosome missegregation in wild-type cells and exacerbates the mutant phenotype in ipl1 cells. In addition, the glc7-1 mutation can partially suppress the ipl1-1 mutation. These results suggest that type 1 protein phosphatase acts in opposition to the Ipl1 protein kinase in vivo to ensure the high fidelity of chromosome segregation. Images PMID:8007975

  13. The v-SNARE Vti1a regulates insulin-stimulated glucose transport and Acrp30 secretion in 3T3-L1 adipocytes.

    PubMed

    Bose, Avirup; Guilherme, Adilson; Huang, Shaohui; Hubbard, Andrea C; Lane, Charles R; Soriano, Neil A; Czech, Michael P

    2005-11-04

    Regulated exocytosis in adipocytes mediates key functions, exemplified by insulin-stimulated secretion of peptides such as adiponectin and recycling of intracellular membranes containing GLUT4 glucose transporters to the cell surface. Using a proteomics approach, the v-SNARE Vti1a (vps10p tail interacting 1a) was identified by mass spectrometry in purified GLUT4-containing membranes. Insulin treatment of 3T3-L1 adipocytes decreased the amounts of both Vti1a and GLUT4 in these membranes, confirming that Vti1a is a component of insulin-sensitive GLUT4-containing vesicles. In the basal state, endogenous Vti1a colocalizes exclusively with perinuclear GLUT4. Although Vti1a has previously been reported to be a v-SNARE localized in the trans-Golgi network, treatment with brefeldin A failed to significantly modify Vti1a or GLUT4 localization while completely dispersing Golgi and trans-Golgi network marker proteins. Furthermore, depletion of Vti1a protein in cultured adipocytes through small interfering RNA-based gene silencing significantly inhibited both adiponectin secretion and insulin-stimulated deoxyglucose uptake. Taken together, these results suggest that the v-SNARE Vti1a may regulate a step common to both GLUT4 and Acrp30 trafficking in 3T3-L1 adipocytes.

  14. T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells

    PubMed Central

    Masubuchi, Yosuke; Nakagawa, Yuko; Medina, Johan; Nagasawa, Masahiro; Kojima, Itaru; Rasenick, Mark M.; Inagaki, Takeshi

    2017-01-01

    We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A). In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L) as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK). This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N) blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway. PMID:28472098

  15. T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells.

    PubMed

    Masubuchi, Yosuke; Nakagawa, Yuko; Medina, Johan; Nagasawa, Masahiro; Kojima, Itaru; Rasenick, Mark M; Inagaki, Takeshi; Shibata, Hiroshi

    2017-01-01

    We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A). In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L) as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK). This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N) blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.

  16. The adhesion molecule KAL-1/anosmin-1 regulates neurite branching through a SAX-7/L1CAM–EGL-15/FGFR receptor complex

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Ramos-Ortiz, Gibram A.; Bülow, Hannes E.

    2015-01-01

    Summary Neurite branching is essential for correct assembly of neural circuits, yet remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann Syndrome regulates neurite branching through mechanisms largely unknown. Here we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig) domains of SAX-7/L1CAM and the FN(III) domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system. PMID:26004184

  17. The Importance of pH in Regulating the Function of the Fasciola hepatica Cathepsin L1 Cysteine Protease

    PubMed Central

    Lowther, Jonathan; Robinson, Mark W.; Donnelly, Sheila M.; Xu, Weibo; Stack, Colin M.; Matthews, Jacqueline M.; Dalton, John P.

    2009-01-01

    The helminth parasite Fasciola hepatica secretes cathepsin L cysteine proteases to invade its host, migrate through tissues and digest haemoglobin, its main source of amino acids. Here we investigated the importance of pH in regulating the activity and functions of the major cathepsin L protease FheCL1. The slightly acidic pH of the parasite gut facilitates the auto-catalytic activation of FheCL1 from its inactive proFheCL1 zymogen; this process was ∼40-fold faster at pH 4.5 than at pH 7.0. Active mature FheCL1 is very stable at acidic and neutral conditions (the enzyme retained ∼45% activity when incubated at 37°C and pH 4.5 for 10 days) and displayed a broad pH range for activity peptide substrates and the protein ovalbumin, peaking between pH 5.5 and pH 7.0. This pH profile likely reflects the need for FheCL1 to function both in the parasite gut and in the host tissues. FheCL1, however, could not cleave its natural substrate Hb in the pH range pH 5.5 and pH 7.0; digestion occurred only at pH≤4.5, which coincided with pH-induced dissociation of the Hb tetramer. Our studies indicate that the acidic pH of the parasite relaxes the Hb structure, making it susceptible to proteolysis by FheCL1. This process is enhanced by glutathione (GSH), the main reducing agent contained in red blood cells. Using mass spectrometry, we show that FheCL1 can degrade Hb to small peptides, predominantly of 4–14 residues, but cannot release free amino acids. Therefore, we suggest that Hb degradation is not completed in the gut lumen but that the resulting peptides are absorbed by the gut epithelial cells for further processing by intracellular di- and amino-peptidases to free amino acids that are distributed through the parasite tissue for protein anabolism. PMID:19172172

  18. DHA increases adiponectin expression more effectively than EPA at relative low concentrations by regulating PPARγ and its phosphorylation at Ser273 in 3T3-L1 adipocytes.

    PubMed

    Song, Jia; Li, Cheng; Lv, Yushan; Zhang, Yi; Amakye, William Kwame; Mao, Limei

    2017-01-01

    Enhancing circulating adiponectin is considered as a potential approach for the prevention and treatment of non-communicable diseases (NCDs). Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were reported to increase adiponectin by previous studies using a mixture of them. However, their individual effects on adiponectin and the underlying mechanisms are still unclear. In the present study, we observed and compared the individual effect of DHA and EPA on adiponectin in 3T3-L1 adipocytes, and further tested whether DHA or EPA regulated adiponectin by peroxisome proliferator-activated receptor γ (PPARγ) and its phosphorylation at Ser273 to provide a plausible explanation for their distinct actions. Firstly, 3T3-L1 adipocytes were treated with different doses of DHA or EPA for 24 h. Secondly, 3T3-L1 adipocytes were treated with DHA or EPA in the presence or absence of GW9662. Thirdly, 3T3-L1 adipocytes were pretreated with DHA or EPA for 24 h, followed by being respectively co-incubated with tumor necrosis factor α (TNF-α) or roscovitine for another 2 h. Bovine serum albumin treatment served as the control. After treatments, cellular and secreted adiponectin, cellular PPARγ and its phosphorylation at Ser273 were determined. Compared with the control, DHA increased cellular and secreted adiponectin at 50 and 100 μmol/L, while EPA increased them at 100 and 200 μmol/L. Adiponectin expressions in DHA treated groups were significantly higher than those in EPA treated groups at 50 and 100 μmol/L. Both DHA and EPA enhanced PPARγ expression, but DHA was more effective. GW9662 blocked DHA- and EPA-induced increases in PPARγ as well as adiponectin. Remarkably, an opposite regulation of PPARγ phosphorylation was detected after fatty acids treatment: DHA inhibited it but EPA stimulated it. TNF-α blocked DHA-induced decrease in PPARγ phosphorylation, which eventually led to a decrease in adiponectin. Roscovitine blocked EPA-induced increase in PPAR

  19. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  20. 27-Hydroxycholesterol suppresses lipid accumulation by down-regulating lipogenic and adipogenic gene expression in 3T3-L1 cells.

    PubMed

    Shirouchi, Bungo; Kashima, Kentaro; Horiuchi, Yasutaka; Nakamura, Yuki; Fujimoto, Yumiko; Tong, Li-Tao; Sato, Masao

    2017-06-01

    Cholesterol oxidation products (oxycholesterols) are produced from cholesterol by automatic and/or enzymatic oxidation of the steroidal backbone and side-chain. Oxycholesterols are present in plasma and serum, suggesting that oxycholesterols are related to the development and progression of various diseases. However, limited information is available about the absolute amounts of oxycholesterols in organs and tissues, and the physiological significance of oxycholesterols in the body. In the present study, we quantified the levels of 13 oxycholesterols in white adipose tissue (WAT) of mice and then evaluated correlations between each oxycholesterol level and WAT weight. The sum of the levels of 13 oxycholesterols in WAT (white adipose tissue) was 15.9 ± 3.4 μg/g of WAT weight and approximately 1 % of cholesterol level. Among oxycholesterols, the levels of 27-hydroxycholesterol (27-OH), an endogenous oxycholesterol produced by enzymatic oxidation, and the relative WAT weights were significantly negatively correlated. Next, we evaluated the effects of 27-OH on lipogenesis and adipogenesis in 3T3-L1 cells. TO901317 (TO), a potent and selective agonist for LXRα, significantly increased intracellular TAG contents, while 27-OH significantly reduced the contents to half when compared with control (DMSO) and completely abolished the effect of TO. In addition, 27-OH significantly reduced the mRNA levels of lipogenic (LXRα and FAS) and adipogenic genes (PPARγ and aP2) during adipocyte maturation of 3T3-L1 cells. In conclusion, our results indicate that 27-OH suppresses lipid accumulation by down-regulating lipogenic and adipogenic gene expression in 3T3-L1 cells.

  1. Nectin-3 (CD113) interacts with Nectin-2 (CD112) to promote lymphocyte transendothelial migration.

    PubMed

    Devilard, Elisabeth; Xerri, Luc; Dubreuil, Patrice; Lopez, Marc; Reymond, Nicolas

    2013-01-01

    Lymphocyte trafficking and migration through vascular endothelial cells (ECs) in secondary lymphoid tissues is critical for immune protection. In the present study, we investigate the role of nectin cell adhesion molecules for the migration of lymphocytes through ECs. Nectins are key players for the establishment of homotypic and heterotypic cell to cell contacts; they are required for cell to cell adherens junction formation and take part in the transendothelial migration of monocytes during the step of diapedesis, when monocytes migrate through EC junctions. We first show that Nectin-3 (CD113) is the only nectin expressed by T lymphocytes and since nectins are expressed on ECs we explored Nectin-3 potential functions in lymphocyte: EC interactions. We demonstrate that Nectin-2, expressed on ECs, is the major counter-receptor of Nectin-3. A soluble form of Nectin-3 binds to Nectin-2 localized at EC junctions and blocking Nectin-2 trans-interactions with monoclonal antibodies abolishes the binding of soluble Nectin-3 to ECs. Nectin-2 is expressed on High Endothelial venules (HEVs), where lymphocyte homing occurs in vivo. Finally, we show that Nectin-3 trans-interaction with Nectin-2 is essential for the process of lymphocyte transendothelial migration in vitro as targeting with blocking monoclonal antibodies either Nectin-3, expressed on lymphocytes, or Nectin-2, expressed on ECs, inhibits lymphocyte extravasation. The nectin family of CAMs is important for the regulation of endothelial barrier functions and transendothelial migration of immune cells. Our results demonstrate for the first time that Nectin-3 trans-interacts with Nectin-2 to promote lymphocyte and monocyte extravasation.

  2. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells

    PubMed Central

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Background: Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. Objective: The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. Materials and Methods: To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Results: Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Conclusion: Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. SUMMARY The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down-regulation

  3. Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4(+) T Cell Immunity.

    PubMed

    Karunarathne, Deshapriya S; Horne-Debets, Joshua M; Huang, Johnny X; Faleiro, Rebecca; Leow, Chiuan Yee; Amante, Fiona; Watkins, Thomas S; Miles, John J; Dwyer, Patrick J; Stacey, Katryn J; Yarski, Michael; Poh, Chek Meng; Lee, Jason S; Cooper, Matthew A; Rénia, Laurent; Richard, Derek; McCarthy, James S; Sharpe, Arlene H; Wykes, Michelle N

    2016-08-16

    Many pathogens, including Plasmodium spp., exploit the interaction of programmed death-1 (PD-1) with PD-1-ligand-1 (PD-L1) to "deactivate" T cell functions, but the role of PD-L2 remains unclear. We studied malarial infections to understand the contribution of PD-L2 to immunity. Here we have shown that higher PD-L2 expression on blood dendritic cells, from Plasmodium falciparum-infected individuals, correlated with lower parasitemia. Mechanistic studies in mice showed that PD-L2 was indispensable for establishing effective CD4(+) T cell immunity against malaria, because it not only inhibited PD-L1 to PD-1 activity but also increased CD3 and inducible co-stimulator (ICOS) expression on T cells. Importantly, administration of soluble multimeric PD-L2 to mice with lethal malaria was sufficient to dramatically improve immunity and survival. These studies show immuno-regulation by PD-L2, which has the potential to be translated into an effective treatment for malaria and other diseases where T cell immunity is ineffective or short-lived due to PD-1-mediated signaling.

  4. Regulation of FAT/CD36 mRNA gene expression by long chain fatty acids in the differentiated 3T3-L1 cells.

    PubMed

    Yang, Yingkui; Chen, Min; Loux, Tara J; Harmon, Carroll M

    2007-07-01

    Defects in fatty acid translocase (FAT/CD36) have been identified as a major factor in insulin resistance and defective fatty acid and glucose metabolism. Therefore, understanding of the regulation of FAT/CD36 expression and function is important for a potential therapeutic target for type II diabetes. We differentiated 3T3-L1 preadipocytes into matured adipocytes and examined the roles of insulin and long chain fatty acids on FAT/CD36 expression and function. Our results indicate that FAT/CD36 mRNA expression was not detected at preadipocyte but was significantly increased at matured adipocyte. In fully differentiated 3T3-L1 adipocytes, insulin significantly increased FAT/CD36 mRNA and protein expression in a dose dependent manner. The free fatty acid stearic acid reduced FAT/CD36 mRNA expression while the non-metabolizable free fatty acid alpha-bromopalmitate (2-BP) significantly increased FAT/CD36 mRNA and protein expression. Isoproterenol, in contrast, dose-dependently reduced FAT/CD36 mRNA expression and increased free fatty acid release. Mechanism analysis indicated that the effect of insulin and 2-BP on the FAT/CD36 mRNA gene expression may be mediated through activation of PPAR-gamma, suggesting that FAT/CD36 may have important implications in the pathophysiology of defective fatty acid metabolism.

  5. Germinated brown rice extract inhibits adipogenesis through the down-regulation of adipogenic genes in 3T3-L1 adipocytes.

    PubMed

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2013-09-01

    The aim of this study was to examine the anti-adipogenic effect of germinated brown rice methanol extract (GBR) in 3T3-L1 adipocytes. The GBR inhibited adipocyte differentiation was measured by Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent manner without initiating any cytotoxicity. The mRNA levels of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBPα), proliferator-activated receptorγ (PPARγ), and sterol regulatory element-binding protein-1c (SREBP-1c), and adipogenic genes, such as fatty acid synthase (FAS), adipocyte fatty acid-binding protein (aP2), and lipoprotein lipase (LPL), were significantly down-regulated by treatment with GBR when compared to that of untreated control cells. Moreover, tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) mRNA expressions were attenuated by GBR in mature adipocytes. These data suggest that GBR exhibits an anti-adipogenic effect through the suppression of adipogenesis in 3T3-L1 adipocytes.

  6. The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1.

    PubMed

    Cioffi, Michele; Trabulo, Sara M; Vallespinos, Mireia; Raj, Deepak; Kheir, Tony Bou; Lin, Meng-Lay; Begum, Julfa; Baker, Ann-Marie; Amgheib, Ala; Saif, Jaimy; Perez, Manuel; Soriano, Joaquim; Desco, Manuel; Gomez-Gaviro, Maria Victoria; Cusso, Lorena; Megias, Diego; Aicher, Alexandra; Heeschen, Christopher

    2017-03-28

    The stromal microenvironment controls response to injury and inflammation, and is also an important determinant of cancer cell behavior. However, our understanding of its modulation by miRNA (miR) and their respective targets is still sparse. Here, we identified the miR-25-93-106b cluster and two new target genes as critical drivers for metastasis and immune evasion of cancer cells. Using miR-25-93-106b knockout mice or antagomiRs, we demonstrated regulation of the production of the chemoattractant CXCL12 controlling bone marrow metastasis. Moreover, we identified the immune checkpoint PD-L1 (CD274) as a novel miR-93/106b target playing a central role in diminishing tumor immunity. Eventually, upregulation of miR-93 and miR-106b via miR-mimics or treatment with an epigenetic reader domain (BET) inhibitor resulted in diminished expression of CXCL12 and PD-L1. These data suggest a potential new therapeutic rationale for use of BET inhibitors for dual targeting of cancers with strong immunosuppressive and metastatic phenotypes.

  7. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells.

    PubMed

    Jeon, Taeil; Hwang, Seong Gu; Hirai, Shizuka; Matsui, Tohru; Yano, Hideo; Kawada, Teruo; Lim, Beoung Ou; Park, Dong Ki

    2004-11-12

    The effects of red yeast rice extracts (RE) on adipocyte differentiation of 3T3-L1 cells were studied. RE were extracted from embryonic rice fermented with red yeast (Monascus ruber). These extracts significantly decreased glycerol-3-phosphate dehydrogenase (GPDH) activity and lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Moreover, mRNA expression levels of both CCAAT/enhancer-binding protein (C/EBP) alpha and peroxisome proliferator-activated receptor (PPAR) gamma, the key adipogenic transcription factors, were markedly decreased by RE. RE also inhibited the expression of PPARgamma at protein levels. RE decreased significantly gene expression of adipocyte fatty acid binding protein (aP2) and leptin, which are adipogenic marker proteins and C/EBPalpha and PPARgamma target genes. These results suggest that the inhibitory effect of RE on adipocyte differentiation might be mediated through the down-regulated expression of adipogenic transcription factors and other specific genes.

  8. Type I collagen promotes primary cilia growth through down-regulating HDAC6-mediated autophagy in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Weiwei; Liu, Xiaoling; Otkur, Wuxiyar; Hayashi, Toshihiko; Yamato, Masayuki; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Ikejima, Takashi

    2017-08-12

    Primary cilia are microtubule-based organelles that extend from nearly all vertebrate cells. Abnormal ciliogenesis and cilia length are suggested to be associated with hypertension and obesity as well as diseases such as Meckel-Gruber syndrome. Extracellular matrix (ECM), comprising cellular microenvironment, influences cell shape and proliferation. However, influence of ECM on cilia biogenesis has not been well studied. In this study we examined the effects of type I collagen (col I), the major component of ECM, on primary cilia growth. When cultured on collagen-coated dishes, confluent 3T3-L1 cells were found to exhibit fibroblast-like morphology, which was different from the cobblestone-like shape on non-coated dishes. The level of autophagy in the cells cultured on col I-coated dishes was attenuated compared with the cells cultured on non-coated dishes. The cilia of the cells cultured on col I-coated dishes became longer, accompanying increased expression of essential proteins for cilia assembly. Transfection of the siRNA targeting microtubule-associated protein light chain 3 (LC3) further enhanced the length of primary cilia, suggesting that col I positively regulated cilia growth through inhibition of autophagy. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy in our previous study on primary cilia, was down-regulated with col I. 3T3-L1 cells treated with the siRNA against HDAC6 reduced the autophagy level and enhanced collagen-induced cilia elongation, implying that HDAC6 was involved in mediating autophagy. In conclusion, col I promotes cilia growth through repressing the HDAC-autophagy pathway that can be involved in the interaction between primary cilia and col I. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation.

    PubMed

    Horikawa, Takumi; Shimada, Tsutomu; Okabe, Yui; Kinoshita, Kaoru; Koyama, Kiyotaka; Miyamoto, Ken-ichi; Ichinose, Koji; Takahashi, Kunio; Aburada, Masaki

    2012-01-01

    We previously reported that Kaempferia parviflora WALL. ex BAKER (KP) and its ethyl acetate extract (KPE) improve various metabolic disorders in obesity-model mice. However the mechanism is not certain, and, in this study, in order to elucidate the mechanism of the suppressive effect of KP on fat accumulation, we focused on adipocytes, which are closely linked to metabolic diseases. The finding was that KPE and its components, 3,5,7,4'-tetramethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone, strongly induced differentiation of 3T3-L1 preadipocytes to adipocytes. The above two polymethoxyflavonoids (PMFs) also induced adiponectin mRNA levels, and release of adiponectin into the medium. In addition, these PMFs enhanced the expression of peroxisome proliferator-activated receptor γ (PPARγ), but did not show PPARγ ligand activity. We then investigated the expression of the differentiation-regulator located upstream of PPARγ. Expression of CCAAT/enhancer-binding protein (C/EBP) β and -δ mRNA, a transcriptional regulator of PPARγ, was induced, and expression of GATA-2 mRNA, a down-regulator of adipogenesis, was suppressed by these PMFs. These functions of the KP PMFs that enhance adipogenesis and secretion of adiponectin are, to some extent at least, involved in the mechanisms of anti-metabolic disorders effects.

  10. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma

    PubMed Central

    Chen, Ren; Li, Xiaohai; He, Bin; Hu, Wei

    2017-01-01

    Osteosarcoma, which is the most common type of primary bone tumor in adolescents, is characterized by complex genetic alterations and frequent resistance to conventional treatments. MicroRNAs (miRs) have emerged as fundamental regulators in gene expression through their ability to silence gene expression at post-transcriptional and translational levels. The present study investigated the role of miR-410 in the progression of osteosarcoma. The results demonstrated that the expression of miR-410 was markedly downregulated in human osteosarcoma tissues, and U2OS and MG-63 osteosarcoma cell lines. Clinicopathological significance suggested that miR-410 may be a potential biomarker for chemotherapy-resistant osteosarcoma. Furthermore, overexpression of miR-410 exhibited a limited effect on cell viability in U2OS and MG-63 cells. Target prediction algorithms (TargetScan and miRanda) indicated that autophagy related 16-like 1 (ATG16L1) was a potential target gene of miR-410. A luciferase reporter assay demonstrated that miR-410 directly decreased ATG16L1 expression by targeting its 3′-untranslated region. In addition, the results revealed that miR-410 was able to markedly inhibit autophagy. Accordingly, autophagy was activated as a protective mechanism when osteosarcoma cells were exposed to three common anticancer drugs, including rapamycin, doxorubicin and cisplatin. Furthermore, the autophagy inhibitor 3-methyladenine and miR-410 expression were able to improve the therapeutic response of the cells to chemotherapy drugs (rapamycin, doxorubicin and cisplatin), thus indicating that miR-410 enhanced chemosensitivity through autophagy inhibition in osteosarcoma cells. In conclusion, studies regarding the function of miR-410 on autophagy provided insight into the biological function of miR-410 in osteosarcoma and may offer a promising approach for the treatment of osteosarcoma. PMID:28138700

  11. Exchange protein activated by cyclic AMP is involved in the regulation of adipogenic genes during 3T3-L1 fibroblasts differentiation.

    PubMed

    Gabrielli, Matías; Martini, Claudia N; Brandani, Javier N; Iustman, Laura J R; Romero, Damián G; del C Vila, María

    2014-02-01

    Adipogenesis is stimulated in 3T3-L1 fibroblasts by a combination of insulin, dexamethasone and isobutylmethylxanthine, IBMX, (I+D+M). Two transcription factors are important for the acquisition of the adipocyte phenotype, C/EBP beta (CCAT enhancer-binding protein beta) and PPAR gamma (peroxisome proliferator-activated receptor gamma). IBMX increases cAMP content, which can activate protein kinase A (PKA) and/or EPAC (exchange protein activated by cAMP). To investigate the importance of IBMX in the differentiation mixture, we first evaluated the effect of the addition of IBMX on the increase of C/EBP beta and PPAR gamma and found an enhancement of the amount of both proteins. IBMX addition (I+D+M) or its replacement with a cAMP analogue, dibutyryl-cAMP or 8-(4-chlorophenylthio)-2-O'-methyl-cAMP (8CPT-2-Me-cAMP), the latter activates EPAC and not PKA, remarkably increased PPAR gamma mRNA. However, neither I+D nor any of the inducers alone, increased PPAR gamma mRNA to a similar extent, suggesting the importance of the presence of both IBMX and I+D. It was also found that the addition of IBMX or 8CPT-2-Me-cAMP was able to increase the content of C/EBP beta with respect to I+D. In agreement with these findings, a microarray analysis showed that the presence of either 8CPT-2-Me-cAMP or IBMX in the differentiation mixture was able to upregulate PPAR gamma and PPAR gamma-activated genes as well as other genes involved in lipid metabolism. Our results prove the involvement of IBMX-cAMP-EPAC in the regulation of adipogenic genes during differentiation of 3T3-L1 fibroblasts and therfore contributes to elucidate the role of cyclic AMP in this process.

  12. Graft-infiltrating PD-L1(hi) cross-dressed dendritic cells regulate anti-donor T cell responses in mouse liver transplant tolerance.

    PubMed

    Ono, Yoshihiro; Perez-Gutierrez, Angelica; Nakao, Toshimasa; Dai, Helong; Camirand, Geoffrey; Yoshida, Osamu; Yokota, Shinichiro; Stolz, Donna Beer; Ross, Mark A; Morelli, Adrian E; Geller, David A; Thomson, Angus W

    2017-09-16

    While a key role of cross-dressing has been established in immunity to viral infection and more recently in the instigation of transplant rejection, its role in tolerance is unclear. Here, we investigated the role of intra-graft dendritic cells (DC) and cross-dressing in mouse major histocompatibility complex (MHC)-mismatched liver transplant tolerance that occurs without therapeutic immunosuppression. While donor interstitial DC diminished rapidly following transplantation, they were replaced in the liver by host DC that peaked on postoperative day (POD) 7 and persisted indefinitely. About 60% of these recipient DC displayed donor MHC class I, indicating cross-dressing. By contrast, only a very minor fraction (0-2%) of cross-dressed DC (CD-DC) was evident in the spleen. CD-DC sorted from liver grafts expressed much higher levels of T cell inhibitory programed death ligand 1 (PD-L1) and high levels of IL-10 compared with non CD-DC (nCD-DC) isolated from the graft. Concomitantly, high incidences of programed death protein 1 (PD-1)(hi) T cell immunoglobulin and mucin domain containing-3 (TIM-3)(+) exhausted graft-infiltrating CD8(+) T cells were observed. Importantly, unlike nCD-DC, the CD-DC failed to stimulate proliferation of allogeneic T cells but markedly suppressed anti-donor host T cell proliferation. CD-DC were much less evident in allografts from DNAX-activating protein of 12kDa (DAP12)(-/-) donors that were rejected acutely. These findings suggest that graft-infiltrating PD-L1(hi) CD-DC may play a key role in the regulation of alloimmunity and in the induction of liver transplant tolerance. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  13. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma.

    PubMed

    Chen, Ren; Li, Xiaohai; He, Bin; Hu, Wei

    2017-03-01

    Osteosarcoma, which is the most common type of primary bone tumor in adolescents, is characterized by complex genetic alterations and frequent resistance to conventional treatments. MicroRNAs (miRs) have emerged as fundamental regulators in gene expression through their ability to silence gene expression at post-transcriptional and translational levels. The present study investigated the role of miR‑410 in the progression of osteosarcoma. The results demonstrated that the expression of miR‑410 was markedly downregulated in human osteosarcoma tissues, and U2OS and MG‑63 osteosarcoma cell lines. Clinicopathological significance suggested that miR‑410 may be a potential biomarker for chemotherapy‑resistant osteosarcoma. Furthermore, overexpression of miR‑410 exhibited a limited effect on cell viability in U2OS and MG‑63 cells. Target prediction algorithms (TargetScan and miRanda) indicated that autophagy related 16‑like 1 (ATG16L1) was a potential target gene of miR‑410. A luciferase reporter assay demonstrated that miR‑410 directly decreased ATG16L1 expression by targeting its 3'‑untranslated region. In addition, the results revealed that miR‑410 was able to markedly inhibit autophagy. Accordingly, autophagy was activated as a protective mechanism when osteosarcoma cells were exposed to three common anticancer drugs, including rapamycin, doxorubicin and cisplatin. Furthermore, the autophagy inhibitor 3‑methyladenine and miR‑410 expression were able to improve the therapeutic response of the cells to chemotherapy drugs (rapamycin, doxorubicin and cisplatin), thus indicating that miR‑410 enhanced chemosensitivity through autophagy inhibition in osteosarcoma cells. In conclusion, studies regarding the function of miR‑410 on autophagy provided insight into the biological function of miR‑410 in osteosarcoma and may offer a promising approach for the treatment of osteosarcoma.

  14. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer.

    PubMed

    Zhang, Nan; Zeng, Yuanyuan; Du, Wenwen; Zhu, Jianjie; Shen, Dan; Liu, Zeyi; Huang, Jian-An

    2016-10-01

    Negative regulation of the signal mediated by the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway can effectively inhibit the function of T and B cells, which play a key role in the regulation of immune response. Recently, emerging evidence has suggested that the expression of PD-L1 is related to the mutation status of the epidermal growth factor receptor (EGFR). Moreover, the activation of the EGFR signaling pathway can induce expression of PD-L1. In the present study, we demonstrated that activated EGFR can upregulate the expression of PD-L1 through the interleukin 6/Janus kinase/signal transducer and activator of transcription 3 (IL-6/JAK/STAT3) signaling pathway in non-small cell lung cancer (NSCLC) cells. Cells treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) can downregulate the activation of the IL-6/JAK/STAT3 pathway, which subsequently reduces the expression of PD-L1. Furthermore, silencing of PD-L1 expression in NSCLC cells correlated with inhibition of cell proliferation and enhanced tumor cell apoptosis. In summary, our research indicates that EGFR is involved in the regulation of PD-L1 expression and cell proliferation via the IL-6/JAK/STAT3 signaling pathway in NSCLC. The present study suggests the potential of combined targeted therapy with immunotherapy in the treatment of NSCLC.

  15. Endothelial actin-binding proteins and actin dynamics in leukocyte transendothelial migration.

    PubMed

    Schnoor, Michael

    2015-04-15

    The endothelium is the first barrier that leukocytes have to overcome during recruitment to sites of inflamed tissues. The leukocyte extravasation cascade is a complex multistep process that requires the activation of various adhesion molecules and signaling pathways, as well as actin remodeling, in both leukocytes and endothelial cells. Endothelial adhesion molecules, such as E-selectin or ICAM-1, are connected to the actin cytoskeleton via actin-binding proteins (ABPs). Although the contribution of receptor-ligand interactions to leukocyte extravasation has been studied extensively, the contribution of endothelial ABPs to the regulation of leukocyte adhesion and transendothelial migration remains poorly understood. This review focuses on recently published evidence that endothelial ABPs, such as cortactin, myosin, or α-actinin, regulate leukocyte extravasation by controlling actin dynamics, biomechanical properties of endothelia, and signaling pathways, such as GTPase activation, during inflammation. Thus, ABPs may serve as targets for novel treatment strategies for disorders characterized by excessive leukocyte recruitment.

  16. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes.

    PubMed

    Wang, Yanxin; Watford, Malcolm

    2007-04-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. Culture of Hep G2 cells without glutamine resulted in very high levels of protein, again with no change in mRNA abundance. Insulin was without effect in both C2C12 and Hep G2 cells. In 3T3 L1 adipocytes glucocorticoids increased the abundance of both glutamine synthetase mRNA and protein, insulin added alone had no effect but in the presence of glucocorticoids resulted in lower mRNA levels than seen with glucocorticoids alone, although protein levels remained high under such conditions. In contrast to the other cell lines glutamine synthetase protein levels were relatively unchanged by culture in the absence of glutamine. The results support the hypothesis that in myocytes, and hepatomas, but not in adipocytes, glutamine acts to moderate glutamine synthetase induction by glucocorticoids.

  17. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells.

    PubMed

    Furuyashiki, Takashi; Nagayasu, Hironobu; Aoki, Yukiko; Bessho, Hiroaki; Hashimoto, Takashi; Kanazawa, Kazuki; Ashida, Hitoshi

    2004-11-01

    Obesity is a serious health problem, and its prevention is promoted through life style including diet and exercise. In this study, we investigated the suppressive effects of tea catechin on the differentiation of 3T3-L1 preadipocytes to adipocytes. (-)-Catechin 3-gallate (CG), (-)-epigallocatechin (EGC), (-)-epicatechin 3-gallate, and (-)-epigallocatechin 3-gallate at 5 muM suppressed intracellular lipid accumulation. The suppressive effects of CG and EGC were stronger than the others, and CG and EGC also suppressed the activity of glycerol-3-phosphate dehydrogenase as a differentiation marker. These catechins inhibited the expression of peroxisome proliferator-activated receptor (PPAR) gamma2 and CCAAT/enhancer-binding protein (C/EBP) alpha, both of which act as key transcription factors at an early stage of differentiation, followed by the expression of glucose transporter (GLUT) 4 at a later stage. In addition, the catechins did not affect the phosphorylation status of the insulin signal pathway. Thus, catechin suppressed adipocyte differentiation accompanied by the down-regulation of PPARgamma2, C/EBPalpha, and GLUT4. These results suggest that tea catechin prevents obesity through the suppression of adipocyte differentiation.

  18. C(2)-ceramide influences the expression and insulin-mediated regulation of cyclic nucleotide phosphodiesterase 3B and lipolysis in 3T3-L1 adipocytes.

    PubMed

    Mei, Jie; Holst, Lena Stenson; Landström, Tova Rahn; Holm, Cecilia; Brindley, David; Manganiello, Vincent; Degerman, Eva

    2002-03-01

    Cyclic nucleotide phosphodiesterase (PDE) 3B plays an important role in the antilipolytic action of insulin and, thereby, the release of fatty acids from adipocytes. Increased concentrations of circulating fatty acids as a result of elevated or unrestrained lipolysis cause insulin resistance. The lipolytic action of tumor necrosis factor (TNF)-alpha is thought to be one of the mechanisms by which TNF-alpha induces insulin resistance. Ceramide is the suggested second messenger of TNF-alpha action, and in this study, we used 3T3-L1 adipocytes to investigate the effects of C(2)-ceramide (a short-chain ceramide analog) on the expression and regulation of PDE3B and lipolysis. Incubation of adipocytes with 100 micromol/l C(2)-ceramide (N-acetyl-sphingosine) resulted in a time-dependent decrease of PDE3B activity, accompanied by decreased PDE3B protein expression. C(2)-ceramide, in a time- and dose-dependent manner, stimulated lipolysis, an effect that was blocked by H-89, an inhibitor of protein kinase A. These ceramide effects were prevented by 20 micromol/l troglitazone, an antidiabetic drug. In addition to downregulation of PDE3B, the antilipolytic action of insulin was decreased by ceramide treatment. These results, together with data from other studies on PDE3B and lipolysis in diabetic humans and animals, suggest a novel pathway by which ceramide induces insulin resistance. Furthermore, PDE3B is demonstrated to be a target for troglitazone action in adipocytes.

  19. Participation of the urokinase-type plasminogen activator receptor (uPAR) in neutrophil transendothelial migration.

    PubMed

    Pliyev, Boris K; Antonova, Olga A; Menshikov, Mikhail

    2011-05-01

    The mechanisms underlying migration of neutrophils across endothelium are not completely understood. The urokinase-type plasminogen activator receptor (uPAR) plays a key role in neutrophil adhesion and migration. In the present study, we addressed whether uPAR regulates neutrophil transendothelial migration. We first showed that siRNA-mediated knockdown of uPAR in human umbilical vein endothelial cells (HUVECs) did not affect neutrophil migration across HUVEC monolayers indicating that endothelial uPAR does not regulate neutrophil transmigration. In contrast, the transmigration was significantly inhibited by Fab' fragment of anti-uPAR monoclonal antibody and proteolytically inactive urokinase (uPA), whereas inhibition of proteolytical activity of endogenous uPA (with amiloride or plasminogen activator inhibitor-1) did not affect the transmigration. Both the anti-uPAR Fab' fragment and proteolytically inactive uPA did not exert significant effects upon the transmigration conducted in the presence of F(ab')(2) fragment of blocking antibody to integrin Mac-1 indicating that uPAR regulates Mac-1-dependent transmigration. Mac-1-dependent, but not Mac-1-independent, transmigration was significantly reduced in the presence of N-acetyl-d-glucosamine and d-mannose, the saccharides that disrupt uPAR/Mac-1 association, but was unaffected in the presence of control saccharides (d-sorbitol and sucrose). We conclude that physical association of uPAR with Mac-1 mediates the regulatory effect of uPAR over the transmigration. Finally, we provide evidence that the functional cooperation between uPAR and Mac-1 is essential at both adhesion and diapedesis steps of neutrophil migration across endothelium. Thus, uPAR expressed on neutrophil plasma membrane regulates transendothelial migration independently of uPA proteolytical activity and acting as a cofactor for integrin Mac-1.

  20. Estradiol-induced regulation of GLUT4 in 3T3-L1 cells: involvement of ESR1 and AKT activation.

    PubMed

    Campello, Raquel S; Fátima, Luciana A; Barreto-Andrade, João Nilton; Lucas, Thais F; Mori, Rosana C; Porto, Catarina S; Machado, Ubiratan F

    2017-10-01

    Impaired insulin-stimulated glucose uptake involves reduced expression of the GLUT4 (solute carrier family 2 facilitated glucose transporter member 4, SLC2A4 gene). 17β-estradiol (E2) modulates SLC2A4/GLUT4 expression, but the involved mechanisms are unclear. Although E2 exerts biological effects by binding to estrogen receptors 1/2 (ESR1/2), which are nuclear transcriptional factors; extranuclear effects have also been proposed. We hypothesize that E2 regulates GLUT4 through an extranuclear ESR1 mechanism. Thus, we investigated the effects of E2 upon (1) subcellular distribution of ESRs and the proto-oncogene tyrosine-protein kinases (SRC) involvement; (2) serine/threonine-protein kinase (AKT) activation; (3) Slc2a4/GLUT4 expression and (4) GLUT4 subcellular distribution and glucose uptake in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were cultivated or not with E2 for 24 h, and additionally treated or not with ESR1-selective agonist (PPT), ESR1-selective antagonist (MPP) or selective SRC inhibitor (PP2). Subcellular distribution of ESR1, ESR2 and GLUT4 was analyzed by immunocytochemistry; Slc2a4 mRNA and GLUT4 were quantified by qPCR and Western blotting, respectively; plasma membrane GLUT4 translocation and glucose uptake were analyzed under insulin stimulus for 20 min or not. E2 induced (1) translocation of ESR1, but not of ESR2, from nucleus to plasma membrane and AKT phosphorylation, effects mimicked by PPT and blocked by MPP and PP2; (2) increased Slc2a4/GLUT4 expression and (3) increased insulin-stimulated GLUT4 translocation and glucose uptake. In conclusion, E2 treatment promoted a SRC-mediated nucleus-plasma membrane shuttle of ESR1, and increased AKT phosphorylation, Slc2a4/GLUT4 expression and plasma membrane GLUT4 translocation; consequently, improving insulin-stimulated glucose uptake. These results unravel mechanisms through which estrogen improves insulin sensitivity. © 2017 Society for Endocrinology.

  1. Regulation of apelin and its receptor expression in adipose tissues of obesity rats with hypertension and cultured 3T3-L1 adipocytes.

    PubMed

    Wu, Hongxian; Cheng, Xian Wu; Hao, Changning; Zhang, Zhi; Yao, Huali; Murohara, Toyoaki; Dai, Qiuyan

    2014-01-01

    The apelin/APJ system has been implicated in obesity-related hypertension. We investigated the mechanism responsible for the pathogenesis of obesity-related hypertension with a special focus on the crosstalk between AngII/its type 1 receptor (AT1R) signaling and apelin/APJ expression. Sprague-Dawley rats fed a high-fat (obesity-related hypertension, OH) or normal-fat diet (NF) for 15 weeks were randomly assigned to one of two groups and administered vehicle or perindopril for 4 weeks. Compared to the NF rats, the OH rats showed lower levels of plasma apelin and apelin/APJ mRNAs of perirenal adipose tissues, and these changes were restored by perindopril. Administration of the AT1R antagonist olmesartan resulted in the restoration of the reduction of apelin and APJ expressions induced by AngII for 48 h in 3T3-L1 adipocytes. Among several inhibitors for extracellular signal-regulated kinases 1/2 (ERK1/2) PD98059, p38 mitogen-activated protein kinase (p38MAPK) SB203580 and phosphatidylinositol 3-kinase (PI3K) LY294002, the latter showed an additive effect on AngII-mediated inhibitory effects. In addition, the levels of p-Akt, p-ERK and p38MAPK proteins were decreased by long-term treatment with AngII (120 min), and these changes were restored by Olmesartan. Apelin/APJ appears to be impaired in obesity-related hypertension. The AngII inhibition-mediated beneficial effects are likely attributable, at least in part, to restoration of p38/ERK-dependent apelin/APJ expression in diet-induced obesity-related hypertension.

  2. Regulation of Apelin and Its Receptor Expression in Adipose Tissues of Obesity Rats with Hypertension and Cultured 3T3-L1 Adipocytes

    PubMed Central

    Wu, Hongxian; Cheng, Xian Wu; Hao, Changning; Zhang, Zhi; Yao, Huali; Murohara, Toyoaki; Dai, Qiuyan

    2014-01-01

    The apelin/APJ system has been implicated in obesity-related hypertension. We investigated the mechanism responsible for the pathogenesis of obesity-related hypertension with a special focus on the crosstalk between AngII/its type 1 receptor (AT1R) signaling and apelin/APJ expression. Sprague-Dawley rats fed a high-fat (obesity-related hypertension, OH) or normal-fat diet (NF) for 15 weeks were randomly assigned to one of two groups and administered vehicle or perindopril for 4 weeks. Compared to the NF rats, the OH rats showed lower levels of plasma apelin and apelin/APJ mRNAs of perirenal adipose tissues, and these changes were restored by perindopril. Administration of the AT1R antagonist olmesartan resulted in the restoration of the reduction of apelin and APJ expressions induced by AngII for 48 h in 3T3-L1 adipocytes. Among several inhibitors for extracellular signal-regulated kinases 1/2 (ERK1/2) PD98059, p38 mitogen-activated protein kinase (p38MAPK) SB203580 and phosphatidylinositol 3-kinase (PI3K) LY294002, the latter showed an additive effect on AngII-mediated inhibitory effects. In addition, the levels of p-Akt, p-ERK and p38MAPK proteins were decreased by long-term treatment with AngII (120 min), and these changes were restored by Olmesartan. Apelin/APJ appears to be impaired in obesity-related hypertension. The AngII inhibition-mediated beneficial effects are likely attributable, at least in part, to restoration of p38/ERK-dependent apelin/APJ expression in diet-induced obesity-related hypertension. PMID:24770651

  3. Fisetin up-regulates the expression of adiponectin in 3T3-L1 adipocytes via the activation of silent mating type information regulation 2 homologue 1 (SIRT1)-deacetylase and peroxisome proliferator-activated receptors (PPARs).

    PubMed

    Jin, Taewon; Kim, Oh Yoen; Shin, Min-Jeong; Choi, Eun Young; Lee, Sung Sook; Han, Ye Sun; Chung, Ji Hyung

    2014-10-29

    Adiponectin, an adipokine, has been described as showing physiological benefits against obesity-related malfunctions and vascular dysfunction. Several natural compounds that promote the expression and secretion of adipokines in adipocytes could be useful for treating metabolic disorders. This study investigated the effect of fisetin, a dietary flavonoid, on the regulation of adiponectin in adipocytes using 3T3-L1 preadipocytes. The expression and secretion of adiponectin increased in 3T3-L1 cells upon treatment with fisetin in a dose-dependent manner. Fisetin-induced adiponectin secretion was inhibited by peroxisome proliferator-activated receptor (PPAR) antagonists. It was also revealed that fisetin increased the activities of PPARs and silent mating type information regulation 2 homologue 1 (SIRT1) in a dose-dependent manner. Furthermore, the up-regulation of adiponectin and the activation of PPARs induced by fisetin were prevented by a SIRT1 inhibitor. Fisetin also promoted deacetylation of PPAR γ coactivator 1 (PGC-1) and its interaction with PPARs. SIRT knockdown by siRNA significantly decreased both adiponectin production and PPARs-PGC-1 interaction. These results provide evidence that fisetin promotes the gene expression of adiponectin through the activation of SIRT1 and PPARs in adipocytes.

  4. The PD-1/PD-L1 inhibitory pathway is altered in pre-eclampsia and regulates T cell responses in pre-eclamptic rats

    PubMed Central

    Tian, Mei; Zhang, Yonghong; Liu, Zhaozhao; Sun, Guoqiang; Mor, Gil; Liao, Aihua

    2016-01-01

    The programmed cell death-1(PD-1)/PD-ligand 1 (PD-L1) pathway is critical to immune homeostasis by promoting regulatory T (Treg) development and inhibiting effector T (such as Th17) cell responses. However, the association between the PD-1/PD-L1 pathway and the Treg/Th17 imbalance has not been fully investigated in pre-eclampsia (PE). In this study, we observed an inverse correlation between the percentages of Treg and Th17 cells, and the expression of PD-1 and PD-L1 on the two subsets also changed in PE compared with normal pregnancy. We further explored their relationship in vivo using the L-NG-Nitroarginine Methyl Ester (L-NAME) induced PE-like rat models, also characterized by Treg/Th17 imbalance. Administration of PD-L1-Fc protein provides a protective effects on the pre-eclamptic models, both to the mother and the fetuses, by reversing Treg/Th17 imbalance through inhibiting PI3K/AKT/m-TOR signaling and enhancing PTEN expression. In addition, we also observed a protective effect of PD-L1-Fc on the placenta by reversing placental damages. These results suggested that altered PD-1/PD-L1 pathway contributed to Treg/Th17 imbalance in PE. Treatment with PD-L1-Fc posed protective effects on pre-eclamptic models, indicating that the use of PD-L1-Fc might be a potential therapeutic target in PE treatment. PMID:27277012

  5. Impairment of transendothelial leukocyte migration by iron complexes.

    PubMed

    Sengoelge, Gürkan; Kletzmayr, Josef; Ferrara, Ilse; Perschl, Agnes; Hörl, Walter H; Sunder-Plassmann, Gere

    2003-10-01

    Although iron sucrose and iron gluconate are generally well tolerated in patients who are treated for renal anemia, recent clinical studies and cell culture experiments suggested significant toxicity and long-term side effects arising from the use of these iron complexes. Because of the possible role of iron in infection or cardiovascular disease, it was theorized that parenteral iron compounds influence endothelial and PMN interaction in vitro. A well-established double-chamber method was used to assess the effect of different concentrations of iron sucrose and iron gluconate (1, 25, 50, and 100 micro g/ml) on the transendothelial migration of PMN. Preincubation of PMN and endothelial cells as well as preincubation of PMN alone with 25, 50, or 100 micro g/ml iron resulted in a significant decrease in PMN migration. In contrast, after incubation of the endothelial cells alone with iron, no reduction in the transendothelial migration of PMN was observed. Preincubation of PMN and/or endothelial cells with 1 micro g/ml iron did not lead to any decrease in the rate of migrated PMN. The only significant change in experiments with 1 micro g/ml was an increase in PMN migration after preincubation of endothelial cells and PMN with iron gluconate. A four-way ANOVA showed a significant effect of the iron concentration (P < 0.000001), of type of iron complex (P < 0.005), of the preincubation of endothelial cell (P < 0.001), and of the preincubation of PMN with iron (P < 0.000001) on PMN diapedesis. It is concluded that iron sucrose and iron gluconate cause a significant inhibition of transendothelial migration of PMN.

  6. Methylene blue modulates transendothelial migration of peripheral blood cells.

    PubMed

    Werner, Isabella; Guo, Fengwei; Bogert, Nicolai V; Stock, Ulrich A; Meybohm, Patrick; Moritz, Anton; Beiras-Fernandez, Andres

    2013-01-01

    Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose

  7. Methylene Blue Modulates Transendothelial Migration of Peripheral Blood Cells

    PubMed Central

    Werner, Isabella; Guo, Fengwei; Bogert, Nicolai V.; Stock, Ulrich A.; Meybohm, Patrick; Moritz, Anton; Beiras-Fernandez, Andres

    2013-01-01

    Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose

  8. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    SciTech Connect

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.

  9. Stathmin mediates neuroblastoma metastasis in a tubulin-independent manner via RhoA/ROCK signaling and enhanced transendothelial migration.

    PubMed

    Fife, C M; Sagnella, S M; Teo, W S; Po'uha, S T; Byrne, F L; Yeap, Y Y C; Ng, D C H; Davis, T P; McCarroll, J A; Kavallaris, M

    2017-01-26

    Neuroblastoma, the most common solid tumor of young children, frequently presents with aggressive metastatic disease and for these children the 5-year survival rates are dismal. Metastasis, the movement of cancer cells from one site to another, involves remodeling of the cytoskeleton including altered microtubule dynamics. The microtubule-destabilizing protein, stathmin, has recently been shown to mediate neuroblastoma metastasis although precise functions remain poorly defined. In this study we investigated stathmin's contribution to the metastatic process and potential mechanism(s) by which it exerts these effects. Stathmin suppression significantly reduced neuroblastoma cell invasion of 3D tumor spheroids into an extracellular matrix. Moreover, inhibiting stathmin expression significantly reduced transendothelial migration in two different neuroblastoma cell lines in vitro. Inhibition of ROCK, a key regulator of cell migration, in neuroblastoma cells highlighted that stathmin regulates transendothelial migration through ROCK signaling. Reduced stathmin expression in neuroblastoma cells significantly increased the activation of the RhoA small GTPase. Notably, re-expression of either wild type or a phospho-mimetic stathmin mutant (4E) made defective in tubulin binding returned cell migration and transendothelial migration back to control levels, indicating that stathmin may influence these processes in neuroblastoma cells independent of tubulin binding. Finally, stathmin suppression in neuroblastoma cells significantly reduced whole body, lung, kidney and liver metastases in an experimental metastases mouse model. In conclusion, stathmin suppression interferes with the metastatic process via RhoA/ROCK signaling in neuroblastoma cells. These findings highlight the importance of stathmin to the metastatic process and its potential as a therapeutic target for the treatment of neuroblastoma.

  10. Monocyte ADAM17 promotes diapedesis during transendothelial migration: identification of steps and substrates targeted by metalloproteinases.

    PubMed

    Tsubota, Yoshiaki; Frey, Jeremy M; Tai, Phillip W L; Welikson, Robert E; Raines, Elaine W

    2013-04-15

    Despite expanded definition of the leukocyte adhesion cascade and mechanisms underlying individual steps, very little is known about regulatory mechanisms controlling sequential shifts between steps. We tested the hypothesis that metalloproteinases provide a mechanism to rapidly transition monocytes between different steps. Our study identifies diapedesis as a step targeted by metalloproteinase activity. Time-lapse video microscopy shows that the presence of a metalloproteinase inhibitor results in a doubling of the time required for human monocytes to complete diapedesis on unactivated or inflamed human endothelium, under both static and physiological-flow conditions. Thus, diapedesis is promoted by metalloproteinase activity. In contrast, neither adhesion of monocytes nor their locomotion over the endothelium is altered by metalloproteinase inhibition. We further demonstrate that metalloproteinase inhibition significantly elevates monocyte cell surface levels of integrins CD11b/CD18 (Mac-1), specifically during transendothelial migration. Interestingly, such alterations are not detected for other endothelial- and monocyte-adhesion molecules that are presumed metalloproteinase substrates. Two major transmembrane metalloproteinases, a disintegrin and metalloproteinase (ADAM)17 and ADAM10, are identified as enzymes that control constitutive cleavage of Mac-1. We further establish that knockdown of monocyte ADAM17, but not endothelial ADAM10 or ADAM17 or monocyte ADAM10, reproduces the diapedesis delay observed with metalloproteinase inhibition. Therefore, we conclude that monocyte ADAM17 facilitates the completion of transendothelial migration by accelerating the rate of diapedesis. We propose that the progression of diapedesis may be regulated by spatial and temporal cleavage of Mac-1, which is triggered upon interaction with endothelium.

  11. MdSOS2L1 forms a complex with MdMYB1 to control vacuolar pH by transcriptionally regulating MdVHA-B1 in apples

    PubMed Central

    Sun, Cui-Hui; Zhang, Quan-Yan; Sun, Mei-Hong; Hu, Da-Gang

    2016-01-01

    ABSTRACT Vacuolar pH is important and involves in many different physiological processes in plants. A recent paper published in Plant Physiology reveals that MdMYB1 regulates vacuolar pH by directly transcriptionally regulating proton pump genes and malate transporters genes, such as V-ATPase subunit gene MdVHA-B1. Here, we found that MdSOS2L1 in vitro did not directly interact with MdMYB1, however, in vivo formed a complex with MdMYB1 in the nucleus to regulate MdVHA-B1-mediated vacuolar acidification. This finding shed light on the role of MdSOS2L1 in transcriptionally regulating MdVHA-B1 in addition to its post-modified function in apples. PMID:26910596

  12. MdSOS2L1 forms a complex with MdMYB1 to control vacuolar pH by transcriptionally regulating MdVHA-B1 in apples.

    PubMed

    Sun, Cui-Hui; Zhang, Quan-Yan; Sun, Mei-Hong; Hu, Da-Gang

    2016-01-01

    Vacuolar pH is important and involves in many different physiological processes in plants. A recent paper published in Plant Physiology reveals that MdMYB1 regulates vacuolar pH by directly transcriptionally regulating proton pump genes and malate transporters genes, such as V-ATPase subunit gene MdVHA-B1. Here, we found that MdSOS2L1 in vitro did not directly interact with MdMYB1, however, in vivo formed a complex with MdMYB1 in the nucleus to regulate MdVHA-B1-mediated vacuolar acidification. This finding shed light on the role of MdSOS2L1 in transcriptionally regulating MdVHA-B1 in addition to its post-modified function in apples.

  13. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumor cell PD-L1 expression and intratumoral immunosuppression

    PubMed Central

    Goswami, Sangeeta; Cortez, Maria Angelica; Ahn, Young-Ho; Byers, Lauren A.; Zhang, Xuejun; Yi, Xiaohui; Dwyer, David; Lin, Wei; Diao, Lixia; Wang, Jing; Roybal, Jonathon; Patel, Mayuri; Ungewiss, Christin; Peng, David; Antonia, Scott; Mediavilla-Varela, Melanie; Robertson, Gordon; Suraokar, Milind; Welsh, James W.; Erez, Baruch; Wistuba, Ignacio I.; Chen, Lieping; Peng, Di; Wang, Shanshan; Ullrich, Stephen E.; Heymach, John V.; Kurie, Jonathan M.; Qin, F. Xiao-Feng

    2014-01-01

    Immunosuppression of tumor-infiltrating lymphocytes (TIL) is a common feature of advanced cancer, but its biological basis has remained obscure. We demonstrate here a molecular link between epithelial-to-mesenchymal transition (EMT) and CD8+ TIL immunosuppression, two key drivers of cancer progression. We show that microRNA-200 (miR-200), a cell-autonomous suppressor of EMT and metastasis, targets PD-L1. Moreover, ZEB1, an EMT activator and transcriptional repressor of miR-200, relieves miR-200 repression of PD-L1 on tumor cells, leading to CD8+ T cell immunosuppression and metastasis. These findings are supported by robust correlations between the EMT score, miR-200 levels and PD-L1 expression in multiple human lung cancer datasets. In addition to revealing a link between EMT and T cell dysfunction, these findings also show that ZEB1 promotes metastasis through a heretofore unappreciated cell non-autonomous mechanism, and suggest that subgroups of patients in whom malignant progression is driven by EMT activators may respond to treatment with PD-L1 antagonists. PMID:25348003

  14. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression.

    PubMed

    Chen, Limo; Gibbons, Don L; Goswami, Sangeeta; Cortez, Maria Angelica; Ahn, Young-Ho; Byers, Lauren A; Zhang, Xuejun; Yi, Xiaohui; Dwyer, David; Lin, Wei; Diao, Lixia; Wang, Jing; Roybal, Jonathon; Patel, Mayuri; Ungewiss, Christin; Peng, David; Antonia, Scott; Mediavilla-Varela, Melanie; Robertson, Gordon; Suraokar, Milind; Welsh, James W; Erez, Baruch; Wistuba, Ignacio I; Chen, Lieping; Peng, Di; Wang, Shanshan; Ullrich, Stephen E; Heymach, John V; Kurie, Jonathan M; Qin, F Xiao-Feng

    2014-10-28

    Immunosuppression of tumour-infiltrating lymphocytes (TIL) is a common feature of advanced cancer, but its biological basis has remained obscure. We demonstrate here a molecular link between epithelial-to-mesenchymal transition (EMT) and CD8(+) TIL immunosuppression, two key drivers of cancer progression. We show that microRNA-200 (miR-200), a cell-autonomous suppressor of EMT and metastasis, targets PD-L1. Moreover, ZEB1, an EMT activator and transcriptional repressor of miR-200, relieves miR-200 repression of PD-L1 on tumour cells, leading to CD8(+) T-cell immunosuppression and metastasis. These findings are supported by robust correlations between the EMT score, miR-200 levels and PD-L1 expression in multiple human lung cancer datasets. In addition to revealing a link between EMT and T-cell dysfunction, these findings also show that ZEB1 promotes metastasis through a heretofore unappreciated cell non-autonomous mechanism, and suggest that subgroups of patients in whom malignant progression is driven by EMT activators may respond to treatment with PD-L1 antagonists.

  15. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    PubMed

    Hsieh, Chia-Chien; Huang, Yu-Shan

    2016-01-01

    Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF)-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM) and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development.

  16. mab21l2 transgenics reveal novel expression patterns of mab21l1 and mab21l2, and conserved promoter regulation without sequence conservation.

    PubMed

    Cederlund, Maria L; Vendrell, Victor; Morrissey, Maria E; Yin, Jun; Gaora, Peadar Ó; Smyth, Vincent A; Higgins, Desmond G; Kennedy, Breandán N

    2011-04-01

    mab21l1 and mab21l2 paralogs have widespread and dynamic expression patterns during vertebrate development. Both genes are expressed in the developing eye, midbrain, neural tube, and branchial arches. Our goal was to identify promoter regions with activity in mab21l2 expression domains. Assays of mab21l2 promoter-EGFP constructs in zebrafish embryos confirm that constructs containing 7.2 or 4.9 kb of mab21l2 promoter region are sufficient to drive expression in known (e.g., tectum, branchial arches) and unexpected domains (e.g., lens and retinal amacrine cells). A comparative analysis identifies complementary and novel expression domains of endogenous mab21l2 (e.g., lens and ventral iridocorneal canal) and mab21l1 (e.g., retinal amacrine and ganglion cells). Interestingly, therefore, despite the absence of conserved non-coding elements, a 4.9-kb mab21l2 promoter is sufficient to recapitulate expression in tissues unique to mab21l1 or mab21l2. Copyright © 2011 Wiley-Liss, Inc.

  17. PD-L1 regulates the Tregs’ capacity to repress shock/sepsis induced indirect lung injury (iALI) by recruiting phosphatase SHP-1

    PubMed Central

    Tang, Lunxian; Bai, Jianwen; Chung, Chun-Shiang; Lomas–Neira, Joanne; Chen, Yaping; Huang, Xin; Ayala, Alfred

    2014-01-01

    We recently reported that adoptively transferred (AT) exogenous CD4+CD25+ regulatory T cells (Tregs) to wild type (WT) mice can directly act to repress shock/sepsis induced experimental iALI and this is mediated in part by programmed cell death receptor 1 (PD-1). In this study, we further determine whether recipient mouse lacking PD-L1, one of the primary ligands for PD-1, contributes to the manipulation of the Tregs’ capacity to repress lung injury. To do this, Tregs isolated from the spleen of WT mice were AT into PD-L1−/− mice subjected to hemorrhagic shock [Hem] and subsequent to cecal ligation and puncture (CLP) to induce iALI. Samples were collected for analyses 24 hours after CLP. We found that in PD-L1−/− recipient mice, AT WT-Tregs lost the ability to reverse the development of iALI seen in WT recipient mice (i.e., no reduction of lung injury indices assessed by histology and vascular leakage; failure to decrease the lung neutrophil influx [MPO activity] or the rise in lung apoptosis [caspase 3 activity]). Also a significant increase of interlukin-1β (IL-1β) and keratinocyte-derived chemokine (KC), but no changes in IL-6, IL-10 and IL-17A levels in lung tissues were seen in these mice compared with iALI mice without AT of Tregs. Furthermore, we noted that the lung tissue tyrosine phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP-1), but not SHP-2, was activated with the AT of Tregs in PD-L1−/− iALI mice. Finally, through local depletion of CD4+ T cells or CD25+ (Tregs) in the lung, prior to inducing iALI, we found that SHP-1 activation was associated with the loss of Tregs’ protective effects in vivo. Collectively, our data reveal that PD-L1 is a critical modulator of Treg’s ability to suppress iALI and this appears to involve SHP-1 activation. PMID:25057927

  18. Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-γ in the early phase of adipogenesis.

    PubMed

    Zou, Bo; Ge, Zhenzhen; Zhu, Wei; Xu, Ze; Li, Chunmei

    2015-12-01

    Currently, obesity has become a worldwide health problem. Adipocyte differentiation is closely associated with the onset of obesity. Our previous studies suggested that persimmon tannin might be a potent anti-adipogenic dietary bioactive compound. However, the mechanism of persimmon tannin on adipocyte differentiation is still unknown. The purpose of this study was to investigate the effect of persimmon tannin on adipogenic differentiation in 3T3-L1 preadipocytes and the underlying mechanisms. Adipogenic differentiation was induced by cocktail in the presence or absence of persimmon tannin. Intracellular lipid accumulation was determined by Oil red O staining and enzymatic colorimetric methods. Gene expression and protein levels were measured by real time RT-PCR and Western blot. Persimmon tannin inhibited intracellular lipid accumulation markedly, and the inhibitory effect was largely limited to the early stage of adipocyte differentiation. Persimmon tannin suppressed the expression of C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ), significantly. Furthermore, genes related to lipogenesis, such as sterol regulatory element-binding protein 1, were down-regulated by persimmon tannin. In addition, adipocyte fatty acid binding protein (aP2), which is a target gene of PPARγ, was suppressed by persimmon tannin notably. Correspondingly, the expression of miR-27a and miR-27b were up-regulated by persimmon tannin from Day 2 to Day 8 significantly. Persimmon tannin inhibited adipocyte differentiation through regulation of PPARγ, C/EBPα and miR-27 in early stage of adipogenesis.

  19. Quantification of transendothelial migration using three-dimensional confocal microscopy.

    PubMed

    Cain, Robert J; d'Água, Bárbara Borda; Ridley, Anne J

    2011-01-01

    Migration of cells across endothelial barriers, termed transendothelial migration (TEM), is an important cellular process that underpins the pathology of many disease states including chronic inflammation and cancer metastasis. While this process can be modeled in vitro using cultured cells, many model systems are unable to provide detailed visual information of cell morphologies and distribution of proteins such as junctional markers, as well as quantitative data on the rate of TEM. Improvements in imaging techniques have made microscopy-based assays an invaluable tool for studying this type of detailed cell movement in physiological processes. In this chapter, we describe a confocal microscopy-based method that can be used to assess TEM of both leukocytes and cancer cells across endothelial barriers in response to a chemotactic gradient, as well as providing information on their migration into a subendothelial extracellular matrix, designed to mimic that found in vivo.

  20. Hydroxytyrosol stimulates lipolysis via A-kinase and extracellular signal-regulated kinase activation in 3T3-L1 adipocytes.

    PubMed

    Drira, Riadh; Sakamoto, Kazuichi

    2014-04-01

    The principal function of the adipose tissue is the storage of energy in the form of triglyceride through the process of adipogenesis, as well as the provision of the stored energy through lipolysis. In the present study, we investigated the effect of hydroxytyrosol on lipolysis in 3T3-L1 adipocytes. 3T3-L1 adipocytes, used as in vitro model in this study, were treated with several concentration of hydroxytyrosol. Glycerol release was measured to identify the lipolytic rate activation. All factors activation and expression were carried out via Western blotting and qRT-PCR. Our results showed that hydroxytyrosol, over a range of concentrations, attenuated triglyceride accumulation and stimulated glycerol release in fully differentiated adipocytes in a dose- and time-dependent manner. Moreover, hydroxytyrosol had no effect on adipocyte viability. To understand the mechanism underlying hydroxytyrosol-stimulated lipolysis, we used inhibitors of PKA, PKC, PKG, ERK1/2, and nitric oxide production. Pretreatment with a PKA inhibitor (Rp-cAMPs) and an ERK1/2 inhibitor (U0126) significantly attenuated hydroxytyrosol-stimulated lipolysis. In contrast, a PKC inhibitor (Calphostin C), 2 PKG inhibitors (KT 5823 and Rp-cGMPs), and a nitric oxide inhibitor (S-ethyl ITU) had no effect on hydroxytyrosol-stimulated lipolysis. Over the same range of concentrations, hydroxytyrosol downregulated the expression of adipose triglyceride lipase, hormone sensitive lipase (HSL), and adipogenesis-related transcription factors PPARγ and C/EBPα. In addition, hydroxytyrosol increased the phosphorylation rate of HSL at Ser563 and Ser660, as well as perilipin and ERK phosphorylation. Hydroxytyrosol induced lipolysis in 3T3-L1 adipocytes via the activation of PKA and ERK1/2 pathway.

  1. 4-Hydroxyisoleucine ameliorates an insulin resistant-like state in 3T3-L1 adipocytes by regulating TACE/TIMP3 expression

    PubMed Central

    Gao, Feng; Du, Wen; Zafar, Mohammad Ishraq; Shafqat, Raja Adeel; Jian, Liumeng; Cai, Qin; Lu, Furong

    2015-01-01

    Background Obesity-associated insulin resistance (IR) is highly correlated with soluble tumor necrosis factor-α (sTNF-α), which is released from transmembranous TNF-α by TNF-α converting enzyme (TACE). In vivo, TACE activity is suppressed by tissue inhibitor of metalloproteinase 3 (TIMP3). Agents that can interact with TACE/TIMP3 to improve obesity-related IR would be highly valuable. In the current study, we assessed whether (2S,3R,4S)-4-hydroxyisoleucine (4-HIL) could modulate TACE/TIMP3 and ameliorate an obesity-induced IR-like state in 3T3-L1 adipocytes. Materials and methods 3T3-L1 adipocytes were incubated in the presence of 25 mM glucose and 0.6 nM insulin to induce an IR-like state, and were then treated with different concentrations of 4-HIL or 10 µM pioglitazone (positive control). The glucose uptake rate was determined using the 2-deoxy-[3H]-d-glucose method, and the levels of sTNF-α in the cell supernatant were determined using ELISA. The protein expression of TACE, TIMP3, and insulin signaling-related molecules was measured using western blotting. Results Exposure to high glucose and insulin for 18 hours increased the levels of sTNF-α in the cell supernatant. The phosphorylation of insulin receptor substrate-1 (IRS-1) Ser307 and Akt Ser473 was increased, whereas the protein expression of IRS-1, Akt, and glucose transporter-4 was decreased. The insulin-induced glucose uptake was reduced by 67% in 3T3-L1 adipocytes, which indicated the presence of an IR-like state. The above indexes, which demonstrated the successful induction of an IR-like state, were reversed by 4-HIL in a dose-dependent manner by downregulating and upregulating the protein expression of TACE and TIMP3 proteins, respectively. Conclusion 4-HIL improved an obesity-associated IR-like state in 3T3-L1 adipocytes by targeting TACE/TIMP3 and the insulin signaling pathway. PMID:26527864

  2. Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells

    PubMed Central

    Jeong, Soo-Jin; Yoo, Sae-Rom; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE), a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH), a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer binding protein-alpha (C/EBP-α), fatty acid synthase (FAS), lipoprotein lipase (LPL), and fatty acid binding protein 4 (FABP4). Importantly, SSE increased the phosphorylation of ERK1/2, but not p38 MAPK and JNK, in adipose cells. Overall, our results indicate that SSE exerts antiadipogenic activity and modulates expressions of adipogenesis-related genes and ERK1/2 activation in adipocytes. PMID:26483846

  3. The autophagy elongation complex (ATG5-12/16L1) positively regulates HCV replication and is required for wild-type membranous web formation

    PubMed Central

    Fahmy, Ahmed M.; Labonté, Patrick

    2017-01-01

    Hepatitis C virus (HCV) infection induces intracellular membrane rearrangements, thus forming a membranous web (MW) in which HCV replication and assembly occur. The HCV-induced MW is primarily composed of double membrane vesicles (DMVs) transfused by multi-membrane vesicles. The autophagy machinery has been proposed to participate in the formation of such vesicles. However, no clear evidence has been found linking autophagy to the formation of these DMVs. In this study, we evaluated the role of the autophagy elongation complex (ATG5-12/16L1) in HCV replication and MW formation. Using a dominant negative form of ATG12 and an siRNA approach, we demonstrated that the ATG5-12 conjugate, but not LC3-II formation, is crucial for efficient viral replication. Furthermore, purification of HCV MW revealed the presence of ATG5-12 and ATG16L1 along with HCV nonstructural proteins. Interestingly, LC3 was not recruited along with the elongation complex to the site of viral replication. Finally, inhibition of the elongation complex, but not LC3, greatly impaired the formation of the wild-type MW phenotype. To our knowledge, this study provides the first evidence of the involvement of autophagy proteins in the formation of wild-type MWs. PMID:28067309

  4. Tubby-like protein superfamily member PLSCR3 functions as a negative regulator of adipogenesis in mouse 3T3-L1 preadipocytes by suppressing induction of late differentiation stage transcription factors.

    PubMed

    Inokawa, Akira; Inuzuka, Tatsutoshi; Takahara, Terunao; Shibata, Hideki; Maki, Masatoshi

    2015-12-16

    PLSCR3 (phospholipid scramblase 3, Scr3) belongs to the superfamily of membrane-associated transcription regulators named Tubby-like proteins (TULPs). Physiological phospholipid scrambling activities of PLSCRs in vivo have been skeptically argued, and knowledge of the biological functions of Scr3 is limited. We investigated the expression of Scr3 during differentiation of mouse 3T3-L1 preadipocytes by Western blotting (WB) and by reverse-transcription and real-time quantitative PCR (RT-qPCR). The Scr3 protein decreased during 3T3-L1 differentiation accompanied by a reduction in the mRNA level, and there was a significant increase in the amount of Scr3 protein secreted into the culture medium in the form of extracellular microvesicles (exosomes). On the other hand, Scr3 expression did not significantly decrease, and the secretion of Scr3 in 3T3 Swiss-albino fibroblasts (a parental cell-line of 3T3-L1) was not increased by differentiation treatment. Overexpression of human Scr3 during 3T3-L1 differentiation suppressed triacylglycerol accumulation and inhibited induction of the mRNAs of late stage pro-adipogenic transcription factors [CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ)] and X-box-binding protein 1 (XBP1). Expression of early stage pro-adipogenic transcription factors (C/EBPβ and C/EBPδ) was not significantly affected. These results suggest that Scr3 functions as a negative regulator of adipogenesis in 3T3-L1 cells at a specific differentiation stage and that decrease in the intracellular amount of Scr3 protein caused by reduction in Scr3 mRNA expression and enhanced secretion of Scr3 protein appears to be important for appropriate adipocyte differentiation. © 2016 Authors.

  5. Tubby-like protein superfamily member PLSCR3 functions as a negative regulator of adipogenesis in mouse 3T3-L1 preadipocytes by suppressing induction of late differentiation stage transcription factors

    PubMed Central

    Inokawa, Akira; Inuzuka, Tatsutoshi; Takahara, Terunao; Shibata, Hideki; Maki, Masatoshi

    2015-01-01

    PLSCR3 (phospholipid scramblase 3, Scr3) belongs to the superfamily of membrane-associated transcription regulators named Tubby-like proteins (TULPs). Physiological phospholipid scrambling activities of PLSCRs in vivo have been skeptically argued, and knowledge of the biological functions of Scr3 is limited. We investigated the expression of Scr3 during differentiation of mouse 3T3-L1 preadipocytes by Western blotting (WB) and by reverse-transcription and real-time quantitative PCR (RT-qPCR). The Scr3 protein decreased during 3T3-L1 differentiation accompanied by a reduction in the mRNA level, and there was a significant increase in the amount of Scr3 protein secreted into the culture medium in the form of extracellular microvesicles (exosomes). On the other hand, Scr3 expression did not significantly decrease, and the secretion of Scr3 in 3T3 Swiss-albino fibroblasts (a parental cell-line of 3T3-L1) was not increased by differentiation treatment. Overexpression of human Scr3 during 3T3-L1 differentiation suppressed triacylglycerol accumulation and inhibited induction of the mRNAs of late stage pro-adipogenic transcription factors [CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ)] and X-box-binding protein 1 (XBP1). Expression of early stage pro-adipogenic transcription factors (C/EBPβ and C/EBPδ) was not significantly affected. These results suggest that Scr3 functions as a negative regulator of adipogenesis in 3T3-L1 cells at a specific differentiation stage and that decrease in the intracellular amount of Scr3 protein caused by reduction in Scr3 mRNA expression and enhanced secretion of Scr3 protein appears to be important for appropriate adipocyte differentiation. PMID:26677203

  6. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  7. Sida rhomboidea. Roxb Leaf Extract Down-Regulates Expression of PPARγ2 and Leptin Genes in High Fat Diet Fed C57BL/6J Mice and Retards in Vitro 3T3L1 Pre-Adipocyte Differentiation

    PubMed Central

    Thounaojam, Menaka C.; Jadeja, Ravirajsinh N.; Ramani, Umed V.; Devkar, Ranjitsinh V.; Ramachandran, A. V.

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity. PMID:21845103

  8. Cdc42 promotes transendothelial migration of cancer cells through β1 integrin.

    PubMed

    Reymond, Nicolas; Im, Jae Hong; Garg, Ritu; Vega, Francisco M; Borda d'Agua, Barbara; Riou, Philippe; Cox, Susan; Valderrama, Ferran; Muschel, Ruth J; Ridley, Anne J

    2012-11-12

    Cancer cells interact with endothelial cells during the process of metastatic spreading. Here, we use a small interfering RNA screen targeting Rho GTPases in cancer cells to identify Cdc42 as a critical regulator of cancer cell-endothelial cell interactions and transendothelial migration. We find that Cdc42 regulates β1 integrin expression at the transcriptional level via the transcription factor serum response factor (SRF). β1 integrin is the main target for Cdc42-mediating interaction of cancer cells with endothelial cells and the underlying extracellular matrix, as exogenous β1 integrin expression was sufficient to rescue the Cdc42-silencing phenotype. We show that Cdc42 was required in vivo for cancer cell spreading and protrusion extension along blood vessels and retention in the lungs. Interestingly, transient Cdc42 depletion was sufficient to decrease experimental lung metastases, which suggests that its role in endothelial attachment is important for metastasis. By identifying β1 integrin as a transcriptional target of Cdc42, our results provide new insight into Cdc42 function.

  9. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells.

    PubMed

    Valentino, Rossella; D'Esposito, Vittoria; Passaretti, Federica; Liotti, Antonietta; Cabaro, Serena; Longo, Michele; Perruolo, Giuseppe; Oriente, Francesco; Beguinot, Francesco; Formisano, Pietro

    2013-01-01

    Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA) is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1 nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.

  10. TNF-α decreases lipoprotein lipase activity in 3T3-L1 adipocytes by up-regulation of angiopoietin-like protein 4.

    PubMed

    Makoveichuk, Elena; Vorrsjö, Evelina; Olivecrona, Thomas; Olivecrona, Gunilla

    2017-05-01

    Lipoprotein lipase (LPL) hydrolyzes lipids in plasma lipoproteins so that the fatty acids can be taken up and used by cells. The activity of LPL changes rapidly in response to changes in nutrition, physical activity and other conditions. Angiopoietin-like protein 4 (ANGPTL4) is an important controller of LPL activity. Both LPL and ANGPTL4 are produced and secreted by adipocytes. When the transcription blocker Actinomycin D was added to cultures of 3T3-L1 adipocytes, LPL activity in the medium increased several-fold. LPL mRNA decreased moderately during 5h, while ANGPTL4 mRNA and protein declined rapidly, explaining that LPL activity was increased. TNF-α is known to reduce LPL activity in adipose tissue. We have shown that TNF-α increased ANGPTL4 both at the mRNA and protein level. Expression of ANGPTL4 is known to be under control of Foxo1. Use of the Foxo1-specific inhibitor AS1842856, or knockdown of ANGPTL4 by RNAi, resulted in increased LPL activity in the medium. Both with ActD and with the Foxo1 inhibitor the cells became unresponsive to TNF-α. This study shows that TNF-α, by a Foxo1 dependent pathway, increases the transcription of ANGPTL4 which is secreted by the cells and causes inactivation of LPL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. cAMP-dependent posttranscriptional regulation of steroidogenic acute regulatory (STAR) protein by the zinc finger protein ZFP36L1/TIS11b.

    PubMed

    Duan, Haichuan; Cherradi, Nadia; Feige, Jean-Jacques; Jefcoate, Colin

    2009-04-01

    Star is expressed in steroidogenic cells as 3.5- and 1.6-kb transcripts that differ only in their 3'-untranslated regions (3'-UTR). In mouse MA10 testis and Y-1 adrenal lines, Br-cAMP preferentially stimulates 3.5-kb mRNA. ACTH is similarly selective in primary bovine adrenocortical cells. The 3.5-kb form harbors AU-rich elements (AURE) in the extended 3'-UTR, which enhance turnover. After peak stimulation of 3.5-kb mRNA, degradation is seen. Star mRNA turnover is enhanced by the zinc finger protein ZFP36L1/TIS11b, which binds to UAUUUAUU repeats in the extended 3'-UTR. TIS11b is rapidly stimulated in each cell type in parallel with Star mRNA. Cotransfection of TIS11b selectively decreases cytomegalovirus-promoted Star mRNA and luciferase-Star 3'-UTR reporters harboring the extended 3'-UTR. Direct complex formation was demonstrated between TIS11b and the extended 3'-UTR of the 3.5-kb Star. AURE mutations revealed that TIS11b-mediated destabilization required the first two UAUUUAUU motifs. HuR, which also binds AURE, did not affect Star expression. Targeted small interfering RNA knockdown of TIS11b specifically enhanced stimulation of 3.5-kb Star mRNA in bovine adrenocortical cells, MA-10, and Y-1 cells but did not affect the reversals seen after peak stimulation. Direct transfection of Star mRNA demonstrated that Br-cAMP stimulated a selective turnover of 3.5-kb mRNA independent of AURE, which may correspond to these reversal processes. Steroidogenic acute regulatory (STAR) protein induction was halved by TIS11b knockdown, concomitant with decreased cholesterol metabolism. TIS11b suppression of 3.5-kb mRNA is therefore surprisingly coupled to enhanced Star translation leading to increased cholesterol metabolism.

  12. Uveal melanoma cells utilize a novel route for transendothelial migration.

    PubMed

    Onken, Michael D; Li, Jinmei; Cooper, John A

    2014-01-01

    Uveal melanoma arises in the eye, and it spreads to distant organs in almost half of patients, leading to a fatal outcome. To metastasize, uveal melanoma cells must transmigrate into and out of the microvasculature, crossing the monolayer of endothelial cells that separates the vessel lumen from surrounding tissues. We investigated how human uveal melanoma cells cross the endothelial cell monolayer, using a cultured cell system with primary human endothelial cell monolayers on hydrogel substrates. We found that uveal melanoma cells transmigrate by a novel and unexpected mechanism. Uveal melanoma cells intercalate into the endothelial cell monolayer and flatten out, assuming a shape and geometry similar to those of endothelial cells in the monolayer. After an extended period of time in the intercalated state, the uveal melanoma cells round up and migrate underneath the monolayer. VCAM is present on endothelial cells, and anti-VCAM antibodies slowed the process of intercalation. Depletion of BAP1, a known suppressor of metastasis in patients, increased the amount of transmigration of uveal melanoma cells in transwell assays; but BAP1 depletion did not affect the rate of intercalation, based on movies of living cells. Our results reveal a novel route of transendothelial migration for uveal melanoma cells, and they provide insight into the mechanism by which loss of BAP1 promotes metastasis.

  13. Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes.

    PubMed

    Ayres-Sander, Chantal E; Lauridsen, Holly; Maier, Cheryl L; Sava, Parid; Pober, Jordan S; Gonzalez, Anjelica L

    2013-01-01

    During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored. Here we analyze human neutrophil interactions with interleukin (IL)-1β-activated human EC monolayers, PC monolayers and EC/PC bilayers in vitro. Compared to EC, PC support much lower levels of neutrophil binding (54.6% vs. 7.1%, respectively) and transmigration (63.7 vs. 8.8%, respectively) despite comparable levels of IL-8 (CXCL8) synthesis and display. Remarkably, EC/PC bilayers support intermediate levels of transmigration (37.7%). Neutrophil adhesion to both cell types is Mac-1-dependent and while ICAM-1 transduction of PCs increases neutrophil adhesion to (41.4%), it does not increase transmigration through PC monolayers. TEM, which increases neutrophil Mac-1 surface expression, concomitantly increases the ability of neutrophils to traverse PCs (19.2%). These data indicate that contributions from both PCs and ECs must be considered in evaluation of microvasculature function in acute inflammation.

  14. High-resolution fluorescence microscopy to study transendothelial migration.

    PubMed

    Carman, Christopher V

    2012-01-01

    Immune system functions rely heavily on the ability of immune cells (i.e., blood leukocyte) to traffic throughout the body as they conduct immune surveillance and respond to pathogens. A monolayer of vascular endothelial cells (i.e., the "endothelium") provides a critical, selectively permeable barrier between two principal compartments of the body: the blood circulation and the tissue. Thus, knowledge of the basic mechanisms by which leukocytes migrate across the endothelium (i.e., undergo "transendothelial migration"; TEM) is critical for understanding immune system function. Cultured endothelial cell monolayers, used in combination with isolated blood leukocytes, provide a basis for highly useful in vitro models for study of TEM. When used in conjunction with high spatial and temporal resolution imaging approaches, such models have begun to reveal complex and dynamic cell behaviors in leukocytes and endothelial cells that ultimately determine TEM efficiency. In this chapter, we provide protocols for setting up a basic in vitro TEM system and for conducting high-resolution dynamic live-cell and three-dimensional fixed-cell imaging of TEM.

  15. Endothelial monolayers and transendothelial migration depend on mechanical properties of the substrate.

    PubMed

    Onken, Michael D; Mooren, Olivia L; Mukherjee, Suranjana; Shahan, Stefanie T; Li, Jinmei; Cooper, John A

    2014-12-01

    Endothelial cells (ECs) line the microvasculature and constitute a barrier between the vessel lumen and surrounding tissues. ECs inform circulating immune cells of the health and integrity of surrounding tissues, recruiting them in response to pathogens and tissue damage. ECs play an active role in the transmigration of immune cells across the vessel wall. We have discovered important differences in the properties of ECs on soft hydrogel substrates of varying stiffness, in comparison to glass. Primary ECs from several human sources were tested; all formed monolayers normally on soft substrates. EC monolayers formed more mature cell-cell junctions on soft substrates, relative to glass, based on increased recruitment of vinculin and F-actin. EC monolayers supported transendothelial migration (TEM) on soft substrates. Immune cells, including peripheral blood lymphocytes (PBLs) and natural killer cells, showed decreasing numbers of paracellular (between-cell) transmigration events with decreasing substrate stiffness, while the number of transcellular (through-cell) events increased for PBLs. Melanoma cancer cells showed increased transmigration with decreased stiffness. Our findings demonstrate that endothelial monolayers respond to the mechanical properties of their surroundings, which can regulate the integrity and function of the monolayer independently from inflammatory signals. Soft hydrogel substrates are a more appropriate and physiological model for tissue environments than hard substrates, with important implications for the experimental analysis of TEM.

  16. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration.

    PubMed

    Schaefer, Antje; Hordijk, Peter L

    2015-07-01

    The breaching of cellular and structural barriers by migrating cells is a driving factor in development, inflammation and tumor cell metastasis. One of the most extensively studied examples is the extravasation of activated leukocytes across the vascular endothelium, the inner lining of blood vessels. Each step of this leukocyte transendothelial migration (TEM) process is regulated by distinct endothelial adhesion receptors such as the intercellular adhesion molecule 1 (ICAM1). Adherent leukocytes exert force on these receptors, which sense mechanical cues and transform them into localized mechanosignaling in endothelial cells. In turn, the function of the mechanoreceptors is controlled by the stiffness of the endothelial cells and of the underlying substrate representing a positive-feedback loop. In this Commentary, we focus on the mechanotransduction in leukocytes and endothelial cells, which is induced in response to variations in substrate stiffness. Recent studies have described the first key proteins involved in these mechanosensitive events, allowing us to identify common regulatory mechanisms in both cell types. Finally, we discuss how endothelial cell stiffness controls the individual steps in the leukocyte TEM process. We identify endothelial cell stiffness as an important component, in addition to locally presented chemokines and adhesion receptors, which guides leukocytes to sites that permit TEM.

  17. Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform.

    PubMed

    Wu, Xiaojie; Newbold, Molly A; Haynes, Christy L

    2015-08-07

    Neutrophil transendothelial migration (TEM) is an essential physiological process that regulates the recruitment of neutrophils in response to inflammatory signals. Herein, a versatile hydrogel scaffold is embedded in a microfluidic platform that supports an endothelial cell layer cultured in the vertical direction and highly stable chemical gradients; this construct is employed to mimic the in vivo neutrophil TEM process. We found that the number of neutrophils migrating across the endothelial cell layer is dependent on the presented chemoattractant concentration and the spatial profile of the chemical gradient. Endothelial cells play a critical role in neutrophil TEM by promoting neutrophil morphological changes as well as expressing surface receptor molecules that are indispensable for inducing neutrophil attachment and migration. Furthermore, the microfluidic device also supports competing chemoattractant gradients to facilitate neutrophil TEM studies in complex microenvironments that more accurately model the in vivo system than simplified microenvironments without the complexity of chemical gradients. This work demonstrates that combinations of any two different chemoattractants induce more significant neutrophil migration than a single chemoattractant in the same total amount, indicating synergistic effects between distinct chemoattractants. The in vitro reconstitution of neutrophil TEM successfully translates planar neutrophil movement into in vivo-like neutrophil recruitment and accelerates understanding of cellular interactions between neutrophils and endothelial cells within the complicated physiological milieu.

  18. Regulation of StAR by the N-terminal Domain and Coinduction of SIK1 and TIS11b/Znf36l1 in Single Cells.

    PubMed

    Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin

    2016-01-01

    The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb St

  19. Regulation of StAR by the N-terminal Domain and Coinduction of SIK1 and TIS11b/Znf36l1 in Single Cells

    PubMed Central

    Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin

    2016-01-01

    The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb St

  20. Testosterone regulates 3T3-L1 pre-adipocyte differentiation and epididymal fat accumulation in mice through modulating macrophage polarization.

    PubMed

    Ren, Xiaojiao; Fu, Xiaojian; Zhang, Xinhua; Chen, Shiqiang; Huang, Shuguang; Yao, Lun; Liu, Guoquan

    2017-09-15

    Low testosterone levels are strongly related to obesity in males. The balance between the classically M1 and alternatively M2 polarized macrophages also plays a critical role in obesity. It is not clear whether testosterone regulates macrophage polarization and then affects adipocyte differentiation. In this report, we demonstrate that testosterone strengthens interleukin (IL) -4-induced M2 polarization and inhibits lipopolysaccharide (LPS)-induced M1 polarization, but has no direct effect on adipocyte differentiation. Cellular signaling studies indicate that testosterone regulates macrophage polarization through the inhibitory regulative G-protein (Gαi) mainly, rather than via androgen receptors, and phosphorylation of Akt. Moreover, testosterone inhibits pre-adipocyte differentiation induced by M1 macrophage medium. Lowering of serum testosterone in mice by injecting a luteinizing hormone receptor (LHR) peptide increases epididymal white adipose tissue. Testosterone supplementation reverses this effect. Therefore, our findings indicate that testosterone inhibits pre-adipocyte differentiation by switching macrophages to M2 polarization through the Gαi and Akt signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  2. Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells.

    PubMed

    Wu, Mengqing; Liu, Dan; Zeng, Rong; Xian, Tao; Lu, Yi; Zeng, Guohua; Sun, Zhangzetian; Huang, Bowei; Huang, Qiren

    2017-01-15

    Epigallocatechin-3-gallate (EGCG), a major component in green tea, functions as extensive bioactivities including anti-inflammation, anti-oxidation, and anti-cancer. However, little is known about its anti-adipogenesis and underlying mechanisms. The purport of this study sought to investigate effects of EGCG on 3T3-L1 preadipocyte differentiation and to explore its possible mechanisms. The 3T3-L1 cells were induced to differentiate under the condition of pro-adipogenic cocktail with or without indicated EGCG concentrations (10, 50, 100, 200µM) for 2, 4, 6 and 8 days, respectively. Also, another batch of 3T3-L1 cells was induced under the optimal EGCG concentration (100µM) with or without SC3036 (PI3K activator, 10µM) or SC79 (AKT activator, 0.5µM) for 8 days. Subsequently, the cell viability was examined by MTT assay and the cell morphology was visualized by Oil red O staining. Finally, the mRNA levels including peroxisome proliferator activated receptor γ (PPARγ) and fatty acid synthase (FAS) were detected by quantitative real time PCR, while the protein levels of PPARγ, FAS, phosphatidylinositol 3 kinase (PI3K), insulin receptor substrate1(IRS1), AKT, and p-AKT were measured by immunoblotting analysis. Our results showed that EGCG inhibited adipogenesis of 3T3-L1 preadipocyte in a concentration-dependent manner. Moreover, the inhibitory effects were reversed by SC3036 or SC79, suggesting that the inhibitory effects of EGCG are mediated by PI3K-AKT signaling to down-regulate PPARγ and FAS expression levels. The findings shed light on EGCG anti-adipogenic effects and its underlying mechanism and provide a novel preventive-therapeutic potential for obesity subjects as a compound from Chinese green tea. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Inhibitory Effects of Hwangryunhaedok-Tang in 3T3-L1 Adipogenesis by Regulation of Raf/MEK1/ERK1/2 Pathway and PDK1/Akt Phosphorylation

    PubMed Central

    Lee, Ji-Hye; Kim, Dong-Gun; Kim, Taesoo; Lee, Kwang Jin; Ma, Jin Yeul

    2013-01-01

    Hwangryunhaedok-tang (HRT) has been long used as traditional medicine in Asia. However, inhibitory role of HRT is unclear in early stage of 3T3-L1 adipocyte differentiation related to signaling. In the present study, we investigated the inhibitory effects of HRT on upstream signaling of peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-β (C/EBP-β) expression in differentiation of 3T3-L1 preadipocytes. We found that HRT significantly inhibited the adipocyte differentiation by downregulating several adipocyte-specific transcription factors including PPAR-γ, C/EBP-α, and C/EBP-β in 3T3-L1 preadipocytes. Furthermore, we observed that HRT markedly inhibited the differentiation media-mediated phosphorylation of Raf/extracellular mitogen-activated protein kinase 1 (MEK1)/signal-regulated protein kinase 1/2 (ERK1/2) and phosphorylation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. These results indicate that anti-adipogenesis mechanism involves the downregulation of the major transcription factors of adipogenesis including PPAR-γ and C/EBP-α through inhibition of Raf/MEK1/ERK1/2 phosphorylation and PDK1/Akt phosphorylation by HRT. Furthermore, high performance liquid chromatography (HPLC) analysis showed HRT contains active antiobesity constituents such as palmatine, berberine, geniposide, baicalin, baicalein, and wogonin. Taken together, this study suggested that anti-adipogenesis effects of HRT were accounted by downregulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt pathway during 3T3-L1 adipocyte differentiation. PMID:23762131

  4. PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway.

    PubMed

    Kim, Byung-Gyu; Park, Youn-Je; Libermann, Towia A; Cho, Je-Yoel

    2011-08-01

    Continuous treatment with parathyroid hormone (PTH) or excess endogenous PTH due to primary hyperparathyroidism causes increased bone resorption and, subsequently, decreased bone volume. Our previous studies showed that myeloid Elf-1-like factor (MEF) not only suppresses osteoblast differentiation through inhibition of Runx2 activity and other osteogenesis-related genes but also specifically increases the expression of Mab21, a potential transcriptional repressor of osteoblast differentiation. Here we show that the JNK1 pathway is involved in the MEF-mediated up-regulation of Mab21 expression due to PTH stimulation. PTH increased the transcription level of Mab21 in MG63 human osteoblastic cells, in contrast to the suppressive effect of TGFβ1. PTH phosphorylates serine residues of MEF as well as c-Jun, a known substrate of JNK1. By in vitro kinase assay, we confirmed that MEF is phosphorylated by JNK1, but not by ERK. Co-transfection of MEF with both MKK4 and JNK1 increased the promoter activity of Mab21 in CV1 cells significantly more than MEF alone. We also identified the phosphorylation of MEF serine 641 by in vitro and in vivo JNK1 kinase assays combined with a proteomics approach. In conclusion, our findings indicate that MEF is involved in PTH suppression of osteoblasts through activating the MKK4/JNK1 pathway and subsequently up-regulating Mab21 expression.

  5. RacGAP1-driven focal adhesion formation promotes melanoma transendothelial migration through mediating adherens junction disassembly.

    PubMed

    Zhang, Pu; Bai, Huiyuan; Fu, Changliang; Chen, Feng; Zeng, Panying; Wu, Chengxiang; Ye, Qichao; Dong, Cheng; Song, Yang; Song, Erqun

    2015-03-27

    Melanoma cell migration across vascular endothelial cells is an essential step of tumor metastasis. Here, we provide evidence that RacGAP1, a cytokinesis-related Rho GTPase-activating protein, contributed to this process. Depletion of RacGAP1 with RacGAP1-targeting siRNA or overexpression of RacGAP1 mutant (T249A) attenuated melanoma cell transendothelial migration and concomitant changes of adherens junctions. In addition, RacGAP1 promoted the activations of RhoA, FAK, paxillin and triggered focal adhesion formation and cytoskeletal rearrangement. By overexpressing FAK-related non-kinase (FRNK) in endothelium, we showed that RacGAP1 mediated endothelial barrier function loss and melanoma transmigration in a focal adhesion-dependent manner. These results suggest that endothelial RacGAP1 may play critical roles in pathogenic processes of cancer by regulating endothelial permeability.

  6. Insulin up-regulates heme oxygenase-1 expression in 3T3-L1 adipocytes via PI3-kinase- and PKC-dependent pathways and heme oxygenase-1-associated microRNA downregulation.

    PubMed

    Chang, Chih-Ling; Au, Lo-Chun; Huang, Seng-Wong; Fai Kwok, Ching; Ho, Low-Tone; Juan, Chi-Chang

    2011-02-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has antioxidant, antiinflammatory, and antiapoptotic effects in many physiological systems. HO-1 activity in obese mice is lower than in controls, and a sustained increase in HO-1 protein levels ameliorates insulin resistance and compensatory hyperinsulinemia. In the present study, we explored the regulatory effect of insulin on HO-1 expression in 3T3-L1 adipocytes and the underlying mechanism. We investigated the time- and dose-effect of insulin on HO-1 expression in 3T3-L1 adipocytes. Using specific inhibitors acting on insulin signaling pathways, we clarified the involvement of insulin downstream signaling molecules in insulin-regulated HO-1 expression. We also investigated the involvement of microRNAs (miRNAs) in insulin-regulated HO-1 expression using microarray and real-time RT-PCR assays. In an in vivo study, we performed insulin/glucose coinfusion in rats to increase circulating insulin levels for 8 h, then measured adipocyte HO-1 expression. Insulin caused a significant increase in HO-1 expression that was time- and dose-dependent, and this effect was blocked by inhibition of phosphatidylinositol 3 (PI3)-kinase activation using LY294002 (50 μM) or of protein kinase C activation using Ro-318220 (2 μM), but not by an Akt inhibitor, triciribine (10 μM). Furthermore, incubation of 3T3-L1 adipocytes with 100 nm insulin resulted in a significant decrease in levels of the miRNAs mir-155, mir-183, and mir-872, and this effect was also blocked by pretreatment with LY294002 or Ro-318220, but not triciribine. An in vivo study in rats showed that 8 h of a hyperinsulinemic euglycemic state resulted in a significant increase in adipocyte HO-1 expression. In conclusion, insulin increases HO-1 protein expression in 3T3-L1 adipocytes via PI3-kinase and protein kinase C-dependent pathways and miRNAs down-regulation.

  7. Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots.

    PubMed

    Shulman, Ziv; Cohen, Shmuel J; Roediger, Ben; Kalchenko, Vyacheslav; Jain, Rohit; Grabovsky, Valentin; Klein, Eugenia; Shinder, Vera; Stoler-Barak, Liat; Feigelson, Sara W; Meshel, Tsipi; Nurmi, Susanna M; Goldstein, Itamar; Hartley, Olivier; Gahmberg, Carl G; Etzioni, Amos; Weninger, Wolfgang; Ben-Baruch, Adit; Alon, Ronen

    2011-12-04

    Chemokines presented by the endothelium are critical for integrin-dependent adhesion and transendothelial migration of naive and memory lymphocytes. Here we found that effector lymphocytes of the type 1 helper T cell (T(H)1 cell) and type 1 cytotoxic T cell (T(C)1 cell) subtypes expressed adhesive integrins that bypassed chemokine signals and established firm arrests on variably inflamed endothelial barriers. Nevertheless, the transendothelial migration of these lymphocytes strictly depended on signals from guanine nucleotide-binding proteins of the G(i) type and was promoted by multiple endothelium-derived inflammatory chemokines, even without outer endothelial surface exposure. Instead, transendothelial migration-promoting endothelial chemokines were stored in vesicles docked on actin fibers beneath the plasma membranes and were locally released within tight lymphocyte-endothelial synapses. Thus, effector T lymphocytes can cross inflamed barriers through contact-guided consumption of intraendothelial chemokines without surface-deposited chemokines or extraendothelial chemokine gradients.

  8. [IFN-γ up-regulates PD-L1 expression in human placenta mesenchymal stem cells and enhances cell ability to induce the differentiation of IL-10+ T cells from cord blood- and peripheral blood-derived T cells].

    PubMed

    Wang, Weiwei; Li, Heng; Xu, Fenghuang; DU, Haibo; Li, Xiaohua; Yi, Junzhu; Wang, Guoyan; Luan, Xiying

    2016-02-01

    To compare the differentiation, inducing effects of human placenta mesenchymal stem cells (hPMSCs) on IL-10(+) T cells derived from cord blood and peripheral blood, and investigate the effect of IFN-γ on the induction. The hPMSCs were isolated from human placenta and cultured. The expression of programmed death ligand 1 (PD-L1) in hPMSCs was detected by reverse transcriptase PCR and flow cytometry (FCM), respectively. Mononuclear cells were isolated from cord blood and peripheral blood of healthy donors by Ficoll density gradient centrifugation, and T cells were purified by sheep red blood cells. Then hPMSCs, pretreated with PD-L1 mAb or IFN-γ, were co-cultured with phytohaemagglutinin (PHA)-activated T cells. Percentages of CD4(+)IL-10(+) and CD8(+)IL-10(+) T cells in cord blood and peripheral blood T cells were analyzed by FCM. hPMSCs could induce the differentiation of CD4(+)IL-10(+) and CD8(+)IL-10(+) T cells from cord blood or peripheral blood T cells, and the number of IL-10(+) T cells in the peripheral blood T cells was significantly higher than that in the cord blood T cells. Pretreatment with IFN-γ markedly enhanced the differentiation, inducing ability of hPMSCs. PD-L1 was highly expressed in hPMSCs, and the expression was also significantly promoted by IFN-γ. After the expression of PD-L1 was blocked in hPMSCs, the percentages of CD4(+)IL-10(+) and CD8(+)IL-10(+) T cells obviously decreased in cord blood and peripheral blood T cells. The ability of hPMSCs to induce the differentiation of IL-10(+) T cells from peripheral blood T cells was apparently stronger than that in cord blood T cells. IFN-γ could up-regulate the number of IL-10(+)T cells differentiated from cord blood and peripheral blood T cells in the present of hPMSCs by enhancing the expression of PD-L1 in hPMSCs.

  9. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts

    PubMed Central

    Feucht, Judith; Kayser, Simone; Gorodezki, David; Hamieh, Mohamad; Döring, Michaela; Blaeschke, Franziska; Schlegel, Patrick; Bösmüller, Hans; Quintanilla-Fend, Leticia; Ebinger, Martin; Lang, Peter; Handgretinger, Rupert; Feuchtinger, Tobias

    2016-01-01

    T-cell immunotherapies are promising options in relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). We investigated the effect of co-signaling molecules on T-cell attack against leukemia mediated by CD19/CD3-bispecific T-cell engager. Primary CD19+ ALL blasts (n≥10) and physiologic CD19+CD10+ bone marrow precursors were screened for 20 co-signaling molecules. PD-L1, PD-1, LAG-3, CD40, CD86, CD27, CD70 and HVEM revealed different stimulatory and inhibitory profiles of pediatric ALL compared to physiologic cells, with PD-L1 and CD86 as most prominent inhibitory and stimulatory markers. PD-L1 was increased in relapsed ALL patients (n=11) and in ALLs refractory to Blinatumomab (n=5). Exhaustion markers (PD-1, TIM-3) were significantly higher on patients' T cells compared to physiologic controls. T-cell proliferation and effector function was target-cell dependent and correlated to expression of co-signaling molecules. Blockade of inhibitory PD-1-PD-L and CTLA-4-CD80/86 pathways enhanced T-cell function whereas blockade of co-stimulatory CD28-CD80/86 interaction significantly reduced T-cell function. Combination of Blinatumomab and anti-PD-1 antibody was feasible and induced an anti-leukemic in vivo response in a 12-year-old patient with refractory ALL. In conclusion, ALL cells actively regulate T-cell function by expression of co-signaling molecules and modify efficacy of therapeutic T-cell attack against ALL. Inhibitory interactions of leukemia-induced checkpoint molecules can guide future T-cell therapies. PMID:27708227

  10. The Herbal Medicine KBH-1 Inhibits Fat Accumulation in 3T3-L1 Adipocytes and Reduces High Fat Diet-Induced Obesity through Regulation of the AMPK Pathway

    PubMed Central

    Lee, Ji-Hye; Kim, Taesoo; Lee, Jung-Jin; Lee, Kwang Jin; Kim, Hyun-Kyu; Yun, Bora; Jeon, Jongwook; Kim, Sang Kyum; Ma, Jin Yeul

    2015-01-01

    The aim of this study was to investigate whether a novel formulation of an herbal extract, KBH-1, has an inhibitory effect on obesity. To determine its anti-obesity effects and its underlying mechanism, we performed anti-obesity-related experiments in vitro and in vivo. 3T3-L1 preadipocytes were analyzed for lipid accumulation as well as the protein and gene expression of molecular targets involved in fatty acid synthesis. To determine whether KBH-1 oral administration results in a reduction in high-fat diet (HFD)-induced obesity, we examined five groups (n = 9) of C57BL/6 mice as follows: 10% kcal fat diet-fed mice (ND), 60% kcal fat diet-fed mice (HFD), HFD-fed mice treated with orlistat (tetrahydrolipstatin, marketed under the trade name Xenical), HFD-fed mice treated with 150 mg/kg KBH-1 (KBH-1 150) and HFD-fed mice treated with 300 mg/kg KBH-1 (KBH-1 300). During adipogenesis of 3T3-L1 cells in vitro, KBH-1 significantly reduced lipid accumulation and down-regulated the expression of master adipogenic transcription factors, including CCAAT/enhancer binding protein (C/EBP) β, C/EBP α and peroxisome proliferation-activity receptor (PPAR) γ, which led to the suppression of the expression of several adipocyte-specific genes and proteins. KBH-1 also markedly phosphorylated the adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). In addition, KBH-1-induced the inhibition effect on lipid accumulation and AMPK-mediated signal activation were decreased by blocking AMPK phosphorylation using AMPK siRNA. Furthermore, daily oral administration of KBH-1 resulted in dose-dependent decreases in body weight, fat pad mass and fat tissue size without systemic toxicity. These results suggest that KBH-1 inhibits lipid accumulation by down-regulating the major transcription factors of the adipogenesis pathway by regulating the AMPK pathway in 3T3-L1 adipocytes and in mice with HFD-induced obesity. These results implicate KBH-1, a safe herbal

  11. A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis

    PubMed Central

    Dütting, Sebastian; Gaits-Iacovoni, Frederique; Stegner, David; Popp, Michael; Antkowiak, Adrien; van Eeuwijk, Judith M.M.; Nurden, Paquita; Stritt, Simon; Heib, Tobias; Aurbach, Katja; Angay, Oguzhan; Cherpokova, Deya; Heinz, Niels; Baig, Ayesha A.; Gorelashvili, Maximilian G.; Gerner, Frank; Heinze, Katrin G.; Ware, Jerry; Krohne, Georg; Ruggeri, Zaverio M.; Nurden, Alan T.; Schulze, Harald; Modlich, Ute; Pleines, Irina; Brakebusch, Cord; Nieswandt, Bernhard

    2017-01-01

    Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard–Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V. PMID:28643773

  12. Effects of alterations in endothelial cell volume on transendothelial albumin permeability

    SciTech Connect

    Shepard, J.M.; Goderie, S.K.; Brzyski, N.; Del Vecchio, P.J.; Malik, A.B.; Kimelberg, H.K.

    1987-11-01

    We examined the effects of alterations in endothelial cell volume on transendothelial albumin permeability. Studies were done using a confluent monolayer of bovine pulmonary artery endothelial cells grown on gelatinized microporous filters. When endothelial cells were exposed to media made hypertonic with 200 mM mannitol, the intracellular volume (measured with /sup 14/C-urea) decreased twofold and remained decreased over a 30-minute time-span, thus showing no significant regulatory volume increase (RVI) within this time period. When endothelial cells were exposed to hypotonic media, intracellular volume rapidly doubled within 2 minutes, and then decreased to baseline values within 10 minutes in spite of the sustained hypotonic environment, a process known as regulatory volume decrease (RVD). We also measured the transendothelial flux of /sup 125/I-albumin with the cells exposed to the same osmotic changes. We observed that only under hypertonic conditions was there a significant change in the /sup 125/I-albumin permeability. These results indicate that the pulmonary artery endothelial cells in culture alter their cell volume when exposed to variations in the osmotic environment, and also show RVD in response to hypotonic conditions but no RVI within 40 minutes after exposure to hypertonic conditions. The transendothelial albumin permeability did not change under hypotonic conditions but increased under hypertonic conditions. Thus, endothelial cells shrinkage may be an important mechanism of increased endothelial macromolecule permeability. These volume changes may occur in endothelial cells in situ and have a role in inducing alterations in the transendothelial permeability to proteins.

  13. Prolonged insulin stimulation down-regulates GLUT4 through oxidative stress-mediated retromer inhibition by a protein kinase CK2-dependent mechanism in 3T3-L1 adipocytes.

    PubMed

    Ma, Jinhui; Nakagawa, Yuko; Kojima, Itaru; Shibata, Hiroshi

    2014-01-03

    Although insulin acutely stimulates glucose uptake by promotion of GLUT4 translocation from intracellular compartments to the plasma membrane in adipocytes and muscles, long term insulin stimulation causes GLUT4 depletion that is particularly prominent in the insulin-responsive GLUT4 storage compartment. This effect is caused mainly by accelerated lysosomal degradation of GLUT4, although the mechanism is not fully defined. Here we show that insulin acutely induced dissociation of retromer components from the low density microsomal membranes of 3T3-L1 adipocytes that was accompanied by disruption of the interaction of Vps35 with sortilin. This insulin effect was dependent on the activity of protein kinase CK2 but not phosphatidylinositol 3-kinase or extracellular signal-regulated kinase 1/2. Knockdown of Vps26 decreased GLUT4 to a level comparable with that with insulin stimulation for 4 h. Vps35 with a mutation in the CK2 phosphorylation motif (Vps35-S7A) was resistant to insulin-induced dissociation from the low density microsomal membrane, and its overexpression attenuated GLUT4 down-regulation with insulin. Furthermore, insulin-generated hydrogen peroxide was an upstream mediator of the insulin action on retromer and GLUT4. These results suggested that insulin-generated oxidative stress switches the GLUT4 sorting direction to lysosomes through inhibition of the retromer function in a CK2-dependent manner.

  14. Endothelial cell activation promotes foam cell formation by monocytes following transendothelial migration in an in vitro model.

    PubMed

    Westhorpe, Clare L V; Dufour, Eric M; Maisa, Anna; Jaworowski, Anthony; Crowe, Suzanne M; Muller, William A

    2012-10-01

    Foam cells are a pathological feature present at all stages of atherosclerosis. Foam cells develop from monocytes that enter the nascent atheroma and subsequently ingest modified low density lipoproteins (LDL). The regulation of this process has previously been studied in vitro using cultured macrophage fed modified LDL. We used our existing in vitro model of transendothelial migration (TEM) to study this process in a more physiologically relevant setting. In our model, monocytes undergo TEM across a primary endothelial monolayer into an underlying three-dimensional collagen matrix in the presence of 20% human serum. Foam cells were detected by Oil Red O staining for intracellular lipid droplets. We demonstrate that sub-endothelial monocytes can develop into foam cells within 48 h of TEM across TNF-α activated endothelium, in the absence of additional lipids. Our data indicate a role for both monocyte-endothelial interactions and soluble factors in the regulation of foam cell development, including oxidation of LDL in situ from lipid present in culture medium following TNF-α stimulation of the endothelial cells. Our study provides a simple model for investigating foam cell development in vitro that mimics cell migration in vivo, and demonstrates the critical role of inflammation in regulating early atherogenic events.

  15. Endotoxin activation of endothelium for polymorphonuclear leucocyte transendothelial migration and modulation by interferon-gamma.

    PubMed Central

    Issekutz, A C; Lopes, N

    1993-01-01

    Endotoxin [lipopolysaccharide (LPS)] is a potent inflammatory stimulus and can activate human umbilical vein endothelium (HUVE) for leucocyte adhesiveness and transendothelial migration. Here we investigated the role of HUVE-secreted cytokines in this process. When HUVE monolayers were grown on filters and preincubated for 3 hr with LPS, 51Cr-labelled polymorphonuclear leucocytes (PMNL) migrated across the HUVE in a dose- and time-dependent manner. Maximal PMNL transmigration with LPS (1 ng/ml) was 26 +/- 3% of added PMNL in 75 min. Neutralizing antibodies to interleukin-1 alpha (IL-1 alpha) and IL-1 beta, tumour necrosis factor-alpha (TNF-alpha), IL-8 or recombinant IL-1 receptor antagonist had no effect on the activation by LPS of the HUVE for supporting migration of PMNL. The HUVE 'activated state' declined with prolonged (22 hr) exposure to LPS, as reflected by a decrease in PMNL transendothelial migration to 5.5 +/- 1% and in the expression of the endothelial cell adhesion molecule, E-selectin, as compared to stimulation with LPS for 3 hr. However, simultaneous exposure to interferon-gamma (IFN-gamma) (200 IU/ml) and LPS maintained maximal PMNL transendothelial migration (28 +/- 4%) for at least 24 hr, prolonged E-selectin expression by HUVE and superinduced intracellular adhesion molecule-1 (ICAM-1) expression. The PMNL transendothelial migration was blocked by > 90% by monoclonal antibody (mAb) to CD18 with either 3 hr of LPS or 22 hr LPS + IFN-gamma stimulation. Migration was partially inhibited by mAb to E-selectin (30-40%) or to ICAM-1 (35-45%) and by a combination of both reagents (50-60%) under both stimulation conditions. Thus, LPS activation of HUVE for PMNL transendothelial migration: (a) does not require secretion of IL-1, TNF-alpha or IL-8 by the endothelium, (b) IFN-gamma enhances and prolongs endothelial activation by LPS and may increase leucocyte infiltration in LPS or bacterial inflammatory reactions, and (c) CD18-dependent mechanisms are

  16. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation

    PubMed Central

    Song, Huiwen; Pu, Jun; Wang, Lin; Wu, Lihua; Xiao, Jianmin; Liu, Qigong; Chen, Jun; Zhang, Min; Liu, Yang; Ni, Mingke; Mo, Jinggang; Zheng, Yunliang; Wan, Deli; Cai, XiongJiu; Cao, Yaping; Xiao, Weiyi; Ye, Lei; Tu, Enyuan; Lin, Zhihai; Wen, Jianxin; Lu, Xiaoling; He, Jian; Peng, Yi; Su, Jing; Zhang, Heng; Zhao, Yongxiang; Lin, Meihua; Zhang, Zhiyong

    2015-01-01

    Recent studies have shown that the phosphorylation and dephosphorylation of ULK1 and ATG13 are related to autophagy activity. Although ATG16L1 is absolutely required for autophagy induction by affecting the formation of autophagosomes, the post-translational modification of ATG16L1 remains elusive. Here, we explored the regulatory mechanism and role of ATG16L1 phosphorylation for autophagy induction in cardiomyocytes. We showed that ATG16L1 was a phosphoprotein, because phosphorylation of ATG16L1 was detected in rat cardiomyocytes during hypoxia/reoxygenation (H/R). We not only demonstrated that CSNK2 (casein kinase 2) phosphorylated ATG16L1, but also identified the highly conserved Ser139 as the critical phosphorylation residue for CSNK2. We further established that ATG16L1 associated with the ATG12-ATG5 complex in a Ser139 phosphorylation-dependent manner. In agreement with this finding, CSNK2 inhibitor disrupted the ATG12-ATG5-ATG16L1 complex. Importantly, phosphorylation of ATG16L1 on Ser139 was responsible for H/R-induced autophagy in cardiomyocytes, which protects cardiomyocytes from apoptosis. Conversely, we determined that wild-type PPP1 (protein phosphatase 1), but not the inactive mutant, associated with ATG16L1 and antagonized CSNK2-mediated phosphorylation of ATG16L1. Interestingly, one RVxF consensus site for PPP1 binding in the C-terminal tail of ATG16L1 was identified; mutation of this site disrupted its association with ATG16L1. Notably, CSNK2 also associated with PPP1, but ATG16L1 depletion impaired the interaction between CSNK2 and PPP1. Collectively, these data identify ATG16L1 as a bona fide physiological CSNK2 and PPP1 substrate, which reveals a novel molecular link from CSNK2 to activation of the autophagy-specific ATG12-ATG5-ATG16L1 complex and autophagy induction. PMID:26083323

  17. L1 modulates PKD1 phosphorylation in cerebellar granule neurons.

    PubMed

    Chen, Shuang-xi; Hu, Cheng-liang; Liao, Yong-hong; Zhao, Wei-jiang

    2015-01-01

    The neural cell adhesion molecule L1 (L1CAM) is crucial for the development of the nervous system, with an essential role in regulating multiple cellular activities. Protein kinase D1 (PKD1) serves as a key kinase given its diverse array of functions within the cell. Here, we investigated various aspects of the functional relationship between L1 and phosphorylated PKD1 (pPKD1) in cerebellar granule neurons. To study the relationship between L1 and PKD1 phosphorylation, human cerebellar tissue microarrays were subject to immunofluorescence staining. We observed a positive correlation between L1 protein levels and PKD1 phosphorylation. In addition, L1 also co-localized with pPKD1. To analyze the regulatory role of L1 on PKD1 phosphorylation, primary mouse cerebellar granule neurons were treated with various concentrations of rL1 for 48 h. Using Western blot, we revealed that L1 significantly increased PKD1 phosphorylation compared with vehicle control, with the maximal effect observed at 5 nM. ERK1/2 phosphorylation was significantly increased by 2.5 nM and 10nM L1, with no apparent change in SRC phosphorylation. However, SRC expression was markedly reduced by 10nM rL1. AKT1 expression and phosphorylation levels were significantly increased by rL1, with the maximal effect observed at 2.5 and 5 nM, respectively. Our combined data revealed a positive relationship between L1 and pPKD1 in both cultured cerebellar neurons and human cerebellar tissue, suggesting that L1 functions in the modulation of PKD1 phosphorylation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. ZFP36L1 — EDRN Public Portal

    Cancer.gov

    ZFP36L1 is a member of the TIS11 family of early response genes, which are induced by various agonists such as the phorbol ester TPA and the polypeptide mitogen EGF. The ZFP36L1 gene is well conserved across species and has a promoter that contains motifs seen in other early-response genes. ZFP36L1 contains a putative zinc finger domain with a repeating cys-his motif. ZFP36L1 is believed to be a nuclear transcription factor most likely functioning in regulating the response to growth factors. Different isoforms encoded by alternatively spliced transcript variants have been isolated.

  19. Ubiquitin carboxyl hydrolase L1 significance for human diseases.

    PubMed

    Suong, Dang Ngoc Anh; Thao, Dang Thi Phuong; Masamitsu, Yamaguchi; Thuoc, Tran Linh

    2014-07-01

    Ubiquitin carboxyl hydrolase L1 (UCH-L1) is an abundant multifunctional neuron protein. It plays an important role in maintaining the ubiquitin proteasome system (UPS), vital for recognizing and degrading dysfunctional proteins in organisms. In recent decades, UCH-L1 has been implicated in the pathogenesis of many diseases, including neurodegenerative disorders, cancer and diabetes. However, the mechanisms of UCH-L1 involvement have yet to be revealed in detail. Since UCH-L1 contributes many different functions to cell metabolism, its role and regulation might be more complex than previously thought and it has become a research target in many laboratories. In this review, we summarize recent findings related to the actions of UCH-L1 in several human diseases.

  20. Interleukin 15 is produced by endothelial cells and increases the transendothelial migration of T cells In vitro and in the SCID mouse-human rheumatoid arthritis model In vivo.

    PubMed Central

    Oppenheimer-Marks, N; Brezinschek, R I; Mohamadzadeh, M; Vita, R; Lipsky, P E

    1998-01-01

    The capacity of endothelial cells (EC) to produce IL-15 and the capacity of IL-15 to influence transendothelial migration of T cells was examined. Human umbilical vein endothelial cells expressed both IL-15 mRNA and protein. Moreover, endothelial-derived IL-15 enhanced transendothelial migration of T cells as evidenced by the inhibition of this process by blocking monoclonal antibodies to IL-15. IL-15 enhanced transendothelial migration of T cells by activating the binding capacity of the integrin adhesion molecule LFA-1 (CD11a/CD18) and also increased T cell motility. In addition, IL-15 induced expression of the early activation molecule CD69. The importance of IL-15 in regulating migration of T cells in vivo was documented by its capacity to enhance accumulation of adoptively transferred human T cells in rheumatoid arthritis synovial tissue engrafted into immune deficient SCID mice. These results demonstrate that EC produce IL-15 and imply that endothelial IL-15 plays a critical role in stimulation of T cells to extravasate into inflammatory tissue. PMID:9502767

  1. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    PubMed Central

    Hurst-Kennedy, Jennifer; Chin, Lih-Shen; Li, Lian

    2012-01-01

    Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5) is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis. PMID:22811913

  2. Doxycycline-Regulated 3T3-L1 Preadipocyte Cell Line with Inducible, Stable Expression of Adenoviral E4orf1 Gene: A Cell Model to Study Insulin-Independent Glucose Disposal

    PubMed Central

    Krishnapuram, Rashmi; Dhurandhar, Emily J.; Dubuisson, Olga; Hegde, Vijay; Dhurandhar, Nikhil V.

    2013-01-01

    Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin. PMID:23544159

  3. Ubiquitin editing enzyme UCH L1 and microtubule dynamics

    PubMed Central

    Bheda, Anjali; Gullapalli, Anuradha; Caplow, Michael; Pagano, Joseph S.; Shackelford, Julia

    2015-01-01

    Microtubules are essential components of the cytoskeleton and are involved in many aspects of cell responses including cell division, migration, and intracellular signal transduction. Among other factors, post-translational modifications play a significant role in the regulation of microtubule dynamics. Here, we demonstrate that the ubiquitin-editing enzyme UCH L1, abundant expression of which is normally restricted to brain tissue, is also a part of the microtubule network in a variety of transformed cells. Moreover, during mitosis, endogenous UCH L1 is expressed and tightly associated with the mitotic spindle through all stages of M phase, suggesting that UCH L1 is involved in regulation of microtubule dynamics. Indeed, addition of recombinant UCH L1 to the reaction of tubulin polymerization in vitro had an inhibitory effect on microtubule formation. Unexpectedly, western blot analysis of tubulin fractions after polymerization revealed the presence of a specific ∼50 kDa band of UCH L1 (not the normal ∼25 kDa) in association with microtubules, but not with free tubulin. In addition, we show that along with 25 kDa UCH L1, endogenous high molecular weight UCH L1 complexes exist in cells, and that levels of 50 kDa UCH L1 complexes are increasing in cells during mitosis. Finally, we provide evidence that ubiquitination is involved in tubulin polymerization: the presence of ubiquitin during polymerization in vitro by itself inhibited microtubule formation and enhanced the inhibitory effect of added UCH L1. the inhibitory effects of UCH L1 correlate with an increase in ubiquitination of microtubule components. Since besides being a deubiquitinating enzyme, UCH L1 as a dimer has also been shown to exhibit ubiquitin ligase activity, we discuss the possibility that the ∼50 kDa UCH L1 observed is a dimer which prevents microtubule formation through ubiquitination of tubulins and/or microtubule-associated proteins. PMID:20160478

  4. Vitamin D Up-regulates Glucose Transporter 4 (GLUT4) Translocation and Glucose Utilization Mediated by Cystathionine-γ-lyase (CSE) Activation and H2S Formation in 3T3L1 Adipocytes*

    PubMed Central

    Manna, Prasenjit; Jain, Sushil K.

    2012-01-01

    A scientific explanation for the beneficial role of vitamin D supplementation in the lowering of glycemia in diabetes remains to be determined. This study examined the biochemical mechanism by which vitamin D supplementation regulates glucose metabolism in diabetes. 3T3L1 adipocytes were treated with high glucose (HG, 25 mm) in the presence or absence of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (25, 50 nm), the active form of vitamin D. 1,25(OH)2D3 treatment caused significant up-regulation of GLUT4 total protein expression and its translocation to cell surface, and an increase in glucose uptake as well as glucose utilization in HG-treated cells. 1,25(OH)2D3 also caused cystathionine-γ-lyase (CSE) activation and H2S formation in HG-treated adipocytes. The effect of 1,25(OH)2D3 on GLUT4 translocation, glucose utilization, and H2S formation was prevented by propargylglycine, an inhibitor of CSE that catalyzes H2S formation. Studies using antisense CSE also demonstrated the inhibition of GLUT4 translocation as well as glucose uptake and utilization in 1,25(OH)2D3-supplemented CSE-siRNA-transfected adipocytes compared with controls. 1,25(OH)2D3 treatment along with insulin enhanced GLUT4 translocation and glucose utilization compared with either insulin or 1,25(OH)2D3 alone in HG-treated adipocytes. 1,25(OH)2D3 supplementation also inhibited monocyte chemoattractant protein-1 and stimulated adiponectin secretion in HG-treated adipocytes, and this positive effect was prevented in propargylglycine-treated or CSE-knockdown adipocytes. This is the first report to demonstrate that 1,25(OH)2D3 up-regulates GLUT4 translocation and glucose utilization and decreases inflammatory markers, which is mediated by CSE activation and H2S formation in adipocytes. This study provides evidence for a novel molecular mechanism by which 1,25(OH)2D3 can up-regulate the GLUT4 translocation essential for maintenance of glucose metabolism. PMID:23074218

  5. Prolonged transendothelial migration of human haematopoietic stem and progenitor cells (HSPCs) towards hydrogel-released SDF1.

    PubMed

    Sobkow, Lidia; Seib, F Philipp; Prodanov, Ljupco; Kurth, Ina; Drichel, Juliane; Bornhäuser, Martin; Werner, Carsten

    2011-08-01

    The therapeutic success of haematopoetic stem and progenitor cell (HSPC) transplantation is critically dependent on HSPC engraftment in the bone marrow. Gradients of stromal cell-derived factor 1 (SDF1) direct HSPC homing, both in vitro and in vivo. Potentially, regulating the delivery levels of exogenous SDF1 applied to the bone marrow could augment HSPC engraftment. Thus, the aim of the present study was to revise the ability of biocompatible hydrogels to direct HSPC migration in vitro. The delivery system of choice is based on heparin cross-linked with collagen1. We confirm that hydrogel is capable of trapping and releasing SDF1 and using it to generate a protein gradient in transendothelial migration experiments. The use of SDF1-functionalised hydrogel to produce a chemokine gradient revealed, sustained and increased HSPC migration when compared to diffusible SDF1 controls. In conclusion, regulating SDF1 gradients with heparin-containing hydrogels may offer valuable options to direct site-specific migration of HSPC.

  6. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils.

    PubMed

    Han, Sewoon; Yan, Ji-Jing; Shin, Yoojin; Jeon, Jessie J; Won, Jihee; Jeong, Hyo Eun; Kamm, Roger D; Kim, Young-Joon; Chung, Seok

    2012-10-21

    Spatiotemporal analysis of the inflammatory response has been limited by the difficulties of in vivo imaging and reconstitution of inflammation in vitro. Here, we present a novel method for establishing in vivo-like inflammatory models in a microfluidic device and quantitatively measuring the three-dimensional transmigration of neutrophils during the inflammatory process. This enabled us to concurrently characterize transendothelial migration behaviors of neutrophils under the influence of various inflammatory stimuli.

  7. Novel three-dimensional Boyden chamber system for studying transendothelial transport.

    PubMed

    Hebeiss, I; Truckenmüller, R; Giselbrecht, S; Schepers, U

    2012-02-21

    The rapid development in combinatorial chemistry of millions of novel potential drug candidates requires in vitro devices for reliable testing of their transendothelial transport and the uptake in specific cells. To date, this is often achieved in vitro by the use of regular planar Boyden chambers, which are not reflecting the three dimensionality of the blood vessel. This technical note describes the fabrication and biological validation of a novel three-dimensional Boyden chamber system for studying transendothelial transport. The key element of this new system is a porous thin-walled microchannel produced by a SMART (substrate modification and replication by thermoforming) process comprising a combination of microthermoforming and ion track technology. The membrane-like microstructure offers the opportunity to grow endothelial cells on the inner side of the channel resembling a more natural curved organization of vessels. After establishment of a confluent HUVECs layer in the porous microchannel this novel Boyden chamber was successfully applied to study the transendothelial transport of a polycationic cell penetrating peptoid through the 3D- or curved endothelial cell layer. Thus, this system will enable the investigation of such synthetic compounds as drug delivery systems with regard to their bioavailability and functionality under organotypic conditions.

  8. Connexin 43 expression on peripheral blood eosinophils: role of gap junctions in transendothelial migration.

    PubMed

    Vliagoftis, Harissios; Ebeling, Cory; Ilarraza, Ramses; Mahmudi-Azer, Salahaddin; Abel, Melanie; Adamko, Darryl; Befus, A Dean; Moqbel, Redwan

    2014-01-01

    Eosinophils circulate in the blood and are recruited in tissues during allergic inflammation. Gap junctions mediate direct communication between adjacent cells and may represent a new way of communication between immune cells distinct from communication through cytokines and chemokines. We characterized the expression of connexin (Cx)43 by eosinophils isolated from atopic individuals using RT-PCR, Western blotting, and confocal microscopy and studied the biological functions of gap junctions on eosinophils. The formation of functional gap junctions was evaluated measuring dye transfer using flow cytometry. The role of gap junctions on eosinophil transendothelial migration was studied using the inhibitor 18-a-glycyrrhetinic acid. Peripheral blood eosinophils express Cx43 mRNA and protein. Cx43 is localized not only in the cytoplasm but also on the plasma membrane. The membrane impermeable dye BCECF transferred from eosinophils to epithelial or endothelial cells following coculture in a dose and time dependent fashion. The gap junction inhibitors 18-a-glycyrrhetinic acid and octanol did not have a significant effect on dye transfer but reduced dye exit from eosinophils. The gap junction inhibitor 18-a-glycyrrhetinic acid inhibited eosinophil transendothelial migration in a dose dependent manner. Thus, eosinophils from atopic individuals express Cx43 constitutively and Cx43 may play an important role in eosinophil transendothelial migration and function in sites of inflammation.

  9. Reverse transendothelial cell migration in inflammation: to help or to hinder?

    PubMed

    Burn, Thomas; Alvarez, Jorge Ivan

    2017-05-01

    The endothelium provides a strong barrier separating circulating blood from tissue. It also provides a significant challenge for immune cells in the bloodstream to access potential sites of infection. To mount an effective immune response, leukocytes traverse the endothelial layer in a process known as transendothelial migration. Decades of work have allowed dissection of the mechanisms through which immune cells gain access into peripheral tissues, and subsequently to inflammatory foci. However, an often under-appreciated or potentially ignored question is whether transmigrated leukocytes can leave these inflammatory sites, and perhaps even return across the endothelium and re-enter circulation. Although evidence has existed to support "reverse" transendothelial migration for a number of years, it is only recently that mechanisms associated with this process have been described. Here we review the evidence that supports both reverse transendothelial migration and reverse interstitial migration within tissues, with particular emphasis on some of the more recent studies that finally hint at potential mechanisms. Additionally, we postulate the biological significance of retrograde migration, and whether it serves as an additional mechanism to limit pathology, or provides a basis for the dissemination of systemic inflammation.

  10. Increased vesicular and vacuolar transendothelial transport in traumatic human brain oedema. A review.

    PubMed

    Castejón, Orlando J

    2013-01-01

    The endothelial vacuolar and vesicular transports in traumatic human brain oedema have been reviewed and compared with experimental brain oedema in order to establish their role in both oedema formation and oedema resolution. Normal or "non-activated" and "activated" capillaries are found. The activated capillaries showed predominantly an enhanced abluminally orientated vesicular transport by means of small, medium and large uncoated and clathrin coated vesicles, as well as the presence of endothelial tubular structures. Activation of the endothelial nuclear zone is featured by the increased amount of micropinocytotic vesicles. Vesicles internalizing to the hypertrophic Golgi complex, lysosomes and multivesicular bodies are observed. The protein vacuolar transport is predominant in most cortical capillaries. A wide spectrum of endothelial cell mechanisms is observed increasing the vesicular and vacuolar transport, such as deep invaginations of the luminal surface, large coated vesicles, tubular structures, and transient and incomplete transendothelial channels formed either by chained plasmalemmal vesicles or elongated protein-containing vacuoles. Uncoated vesicles are seen surrounding lysosomes. Vesicular transport might be discriminated between abluminally orientated or transendothelial transport (oedema formation) and intraendothelial transport (oedema resolution) directed towards cell lysosomes to be degraded by lysosomal enzymes. The transendothelial passage via large vacuoles is mainly caused by macromolecular protein transport.

  11. Role of cortactin homolog HS1 in transendothelial migration of natural killer cells.

    PubMed

    Mukherjee, Suranjana; Kim, Joanna; Mooren, Olivia L; Shahan, Stefanie T; Cohan, Megan; Cooper, John A

    2015-01-01

    Natural Killer (NK) cells perform many functions that depend on actin assembly, including adhesion, chemotaxis, lytic synapse assembly and cytolysis. HS1, the hematopoietic homolog of cortactin, binds to Arp2/3 complex and promotes actin assembly by helping to form and stabilize actin filament branches. We investigated the role of HS1 in transendothelial migration (TEM) by NK cells. Depletion of HS1 led to a decrease in the efficiency of TEM by NK cells, as measured by transwell assays with endothelial cell monolayers on porous filters. Transwell assays involve chemotaxis of NK cells across the filter, so to examine TEM more specifically, we imaged live-cell preparations and antibody-stained fixed preparations, with and without the chemoattractant SDF-1α. We found small to moderate effects of HS1 depletion on TEM, including whether the NK cells migrated via the transcellular or paracellular route. Expression of HS1 mutants indicated that phosphorylation of HS1 tyrosines at positions 222, 378 and 397 was required for rescue in the transwell assay, but HS1 mutations affecting interaction with Arp2/3 complex or SH3-domain ligands had no effect. The GEF Vav1, a ligand of HS1 phosphotyrosine, influenced NK cell transendothelial migration. HS1 and Vav1 also affected the speed of NK cells migrating across the surface of the endothelium. We conclude that HS1 has a role in transendothelial migration of NK cells and that HS1 tyrosine phosphorylation may signal through Vav1.

  12. CD99 expressed on human mobilized peripheral blood CD34+ cells is involved in transendothelial migration.

    PubMed

    Imbert, Anne-Marie; Belaaloui, Ghania; Bardin, Florence; Tonnelle, Cecile; Lopez, Marc; Chabannon, Christian

    2006-10-15

    Hematopoietic progenitor cell trafficking is an important phenomenon throughout life. It is thought to occur in sequential steps, similar to what has been described for mature leukocytes. Molecular actors have been identified for each step of leukocyte migration; recently, CD99 was shown to play a part during transendothelial migration. We explored the expression and role of CD99 on human hematopoietic progenitors. We demonstrate that (1) CD34+ cells express CD99, albeit with various intensities; (2) subsets of CD34+ cells with high or low levels of CD99 expression produce different numbers of erythroid, natural killer (NK), or dendritic cells in the in vitro differentiation assays; (3) the level of CD99 expression is related to the ability to differentiate toward B cells; (4) CD34+ cells that migrate through an endothelial monolayer in response to SDF-1alpha and SCF display the highest level of CD99 expression; (5) binding of a neutralizing antibody to CD99 partially inhibits transendothelial migration of CD34+ progenitors in an in vitro assay; and (6) binding of a neutralizing antibody to CD99 reduces homing of CD34+ progenitors xenotransplanted in NOD-SCID mice. We conclude that expression of CD99 on human CD34+ progenitors has functional significance and that CD99 may be involved in transendothelial migration of progenitors.

  13. The Rac activator Tiam1 controls efficient T-cell trafficking and route of transendothelial migration.

    PubMed

    Gérard, Audrey; van der Kammen, Rob A; Janssen, Hans; Ellenbroek, Saskia I; Collard, John G

    2009-06-11

    Migration toward chemoattractants is a hallmark of T-cell trafficking and is essential to produce an efficient immune response. Here, we have analyzed the function of the Rac activator Tiam1 in the control of T-cell trafficking and transendothelial migration. We found that Tiam1 is required for chemokine- and S1P-induced Rac activation and subsequent cell migration. As a result, Tiam1-deficient T cells show reduced chemotaxis in vitro, and impaired homing, egress, and contact hypersensitivity in vivo. Analysis of the T-cell transendothelial migration cascade revealed that PKCzeta/Tiam1/Rac signaling is dispensable for T-cell arrest but is essential for the stabilization of polarization and efficient crawling of T cells on endothelial cells. T cells that lack Tiam1 predominantly transmigrate through individual endothelial cells (transcellular migration) rather than at endothelial junctions (paracellular migration), suggesting that T cells are able to change their route of transendothelial migration according to their polarization status and crawling capacity.

  14. Pr77 and L1TcRz

    PubMed Central

    Sánchez-Luque, Francisco; López, Manuel C.; Macias, Francisco; Alonso, Carlos; Thomas, M. Carmen

    2012-01-01

    The sequence corresponding to the first 77 nucleotides of the L1Tc and NARTc non-LTR retrotransposons from Trypanosoma cruzi is an internal promoter (Pr77) that generates abundant, although poorly translatable, un-spliced transcripts. It has been recently described that L1TcRz, an HDV-like ribozyme, resides within the 5′-end of the RNA from the L1Tc and NARTc retrotransposons. Remarkably, the same first 77 nucleotides of L1Tc/NARTc elements comprise both the Pr77 internal promoter and the HDV-like L1TcRz. The L1TcRz cleaves on the 5′-side of the +1 nucleotide of the L1Tc element insuring that the promoter and the ribozyme functions travel with the transposon during retrotransposition. The ribozyme activity would prevent the mobilization of upstream sequences and insure the individuality of the L1Tc/NARTc copies transcribed from associated tandems. The Pr77/L1TcRz sequence is also found in other trypanosomatid’s non-LTR retrotransposons and degenerated retroposons. The possible conservation of the ribozyme activity in a widely degenerated retrotransposon, as the Leishmania SIDERs, could indicate that the presence of this element and the catalytic activity could play some favorable genetic regulation. The functional implications of the Pr77/L1TcRz dual system in the regulation of the L1Tc/NARTc retrotransposons and in the gene expression of trypanosomatids are also discussed in this paper. PMID:22754746

  15. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer.

    PubMed

    Roussos, Evanthia T; Balsamo, Michele; Alford, Shannon K; Wyckoff, Jeffrey B; Gligorijevic, Bojana; Wang, Yarong; Pozzuto, Maria; Stobezki, Robert; Goswami, Sumanta; Segall, Jeffrey E; Lauffenburger, Douglas A; Bresnick, Anne R; Gertler, Frank B; Condeelis, John S

    2011-07-01

    We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (Mena(INV)) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated Mena(INV) increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by Mena(INV) is dependent on a macrophage-tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of Mena(INV) and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells.

  16. Urokinase type plasminogen activator mediates Interleukin-17-induced peripheral blood mesenchymal stem cell motility and transendothelial migration.

    PubMed

    Krstić, Jelena; Obradović, Hristina; Jauković, Aleksandra; Okić-Đorđević, Ivana; Trivanović, Drenka; Kukolj, Tamara; Mojsilović, Slavko; Ilić, Vesna; Santibañez, Juan F; Bugarski, Diana

    2015-02-01

    Mesenchymal stem cells (MSCs) have the potential to migrate toward damaged tissues increasing tissue regeneration. Interleukin-17 (IL-17) is a proinflammatory cytokine with pleiotropic effects associated with many inflammatory diseases. Although IL-17 can modulate MSC functions, its capacity to regulate MSC migration is not well elucidated so far. Here, we studied the role of IL-17 on peripheral blood (PB) derived MSC migration and transmigration across endothelial cells. IL-17 increased PB-MSC migration in a wound healing assay as well as cell mobilization from collagen gel. Concomitantly IL-17 induced the expression of urokinase type plasminogen activator (uPA) without affecting matrix metalloproteinase expression. The incremented uPA expression mediated the capacity of IL-17 to enhance PB-MSC migration in a ERK1,2 MAPK dependent way. Also, IL-17 induced PB-MSC migration alongside with changes in cell polarization and uPA localization in cell protrusions. Moreover, IL-17 increased PB-MSC adhesion to endothelial cells and transendothelial migration, as well as increased the capacity of PB-MSC adhesion to fibronectin, in an uPA-dependent fashion. Therefore, our data suggested that IL-17 may act as chemotropic factor for PB-MSCs by incrementing cell motility and uPA expression during inflammation development.

  17. The RhoA GEF, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration

    PubMed Central

    Lessey-Morillon, Elizabeth C.; Osborne, Lukas D.; Monaghan-Benson, Elizabeth; Guilluy, Christophe; O’Brien, E. Timothy; Superfine, Richard; Burridge, Keith

    2014-01-01

    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. While much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared to ICAM-1 clustering alone. We have identified that the RhoA GEF LARG/ARHGEF12 acts downstream of clustered ICAM-1 to increase RhoA activity and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. This is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes. PMID:24585879

  18. Invasive breast carcinoma cells from patients exhibit MenaINV- and macrophage-dependent transendothelial migration.

    PubMed

    Pignatelli, Jeanine; Goswami, Sumanta; Jones, Joan G; Rohan, Thomas E; Pieri, Evan; Chen, Xiaoming; Adler, Esther; Cox, Dianne; Maleki, Sara; Bresnick, Anne; Gertler, Frank B; Condeelis, John S; Oktay, Maja H

    2014-11-25

    Metastasis is a complex, multistep process of cancer progression that has few treatment options. A critical event is the invasion of cancer cells into blood vessels (intravasation), through which cancer cells disseminate to distant organs. Breast cancer cells with increased abundance of Mena [an epidermal growth factor (EGF)-responsive cell migration protein] are present with macrophages at sites of intravasation, called TMEM sites (for tumor microenvironment of metastasis), in patient tumor samples. Furthermore, the density of these intravasation sites correlates with metastatic risk in patients. We found that intravasation of breast cancer cells may be prevented by blocking the signaling between cancer cells and macrophages. We obtained invasive breast ductal carcinoma cells of various subtypes by fine-needle aspiration (FNA) biopsies from patients and found that, in an in vitro transendothelial migration assay, cells that migrated through a layer of human endothelial cells were enriched for the transcript encoding Mena(INV), an invasive isoform of Mena. This enhanced transendothelial migration required macrophages and occurred with all of the breast cancer subtypes. Using mouse macrophages and the human cancer cells from the FNAs, we identified paracrine and autocrine activation of colony-stimulating factor-1 receptor (CSF-1R). The paracrine or autocrine nature of the signal depended on the breast cancer cell subtype. Knocking down Mena(INV) or adding an antibody that blocks CSF-1R function prevented transendothelial migration. Our findings indicate that Mena(INV) and TMEM frequency are correlated prognostic markers and CSF-1 and Mena(INV) may be therapeutic targets to prevent metastasis of multiple breast cancer subtypes.

  19. Tonsil-derived mesenchymal stem cells (T-MSCs) prevent Th17-mediated autoimmune response via regulation of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway.

    PubMed

    Kim, Ji-Yon; Park, Minhwa; Kim, Yu-Hee; Ryu, Kyung-Ha; Lee, Kyung Ho; Cho, Kyung-Ah; Woo, So-Youn

    2017-01-20

    Our knowledge of the immunomodulatory role of mesenchymal stem cells (MSCs) in both the innate and adaptive immune systems has dramatically expanded, providing great promise for treating various autoimmune diseases. However, the contribution of MSCs to Th17 dominant immune disease, such as psoriasis and its underlying mechanism remains elusive. In this study, we demonstrated that human palatine tonsil-derived MSCs (T-MSCs) constitutively express both the membrane-bound and soluble forms of programmed death-ligand 1 (PD-L1), which enables T-MSCs to be distinguished from MSCs originating from other organs (i.e., bone marrow or adipose tissue). We also found that T-MSC-derived PD-L1 effectively represses Th17 differentiation via both cell-to-cell contact and a paracrine effect. Further, T-MSCs increase PD-1 expression on T cells by secreting IFN-β, which may enhance engagement with PD-L1. Finally, transplantation of T-MSCs into imiquimod induced psoriatic skin inflammation in mice significantly abrogated disease symptoms, mainly by blunting the Th17 response in a PD-L1 dependent manner. This study suggests that T-MSCs might be a promising cell source to treat autoimmune diseases such as psoriasis, via its unique immunoregulatory features.

  20. Characterization of L1-Ribonucleoprotein Particles

    PubMed Central

    Taylor, Martin S.; LaCava, John; Dai, Lixin; Mita, Paolo; Burns, Kathleen H.; Rout, Michael P.; Boeke, Jef D.

    2016-01-01

    The LINE-1 retrotransposon (L1) encodes two proteins, ORF1p and ORF2p, which bind to the L1 RNA in cis, forming a ribonucleoprotein (RNP) complex that is critical for retrotransposition. Interactions with both permissive and repressive host factors pervade every step of the L1 life cycle. Until recently, limitations in detection and production precluded in-depth characterization of L1 RNPs. Inducible expression and recombinant engineering of epitope tags have made detection of both L1 ORFs routine. Here, we describe large-scale production of L1-expressing HEK-293T cells in suspension cell culture, cryomilling and affinity capture of L1 RNP complexes, sample preparation for analysis by mass spectrometry, and assay using the L1 element amplification protocol (LEAP) and qRT-PCR. PMID:26895062

  1. Characterization of L1-Ribonucleoprotein Particles.

    PubMed

    Taylor, Martin S; LaCava, John; Dai, Lixin; Mita, Paolo; Burns, Kathleen H; Rout, Michael P; Boeke, Jef D

    2016-01-01

    The LINE-1 retrotransposon (L1) encodes two proteins, ORF1p and ORF2p, which bind to the L1 RNA in cis, forming a ribonucleoprotein (RNP) complex that is critical for retrotransposition. Interactions with both permissive and repressive host factors pervade every step of the L1 life cycle. Until recently, limitations in detection and production precluded in-depth characterization of L1 RNPs. Inducible expression and recombinant engineering of epitope tags have made detection of both L1 ORFs routine. Here, we describe large-scale production of L1-expressing HEK-293T cells in suspension cell culture, cryomilling and affinity capture of L1 RNP complexes, sample preparation for analysis by mass spectrometry, and assay using the L1 element amplification protocol (LEAP) and qRT-PCR.

  2. DSCOVR_EPIC_L1A

    Atmospheric Science Data Center

    2017-01-04

    DSCOVR_EPIC_L1A Full sun-light Earth images calibrated with ... 551NM 680NM 688NM 764NM 780NM DSCOVR EPIC IMAGERY L1B LAGRANGE Order Data:  Earthdata ... Guide Documents:  DSCOVR Overview EPIC Data Format Control Book DSCOVR EPIC L0L1a Processor V01 ...

  3. Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration.

    PubMed

    Moreland, Jessica G; Davis, A Paige; Bailey, Gail; Nauseef, William M; Lamb, Fred S

    2006-05-05

    NADPH oxidase activity, phagocytosis, and cell migration are essential functions of polymorphonuclear leukocytes (PMNs) in host defense. The cytoskeletal reorganization necessary to perform these functions has been extensively studied, but the role of cell volume regulation, which is likely dependent upon anion channels, has not been defined. Mice lacking the anion channel ClC-3 (Clcn3(-/-)) died from presumed sepsis following intravascular catheter placement, whereas Clcn3(+/+) littermates survived. We hypothesized that ClC-3 has a critical role in host defense and reasoned that PMN function would be compromised in these mice. Clcn3(-/-) PMNs displayed markedly reduced NADPH oxidase activity in response to opsonized zymosan and modestly reduced activity after phorbol 12-myristate 13-acetate. Human PMNs treated with the anion channel inhibitors niflumic acid or 5-nitro-2-(3-phenylpropylamino)benzoic acid had a very similar defect. ClC-3 protein was detected in the secretory vesicles and secondary granules of resting PMNs and was up-regulated to the phagosomal membrane. Clcn3(-/-) PMNs and human PMNs lacking normal anion channel function both exhibited reduced uptake of opsonized zymosan at 1, 5, and 10 min in a synchronized phagocytosis assay. Niflumic acid-treated PMNs also had impaired transendothelial migration in vitro, whereas migration in vivo was not altered in Clcn3(-/-) PMNs. Selective inhibition of the swelling-activated chloride channel with tamoxifen profoundly reduced PMN migration but had no effect on NADPH oxidase activity. In summary, PMNs lacking normal anion channel function exhibited reduced NADPH oxidase activity, diminished phagocytosis, and impaired migration. ClC-3 was specifically involved in the respiratory burst and phagocytosis.

  4. Characterization of Engineered L1 Retrotransposition Events: The Recovery Method.

    PubMed

    Cano, David; Morell, Santiago; Pulgarin, Andres J; Amador, Suyapa; Garcia-Pérez, Jose L

    2016-01-01

    Long Interspersed Element class 1 retrotransposons (LINE-1 or L1) are abundant Transposable Elements in mammalian genomes and their mobility continues to impact the human genome. The development of engineered retrotransposition assays has been instrumental to understand how these elements are regulated and to identify domains involved in the process of retrotransposition. Additionally, the modification of a retrotransposition indicator cassette has allowed developing straightforward approaches to characterize the site of new L1 insertions in cultured cells. In this chapter, we describe a method termed "L1-recovery" that has been used to characterize the site of insertion on engineered L1 retrotransposition events in cultured mammalian cells. Notably, the recovery assay is based on a genetic strategy and avoids the use of PCR and thus reduces to a minimum the appearance of false positives/artifacts.

  5. 17 CFR 275.203(l)-1 - Venture capital fund defined.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... 275.203(l)-1 Section 275.203(l)-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT ADVISERS ACT OF 1940 § 275.203(l)-1 Venture capital fund defined. (a) Venture capital fund defined. For purposes of section 203(l) of the Act (15 U.S.C...

  6. Notch signaling mediates granulocyte-macrophage colony-stimulating factor priming-induced transendothelial migration of human eosinophils.

    PubMed

    Liu, L Y; Wang, H; Xenakis, J J; Spencer, L A

    2015-07-01

    Priming with cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances eosinophil migration and exacerbates the excessive accumulation of eosinophils within the bronchial mucosa of asthmatics. However, mechanisms that drive GM-CSF priming are incompletely understood. Notch signaling is an evolutionarily conserved pathway that regulates cellular processes, including migration, by integrating exogenous and cell-intrinsic cues. This study investigates the hypothesis that the priming-induced enhanced migration of human eosinophils requires the Notch signaling pathway. Using pan Notch inhibitors and newly developed human antibodies that specifically neutralize Notch receptor 1 activation, we investigated a role for Notch signaling in GM-CSF-primed transmigration of human blood eosinophils in vitro and in the airway accumulation of mouse eosinophils in vivo. Notch receptor 1 was constitutively active in freshly isolated human blood eosinophils, and inhibition of Notch signaling or specific blockade of Notch receptor 1 activation during GM-CSF priming impaired priming-enhanced eosinophil transendothelial migration in vitro. Inclusion of Notch signaling inhibitors during priming was associated with diminished ERK phosphorylation, and ERK-MAPK activation was required for GM-CSF priming-induced transmigration. In vivo in mice, eosinophil accumulation within allergic airways was impaired following systemic treatment with Notch inhibitor, or adoptive transfer of eosinophils treated ex vivo with Notch inhibitor. These data identify Notch signaling as an intrinsic pathway central to GM-CSF priming-induced eosinophil tissue migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. L1 Retrotransposition in Neural Progenitor Cells.

    PubMed

    Muotri, Alysson R

    2016-01-01

    Long interspersed nucleotide element 1 (LINE-1 or L1) is a family of non-LTR retrotransposons that can replicate and reintegrate into the host genome. L1s have considerably influenced mammalian genome evolution by retrotransposing during germ cell development or early embryogenesis, leading to massive genome expansion. For many years, L1 retrotransposons were viewed as a selfish DNA parasite that had no contribution in somatic cells. Historically, L1s were thought to only retrotranspose during gametogenesis and in neoplastic processes, but recent studies have shown that L1s are extremely active in the mouse, rat, and human neuronal progenitor cells (NPCs). These de novo L1 insertions can impact neuronal transcriptional expression, creating unique transcriptomes of individual neurons, possibly contributing to the uniqueness of the individual cognition and mental disorders in humans.

  8. L1 Splines with Locally Computed Coefficients

    DTIC Science & Technology

    2013-01-01

    Fang. Univariate Cubic L1 Interpolating Splines : Analytical Results for Linearity, Convexity and Oscillation on 5-PointWindows, Algorithms, (07 2010...0. doi: 10.3390/a3030276 07/21/2011 2.00 Lu Yu, Qingwei Jin, John E. Lavery, Shu-Cherng Fang. Univariate Cubic L1 Interpolating Splines : Spline ...Qingwei Jin, Lu Yu, John E. Lavery, Shu-Cherng Fang. Univariate cubic L1 interpolating splines basedon the first derivative and on 5-point windows

  9. The Pleiotropic Role of L1CAM in Tumor Vasculature

    PubMed Central

    Angiolini, Francesca; Cavallaro, Ugo

    2017-01-01

    Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM), a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach. PMID:28134764

  10. [Induction of monocyte-derived dendritic cell differentiation by asthmatic serum in a transendothelial trafficking model].

    PubMed

    Zhou, Lin-fu; Wang, Wen-lu; Li, Hong-yan; Zhang, Ming-shun; Ji, Xiao-hui; He, Shao-heng; Huang, Mao; Yin, Kai-sheng

    2011-03-01

    To explore the effect of asthmatic and healthy serum on differentiation and function of monocyte-derived dendritic cells (MDDC) in a transendothelial trafficking model. The sera and peripheral blood mononuclear cells (PBMC) were separated from 12 asthmatic patients and 12 healthy volunteers, and monocytes were selected from PBMC using magnetic beads. The trypsin-digested human umbilical vein endothelial cells (HUVEC) at passage 2 from 5 healthy lying-in women were used to construct the transendothelial trafficking model under asthmatic or healthy serum, wherein MDDC were identified by silver nitrate staining and scanning electron microscopy. Nuclear factor κB (NF-κB) activity was determined by electrophoretic mobility shift assay. Flow cytometry, ELISA and mixed leukocyte reaction were relevantly utilized to detect the phenotype, cytokine and T cell proliferation. (1) Monocytes traversed through HUVEC monolayer after 2 h, and reverse-transmigrated to develop into DC 48 h later. (2) The healthy serum stimulated monocytes into immature MDDC with lower CD(14) [(20 ± 5)%] (F = 49.01, P < 0.05), and higher HLA-DR, CD(80), CD(86) and CD(83) [(43 ± 4)%, (17.9 ± 3.5)%, (43 ± 11)% and (6.7 ± 1.8)%, respectively] (F = 10.35 - 40.17, all P < 0.05) than monocytes did before transmigration at 0 h [CD(14) (81 ± 6)%, HLA-DR (24 ± 5)%, CD(80) (2.8 ± 2.0)%, CD(86) (14 ± 4)% and CD(83) (0.9 ± 0.8)%, respectively]. (3) The asthmatic serum stimulated monocytes into mature MDDC, characteristic of dendrites, with similar HLA-DR and CD(86) [(55 ± 6)% and (59 ± 12)%] (F = 15.29 and 35.97, all P > 0.05), higher CD(80) and CD(83) [(49.7 ± 10.2)% and (30.2 ± 6.8)%] (F = 4.01 and 20.68, all P < 0.05), accompanied by increased levels of NF-κB activity, IL-12 p70 and T cell proliferation [(100 ± 11)%, (568 ± 43) ng/L and (2033 ± 198) cpm, respectively] (F = 49.23 - 350.84, all P < 0.05) relative to the healthy serum-stimulated immature MDDC [(12 ± 3)%, (220 ± 35) ng/L and

  11. Rocking adhesion assay system to study adhesion and transendothelial migration of cancer cells.

    PubMed

    Bapu, Deepashree; Khadim, Munira; Brooks, Susan A

    2014-01-01

    Adhesion of metastatic cancer cells to the vascular endothelium of the target organs and their subsequent transendothelial migration is one of the critical, yet poorly understood, steps of the metastatic cascade. Conventionally, the mechanisms of this complex process have been studied using static adhesion systems or flow assay systems. Static assay systems are easy to set up and perform but do not mimic the physiological conditions of blood flow. Flow assays closely mimic physiological conditions of flow but are time consuming and require specialist equipment. In this chapter we describe the rocking adhesion system which incorporates the key advantages of both the static and flow assay systems and not only is easy to set up and perform but also mimics conditions of blood flow.

  12. Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease.

    PubMed

    Klarin, Derek; Zhu, Qiuyu Martin; Emdin, Connor A; Chaffin, Mark; Horner, Steven; McMillan, Brian J; Leed, Alison; Weale, Michael E; Spencer, Chris C A; Aguet, François; Segrè, Ayellet V; Ardlie, Kristin G; Khera, Amit V; Kaushik, Virendar K; Natarajan, Pradeep; Kathiresan, Sekar

    2017-09-01

    UK Biobank is among the world's largest repositories for phenotypic and genotypic information in individuals of European ancestry. We performed a genome-wide association study in UK Biobank testing ∼9 million DNA sequence variants for association with coronary artery disease (4,831 cases and 115,455 controls) and carried out meta-analysis with previously published results. We identified 15 new loci, bringing the total number of loci associated with coronary artery disease to 95 at the time of analysis. Phenome-wide association scanning showed that CCDC92 likely affects coronary artery disease through insulin resistance pathways, whereas experimental analysis suggests that ARHGEF26 influences the transendothelial migration of leukocytes.

  13. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair

    PubMed Central

    Barreiro, Olga; Cibrian, Danay; Clemente, Cristina; Alvarez, David; Moreno, Vanessa; Valiente, Íñigo; Bernad, Antonio; Vestweber, Dietmar; Arroyo, Alicia G; Martín, Pilar; von Andrian, Ulrich H; Sánchez Madrid, Francisco

    2016-01-01

    Heterogeneity and functional specialization among skin-resident macrophages are incompletely understood. In this study, we describe a novel subset of murine dermal perivascular macrophages that extend protrusions across the endothelial junctions in steady-state and capture blood-borne macromolecules. Unlike other skin-resident macrophages that are reconstituted by bone marrow-derived progenitors after a genotoxic insult, these cells are replenished by an extramedullary radio-resistant and UV-sensitive Bmi1+ progenitor. Furthermore, they possess a distinctive anti-inflammatory transcriptional profile, which cannot be polarized under inflammatory conditions, and are involved in repair and remodeling functions for which other skin-resident macrophages appear dispensable. Based on all their properties, we define these macrophages as Skin Transendothelial Radio-resistant Anti-inflammatory Macrophages (STREAM) and postulate that their preservation is important for skin homeostasis. DOI: http://dx.doi.org/10.7554/eLife.15251.001 PMID:27304075

  14. DSCOVR_EPIC_L1B

    Atmospheric Science Data Center

    2017-01-04

    DSCOVR_EPIC_L1B Full sun-light Earth images, georectified to the same ... 551NM 680NM 688NM 764NM 780NM DSCOVR EPIC IMAGERY L1B LAGRANGE Order Data:  Earthdata ...   Order Data Readme Files:  EPIC Data Format Control Book SCAR-B Block:  ...

  15. Live Brugia malayi microfilariae inhibit transendothelial migration of neutrophils and monocytes.

    PubMed

    Schroeder, Jan-Hendrik; Simbi, Bigboy H; Ford, Louise; Cole, Sara R; Taylor, Mark J; Lawson, Charlotte; Lawrence, Rachel A

    2012-01-01

    Lymphatic filariasis is a major tropical disease caused by the parasite Brugia malayi. Microfilariae (Mf) circulate in the peripheral blood for 2-3 hours in synchronisation with maximal feeding of the mosquito vector. When absent from the peripheral blood, Mf sequester in the capillaries of the lungs. Mf are therefore in close contact with vascular endothelial cells (EC) and may induce EC immune function and/or wound repair mechanisms such as angiogenesis. In this study, Mf were co-cultured with human umbilical vein EC (HUVEC) or human lung microvascular EC (HLMVEC) and the transendothelial migration of leukocyte subsets was analysed. In addition, the protein and/or mRNA expression of chemokine, cytokine and angiogenic mediators in endothelial cells in the presence of live microfilariae were measured by a combination of cDNA arrays, protein arrays, ELISA and fluorescence antibody tests.Surprisingly, our findings indicate that Mf presence partially blocked transendothelial migration of monocytes and neutrophils, but not lymphocytes. However, Mf exposure did not result in altered vascular EC expression of key mediators of the tethering stage of extravasation, such as ICAM-1, VCAM-1 and various chemokines. To further analyse the immunological function of vascular EC in the presence of Mf, we measured the mRNA and/or protein expression of a number of pro-inflammatory mediators. We found that expression levels of the mediators tested were predominantly unaltered upon B. malayi Mf exposure. In addition, a comparison of angiogenic mediators induced by intact Mf and Wolbachia-depleted Mf revealed that even intact Mf induce the expression of remarkably few angiogenic mediators in vascular EC. Our study suggests that live microfilariae are remarkably inert in their induction and/or activation of vascular cells in their immediate local environment. Overall, this work presents important insights into the immunological function of the vascular endothelium during an infection

  16. DNA Damage and L1 Retrotransposition

    PubMed Central

    Farkash, Evan A.; Prak, Eline T. Luning

    2006-01-01

    Barbara McClintock was the first to suggest that transposons are a source of genome instability and that genotoxic stress assisted in their mobilization. The generation of double-stranded DNA breaks (DSBs) is a severe form of genotoxic stress that threatens the integrity of the genome, activates cell cycle checkpoints, and, in some cases, causes cell death. Applying McClintock's stress hypothesis to humans, are L1 retrotransposons, the most active autonomous mobile elements in the modern day human genome, mobilized by DSBs? Here, evidence that transposable elements, particularly retrotransposons, are mobilized by genotoxic stress is reviewed. In the setting of DSB formation, L1 mobility may be affected by changes in the substrate for L1 integration, the DNA repair machinery, or the L1 element itself. The review concludes with a discussion of the potential consequences of L1 mobilization in the setting of genotoxic stress. PMID:16877815

  17. Herbal composition Gambigyeongsinhwan (4) from Curcuma longa, Alnus japonica, and Massa Medicata Fermentata inhibits lipid accumulation in 3T3-L1 cells and regulates obesity in Otsuka Long-Evans Tokushima Fatty rats.

    PubMed

    Roh, Jong Sung; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Park, Sun Dong; Shin, Soon Shik; Yoon, Michung

    2015-08-02

    Adipocyte lipid accumulation due to impaired fatty acid oxidation causes adipocyte hypertrophy and adipose tissue increment, leading to obesity. The aim of this study was to determine the antiobesity effects of the herbal composition Gambigyeongsinhwan (4) (GGH(4)) composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata. The effects of GGH(4) and the individual components on lipid accumulation in 3T3-L1 adipocytes and body weight gain in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined using Oil red O staining, hematoxylin and eosin staining, quantitative real-time PCR, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. GGH(4), individual components, and an active principle of Curcuma longa curcumin inhibited lipid accumulation and mRNA levels of adipocyte-specific genes (PPARγ, aP2, and C/EBPα) in 3T3-L1 adipocytes compared with control cells. Treatment with GGH(4), the individual components or curcmumin increased mRNA levels of mitochondrial (CPT-1, MCAD, and VLCAD) and peroxisomal (ACOX and thiolase) PPARα target genes. GGH(4) and the individual components also increased PPARα reporter gene expression compared with control cells. These effects were most prominent in GGH(4)-treated cells. However, the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on adipogenesis. An in vivo study showed that GGH(4) decreased body weight gain, adipose tissue mass, and visceral adipocyte size with increasing mRNA levels of adipose tissue PPARα target genes in OLETF rats. These results demonstrate that GGH(4) has an antiobesity effects through the inhibition of adipocyte lipid accumulation, and this process may be mediated in part through adipose PPARα activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Environmental Influence on L1 Retrotransposons in the Adult Hippocampus

    PubMed Central

    Muotri, Alysson R.; Zhao, Chunmei; Marchetto, Maria C.N.; Gage, Fred H.

    2009-01-01

    It is well established that neuronal circuits can be shaped by experience. Neuronal plasticity can be achieved by synaptic competitive interactions and the addition of new neuronal units in neurogenic regions of the adult brain. Recent data have suggested that neuronal progenitor cells can accommodate somatic LINE-1 (Long Interspersed Nuclear Elements-1 or L1) retrotransposition. Genomic L1 insertions may up- or down-regulate transcriptional control of gene expression. Here, we show that exercise has a positive effect on a L1-EGFP reporter in vivo. We found that neurons from mice that experience voluntary exercise are more likely to activate an EGFP reporter marker, representing L1 insertions in the brain, when compared with sedentary animals. In the hippocampus, a neurogenic region of the adult brain, EGFP expression is mainly found in cells localized in the subgranular layer of the dentate gyrus. This observation implies that neuronal progenitor cells may support de novo retrotransposition upon exposure to a new environment. Such evidence suggests that experience-dependent L1 retrotransposition may contribute to the physiological consequences of neuronal plasticity. PMID:19771587

  19. The RGD integrin binding site in human L1-CAM is important for nuclear signaling

    SciTech Connect

    Gast, Daniela; Riedle, Svenja; Kiefel, Helena; Mueerkoester, Susanne Sebens; Schaefer, Heiner; Schaefer, Michael K.E.; Altevogt, Peter

    2008-08-01

    L1 cell adhesion molecule (L1-CAM) is a transmembrane cell adhesion molecule initially defined as a promigratory molecule in the developing nervous system. L1 is also overexpressed in a variety of human carcinomas and is associated with bad prognosis. In carcinoma cell lines L1 augments cell motility and metastasis, tumor growth in nude mice and induces expression of L1-dependent genes. It is not known whether L1-signaling requires ligand binding. The RGD motif in the sixth Ig domain of L1 is a binding site for integrins. In the present study we analyzed the role of RGDs in L1-signaling using site-directed mutagenesis combined with antibody blocking studies. We observed that L1-RGE expressing HEK293 cells showed reduced cell-cell binding, cell motility, invasiveness and tumor growth in NOD/SCID mice. The RGE-mutation impaired L1-dependent gene regulation and antibodies to {alpha}v{beta}5 integrin had similar effects. Mutant L1 was unable to translocate to the nucleus. Our findings highlight the importance of the RGD site in L1 for human tumors and suggest that nuclear signaling of L1 is dependent on integrins.

  20. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    PubMed

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-08

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016.

  1. Standardized Cirsium setidens Nakai Ethanolic Extract Suppresses Adipogenesis and Regulates Lipid Metabolisms in 3T3-L1 Adipocytes and C57BL/6J Mice Fed High-Fat Diets.

    PubMed

    Cho, Bong-Yeon; Park, Mi-Ryeong; Lee, Jin-Ha; Ra, Moon-Jin; Han, Kyoung Chan; Kang, Il-Jun; Lee, Ok-Hwan

    2017-08-01

    Cirsium setidens Nakai, a wild perennial herb, grows mainly in Gangwon province, Korea, and has been reported to contain bioactive ingredients with various medicinal activities, including the treatment of edema, bleeding, and hemoptysis. However, the potential antiobesity effects of C. setidens Nakai have not been fully investigated. This study evaluated the antiobesity effect of standardized C. setidens Nakai ethanolic extract (CNE) in 3T3-L1 adipocytes and in obese C57BL/6J mice fed a high-fat diet. CNE suppressed the expression of lipogenic genes and increased the expression of lipolytic genes. The antiadipogenic and antilipogenic effects of CNE appear to be mediated by the inhibition of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) expressions. Moreover, CNE stimulated fatty acid oxidation in an AMPK-dependent manner. CNE-treated groups of C57BL/6J mice showed reduced body weights and adipose tissue weight and improved serum lipid profiles through the downregulation of PPARγ, C/EBPα, fatty acid binding protein 4 (FABP4), sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS) and the upregulation of adiponectin and carnitine palmitoyltransferase-1 (CPT-1) in obese C57BL/6J mice fed a high-fat diet. These results suggest that CNE may have an antiobesity effect on adipogenesis and lipid metabolism in vitro and in vivo and present the possibility of developing a treatment for obesity with nontoxic natural resources.

  2. L1 syndrome mutations impair neuronal L1 function at different levels by divergent mechanisms.

    PubMed

    Schäfer, Michael K E; Nam, Yun-Chung; Moumen, Anice; Keglowich, Laura; Bouché, Elisabeth; Küffner, Mercedes; Bock, Hans H; Rathjen, Fritz G; Raoul, Cedric; Frotscher, Michael

    2010-10-01

    Mutations in the human L1CAM gene cause neurodevelopmental disorders collectively referred to as L1 syndrome. Here, we investigated cellular pathomechanisms underlying two L1 syndrome mutations, R184Q and W1036L. We demonstrate that these mutations cause partial endoplasmic reticulum (ER) retention of L1, reduce L1 cell surface expression, but do not induce ER stress in neuronal NSC-34 cells. We provide evidence that surface trafficking of mutated L1 is affected by defective sorting to ER exit sites and attenuated ER export. However, in differentiated neuronal cultures and long-term cultured hippocampal slices, the L1-R184Q protein is restricted to cell bodies, whereas L1-W1036L also aberrantly localizes to dendrites. These trafficking defects preclude axonal targeting of L1, thereby affecting L1-mediated axon growth and arborization. Our results indicate that L1 syndrome mutations impair neuronal L1 function at different levels, firstly by attenuating ER export and secondly by interfering with polarized neuronal trafficking. (c) 2010 Elsevier Inc. All rights reserved.

  3. Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) Promotes Hippocampus-Dependent Memory via Its Deubiquitinating Effect on TrkB.

    PubMed

    Guo, Yun-Yun; Lu, Yi; Zheng, Yuan; Chen, Xiao-Rong; Dong, Jun-Lu; Yuan, Rong-Rong; Huang, Shu-Hong; Yu, Hui; Wang, Yue; Chen, Zhe-Yu; Su, Bo

    2017-06-21

    Multiple studies have established that brain-derived neurotrophic factor (BDNF) plays a critical role in the regulation of synaptic plasticity via its receptor, TrkB. In addition to being phosphorylated, TrkB has also been demonstrated to be ubiquitinated. However, the mechanisms of TrkB ubiquitination and its biological functions remain poorly understood. In this study, we demonstrate that ubiquitin C-terminal hydrolase L1 (UCH-L1) promotes contextual fear conditioning learning and memory via the regulation of ubiquitination of TrkB. We provide evidence that UCH-L1 can deubiquitinate TrkB directly. K460 in the juxtamembane domain of TrkB is the primary ubiquitination site and is regulated by UCH-L1. By using a peptide that competitively inhibits the association between UCH-L1 and TrkB, we show that the blockade of UCH-L1-regulated TrkB deubiquitination leads to increased BDNF-induced TrkB internalization and consequently directs the internalized TrkB to the degradation pathway, resulting in increased degradation of surface TrkB and attenuation of TrkB activation and its downstream signaling pathways. Moreover, injection of the peptide into the DG region of mice impairs hippocampus-dependent memory. Together, our results suggest that the ubiquitination of TrkB is a mechanism that controls its downstream signaling pathways via the regulation of its endocytosis and postendocytic trafficking and that UCH-L1 mediates the deubiquitination of TrkB and could be a potential target for the modulation of hippocampus-dependent memory.SIGNIFICANCE STATEMENT Ubiquitin C-terminal hydrolase L1 (UCH-L1) has been demonstrated to play important roles in the regulation of synaptic plasticity and learning and memory. TrkB, the receptor for brain-derived neurotrophic factor, has also been shown to be a potent regulator of synaptic plasticity. In this study, we demonstrate that UCH-L1 functions as a deubiquitinase for TrkB. The blockage of UCH-L1-regulated deubiquitination of Trk

  4. DSCOVR_NISTAR_L1A_2

    Atmospheric Science Data Center

    2017-08-02

    ... Level:  L1 Platform:  DEEP SPACE CLIMATE OBSERVATORY Instrument:  PHOTODIODE RADIOMETER ... File Format:  HDF-5 Tools:  Search and Order:   Earthdata Search Search and Order:   ASDC Order ...

  5. DSCOVR_NISTAR_L1B_2

    Atmospheric Science Data Center

    2017-08-02

    ... Level:  L1 Platform:  DEEP SPACE CLIMATE OBSERVATORY Instrument:  PHOTODIODE RADIOMETER ... 10 minute/Hourly/Daily Tools:  Search and Order:   Earthdata Search Search and Order:   ASDC Order ...

  6. DSCOVR_NISTAR_L1A

    Atmospheric Science Data Center

    2017-01-04

    ... Raw and calibrated radiometer science and engineering data. Project Title:  DSCOVR Discipline:  ... Level:  L1 Platform:  DEEP SPACE CLIMATE OBSERVATORY Instrument:  PHOTODIODE RADIOMETER ...

  7. DSCOVR_NISTAR_L1B

    Atmospheric Science Data Center

    2017-09-06

    ... Level:  L1 Platform:  DEEP SPACE CLIMATE OBSERVATORY Instrument:  PHOTODIODE RADIOMETER ... APERTURE EARTH IRRADIANCE LUNAR IRRADIANCE TEMPERATURE Order Data:  Contact User Services:   Order Data ...

  8. DSCOVR_EPIC_L1B_2

    Atmospheric Science Data Center

    2017-10-01

    ... Tools:  Earthdata Search:   Order Data Search and Order:   ASDC Order Tool OPeNDAP Access:   OPeNDAP ... DSCOVR EPIC IMAGERY L1B LAGRANGE Order Data:  Earthdata Search:   Order Data Guide ...

  9. L1 libration point manned space habitat

    NASA Technical Reports Server (NTRS)

    Luttges, Marvin; Johnson, Steve; Banks, Gary; Johnson, Richard; Meyer, Christian; Pepin, Scott; Macelroy, Robert

    1989-01-01

    Second generation stations or Manned Space Habitats (MSHs) are discussed for an Earth-Moon libration point and in lunar orbit. The conceptual design of such a station is outlined. Systems and subsystems described reflect anticipation of moderate technology growth. The evolution of the L1 environments is discussed, several selected subsystems are outlined, and how the L1 MSH will complete some of its activities is described.

  10. euL1db: the European database of L1HS retrotransposon insertions in humans

    PubMed Central

    Mir, Ashfaq A.; Philippe, Claude; Cristofari, Gaël

    2015-01-01

    Retrotransposons account for almost half of our genome. They are mobile genetics elements—also known as jumping genes—but only the L1HS subfamily of Long Interspersed Nuclear Elements (LINEs) has retained the ability to jump autonomously in modern humans. Their mobilization in germline—but also some somatic tissues—contributes to human genetic diversity and to diseases, such as cancer. Here, we present euL1db, the European database of L1HS retrotransposon insertions in humans (available at http://euL1db.unice.fr). euL1db provides a curated and comprehensive summary of L1HS insertion polymorphisms identified in healthy or pathological human samples and published in peer-reviewed journals. A key feature of euL1db is its sample-wise organization. Hence L1HS insertion polymorphisms are connected to samples, individuals, families and clinical conditions. The current version of euL1db centralizes results obtained in 32 studies. It contains >900 samples, >140 000 sample-wise insertions and almost 9000 distinct merged insertions. euL1db will help understanding the link between L1 retrotransposon insertion polymorphisms and phenotype or disease. PMID:25352549

  11. Description of the L1C signal

    USGS Publications Warehouse

    Betz, J.W.; Blanco, M.A.; Cahn, C.R.; Dafesh, P.A.; Hegarty, C.J.; Hudnut, K.W.; Kasemsri, V.; Keegan, R.; Kovach, K.; Lenahan, L.S.; Ma, H.H.; Rushanan, J.J.; Sklar, D.; Stansell, T.A.; Wang, C.C.; Yi, S.K.

    2006-01-01

    Detailed design of the modernized LI civil signal (L1C) signal has been completed, and the resulting draft Interface Specification IS-GPS-800 was released in Spring 2006. The novel characteristics of the optimized L1C signal design provide advanced capabilities while offering to receiver designers considerable flexibility in how to use these capabilities. L1C provides a number of advanced features, including: 75% of power in a pilot component for enhanced signal tracking, advanced Weilbased spreading codes, an overlay code on the pilot that provides data message synchronization, support for improved reading of clock and ephemeris by combining message symbols across messages, advanced forward error control coding, and data symbol interleaving to combat fading. The resulting design offers receiver designers the opportunity to obtain unmatched performance in many ways. This paper describes the design of L1C. A summary of LIC's background and history is provided. The signal description then proceeds with the overall signal structure consisting of a pilot component and a carrier component. The new L1C spreading code family is described, along with the logic used for generating these spreading codes. Overlay codes on the pilot channel are also described, as is the logic used for generating the overlay codes. Spreading modulation characteristics are summarized. The data message structure is also presented, showing the format for providing time, ephemeris, and system data to users, along with features that enable receivers to perform code combining. Encoding of rapidly changing time bits is described, as are the Low Density Parity Check codes used for forward error control of slowly changing time bits, clock, ephemeris, and system data. The structure of the interleaver is also presented. A summary of L 1C's unique features and their benefits is provided, along with a discussion of the plan for L1C implementation.

  12. L1C signal design options

    USGS Publications Warehouse

    Betz, J.W.; Cahn, C.R.; Dafesh, P.A.; Hegarty, C.J.; Hudnut, K.W.; Jones, A.J.; Keegan, R.; Kovach, K.; Lenahan, L.S.; Ma, H.H.; Rushanan, J.J.; Stansell, T.A.; Wang, C.C.; Yi, S.K.

    2006-01-01

    Design activities for a new civil signal centered at 1575.42 MHz, called L1C, began in 2003, and the Phase 1 effort was completed in 2004. The L1C signal design has evolved and matured during a Phase 2 design activity that began in 2005. Phase 2 has built on the initial design activity, guided by responses to international user surveys conducted during Phase 1. A common core of signal characteristics has been developed to provide advances in robustness and performance. The Phase 2 activity produced five design options, all drawing upon the core signal characteristics, while representing different blends of characteristics and capabilities. A second round of international user surveys was completed to solicit advice concerning these design options. This paper provides an update of the L1C design process, and describes the current L1C design options. Initial performance estimates are presented for each design option, displaying trades between signal tracking robustness, the speed and robustness of clock and ephemeris data, and the rate and robustness of other data message contents. Planned remaining activities are summarized, leading to optimization of the L1C design.

  13. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1

    DOE PAGES

    Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; ...

    2017-02-21

    Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway

  14. Face recognition with L1-norm subspaces

    NASA Astrophysics Data System (ADS)

    Maritato, Federica; Liu, Ying; Colonnese, Stefania; Pados, Dimitris A.

    2016-05-01

    We consider the problem of representing individual faces by maximum L1-norm projection subspaces calculated from available face-image ensembles. In contrast to conventional L2-norm subspaces, L1-norm subspaces are seen to offer significant robustness to image variations, disturbances, and rank selection. Face recognition becomes then the problem of associating a new unknown face image to the "closest," in some sense, L1 subspace in the database. In this work, we also introduce the concept of adaptively allocating the available number of principal components to different face image classes, subject to a given total number/budget of principal components. Experimental studies included in this paper illustrate and support the theoretical developments.

  15. miR-128 represses L1 retrotransposition by binding directly to L1 RNA.

    PubMed

    Hamdorf, Matthias; Idica, Adam; Zisoulis, Dimitrios G; Gamelin, Lindsay; Martin, Charles; Sanders, Katie J; Pedersen, Irene M

    2015-10-01

    Long interspersed element 1 (LINE-1 or L1) retrotransposons compose 17% of the human genome. Active L1 elements are capable of replicative transposition (mobilization) and can act as drivers of genetic diversity. However, this mobilization is mutagenic and may be detrimental to the host, and therefore it is under strict control. Somatic cells usually silence L1 activity by DNA methylation of the L1 promoter. In hypomethylated cells, such as cancer cells and induced pluripotent stem cells (iPSCs), a window of opportunity for L1 reactivation emerges, and with it comes an increased risk of genomic instability and tumorigenesis. Here we show that miR-128 represses new retrotransposition events in human cancer cells and iPSCs by binding directly to L1 RNA. Thus, we have identified and characterized a new function of microRNAs: mediating genomic stability by suppressing the mobility of endogenous retrotransposons.

  16. Concise Review: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration.

    PubMed

    Nitzsche, Franziska; Müller, Claudia; Lukomska, Barbara; Jolkkonen, Jukka; Deten, Alexander; Boltze, Johannes

    2017-06-01

    Mesenchymal stem cells (MSCs) are promising candidates for adult cell therapies in regenerative medicine. To fully exert their potential, efficient homing and migration toward lesion sites play an important role. Local transplantation deposits MSC in spatial proximity to the lesion, but often requires invasive procedures. Systemic administration routes are favored, but require the targeted extravasation of the circulating MSC at the site of injury. Transplanted MSC can indeed leave the blood flow and transmigrate through the endothelial barrier, and reach the lesion site. However, the underlying processes are not completely dissolved yet. Recent in vitro and in vivo research identified some key molecules scattered light on the extravasation mechanism. This review provides a detailed overview over the current knowledge of MSC transendothelial migration. We use the leukocyte extravasation process as a role model to build a comprehensive concept of MSC egress mechanisms from the blood stream and identified relevant similarities as well as important differences between the extravasation mechanisms. Stem Cells 2017;35:1446-1460. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. A Unique Role for Endothelial Cell Kinesin Light Chain 1, Variant 1 in Leukocyte Transendothelial Migration

    PubMed Central

    Cyrus, Bita F.; Muller, William A.

    2017-01-01

    A reservoir of parajunctional membrane in endothelial cells, the lateral border recycling compartment (LBRC), is critical for transendothelial migration (TEM). We have previously shown that targeted recycling of the LBRC to the site of TEM requires microtubules and a kinesin molecular motor. However, the identity of the kinesin and mechanism of cargo binding were not known. We show that microinjection of endothelial cells with a monoclonal antibody specific for kinesin-1 significantly blocked LBRC-targeted recycling and TEM. In complementary experiments, knocking down KIF5B, a ubiquitous kinesin-1 isoform, in endothelial cells significantly decreased targeted recycling of the LBRC and leukocyte TEM. Kinesin heavy chains move cargo along microtubules by one of many kinesin light chains (KLCs), which directly bind the cargo. Knocking down KLC 1 isoform variant 1 (KLC1C) significantly decreased LBRC-targeted recycling and TEM, whereas knocking down other isoforms of KLC1 had no effect. Re-expression of KLC1C resistant to the knockdown shRNA restored targeted recycling and TEM. Thus kinesin-1 and KLC1C are specifically required for targeted recycling and TEM. These data suggest that of the many potential combinations of the 45 kinesin family members and multiple associated light chains, KLC1C links the LBRC to kinesin-1 (KIF5B) during targeted recycling and TEM. Thus, KLC1C can potentially be used as a target for anti-inflammatory therapy. PMID:26994343

  18. Microfluidic transendothelial electrical resistance measurement device that enables blood flow and postgrowth experiments.

    PubMed

    Vogel, Paul A; Halpin, Stephen T; Martin, R Scott; Spence, Dana M

    2011-06-01

    Transendothelial electronic resistance (TEER) measurements are performed across a cell layer immobilized on a microfluidic device that also enables the cell layer to interact with a flowing stream of red blood cells (RBCs). A bipolar pulsed square wave potential is applied across a monolayer of bovine pulmonary artery endothelial cells, and the resulting current response is measured and integrated. The overall impedance of the cell layer provides an indicator of cell layer integrity. After cell seeding on the device, a decrease in TEER signal from 22.3 ± 1.6 μC to 3.5 ± 0.4 μC (corresponding to a resistance of 40.9 ± 2.9 Ω·cm(2) to 259.1 ± 27.4 Ω·cm(2)) was observed after 8 h of cell growth. Intracellular nitric oxide (NO) production by the immobilized endothelial cells that had reached confluence was 34% higher than those cells that had not reached confluence, as indicated by the integrated TEER system. Importantly, this NO production by the confluent endothelium was stimulated by ATP released from RBCs flowing under the endothelial cells. In this construct, the described microfluidic device enables both a TEER-based evaluation of cell layer integrity and molecularly communicated interactions of these cells with a flowing stream of blood components.

  19. Electrical Monitoring Cytotoxic Effect of Cigarette Smoke Condensate on Transendothelial Invasion of Ovarian Cancer Cells

    NASA Astrophysics Data System (ADS)

    Opp, Daniel; Lo, Chun-Min

    2007-03-01

    We investigated the effects of cigarette smoke condensate (CSC) on barrier function and cellular migration of human umbilical vein endothelial cells (HUVEC), and on the invasive activities of ovarian carcinoma cells through HUVEC monolayers as well. Central to this work was the use of electric cell-substrate impedance sensing (ECIS), a cell-based biosensor that monitors motility and other morphology changes of cells adherent on small gold electrodes. Upon addition of different concentrations of CSC, the junctional resistance and the wound healing rate of the HUVEC layers decrease as CSC concentration increases from 0.01 to 0.25 mg/ml, whereas the average cell-substrate separation increases with CSC concentration. Following the addition of OVCA429 ovarian cancer cells to HUVEC layers with the presence of different CSC concentrations, dose-dependent changes of the transcellular resistance drop were observed. Our results suggest that CSC is detrimental to normal endothelial cell function in maintaining vascular integrity. In addition, the chemicals present in CSC may increase transendothelial invasion of ovarian cancer cells.

  20. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin.

    PubMed

    Shulman, Ziv; Shinder, Vera; Klein, Eugenia; Grabovsky, Valentin; Yeger, Orna; Geron, Erez; Montresor, Alessio; Bolomini-Vittori, Matteo; Feigelson, Sara W; Kirchhausen, Tomas; Laudanna, Carlo; Shakhar, Guy; Alon, Ronen

    2009-03-20

    Endothelial chemokines are instrumental for integrin-mediated lymphocyte adhesion and transendothelial migration (TEM). By dissecting how chemokines trigger lymphocyte integrins to support shear-resistant motility on and across cytokine-stimulated endothelial barriers, we found a critical role for high-affinity (HA) LFA-1 integrin in lymphocyte crawling on activated endothelium. Endothelial-presented chemokines triggered HA-LFA-1 and adhesive filopodia at numerous submicron dots scattered underneath crawling lymphocytes. Shear forces applied to endothelial-bound lymphocytes dramatically enhanced filopodia density underneath crawling lymphocytes. A fraction of the adhesive filopodia invaded the endothelial cells prior to and during TEM and extended large subluminal leading edge containing dots of HA-LFA-1 occupied by subluminal ICAM-1. Memory T cells generated more frequent invasive filopodia and transmigrated more rapidly than their naive counterparts. We propose that shear forces exerted on HA-LFA-1 trigger adhesive and invasive filopodia at apical endothelial surfaces and thereby promote lymphocyte crawling and probing for TEM sites.

  1. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils.

    PubMed

    Kuckleburg, Christopher J; Tilkens, Sarah B; Santoso, Sentot; Newman, Peter J

    2012-03-01

    Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, in which receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrophil transmigration is unknown. Recently, NB1 has been shown to be a heterophilic binding partner for the endothelial cell junctional protein, PECAM-1. Disrupting the interaction between NB1 and PECAM-1 significantly inhibits neutrophil transendothelial cell migration on endothelial cell monolayers. Because NB1 interacts with endothelial cell PECAM-1 at cell junctions where transmigration occurs, we considered that NB1-PR3 interactions may play a role in aiding neutrophil diapedesis. Blocking Abs targeting the heterophilic binding domain of PECAM-1 significantly inhibited transmigration of NB1-positive neutrophils through IL-1β-stimulated endothelial cell monolayers. PR3 expression and activity were significantly increased on NB1-positive neutrophils following transmigration, whereas neutrophils lacking NB1 demonstrated no increase in PR3. Finally, using selective serine protease inhibitors, we determined that PR3 activity facilitated transmigration of NB1-positive neutrophils under both static and flow conditions. These data demonstrate that PR3 contributes in the selective recruitment of the NB1-positive neutrophil population.

  2. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo.

    PubMed

    Colom, Bartomeu; Bodkin, Jennifer V; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A; Nourshargh, Sussan

    2015-06-16

    Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic.

  3. Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages.

    PubMed

    Stamatiades, Efstathios G; Tremblay, Marie-Eve; Bohm, Mathieu; Crozet, Lucile; Bisht, Kanchan; Kao, Daniela; Coelho, Carolina; Fan, Xiying; Yewdell, William T; Davidson, Anne; Heeger, Peter S; Diebold, Sandra; Nimmerjahn, Falk; Geissmann, Frederic

    2016-08-11

    Small immune complexes cause type III hypersensitivity reactions that frequently result in tissue injury. The responsible mechanisms, however, remain unclear and differ depending on target organs. Here, we identify a kidney-specific anatomical and functional unit, formed by resident macrophages and peritubular capillary endothelial cells, which monitors the transport of proteins and particles ranging from 20 to 700 kDa or 10 to 200 nm into the kidney interstitium. Kidney-resident macrophages detect and scavenge circulating immune complexes "pumped" into the interstitium via trans-endothelial transport and trigger a FcγRIV-dependent inflammatory response and the recruitment of monocytes and neutrophils. In addition, FcγRIV and TLR pathways synergistically "super-activate" kidney macrophages when immune complexes contain a nucleic acid. These data identify a physiological function of tissue-resident kidney macrophages and a basic mechanism by which they initiate the inflammatory response to small immune complexes in the kidney. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Targeted Recycling of the Lateral Border Recycling Compartment Precedes Adherens Junction Dissociation during Transendothelial Migration

    PubMed Central

    Gonzalez, Annette M.; Cyrus, Bita F.; Muller, William A.

    2017-01-01

    Leukocyte transendothelial migration (TEM) requires two major events: local dissociation of adherens junctions manifested as gaps in vascular endothelial (VE)-cadherin staining at the site of TEM and targeted trafficking of the lateral border recycling compartment (LBRC) to the site of TEM. However, the association between LBRC recycling and VE-cadherin gaps remains unknown. We found that when targeting of the LBRC is selectively inhibited using established methods, such as a function blocking anti–platelet endothelial cell adhesion molecule 1 antibody, depolymerizing microtubules, or microinjection of an antibody that inhibits kinesin, VE-cadherin gaps do not form around the blocked leukocyte. This is the first time that the LBRC has been implicated in this process. We obtained similar results for neutrophils and monocytes and in studies using live cell imaging microscopy conducted under fluid shear conditions. Depolymerizing microtubules did not affect the ability of leukocytes to induce tyrosine phosphorylation of VE-cadherin. A VE-cadherin double mutant (Y658F, Y731F) expressed in endothelial cells acted as a dominant negative and inhibited VE-cadherin gap formation and TEM, yet targeting of the LBRC still occurred. These data suggest that targeting of the LBRC to the site of TEM precedes VE-cadherin clearance. Recruitment of the LBRC may play a role in clearing VE-cadherin from the site of TEM. PMID:26968345

  5. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo

    PubMed Central

    Colom, Bartomeu; Bodkin, Jennifer V.; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A.; Nourshargh, Sussan

    2015-01-01

    Summary Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. PMID:26047922

  6. The impact of multiple splice sites in human L1 elements

    PubMed Central

    Belancio, V. P.; Roy-Engel, A. M.; Deininger, P.

    2008-01-01

    LINE-1 elements represent a significant proportion of mammalian genomes. The impact of their activity on the structure and function of the host genomes has been recognized from the time of their discovery as an endogenous source of insertional mutagenesis. L1 elements contain numerous functional internal polyadenylation signals and splice sites that generate a variety of processed L1 transcripts. These sites are also reported to contribute to the generation of hybrid transcripts between L1 elements and host genes. Using northern blot analysis we demonstrate that L1 splicing, but not L1 polyadenylation, is delayed during the course of L1 expression. L1 splicing can also be negatively regulated by EBV SM protein known to alter mRNA splicing. These results suggest a potential for L1 mRNA processing to be regulated in a tissue- and/or development-specific manner. The delay in L1 splicing may also serve to protect host genes from the excessive burden of L1 interference with their normal expression via aberrant splicing. PMID:18261861

  7. The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration.

    PubMed

    Lessey-Morillon, Elizabeth C; Osborne, Lukas D; Monaghan-Benson, Elizabeth; Guilluy, Christophe; O'Brien, E Timothy; Superfine, Richard; Burridge, Keith

    2014-04-01

    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. Although much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared with ICAM-1 clustering alone. We have identified that leukemia-associated Rho guanine nucleotide exchange factor (LARG), also known as Rho GEF 12 (ARHGEF12) acts downstream of clustered ICAM-1 to increase RhoA activity, and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. To our knowledge, this is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes.

  8. The effect of DMSA-functionalized magnetic nanoparticles on transendothelial migration of monocytes in the murine lung via a beta2 integrin-dependent pathway.

    PubMed

    Valois, Caroline R A; Braz, Juliana M; Nunes, Eloiza S; Vinolo, Marco A R; Lima, Emilia C D; Curi, Rui; Kuebler, Wolfgang M; Azevedo, Ricardo B

    2010-01-01

    Magnetic nanoparticles surface-functionalized with meso-2,3-dimercaptosuccinic acid (MNPs-DMSA) constitute an innovative and promising approach for tissue- and cell-targeted delivery of therapeutic drugs in the lung. Transendothelial migration of leukocytes in the lung is a side effect of endovenous administration of MNPs-DMSA. Using cytologic and phenotypic analysis of murine bronchoalveolar lavage cells, we identified monocytes/macrophages as the main subpopulation of leukocytes involved in this process. Moreover, ultrastructural analysis revealed the presence of nanoparticles inside of numerous macrophages from bronchoalveolar lavage. MNPs-DMSA at concentrations as high as 1 x 10(15) nanoparticles/mL had no toxic effects on macrophages, as evidenced by 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Notably, MNPs-DMSA up-regulated the mRNA expression of E-, L- and P-selectin and macrophage-1 antigen in the murine lung. Upregulation of these cell adhesion molecules was associated with an increased concentration of tumor necrosis factor-alpha in lung. Finally, the critical relevance of the beta(2) integrin-dependent pathway in leukocyte transmigration elicited by MNPs-DMSA was demonstrated by use of knockout mice. Our results characterize mechanisms of the pro-inflammatory effects of MNPs-DMSA in the lung, and identify beta(2) integrin-targeted interventions as promising strategies to reduce pulmonary side effects of MNPs-DMSA during biomedical applications.

  9. N-Terminal Truncated UCH-L1 Prevents Parkinson's Disease Associated Damage

    PubMed Central

    Kim, Hee-Jung; Kim, Hyun Jung; Jeong, Jae-Eun; Baek, Jeong Yeob; Jeong, Jaeho; Kim, Sun; Kim, Young-Mee; Kim, Youhwa; Nam, Jin Han; Huh, Sue Hee; Seo, Jawon; Jin, Byung Kwan; Lee, Kong-Joo

    2014-01-01

    Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD. PMID:24959670

  10. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis

    PubMed Central

    Johnson, Tory A.; Pfeffer, Suzanne R.

    2016-01-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  11. L1 increases adhesion-mediated proliferation and chemoresistance of retinoblastoma

    PubMed Central

    Kim, Jin Hyoung; Jun, Hyoung Oh; Kim, Younghoon; Cho, Young-Lai; Yu, Young Suk; Min, Jeong-Ki; Kim, Jeong Hun

    2017-01-01

    Retinoblastoma is the most common intraocular cancer in children, affecting 1/20,000 live births. Currently, children with retinoblastoma were treated with chemotherapy using drugs such as carboplatin, vincristine, and etoposide. Unfortunately, if conventional treatment fails, the affected eyes should be removed to prevent extension into adjacent tissues and metastasis. This study is to investigate the roles of L1 in adhesion-mediated proliferation and chemoresistance of retinoblastoma. L1 was differentially expressed in 30 retinoblastoma tissues and 2 retinoblastoma cell lines. Furthermore, the proportions of L1-positive cells in retinoblastoma tumors were negatively linked with the number of Flexner-Wintersteiner rosettes, a characteristic of differentiated retinoblastoma tumors, in each tumor sample. Following in vitro experiments using L1-deleted and -overexpressing cells showed that L1 increased adhesion-mediated proliferation of retinoblastoma cells via regulation of cell cycle-associated proteins with modulation of Akt, extracellular signal-regulated kinase, and p38 pathways. In addition, L1 increased resistance against carboplatin, vincristine, and esoposide through up-regulation of apoptosis- and multidrug resistance-related genes. In vivo tumor formation and chemoresistance were also positively linked with the levels of L1 in an orthotopic transplantation model in mice. In this manner, L1 increases adhesion-mediated proliferation and chemoresistance of retinoblastoma. Targeted therapy to L1 might be effective in the treatment of retinoblastoma tumors, especially which rapidly proliferate and demonstrate resistance to conventional chemotherapeutic drugs. PMID:28061460

  12. Ubiquitin C-terminal hydrolase L1 deficiency decreases bone mineralization.

    PubMed

    Shim, Sehwan; Kwon, Young-Bae; Yoshikawa, Yasuhiro; Kwon, Jungkee

    2008-06-01

    Ubiquitin C-terminal hydrolase L1 is a component of the ubiquitin proteasome system, which evidences unique biological activities. In this study, we report the pattern of UCH-L1 expression, and show that it regulates bone mineralization in osteogenesis. UCH-L1 was expressed in osteoblasts, osteoclasts, and hematopoietic precursor cells of bone marrow in the metaphysis and diaphysis of the femora. To further assess the involvement of UCH-L1 in the regulation of bone mineralization, we evaluated the bone mineral density (BMD) rate of gad mice, using the Latheta computed tomography system. Male gad mice evidenced a significantly decreased BMD rate in the metaphysis and diaphysis of the femora. These findings of decreased BMD rate in the bones of gad mice may suggest that UCH-L1 function regulates bone mineralization during osteogenesis.

  13. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    PubMed

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries.

  14. Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity in Response to Light Intensity and CO2 in the C3 Annuals Chenopodium album L. and Phaseolus vulgaris L. 1

    PubMed Central

    Sage, Rowan F.; Sharkey, Thomas D.; Seemann, Jeffrey R.

    1990-01-01

    rubisco is assumed to be down-regulated when photosynthesis is limited by the rate of RuBP regeneration. PMID:16667910

  15. Evaluating L1CAM expression in human endometrial cancer using qRT-PCR

    PubMed Central

    Notaro, Sara; Reimer, Daniel; Duggan-Peer, Michaela; Fiegl, Heidi; Wiedermair, Annamarie; Rössler, Julia; Altevogt, Peter; Marth, Christian; Zeimet, Alain Gustave

    2016-01-01

    Background Management of endometrial carcinoma (EC) still needs improvement of risk assessment. Recently, L1CAM immunohistochemical (IHC) evaluation showed a unique value to predict the outcome of early EC. However IHC results are often conflicting for lack of inter-laboratory standardisation. Methods Here, as a proof of concept and to increase reproducibility we assayed eighty-two EC and 26 normal endometrium samples for L1CAM expression (L1CAMEXP) via qRT-PCR. The IHC evaluation was performed in 50 cancer samples. Moreover, we aimed to substantiate the in-vitro findings of L1CAM regulation through its promoter methylation (L1CAMMET), miR-34a expression and miR-34a promoter methylation. DNA methylation was assessed with MethyLight PCR technique. Results High overall concordant results between IHC and RT-PCR evaluations were found. L1CAMEXP was detected in 11% of cancer specimens. These positive cancers exhibited a worse DFS (p=0.032) and OS (p=0.016) in a multivariate COX-regression model. L1CAMEXP predicted distant failure (p=0.007) and L1CAMMET predicted risk-reduction of lymph-node involvement (p=0.005). Inverse correlations between L1CAMEXP and L1CAMMET (p=0.004) and between L1CAMEXP and miR-34a expression (p=0.002) were found. Conclusions In conclusion qRT-PCR analysis is a reliable approach to evaluate L1CAM status in EC and L1CAMEXP was highly predictive for distant failure and poor outcome, confirming the large IHC-based studies. Interestingly, L1CAMMET was able to assess the risk of pelvic lymph-node involvement. Especially the latter finding has to be confirmed in larger prospective series. PMID:27233077

  16. The Papillomavirus Major Capsid Protein L1

    PubMed Central

    Buck, Christopher B.; Day, Patricia M.; Trus, Benes L.

    2013-01-01

    The elegant icosahedral surface of the papillomavirus virion is formed by a single protein called L1. Recombinant L1 proteins can spontaneously self-assemble into a highly immunogenic structure that closely mimics the natural surface of native papillomavirus virions. This has served as the basis for two highly successful vaccines against cancer-causing human papillomaviruses (HPVs). During the viral life cycle, the capsid must undergo a variety of conformational changes, allowing key functions including the encapsidation of the ~8 kb viral genomic DNA, maturation into a more stable state to survive transit between hosts, mediating attachment to new host cells, and finally releasing the viral DNA into the newly infected host cell. This brief review focuses on conserved sequence and structural features that underlie the functions of this remarkable protein. PMID:23800545

  17. 26 CFR 1.414(l)-1 - Mergers and consolidations of plans or transfers of plan assets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of plan assets. 1.414(l)-1 Section 1.414(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT..., Stock Bonus Plans, Etc. § 1.414(l)-1 Mergers and consolidations of plans or transfers of plan assets. (a) In general—(1) Scope of the regulations. Sections 401(a)(12) and 414(l) apply only to plans to which...

  18. 26 CFR 1.414(l)-1 - Mergers and consolidations of plans or transfers of plan assets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of plan assets. 1.414(l)-1 Section 1.414(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT..., Stock Bonus Plans, Etc. § 1.414(l)-1 Mergers and consolidations of plans or transfers of plan assets. (a) In general—(1) Scope of the regulations. Sections 401(a)(12) and 414(l) apply only to plans to which...

  19. 26 CFR 1.414(l)-1 - Mergers and consolidations of plans or transfers of plan assets.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of plan assets. 1.414(l)-1 Section 1.414(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT..., Stock Bonus Plans, Etc. § 1.414(l)-1 Mergers and consolidations of plans or transfers of plan assets. (a) In general—(1) Scope of the regulations. Sections 401(a)(12) and 414(l) apply only to plans to which...

  20. 26 CFR 1.414(l)-1 - Mergers and consolidations of plans or transfers of plan assets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of plan assets. 1.414(l)-1 Section 1.414(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT..., Stock Bonus Plans, Etc. § 1.414(l)-1 Mergers and consolidations of plans or transfers of plan assets. (a) In general—(1) Scope of the regulations. Sections 401(a)(12) and 414(l) apply only to plans to which...

  1. Lab-on-a-brane: A novel physiologically relevant planar arterial model to study transendothelial transport

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim Ismail

    The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false

  2. Tracking neutrophil intraluminal crawling, transendothelial migration and chemotaxis in tissue by intravital video microscopy.

    PubMed

    Xu, Najia; Lei, Xi; Liu, Lixin

    2011-09-24

    The recruitment of circulating leukocytes from blood stream to the inflamed tissue is a crucial and complex process of inflammation(1,2). In the postcapillary venules of inflamed tissue, leukocytes initially tether and roll on the luminal surface of venular wall. Rolling leukocytes arrest on endothelium and undergo firm adhesion in response to chemokine or other chemoattractants on the venular surface. Many adherent leukocytes relocate from the initial site of adhesion to the junctional extravasation site in endothelium, a process termed intraluminal crawling(3). Following crawling, leukocytes move across endothelium (transmigration) and migrate in extravascular tissue toward the source of chemoattractant (chemotaxis)(4). Intravital microscopy is a powerful tool for visualizing leukocyte-endothelial cell interactions in vivo and revealing cellular and molecular mechanisms of leukocyte recruitment(2,5). In this report, we provide a comprehensive description of using brightfield intravital microscopy to visualize and determine the detailed processes of neutrophil recruitment in mouse cremaster muscle in response to the gradient of a neutrophil chemoattractant. To induce neutrophil recruitment, a small piece of agarose gel (~1-mm(3) size) containing neutrophil chemoattractant MIP-2 (CXCL2, a CXC chemokine) or WKYMVm (Trp-Lys-Tyr-Val-D-Met, a synthetic analog of bacterial peptide) is placed on the muscle tissue adjacent to the observed postcapillary venule. With time-lapsed video photography and computer software ImageJ, neutrophil intraluminal crawling on endothelium, neutrophil transendothelial migration and the migration and chemotaxis in tissue are visualized and tracked. This protocol allows reliable and quantitative analysis of many neutrophil recruitment parameters such as intraluminal crawling velocity, transmigration time, detachment time, migration velocity, chemotaxis velocity and chemotaxis index in tissue. We demonstrate that using this protocol, these

  3. Transendothelial migration of effector T cells across inflamed endothelial barriers does not require heparan sulfate proteoglycans.

    PubMed

    Stoler-Barak, Liat; Barzilai, Sagi; Zauberman, Ayelet; Alon, Ronen

    2014-06-01

    Leukocyte diapedesis is a chemotactic multistep process that requires optimal chemoattractant presentation by the endothelial barrier. Recent studies have described a critical role for heparan sulfate glycosaminoglycans (HSGAGs) in the presentation and functions of chemokines essential for lymphocyte interactions with the lymph node vasculature. We wished to test whether HS expression by a prototypic endothelial cell type, i.e. human umbilical vein endothelial cells (HUVECs), is critical for their ability to support neutrophil and lymphocyte adhesion and transendothelial migration (TEM) under shear flow. We found that HUVECs deposit HS GAGs mainly at their basolateral compartments in both their resting and inflamed states. We next inactivated the key enzyme involved in HS biosynthesis, exostosin-1 (Ext1). Silencing Ext1 resulted in a complete loss of HS biosynthesis; nonetheless, TNF-α and IL-1β stimulation of key adhesion molecules and inflammatory chemokines necessary for neutrophil or lymphocyte adhesion and TEM remained intact. Ext1 silencing reduced neutrophil arrest and markedly impaired TEM, consistent with a role of basolateral HS GAGs in directing neutrophil crossing of inflamed endothelial barriers. Strikingly, however, the TEM of effector T cells across identically Ext1-silenced HUVECs remained normal. Importantly, the biosynthesis of the main promigratory chemokines for effector T cells and neutrophils, respectively, CCL2 and CXCL1, and their vesicle distributions were also Ext1 independent. These results suggest that transmigrating neutrophils must respond to chemokines transiently presented by apical and basolateral endothelial HS GAGs. In contrast, effector T cells can integrate chemotactic TEM signals directly from intra-endothelial chemokine stores rather than from externally deposited chemokines.

  4. Transendothelial migration of CD16+ monocytes in response to fractalkine under constitutive and inflammatory conditions.

    PubMed

    Ancuta, Petronela; Moses, Ashlee; Gabuzda, Dana

    2004-01-01

    CD16+ monocytes represent 5-10% of circulating monocytes in healthy individuals and are dramatically expanded in several pathological conditions including AIDS and HIV-1-associated dementia (HAD). CD16+ monocytes constitutively produce high levels of pro-inflammatory cytokines and neurotoxic factors that may contribute to the pathogenesis of these disorders. Monocyte recruitment into the central nervous system (CNS) and other peripheral tissues in response to locally produced chemokines is a critical event in immune surveillance and inflammation and involves monocyte arrest onto vascular beds and subsequent diapedesis. Here we investigate the ability of CD16+ monocytes to undergo transendothelial migration (TEM) under constitutive and inflammatory conditions. CD16+ monocytes underwent TEM across unstimulated human umbilical vascular (HUVEC) and brain microvascular endothelial (BMVEC) cell monolayers in response to soluble fractalkine (FKN/CX3CL1). Stimulation with tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) induced high and low expression of membrane-bound FKN on HUVEC and BMVEC, respectively, together with expression of VCAM-1 and intercellular adhesion molecule-1 (ICAM)-1. By contrast, only HUVEC expressed CD62E while BMVEC remained negative. Both CD16- and CD16+ monocyte subsets adhered to TNF/IFN-gamma-stimulated HUVEC with higher frequency than to unstimulated HUVEC. Monocyte chemoattractant protein-1 (MCP-1) triggered efficient TEM of CD16- monocytes across TNF/IFN-gamma-stimulated HUVEC, whereas soluble FKN failed to induce TEM of CD16+ monocytes across stimulated HUVEC. These results demonstrate that stimulation with TNF and IFN-gamma triggers expression of membrane-bound FKN on both HUVEC and BMVEC, but prevents TEM of CD16+ monocytes in response to soluble FKN. Thus, pro-inflammatory CD16+ monocytes may contribute to the pathogenesis of HAD and other inflammatory CNS diseases by affecting the integrity of the blood-brain barrier as a

  5. An agent-based model of leukocyte transendothelial migration during atherogenesis

    PubMed Central

    Bhui, Rita; Hayenga, Heather N.

    2017-01-01

    A vast amount of work has been dedicated to the effects of hemodynamics and cytokines on leukocyte adhesion and trans-endothelial migration (TEM) and subsequent accumulation of leukocyte-derived foam cells in the artery wall. However, a comprehensive mechanobiological model to capture these spatiotemporal events and predict the growth and remodeling of an atherosclerotic artery is still lacking. Here, we present a multiscale model of leukocyte TEM and plaque evolution in the left anterior descending (LAD) coronary artery. The approach integrates cellular behaviors via agent-based modeling (ABM) and hemodynamic effects via computational fluid dynamics (CFD). In this computational framework, the ABM implements the diffusion kinetics of key biological proteins, namely Low Density Lipoprotein (LDL), Tissue Necrosis Factor alpha (TNF-α), Interlukin-10 (IL-10) and Interlukin-1 beta (IL-1β), to predict chemotactic driven leukocyte migration into and within the artery wall. The ABM also considers wall shear stress (WSS) dependent leukocyte TEM and compensatory arterial remodeling obeying Glagov’s phenomenon. Interestingly, using fully developed steady blood flow does not result in a representative number of leukocyte TEM as compared to pulsatile flow, whereas passing WSS at peak systole of the pulsatile flow waveform does. Moreover, using the model, we have found leukocyte TEM increases monotonically with decreases in luminal volume. At critical plaque shapes the WSS changes rapidly resulting in sudden increases in leukocyte TEM suggesting lumen volumes that will give rise to rapid plaque growth rates if left untreated. Overall this multi-scale and multi-physics approach appropriately captures and integrates the spatiotemporal events occurring at the cellular level in order to predict leukocyte transmigration and plaque evolution. PMID:28542193

  6. IFN-γ promotes transendothelial migration of CD4(+) T cells across the blood-brain barrier.

    PubMed

    Sonar, Sandip Ashok; Shaikh, Shagufta; Joshi, Nupura; Atre, Ashwini N; Lal, Girdhari

    2017-07-06

    Transendothelial migration (TEM) of Th1 and Th17 cells across the blood-brain barrier (BBB) has a critical role in the development of experimental autoimmune encephalomyelitis (EAE). How cytokines produced by inflammatory Th1 and Th17 cells damage the endothelial BBB and promote transendothelial migration of immune cells into the central nervous system (CNS) during autoimmunity is not understood. We therefore investigated the effect of various cytokines on brain endothelial cells. Among the various cytokines tested, such as Th1 (IFN-γ, IL-1α, IL-1β, TNF-α, IL-12), Th2 (IL-3, IL-4, IL-6 and IL-13), Th17 (IL-17A, IL-17F, IL-21, IL-22, IL-23, GM-CSF) and Treg-specific cytokines (IL-10 and TGF-β), IFN-γ predominantly showed increased expression of ICAM-1, VCAM-1, MAdCAM-1, H2-K(b) and I-A(b) molecules on brain endothelial cells. Furthermore, IFN-γ induced transendothelial migration of CD4(+) T cells from the apical (luminal side) to the basal side (abluminal side) of the endothelial monolayer to chemokine CCL21 in a STAT-1-dependent manner. IFN-γ also favored the transcellular route of TEM of CD4(+) T cells. Multicolor immunofluorescence and confocal microscopic analysis showed that IFN-γ induced relocalization of ICAM-1, PECAM-1, ZO-1 and VE-cadherin in the endothelial cells, which affected the migration of CD4(+) T cells. These findings reveal that the IFN-γ produced during inflammation could contribute towards disrupting the BBB and promoting TEM of CD4(+) T cells. Our findings also indicate that strategies that interfere with the activation of CNS endothelial cells may help in controlling neuroinflammation and autoimmunity.Immunology and Cell Biology advance online publication, 1 August 2017; doi:10.1038/icb.2017.56.

  7. Mechanisms for the proliferation of eosinophilic leukemia cells by FIP1L1-PDGFR{alpha}

    SciTech Connect

    Ishihara, Kenji; Kitamura, Hajime; Hiraizumi, Kenji; Kaneko, Motoko; Takahashi, Aki; Zee, OkPyo; Seyama, Toshio; Hong, JangJa; Ohuchi, Kazuo; Hirasawa, Noriyasu

    2008-02-22

    The constitutively activated tyrosine kinase Fip1-like 1 (FIP1L1)-platelet-derived growth factor receptor {alpha} (PDGFR{alpha}) causes eosinophilic leukemia EoL-1 cells to proliferate. Recently, we demonstrated that histone deacetylase inhibitors suppressed this proliferation and induced the differentiation of EoL-1 cells into eosinophils in parallel with a decrease in the level of FIP1L1-PDGFR{alpha}. In this study, we analyzed the mechanism by which FIP1L1-PDGFR{alpha} induces the proliferation and whether the suppression of cell proliferation triggers the differentiation into eosinophils. The FIP1L1-PDGFR{alpha} inhibitor imatinib inhibited the proliferation of EoL-1 cells and decreased the level of the oncoprotein c-Myc as well as the phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK). The proliferation of EoL-1 cells and expression of c-Myc were also inhibited by the MEK inhibitor U0126 and JNK inhibitor SP600125. The expression of the eosinophilic differentiation marker CCR3 was not induced by imatinib. These findings suggest that FIP1L1-PDGFR{alpha} induces the proliferation of EoL-1 cells through the induction of c-Myc expression via ERK and JNK signaling pathways, but is not involved in the inhibition of differentiation toward mature eosinophils.

  8. The L1 adhesion molecule is a cellular ligand for VLA-5

    PubMed Central

    1995-01-01

    The L1 adhesion molecule is a member of the immunoglobulin superfamily shared by neural and immune cells. In the nervous system L1 can mediate cell binding by a homophilic mechanism. To analyze its function on leukocytes we studied whether L1 could interact with integrins. Here we demonstrate that VLA-5, an RGD-specific fibronectin receptor on a wide variety of cell types, can bind to murine L1. Mouse ESb-MP cells expressing VLA-5 and L1 could be induced to aggregate in the presence of specific mAbs to CD24 (heat-stable antigen), a highly and heterogeneously glycosylated glycophosphatidylinositol-linked differentiation antigen of hematopoietic and neural cells. The aggregation was blocked by both mAbs to L1 and VLA-5, respectively. Aggregation was blocked also by a synthetic RGD-containing peptide derived from the Ig-domain VI of the L1 protein. ESb-MP subclones with low L1 expression could not aggregate. In heterotypic binding assays mouse bone marrow cells could adhere in an L1-dependent fashion to platelets that expressed VLA-5. Also purified L1 coated to polystyrene beads could bind to platelets. The binding of L1-beads was again inhibited by mAbs to L1 and VLA-5, by soluble L1 and the L1-RGD peptide in a dose-dependent manner. Thymocytes or human Nalm-6 tumor cells expressing VLA-5 could adhere to affinity-purified L1 and to the L1- derived RGD-containing peptide coated to glass slides. The adhesion was strongly enhanced in the presence of Mn(2+)-ions and blocked by mAbs to VLA-5. We also demonstrate a direct L1-VLA-5 protein interaction. Our results suggest a novel binding pathway, in which the VLA-5 integrin binds to L1 on adjacent cells. Given its rapid downregulation on lymphocytes after induction of cell proliferation, L1 may be important in integrin-mediated and activation-regulated cell-cell interactions. PMID:8557754

  9. Absence of PD-L1 on tumor cells is associated with reduced MHC I expression and PD-L1 expression increases in recurrent serous ovarian cancer

    PubMed Central

    Aust, Stefanie; Felix, Sophie; Auer, Katharina; Bachmayr-Heyda, Anna; Kenner, Lukas; Dekan, Sabine; Meier, Samuel M.; Gerner, Christopher; Grimm, Christoph; Pils, Dietmar

    2017-01-01

    Immune-evasion and immune checkpoints are promising new therapeutic targets for several cancer entities. In ovarian cancer, the clinical role of programmed cell death receptor ligand 1 (PD-L1) expression as mechanism to escape immune recognition has not been clarified yet. We analyzed PD-L1 expression of primary ovarian and peritoneal tumor tissues together with several other parameters (whole transcriptomes of isolated tumor cells, local and systemic immune cells, systemic cytokines and metabolites) and compared PD-L1 expression between primary tumor and tumor recurrences. All expressed major histocompatibility complex (MHC) I genes were negatively correlated to PD-L1 abundances on tumor tissues, indicating two mutually exclusive immune-evasion mechanisms in ovarian cancer: either down-regulation of T-cell mediated immunity by PD-L1 expression or silencing of self-antigen presentation by down-regulation of the MHC I complex. In our cohort and in most of published evidences in ovarian cancer, low PD-L1 expression is associated with unfavorable outcome. Differences in immune cell populations, cytokines, and metabolites strengthen this picture and suggest the existence of concurrent pathways for progression of this disease. Furthermore, recurrences showed significantly increased PD-L1 expression compared to the primary tumors, supporting trials of checkpoint inhibition in the recurrent setting. PMID:28266500

  10. Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis.

    PubMed

    Bheda, Anjali; Gullapalli, Anuradha; Caplow, Michael; Pagano, Joseph S; Shackelford, Julia

    2010-03-01

    Microtubules are essential components of the cytoskeleton and are involved in many aspects of cell responses including cell division, migration, and intracellular signal transduction. Among other factors, post-translational modifications play a significant role in the regulation of microtubule dynamics. Here, we demonstrate that the ubiquitin-editing enzyme UCH L1, abundant expression of which is normally restricted to brain tissue, is also a part of the microtubule network in a variety of transformed cells. Moreover, during mitosis, endogenous UCH L1 is expressed and tightly associated with the mitotic spindle through all stages of M phase, suggesting that UCH L1 is involved in regulation of microtubule dynamics. Indeed, addition of recombinant UCH L1 to the reaction of tubulin polymerization in vitro had an inhibitory effect on microtubule formation. Unexpectedly, western blot analysis of tubulin fractions after polymerization revealed the presence of a specific approximately 50 kDa band of UCH L1 (not the normal approximately 25 kDa) in association with microtubules, but not with free tubulin. In addition, we show that along with 25 kDa UCH L1, endogenous high molecular weight UCH L1 complexes exist in cells, and that levels of 50 kDa UCH L1 complexes are increasing in cells during mitosis. Finally, we provide evidence that ubiquitination is involved in tubulin polymerization: the presence of ubiquitin during polymerization in vitro by itself inhibited microtubule formation and enhanced the inhibitory effect of added UCH L1. The inhibitory effects of UCH L1 correlate with an increase in ubiquitination of microtubule components. Since besides being a deubiquitinating enzyme, UCH L1 as a dimer has also been shown to exhibit ubiquitin ligase activity, we discuss the possibility that the approximately 50 kDa UCH L1 observed is a dimer which prevents microtubule formation through ubiquitination of tubulins and/or microtubule-associated proteins.

  11. UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation.

    PubMed

    Lohmann, Frithjof; Sachs, Marlies; Meyer, Tobias N; Sievert, Henning; Lindenmeyer, Maja T; Wiech, Thorsten; Cohen, Clemens D; Balabanov, Stefan; Stahl, R A K; Meyer-Schwesinger, Catherine

    2014-07-01

    Podocytes are terminally differentiated cells of the glomerular filtration barrier that react with hypertrophy in the course of injury such as in membranous nephropathy (MGN). The neuronal deubiquitinase ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed and activated in podocytes of human and rodent MGN. UCH-L1 regulates the mono-ubiquitin pool and induces accumulation of poly-ubiquitinated proteins in affected podocytes. Here, we investigated the role of UCH-L1 in podocyte hypertrophy and in the homeostasis of the hypertrophy associated "model protein" p27(Kip1). A better understanding of the basic mechanisms leading to podocyte hypertrophy is crucial for the development of specific therapies in MGN. In human and rat MGN, hypertrophic podocytes exhibited a simultaneous up-regulation of UCH-L1 and of cytoplasmic p27(Kip1) content. Functionally, inhibition of UCH-L1 activity and knockdown or inhibition of UCH-L1 attenuated podocyte hypertrophy by decreasing the total protein content in isolated glomeruli and in cultured podocytes. In contrast, UCH-L1 levels and activity increased podocyte hypertrophy and total protein content in culture, specifically of cytoplasmic p27(Kip1). UCH-L1 enhanced cytoplasmic p27(Kip1) levels by nuclear export and decreased poly-ubiquitination and proteasomal degradation of p27(Kip1). In parallel, UCH-L1 increased podocyte turnover, migration and cytoskeletal rearrangement, which are associated with known oncogenic functions of cytoplasmic p27(Kip1) in cancer. We propose that UCH-L1 induces podocyte hypertrophy in MGN by increasing the total protein content through altered degradation and accumulation of proteins such as p27(Kip1) in the cytoplasm of podocytes. Modification of both UCH-L1 activity and levels could be a new therapeutic avenue to podocyte hypertrophy in MGN. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Three cases with L1 syndrome and two novel mutations in the L1CAM gene.

    PubMed

    Marín, Rosario; Ley-Martos, Miriam; Gutiérrez, Gema; Rodríguez-Sánchez, Felicidad; Arroyo, Diego; Mora-López, Francisco

    2015-11-01

    Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.

  13. Hyperspectral IASI L1C Data Compression

    PubMed Central

    García-Sobrino, Joaquín; Serra-Sagristà, Joan; Bartrina-Rapesta, Joan

    2017-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI), implemented on the MetOp satellite series, represents a significant step forward in atmospheric forecast and weather understanding. The instrument provides infrared soundings of unprecedented accuracy and spectral resolution to derive humidity and atmospheric temperature profiles, as well as some of the chemical components playing a key role in climate monitoring. IASI collects rich spectral information, which results in large amounts of data (about 16 Gigabytes per day). Efficient compression techniques are requested for both transmission and storage of such huge data. This study reviews the performance of several state of the art coding standards and techniques for IASI L1C data compression. Discussion embraces lossless, near-lossless and lossy compression. Several spectral transforms, essential to achieve improved coding performance due to the high spectral redundancy inherent to IASI products, are also discussed. Illustrative results are reported for a set of 96 IASI L1C orbits acquired over a full year (4 orbits per month for each IASI-A and IASI-B from July 2013 to June 2014) . Further, this survey provides organized data and facts to assist future research and the atmospheric scientific community. PMID:28621705

  14. Novel ex vivo culture method for human monocytes uses shear flow to prevent total loss of transendothelial diapedesis function.

    PubMed

    Tsubota, Yoshiaki; Frey, Jeremy M; Raines, Elaine W

    2014-01-01

    Monocyte recruitment to inflammatory sites and their transendothelial migration into tissues are critical to homeostasis and pathogenesis of chronic inflammatory diseases. However, even short-term suspension culture of primary human monocytes leads to phenotypic changes. In this study, we characterize the functional effects of ex vivo monocyte culture on the steps involved in monocyte transendothelial migration. Our data demonstrate that monocyte diapedesis is impaired by as little as 4 h culture, and the locomotion step is subsequently compromised. After 16 h in culture, monocyte diapedesis is irreversibly reduced by ∼90%. However, maintenance of monocytes under conditions mimicking physiological flow (5-7.5 dyn/cm²) is sufficient to reduce diapedesis impairment significantly. Thus, through the application of shear during ex vivo culture of monocytes, our study establishes a novel protocol, allowing functional analyses of monocytes not currently possible under static culture conditions. These data further suggest that monocyte-based therapeutic applications may be measurably improved by alteration of ex vivo conditions before their use in patients.

  15. The Rho-guanine nucleotide exchange factor Trio controls leukocyte transendothelial migration by promoting docking structure formation.

    PubMed

    van Rijssel, Jos; Kroon, Jeffrey; Hoogenboezem, Mark; van Alphen, Floris P J; de Jong, Renske J; Kostadinova, Elena; Geerts, Dirk; Hordijk, Peter L; van Buul, Jaap D

    2012-08-01

    Leukocyte transendothelial migration involves the active participation of the endothelium through the formation of apical membrane protrusions that embrace adherent leukocytes, termed docking structures. Using live-cell imaging, we find that prior to transmigration, endothelial docking structures form around 80% of all neutrophils. Previously we showed that endothelial RhoG and SGEF control leukocyte transmigration. In this study, our data reveal that both full-length Trio and the first DH-PH (TrioD1) domain of Trio, which can activate Rac1 and RhoG, interact with ICAM-1 and are recruited to leukocyte adhesion sites. Moreover, upon clustering of ICAM-1, the Rho-guanine nucleotide exchange factor Trio activates Rac1, prior to activating RhoG, in a filamin-dependent manner. We further show that docking structure formation is initiated by ICAM-1 clustering into ring-like structures, which is followed by apical membrane protrusion. Interestingly, we find that Rac1 is required for ICAM-1 clustering, whereas RhoG controls membrane protrusion formation. Finally, silencing endothelial Trio expression or reducing TrioD1 activity without affecting SGEF impairs both docking structure formation and leukocyte transmigration. We conclude that Trio promotes leukocyte transendothelial migration by inducing endothelial docking structure formation in a filamin-dependent manner through the activation of Rac1 and RhoG.

  16. Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's disease mice.

    PubMed

    Shang, De S; Yang, Yi M; Zhang, Hu; Tian, Li; Jiang, Jiu S; Dong, Yan B; Zhang, Ke; Li, Bo; Zhao, Wei D; Fang, Wen G; Chen, Yu H

    2016-11-01

    Although tight junctions between human brain microvascular endothelial cells in the blood-brain barrier prevent molecules or cells in the bloodstream from entering the brain, in Alzheimer's disease, peripheral blood monocytes can "open" these tight junctions and trigger subsequent transendothelial migration. However, the mechanism underlying this migration is unclear. Here, we found that the CSF2RB, but not CSF2RA, subunit of the granulocyte-macrophage colony-stimulating factor receptor was overexpressed on monocytes from Alzheimer's disease patients. CSF2RB contributes to granulocyte-macrophage colony-stimulating factor-induced transendothelial monocyte migration. Granulocyte-macrophage colony-stimulating factor triggers human brain microvascular endothelial cells monolayer tight junction disassembly by downregulating ZO-1 expression via transcription modulation and claudin-5 expression via the ubiquitination pathway. Interestingly, intracerebral granulocyte-macrophage colony-stimulating factor blockade abolished the increased monocyte infiltration in the brains of APP/PS1 Alzheimer's disease model mice. Our results suggest that in Alzheimer's disease patients, high granulocyte-macrophage colony-stimulating factor levels in the brain parenchyma and cerebrospinal fluid induced blood-brain barrier opening, facilitating the infiltration of CSF2RB-expressing peripheral monocytes across blood-brain barrier and into the brain. CSF2RB might be useful as an Alzheimer's disease biomarker. Thus, our findings will help to understand the mechanism of monocyte infiltration in Alzheimer's disease pathogenesis.

  17. Widespread expression of the Supv3L1 mitochondrial RNA helicase in the mouse

    PubMed Central

    Paul, Erin; Kielbasinski, Marissa; Sedivy, John M.; Murga-Zamalloa, Carlos; Khanna, Hemant; Klysik, Jan E.

    2009-01-01

    Supv3L1 is an evolutionarily conserved helicase that plays a critical role in the mitochondrial RNA surveillance and degradation machinery. Conditional ablation of Supv3L1 in adult mice leads to premature aging phenotypes including loss of muscle mass and adipose tissue and severe skin abnormalities. To get insights into the spatial and temporal expression of Supv3L1 in the mouse, we generated knock-in and transgenic strains in which an EGFP reporter was placed under control of the Supv3L1 native promoter. During development, expression of Supv3L1 begins at the blastocyst stage, becomes widespread and strong in all fetal tissues and cell types, and continues during postnatal growth. In mature animals reporter expression is only slightly diminished in most tissues and continues to be highly expressed in the brain, peripheral sensory organs, and testis. Together, these data confirm that Supv3L1 is an important developmentally regulated gene, which continues to be expressed in all mature tissues, particularly the rapidly proliferating cells of testes, but also in the brain and sensory organs. The transgenic mice and cell lines derived from them constitute a valuable tool for the examination of the spatial and temporal aspects of Supv3L1 promoter activity, and should facilitate future screens for small molecules that regulate Supv3L1 expression. PMID:19937380

  18. Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis.

    PubMed

    Reinecke, James B; Katafiasz, Dawn; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle.

  19. Characterizing the Solar Wind at L1

    NASA Astrophysics Data System (ADS)

    Jahn, J.; Elliott, H. A.

    2008-12-01

    The nature of solar wind-magnetosphere energy transfer plays a big role in understanding the time history and types of global-scale magnetospheric phenomena. However, systematic approaches to quantifying how the specific magnetospheric "modes" (if they can be called that) of substorms, SMCs, sawtooth events, and geomagnetic storms could be controlled by the solar wind are still difficult. We present a fresh approach to characterizing the solar wind and its time history using self-organizing maps. The thrust of this effort is geared towards detecting and classifying solar wind structure on time scales relevant for the magnetospheric responses of interest. Performing this characterization at the L1 point is ideal for uncovering solar wind- magnetosphere relationships. It also provides a very long, contiguous time series that helps us explore these relationships over a complete solar cycle. We present the technique and initial results of solar wind comparisons during and leading up to SMCs and sawtooth events.

  20. Extended Lagrange interpolation in L1 spaces

    NASA Astrophysics Data System (ADS)

    Occorsio, Donatella; Russo, Maria Grazia

    2016-10-01

    Let w (x )=e-xβxα , w ¯(x )=x w (x ) and denote by {pm(w)}m,{pn(w¯)}n the corresponding sequences of orthonormal polynomials. The zeros of the polynomial Q2 m +1=pm +1(w )pm(w ¯) are simple and are sufficiently far among them. Therefore it is possible to construct an interpolation process essentially based on the zeros of Q2m+1, which is called "Extended Lagrange Interpolation". Here we study the convergence of this interpolation process in suitable weighted L1 spaces. This study completes the results given by the authors in previous papers in weighted Lup((0 ,+∞ )) , for 1≤p≤∞. Moreover an application of the proposed interpolation process in order to construct an e cient product quadrature scheme for weakly singular integrals is given.

  1. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    SciTech Connect

    Lai, Peng-Yeh; Tsai, Chong-Bin; Tseng, Min-Jen

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  2. Vaspin promotes 3T3-L1 preadipocyte differentiation

    PubMed Central

    Liu, Ping; Wu, Jine; Zhou, Xin; Wang, Liping; Han, Wenqi; Lv, Ying; Sun, Chaofeng

    2015-01-01

    Vaspin, a novel adipocyte factor secreted from visceral adipose tissues, is associated with obesity and insulin resistance and can regulate glucose and lipid metabolism, increase insulin sensitivity, and suppress inflammation; however, the underlying mechanisms remain unknown. Proliferation and maladaptive differentiation are important pathological mechanisms underlying obesity. This study aimed to evaluate the effects of vaspin on the proliferation and differentiation of preadipocyte 3T3-L1 cells and to explore the likely mechanisms responsible for 3T3-L1 differentiation. Vaspin was added to cultured 3T3-L1 cells, and the differentiation of adipocytes was evaluated using Oil Red O staining. The AKT signaling pathway and specific differentiation factors related to the differentiation of preadipocyte 3T3-L1 cells, peroxisome proliferator-activated γ and the CCAAT/enhancer-binding protein (C/EBP) family, were evaluated using reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses during the early phase of differentiation. Additionally, adiponectin mRNA, interleukin-6 mRNA (IL-6 mRNA), and glucose transporter-4 (GLUT4) protein levels were measured in the differentiated adipocytes. The results indicated that vaspin promotes the intracellular accumulation of lipids and increases differentiation-related factors, including peroxisome proliferator-activated receptor γ, C/EBPα, and free fatty acid-binding protein 4 (FABP4), in a dose-dependent manner. Additionally, vaspin (200 ng/mL) increased the mRNA and protein levels of C/EBPβ, peroxisome proliferator-activated γ, C/EBPα, and FABP4. Moreover, compared with the control, significantly smaller eight-day differentiated adipocytes were observed, and these cells exhibited decreased IL-6 mRNA and increased GLUT4 mRNA levels; these results also indicated the potential of vaspin to promote the insulin-mediated AKT signaling pathway during the early phase of differentiation. In conclusion

  3. Vaspin promotes 3T3-L1 preadipocyte differentiation.

    PubMed

    Liu, Ping; Li, Guoliang; Wu, Jine; Zhou, Xin; Wang, Liping; Han, Wenqi; Lv, Ying; Sun, Chaofeng

    2015-11-01

    Vaspin, a novel adipocyte factor secreted from visceral adipose tissues, is associated with obesity and insulin resistance and can regulate glucose and lipid metabolism, increase insulin sensitivity, and suppress inflammation; however, the underlying mechanisms remain unknown. Proliferation and maladaptive differentiation are important pathological mechanisms underlying obesity. This study aimed to evaluate the effects of vaspin on the proliferation and differentiation of preadipocyte 3T3-L1 cells and to explore the likely mechanisms responsible for 3T3-L1 differentiation. Vaspin was added to cultured 3T3-L1 cells, and the differentiation of adipocytes was evaluated using Oil Red O staining. The AKT signaling pathway and specific differentiation factors related to the differentiation of preadipocyte 3T3-L1 cells, peroxisome proliferator-activated γ and the CCAAT/enhancer-binding protein (C/EBP) family, were evaluated using reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses during the early phase of differentiation. Additionally, adiponectin mRNA, interleukin-6 mRNA (IL-6 mRNA), and glucose transporter-4 (GLUT4) protein levels were measured in the differentiated adipocytes. The results indicated that vaspin promotes the intracellular accumulation of lipids and increases differentiation-related factors, including peroxisome proliferator-activated receptor γ, C/EBPα, and free fatty acid-binding protein 4 (FABP4), in a dose-dependent manner. Additionally, vaspin (200 ng/mL) increased the mRNA and protein levels of C/EBPβ, peroxisome proliferator-activated γ, C/EBPα, and FABP4. Moreover, compared with the control, significantly smaller eight-day differentiated adipocytes were observed, and these cells exhibited decreased IL-6 mRNA and increased GLUT4 mRNA levels; these results also indicated the potential of vaspin to promote the insulin-mediated AKT signaling pathway during the early phase of differentiation. In conclusion

  4. Cyclization of the Urokinase Receptor-Derived Ser-Arg-Ser-Arg-Tyr Peptide Generates a Potent Inhibitor of Trans-Endothelial Migration of Monocytes

    PubMed Central

    Bifulco, Katia; Ingangi, Vincenzo; Di Carluccio, Gioconda; Merlino, Francesco; Motti, Maria Letizia; Grieco, Paolo; Carriero, Maria Vincenza

    2015-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility. We and others have previously documented that the uPAR88-92 sequence, even in the form of synthetic linear peptide (SRSRY), interacts with the formyl peptide receptor type 1 (FPR1), henceforth inducing cell migration of several cell lines, including monocytes. FPR1 is mainly expressed by mammalian phagocytic leukocytes and plays a crucial role in chemotaxis. In this study, we present evidence that the cyclization of the SRSRY sequence generates a new potent and stable inhibitor of monocyte trafficking. In rat basophilic leukaemia RBL-2H3/ETFR cells expressing high levels of constitutively activated FPR1, the cyclic SRSRY peptide ([SRSRY]) blocks FPR1 mediated cell migration by interfering with both internalization and ligand-uptake of FPR1. Similarly to RBL-2H3/ETFR cells, [SRSRY] competes with fMLF for binding to FPR1 and prevents agonist-induced FPR1 internalization in human monocyte THP-1 cells. Unlike scramble [RSSYR], [SRSRY] inhibits fMLF-directed migration of monocytes in a dose-dependent manner, with IC50 value of 0.01 nM. PMA-differentiated THP-1 cell exposure to fMLF gradient causes a marked cytoskeletal re-organization with the formation of F-actin rich pseudopodia that are prevented by the addition of [SRSRY]. Furthermore, [SRSRY] prevents migration of human primary monocytes and trans-endothelial migration of monocytes. Our findings indicate that [SRSRY] is a new FPR1 inhibitor which may suggest the development of new drugs for treating pathological conditions sustained by increased motility of monocytes, such as chronic inflammatory diseases. PMID:25938482

  5. Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1.

    PubMed

    Shimshek, Derya R; Schweizer, Tatjana; Schmid, Peter; van der Putten, P Herman

    2012-01-01

    Mutations in α-synuclein (αSN) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have been linked to familial Parkinson's disease (PD). Physical and functional interactions between these two proteins have been described. Whether they act additively in vivo to influence disease has remained controversial. αSN is a presynaptic protein and the major constituent of Lewy inclusions, histopathological hallmarks of PD. UCH-L1 regulates ubiquitin stability in the nervous system and its loss results in neurodegeneration in peripheral and central neurons. Here, we used genetics to show that UCH-L1-deficiency together with excess αSN worsen disease. Double mutant mice show earlier-onset motor deficits, a shorter lifespan and forebrain astrogliosis but the additive disease-worsening effects of UCH-L1-deficiency and excess αSN are not accompanied by microgliosis, ubiquitin pathology or changes in pathological αSN protein levels and species.

  6. LMO4 modulates proliferation and differentiation of 3T3-L1 preadipocytes.

    PubMed

    Wang, Ning; Wang, Xichen; Shi, Mingxin; Shi, Hongyan; Yan, Xiaohong; Li, Hui; Wang, Shouzhi; Wang, Yuxiang

    2013-09-17

    Previous microarray analyses revealed that LMO4 is expressed in 3T3-L1 preadipocytes, however, its roles in adipogenesis are unknown. In the present study, using RT-PCR sequencing and quantitative real-time RT-PCR, we confirmed that LMO4 gene is expressed in 3T3-L1 preadipocytes and its expression peaks at the early stage of 3T3-L1 preadipocyte differentiation. Further analyses showed that LMO4 knockdown decreased the proliferation of 3T3-L1 preadipocytes, and attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Collectively, our findings indicate that LMO4 is a novel modulator of adipogenesis. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. To Grow or Not to Grow: Nutritional Control of Development During Caenorhabditis elegans L1 Arrest

    PubMed Central

    2013-01-01

    It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. “L1 arrest” (also known as “L1 diapause”) occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory

  8. Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma.

    PubMed

    Kim, Chan; Kim, Eun Kyung; Jung, Hun; Chon, Hong Jae; Han, Jung Woo; Shin, Kyoo-Ho; Hu, Hyuk; Kim, Kyung Sik; Choi, Young Deuk; Kim, Sunghoon; Lee, Young Han; Suh, Jin-Suck; Ahn, Joong Bae; Chung, Hyun Cheol; Noh, Sung Hoon; Rha, Sun Young; Kim, Soo Hee; Kim, Hyo Song

    2016-07-08

    The PD-1/PD-L1 axis plays a paramount role in the immune escape of tumor cells by negative regulation of T-cell functions. The aim of the present study was to characterize the PD-L1 expression pattern and its clinical implication in soft-tissue sarcomas (STS). We analyzed PD-L1 expression in 82 STS patients with 5 subtypes: rhabdomyosarcoma, synovial sarcoma, Ewing sarcoma, epithelioid sarcoma, and mesenchymal chondrosarcoma. The median age at diagnosis was 26 (range: 1-78) and the male to female ratio was 1.6. The majority (80 %) of patients showed locoregional disease rather than metastatic disease at diagnosis. Thirty-five cases (43 %) showed PD-L1 expression and the proportion of PD-L1 expression was significantly different according to histologic subtypes (P = 0.004); highest in epithelioid sarcoma (100 %, 7/7), followed by synovial sarcoma (53 %, 10/19), rhabdomyosarcoma (38 %, 12/32), and Ewing sarcoma (33 %, 6/18), while it was not expressed in mesenchymal chondrosarcoma (0 %, 0/6). STS patients with PD-L1 expression had worse overall survival compared with those without PD-L1 expression (5-year survival rate: 48 % vs. 68 %, P = 0.015). The Cox proportional hazard model adjusted for histologic subtype, initial metastasis, and PD-L1 expression showed that PD-L1 expression was significantly associated with shorter overall survival (P = 0.037, HR 2.57, 95 % CI 1.060-6.231). We have confirmed PD-L1 expression in various STS of young population and demonstrated its independent negative prognostic role, thereby suggesting the PD-1/PD-L1 axis as a potential therapeutic target for the treatment of young STS patients.

  9. Amplification of CyclinL1 in uterine cervical carcinoma has prognostic implications.

    PubMed

    Mitra, Sraboni; Mazumder Indra, Dipanjana; Basu, Partha S; Mondal, Ranajit K; Roy, Anup; Roychoudhury, Susanta; Panda, Chinmay K

    2010-11-01

    The chromosomal 3q25.31 region was consistently amplified in primary cancer of cervix (CACX). CyclinL1 is a candidate gene of this region and already have been implicated as an oncogene in head and neck cancers. In this study, we aimed to investigate the involvement of CyclinL1 in cervical carcinogenesis and for this purpose its copy number variation (CNV) was studied in 23 cervical intraepithelial neoplasia (CIN) and 110 CACX samples. In CIN lesions CyclinL1 was not amplified; however, the amplification frequency was 16% (9/56) in stage I/II tumors which remained comparable during subsequent stages of tumorigenesis. This implied association of CyclinL1 amplification with development of early invasiveness. Quantitation of mRNA expression revealed 2.6 ± 1.53-fold overexpression of this gene in primary CACX. The amplification/copy number gain of CyclinL1 and its mRNA profile were concordant, in tumors. Immunohistochemical (IHC) analysis in primary CACX, cell lines: SiHa and HeLa revealed intense nuclear expression of cyclinL1, which was further confirmed by Western blot in the cell lines. However 47% (7/15) CACX samples expressed high/intermediate level of cyclin L1. Kaplan-Meier survival analysis indicated CyclinL1 amplification as a determinant of poor patient outcome. Tumor radio-resistance developed as a consequence of CyclinL1 amplification. Cox multivariate analysis revealed that multiparous (≥5) CACX patients with amplified CyclinL1 locus along with advanced tumor stage (III/IV) had worst prognosis. Our data suggest importance of CyclinL1 in cervical carcinogenesis with its associated pathways viz: pre-mRNA splicing, cell-cycle regulation (G₀/G₁ and G₂/M) being potential targets of therapeutic interventions in CACX. © 2010 Wiley-Liss, Inc.

  10. Effects of MAPK and PI3K Pathways on PD-L1 Expression in Melanoma

    PubMed Central

    Atefi, Mohammad; Avramis, Earl; Lassen, Amanda; Wong, Deborah; Robert, Lidia; Foulad, David; Cerniglia, Michael; Titz, Bjoern; Chodon, Thinle; Graeber, Thomas G.; Comin-Anduix, Begonya; Ribas, Antoni

    2014-01-01

    Purpose PD-L1 is the main ligand for the immune inhibitory receptor PD-1. This ligand is frequently expressed by melanoma cells. In this study we investigated whether PD-L1 expression is controlled by melanoma driver mutations and modified by oncogenic signaling inhibition. Experimental Design Expression of PD-L1 was investigated in a panel of 51 melanoma cell lines containing different oncogenic mutations, including cell lines with innate and acquired resistance to BRAF inhibitors. The effects of targeted therapy drugs on expression of PD-L1 by melanoma cells were investigated. Results No association was found between the level of PD-L1 expression and mutations in BRAF, NRAS, PTEN or amplification of AKT. Resistance to vemurafenib due to the activation of alternative signaling pathways was accompanied with the induction of PD-L1 expression, while the resistance due to the reactivation of the MAPK pathway had no effect on PD-L1 expression. In melanoma cell lines the effects of BRAF, MEK and PI3K inhibitors on expression of PD-L1 were variable from reduction to induction, particularly in the presence of INFγ. In PD-L1-exposed lymphocytes, vemurafenib paradoxically restored activity of the MAPK pathway and increased the secretion of cytokines. Conclusions In melanoma cell lines, including BRAF inhibitor-resistant cells, PD-L1 expression is variably regulated by oncogenic signaling pathways. PD-L1-exposed lymphocytes decrease MAPK signaling, which is corrected by exposure to vemurafenib, providing potential benefits of combining this drug with immunotherapies. PMID:24812408

  11. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  12. Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells.

    PubMed

    Hubbard-Lucey, Vanessa M; Shono, Yusuke; Maurer, Katie; West, Mallory L; Singer, Natalie V; Ziegler, Carly G K; Lezcano, Cecilia; Motta, Ana Carolina Fragoso; Schmid, Karin; Levi, Samuel M; Murphy, George F; Liu, Chen; Winkler, Jeffrey D; Amaravadi, Ravi K; Rogler, Gerhard; Dickinson, Anne M; Holler, Ernst; van den Brink, Marcel R M; Cadwell, Ken

    2014-10-16

    Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and costimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD.

  13. Autophagy gene Atg16l1 prevents lethal T cell alloreactivity mediated by dendritic cells

    PubMed Central

    Hubbard-Lucey, Vanessa M.; Shono, Yusuke; Maurer, Katie; West, Mallory L.; Singer, Natalie V.; Ziegler, Carly G. K.; Lezcano, Cecilia; Motta, Ana Carolina Fragoso; Schmid, Karin; Levi, Samuel M.; Murphy, George F.; Liu, Chen; Winkler, Jeffrey D.; Amaravadi, Ravi K.; Rogler, Gerhard; Dickinson, Anne M.; Holler, Ernst; van den Brink, Marcel RM; Cadwell, Ken

    2014-01-01

    SUMMARY Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and co-stimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD. PMID:25308334

  14. ccdc80-l1 Is Involved in Axon Pathfinding of Zebrafish Motoneurons

    PubMed Central

    Brusegan, Chiara; Pistocchi, Anna; Frassine, Andrea; Della Noce, Isabella; Schepis, Filippo; Cotelli, Franco

    2012-01-01

    Axon pathfinding is a subfield of neural development by which neurons send out axons to reach the correct targets. In particular, motoneurons extend their axons toward skeletal muscles, leading to spontaneous motor activity. In this study, we identified the zebrafish Ccdc80 and Ccdc80-like1 (Ccdc80-l1) proteins in silico on the basis of their high aminoacidic sequence identity with the human CCDC80 (Coiled-Coil Domain Containing 80). We focused on ccdc80-l1 gene that is expressed in nervous and non-nervous tissues, in particular in territories correlated with axonal migration, such as adaxial cells and muscle pioneers. Loss of ccdc80-l1 in zebrafish embryos induced motility issues, although somitogenesis and myogenesis were not impaired. Our results strongly suggest that ccdc80-l1 is involved in axon guidance of primary and secondary motoneurons populations, but not in their proper formation. ccdc80-l1 has a differential role as regards the development of ventral and dorsal motoneurons, and this is consistent with the asymmetric distribution of the transcript. The axonal migration defects observed in ccdc80-l1 loss-of-function embryos are similar to the phenotype of several mutants with altered Hedgehog activity. Indeed, we reported that ccdc80-l1 expression is positively regulated by the Hedgehog pathway in adaxial cells and muscle pioneers. These findings strongly indicate ccdc80-l1 as a down-stream effector of the Hedgehog pathway. PMID:22384085

  15. Ccdc80-l1 Is involved in axon pathfinding of zebrafish motoneurons.

    PubMed

    Brusegan, Chiara; Pistocchi, Anna; Frassine, Andrea; Della Noce, Isabella; Schepis, Filippo; Cotelli, Franco

    2012-01-01

    Axon pathfinding is a subfield of neural development by which neurons send out axons to reach the correct targets. In particular, motoneurons extend their axons toward skeletal muscles, leading to spontaneous motor activity. In this study, we identified the zebrafish Ccdc80 and Ccdc80-like1 (Ccdc80-l1) proteins in silico on the basis of their high aminoacidic sequence identity with the human CCDC80 (Coiled-Coil Domain Containing 80). We focused on ccdc80-l1 gene that is expressed in nervous and non-nervous tissues, in particular in territories correlated with axonal migration, such as adaxial cells and muscle pioneers. Loss of ccdc80-l1 in zebrafish embryos induced motility issues, although somitogenesis and myogenesis were not impaired. Our results strongly suggest that ccdc80-l1 is involved in axon guidance of primary and secondary motoneurons populations, but not in their proper formation. ccdc80-l1 has a differential role as regards the development of ventral and dorsal motoneurons, and this is consistent with the asymmetric distribution of the transcript. The axonal migration defects observed in ccdc80-l1 loss-of-function embryos are similar to the phenotype of several mutants with altered Hedgehog activity. Indeed, we reported that ccdc80-l1 expression is positively regulated by the Hedgehog pathway in adaxial cells and muscle pioneers. These findings strongly indicate ccdc80-l1 as a down-stream effector of the Hedgehog pathway.

  16. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci

    PubMed Central

    Philippe, Claude; Vargas-Landin, Dulce B; Doucet, Aurélien J; van Essen, Dominic; Vera-Otarola, Jorge; Kuciak, Monika; Corbin, Antoine; Nigumann, Pilvi; Cristofari, Gaël

    2016-01-01

    LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI: http://dx.doi.org/10.7554/eLife.13926.001 PMID:27016617

  17. Ubiquitin C-terminal hydrolase L1 (UCH-L1) acts as a novel potentiator of cyclin-dependent kinases to enhance cell proliferation independently of its hydrolase activity.

    PubMed

    Kabuta, Tomohiro; Mitsui, Takeshi; Takahashi, Masaki; Fujiwara, Yuuki; Kabuta, Chihana; Konya, Chiho; Tsuchiya, Yukihiro; Hatanaka, Yusuke; Uchida, Kenko; Hohjoh, Hirohiko; Wada, Keiji

    2013-05-03

    Dysregulation of cell proliferation and the cell cycle are associated with various diseases, such as cancer. Cyclin-dependent kinases (CDKs) play central roles in cell proliferation and the cell cycle. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in a restricted range of tissues, including the brain and numerous types of cancer. However, the molecular functions of UCH-L1 remain elusive. In this study, we found that UCH-L1 physically interacts with CDK1, CDK4, and CDK5, enhancing their kinase activity. Using several mutants of UCH-L1, we showed that this enhancement is dependent upon interaction levels between UCH-L1 and CDKs but is independent of the known ubiquitin-related functions of UCH-L1. Gain- and loss-of-function studies revealed that UCH-L1 enhances proliferation of multiple cell types, including human cancer cells. Inhibition of the interaction between UCH-L1 and cell cycle-associated CDK resulted in the abolishment of UCH-L1-induced enhancement of cell proliferation. RNA interference of UCH-L1 reduced the growth of human xenograft tumors in mice. We concluded that UCH-L1 is a novel regulator of the kinase activities of CDKs. We believe that our findings from this study will significantly contribute to our understanding of cell cycle-associated diseases.

  18. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.

  19. Rendezvous missions with minimoons from L1

    NASA Astrophysics Data System (ADS)

    Chyba, M.; Haberkorn, T.; Patterson, G.

    2014-07-01

    We propose to present asteroid capture missions with the so-called minimoons. Minimoons are small asteroids that are temporarily captured objects on orbits in the Earth-Moon system. It has been suggested that, despite their small capture probability, at any time there are one or two meter diameter minimoons, and progressively greater numbers at smaller diameters. The minimoons orbits differ significantly from elliptical orbits which renders a rendezvous mission more challenging, however they offer many advantages for such missions that overcome this fact. First, they are already on geocentric orbits which results in short duration missions with low Delta-v, this translates in cost efficiency and low-risk targets. Second, beside their close proximity to Earth, an advantage is their small size since it provides us with the luxury to retrieve the entire asteroid and not only a sample of material. Accessing the interior structure of a near-Earth satellite in its morphological context is crucial to an in-depth analysis of the structure of the asteroid. Historically, 2006 RH120 is the only minimoon that has been detected but work is ongoing to determine which modifications to current observation facilities is necessary to provide detection algorithm capabilities. In the event that detection is successful, an efficient algorithm to produce a space mission to rendezvous with the detected minimoon is highly desirable to take advantage of this opportunity. This is the main focus of our work. For the design of the mission we propose the following. The spacecraft is first placed in hibernation on a Lissajoux orbit around the liberation point L1 of the Earth-Moon system. We focus on eight-shaped Lissajoux orbits to take advantage of the stability properties of their invariant manifolds for our transfers since the cost to minimize is the spacecraft fuel consumption. Once a minimoon has been detected we must choose a point on its orbit to rendezvous (in position and velocities

  20. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor.

    PubMed

    Schumacher, Dagmar; Strilic, Boris; Sivaraj, Kishor Kumar; Wettschureck, Nina; Offermanns, Stefan

    2013-07-08

    Tumor cells can activate platelets, which in turn facilitate tumor cell survival and dissemination. The exact mechanisms by which platelets promote metastasis have remained unclear. Here, we show that adenine nucleotides released from tumor cell-activated platelets induce opening of the endothelial barrier to allow transendothelial migration of tumor cells and thereby promote cancer cell extravasation. We identified the endothelial P2Y2 receptor, which is activated by ATP, as the primary mediator of this effect. Mice deficient in P2Y2 or lacking ATP secretion from platelets show strongly reduced tumor cell metastasis. These findings demonstrate a mechanism by which platelets promote cancer cell metastasis and suggest the P2Y2 receptor and its endothelial downstream signaling mechanisms as a target for antimetastatic therapies. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. L1PMA: A Fortran 77 package for best L1 piecewise monotonic data smoothing

    NASA Astrophysics Data System (ADS)

    Demetriou, I. C.

    2003-04-01

    Fortran 77 software is presented for the calculation of a best L1 approximation to n measurements that include random errors by requiring k-1 sign changes in the first divided differences of the approximation or equivalently k monotonic sections, alternately increasing and decreasing. A dynamic programming algorithm separates the measurements into optimal disjoint sections of adjacent data and applies to each section a single L1 monotonic calculation. The most distinctive feature of the algorithm is that it terminates at a global minimum in at most n3+O( kn2) computer operations, although this calculation can exhibit O( nk) local minima, because the optimal positions of the turning points are also unknowns of the optimization process. The arithmetic operations involved in this calculation are comparisons mainly spent in finding the medians of subranges of data during the monotonic calculations. The package employs techniques for median and for best L1 monotonic approximation, while full details of these techniques are specified. The package has been applied and tested on a variety of data that have substantial differences and showed quadratic behaviour in n. Some numerical results demonstrate the performance of the method. Further, there is a commentary on the division of the code into subroutines. Driver programs and numerical examples with output are provided to help new users of the method. Besides that piecewise monotonicity is a property of a wide range of functions, an important application of the method is in estimating turning points of a function from some noisy measurements of its values.

  2. Role of miR-34a as a suppressor of L1CAM in endometrial carcinoma.

    PubMed

    Schirmer, Uwe; Doberstein, Kai; Rupp, Anne-Kathleen; Bretz, Niko P; Wuttig, Daniela; Kiefel, Helena; Breunig, Christian; Fiegl, Heidi; Müller-Holzner, Elisabeth; Zeillinger, Robert; Schuster, Eva; Zeimet, Alain G; Sültmann, Holger; Altevogt, Peter

    2014-01-30

    L1CAM promotes cell motility, invasion and metastasis formation in various human cancers and can be considered as a driver of tumor progression. Knowledge about genetic processes leading to the presence of L1CAM in cancers is of considerable importance. Experimentally, L1CAM expression can be achieved by various means. Over-expression of the transcription factor SLUG or treatment of cells with TGF-β1 can induce or augment L1CAM levels in cancer cells. Likewise, hypomethylation of the L1CAM promoter on the X chromosome correlates with L1CAM expression. However, presently no mechanisms that might control transcriptional activity are known. Here we have identified miR-34a as a suppressor of L1CAM. We observed that L1CAM positive endometrial carcinoma (EC) cell lines HEC1B and SPAC1L lost L1CAM protein and mRNA by treatment with demethylating agents or knock-down of the DNA-methyltransferase-1 (DNMT1). Concomitantly, several miRNAs were up-regulated. Using miRNA profiling, luciferase reporter assays and mutagenesis, we identified miR-34a as a putative binder to the L1CAM-3'UTR. Over-expression of miR-34a in HEC1B cells blocked L1CAM expression and inhibited cell migration. In ECC1 cells (wildtype p53) the activation of p53 caused miR-34a up-regulation and loss of L1CAM expression that was miR-34a dependent. We observed an inverse correlation between L1CAM and miR-34a levels in EC cell lines. In primary tumor sections areas expressing high amounts of L1CAM had less miR-34a expression than those with low L1CAM levels. Our data suggest that miR-34a can regulate L1CAM expression by targeting L1CAM mRNA for degradation. These findings shed new light on the complex regulation of L1CAM in human tumors.

  3. Role of miR-34a as a suppressor of L1CAM in endometrial carcinoma

    PubMed Central

    Schirmer, Uwe; Doberstein, Kai; Rupp, Anne-Kathleen; Bretz, Niko P.; Wuttig, Daniela; Kiefel, Helena; Breunig, Christian; Fiegl, Heidi; Müller-Holzner, Elisabeth; Zeillinger, Robert; Eva, Heidi; Zeimet, Alain G.; SÜltmann, Holger; Altevogt, Peter

    2014-01-01

    L1CAM promotes cell motility, invasion and metastasis formation in various human cancers and can be considered as a driver of tumor progression. Knowledge about genetic processes leading to the presence of L1CAM in cancers is of considerable importance. Experimentally, L1CAM expression can be achieved by various means. Overexpression of the transcription factor SLUG or treatment of cells with TGF-ß1 can induce or augment L1CAM levels in cancer cells. Likewise, hypomethylation of the L1CAM promoter on the X chromosome correlates with L1CAM expression. However, presently no mechanisms that might control transcriptional activity are known. Here we have identified miR-34a as a suppressor of L1CAM. We observed that L1CAM positive endometrial carcinoma (EC) cell lines HEC1B and SPAC1L lost L1CAM protein and mRNA by treatment with demethylating agents or knock-down of the DNA-methyltransferase-1 (DNMT1). Concomitantly, several miRNAs were up-regulated. Using miRNA profiling, luciferase reporter assays and mutagenesis, we identified miR-34a as a putative binder to the L1CAM-3'UTR. Overexpression of miR-34a in HEC1B cells blocked L1CAM expression and inhibited cell migration. In ECC1 cells (wildtype p53) the activation of p53 caused miR-34a up-regulation and loss of L1CAM expression that was miR-34a dependent. We observed an inverse correlation between L1CAM and miR-34a levels in EC cell lines. In primary tumor sections areas expressing high amounts of L1CAM had less miR-34a expression than those with low L1CAM levels. Our data suggest that miR-34a can regulate L1CAM expression by targeting L1CAM mRNA for degradation. These findings shed new light on the complex regulation of L1CAM in human tumors. PMID:24497324

  4. Purple L1 Milestone Review Panel - MPI

    SciTech Connect

    Jones, T

    2006-12-07

    to bring up the metric up to the target of 45% efficiency for worse case pairings. By using environment tuning, we were able to achieve 47% efficiency for worse case (see Figure 1). Most pairings actually perform much higher. The Robustness category of MPI was demonstrated by the Synthetic Workload application load Stability Test, or SWL-ST. The test results that were documented and archived will be included in the L1 Milestone completion documentation. All MPI related Statement of Work (SOW) target performance objectives have been met. Both MPI-only and Hybrid-MPI codes have successfully met scaling expectations on Purple (including ale3d, yf3d, and other classified applications).

  5. Robust L1 PCA and application in image denoising

    NASA Astrophysics Data System (ADS)

    Gao, Junbin; Kwan, Paul W. H.; Guo, Yi

    2007-11-01

    The so-called robust L1 PCA was introduced in our recent work [1] based on the L1 noise assumption. Due to the heavy tail characteristics of the L1 distribution, the proposed model has been proved much more robust against data outliers. In this paper, we further demonstrate how the learned robust L1 PCA model can be used to denoise image data.

  6. 26 CFR 1.7701(l)-1 - Conduit financing arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Conduit financing arrangements. 1.7701(l)-1 Section 1.7701(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES General Actuarial Valuations § 1.7701(l)-1 Conduit...

  7. 26 CFR 1.7701(l)-1 - Conduit financing arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Conduit financing arrangements. 1.7701(l)-1 Section 1.7701(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) General Actuarial Valuations § 1.7701(l)-1 Conduit...

  8. 26 CFR 1.7701(l)-1 - Conduit financing arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 13 2014-04-01 2014-04-01 false Conduit financing arrangements. 1.7701(l)-1 Section 1.7701(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) General Actuarial Valuations § 1.7701(l)-1 Conduit...

  9. 26 CFR 1.7701(l)-1 - Conduit financing arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Conduit financing arrangements. 1.7701(l)-1 Section 1.7701(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) General Actuarial Valuations § 1.7701(l)-1 Conduit...

  10. 26 CFR 1.7701(l)-1 - Conduit financing arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 13 2013-04-01 2013-04-01 false Conduit financing arrangements. 1.7701(l)-1 Section 1.7701(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) General Actuarial Valuations § 1.7701(l)-1 Conduit...

  11. An important role for RUNX3 in human L1 transcription and retrotransposition

    PubMed Central

    Yang, Nuo; Zhang, Lin; Zhang, Yue; Kazazian Jr, Haig H.

    2003-01-01

    LINE-1s (long interspersed nuclear elements-1) are abundant non-LTR retrotransposons that comprise 17% of the human genome. The 5′ untranslated region (5′UTR) of human L1 (L1Hs) houses a poorly understood internal promoter. Here we report that mutations at a putative runt-domain transcription factor (RUNX) site (+83 to +101) in the 5′UTR decreased L1Hs transcription and retrotransposition in cell culture-based assays. Exogenous expression of RUNX3, but not the other two RUNX family members, RUNX1 and RUNX2, increased L1Hs transcription and retrotransposition, which were otherwise decreased by siRNAs targeting RUNX3 and a dominant negative RUNX. Further more, the specific interaction between RUNX3 and its binding site was demonstrated by an electrophoretic mobility shift assay (EMSA) using an anti-RUNX3 antibody. Interestingly, RUNX3 may also regulate the antisense promoter activity of L1Hs 5′UTR via another putative RUNX site (+526 to +508), as revealed by site-directed mutations and exogenous expression of RUNX factors. Our results indicate an important role for RUNX3 in L1Hs retrotransposition as well as transcription from its 5′UTR in both sense and antisense directions, and they should contribute to our understanding of the mechanism underlying L1Hs retrotransposition and its impact on the expression of adjacent cellular genes. PMID:12907736

  12. Recruitment of Tom1L1/Srcasm to endosomes and the midbody by Tsg101.

    PubMed

    Yanagida-Ishizaki, Yuko; Takei, Tomomi; Ishizaki, Ray; Imakagura, Hitoshi; Takahashi, Senye; Shin, Hye-Won; Katoh, Yohei; Nakayama, Kazuhisa

    2008-01-01

    Tom1 (target of Myb 1) and its related proteins (Tom1L1/Srcasm and Tom1L2) constitute a protein family, which share an N-terminal VHS (Vps27, Hrs and STAM) domain and a following GAT (GGA and Tom1) domain. Tom1L1 has potential binding sequences for Tsg101, which is one of key regulators of the multivesicular body (MVB) formation. To obtain a clue to the role of Tom1L1 in the MVB formation, we have characterized the Tom1L1-Tsg101 interaction. We have found that not only the PTAP sequence in the GAT domain but also the PSAP sequence in the C-terminal region of Tom1L1 is responsible for its interaction with the UEV domain of Tsg101 and competes with the HIV-1 Gag protein for the Tsg101 interaction. Furthermore, we show that, by means of Tsg101, Tom1L1 associates with the midbody during cytokinesis as well as endosomes. Taken into account the topological equivalency among the events of the MVB formation, viral egress from the cell, and cytokinesis, the data obtained here suggest that Tom1L1 is implicated in these three distinct cellular processes.

  13. Endoplasmic Reticulum-Localized Transmembrane Protein Dpy19L1 Is Required for Neurite Outgrowth

    PubMed Central

    Watanabe, Keisuke; Bizen, Norihisa; Sato, Noboru; Takebayashi, Hirohide

    2016-01-01

    The endoplasmic reticulum (ER), including the nuclear envelope, is a continuous and intricate membrane-bound organelle responsible for various cellular functions. In neurons, the ER network is found in cell bodies, axons, and dendrites. Recent studies indicate the involvement of the ER network in neuronal development, such as neuronal migration and axonal outgrowth. However, the regulation of neural development by ER-localized proteins is not fully understood. We previously reported that the multi-transmembrane protein Dpy19L1 is required for neuronal migration in the developing mouse cerebral cortex. A Dpy19L family member, Dpy19L2, which is a causative gene for human Globozoospermia, is suggested to act as an anchor of the acrosome to the nuclear envelope. In this study, we found that the patterns of exogenous Dpy19L1 were partially coincident with the ER, including the nuclear envelope in COS-7 cells at the level of the light microscope. The reticular distribution of Dpy19L1 was disrupted by microtubule depolymerization that induces retraction of the ER. Furthermore, Dpy19L1 showed a similar distribution pattern with a ER marker protein in embryonic mouse cortical neurons. Finally, we showed that Dpy19L1 knockdown mediated by siRNA resulted in decreased neurite outgrowth in cultured neurons. These results indicate that transmembrane protein Dpy19L1 is localized to the ER membrane and regulates neurite extension during development. PMID:27959946

  14. Characterization of an upstream regulatory element of adenovirus L1 poly (A) site.

    PubMed

    Liu, Li

    2005-06-20

    The transition from early to late stage infection by adenovirus involves a change in mRNA expression from the adenovirus major late transcription unit (AdMLTU). This early to late switch centers around alternative selection of one of five poly (A) sites (L1-L5) that code for the major structural proteins of Adenovirus. During the early stage of infection, steady state mRNA is primarily derived from the L1 poly (A) site. During the late stage of infection, each of the MLTU poly (A) sites is represented in the steady state mRNA pool (Falck-Pedersen, E., Logan, J., 1989. Regulation of poly(A) site selection in adenovirus. J. Virol. 63 (2), 532-541.). Using transient transfection of a plasmid expressing Chloramphenicol Acetyl Transferase with a tandem poly (A) minigene system (L13) (DeZazzo, J.D., Falck-Pedersen, E., Imperiale, M.J., 1991. Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol. Cell. Biol. 11 (12), 5977-5984; Prescott, J., Falck-Pedersen, E., 1994. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol. Cell. Biol. 14 (7), 4682-4693.), it has been demonstrated that the promoter-proximal L1 poly (A) site which is poorly recognized by the 3' end processing machinery, contains an upstream repressor element (URE) that influences steady state levels of mRNA (Prescott, J.C., Liu, L., Falck-Pedersen, E., 1997. Sequence-mediated regulation of adenovirus gene expression by repression of mRNA accumulation. Mol. Cell. Biol. 17 (4), 2207-2216.). In this study, we have further characterized the elements that mediate L1URE function. These studies indicate that the L1 upstream regulatory element (L1 URE) contains a complex RNA architecture that serves to repress gene expression through multiple sub-effectors. The L1URE functions when located upstream of a heterologous poly (A) site, and is able to strongly suppress steady state m

  15. Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation.

    PubMed

    Dai, Lixin; Taylor, Martin S; O'Donnell, Kathryn A; Boeke, Jef D

    2012-11-01

    Poly(A) binding proteins (PABPs) specifically bind the polyadenosine tail of mRNA and have been shown to be important for RNA polyadenylation, translation initiation, and mRNA stability. Using a modified L1 retrotransposition vector, we examined the effects of two PABPs (encoded by PABPN1 and PABPC1) on the retrotransposition activity of the L1 non-long-terminal-repeat (non-LTR) retrotransposon in both HeLa and HEK293T cells. We demonstrated that knockdown of these two genes by RNA interference (RNAi) effectively reduced L1 retrotransposition by 70 to 80% without significantly changing L1 transcription or translation or the status of the poly(A) tail. We identified that both poly(A) binding proteins were associated with the L1 ribonucleoprotein complex, presumably through L1 mRNA. Depletion of PABPC1 caused a defect in L1 RNP formation. Knockdown of the PABPC1 inhibitor PAIP2 increased L1 retrotransposition up to 2-fold. Low levels of exogenous overexpression of PABPN1 and PABPC1 increased L1 retrotransposition, whereas unregulated overexpression of these two proteins caused pleiotropic effects, such as hypersensitivity to puromycin and decreased L1 activity. Our data suggest that PABPC1 is essential for the formation of L1 RNA-protein complexes and may play a role in L1 RNP translocation in the host cell.

  16. Relationships among L1 Print Exposure and Early L1 Literacy Skills, L2 Aptitude, and L2 Proficiency

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    Authors examined the relationship between individual differences in L1 print exposure and differences in early L1 skills and later L2 aptitude, L2 proficiency, and L2 classroom achievement. Participants were administered measures of L1 word decoding, spelling, phonemic awareness, reading comprehension, receptive vocabulary, and listening…

  17. Relationships among L1 Print Exposure and Early L1 Literacy Skills, L2 Aptitude, and L2 Proficiency

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    Authors examined the relationship between individual differences in L1 print exposure and differences in early L1 skills and later L2 aptitude, L2 proficiency, and L2 classroom achievement. Participants were administered measures of L1 word decoding, spelling, phonemic awareness, reading comprehension, receptive vocabulary, and listening…

  18. PD-L1 Expression in Lung Cancer

    PubMed Central

    Yu, Hui; Boyle, Theresa A.; Zhou, Caicun; Rimm, David L.; Hirsch, Fred R.

    2017-01-01

    Immunotherapies targeted against programmed death ligand 1 (PD-L1) and its receptor (PD-1) have improved survival in a subset of patients with advanced lung cancer. PD-L1 protein expression has emerged as a biomarker that predicts which patients are more likely to respond to immunotherapy. The understanding of PD-L1 as a biomarker is complicated by the history of use of different immunohistochemistry platforms with different PD-L1 antibodies, scoring systems, and positivity cut-offs for immunotherapy clinical trials with different anti-PD-L1 and anti-PD-1 drugs. Herein, we summarize the brief history of PD-L1 as a biomarker and describe the challenges remaining to harmonize PD-L1 detection and interpretation for best patient care. PMID:27117833

  19. PD-L1 expression and prognostic impact in glioblastoma

    PubMed Central

    Nduom, Edjah K.; Wei, Jun; Yaghi, Nasser K.; Huang, Neal; Kong, Ling-Yuan; Gabrusiewicz, Konrad; Ling, Xiaoyang; Zhou, Shouhao; Ivan, Cristina; Chen, Jie Qing; Burks, Jared K.; Fuller, Greg N.; Calin, George A.; Conrad, Charles A.; Creasy, Caitlin; Ritthipichai, Krit; Radvanyi, Laszlo; Heimberger, Amy B.

    2016-01-01

    Background Therapeutic targeting of the immune checkpoints cytotoxic T-lymphocyte-associated molecule-4 (CTLA-4) and PD-1/PD-L1 has demonstrated tumor regression in clinical trials, and phase 2 trials are ongoing in glioblastoma (GBM). Previous reports have suggested that responses are more frequent in patients with tumors that express PD-L1; however, this has been disputed. At issue is the validation of PD-L1 biomarker assays and prognostic impact. Methods Using immunohistochemical analysis, we measured the incidence of PD-L1 expression in 94 patients with GBM. We categorized our results according to the total number of PD-L1-expressing cells within the GBMs and then validated this finding in ex vivo GBM flow cytometry with further analysis of the T cell populations. We then evaluated the association between PD-L1 expression and median survival time using the protein expression datasets and mRNA from The Cancer Genome Atlas. Results The median percentage of PD-L1-expressing cells in GBM by cell surface staining is 2.77% (range: 0%–86.6%; n = 92), which is similar to the percentage found by ex vivo flow cytometry. The majority of GBM patients (61%) had tumors with at least 1% or more PD-L1-positive cells, and 38% had at least 5% or greater PD-L1 expression. PD-L1 is commonly expressed on the GBM-infiltrating T cells. Expression of both PD-L1 and PD-1 are negative prognosticators for GBM outcome. Conclusions The incidence of PD-L1 expression in GBM patients is frequent but is confined to a minority subpopulation, similar to other malignancies that have been profiled for PD-L1 expression. Higher expression of PD-L1 is correlated with worse outcome. PMID:26323609

  20. Stop codon mutagenesis for homogenous expression of human papillomavirus L1 protein in Escherichia coli.

    PubMed

    Wang, Daning; Fan, Fei; Li, Zhihai; Liu, Xinlin; Song, Shuo; Wei, Shuangping; He, Maozhou; Lin, Yahua; Li, Zhongyi; Wei, Minxi; Yu, Hai; Gu, Ying; Li, Shaowei; Xia, Ningshao

    2017-03-04

    Human papillomavirus (HPV) is widely accepted to be the major causative pathogen of cervical cancer, warts, and other epithelial tumors. Virus infection and subsequent disease development can be prevented by vaccination with HPV vaccines derived from eukaryotic expression systems. Here, we report the soluble expression of the major capsid protein L1 of HPV31, a dominant carcinogenic HPV genotype, in Escherichia coli. HPV31 L1 protein and its elongated form (L1+) were observed in SDS-PAGE and CE-SDS analysis, generated by the native HPV31 L1 gene with a TAA stop codon. Replacing the TAA with TAG but not TGA could completely terminate protein translation. Mass spectrometry sequencing showed that L1+ comprised L1 with a C-terminal extension of 38 amino acids (aa). RNA folding analysis revealed that the unfaithful L1+ expression may result from translational read-through, as TAG is more stable and accessible than the other stop codons. The 38-aa elongated fragment perturbs self-assembly of HPV31 L1+, as shown in size and morphology analyses. By 3D cryo-electron microscopy structure determination, we show self-assembly of purified HPV31 L1 (TAG) VLPs into T = 7 icosahedral symmetry particles, resembling the native HPV virion. Finally, through additional characterization and antigenicity/immunogenicity assays, we verified that the E.coli-derived HPV31 VLPs are an ideal immunogen for HPV vaccine development. Our findings outline a codon optimization stratagem for protein expression and provide a method for the in-depth investigation of prokaryotic translation regulation.

  1. Interactions of TOM1L1 with the multivesicular body sorting machinery.

    PubMed

    Puertollano, Rosa

    2005-03-11

    Tom1L1 (Tom1-like1) and related proteins Tom1 (Target of Myb1) and Tom1L2 (Tom1-like2) constitute a new protein family characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. Recently it was demonstrated that the GAT domain of both Tom1 and Tom1L1 binds ubiquitin, suggesting that these proteins might participate in the sorting of ubiquitinated proteins into multivesicular bodies (MVBs). Here we report a novel interaction between Tom1L1 and members of the MVB sorting machinery. Specifically, we found that the VHS domain of Tom1L1 interacts with Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate), whereas a PTAP motif, located between the VHS and GAT domain of Tom1L1, is responsible for binding to TSG101 (tumor susceptibility gene 101). Myc epitope-tagged Tom1L1 showed a cytosolic distribution but was recruited to endosomes following Hrs expression. In addition, Tom1L1 possesses several tyrosine motifs at the C-terminal region that mediate interactions with members of the Src family kinases and other signaling proteins such as Grb2 and p85. We showed that a fraction of Fyn kinase localizes at endosomes and that this distribution becomes more evident after epidermal growth factor internalization. Moreover, expression of a constitutive active form of Fyn also promoted the recruitment of Tom1L1 to enlarged endosomes. Taken together, we propose that Tom1L1 could act as an intermediary between signaling and degradative pathways.

  2. Downregulation of L1 perturbs neuronal migration and alters the expression of transcription factors in murine neocortex

    PubMed Central

    Kishimoto, Tomokazu; Itoh, Kyoko; Umekage, Masafumi; Tonosaki, Madoka; Yaoi, Takeshi; Fukui, Kenji; Lemmon, Vance P; Fushiki, Shinji

    2013-01-01

    Abstract L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. L1 knockout (L1-KO) mice have revealed a variety of functions of L1 that were crucial in brain development in different brain regions. However; the function of L1 in neuronal migration during cortical histogenesis remains to be clarified. We therefore investigated the corticogenesis of mouse embryos in which L1 molecules were knocked down in selected neurons, by employing in utero electroporation with shRNAs targeting L1 (L1 shRNA). Although more than 50% of the cells transfected with no small hairpin RNA (shRNA; monster green fluorescent protein: MGFP only) vector at embryonic day 13 (E13) reached the cortical plate at E16, significantly fewer (27%) cells transfected with L1 shRNA migrated to the same extent. At E17, 22% of cells transfected with the MGFP-only vector were found in the intermediate zone, and significantly more (34%) cells transfected with L1 shRNA remained in the same zone. Furthermore, the directions of the leading process of neurons transfected with L1 shRNA became more dispersed compared with cells with the MGFP-only vector. In addition, two transcription factors expressed in the neurons, Satb2 and Tbr1, were shown to be reduced or aberrantly expressed in neurons transfected with L1 shRNA. These observations suggest that L1 plays an important role in regulating the locomotion and orientation of migrating neurons and the expression of transcription factors during neocortical development that might partially be responsible for the abnormal tract formation seen in L1-KO mice. © 2012 Wiley Periodicals, Inc. PMID:23073969

  3. Downregulation of L1 perturbs neuronal migration and alters the expression of transcription factors in murine neocortex.

    PubMed

    Kishimoto, Tomokazu; Itoh, Kyoko; Umekage, Masafumi; Tonosaki, Madoka; Yaoi, Takeshi; Fukui, Kenji; Lemmon, Vance P; Fushiki, Shinji

    2013-01-01

    L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. L1 knockout (L1-KO) mice have revealed a variety of functions of L1 that were crucial in brain development in different brain regions. However; the function of L1 in neuronal migration during cortical histogenesis remains to be clarified. We therefore investigated the corticogenesis of mouse embryos in which L1 molecules were knocked down in selected neurons, by employing in utero electroporation with shRNAs targeting L1 (L1 shRNA). Although more than 50% of the cells transfected with no small hairpin RNA (shRNA; monster green fluorescent protein: MGFP only) vector at embryonic day 13 (E13) reached the cortical plate at E16, significantly fewer (27%) cells transfected with L1 shRNA migrated to the same extent. At E17, 22% of cells transfected with the MGFP-only vector were found in the intermediate zone, and significantly more (34%) cells transfected with L1 shRNA remained in the same zone. Furthermore, the directions of the leading process of neurons transfected with L1 shRNA became more dispersed compared with cells with the MGFP-only vector. In addition, two transcription factors expressed in the neurons, Satb2 and Tbr1, were shown to be reduced or aberrantly expressed in neurons transfected with L1 shRNA. These observations suggest that L1 plays an important role in regulating the locomotion and orientation of migrating neurons and the expression of transcription factors during neocortical development that might partially be responsible for the abnormal tract formation seen in L1-KO mice. Copyright © 2012 Wiley Periodicals, Inc.

  4. Molecular archeology of L1 insertions in the human genome

    PubMed Central

    Szak, Suzanne T; Pickeral, Oxana K; Makalowski, Wojciech; Boguski, Mark S; Landsman, David; Boeke, Jef D

    2002-01-01

    Background As the rough draft of the human genome sequence nears a finished product and other genome-sequencing projects accumulate sequence data exponentially, bioinformatics is emerging as an important tool for studies of transposon biology. In particular, L1 elements exhibit a variety of sequence structures after insertion into the human genome that are amenable to computational analysis. We carried out a detailed analysis of the anatomy and distribution of L1 elements in the human genome using a new computer program, TSDfinder, designed to identify transposon boundaries precisely. Results Structural variants of L1 elements shared similar trends in the length and quality of their target site duplications (TSDs) and poly(A) tails. Furthermore, we found no correlation between the composition and genomic location of the pre-insertion locus and the resulting anatomy of the L1 insertion. We verified that L1 insertions with TSDs have the 5'-TTAAAA-3' cleavage site associated with L1 endonuclease activity. In addition, the second target DNA cut required for L1 insertion weakly matches the consensus pattern TTAAAA. On the other hand, the L1-internal breakpoints of deleted and inverted L1 elements do not resemble L1 endonuclease cleavage sites. Finally, the genome sequence data indicate that whereas singly inverted elements are common, doubly inverted elements are almost never found. Conclusions The sequence data give no indication that the creation of L1 structural variants depends on characteristics of the insertion locus. In addition, the formation of 5' truncated and 5' inverted L1s are probably not due to the action of the L1 endonuclease. PMID:12372140

  5. Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system.

    PubMed

    McKeon, Jeanne E; Sha, Di; Li, Lian; Chin, Lih-Shen

    2015-05-01

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a key neuronal deubiquitinating enzyme which is mutated in Parkinson disease (PD) and in childhood-onset neurodegenerative disorder with optic atrophy. Furthermore, reduced UCH-L1 protein levels are associated with a number of neurodegenerative diseases, whereas up-regulation of UCH-L1 protein expression is found in multiple types of cancer. However, very little is known about how UCH-L1 protein level is regulated in cells. Here, we report that UCH-L1 is a novel interactor and substrate of PD-linked E3 ubiquitin-protein ligase parkin. We find that parkin mediates K63-linked polyubiquitination of UCH-L1 in cooperation with the Ubc13/Uev1a E2 ubiquitin-conjugating enzyme complex and promotes UCH-L1 degradation by the autophagy-lysosome pathway. Targeted disruption of parkin gene expression in mice causes a significant decrease in UCH-L1 ubiquitination with a concomitant increase in UCH-L1 protein level in brain, supporting an in vivo role of parkin in regulating UCH-L1 ubiquitination and degradation. Our findings reveal a direct link between parkin-mediated ubiquitin signaling and UCH-L1 regulation, and they have important implications for understanding the roles of these two proteins in health and disease.

  6. Microglial TNF-α-dependent elevation of MHC class I expression on brain endothelium induced by amyloid-beta promotes T cell transendothelial migration.

    PubMed

    Yang, Yi-Ming; Shang, De-Shu; Zhao, Wei-Dong; Fang, Wen-Gang; Chen, Yu-Hua

    2013-11-01

    The blood-brain barrier (BBB) normally bars peripheral T lymphocytes from entering the cerebrum. Interestingly, activated T cells exist as infiltrates in the brains of Alzheimer's disease (AD) patients, but little is known about the mechanisms involved. In this study, we observed significantly higher MHC class I expression in rat brain endothelial cells compared with controls following the induction of experimental AD models. An in vitro BBB model, which was constructed with human brain microvascular endothelial cells, was established to study the mechanisms underlying the transendothelial migration of T cells. Using in vitro studies, we demonstrated that secretion of TNF-α from Aβ1-42-treated BV2 microglia contributes to the elevated expression of MHC class I on the brain microvessel endothelium. Transmigration assays and adhesion assays confirmed that the upregulation of MHC class I molecules was associated with T cell transendothelial migration. MHC class I knock-down in HBMECs significantly attenuated the migratory and adhesive capability of the T cells. Interestingly, a TNF-α neutralizing antibody effectively blocked the transendothelial migration of T cells triggered by treatment with the supernatant from Aβ1-42-treated BV2 microglia. We propose that microglia-derived TNF-α upregulates MHC class I molecule expression on brain endothelial cells, which represents a mechanism of T cell migration into the brain. This study may provide a new insight into the potential pathomechanism of Alzheimer's disease.

  7. Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1.

    PubMed

    Law, Janice W S; Lee, Alan Y W; Sun, Mu; Nikonenko, Alexander G; Chung, Sookja K; Dityatev, Alexander; Schachner, Melitta; Morellini, Fabio

    2003-11-12

    L1, a neural cell adhesion molecule of the immunoglobulin superfamily, is involved in neuronal migration and differentiation and axon outgrowth and guidance. Mutations in the human and mouse L1 gene result in similarly severe neurological abnormalities. To dissociate the functional roles of L1 in the adult brain from developmental abnormalities, we have generated a mutant in which the L1 gene is inactivated by cre-recombinase under the control of the calcium/calmodulin-dependent kinase II promoter. This mutant (L1fy+) did not show the overt morphological and behavioral abnormalities observed previously in constitutive L1-deficient (L1-/-) mice; however, there was an increase in basal excitatory synaptic transmission that was not apparent in L1-/- mice. Similar to L1-/- mice, no defects in short- and long-term potentiation in the CA1 region of the hippocampus were observed. Interestingly, L1fy+ mice showed decreased anxiety in the open field and elevated plus-maze, contrary to L1-/- mice, and altered place learning in the water maze, similar to L1-/- mice. Thus, mice conditionally deficient in L1 expression in the adult brain share some abnormalities, but also display different ones, as compared with L1-/- mice, highlighting the role of L1 in the regulation of synaptic transmission and behavior in adulthood.

  8. Frequent expression of PD-L1 on circulating breast cancer cells.

    PubMed

    Mazel, Martine; Jacot, William; Pantel, Klaus; Bartkowiak, Kai; Topart, Delphine; Cayrefourcq, Laure; Rossille, Delphine; Maudelonde, Thierry; Fest, Thierry; Alix-Panabières, Catherine

    2015-11-01

    Immune checkpoint regulators such as PD-L1 have become exciting new therapeutic targets leading to long lasting remissions in patients with advanced malignancies. However, in view of the remarkable costs and the toxicity profiles of these therapies, predictive biomarkers able to discriminate responders from non-responders are urgently needed. In the present paper, we provide evidence that PD-L1 is frequently expressed on metastatic cells circulating in the blood of hormone receptor-positive, HER2-negative breast cancer patients. We performed western blot, flow cytometry and immunocytochemical analyses to demonstrate the specificity of the PDL1 antibody used in our study and established immunoscores for PDL1 expression on single tumor cells. We then selected sixteen patients with circulating tumor cells (CTCs) using the CellSearch(®) system and found PD-L1((+)) CTCs in 11 patients (68.8%). The fraction of PD-L1((+)) CTCs varied from 0.2 to 100% in individual patients. This is the first report demonstrating the expression of PD-L1 on CTCs. The established CTC/PD-L1 assay can be used for liquid biopsy in future clinical trials for stratification and monitoring of cancer patients undergoing immune checkpoint blockade.

  9. The L1-norm best-fit hyperplane problem.

    PubMed

    Brooks, J P; Dulá, J H

    2012-01-01

    We formalize an algorithm for solving the L(1)-norm best-fit hyperplane problem derived using first principles and geometric insights about L(1) projection and L(1) regression. The procedure follows from a new proof of global optimality and relies on the solution of a small number of linear programs. The procedure is implemented for validation and testing. This analysis of the L(1)-norm best-fit hyperplane problem makes the procedure accessible to applications in areas such as location theory, computer vision, and multivariate statistics.

  10. S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells.

    PubMed

    Barry, Sayka; Chelala, Claude; Lines, Kate; Sunamura, Makoto; Wang, Amu; Marelli-Berg, Federica M; Brennan, Caroline; Lemoine, Nicholas R; Crnogorac-Jurcevic, Tatjana

    2013-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the 5th most common cause of cancer death in the UK and the 4th in the US. The vast majority of deaths following pancreatic cancer are due to metastatic spread, hence understanding the metastatic process is vital for identification of critically needed novel therapeutic targets. An enriched set of 33 genes differentially expressed in common between primary PDAC and liver metastases, when compared to normal tissues, was obtained through global gene expression profiling. This metastasis-associated gene set comprises transcripts from both cancer (S100P, S100A6, AGR2, etc.) and adjacent stroma (collagens type I, III, and V, etc.), thus reinforcing the concept of a continuous crosstalk between the two compartments in both primary tumours and their metastases. The expression of S100P, SFN, VCAN and collagens was further validated in additional primary PDACs and matched liver metastatic lesions, while the functional significance of one of the most highly expressed genes, S100P, was studied in more detail. We show that this protein increases the transendothelial migration of PDAC cancer cells in vitro, which was also confirmed in vivo experiments using a zebrafish embryo model. Thus S100P facilitates cancer cell intravasation/extravasation, critical steps in the hematogenous dissemination of pancreatic cancer cells.

  11. Real-time analysis of integrin-dependent transendothelial migration and integrin-independent interstitial motility of leukocytes.

    PubMed

    Shulman, Ziv; Alon, Ronen

    2012-01-01

    The role of integrins in leukocyte migration across endothelial barriers is widely accepted. In contrast, the contribution of integrins to interstitial motility of leukocytes is still elusive. Chemokine binding to G-protein-coupled receptors expressed on the surface of leukocytes plays key roles in both of these processes by directly activating integrin conformations favorable for ligand binding and integrin microclustering. Chemokines can also serve as weak adhesive ligands and potent inducers of actin cytoskeleton remodeling. Real-time assays utilizing live imaging microscopy have been implemented to dissect these versatile roles of chemokines in different leukocyte migration processes. Here, we review several in vitro assays useful for exploring the contribution of chemokine signals and shear forces to integrin activation and function during various stages of leukocyte transendothelial migration. In addition, we describe a new assay that assesses the contribution of chemokines to integrin-independent interstitial leukocyte motility. These assays can also follow the outcome of specific genetic or biochemical manipulations of either the leukocyte or the endothelial barrier on distinct migratory steps. Following fixation, subcellular changes in the distribution of integrin subsets and of specific integrin-associated adaptors can be further dissected by immunofluorescence tools and by ultrastructural electron microscopic analysis.

  12. TCR-driven transendothelial migration of human effector memory CD4 T cells involves Vav, Rac, and myosin IIA.

    PubMed

    Manes, Thomas D; Pober, Jordan S

    2013-04-01

    Human effector memory (EM) CD4 T cells may be recruited from the blood into a site of inflammation in response either to inflammatory chemokines displayed on or specific Ag presented by venular endothelial cells (ECs), designated as chemokine-driven or TCR-driven transendothelial migration (TEM), respectively. We have previously described differences in the morphological appearance of transmigrating T cells as well as in the molecules that mediate T cell-EC interactions distinguishing these two pathways. In this study, we report that TCR-driven TEM requires ZAP-70-dependent activation of a pathway involving Vav, Rac, and myosin IIA. Chemokine-driven TEM also uses ZAP-70, albeit in a quantitatively and spatially different manner of activation, and is independent of Vav, Rac, and mysosin IIA, depending instead on an as-yet unidentified GTP exchange factor that activates Cdc42. The differential use of small Rho family GTPases to activate the cytoskeleton is consistent with the morphological differences observed in T cells that undergo TEM in response to these distinct recruitment signals.

  13. Polarized granzyme release is required for antigen-driven transendothelial migration of human effector memory CD4 T cells.

    PubMed

    Manes, Thomas D; Pober, Jordan S

    2014-12-15

    Human effector memory CD4 T cells may transmigrate across endothelial cell (EC) monolayers either in response to inflammatory chemokines or in response to TCR recognition of Ag presented on the surface of the EC. The kinetics, morphologic manifestations, and molecular requirements of chemokine- and TCR-driven transendothelial migration (TEM) differ significantly. In this study, we report that, whereas the microtubule organizing center (MTOC) and cytosolic granules follow the nucleus across the endothelium in a uropod during chemokine-driven TEM, MTOC reorientation to the contact region between the T cell and the EC, accompanied by dynein-driven transport of granzyme-containing granules to and exocytosis at the contact region, are early events in TCR-driven, but not chemokine-driven TEM. Inhibitors of either granule function or granzyme proteolytic activity can arrest TCR-driven TEM, implying a requirement for granule discharge in the process. In the final stages of TCR-driven TEM, the MTOC precedes, rather than follows, the nucleus across the endothelium. Thus, TCR-driven TEM of effector memory CD4 T cells appears to be a novel process that more closely resembles immune synapse formation than it does conventional chemotaxis.

  14. Identification of VLDLR as a novel endothelial cell receptor for fibrin that modulates fibrin-dependent transendothelial migration of leukocytes.

    PubMed

    Yakovlev, Sergiy; Mikhailenko, Irina; Cao, Chunzhang; Zhang, Li; Strickland, Dudley K; Medved, Leonid

    2012-01-12

    While testing the effect of the (β15-66)(2) fragment, which mimics a pair of fibrin βN-domains, on the morphology of endothelial cells, we found that this fragment induces redistribution of vascular endothelial-cadherin in a process that is inhibited by the receptor-associated protein (RAP). Based on this finding, we hypothesized that fibrin may interact with members of RAP-dependent low-density lipoprotein (LDL) receptor family. To test this hypothesis, we examined the interaction of (β15-66)(2), fibrin, and several fibrin-derived fragments with 2 members of this family by ELISA and surface plasmon resonance. The experiments showed that very LDL (VLDL) receptor (VLDLR) interacts with high affinity with fibrin through its βN-domains, and this interaction is inhibited by RAP and (β15-66)(2). Furthermore, RAP inhibited transendothelial migration of neutrophils induced by fibrin-derived NDSK-II fragment containing βN-domains, suggesting the involvement of VLDLR in fibrin-dependent leukocyte transmigration. Our experiments with VLDLR-deficient mice confirmed this suggestion by showing that, in contrast to wild-type mice, fibrin-dependent leukocyte transmigration does not occur in such mice. Altogether, the present study identified VLDLR as a novel endothelial cell receptor for fibrin that promotes fibrin-dependent leukocyte transmigration and thereby inflammation. Establishing the molecular mechanism underlying this interaction may result in the development of novel inhibitors of fibrin-dependent inflammation.

  15. Illudins C2 and C3 stimulate lipolysis in 3T3-L1 adipocytes and suppress adipogenesis in 3T3-L1 preadipocytes.

    PubMed

    Kim, Sun-Ok; Sakchaisri, Krisada; Asami, Yukihiro; Ryoo, In-Ja; Choo, Soo-Jin; Yoo, Ick-Dong; Soung, Nak-Kyun; Kim, Young Sang; Jang, Jae-Hyuk; Kim, Bo Yeon; Ahn, Jong Seog

    2014-04-25

    The secondary metabolites illudins C2 (1) and C3 (2), obtained from the culture broth of Coprinus atramentarius, have been shown to possess antimicrobial activity. In the present study, we discovered novel biological activities of 1 and 2 in lipolysis of differentiated 3T3-L1 adipocytes and adipogenesis of 3T3-L1 preadipocytes. Compounds 1 and 2 exhibit a dose-dependent increase in glycerol release and thereby reduce intracellular lipid accumulation. The stimulatory effects of 1 and 2 on lipolysis are prevented by cAMP-dependent protein kinase (PKA) and extracellular signal-regulated kinase (ERK) inhibitors. Compounds 1 and 2 down-regulated perilipin and also affected the mRNA and protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). However, 1 and 2 treatment leads to a significant increase in PKA-mediated phosphorylation of HSL at S563 and S660. In addition, 1 and 2 treatment in 3T3-L1 preadipocytes induces down-regulation of the critical transcription factors, CCAAT/enhancer binding protein α and β (C/EBPα and C/EBPβ), and peroxisome proliferator activated receptor γ (PPARγ), which are required for adipogenesis, and accordingly inhibits adipogenesis. These results suggest that 1 and 2 might be useful for treating obesity due to their modulatory effects on fat by affecting adipocyte differentiation and fat mobilization.

  16. Iodothyronine Interactions with the System L1 Amino Acid Exchanger in 3T3-L1 Adipocytes.

    PubMed

    Mitchell, Fiona E; Roy, Lisa A; Taylor, Peter M

    2010-06-24

    Thyroid hormones enter isolated white adipocytes largely by a System L1-type amino acid transporter en route to exerting genomic actions. Differentiated 3T3-L1 mouse adipocytes in culture express mRNA for LAT1 (the catalytic subunit of high-affinity System L1). L-[(125)I]-T(3) uptake into 3T3-L1 adipocytes included a substantial saturable component inhibited by leucine. L-[(3)H]phenylalanine uptake into 3T3-L1 cells was saturable (K(m) of 31 μM), competitively inhibited by T(3) (K(i) of 1.2 μM) and blocked by leucine, BCH, and rT(3) as expected for substrate interactions of System L1. Efflux of preloaded L-[(3)H]phenylalanine from 3T3-L1 adipocytes was trans stimulated by external leucine, demonstrating the obligatory exchange mechanism of System L1 transport. T(3) (10 μM) did not significantly trans stimulate L-[(3)H]phenylalanine efflux, but did competitively inhibit the trans stimulatory effect of 10 μM leucine. The results highlight strong competitive interactions between iodothyronines (T(3), rT(3)) and amino acids for transport by System L1 in adipocytes, which may impact cellular iodothyronine exchanges during altered states of protein nutrition.

  17. L1 integration in a transgenic mouse model

    PubMed Central

    Babushok, Daria V.; Ostertag, Eric M.; Courtney, Christine E.; Choi, Janice M.; Kazazian, Haig H.

    2006-01-01

    To study integration of the human LINE-1 retrotransposon (L1) in vivo, we developed a transgenic mouse model of L1 retrotransposition that displays de novo somatic L1 insertions at a high frequency, occasionally several insertions per mouse. We mapped 3′ integration sites of 51 insertions by Thermal Asymmetric Interlaced PCR (TAIL–PCR). Analysis of integration locations revealed a broad genomic distribution with a modest preference for intergenic regions. We characterized the complete structures of 33 de novo retrotransposition events. Our results highlight the large number of highly truncated L1s, as over 52% (27/51) of total integrants were <1/3 the length of a full-length element. New integrants carry all structural characteristics typical of genomic L1s, including a number with inversions, deletions, and 5′-end microhomologies to the target DNA sequence. Notably, at least 13% (7/51) of all insertions contain a short stretch of extra nucleotides at their 5′ end, which we postulate result from template-jumping by the L1-encoded reverse transcriptase. We propose a unified model of L1 integration that explains all of the characteristic features of L1 retrotransposition, such as 5′ truncations, inversions, extra nucleotide additions, and 5′ boundary and inversion point microhomologies. PMID:16365384

  18. Determination of L1 retrotransposition kinetics in cultured cells.

    PubMed

    Ostertag, E M; Prak, E T; DeBerardinis, R J; Moran, J V; Kazazian, H H

    2000-03-15

    L1 retrotransposons are autonomous retroelements that are active in the human and mouse genomes. Previously, we developed a cultured cell assay that uses a neomycin phosphotransferase ( neo ) retrotransposition cassette to determine relative retrotransposition frequencies among various L1 elements. Here, we describe a new retrotransposition assay that uses an enhanced green fluorescent protein (EGFP) retrotransposition cassette to determine retrotransposition kinetics in cultured cells. We show that retrotransposition is not detected in cultured cells during the first 48 h post-transfection, but then proceeds at a continuous high rate for at least 16 days. We also determine the relative retrotransposition rates of two similar human L1 retrotransposons, L1(RP)and L1.3. L1(RP)retrotransposed in the EGFP assay at a rate of approximately 0.5% of transfected cells/day, approximately 3-fold higher than the rate measured for L1.3. We conclude that the new assay detects near real time retrotransposition in a single cell and is sufficiently sensitive to differentiate retrotransposition rates among similar L1 elements. The EGFP assay exhibits improved speed and accuracy compared to the previous assay when used to determine relative retrotransposition frequencies. Furthermore, the EGFP cassette has an expanded range of experimental applications.

  19. [L1-2 lumbar disc herniation: a case report].

    PubMed

    Monobe, T; Fujita, T; Nakaue, Y; Nishi, N

    1996-03-01

    A 49-year-old female presented a two-year history of pain in the right thigh and lower back. Neurological examination on admission demonstrated weakness of the right iliopsoas and quadriceps, hypesthesia on the right L1-2 dermatome. Radiological examination including myelography, CT myelography and discography disclosed an L1-2 herniated disc. Sagittal MRI also revealed an L1-2, an L4-5 and L5-S1 protruded disc. A posterior microdiscectomy (Love's method) was performed for the L1-2 disc. A controlateral protruded disc which compressed the L-2 nerve root was identified and partially removed. The postoperative myelography showed residual disc. The patient was free from pain and regained normal sensorimotor function. Love's posterior microdiscectomy has a disadvantage in that the operative field is limited. Careful surgical procedure was needed to avoid injury to nerve roots and the cauda equina in a tight L1-2 lumbar canal.

  20. The L1 retrotransposition assay: a retrospective and toolkit.

    PubMed

    Rangwala, Sanjida H; Kazazian, Haig H

    2009-11-01

    LINE1s (L1s) are a class of mammalian non-LTR (long terminal repeat) retroelements that make up nearly 20% of the human genome. Because of the difficulty of studying the mobilization of endogenous L1s, an exogenous cell culture retrotransposition assay has become integral to research in L1 biology. This assay has allowed for investigation of the mechanism and consequences of mobilization of this retroelement, both in cell lines and in whole animal models. In this paper, we outline the genesis of in vitro retrotransposition systems which led to the development of the L1 retrotransposition assay in the mid-1990s. We then provide a retrospective, describing the many uses and variations of this assay, ending with caveats and predictions for future developments. Finally, we provide detailed protocols on the application of the retrotransposition assay, including lists of constructs available in the L1 research community and cell lines in which this assay has been applied.

  1. PD-L1+MDSCs are increased in HCC patients and induced by soluble factor in the tumor microenvironment

    PubMed Central

    Iwata, Tomoaki; Kondo, Yasuteru; Kimura, Osamu; Morosawa, Tatsuki; Fujisaka, Yasuyuki; Umetsu, Teruyuki; Kogure, Takayuki; Inoue, Jun; Nakagome, Yu; Shimosegawa, Tooru

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) could have important roles in immune regulation, and MDSCs can be induced in patients with various malignant tumors. The immune-suppressive functions of MDSCs in hepatocellular carcinoma (HCC) patients have not been clarified. Therefore, we tried to analyze the biological significance of MDSCs in HCC patients. We quantified PD-L1+MDSCs of HCC patients in various conditions by using multi-color flow cytometry analysis. PBMCs from HCC patients contained significantly higher percentages of PD-L1+MDSCs in comparison to those from healthy subjects (p < 0.001). The percentages of PD-L1+MDSCs were reduced by curative treatment for HCC (p < 0.05), and the percentages of PD-L1+MDSCs before treatment were inversely correlated with disease-free survival time. After we cocultivated PBMCs and several liver cancer cell lines in a transwell coculture system, the percentages of PD-L1+MDSCs were significantly increased compared with control (p < 0.05). The expression of M-CSF and VEGFA was higher in the cell lines that strongly induced PD-L1+MDSCs. Peripheral blood from HCC patients had significantly higher percentages of PD-L1+MDSCs in comparison to those of healthy subjects, and the percentages of PD-L1+MDSCs were reduced by HCC treatment, suggesting that we might use PD-L1+MDSCs as a new biomarker of HCC. PMID:27966626

  2. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction.

    PubMed

    Bishop, Paul; Rocca, Dan; Henley, Jeremy M

    2016-08-15

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1-5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.

  3. Do L1 Reading Achievement and L1 Print Exposure Contribute to the Prediction of L2 Proficiency?

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    The study examined whether individual differences in high school first language (L1) reading achievement and print exposure would account for unique variance in second language (L2) written (word decoding, spelling, writing, reading comprehension) and oral (listening/speaking) proficiency after adjusting for the effects of early L1 literacy and…

  4. Do L1 Reading Achievement and L1 Print Exposure Contribute to the Prediction of L2 Proficiency?

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    The study examined whether individual differences in high school first language (L1) reading achievement and print exposure would account for unique variance in second language (L2) written (word decoding, spelling, writing, reading comprehension) and oral (listening/speaking) proficiency after adjusting for the effects of early L1 literacy and…

  5. Programmed cell death ligand 1 (PD-L1) expression on gastric cancer and its relationship with clinicopathologic factors.

    PubMed

    Zhang, Lin; Qiu, Miaozhen; Jin, Ying; Ji, Jiao; Li, Baoxia; Wang, Xueping; Yan, Shumei; Xu, Ruihua; Yang, Dajun

    2015-01-01

    Targeting the immune checkpoints in solid tumors becomes hot recently. Programmed cell death ligand 1 (PD-L1) is ligand for programmed death 1 (PD-1), which is known to negatively regulate T-cell activation. In the present study, we investigated the expression of PD-L1 in tumor specimens of gastric cancer and its relationships with clinicopathological variables and survival. The expression of PD-L1 in 132 surgically resected specimens of stage II and III gastric cancer was evaluated by immunohistochemistry in microarray tissue. Expression of PD-L1 was observed in 50.8% (67/132) of gastric cancer tumor specimens. Patients whose tumor size over 5cm had a higher positive rate of PD-L1 expression. There was no relationship between the expression of PD-L1 and other clinicopathological variables including age, gender, clinical stage, location as well as histological differentiation. PD-L1 positive patients had significantly poorer survival than negative patients. The 5-year survival rates was 83.1% in those with PD-L1 negative patients and 50.7% for PD-L1 positive patients (P<0.001). The multivariate analysis indicated that both PD-L1 positive and Tumor-node-metastasis stage were independent prognostic factors in gastric cancer patients (P=0.001 and 0.025, respectively). The expression of PD-L1 was found in half of stages II and III gastric cancer patients. Positive of PD-L1 expression indicated poor survival in Chinese stages II and III gastric adenocarcinoma patients. These results may provide the clue for immunotherapy in the adjuvant treatment setting of gastric cancer patients.

  6. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    PubMed

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all P<0.01) in myostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all P<0.001). Above all, myostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. © 2015 Society for Endocrinology.

  7. Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis and lipogenesis in 3T3-L1 cells.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2014-04-01

    Cranberries (Oxycoccus quadripetalus) are a valuable source of bioactive substances with high antioxidant potential and well documented beneficial health properties. In the present study, the activity of cranberries, in terms of the inhibiting effects of adipogenesis, was investigated using the 3T3-L1 cell line. The obtained results showed that cranberries reduced proliferation and viability of 3T3-L1 preadipocytes in a dose-dependent manner. Treatment with cranberries decreased the number of adipocytes and reduced lipid accumulation in maturing 3T3-L1 preadipocytes, demonstrating an inhibitory effect on lipogenesis. Moreover, it was found that cranberries directly induced lipolysis in adipocytes and down-regulated the expression of major transcription factors of the adipogenesis pathway, such as PPARγ, C/EBPα and SREBP1. These findings indicate that cranberries are capable of suppressing adipogenesis and therefore they seem to be natural bioactive factors effective in adipose tissue mass modulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Kahweol inhibits adipogenesis of 3T3-L1 adipocytes through downregulation of PPARγ.

    PubMed

    Kim, Jin Soo; Lee, Seul Gi; Kang, Young Jin; Kwon, Taeg Kyu; Nam, Ju-Ock

    2017-05-16

    Kahweol, a compound from Coffea arabica, possesses antioxidant, anti-inflammatory, and antitumour properties. However, an anti-adipogenic effect has not yet been reported. In this study, we have shown that kahweol has an anti-adipogenic effect on 3T3-L1 adipocytes. Kahweol significantly inhibited the differentiation of intracellular lipid accumulation in 3T3-L1 adipocytes, without being cytotoxic. It also downregulated the expression of adipogenesis-related gene, including an adipocytokine, adiponectin. This anti-adipogenic effect stems from an ability to inhibit key adipogenic regulators, including PPARγ and C/EBPα. These results demonstrate that kahweol significantly inhibits the differentiation of 3T3-L1 cells, and suggest that it has potential as a novel anti-obesity treatment.

  9. L1 radiculopathy mimicking meralgia paresthetica: a case report.

    PubMed

    Yang, Seung Nam; Kim, Dong Hwee

    2010-04-01

    L1 radiculopathy is very rare and difficult to diagnose with needle electromyography. A patient presented with pain and hypesthesia on the anterolateral aspect of the left thigh. Nerve conduction studies and needle electromyography were normal, except for the quadratus lumborum and iliopsoas muscles, which showed abnormal spontaneous activity and polyphasic motor unit potentials with reduced recruitment patterns. Magnetic resonance imaging of the lumbar spine showed disc extrusion of the L1-2 intervertebral space with upward migration. This case demonstrates the usefulness of examination of the quadratus lumborum in the diagnosis of L1 radiculopathy.

  10. Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA.

    PubMed

    Brinkmann, Kerstin; Zigrino, Paola; Witt, Axel; Schell, Michael; Ackermann, Leena; Broxtermann, Pia; Schüll, Stephan; Andree, Maria; Coutelle, Oliver; Yazdanpanah, Benjamin; Seeger, Jens Michael; Klubertz, Daniela; Drebber, Uta; Hacker, Ulrich T; Krönke, Martin; Mauch, Cornelia; Hoppe, Thorsten; Kashkar, Hamid

    2013-03-28

    The BH3-only protein NOXA represents one of the critical mediators of DNA-damage-induced cell death. In particular, its involvement in cellular responses to cancer chemotherapy is increasingly evident. Here, we identify a strategy of cancer cells to escape genotoxic chemotherapy by increasing proteasomal degradation of NOXA. We show that the deubiquitylating enzyme UCH-L1 is a key regulator of NOXA turnover, which protects NOXA from proteasomal degradation by removing Lys(48)-linked polyubiquitin chains. In the majority of tumors from patients with melanoma or colorectal cancer suffering from high rates of chemoresistance, NOXA fails to accumulate because UCH-L1 expression is epigenetically silenced. Whereas UCH-L1/NOXA-positive tumor samples exhibit increased sensitivity to genotoxic chemotherapy, downregulation of UCH-L1 or inhibition of its deubiquitylase activity resulted in reduced NOXA stability and resistance to genotoxic chemotherapy in both human and C. elegans cells. Our data identify the UCH-L1/NOXA interaction as a therapeutic target for overcoming cancer chemoresistance.

  11. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris

    PubMed Central

    Bazan, Silvia Boschi; de Alencar Muniz Chaves, Agtha; Aires, Karina Araújo; Cianciarullo, Aurora Marques; Garcea, Robert L.; Ho, Paulo Lee

    2013-01-01

    Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin–sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines. PMID:19756360

  12. Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration.

    PubMed

    Pasikowska, Marta; Walsby, Elisabeth; Apollonio, Benedetta; Cuthill, Kirsty; Phillips, Elizabeth; Coulter, Eve; Longhi, Maria Serena; Ma, Yun; Yallop, Deborah; Barber, Linda D; Patten, Piers; Fegan, Chris; Ramsay, Alan G; Pepper, Chris; Devereux, Stephen; Buggins, Andrea G S

    2016-07-28

    Several lines of evidence suggest that homing of tumor cells to lymphoid tissue contributes to disease progression in chronic lymphocytic leukemia (CLL). Here, we demonstrate that lymph node (LN)-derived CLL cells possess a distinct phenotype, and exhibit enhanced capacity for T-cell activation and superior immune synapse formation when compared with paired peripheral blood (PB) samples. LN-derived CLL cells manifest a proliferative, CXCR4(dim)CD5(bright) phenotype compared with those in the PB and higher expression of T-cell activation molecules including CD80, CD86, and HLA-D-related (DR). In addition, LN-CLL cells have higher expression of α4β1 (CD49d) which, as well as being a co-stimulatory molecule, is required for CLL cells to undergo transendothelial migration (TEM) and enter the proliferation centers of the LNs. Using an in vitro system that models circulation and TEM, we showed that the small population of CLL cells that migrate are CXCR4(dim)CD5(bright) with higher CD49d, CD80, CD86, and HLA-DR compared with those that remain circulating; a phenotype strikingly similar to LN-derived CLL cells. Furthermore, sorted CD49d(hi) CLL cells showed an enhanced capacity to activate T cells compared with CD49d(lo) subpopulations from the same patient. Thus, although PB-CLL cells have a reduced capacity to form immune synapses and activate CD4(+) T cells, this was not the case for LN-CLL cells or those with the propensity to undergo TEM. Taken together, our study suggests that CLL cell immunologic function is not only modulated by microenvironmental interactions but is also a feature of a subpopulation of PB-CLL cells that are primed for lymphoid tissue homing and interaction with T cells. © 2016 by The American Society of Hematology.

  13. Significant Differences in Antigen-induced Transendothelial Migration of Human CD8 and CD4 T Effector Memory Cells

    PubMed Central

    Manes, Thomas D.; Pober, Jordan S.

    2016-01-01

    Objective Circulating human T effector memory cell (TEM) recognition of non-self MHC molecules on allograft endothelial cells (EC) can initiate graft rejection despite elimination of professional antigen presenting cells necessary for naïve T cell activation. Our prior studies of CD4 TEM have established that engagement of the T cell receptor (TCR) not only activates T cells but also triggers transendothelial migration (TEM) by a process that is distinct from that induced by activating chemokine receptors (CR) on T cells, being slower, requiring microtubule organizing center (MTOC)-directed cytolytic granule polarization to and release from the leading edge of the T cell, and requiring engagement of proteins of the EC lateral border recycling compartment (LBRC). While CD4 TEM may contribute to acute allograft rejection, the primary effectors are alloreactive CD8 TEM. Whether and how TCR engagement affects TEM of human CD8 TEM is unknown. Approach and Results We modeled TEM of CD8 TEM across cultured human microvascular EC engineered to present superantigen under conditions of venular shear stress in vitro in a flow chamber. Here we report that TCR engagement can also induce TEM of this population that similarly differs from CR-driven TEM with regard to kinetics, morphological manifestations, and MTOC dynamics as with CD4 TEM. However, CD8 TEM do not require either cytolytic granule release or interactions with proteins of the LBRC. Conclusions These results imply that therapeutic strategies designed to inhibit TCR-driven recruitment based on targeting granule release or components of the LBRC will not affect CD8 TEM and are unlikely to block acute rejection in the clinic. PMID:27444200

  14. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    PubMed

    Botti, Gerardo; Fratangelo, Federica; Cerrone, Margherita; Liguori, Giuseppina; Cantile, Monica; Anniciello, Anna Maria; Scala, Stefania; D'Alterio, Crescenzo; Trimarco, Chiara; Ianaro, Angela; Cirino, Giuseppe; Caracò, Corrado; Colombino, Maria; Palmieri, Giuseppe; Pepe, Stefano; Ascierto, Paolo Antonio; Sabbatino, Francesco; Scognamiglio, Giosuè

    2017-02-23

    The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAF(V600E) A375 and NRAS(Q61R) SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. BRAF(V600E/V600K) and NRAS(Q61R/Q61L) were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAF(V600E) A375 and NRAS(Q61R) SK-MEL-2 melanoma cell lines. COX-2 expression

  15. UCH-L1 in DLBCL: marker or target?

    PubMed

    Pagano, Joseph S; Shackelford, Julia

    2016-03-24

    In this issue of Blood, Bedekovics et al have demonstrated that a multifunctional molecule of the ubiquitin system ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced in diffuse large B-cell lymphomas (DLBCLs), and that levels of this molecule are higher in germinal center (GC) B-cell DLBCL (GCB-DLBCL) compared with activated B-cell DLBCL (ABC-DLBCL) and predict poor outcomes.

  16. Mitogen-activated protein kinase modulates ethanol inhibition of cell adhesion mediated by the L1 neural cell adhesion molecule

    PubMed Central

    Dou, Xiaowei; Wilkemeyer, Michael F.; Menkari, Carrie E.; Parnell, Scott E.; Sulik, Kathleen K.; Charness, Michael E.

    2013-01-01

    There is a genetic contribution to fetal alcohol spectrum disorders (FASD), but the identification of candidate genes has been elusive. Ethanol may cause FASD in part by decreasing the adhesion of the developmentally critical L1 cell adhesion molecule through interactions with an alcohol binding pocket on the extracellular domain. Pharmacologic inhibition or genetic knockdown of ERK2 did not alter L1 adhesion, but markedly decreased ethanol inhibition of L1 adhesion in NIH/3T3 cells and NG108-15 cells. Likewise, leucine replacement of S1248, an ERK2 substrate on the L1 cytoplasmic domain, did not decrease L1 adhesion, but abolished ethanol inhibition of L1 adhesion. Stable transfection of NIH/3T3 cells with human L1 resulted in clonal cell lines in which L1 adhesion was consistently sensitive or insensitive to ethanol for more than a decade. ERK2 activity and S1248 phosphorylation were greater in ethanol-sensitive NIH/3T3 clonal cell lines than in their ethanol-insensitive counterparts. Ethanol-insensitive cells became ethanol sensitive after increasing ERK2 activity by transfection with a constitutively active MAP kinase kinase 1. Finally, embryos from two substrains of C57BL mice that differ in susceptibility to ethanol teratogenesis showed corresponding differences in MAPK activity. Our data suggest that ERK2 phosphorylation of S1248 modulates ethanol inhibition of L1 adhesion by inside-out signaling and that differential regulation of ERK2 signaling might contribute to genetic susceptibility to FASD. Moreover, identification of a specific locus that regulates ethanol sensitivity, but not L1 function, might facilitate the rational design of drugs that block ethanol neurotoxicity. PMID:23431142

  17. CLOCK promotes 3T3-L1 cell proliferation via Wnt signaling.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Xu, Lirong; Yuan, Gongsheng; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Lu, Chao; Qian, Ruizhe

    2016-07-01

    Circadian genes control most of the physiological functions including cell cycle. Cell proliferation is a critical factor in the differentiation of progenitor cells. However, the role of Clock gene in the regulation of cell cycle via wingless-type (Wnt) pathway and the relationship between Clock and adipogenesis are unclear. We found that the circadian locomotor output cycles kaput (Clock) regulated the proliferation and the adipogenesis of 3T3-L1 preadipocytes. We found that Clock attenuation inhibited the viability of 3T3-L1 preadipocytes in the cell counting kit 8. The expression of c-Myc and Cyclin D1 decreased dramatically in 3T3-L1 when Clock was silenced with short interfering RNA and was also decreased in fat tissue and adipose tissue-derived stem cells of Clock(Δ19) mice. Clock directly controls the expression of the components of Wnt signal transduction pathway, which was verified by serum shock, chromatin immunoprecipitation, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, IWR-1, a Wnt signal pathway inhibitor, inhibited the cell cycle promotion by CLOCK, which was detected by cell viability assay, flow cytometry, and qRT-PCR. Therefore, CLOCK transcription control of Wnt signaling promotes cell cycle progression in 3T3-L1 preadipocytes. Clock inhibited the adipogenesis on day 2 in 3T3-L1 cells via Oil Red O staining and qRT-PCR detection and probably related to cellular differentiation. These data provide evidence that the circadian gene Clock regulates the proliferation of preadipocytes and affects adipogenesis. © 2016 IUBMB Life, 68(7):557-568, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  18. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  19. Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions

    NASA Astrophysics Data System (ADS)

    Schulz, Florian; Lutz, David; Rusche, Norman; Bastús, Neus G.; Stieben, Martin; Höltig, Michael; Grüner, Florian; Weller, Horst; Schachner, Melitta; Vossmeyer, Tobias; Loers, Gabriele

    2013-10-01

    The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1 sequence of the third fibronectin type III domain of murine L1 was identified and conjugated to gold nanoparticles (AuNPs) to obtain constructs that interact homophilically with the extracellular domain of L1 and trigger the cognate beneficial L1-mediated functions. Covalent conjugation was achieved by reacting mixtures of two cysteine-terminated forms of this L1 peptide and thiolated poly(ethylene) glycol (PEG) ligands (~2.1 kDa) with citrate stabilized AuNPs of two different sizes (~14 and 40 nm in diameter). By varying the ratio of the L1 peptide-PEG mixtures, an optimized layer composition was achieved that resulted in the expected homophilic interaction of the AuNPs. These AuNPs were stable as tested over a time period of 30 days in artificial cerebrospinal fluid and interacted with the extracellular domain of L1 on neurons and Schwann cells, as could be shown by using cells from wild-type and L1-deficient mice. In vitro, the L1-derivatized particles promoted neurite outgrowth and survival of neurons from the central and peripheral nervous system and stimulated Schwann cell process formation and proliferation. These observations raise the hope that, in combination with other therapeutic approaches, L1 peptide-functionalized AuNPs may become a useful tool to ameliorate the deficits resulting from acute and chronic injuries of the mammalian nervous system.The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1

  20. The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition

    PubMed Central

    Servant, Geraldine; Streva, Vincent A.; Derbes, Rebecca S.; Wijetunge, Madushani I.; Neeland, Marc; White, Travis B.; Belancio, Victoria P.; Roy-Engel, Astrid M.; Deininger, Prescott L.

    2017-01-01

    Long interspersed elements 1 (L1) are active mobile elements that constitute almost 17% of the human genome. They amplify through a “copy-and-paste” mechanism termed retrotransposition, and de novo insertions related to these elements have been reported to cause 0.2% of genetic diseases. Our previous data demonstrated that the endonuclease complex ERCC1-XPF, which cleaves a 3′ DNA flap structure, limits L1 retrotransposition. Although the ERCC1-XPF endonuclease participates in several different DNA repair pathways, such as single-strand annealing, or in telomere maintenance, its recruitment to DNA lesions is best characterized in the nucleotide excision repair (NER) pathway. To determine if the NER pathway prevents the insertion of retroelements in the genome, we monitored the retrotransposition efficiencies of engineered L1 elements in NER-deficient cells and in their complemented versions. Core proteins of the NER pathway, XPD and XPA, and the lesion binding protein, XPC, are involved in limiting L1 retrotransposition. In addition, sequence analysis of recovered de novo L1 inserts and their genomic locations in NER-deficient cells demonstrated the presence of abnormally large duplications at the site of insertion, suggesting that NER proteins may also play a role in the normal L1 insertion process. Here, we propose new functions for the NER pathway in the maintenance of genome integrity: limitation of insertional mutations caused by retrotransposons and the prevention of potentially mutagenic large genomic duplications at the site of retrotransposon insertion events. PMID:28049704

  1. The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition.

    PubMed

    Servant, Geraldine; Streva, Vincent A; Derbes, Rebecca S; Wijetunge, Madushani I; Neeland, Marc; White, Travis B; Belancio, Victoria P; Roy-Engel, Astrid M; Deininger, Prescott L

    2017-01-01

    Long interspersed elements 1 (L1) are active mobile elements that constitute almost 17% of the human genome. They amplify through a "copy-and-paste" mechanism termed retrotransposition, and de novo insertions related to these elements have been reported to cause 0.2% of genetic diseases. Our previous data demonstrated that the endonuclease complex ERCC1-XPF, which cleaves a 3' DNA flap structure, limits L1 retrotransposition. Although the ERCC1-XPF endonuclease participates in several different DNA repair pathways, such as single-strand annealing, or in telomere maintenance, its recruitment to DNA lesions is best characterized in the nucleotide excision repair (NER) pathway. To determine if the NER pathway prevents the insertion of retroelements in the genome, we monitored the retrotransposition efficiencies of engineered L1 elements in NER-deficient cells and in their complemented versions. Core proteins of the NER pathway, XPD and XPA, and the lesion binding protein, XPC, are involved in limiting L1 retrotransposition. In addition, sequence analysis of recovered de novo L1 inserts and their genomic locations in NER-deficient cells demonstrated the presence of abnormally large duplications at the site of insertion, suggesting that NER proteins may also play a role in the normal L1 insertion process. Here, we propose new functions for the NER pathway in the maintenance of genome integrity: limitation of insertional mutations caused by retrotransposons and the prevention of potentially mutagenic large genomic duplications at the site of retrotransposon insertion events. Copyright © 2017 Servant et al.

  2. L1-mediated colon cancer cell metastasis does not require changes in EMT and cancer stem cell markers.

    PubMed

    Gavert, Nancy; Vivanti, Alessia; Hazin, John; Brabletz, Thomas; Ben-Ze'ev, Avri

    2011-01-01

    Aberrant activation of Wnt/β-catenin signaling is common in most sporadic and inherited colorectal cancer (CRC) cells leading to elevated β-catenin/TCF transactivation. We previously identified the neural cell adhesion molecule L1 as a target gene of β-catenin/TCF in CRC cells. Forced expression of L1 confers increased cell motility, invasion, and tumorigenesis, and the induction of human CRC cell metastasis to the liver. In human CRC tissue, L1 is exclusively localized at the invasive front of such tumors in a subpopulation of cells displaying nuclear β-catenin. We determined whether L1 expression confers metastatic capacities by inducing an epithelial to mesenchymal transition (EMT) and whether L1 cosegregates with cancer stem cell (CSC) markers. We found that changes in L1 levels do not affect the organization or expression of E-cadherin in cell lines, or in invading CRC tissue cells, and no changes in other epithelial or mesenchymal markers were detected after L1 transfection. The introduction of major EMT regulators (Slug and Twist) into CRC cell lines reduced the levels of E-cadherin and induced fibronectin and vimentin, but unlike L1, Slug and Twist expression was insufficient for conferring metastasis. In CRC cells L1 did not specifically cosegregate with CSC markers including CD133, CD44, and EpCAM. L1-mediated metastasis required NF-κB signaling in cells harboring either high or low levels of endogenous E-cadherin. The results suggest that L1-mediated metastasis of CRC cells does not require changes in EMT and CSC markers and operates by activating NF-κβ signaling.

  3. PD-L1 Status in Refractory Lymphomas

    PubMed Central

    Ghosh, Nilanjan; Kimbrough, Jeffery; Bilalovic, Nurija; Bender, Ryan; Arguello, David; Veloso, Yvonne; Dizdarevic, Aida; Gatalica, Zoran

    2016-01-01

    Targeted immunotherapy based on PD-1/PD-L1 suppression has revolutionized the treatment of various solid tumors. A remarkable improvement has also been observed in the treatment of patients with refractory/relapsing classical Hodgkin lymphoma (cHL). We investigated PD-L1 status in a variety of treatment resistant lymphomas. Tumor samples from 78 patients with therapy resistant lymphomas were immunohistochemically (IHC) investigated for the expression of PD-L1 using two antibody clones (SP142 and SP263, Ventana). Thirteen PD-L1+ cases were further analyzed for gene copy number variations (CNV) by NGS and for PD-L1/JAK2/PD-L2 co-amplification using fluorescent in-situ hybridization assay (FISH). PD-L1 positivity (≥5% positive cancer cells, IHC) was present in 32/77 (42%) and 33/71 cases (46%) using SP142 and SP263 antibodies, respectively. Concordance between the two anti-PD-L1 clones was high with only three (4%) discrepant cases. The strongest and consistent (10/11 cases) expression was observed in cHL and primary mediastinal B-cell lymphomas (3/3). Diffuse large B-cell lymphomas (DLBCL) were frequently positive (13/26) irrespective of subtype. Follicular (1/8), peripheral T-cell (3/11) and mantle cell (1/8) lymphomas were rarely positive, while small lymphocytic lymphoma/CLL and marginal zone lymphomas were consistently negative (3/3). Co-amplification/CNVs of PD-L1/JAK2/PD-L2 were observed in 3 cases of DLBCL and cHL, respectively. Of note, all three cHL-amplified cases were positive by FISH, but not by NGS. Since only a fraction of the IHC positive lymphoma cases were positive by FISH and NGS assays, other mechanisms are involved in PD-L1 upregulation, especially in DLBCL. FISH assay may be more suitable than NGS assay for determination of PD-L1 alterations in cHL. PMID:27861596

  4. Full L1-regularized Traction Force Microscopy over whole cells.

    PubMed

    Suñé-Auñón, Alejandro; Jorge-Peñas, Alvaro; Aguilar-Cuenca, Rocío; Vicente-Manzanares, Miguel; Van Oosterwyck, Hans; Muñoz-Barrutia, Arrate

    2017-08-10

    Traction Force Microscopy (TFM) is a widespread technique to estimate the tractions that cells exert on the surrounding substrate. To recover the tractions, it is necessary to solve an inverse problem, which is ill-posed and needs regularization to make the solution stable. The typical regularization scheme is given by the minimization of a cost functional, which is divided in two terms: the error present in the data or data fidelity term; and the regularization or penalty term. The classical approach is to use zero-order Tikhonov or L2-regularization, which uses the L2-norm for both terms in the cost function. Recently, some studies have demonstrated an improved performance using L1-regularization (L1-norm in the penalty term) related to an increase in the spatial resolution and sensitivity of the recovered traction field. In this manuscript, we present a comparison between the previous two regularization schemes (relying in the L2-norm for the data fidelity term) and the full L1-regularization (using the L1-norm for both terms in the cost function) for synthetic and real data. Our results reveal that L1-regularizations give an improved spatial resolution (more important for full L1-regularization) and a reduction in the background noise with respect to the classical zero-order Tikhonov regularization. In addition, we present an approximation, which makes feasible the recovery of cellular tractions over whole cells on typical full-size microscope images when working in the spatial domain. The proposed full L1-regularization improves the sensitivity to recover small stress footprints. Moreover, the proposed method has been validated to work on full-field microscopy images of real cells, what certainly demonstrates it is a promising tool for biological applications.

  5. EFFECT OF UNCOUPLING PROTEIN–1 EXPRESSION ON 3T3-L1 ADIPOCYTE GENE EXPRESSION

    PubMed Central

    Senocak, Fatih S.; Si, Yaguang; Moya, Colby; Russell, William K.; Russell, David H.; Lee, Kyongbum; Jayaraman, Arul

    2008-01-01

    The mitochondrial respiratory uncoupling protein 1 (UCP1) partially uncouples substrate oxidation and oxidative phosphorylation to promote the dissipation of cellular biochemical energy as heat in brown adipose tissue. We have recently shown that expression of UCP1 in 3T3-L1 white adipocytes reduces the accumulation of triglycerides. Here, we investigated the molecular basis underlying UCP1 expression in 3T3-L1 adipocytes. Gene expression data show that forced UCP1 expression down-regulated several energy metabolism pathways; but ATP levels were constant. A metabolic flux analysis model was used to reflect the gene expression changes onto metabolic processes and concordance was observed in the down-regulation of energy consuming pathways. Our data suggest that adipocytes respond to long-term mitochondrial uncoupling by minimizing ATP utilization. PMID:18061577

  6. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier.

    PubMed

    Mooren, Olivia L; Li, Jinmei; Nawas, Julie; Cooper, John A

    2014-12-15

    The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells.

  7. 6-gingerol inhibits rosiglitazone-induced adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Tzeng, Thing-Fong; Chang, Chia Ju; Liu, I-Min

    2014-02-01

    We investigated the effects of 6-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) on the inhibition of rosiglitazone (RGZ)-induced adipogenesis in 3T3-L1 cells. The morphological changes were photographed based on staining lipid accumulation by Oil-Red O in RGZ (1 µmol/l)-treated 3T3-L1 cells without or with various concentrations of 6-gingerol on differentiation day 8. Quantitation of triglycerides content was performed in cells on day 8 after differentiation induction. Differentiated cells were lysed to detect mRNA and protein levels of adipocyte-specific transcription factors by real-time reverse transcription-polymerase chain reaction and Western blot analysis, respectively. 6-gingerol (50 µmol/l) effectively suppressed oil droplet accumulation and reduced the sizes of the droplets in RGZ-induced adipocyte differentiation in 3T3-L1 cells. The triglyceride accumulation induced by RGZ in differentiated 3T3-L1 cells was also reduced by 6-gingerol (50 µmol/l). Treatment of differentiated 3T3-L1 cells with 6-gingerol (50 µmol/l) antagonized RGZ-induced gene expression of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein α. Additionally, the increased levels of mRNA and protein in adipocyte-specific fatty acid binding protein 4 and fatty acid synthase induced by RGZ in 3T3-L1 cells were decreased upon treatment with 6-gingerol. Our data suggests that 6-gingerol may be beneficial in obesity, by reducing adipogenesis partly through the down-regulating PPARγ activity. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain.

    PubMed

    Nottet, H S; Persidsky, Y; Sasseville, V G; Nukuna, A N; Bock, P; Zhai, Q H; Sharer, L R; McComb, R D; Swindells, S; Soderland, C; Gendelman, H E

    1996-02-01

    HIV-1 penetration of the brain is a pivotal event in the neuropathogenesis of AIDS-associated dementia. The establishment of productive viral replication or up-regulation of adhesion molecule expression on brain microvascular endothelial cells (BMVEC) could permit entry of HIV into the central nervous system. To investigate the contribution of both, we inoculated primary human BMVEC with high titer macrophage-tropic HIV-1 or cocultured them with virus-infected monocytes. In both instances, BMVEC failed to demonstrate productive viral replication. Cell to cell contact between monocytes and microvascular endothelium resulted in E-selectin expression on BMVEC. BMVEC. cocultured with LPS-activated HIV-infected monocytes expressed even higher levels of E-selectin and vascular cell adhesion molecule-1 (VCAM-1). Transwell assays supported a role of soluble factors, from virus-infected monocytes, for the induction of adhesion molecules on BMVEC. To verify the in vivo relevance of these findings, levels of adhesion molecules were compared with those of proinflammatory cytokines and HIV-1 gene products in brain tissue of AIDS patients with or without encephalitis and HIV-seronegative controls. E-Selectin, and to a lesser degree VCAM-1, paralleled the levels of HIV-1 gene products and proinflammatory cytokines in brain tissue of subjects with encephalitis. Most importantly, an association between macrophage infiltration and increased endothelial cell adhesion molecules was observed in encephalitic brains. Monocyte binding to encephalitic brain tissue was blocked with Abs to VCAM-1 and E-selectin. These data, taken together, suggest that HIV entry into brain is, in part, a consequence of the ability of virus-infected and immune-activated monocytes to induce adhesion molecules on brain endothelium.

  9. Myeloid-specific deletion of tumor suppressor PTEN augments neutrophil transendothelial migration during inflammation.

    PubMed

    Sarraj, Bara; Massberg, Steffen; Li, Yitang; Kasorn, Anongnard; Subramanian, Kulandayan; Loison, Fabien; Silberstein, Leslie E; von Andrian, Ulrich; Luo, Hongbo R

    2009-06-01

    Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) is a second messenger that is involved in a number of cell activities including cell growth, proliferation, and motility. PIP(3) is produced by PI3K and regulated by PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP lipid phosphatases. Evidence from our experiments shows that enhanced PIP(3) production results in elevated neutrophil recruitment under inflammatory conditions. However, the mechanism of this elevation is not well understood. We used intravital video microscopy to investigate neutrophil recruitment in the cremaster venules of wild-type and PTEN knockout (KO) mice. Neutrophil transmigration was augmented in PTEN KO mice 4 h after TNF-alpha intrascrotal injection. PTEN KO neutrophils also showed significantly enhanced transmigration 2 h after MIP-2 intrascrotal injection, an effect that dramatically decreased when PI3K or Src kinase inhibitor treatments preceded MIP-2 stimulation. Similarly, fMLP superfusion of the cremaster muscle lead to enhanced emigration in PTEN KO mice. The observed elevation in neutrophil emigration was likely caused by increased speed of crawling, crossing the venular wall, and migrating through the muscular tissue in PTEN KO mice because the effect of PTEN depletion on neutrophil rolling or adhesion was minimal. Interestingly, chemoattractant-induced release of gelatinase and elastase was also elevated in PTEN null neutrophils, providing a potential mechanism for the enhanced neutrophil migration in the PTEN KO mice. Collectively, these results demonstrate that PTEN deletion in neutrophils enhances their invasivity and recruitment to inflamed sites more likely by raising the cell physical capability to cross the vascular and tissue barriers.

  10. Compressed-sensed-domain L1-PCA video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Pados, Dimitris A.

    2015-05-01

    We consider the problem of foreground and background extraction from compressed-sensed (CS) surveillance video. We propose, for the first time in the literature, a principal component analysis (PCA) approach that computes the low-rank subspace of the background scene directly in the CS domain. Rather than computing the conventional L2-norm-based principal components, which are simply the dominant left singular vectors of the CS measurement matrix, we compute the principal components under an L1-norm maximization criterion. The background scene is then obtained by projecting the CS measurement vector onto the L1 principal components followed by total-variation (TV) minimization image recovery. The proposed L1-norm procedure directly carries out low-rank background representation without reconstructing the video sequence and, at the same time, exhibits significant robustness against outliers in CS measurements compared to L2-norm PCA.

  11. ApolipoproteinL1 is expressed in papillary thyroid carcinomas.

    PubMed

    Chidiac, Mounia; Fayyad-Kazan, Mohammad; Daher, Jalil; Poelvoorde, Philippe; Bar, Isabelle; Maenhaut, Carine; Delrée, Paul; Badran, Bassam; Vanhamme, Luc

    2016-07-01

    The apolipoprotein L (apoL) family has not yet been ascribed any definite patho-physiological function although the conserved BH3 protein domain suggests a role in programmed cell death. As repression of the regular apoptotic program is considered a hallmark of tumor progression, we investigated apoL expression in cancer. We show that the levels of one member of the family, apolipoprotein L1 (apoL1) is higher in papillary thyroid carcinoma compared to normal tissue. A combination of qRTPCR, immunohistochemistry and in situ hybridization allowed us to ascribe this increase to endogenous overexpression in carcinoma cells. Whether apoL1 plays an instrumental role in refraining cell death is the subject of ongoing molecular biology experiments. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Apolipoprotein L1 and kidney disease in African Americans

    PubMed Central

    Friedman, David J.; Pollak, Martin R.

    2016-01-01

    Genetic variants in the Apolipoprotein L1 (APOL1) gene cause high rates of kidney disease in African Americans. These variants, found only in individuals with recent African ancestry, confer enhanced innate immunity against African trypanosomes. Though they are among the most powerful disease-causing common variants discovered to date, we are just beginning to understand how they promote kidney injury. Since APOL1 is only present in a few primate species, much of our current knowledge has come from natural experiments in humans and in vitro studies while awaiting the development of transgenic animal models. Understanding more about the function of ApoL1 and how the high-risk variants behave differently from other ApoL1 molecules is a high priority in kidney disease research. PMID:26947522

  13. PD-L1 expression in EBV-negative diffuse large B-cell lymphoma: clinicopathologic features and prognostic implications

    PubMed Central

    Xing, Wei; Dresser, Karen; Zhang, Rui; Evens, Andrew M.; Yu, Hongbo; Woda, Bruce A.; Chen, Benjamin J.

    2016-01-01

    Programmed cell death ligand 1 (PD-L1) is a cell surface glycoprotein that regulates the cellular immune response and serves as a targetable immune checkpoint molecule. PD-L1 is expressed on tumor cells and the immune microenvironment of several human malignancies, including a subset of aggressive lymphomas. We sought to investigate further the clinical and pathologic features of EBV-negative diffuse large B-cell lymphoma (DLBCL) cases that express PD-L1. Immunohistochemical staining using an anti-PD-L1 monoclonal antibody was performed on DLBCL cases from 86 patients. These patients received standard chemotherapy treatment and were followed for up to 175 months. Overall, 14 cases (16%) were considered positive for PD-L1 in tumor cells. In comparison with PD-L1 negative cases, PD-L1 positive cases had a higher rate of non-GCB type (71% vs. 30%, P=0.0060), and higher Ann Arbor stage (II-IV) (100% vs. 73%, P=0.0327). No significant differences were seen in the immunohistochemical expression of BCL2, MYC, or Ki67. Patients with tumors expressing PD-L1 demonstrated inferior overall survival (OS) upon long term follow up (P=0.0447). Both age/sex-adjusted and multivariate analyses identified PD-L1 as an independent predictor for OS (P=0.0101 and P=0.0424). There was no significant difference, however, in terms of remission rates after first treatment, relapse rates, and progression free survival between the groups. Identification of DLBCL cases that express PD-L1 may serve to select a subset of patients that could further benefit from targeted immunotherapy. PMID:27527850

  14. Oxidative stress inhibits adhesion and transendothelial migration, and induces apoptosis and senescence of induced pluripotent stem cells.

    PubMed

    Wu, Yi; Zhang, Xueqing; Kang, Xueling; Li, Ning; Wang, Rong; Hu, Tiantian; Xiang, Meng; Wang, Xinhong; Yuan, Wenjun; Chen, Alex; Meng, Dan; Chen, Sifeng

    2013-09-01

    Oxidative stress caused by cellular accumulation of reactive oxygen species (ROS) is a major contributor to disease and cell death. However, how induced pluripotent stem cells (iPSC) respond to different levels of oxidative stress is largely unknown. Here, we investigated the effect of H2 O2 -induced oxidative stress on iPSC function in vitro. Mouse iPSC were treated with H2 O2 (25-100 μmol/L). IPSC adhesion, migration, viability, apoptosis and senescence were analysed. Expression of adhesion-related genes, stress defence genes, and osteoblast- and adipocyte-associated genes were determined by reverse transcription polymerase chain reaction. The present study found that H2 O2 (25-100 μmol/L) decreased iPSC adhesion to matrix proteins and endothelial cells, and downregulated gene expression levels of adhesion-related molecules, such as integrin alpha 7, cadherin 1 and 5, melanoma cell adhesion molecule, vascular cell adhesion molecule 1, and monocyte chemoattractant protein-1. H2 O2 (100 μmol/L) decreased iPSC viability and inhibited the capacity of iPSC migration and transendothelial migration. iPSC were sensitive to H2 O2 -induced G2/M arrest, senescence and apoptosis when exposed to H2 O2 at concentrations above 25 μmol/L. H2 O2 increased the expression of stress defence genes, including catalase, cytochrome B alpha, lactoperoxidase and thioredoxin domain containing 2. H2 O2 upregulated the expression of osteoblast- and adipocyte-associated genes in iPSC during their differentiation; however, short-term H2 O2 -induced oxidative stress did not affect the protein expression of the pluripotency markers, octamer-binding transcription factor 4 and sex-determining region Y-box 2. The present results suggest that iPSC are sensitive to H2 O2 toxicity, and inhibition of oxidative stress might be a strategy for improving their functions.

  15. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production.

    PubMed

    Saitoh, Tatsuya; Fujita, Naonobu; Jang, Myoung Ho; Uematsu, Satoshi; Yang, Bo-Gie; Satoh, Takashi; Omori, Hiroko; Noda, Takeshi; Yamamoto, Naoki; Komatsu, Masaaki; Tanaka, Keiji; Kawai, Taro; Tsujimura, Tohru; Takeuchi, Osamu; Yoshimori, Tamotsu; Akira, Shizuo

    2008-11-13

    Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.

  16. CHI3L1 — EDRN Public Portal

    Cancer.gov

    CHI3L1, also known as chitinase, a secreted protein, is a carbohydrate-binding lectin with a preference for chitin. It may play a role in defense against pathogens, or in tissue remodeling. It may also play an important role in the capacity of cells to respond to and cope with changes in their environment. CHI3L1 is present in activated macrophages, articular chondrocytes, synovial cells as well as in liver. It is undetectable in muscle tissues, lung, pancreas, mononuclear cells, or fibroblasts.

  17. Cloning and mapping of murine Nfe2L1

    SciTech Connect

    McKie, J.; Johnstone, K.; Scambler, P.

    1995-02-10

    The murine homologue of the human NFE2L1 basic leucine-zipper gene was isolated from an early embryo library. The deduced amino acid sequence shows 97% identity between the two proteins. Significant sequence similarity is also seen with the p45 subunit of NF-E2 and with the Drosophila CNC protein. Murine Nfe2l1 maps to chromosome 11DE with similar sequences at 7D1-7F1 and 2E4-2G. 14 refs., 2 figs.

  18. The Total Variation Regularized L1 Model for Multiscale Decomposition

    DTIC Science & Technology

    2006-01-01

    measure theory approach, and Vixie and Esedoglu’s [43] work on characterizing the solutions of (1.2) below. In this paper we extend the existing...no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...2r . THE TV-L1 MODEL FOR MULTISCALE DECOMPOSITION 5 In general the minimizer of the TV-L1 is nonunique . In the above disk example, if λ = 2/r

  19. Differentiation-specific decrease in heat shock protein synthesis in 3T3-L1 cells

    SciTech Connect

    Sorhage, F.; Kim, J.; Liu, A.Y.C.; Chen, K.Y.

    1986-05-01

    The regulation of synthesis of heat shock proteins (HSPs) in 3T3-L1 preadipocytes (fibroblasts) and adipocytes was examined using the techniques of pulse labeling with (/sup 35/S)methionine followed by analysis of the pattern and amount of radioactivity incorporated by SDS-polyacrylamide gel electrophoresis and autoradiography. Exposure of the 3T3-L1 preadipocyte cultures either to elevated temperature (42..mu..C) or to the amino acid analogue canavanine (400 ..mu..g/ml), markedly induced the synthesis of six major HSPs with apparent molecular weights of 105,000, 89,000, 74,000, 72,000, 50,000, and 42,000. The time course of induction of the HSPs by canavanine was significantly delayed as compared to that of heat shock; maximal increase in synthesis of the HSPs was observed at 3-7 hrs after incubation at 42..mu..c and at 22-24 hrs after incubation with 400 ..mu..g/ml canavanine. The magnitude of induction of HSP in the differentiated adipocytes was significantly reduced as compared to that of the undifferentiated fibroblast cells. The reduced expression of HSPs in 3T3-L1 adipocytes appears to be related to the terminal adipogenic differentiation process. The phenomenon was not observed in the control 3T3-C2 cells nor in a transformed variant of the 3T3-L1 cells.

  20. Monoallelic and biallelic CREB3L1 variant causes mild and severe osteogenesis imperfecta, respectively.

    PubMed

    Keller, Rachel B; Tran, Thao T; Pyott, Shawna M; Pepin, Melanie G; Savarirayan, Ravi; McGillivray, George; Nickerson, Deborah A; Bamshad, Michael J; Byers, Peter H

    2017-08-17

    PurposeOsteogenesis imperfecta (OI) is a heritable skeletal dysplasia. Dominant pathogenic variants in COL1A1 and COL1A2 explain the majority of OI cases. At least 15 additional genes have been identified, but those still do not account for all OI phenotypes that present. We sought the genetic cause of mild and lethal OI phenotypes in an unsolved family.MethodsWe performed exome sequencing on seven members of the family, both affected and unaffected.ResultsWe identified a variant in cyclic AMP responsive element binding protein 3-like 1 (CREB3L1) in a consanguineous family. The variant caused a prenatal/perinatal lethal OI in homozygotes, similar to that seen in OI type II as a result of mutations in type I collagen genes, and a mild phenotype (fractures, blue sclerae) in multiple heterozygous family members. CREB3L1 encodes old astrocyte specifically induced substance (OASIS), an endoplasmic reticulum stress transducer. The variant disrupts a DNA-binding site and prevents OASIS from acting on its transcriptional targets including SEC24D, which encodes a component of the coat protein II complex.ConclusionThis report confirms that CREB3L1 is an OI-related gene and suggests the pathogenic mechanism of CREB3L1-associated OI involves the altered regulation of proteins involved in cellular secretion.GENETICS in MEDICINE advance online publication, 17 August 2017; doi:10.1038/gim.2017.115.

  1. Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4

    PubMed Central

    Kim, Hyun Jung; Magesh, Venkataraman; Lee, Jae-Jin; Kim, Sun; Knaus, Ulla G.; Lee, Kong-Joo

    2015-01-01

    This study explored the role of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in the production of ROS and tumor invasion. UCH-L1 was found to increase cellular ROS levels and promote cell invasion. Silencing UCH-L1, as well as inhibition of H2O2 generation by catalase or by DPI, a NOX inhibitor, suppressed the migration potential of B16F10 cells, indicating that UCH-L1 promotes cell migration by up-regulating H2O2 generation. Silencing NOX4, which generates H2O2, with siRNA eliminated the effect of UCH-L1 on cell migration. On the other hand, NOX4 overexpressed in HeLa cells happens to be ubiquitinated, and NOX4 following deubiquitination by UCH-L1, restored H2O2-generating activity. These in vitro findings are consistent with the results obtained in vivo with catalase (−/−) C57BL/6J mice. When H2O2 and UCH-L1 levels were independently varied in these animals, the former by infecting with H2O2-scavenging adenovirus-catalase, and the latter by overexpressing or silencing UCH-L1, pulmonary metastasis of B16F10 cells overexpressing UCH-L1 increased significantly in catalase (−/−) mice. In contrast, invasion did not increase when UCH-L1 was silenced in the B16F10 cells. These findings indicate that H2O2 levels regulated by UCH-L1 are necessary for cell invasion to occur and demonstrate that UCH-L1 promotes cell invasion by up-regulating H2O2 via deubiquitination of NOX4. PMID:25915537

  2. Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4.

    PubMed

    Kim, Hyun Jung; Magesh, Venkataraman; Lee, Jae-Jin; Kim, Sun; Knaus, Ulla G; Lee, Kong-Joo

    2015-06-30

    This study explored the role of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in the production of ROS and tumor invasion. UCH-L1 was found to increase cellular ROS levels and promote cell invasion. Silencing UCH-L1, as well as inhibition of H2O2 generation by catalase or by DPI, a NOX inhibitor, suppressed the migration potential of B16F10 cells, indicating that UCH-L1 promotes cell migration by up-regulating H2O2 generation. Silencing NOX4, which generates H2O2, with siRNA eliminated the effect of UCH-L1 on cell migration. On the other hand, NOX4 overexpressed in HeLa cells happens to be ubiquitinated, and NOX4 following deubiquitination by UCH-L1, restored H2O2-generating activity. These in vitro findings are consistent with the results obtained in vivo with catalase (-/-) C57BL/6J mice. When H2O2 and UCH-L1 levels were independently varied in these animals, the former by infecting with H2O2-scavenging adenovirus-catalase, and the latter by overexpressing or silencing UCH-L1, pulmonary metastasis of B16F10 cells overexpressing UCH-L1 increased significantly in catalase (-/-) mice. In contrast, invasion did not increase when UCH-L1 was silenced in the B16F10 cells. These findings indicate that H2O2 levels regulated by UCH-L1 are necessary for cell invasion to occur and demonstrate that UCH-L1 promotes cell invasion by up-regulating H2O2 via deubiquitination of NOX4.

  3. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade

    PubMed Central

    Taube, Janis M.; Young, Geoffrey D.; McMiller, Tracee L.; Chen, Shuming; Salas, January T.; Pritchard, Theresa S.; Xu, Haiying; Meeker, Alan K.; Fan, Jinshui; Cheadle, Chris; Berger, Alan E.; Pardoll, Drew M.; Topalian, Suzanne L.

    2015-01-01

    Purpose Blocking the immunosuppressive PD-1/PD-L1 pathway has anti-tumor activity in multiple cancer types, and PD-L1 expression on tumor cells and infiltrating myeloid cells correlates with the likelihood of response. We previously found that IFNG (interferon-gamma) was over-expressed by TILs in PD-L1+ vs. PD-L1(−) melanomas, creating adaptive immune resistance by promoting PD-L1 display. The current study was undertaken to identify additional factors in the PD-L1+ melanoma microenvironment coordinately contributing to immunosuppression. Experimental design Archived, formalin-fixed paraffin-embedded melanoma specimens were assessed for PD-L1 protein expression at the tumor cell surface with immunohistochemistry (IHC). Whole genome expression analysis, quantitative (q)RT-PCR, immunohistochemistry, and functional in vitro validation studies were employed to assess factors differentially expressed in PD-L1+ versus PD-L1(−) melanomas. Results Functional annotation clustering based on whole genome expression profiling revealed pathways up-regulated in PD-L1+ melanomas, involving immune cell activation, inflammation, and antigen processing and presentation. Analysis by qRT-PCR demonstrated over-expression of functionally related genes in PD-L1+ melanomas, involved in CD8+ T cell activation (CD8A, IFNG, PRF1, CCL5), antigen presentation (CD163, TLR3, CXCL1, LYZ), and immunosuppression [PDCD1 (PD-1), CD274(PD-L