Sample records for l2 libration orbit

  1. Orbit Determination Error Analysis Results for the Triana Sun-Earth L2 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Marr, G.

    2003-01-01

    Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination error analysis results are presented for all phases of the Triana Sun-Earth L1 libration point mission and for the science data collection phase of a future Sun-Earth L2 libration point mission. The Triana spacecraft was nominally to be released by the Space Shuttle in a low Earth orbit, and this analysis focuses on that scenario. From the release orbit a transfer trajectory insertion (TTI) maneuver performed using a solid stage would increase the velocity be approximately 3.1 km/sec sending Triana on a direct trajectory to its mission orbit. The Triana mission orbit is a Sun-Earth L1 Lissajous orbit with a Sun-Earth-vehicle (SEV) angle between 4.0 and 15.0 degrees, which would be achieved after a Lissajous orbit insertion (LOI) maneuver at approximately launch plus 6 months. Because Triana was to be launched by the Space Shuttle, TTI could potentially occur over a 16 orbit range from low Earth orbit. This analysis was performed assuming TTI was performed from a low Earth orbit with an inclination of 28.5 degrees and assuming support from a combination of three Deep Space Network (DSN) stations, Goldstone, Canberra, and Madrid and four commercial Universal Space Network (USN) stations, Alaska, Hawaii, Perth, and Santiago. These ground stations would provide coherent two-way range and range rate tracking data usable for orbit determination. Larger range and range rate errors were assumed for the USN stations. Nominally, DSN support would end at TTI+144 hours assuming there were no USN problems. Post-TTI coverage for a range of TTI longitudes for a given nominal trajectory case were analyzed. The orbit determination error analysis after the first correction maneuver would be generally applicable to any libration point mission utilizing a direct trajectory.

  2. Orbit Determination (OD) Error Analysis Results for the Triana Sun-Earth L1 Libration Point Mission and for the Fourier Kelvin Stellar Interferometer (FKSI) Sun-Earth L2 Libration Point Mission Concept

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.

  3. ARTEMIS: The First Mission to the Lunar Libration Orbits

    NASA Technical Reports Server (NTRS)

    Woodward, Mark; Folta, David; Woodfork, Dennis

    2009-01-01

    The ARTEMIS mission will be the first to navigate to and perform stationkeeping operations around the Earth-Moon L1 and L2 Lagrangian points. The NASA Goddard Space Flight Center (GSFC) has previous mission experience flying in the Sun-Earth L1 (SOHO, ACE, WIND, ISEE-3) and L2 regimes (WMAP) and have maintained these spacecraft in libration point orbits by performing regular orbit stationkeeping maneuvers. The ARTEMIS mission will build on these experiences, but stationkeeping in Earth-Moon libration orbits presents new challenges since the libration point orbit period is on the order of two weeks rather than six months. As a result, stationkeeping maneuvers to maintain the Lissajous orbit will need to be performed frequently, and the orbit determination solutions between maneuvers will need to be quite accurate. The ARTEMIS mission is a collaborative effort between NASA GSFC, the University of California at Berkeley (UCB), and the Jet Propulsion Laboratory (JPL). The ARTEMIS mission is part of the THEMIS extended mission. ARTEMIS comprises two of the five THEMIS spacecraft that will be maneuvered from near-Earth orbits into lunar libration orbits using a sequence of designed orbital maneuvers and Moon & Earth gravity assists. In July 2009, a series of orbit-raising maneuvers began the proper orbit phasing of the two spacecraft for the first lunar flybys. Over subsequent months, additional propulsive maneuvers and gravity assists will be performed to move each spacecraft though the Sun-Earth weak stability regions and eventually into Earth-Moon libration point orbits. We will present the overall orbit designs for the two ARTEMIS spacecraft and provide analysis results of the 3/4-body dynamics, and the sensitivities of the trajectory design to both · maneuver errors and orbit determination errors. We will present results from the. initial orbit-raising maneuvers.

  4. Trajectory Design Strategies for the NGST L2 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Cooley, Steven; Howell, Kathleen; Bauer, Frank H.

    2001-01-01

    The Origins' Next Generation Space Telescope (NGST) trajectory design is addressed in light of improved methods for attaining constrained orbit parameters and their control at the exterior collinear libration point, L2. The use of a dynamical systems approach, state-space equations for initial libration orbit control, and optimization to achieve constrained orbit parameters are emphasized. The NGST trajectory design encompasses a direct transfer and orbit maintenance under a constant acceleration. A dynamical systems approach can be used to provide a biased orbit and stationkeeping maintenance method that incorporates the constraint of a single axis correction scheme.

  5. Access to Mars from Earth-Moon Libration Point Orbits:. [Manifold and Direct Options

    NASA Technical Reports Server (NTRS)

    Kakoi, Masaki; Howell, Kathleen C.; Folta, David

    2014-01-01

    This investigation is focused specifically on transfers from Earth-Moon L(sub 1)/L(sub 2) libration point orbits to Mars. Initially, the analysis is based in the circular restricted three-body problem to utilize the framework of the invariant manifolds. Various departure scenarios are compared, including arcs that leverage manifolds associated with the Sun-Earth L(sub 2) orbits as well as non-manifold trajectories. For the manifold options, ballistic transfers from Earth-Moon L(sub 2) libration point orbits to Sun-Earth L(sub 1)/L(sub 2) halo orbits are first computed. This autonomous procedure applies to both departure and arrival between the Earth-Moon and Sun-Earth systems. Departure times in the lunar cycle, amplitudes and types of libration point orbits, manifold selection, and the orientation/location of the surface of section all contribute to produce a variety of options. As the destination planet, the ephemeris position for Mars is employed throughout the analysis. The complete transfer is transitioned to the ephemeris model after the initial design phase. Results for multiple departure/arrival scenarios are compared.

  6. Spacecraft Maneuvering at the Sun/Earth-Moon L2 Libration Point

    NASA Astrophysics Data System (ADS)

    Shahid, Kamran

    Spacecraft formation flying in the vicinity of the Sun/Earth-Moon libration points offers many promising possibilities for space exploration. The concept of formation flying involves the distribution of the functionality of a single spacecraft among several smaller, cooperative spacecraft. The libration points are locations relative to two large orbiting bodies where a third body with relatively small mass can remain stationary relative to the two larger bodies. The most significant perturbation experienced by a spacecraft at the libration point is effect of solar radiation pressure. This thesis presents the development of nonlinear control techniques for maneuvering control at the Sun-Earth/Moon L2 libration point. A new thruster based formation control technique is presented. We also consider a leader/follower formation architecture, and examine the station keeping control of the leader spacecraft and the formation control of the follower spacecraft using solar radiation pressure. Reference trajectories of the leader spacecraft, halo and Lissajous orbits, are determined using a numerical technique in order to take into account all major gravitational perturbations. The nonlinear controllers are developed based on Lyapunov analysis, including non-adaptive and adaptive designs. Thruster based and solar radiation pressure based control laws for spacecraft maneuvering at the Sun-Earth/Moon libration point are developed. Higher order sliding mode control is utilized to address the non-affine structure of the solar sail control inputs. The reduced input solar radiation pressure problem is properly addressed as an underactuated control problem. The development of adaptive control for solar sail equipped spacecraft is an innovation and represents and advancement in solar sailing control technology. Controller performance is evaluated in a high fidelity ephemeris model to reflect a realistic simulated space environment. The numerical results demonstrate the effectiveness

  7. Use of libration-point orbits for space observatories

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert W.; Dunham, David W.

    1990-01-01

    The sun-earth libration points, L1 and L2, are located 1.5 million kilometers from the earth toward and away from the sun. Halo orbits about these points have significant advantages for space observatories in terms of viewing geometry, thermal and radiation environment, and delta-V expediture.

  8. Preliminary Design Considerations for Access and Operations in Earth-Moon L1/L2 Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.

    2013-01-01

    Within the context of manned spaceflight activities, Earth-Moon libration point orbits could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids and Mars. This investigation examines preliminary design considerations including Earth-Moon L1/L2 libration point orbit selection, transfers, and stationkeeping costs associated with maintaining a spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in multi-body trajectory design, dynamical systems theory, and orbit maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to Earth-Moon libration points.

  9. A note on libration point orbits, temporary capture and low-energy transfers

    NASA Astrophysics Data System (ADS)

    Fantino, E.; Gómez, G.; Masdemont, J. J.; Ren, Y.

    2010-11-01

    In the circular restricted three-body problem (CR3BP) the weak stability boundary (WSB) is defined as a boundary set in the phase space between stable and unstable motion relative to the second primary. At a given energy level, the boundaries of such region are provided by the stable manifolds of the central objects of the L1 and L2 libration points, i.e., the two planar Lyapunov orbits. Besides, the unstable manifolds of libration point orbits (LPOs) around L1 and L2 have been identified as responsible for the weak or temporary capture around the second primary of the system. These two issues suggest the existence of natural dynamical channels between the Earth's vicinity and the Sun-Earth libration points L1 and L2. Furthermore, it has been shown that the Sun-Earth L2 central unstable manifolds can be linked, through an heteroclinic connection, to the central stable manifolds of the L2 point in the Earth-Moon three-body problem. This concept has been applied to the design of low energy transfers (LETs) from the Earth to the Moon. In this contribution we consider all the above three issues, i.e., weak stability boundaries, temporary capture and low energy transfers, and we discuss the role played by the invariant manifolds of LPOs in each of them. The study is made in the planar approximation.

  10. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    NASA Astrophysics Data System (ADS)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  11. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  12. Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Folta, David; Beckman, Mark

    2002-01-01

    Sun-Earth libration point orbits serve as excellent locations for scientific investigations. These orbits are often selected to minimize environmental disturbances and maximize observing efficiency. Trajectory design in support of libration orbits is ever more challenging as more complex missions are envisioned in the next decade. Trajectory design software must be further enabled to incorporate better understanding of the libration orbit solution space and thus improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple libration missions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes algorithm and software development. The recently launched Microwave Anisotropy Probe (MAP) and upcoming James Webb Space Telescope (JWST) and Constellation-X missions are examples of the use of improved numerical methods for attaining constrained orbital parameters and controlling their dynamical evolution at the collinear libration points. This paper presents a history of libration point missions, a brief description of the numerical and dynamical design techniques including software used, and a sample of future GSFC mission designs.

  13. Formation Flying in Earth, Libration, and Distant Retrograde Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.

    2004-01-01

    This slide presentation examines the current and future state of formation flying, LEO formations, control strategies for flight in the vicinity of the libration points, and distant retrograde orbit formations. This discussion of LEO formations includes background on perturbation theory/accelerations and LEO formation flying. The discussion of strategies for formation flight in the vicinity of the libration points includes libration missions and natural and controlled libration orbit formations. A reference list is included.

  14. Time-free transfers between libration-point orbits in the elliptic restricted problem

    NASA Astrophysics Data System (ADS)

    Howell, K. C.; Hiday, L. A.

    1992-08-01

    This work is directed toward the formulation of a strategy to design optimal time-free impulsive transfers between 3D libration-point orbits in the vicinity of the interior L1 libration point of the sun-earth/moon barycenter system. Inferior transfers that move a spacecraft from a large halo orbit to a smaller halo orbit are considered here. Primer vector theory is applied to nonoptimal impulsive trajectories in the elliptic restricted three-body problem in order to establish whether the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The addition of interior impulses is also considered. Results indicate that a substantial savings in fuel can be achieved by the allowance for coastal periods on the specified libration-point orbits. The resulting time-free inferior transfers are compared to time-free superior transfers between halo orbits of equal z-amplitude separation.

  15. Stationkeeping of the First Earth-Moon Libration Orbiters: The ARTEMIS Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Woodard, Mark; Cosgrove, D.

    2011-01-01

    Libration point orbits near collinear locations are inherently unstable and must be controlled. For Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) Earth-Moon Lissajous orbit operations, stationkeeping is challenging because of short time scales, large orbital eccentricity of the secondary, and solar gravitational and radiation pressure perturbations. ARTEMIS is the first NASA mission continuously controlled at both Earth-Moon L1 and L2 locations and uses a balance of optimization, spacecraft implementation and constraints, and multi-body dynamics. Stationkeeping results are compared to pre-mission research including mode directions.

  16. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    NASA Astrophysics Data System (ADS)

    Marinescu, A.; Dumitrache, M.

    The impulse technique certainly can bring the vehicle on orbits around the libration points or close to them. The question that aries is, by what means can the vehicle arrive in such cases at the libration points? A first investigation carried out in this paper can give an answer: the use of the technique of low-thrust, which, in addition, can bring the vehicle from the libration points near to or into orbits around these points. This aspect is considered in this present paper where for the applications we have considered the transfer for orbits of the equidistant point L4 and of the collinear point L2, from Earth-moon system. This transfer maneuver can be used to insertion one satellite on libration points orbits. In Earth- moon system the points L 4 and L 5 because an vehicle in on of the equidistant points in quite stable and remains in its vicinity of perturbed, have potential interest for the establishment of transporder satellite for interplanetary tracking. In contrast an vehicle in one of the collinear points is quite instable and it will oscillate along the Earth-moon-axis at increasing amplitude and gradually escape from the libration point. Let use assume that a space vehicle equipped with a low-thrust propulsion is near a libration point L. We consider the planar motion in the restricted frame of the three bodies in the rotating system L, where the Earth-moon distance D=l. The unit of time T is period of the moon's orbit divided by 2 and multiplied by the square root of the quantity one plus the moon/Earth mass ratio, and the unit of mass is the Earth's mass. With these predictions the motion equatios of the vehicle equiped with a low-thrust propulsion installation in the linear approximation near the libration point, have been established. The parameters of the motion at the beginning and the end of these maneuvers are known, the variational problem has been formulated as a Lagrange type problem with fixed extremities. On established the differential

  17. Formation Flying With Decentralized Control in Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David; Carpenter, J. Russell; Wagner, Christoph

    2000-01-01

    A decentralized control framework is investigated for applicability of formation flying control in libration orbits. The decentralized approach, being non-hierarchical, processes only direct measurement data, in parallel with the other spacecraft. Control is accomplished via linearization about a reference libration orbit with standard control using a Linear Quadratic Regulator (LQR) or the GSFC control algorithm. Both are linearized about the current state estimate as with the extended Kalman filter. Based on this preliminary work, the decentralized approach appears to be feasible for upcoming libration missions using distributed spacecraft.

  18. Two-craft Coulomb formation study about circular orbits and libration points

    NASA Astrophysics Data System (ADS)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  19. L1 libration point manned space habitat

    NASA Technical Reports Server (NTRS)

    Luttges, Marvin; Johnson, Steve; Banks, Gary; Johnson, Richard; Meyer, Christian; Pepin, Scott; Macelroy, Robert

    1989-01-01

    Second generation stations or Manned Space Habitats (MSHs) are discussed for an Earth-Moon libration point and in lunar orbit. The conceptual design of such a station is outlined. Systems and subsystems described reflect anticipation of moderate technology growth. The evolution of the L1 environments is discussed, several selected subsystems are outlined, and how the L1 MSH will complete some of its activities is described.

  20. Transfers between libration-point orbits in the elliptic restricted problem

    NASA Astrophysics Data System (ADS)

    Hiday, L. A.; Howell, K. C.

    The present time-fixed impulsive transfers between 3D libration point orbits in the vicinity of the interior L(1) libration point of the sun-earth-moon barycenter system are 'optimal' in that the total characteristic velocity required for implementation of the transfer exhibits a local minimum. The conditions necessary for a time-fixed, two-impulse transfer trajectory to be optimal are stated in terms of the primer vector, and the conditions necessary for satisfying the local optimality of a transfer trajectory containing additional impulses are addressed by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses.

  1. Transfers between libration-point orbits in the elliptic restricted problem

    NASA Astrophysics Data System (ADS)

    Hiday-Johnston, L. A.; Howell, K. C.

    1994-04-01

    A strategy is formulated to design optimal time-fixed impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L1 libration point of the Sun-Earth/Moon barycenter system. The adjoint equation in terms of rotating coordinates in the elliptic restricted three-body problem is shown to be of a distinctly different form from that obtained in the analysis of trajectories in the two-body problem. Also, the necessary conditions for a time-fixed two-impulse transfer to be optimal are stated in terms of the primer vector. Primer vector theory is then extended to nonoptimal impulsive trajectories in order to establish a criterion whereby the addition of an interior impulse reduces total fuel expenditure. The necessary conditions for the local optimality of a transfer containing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. Determination of location, orientation, and magnitude of each additional impulse is accomplished by the unconstrained minimization of the cost function using a multivariable search method. Results indicate that substantial savings in fuel can be achieved by the addition of interior impulsive maneuvers on transfers between libration-point orbits.

  2. Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.

    2011-01-01

    Three heliophysics missions - the Solar Heliospheric Observatory (SOHO), the Advanced Composition Explorer (ACE), and the Global Geoscience WIND - have been orbiting the Sun-Earth interior libration point L1 continuously since 1996, 1997, and 2004, respectively. ACE and WIND (both NASA missions) and SOHO (an ESA-NASA joint mission) are all operated from the NASA Goddard Space Flight Center Flight Dynamics Facility. While ACE and SOHO have been dedicated libration point orbiters since their launches, WIND prior to 2004 flew a remarkable 10-year deep-space trajectory that featured 38 targeted lunar flybys. The L1 orbits and the mission histories of the three spacecraft are briefly reviewed, and the station-keeping techniques and orbit maneuver experience are discussed.

  3. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking

  4. Earth to Moon Transfer: Direct vs Via Libration Points (L1, L2)

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Wilson, Samuel W.

    2004-01-01

    For some three decades, the Apollo-style mission has served as a proven baseline technique for transporting flight crews to the Moon and back with expendable hardware. This approach provides an optimal design for expeditionary missions, emphasizing operational flexibility in terms of safely returning the crew in the event of a hardware failure. However, its application is limited essentially to low-latitude lunar sites, and it leaves much to be desired as a model for exploratory and evolutionary programs that employ reusable space-based hardware. This study compares the performance requirements for a lunar orbit rendezvous mission type with one using the cislunar libration point (L1) as a stopover and staging point for access to arbitrary sites on the lunar surface. For selected constraints and mission objectives, it contrasts the relative uniformity of performance cost when the L1 staging point is used with the wide variation of cost for the Apollo-style lunar orbit rendezvous.

  5. Time-free transfers between libration-point orbits in the elliptic restricted problem

    NASA Astrophysics Data System (ADS)

    Howell, K. C.; Hiday-Johnston, L. A.

    This work is part of a larger research effort directed toward the formulation of a strategy to design optimal time-free impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior LI libration point of the Sun-Earth/Moon barycenter system. Inferior transfers that move a spacecraft from a large halo orbit to a smaller halo orbit are considered here. Primer vector theory is applied to non-optimal impulsive trajectories in the elliptic restricted three-body problem in order to establish whether the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The addition of interior impulses is also considered. Results indicate that a substantial savings in fuel can be achieved by the allowance for coastal periods on the specified libration-point orbits. The resulting time-free inferior transfers are compared to time-free superior transfers between halo orbits of equal z-amplitude separation.

  6. Earth-Moon Libration Point Orbit Stationkeeping: Theory, Modeling and Operations

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.; Woodard, Mark A.

    2013-01-01

    Collinear Earth-Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be maintained regularly which constrains operations and maneuver locations. Stationkeeping is challenging due to relatively short time scales for divergence effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories is explored using Poincare maps in the circular restricted three-body problem. Operational stationkeeping results obtained using the Optimal Continuation Strategy are presented and compared to orbit stability information generated from mode analysis based in dynamical systems theory.

  7. Lunar flyby transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Qi, Yi; Xu, Shijie; Qi, Rui

    2017-06-01

    Lunar flyby or lunar gravity assist is a classical technique to change the energy and trajectory of space vehicle in space mission. In this paper, lunar flyby transfers between Sun-Earth/Moon libration point orbits with different energies are investigated in the Sun-Earth-Moon restricted four-body problem. Distinguished by behaviours before and after lunar flyby, classification of lunar flyby orbits is defined and studied. Research indicates that junction point of special regions of four types of lunar flyby orbits denotes the perilune of lunar flyby transfer between libration point orbits. Based on those special perilunes, retrograde and prograde lunar flyby transfers are discussed in detail, respectively. The mean energy level transition distribution is proposed and applied to analyse the influence of phase angle and eccentricity on lunar flyby transfers. The phase space is divided into normal and chaotic intervals based on the topology pattern of transfers. A continuation strategy of lunar flyby transfer in the bicircular model is presented. Numerical examples show that compared with the single-impulse transfers based on patched invariant manifolds, lunar flyby transfers are more energy efficient. Finally, lunar flyby transfers are further extended to the realistic models.

  8. Human Exploration Missions Study: Space Surveillance Telescope Transfer to and Station at a Halo Orbit at the Earth-Sun Libration Point L2

    NASA Technical Reports Server (NTRS)

    Dauro, Vincent A., Sr.

    2001-01-01

    This study was undertaken to determine mission profile and delta velocity requirements to place a telescope at the Earth-Sun libration point L2. The program, Integrated Mission Program (IMP), was selected to be used in the investigation. A description of IMP and its capabilities may be found in the Addenda. The Addenda also contains the libration halo equations, constants and other parameters. Comments regarding the chaotic nature of numerical integration near the libration points are also attached in the Addenda. A basic two stage S/C with a simple mission profile was selected. This profile is shown.

  9. Optimization of Insertion Cost for Transfer Trajectories to Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Howell, K. C.; Wilson, R. S.; Lo, M. W.

    1999-01-01

    The objective of this work is the development of efficient techniques to optimize the cost associated with transfer trajectories to libration point orbits in the Sun-Earth-Moon four body problem, that may include lunar gravity assists. Initially, dynamical systems theory is used to determine invariant manifolds associated with the desired libration point orbit. These manifolds are employed to produce an initial approximation to the transfer trajectory. Specific trajectory requirements such as, transfer injection constraints, inclusion of phasing loops, and targeting of a specified state on the manifold are then incorporated into the design of the transfer trajectory. A two level differential corrections process is used to produce a fully continuous trajectory that satisfies the design constraints, and includes appropriate lunar and solar gravitational models. Based on this methodology, and using the manifold structure from dynamical systems theory, a technique is presented to optimize the cost associated with insertion onto a specified libration point orbit.

  10. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  11. Phobos' gravity field and its influence on its orbit and physical librations

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Yoder, C. F.

    1990-01-01

    A model describing the physical libration in longitude and latitude for Phobos is derived. The major effect is the well-known longitude variation with the anomalistic orbital period and amplitude. Several additional meter-sized periodic librations in longitude exist. The latitude variation is dominated by the forced precession of Phobos' figure axis with the precession of Phobos' orbital plane. The contribution of Phobos' topography to its gravity field is estimated using the control network model of Duxbury and Callahan (1989).

  12. Integration of Libration Point Orbit Dynamics into a Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The autonomous formation flying control algorithm developed by the Goddard Space Flight Center (GSFC) for the New Millennium Program (NMP) Earth Observing-1 (EO-1) mission is investigated for applicability to libration point orbit formations. In the EO-1 formation-flying algorithm, control is accomplished via linearization about a reference transfer orbit with a state transition matrix (STM) computed from state inputs. The effect of libration point orbit dynamics on this algorithm architecture is explored via computation of STMs using the flight proven code, a monodromy matrix developed from a N-body model of a libration orbit, and a standard STM developed from the gravitational and coriolis effects as measured at the libration point. A comparison of formation flying Delta-Vs calculated from these methods is made to a standard linear quadratic regulator (LQR) method. The universal 3-D approach is optimal in the sense that it can be accommodated as an open-loop or closed-loop control using only state information.

  13. The end-of-life disposal of satellites in libration-point orbits using solar radiation pressure

    NASA Astrophysics Data System (ADS)

    Soldini, Stefania; Colombo, Camilla; Walker, Scott

    2016-04-01

    This paper proposes an end-of-life propellant-free disposal strategy for libration-point orbits which uses solar radiation pressure to restrict the evolution of the spacecraft motion. The spacecraft is initially disposed into the unstable manifold leaving the libration-point orbit, before a reflective sun-pointing surface is deployed to enhance the effect of solar radiation pressure. Therefore, the consequent increase in energy prevents the spacecraft's return to Earth. Three European Space Agency missions are selected as test case scenarios: Herschel, SOHO and Gaia. Guidelines for the end-of-life disposal of future libration-point orbit missions are proposed and a preliminary study on the effect of the Earth's orbital eccentricity on the disposal strategy is shown for the Gaia mission.

  14. Inclined asymmetric librations in exterior resonances

    NASA Astrophysics Data System (ADS)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  15. Libration Point Navigation Concepts Supporting Exploration Vision

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Gramling, Cheryl J.

    2004-01-01

    Farquhar described several libration point navigation concepts that would appear to support NASA s current exploration vision. One concept is a Lunar Relay Satellite operating in the vicinity of Earth-Moon L2, providing Earth-to-lunar far-side and long- range surface-to-surface navigation and communications capability. Reference [ 1] lists several advantages of such a system in comparison to a lunar orbiting relay satellite constellation. Among these are one or two vs. many satellites for coverage, simplified acquisition and tracking due to very low relative motion, much longer contact times, and simpler antenna pointing. An obvious additional advantage of such a system is that uninterrupted links to Earth avoid performing critical maneuvers "in the blind." Another concept described is the use of Earth-Moon L1 for lunar orbit rendezvous, rather than low lunar orbit as was done for Apollo. This rendezvous technique would avoid large plane change and high fuel cost associated with high latitude landing sites and long stay times. Earth-Moon L1 also offers unconstrained launch windows from the lunar surface. Farquhar claims this technique requires only slightly higher fuel cost than low lunar orbit rendezvous for short-stay equatorial landings. Farquhar also describes an Interplanetary Transportation System that would use libration points as terminals for an interplanetary shuttle. This approach would offer increased operational flexibility in terms of launch windows, rendezvous, aborts, etc. in comparison to elliptical orbit transfers. More recently, other works including Folta[3] and Howell[4] have shown that patching together unstable trajectories departing Earth-Moon libration points with stable trajectories approaching planetary libration points may also offer lower overall fuel costs than elliptical orbit transfers. Another concept Farquhar described was a Deep Space Relay at Earth-Moon IA and/or L5 that would serve as a high data rate optical navigation and

  16. Low-energy transfers to cislunar periodic orbits visiting triangular libration points

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo

    2018-01-01

    This paper investigates the cislunar periodic orbits that pass through triangular libration points of the Earth-Moon system and studies the techniques on design low-energy transfer trajectories. In order to compute periodic orbits, families of impulsive transfers between triangular libration points are taken to generate the initial guesses of periodic orbits, and multiple shooting techniques are applied to solving the problem. Then, varieties of periodic orbits in cislunar space are obtained, and stability analysis shows that the majority of them are unstable. Among these periodic orbits, an unstable periodic orbit in near 3:2 resonance with the Moon is taken as the nominal orbit of an assumed mission. As the stable manifolds of the target orbit could approach the Moon, low-energy transfer trajectories can be designed by combining lunar gravity assist with the invariant manifold structure of the target orbit. In practice, both the natural and perturbed invariant manifolds are considered to obtain the low-energy transfers, which are further refined to the Sun-perturbed Earth-Moon system. Results indicate that (a) compared to the case of natural invariant manifolds, the optimal transfers using perturbed invariant manifolds could reduce flight time at least 50 days, (b) compared to the cheapest direct transfer, the optimal low-energy transfer obtained by combining lunar gravity assist and invariant manifolds could save on-board fuel consumption more than 200 m/s, and (c) by taking advantage of the gravitational perturbation of the Sun, the low-energy transfers could save more fuel consumption than the corresponding ones obtained in the Earth-Moon system.

  17. A Solar System Survey of Forced Librations in Longitude

    NASA Technical Reports Server (NTRS)

    Cornstock, Robert L.; Bills, Bruce G.

    2003-01-01

    Forced librations are periodic rotational rate variations due to gravitational interactions with an orbital partner. We have developed an analytic theory capable of calculating expected amplitudes of forced librations for nonresonant rotators as well as for bodies existing in a spin-orbit resonance. The theory has been applied to 34 solar system bodies, including terrestrial planets, planetary satellites, and the asteroid Eros. Parameters governing libration amplitude are the body s orbital eccentricity, moment difference, and the ratio of its spin rate to its orbital rate. In each case the largest libration amplitude is associated with the forcing frequency 2 (p - 1) n, where n is the orbital mean motion and p is the spin/orbit rate ratio. This dominant frequency is simply semidiurnal as seen from the position of the torquing body. The maximum libration angular amplitude is 1.3 x 10(exp -2) radians for Thebe, and the maximum mean equatorial displacement is 1.4 km for Mimas.

  18. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    NASA Technical Reports Server (NTRS)

    Brown, Jonathan M.; Petersen, Jeremy D.

    2014-01-01

    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  19. Solar radiation pressure application for orbital motion stabilization near the Sun-Earth collinear libration point

    NASA Astrophysics Data System (ADS)

    Polyakhova, Elena; Shmyrov, Alexander; Shmyrov, Vasily

    2018-05-01

    Orbital maneuvering in a neighborhood of the collinear libration point L1 of Sun-Earth system has specific properties, primarily associated with the instability L1. For a long stay in this area of space the stabilization problem of orbital motion requires a solution. Numerical experiments have shown that for stabilization of motion it is requires very small control influence in comparison with the gravitational forces. On the other hand, the stabilization time is quite long - months, and possibly years. This makes it highly desirable to use solar pressure forces. In this paper we illustrate the solar sail possibilities for solving of stabilization problem in a neighborhood L1 with use of the model example.

  20. Transfer to the Collinear Libration Point L3 in the Sun-Earth+Moon System

    NASA Technical Reports Server (NTRS)

    Hou, Xi-yun; Tang, Jing-shi; Liu, Lin

    2007-01-01

    The collinear libration point L3 of the sun-earth+moon system is an ideal place for some space missions. Although there has been a great amount of work concerning the applications of the other two collinear libration points L1 and L2, little work has been done about the point L3. In this paper, the dynamics of the libration points was briefly introduced first. Then a way to transfer the spacecraft to the collinear libration point L3 via the invariant manifolds of the other two collinear libration points was proposed. Theoretical works under the model of circular restricted three-body problem were done. For the sun-earth+moon system, this model is a good approximation. The results obtained are useful when a transfer trajectory under the real solar system is designed.

  1. Servicing and Deployment of National Resources in Sun-Earth Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Beckman, Mark; Mar, Greg C.; Mesarch, Michael; Cooley, Steven; Leete, Steven J.

    2002-01-01

    Spacecraft travel between the Sun-Earth system, the Earth-Moon system, and beyond has received extensive attention recently. The existence of a connection between unstable regions enables mission designers to envision scenarios of multiple spacecraft traveling cheaply from system to system, rendezvousing, servicing, and refueling along the way. This paper presents examples of transfers between the Sun-Earth and Earth-Moon systems using a true ephemeris and perturbation model. It shows the (Delta)V costs associated with these transfers, including the costs to reach the staging region from the Earth. It explores both impulsive and low thrust transfer trajectories. Additionally, analysis that looks specifically at the use of nuclear power in libration point orbits and the issues associated with them such as inadvertent Earth return is addressed. Statistical analysis of Earth returns and the design of biased orbits to prevent any possible return are discussed. Lastly, the idea of rendezvous between spacecraft in libration point orbits using impulsive maneuvers is addressed.

  2. Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.

    2011-01-01

    Three heliophysics missions -- the Advanced Composition Explorer (ACE), Solar Heliospheric Observatory (SOHO), and the Global Geoscience WIND -- have been orbiting the Sun-Earth interior libration point L1 continuously since 1997, 1996, and 2004, respectively. ACE and WIND (both NASA missions) and SOHO (an ESA-NASA joint mission) are all operated from the NASA Goddard Space Flight Center (GSFC). While ACE and SOHO have been dedicated libration point orbiters since their launches, WIND has had also a remarkable 10-year career flying a deep-space, multiple lunar-flyby trajectory prior to 2004. That era featured 36 targeted lunar flybys with excursions to both L1 and L2 before its final insertion in L1 orbit. A figure depicts the orbits of the three spacecraft, showing projections of the orbits onto the orthographic planes of a solar rotating ecliptic frame of reference. The SOHO orbit is a quasi-periodic halo orbit, where the frequencies of the in-plane and out-of-plane motions are practically equal. Such an orbit is seen to repeat itself with a period of approximately 178 days. For ACE and WIND, the frequencies of the in-plane and out-of-plane motions are unequal, giving rise to the characteristic Lissajous motion. ACE's orbit is of moderately small amplitude, whereas WIND's orbit is a large-amplitude Lissajous of dimensions close to those of the SOHO halo orbit. As motion about the collinear points is inherently unstable, stationkeeping maneuvers are necessary to prevent orbital decay and eventual escape from the L1 region. Though the three spacecraft are dissimilar (SOHO is a 3-axis stabilized Sun pointer, WIND is a spin-stabilized ecliptic pole pointer, and ACE is also spin-stabilized with its spin axis maintained between 4 and 20 degrees of the Sun), the stationkeeping technique for the three is fundamentally the same. The technique consists of correcting the energy of the orbit via a delta-V directed parallel or anti-parallel to the Spacecraft-to-Sun line. SOHO

  3. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  4. Libration of arguments of circumbinary-planet orbits at resonance

    NASA Astrophysics Data System (ADS)

    Schubart, Joachim

    2017-06-01

    The paper refers to fictitious resonant orbits of planet type that surround both components of a binary system. In case of 16 studied examples a suitable choice of the starting values leads to a process of libration of special angular arguments and to an evolution with an at least temporary stay of the planet in the resonant orbit. The ratio of the periods of revolution of the binary and a planet is equal to 1:5. Eight orbits depend on the ratio 1:5 of the masses of the binary components, but two other ratios appear as well. The basis of this study is the planar, elliptic or circular restricted problem of three bodies, but remarks at the end of the text refer to a four-body problem.

  5. Lunar Navigation with Libration Point Orbiters and GPS

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2004-01-01

    NASA is currently studying a Vision for Space Exploration based on spiral development of robotic and piloted missions to the moon and Mars, but research into how to perform such missions has continued ever since the first era of lunar exploration. One area of study that a number of researchers have pursued is libration point navigation and communication relay concepts. These concepts would appear to support many of NASA's current requirements for navigation and communications coverage for human and robotic spacecraft operating in lunar space and beyond. In trading libration point concepts against other options, designers must consider issues such as the number of spacecraft, required to provide coverage, insertion and stationkeeping costs, power and data rate requirements, frequency allocations, and many others. The libration points, along with a typical cis-lunar trajectory, are equilibrium locations for an infinitesimal mass in the rotating coordinate system that follows the motion of two massive bodies in circular orbits with respect to their common barycenter. There are three co-linear points along the line connecting the massive bodies: between the bodies, beyond the secondary body, and beyond the primary body. The relative distances of these points along the line connecting the bodies depend on the mass ratios. There are also two points that form equilateral triangles with the massive bodies. Ideally, motion in the neighborhood of the co-linear points is unstable, while motion near the equilibrium points is stable. However, in the real world, the motions are highly perturbed so that a satellite will require stationkeeping maneuvers.

  6. On the use of a sunward libration-point-orbiting spacecraft as an interplanetary magnetic field monitor for magnetospheric studies

    NASA Technical Reports Server (NTRS)

    Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1986-01-01

    In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point to determine the orientation of the interplanetary magnetic field (IMF), the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting the earth, has been calculated for a data set of 1-hour periods covering four months. For each period, a 10-minute average of ISEE 1 data is compared with 10-minute averages of ISEE 3 data at successively lagged intervals. It is concluded that the IMF orientation at a libration-point-orbiting spacecraft, lagged by the time required for the solar wind to convect to the earth, is a convenient predictor of IMF orientation near the earth, to within about 20-degree accuracy.

  7. Using Cassini UVIS Data to Constrain Enceladus' Libration State

    NASA Technical Reports Server (NTRS)

    Hurford, Terry A.; Helfenstein, P.; Hansen, C.

    2010-01-01

    Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, stall amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production along the tiger stripes as produced by tidal shear heating and a previous study has explored possible libration states that provided better matches to Cassini CIRS observations of heat along the tiger stripes. Cassini UVIS stellar occultations provided measurements of the column density of the Enceladus plume at two different points in Enceladus' orbit and find comparable column density values. This column density may be a reflection of the amount of the tiger stripe rifts in tension and able to vent volatiles and a physical libration will also affect the fraction of tiger stripe in tension at different points in the orbit. We have modeled the expected fraction of tiger stripes in tension under different libration conditions. Without libration the amount of tiger stripe rifts in tension at both paints in the orbit would not be comparable and therefore may not allow comparable amounts of volatiles to escape. However, we identify libration conditions that do allow comparable amounts of the tiger stripes to be in tension at each point in the orbit, which might lead to comparable column densities. The librations identified coincide with possible librations states identified in the earlier study, which used Cassini CIRS observations.

  8. Earth Shadows and the SEV Angle of MAP's Lissajous Orbit At L2

    NASA Technical Reports Server (NTRS)

    Edery, Ariel

    2002-01-01

    The Microwave Anisotropy Probe (MAP) launched successfully on June 30, 2001 and is presently in a Lissajous orbit about the Sun-Earth libration point L2. To avoid Earth shadows at L2, the Sun-Earth-Vehicle (SEV) angle of MAP has to be greater than 0.5 deg for an extended mission of four years. An equation is derived for the SEV angle in terms of the phase angle, frequencies and amplitudes of the Lissajous. The SEV angle is shown to oscillate with a period of 90.4 days within an amplitude envelope of period 13.9 years. A range of phase angles that avoids shadows is identified. MAP'S present phase angle is within this range and will avoid shadows for approximately 5.8 years.

  9. Connecting orbits and invariant manifolds in the spatial restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Gómez, G.; Koon, W. S.; Lo, M. W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2004-09-01

    The invariant manifold structures of the collinear libration points for the restricted three-body problem provide the framework for understanding transport phenomena from a geometrical point of view. In particular, the stable and unstable invariant manifold tubes associated with libration point orbits are the phase space conduits transporting material between primary bodies for separate three-body systems. These tubes can be used to construct new spacecraft trajectories, such as a 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. This work extends the results to the three-dimensional case. Besides providing a full description of different kinds of libration motions in a large vicinity of these points, this paper numerically demonstrates the existence of heteroclinic connections between pairs of libration orbits, one around the libration point L1 and the other around L2. Since these connections are asymptotic orbits, no manoeuvre is needed to perform the transfer from one libration point orbit to the other. A knowledge of these orbits can be very useful in the design of missions such as the Genesis Discovery Mission, and may provide the backbone for other interesting orbits in the future.

  10. Conceptual Design of a Synoptic Interplanetary Monitor Platform at L sub 1 (SIMPL).

    DTIC Science & Technology

    1985-11-01

    solar events. -159- . . . .. . 105 II1II" -I .5 year mission at Earth-Sun- libration point plus transfer orbit eDashed line is approximate true dose as...Design .. ...................................... 27 4.1 The L Libration Point .......................... 27 4.2 L Orbit Options...34) to provide power, attitude control, communications, and other support to maintain the instruments in a halo orbit around the L libration point ; 4. a

  11. Librations and Interior Structure of the Galilean Satellites

    NASA Astrophysics Data System (ADS)

    van Hoolst, T.; Baland, R.; Karatekin, O.; Rambaux, N.

    2009-12-01

    We investigate the influence of the interior structure of the Galilean satellites on their rotation variations (or librations). Since the Galilean satellites are significantly aspherical due to rotation and static tides, Jupiter exerts a gravitational torque on them. In a circular orbit, the long axis of a satellite would always point towards Jupiter and the gravitational torque would be zero. However, the eccentric orbits of the Galilean satellites lead to misalignment of the long axis with the direction to Jupiter and result in non-zero gravitational torques that tend to modify the rotation of the satellites. Since the torque varies with the orbital phase, the main libration period is equal to the orbital period. In a first-order approximation, the libration amplitude is usually calculated by assuming that the satellite reacts rigidly to the gravitational torque. The corresponding amplitudes, expressed as a shift at the surface of the orientation of the long axis with respect to that for the mean rotation rate, decrease with increasing distance from Jupiter from a few hundred meters for Io to about ten meter for Callisto. Internal liquid layers, such as a subsurface ocean, can lead to differential rotation of the solid and liquid layers and to differences of the libration of surface with respect to that for a rigid libration. Here, we present a method to determine the influence of gravitational and pressure interactions between internal layers on the libration of the Galilean satellites. For Io, we show that the liquid core has only a small effect on the surface librations. For Europa, Ganymede and Callisto, the presence of a subsurface ocean can significantly increase the libration amplitude. We also study the effect of the possible existence of two liquid layers in Ganymede and Europa: a subsurface ocean and a liquid core. We quantify the sensitivity of the libration amplitude to the internal structure and assess expected improvements in the interior structure

  12. Locally optimal transfer trajectories between libration point orbits using invariant manifolds

    NASA Astrophysics Data System (ADS)

    Davis, Kathryn E.

    2009-12-01

    Techniques from dynamical systems theory and primer vector theory have been applied to the construction of locally optimal transfer trajectories between libration point orbits. When two libration point orbits have different energies, it has been found that the unstable manifold of the first orbit can be connected to the stable manifold of the second orbit with a bridging trajectory. A bounding sphere centered on the secondary, with a radius less than the radius of the sphere of influence of the secondary, was used to study the stable and unstable manifold trajectories. It was numerically demonstrated that within the bounding sphere, the two-body parameters of the unstable and stable manifold trajectories could be analyzed to locate low transfer costs. It was shown that as the two-body parameters of an unstable manifold trajectory more closely matched the two-body parameters of a stable manifold trajectory, the total DeltaV necessary to complete the transfer decreased. Primer vector theory was successfully applied to a transfer to determine the optimal maneuvers required to create the bridging trajectory that connected the unstable manifold of the first orbit to the stable manifold of the second orbit. Transfer trajectories were constructed between halo orbits in the Sun-Earth and Earth-Moon three-body systems. Multiple solutions were found between the same initial and final orbits, where certain solutions retraced interior portions of the trajectory. All of the trajectories created satisfied the conditions for optimality. The costs of transfers constructed using invariant manifolds were compared to the costs of transfers constructed without the use of invariant manifolds, when data was available. In all cases, the total cost of the transfers were significantly lower when invariant manifolds were used in the transfer construction. In many cases, the transfers that employed invariant manifolds were three to four times more efficient, in terms of fuel expenditure

  13. Libration-point staging concepts for Earth-Mars transportation

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert; Dunham, David

    1986-01-01

    The use of libration points as transfer nodes for an Earth-Mars transportation system is briefly described. It is assumed that a reusable Interplanetary Shuttle Vehicle (ISV) operates between the libration point and Mars orbit. Propellant for the round-trip journey to Mars and other supplies would be carried from low Earth orbit (LEO) to the ISV by additional shuttle vehicles. Different types of trajectories between LEO and libration points are presented, and approximate delta-V estimates for these transfers are given. The possible use of lunar gravity-assist maneuvers is also discussed.

  14. Optimal transfers between libration-point orbits in the elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Hiday, Lisa Ann

    1992-09-01

    A strategy is formulated to design optimal impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L(1) libration point of the Sun-Earth/Moon barycenter system. Two methods of constructing nominal transfers, for which the fuel cost is to be minimized, are developed; both inferior and superior transfers between two halo orbits are considered. The necessary conditions for an optimal transfer trajectory are stated in terms of the primer vector. The adjoint equation relating reference and perturbed trajectories in this formulation of the elliptic restricted three-body problem is shown to be distinctly different from that obtained in the analysis of trajectories in the two-body problem. Criteria are established whereby the cost on a nominal transfer can be improved by the addition of an interior impulse or by the implementation of coastal arcs in the initial and final orbits. The necessary conditions for the local optimality of a time-fixed transfer trajectory possessing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. The optimality of a time-free transfer containing coastal arcs is surmised by examination of the slopes at the endpoints of a plot of the magnitude of the primer vector over the duration of the transfer path. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The position and timing of each interior impulse applied to a time-fixed transfer as well as the direction and length of coastal periods implemented on a time-free transfer are specified by the unconstrained minimization of the appropriate variation in cost utilizing a multivariable search technique. Although optimal solutions in some instances are elusive, the time-fixed and time-free optimization algorithms prove to be very successful in diminishing costs on

  15. Orbit determination error analysis and comparison of station-keeping costs for Lissajous and halo-type libration point orbits and sensitivity analysis using experimental design techniques

    NASA Technical Reports Server (NTRS)

    Gordon, Steven C.

    1993-01-01

    Spacecraft in orbit near libration point L1 in the Sun-Earth system are excellent platforms for research concerning solar effects on the terrestrial environment. One spacecraft mission launched in 1978 used an L1 orbit for nearly 4 years, and future L1 orbital missions are also being planned. Orbit determination and station-keeping are, however, required for these orbits. In particular, orbit determination error analysis may be used to compute the state uncertainty after a predetermined tracking period; the predicted state uncertainty levels then will impact the control costs computed in station-keeping simulations. Error sources, such as solar radiation pressure and planetary mass uncertainties, are also incorporated. For future missions, there may be some flexibility in the type and size of the spacecraft's nominal trajectory, but different orbits may produce varying error analysis and station-keeping results. The nominal path, for instance, can be (nearly) periodic or distinctly quasi-periodic. A periodic 'halo' orbit may be constructed to be significantly larger than a quasi-periodic 'Lissajous' path; both may meet mission requirements, but perhaps the required control costs for these orbits are probably different. Also for this spacecraft tracking and control simulation problem, experimental design methods can be used to determine the most significant uncertainties. That is, these methods can determine the error sources in the tracking and control problem that most impact the control cost (output); it also produces an equation that gives the approximate functional relationship between the error inputs and the output.

  16. Fuel-optimal, low-thrust transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey R.

    Mission design requires the efficient management of spacecraft fuel to reduce mission cost, increase payload mass, and extend mission life. High efficiency, low-thrust propulsion devices potentially offer significant propellant reductions. Periodic orbits that exist in a multi-body regime and low-thrust transfers between these orbits can be applied in many potential mission scenarios, including scientific observation and communications missions as well as cargo transport. In light of the recent discovery of water ice in lunar craters, libration point orbits that support human missions within the Earth-Moon region are of particular interest. This investigation considers orbit transfer trajectories generated by a variable specific impulse, low-thrust engine with a primer-vector-based, fuel-optimizing transfer strategy. A multiple shooting procedure with analytical gradients yields rapid solutions and serves as the basis for an investigation into the trade space between flight time and consumption of fuel mass. Path and performance constraints can be included at node points along any thrust arc. Integration of invariant manifolds into the design strategy may also yield improved performance and greater fuel savings. The resultant transfers offer insight into the performance of the variable specific impulse engine and suggest novel implementations of conventional impulsive thrusters. Transfers incorporating invariant manifolds demonstrate the fuel savings and expand the mission design capabilities that are gained by exploiting system symmetry. A number of design applications are generated.

  17. The long-period librations of large synchronous icy moons

    NASA Astrophysics Data System (ADS)

    Yseboodt, Marie; Van Hoolst, Tim

    2014-11-01

    A moon in synchronous rotation has longitudinal librations because of its non-spherical mass distribution and its elliptical orbit around the planet. We study the long-period librations of the Galilean satellites and Titan and include deformation effects and the existence of a subsurface ocean. We take into account the fact that the orbit is not keplerian and has other periodicities than the main period of orbital motion around Jupiter or Saturn due to perturbations by the Sun, other planets and moons. An orbital theory is used to compute the orbital perturbations due to these other bodies. For Titan we also take into account the large atmospheric torque at the semi-annual period of Saturn around the Sun.We numerically evaluate the amplitude and phase of the long-period librations for many interior structure models of the icy moons constrained by the mass, radius and gravity field.

  18. On the use of a sunward-libration-point orbiting spacecraft as an IMF monitor for magnetospheric studies

    NASA Technical Reports Server (NTRS)

    Kelly, T. J.; Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1984-01-01

    Magnetospheric studies often require knowledge of the orientation of the IMF. In order to test the accuracy of using magnetometer data from a spacecraft orbiting the sunward libration point for this purpose, the angle between the IMF at ISEE 3, when it was positioned around the libration point, and at ISEE 1, orbiting Earth, has been calculated for a data set of two-hour periods covering four months. For each period, a ten-minute average of ISEE 1 data is compared with ten-minute averages of ISEE 3 data at successively lagged intervals. At the lag time equal to the time required for the solar wind to convect from ISEE 3 to ISEE 1, the median angle between the IMF orientation at the two spacecraft is 20 deg, and 80% of the cases have angles less than 38 deg. The results for the angles projected on the y-z plane are essentially the same.

  19. Formation Flying Satellite Control Around the L2 Sun-Earth Libration Point

    NASA Technical Reports Server (NTRS)

    Hamilton, Nicholas H.; Folta, David; Carpenter, Russell; Bauer, Frank (Technical Monitor)

    2002-01-01

    This paper discusses the development of a linear control algorithm for formations in the vicinity of the L2 sun-Earth libration point. The development of a simplified extended Kalman filter is included as well. Simulations are created for the analysis of the stationkeeping and various formation maneuvers of the Stellar Imager mission. The simulations provide tracking error, estimation error, and control effort results. For formation maneuvering, the formation spacecraft track to within 4 meters of their desired position and within 1.5 millimeters per second of their desired zero velocity. The filter, with few exceptions, keeps the estimation errors within their three-sigma values. Without noise, the controller performs extremely well, with the formation spacecraft tracking to within several micrometers. Each spacecraft uses around 1 to 2 grams of propellant per maneuver, depending on the circumstances.

  20. ADRC for spacecraft attitude and position synchronization in libration point orbits

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  1. Sun-Earth L1 Region Halo-To-Halo Orbit and Halo-To-LisaJous Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.; DeFazio, Robert

    2004-01-01

    Practical techniques for designing transfer trajectories between Libration Point Orbits (LPOs) are presented. Motivation for development of these techniques was provided by a hardware contingency experienced by the Solar Heliospheric Observatory (SOHO), a joint mission of the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) orbiting the L1 point of the Sun-Earth system. A potential solution to the problem involved a transfer from SOHO s periodic halo orbit to a new LPO of substantially different dimensions. Assuming the SOHO halo orbit as the departure orbit, several practical LPO transfer techniques were developed to obtain new Lissajous or periodic halo orbits that satisfy mission requirements and constraints. While not implemented for the SOHO mission, practical LPO transfer techniques were devised that are generally applicable to current and future LPO missions.

  2. The strange case of the missing apocentric librators in the 3:2 resonance. [in asteroidal belt

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1976-01-01

    From a comparison of the 2:1 and 3:2 resonances (in the asteroidal belt) two possible explanations to the absence of 3:2 apocentric librators are suggested. The first one is that such 3:2 resonant motion is dynamically unstable. The second interpretation requires the absence of near-circular orbits originally at 4 AU. The latter view, if correct, is inconsistent with cosmogonic models which predict the original orbits of the asteroids to be nearly circular.

  3. Higher order approximation to the Hill problem dynamics about the libration points

    NASA Astrophysics Data System (ADS)

    Lara, Martin; Pérez, Iván L.; López, Rosario

    2018-06-01

    An analytical solution to the Hill problem Hamiltonian expanded about the libration points has been obtained by means of perturbation techniques. In order to compute the higher orders of the perturbation solution that are needed to capture all the relevant periodic orbits originated from the libration points within a reasonable accuracy, the normalization is approached in complex variables. The validity of the solution extends to energy values considerably far away from that of the libration points and, therefore, can be used in the computation of Halo orbits as an alternative to the classical Lindstedt-Poincaré approach. Furthermore, the theory correctly predicts the existence of the two-lane bridge of periodic orbits linking the families of planar and vertical Lyapunov orbits.

  4. Using Cassini CIRS Data to Constrain Enceladus' Libration State

    NASA Technical Reports Server (NTRS)

    Hurford, T. A.; Helfenstein, P.; Spencer, J. R.; Nimmo, F.

    2009-01-01

    Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical Libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, small amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production. along the tiger stripes as produced by tidal shear heating. We have modeled the expected power en-litted along the tiger stripes for various types of physical libration and have quantified which types of physical libration best reproduce the observed power flux as detailed in Cassini CIRS data. We find that including a physical libration does allow better fits to the observations and we have identified regions of the libration phase space that where these fits are optimized. A physical libration has important implications for tidal dissipation within Enceladus and if identified may provide an additional constraint on its interior mass distribution.

  5. Using Cassini CIRS Data to Constrain Enceladus' Libration State

    NASA Technical Reports Server (NTRS)

    Hurford, T. A.; Helfenstein, P.; Spencer, J. R.; Nimmo, P.

    2010-01-01

    Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, small amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production along the tiger stripes as produced by tidal shear heating. We have modeled the expected power emitted along the tiger stripes for various types of physical libration and have quantified which types of physical libration best reproduce the observed power f1ux as detailed in Cassini CIRS data. We find that including a physical libration does allow better fits to the observations and we have identified regions of the libration phase space that where these fits are optimized. A physical libration has important implications for tidal dissipation within Ence1adus and if identified may provide an additional constraint on its interior mass distribution.

  6. Design of the stabilizing control of the orbital motion in the vicinity of the collinear libration point L1 using the analytical representation of the invariant manifold

    NASA Astrophysics Data System (ADS)

    Maliavkin, G. P.; Shmyrov, A. S.; Shmyrov, V. A.

    2018-05-01

    Vicinities of collinear libration points of the Sun-Earth system are currently quite attractive for the space navigation. Today, various projects on placing of spacecrafts observing the Sun in the L1 libration point and telescopes in L2 have been implemented (e.g. spacecrafts "WIND", "SOHO", "Herschel", "Planck"). Collinear libration points being unstable leads to the problem of stabilization of a spacecraft's motion. Laws of stabilizing motion control in vicinity of L1 point can be constructed using the analytical representation of a stable invariant manifold. Efficiency of these control laws depends on the precision of the representation. Within the model of Hill's approximation of the circular restricted three-body problem in the rotating geocentric coordinate system one can obtain the analytical representation of an invariant manifold filled with bounded trajectories in a form of series in terms of powers of the phase variables. Approximate representations of the orders from the first to the fourth inclusive can be used to construct four laws of stabilizing feedback motion control under which trajectories approach the manifold. By virtue of numerical simulation the comparison can be made: how the precision of the representation of the invariant manifold influences the efficiency of the control, expressed by energy consumptions (characteristic velocity). It shows that using approximations of higher orders in constructing the control laws can significantly reduce the energy consumptions on implementing the control compared to the linear approximation.

  7. A Survey Of Earth-Moon Libration Orbits: Stationkeeping Strategies And Intra-Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Folta, David; Vaughn, Frank

    2004-01-01

    Cislunar space is a readily accessible region that may well develop into a prime staging area in the effort to colonize space near Earth or to colonize the Moon. While there have been statements made by various NASA programs regarding placement of resources in orbit about the Earth-Moon Lagrangian locations, there is no survey of the total cost associated with attaining and maintaining these unique orbits in an operational fashion. Transfer trajectories between these orbits required for assembly, servicing, and positioning of these resources have not been extensively investigated. These orbits are dynamically similar to those used for the Sun-Earth missions, but differences in governing gravitational ratios and perturbation sources result in unique characteristics. We implement numerical computations using high fidelity models and linear and nonlinear targeting techniques to compute the various maneuver (Delta)V and temporal costs associated with orbits about each of the Earth-Moon Lagrangian locations (L1, L2, L3, L4, and L5). From a dynamical system standpoint, we speak to the nature of these orbits and their stability. We address the cost of transfers between each pair of Lagrangian locations.

  8. Design of optimal impulse transfers from the Sun-Earth libration point to asteroid

    NASA Astrophysics Data System (ADS)

    Wang, Yamin; Qiao, Dong; Cui, Pingyuan

    2015-07-01

    The lunar probe, Chang'E-2, is the first one to successfully achieve both the transfer to Sun-Earth libration point orbit and the flyby of near-Earth asteroid Toutatis. This paper, taking the Chang'E-2's asteroid flyby mission as an example, provides a method to design low-energy transfers from the libration point orbit to an asteroid. The method includes the analysis of transfer families and the design of optimal impulse transfers. Firstly, the one-impulse transfers are constructed by correcting the initial guesses, which are obtained by perturbing in the direction of unstable eigenvector. Secondly, the optimality of one-impulse transfers is analyzed and the optimal impulse transfers are built by using the primer vector theory. After optimization, the transfer families, including the slow and the fast transfers, are refined to be continuous and lower-cost transfers. The method proposed in this paper can be also used for designing transfers from an arbitrary Sun-Earth libration point orbit to a near-Earth asteroid in the Sun-Earth-Moon system.

  9. Analytical and numerical construction of vertical periodic orbits about triangular libration points based on polynomial expansion relations among directions

    NASA Astrophysics Data System (ADS)

    Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei

    2017-08-01

    Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.

  10. Geological Implications of a Physical Libration on Enceladus

    NASA Technical Reports Server (NTRS)

    Hurford, T. A.; Bills, B. G.; Helfenstein, P.; Greenberg, R.; Hoppa, G. V.; Hamilton, D. P.

    2008-01-01

    Given the non-spherical shape of Enceladus (Thomas et al., 2007), the satellite will experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus tidal bulge which, could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus libration amplitude of F < 1.5deg (Porco et al., 2006), smaller amplitudes can still have geologically significant consequences. Here we present the first detailed description of how physical libration affects tidal stresses and how those stresses then might affect geological processes including crack formation and propagation, south polar eruption activity, and tidal heating. Our goal is to provide a framework for testing the hypothesis that geologic features on Enceladus are produced by tidal stresses from diurnal physical and optical librations of the satellite.

  11. Tides in a body librating about a spin-orbit resonance: generalisation of the Darwin-Kaula theory

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2017-09-01

    The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin-Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.

  12. Continuation of periodic orbits in the Sun-Mercury elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Bai, Xiaoli; Xu, Shijie

    2017-06-01

    Starting from resonant Halo orbits in the Circular Restricted Three-Body Problem (CRTBP), Multi-revolution Elliptic Halo (ME-Halo) orbits around L1 and L2 points in the Sun-Mercury Elliptic Restricted Three-Body Problem (ERTBP) are generated systematically. Three pairs of resonant parameters M5N2, M7N3 and M9N4 are tested. The first pair shows special features and is investigated in detail. Three separated characteristic curves of periodic orbit around each libration point are obtained, showing the eccentricity varies non-monotonically along these curves. The eccentricity of the Sun-Mercury system can be achieved by continuation method in just a few cases. The stability analysis shows that these orbits are all unstable and the complex instability occurs with certain parameters. This paper shows new periodic orbits in both the CRTBP and the ERTBP. Totally four periodic orbits with parameters M5N2 around each libration points are extracted in the Sun-Mercury ERTBP.

  13. Simulating the Librational Behaviour of Propeller Moons In The Saturnian Ring System

    NASA Astrophysics Data System (ADS)

    Seiler, Michael; Seiss, Martin; Hoffmann, Holger; Spahn, Frank

    2016-10-01

    The propeller structure Blériot orbiting in the outer A ring of the Saturnian ring system has been one of the tremendous discoveries of the spacecraft Cassini [Tiscareno et al., 2010, ApJL]. The reconstruction of the orbital evolution of Blériot from recurrent observations in the ISS images yielded a systematic offset motion from the expected Keplerian orbit. This offset motion can be well described by three sinusoidal harmonics with amplitudes and periods of 1845, 152, 58 km and 11.1, 3.7 and 2.2 years, respectively [Sremčević et al., 2014, EPSC]. Oscillatory deviations from the Keplerian orbit are a known phenomenon for the Saturnian moons, which can be explained by resonant interactions with other moons [Spitale et al., 2006, AJ] and which look similar to the observation of Blériot.In this work we present our results from N-Body simulations, where we integrated the orbital evolution of a test particle, orbiting at the radial position of the propeller Blériot and 15 other moons of Saturn. Our simulation yield, that gravitational interactions with the larger moons result in reasonable and observable frequencies, but the resulting amplitudes of the librations are by far too small to explain the observations. Further mechanisms are needed, to amplify the amplitudes of the forced librations -- as e.g. by moonlet-ring interactions. Inspired by the recent work of Pan and Chiang [2010, ApJL; 2012, AJ] we introduce an alternative, physically more reasonable model. In our model, the moonlet is allowed to be slightly displaced with respect to its created gaps, resulting in a repulsive force. As a result, the moonlet's longitude starts to oscillate. In the presence of the additional external forcing by the outer moons the libration amplitude gets amplified, if the forcing frequency is close to the eigenfrequency of the system. Applying our model to Blériot, we can indeed reproduce a libration period of 13 years with an amplitude of about 2000 km.

  14. Flights between a neighborhoods of unstable libration points of Sun-Earth system

    NASA Astrophysics Data System (ADS)

    Surkova, Valerya; Shmyrov, Vasily

    2018-05-01

    In this paper we study the problem of constructing impulse flights between neighborhoods of unstable collinear libration points of the Sun-Earth system [1]. Such maneuvering in near-Earth space may prove to be in demand in modern space navigation. For example, such a maneuvering was done by the space vehicle GENESIS. Three test points are chosen for the implementation of the impulse control, in order to move to a neighborhood of the libration point L2. It is shown that the earlier on the exit from the vicinity of the libration point L1 impulse control was realized, the sooner the neighborhood L2 was achieved. Separated from this problem, the problem of optimal control in the neighborhood of L2 was considered and a form of stabilizing control is presented.

  15. Libration Point Navigation Concepts Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.

    2004-01-01

    This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.

  16. A Librational Model for the Propeller Blériot in the Saturnian Ring System

    NASA Astrophysics Data System (ADS)

    Seiler, M.; Sremčević, M.; Seiß, M.; Hoffmann, H.; Spahn, F.

    2017-05-01

    The reconstruction of the orbital evolution of the propeller structure Blériot orbiting in Saturn’s A ring from recurrent observations in Cassini ISS images yielded a considerable offset motion from the expected Keplerian orbit. This offset motion can be composed by three sinusoidal harmonics with amplitudes and periods of 1845, 152, 58 km and 11.1, 3.7, and 2.2 years, respectively. In this paper we present results from N-body simulations, where we integrated the orbital evolution of a moonlet, which is placed at the radial position of Blériot under the gravitational action of the Saturnian satellites. Our simulations yield that, especially the gravitational interactions with Prometheus, Pandora, and Mimas are forcing the moonlet to librate with the right frequencies, but the libration amplitudes are too small to explain the observations. Thus, further mechanisms are needed to explain the amplitudes of the forced librations—e.g., moonlet-ring interactions. Here, we develop a model, where the moonlet is allowed to be slightly displaced with respect to its created gaps breaking the point symmetry and causing a repulsive force in this way. As a result, the evolution of the moonlet’s longitude can be described by a harmonic oscillator. In the presence of external forcing by the outer moons, the libration amplitudes get the more amplified the closer the forcing frequency is to the eigenfrequency of the disturbed propeller oscillator. Applying our model to Blériot, it is possible to reproduce a libration period of 13 years with an amplitude of about 2000 km.

  17. Halo-orbit and lunar-swingby missions of the 1990's

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert W.

    1990-01-01

    A significant number of spacecraft are planning to use halo orbits and lunar-swingby trajectories in the next decade. Four spacecraft will be placed into halo orbits around the earth's sunward libration point, while two others will be stationed near the sun-earth L2 libration point in the distant geomagnetic tail. Six spacecraft, including two of the aforementioned halo orbiters, will make use of lunar-swingby maneuvers to fulfill their mission objectives. Thus, a total of ten spacecraft, five from the Soviet Union, two from Japan, two from the United States, and one from the European Space Agency, will employ halo orbits and/or lunar-swingby trajectories in the 1990's. Pertinent facts are presented for each of these missions.

  18. Mimas: Constraints on Origin and Evolution from Libration Data

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Rhoden, Alyssa R.

    2016-10-01

    In stark contrast with its neighbor moon Enceladus, Mimas is surprisingly geologically quiet, despite an orbital configuration prone to levels of tidal dissipation 30 times higher. While Mimas' lack of activity could be due to a stiff, frigid interior, libration data from the Cassini spacecraft suggest its interior is not homogeneous [1]. Here, we present 1-D models of Mimas' thermal and structural evolution under two accretion scenarios: primordial, undifferentiated formation in the Saturnian subnebula [2]; and late, layered formation from a debris ring created by the disruption of one or more previous moons [3]. In the primordial scenario, our simulations yield two possible outcomes. If tidal dissipation proceeds at levels higher than those obtained using an Andrade rheology [4], Mimas differentiates and an ocean persists until the present day. This should quickly circularize its orbit, but the current orbit is eccentric. In addition, Mimas lacks surface fractures that should result from strong tidal stresses in an ice shell atop an ocean [5]. If dissipation proceeds at lower levels obtained using a Maxwell rheology, it is too weak to drive differentiation; this does not match the observed libration [1]. In the late accretion scenario, Mimas forms already differentiated. As a result, even its deepest ice is within only 100 km of the frigid surface, and poorly insulated by overlying thermally conductive crystalline ice. Thus, all ice remains cold and poorly dissipative, even if dissipation is an order of magnitude above that provided by the Andrade rheology [4]. If Mimas' rocky core is slightly non-hydrostatic [1], this matches the observed libration. We conclude that Mimas' libration is compatible with a late origin from a debris ring, but not with primordial accretion. Consistent with findings from many authors (e.g. [6]), these models cannot produce an ocean on Enceladus unless its orbital eccentricity is higher than observed.References:[1] Tajeddine et al

  19. Dissipation in a tidally perturbed body librating in longitude

    NASA Astrophysics Data System (ADS)

    Efroimsky, Michael

    2018-05-01

    Internal dissipation in a tidally perturbed librating body differs in several respects from the tidal dissipation in a steadily spinning rotator. First, libration changes the spectral distribution of tidal damping across the tidal modes, as compared to the case of steady spin. This changes both the tidal heating rate and the tidal torque. Second, while a non-librating rotator experiences alternating deformation only due to the potential force exerted on it by the perturber, a librating body is also subject to a toroidal force proportional to the angular acceleration. Third, while the centrifugal force in a steadily spinning body renders only a permanent deformation (which defines the oblateness when the body cools down), in a librating body this force contains two alternating components-one purely radial, another a degree-2 potential force. Both contribute to heating, as well as to the tidal torque and potential (and, thereby, to the orbital evolution). We develop a formalism needed to describe dissipation in a homogeneous terrestrial body performing small-amplitude libration in longitude. This formalism incorporates as its part a linear rheological law defining the response of the rotator's material to forcing. While the developed formalism can work with an arbitrary linear rheology, we consider a simple example of a Maxwell material. We demonstrate that, independent of the rheology, forced libration in longitude can provide a considerable and even leading-and sometimes overwhelming-input in the tidal heating. Based on the observed parameters, this input amounts to 52% in Phobos, 33% in Mimas, 23% in Enceladus, and 96% in Epimetheus. This supports the hypothesis by Makarov and Efroimsky (2014) that the additional tidal damping due to forced libration may have participated in the early heating up of some of the large moons. As one possibility, such a moon could have been chipped by collisions-whereby it acquired a higher permanent triaxiality and, therefore, a

  20. Multi-Body Orbit Architectures for Lunar South Pole Coverage

    NASA Technical Reports Server (NTRS)

    Grebow, D. J.; Ozimek, M. T.; Howell, K. C.; Folta, D. C.

    2006-01-01

    A potential ground station at the lunar south pole has prompted studies of orbit architectures that ensure adequate coverage. Constant communications can be achieved with two spacecraft in different combinations of Earth-Moon libration point orbits. Halo and vertical families, as well as other orbits near L1 and L2 are considered. The investigation includes detailed results using nine different orbits with periods ranging from 7 to 16 days. Natural solutions are generated in a full ephemeris model, including solar perturbations. A preliminary station-keeping analysis is also completed.

  1. Frozen Orbits-Near Constant or Beneficially Varying Orbital Parameters.

    DTIC Science & Technology

    1986-05-15

    89 6.3 Equatorial Near-Circular Orbits ............................... 92 6.4 Stable and Unstable Equilibrium Points ...Angle Libration Period......................................... 78 5-2 Lunar Gravitational Effect on Near-Circular Orbits .................... 80 5-3...6-1 Period of Oscillation about the Stable Equilibrium Point ............... 102 FIGURES Figure 2.1 Orbital Parameters

  2. Active and Passive Sensing from Geosynchronous and Libration Orbits

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Raymond, Carol; Hildebrand, Peter

    2003-01-01

    The development of the LEO (EOS) missions has led the way to new technologies and new science discoveries. However, LEO measurements alone cannot cost effectively produce high time resolution measurements needed to move the science to the next level. Both GEO and the Lagrange points, L1 and L2, provide vantage points that will allow higher time resolution measurements. GEO is currently being exploited by weather satellites, but the sensors currently operating at GEO do not provide the spatial or spectral resolution needed for atmospheric trace gas, ocean or land surface measurements. It is also may be possible to place active sensors in geostationary orbit. It seems clear, that the next era in earth observation and discovery will be opened by sensor systems operating beyond near earth orbit.

  3. Understanding the Sun-Earth Libration Point Orbit Formation Flying Challenges For WFIRST and Starshade

    NASA Technical Reports Server (NTRS)

    Webster, Cassandra M.; Folta, David C.

    2017-01-01

    In order to fly an occulter in formation with a telescope at the Sun-Earth L2 (SEL2) Libration Point, one must have a detailed understanding of the dy-namics that govern the restricted three body system. For initial purposes, a linear approximation is satisfactory, but operations will require a high-fidelity modeling tool along with strategic targeting methods in order to be successful. This paper focuses on the challenging dynamics of the transfer trajectories to achieve the relative positioning of two spacecraft to fly in formation at SEL2, in our case, the Wide-Field Infrared Survey Telescope (WFIRST) and a proposed Starshade. By modeling the formation transfers using a high fidelity tool, an accurate V approximation can be made to as-sist with the development of the subsystem design required for a WFIRST and Starshade formation flight mission.

  4. Non-collinear libration points in ER3BP with albedo effect and oblateness

    NASA Astrophysics Data System (ADS)

    Idrisi, M. Javed; Ullah, M. Shahbaz

    2018-06-01

    In this paper we establish a relation between direct radiations (generally called radiation factor) and reflected radiations (albedo) to show their effects on the existence and stability of non-collinear libration points in the elliptic restricted three-body problem taking into account the oblateness of smaller primary. It is discussed briefly when α =0 and σ =0, the non-collinear libration points form an isosceles triangle with the primaries and as e increases the libration points L_{4,5} move vertically downward (α , σ and e represents the radiation factor, oblateness factor and eccentricity of the primaries respectively). If α = 0 but σ ≠ 0, the libration points slightly displaced to the right-side from its previous location and form scalene triangle with the primaries and go vertically downward as e increases. If α ≠ 0 and σ ≠ 0, the libration points L_{4,5} form scalene triangle with the primaries and as e increases L_{4,5} move downward and displaced to the left-side. Also, the libration points L_{4,5} are stable for the critical mass parameter μ ≤ μ c.

  5. Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Wei

    2016-10-01

    An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.

  6. Mercury's spin-orbit model and signature of C/MR2

    NASA Astrophysics Data System (ADS)

    Rambaux, N.; Bois, E.

    2003-04-01

    The upcoming missions, MESSENGER (Solomon etal 2001, Planet. Space Sci 49) and Bepi Colombo (Milani etal 2001, Planet. Space Sci 49) with onboard instrumentation capable of measuring the rotational parameters stimulate the objective to reach an accurate theory of the rotational motion of Mercury. Our work deals with the physical and dynamical causes that induce librations around an equilibrium state defined by the 3:2 spin-orbit resonance of Mercury. In order to integrate the spin-orbit motion of Mercury, we have used our gravitational model of the solar System including the Moon's spin-orbit motion. This model, called SONYR (acronym of Spin-Orbit N-bodY Relativistic model), was previously built by Bois, Journet and Vokrouhlicky in accordance with the requirements of the Lunar Laser Ranging observational accuracy (see for instance a review by Bois 2000, C. R. Acad. Sci. Série IV, or Bois and Vokrouhlický 1995). Using the model, the present study is devoted to the main perturbations acting on the spin-orbit motion of Mercury such as the planetary interactions (and their hierarchy) and the dynamical figure of the planet. The effect of the torque of Venus is 105 times smaller in magnitude than the one due to the Sun. Moreover, the complete rotation of Mercury exhibits two proper frequencies, namely 15.825 and 1089 years, and one secular variation of 271043 years which is due to the nodal precession between the equatorial plane of Mercury and its orbital plane. It is the second synchronism of Mercury mentioned by Beletski in 1986. We have made into evidence that the 3:2 resonance of Mercury is preserved by this second synchronism, which can be understood as a spin-orbit secular resonance. We have shown that the secular resonance variable ψ - Ω librates with a frequency of 1089 years. Our model integration starts with an initial obliquity of 1.65 arcminute (re-evaluate from the Cassini state) and gives an amplitude of libration in longitude of the order of 20

  7. Cassini's motions and resonant librations of synchronous satellites of big planets

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    2008-09-01

    motions of satellites in Solar system and for each of them to determine the values of the basic Cassini's parameter 0 ? (it is the average angle of inclination of the axis of rotation relatively to normal of the precessing orbit plane) and the periods of resonant librations in the longitude ( g T ), in the pole wobble ( l T ) and period of space precession ( h T ) (and their errors). Here we use the analytical formulas for mentioned parameters which were developed by study of the Moon Cassini's motion in my early papers [1], [2]. Specially for the case of small eccentricities and inclinations of orbits of synchronous satellites we have obtained the simple reduced formulas for all four considered parameters.

  8. Large longitude libration of Mercury reveals a molten core.

    PubMed

    Margot, J L; Peale, S J; Jurgens, R F; Slade, M A; Holin, I V

    2007-05-04

    Observations of radar speckle patterns tied to the rotation of Mercury establish that the planet occupies a Cassini state with obliquity of 2.11 +/- 0.1 arc minutes. The measurements show that the planet exhibits librations in longitude that are forced at the 88-day orbital period, as predicted by theory. The large amplitude of the oscillations, 35.8 +/- 2 arc seconds, together with the Mariner 10 determination of the gravitational harmonic coefficient C22, indicates that the mantle of Mercury is decoupled from a core that is at least partially molten.

  9. Mission design for a halo orbiter of the earth

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Muhonen, D. P.; Richardson, D. L.

    1976-01-01

    The International Sun-Earth Explorer (ISEE) scientific satellite to be stationed in 1978 in the vicinity of the sun-earth interior libration point to continuously monitor the space between the sun and the earth, including the distant geomagnetic tail is described. Orbit selection considerations for the ISEE-C are discussed along with stationkeeping requirements and fuel-optimal trajectories. Due to the alignment of the interior libration point with the sun as viewed from the earth, it will be necessary to place the satellite into a 'halo orbit' around the libration point, in order to eliminate solar interference with down-link telemetry. Parametric data for transfer trajectories between an earth parking orbit (altitude about 185 km) and a libration-point orbit are presented. It is shown that the insertion magnitude required for placing a satellite into an acceptable halo orbit is rather modest.

  10. Spacecraft formation keeping near the libration points of the Sun-Earth/Moon system

    NASA Astrophysics Data System (ADS)

    Marchand, Belinda G.

    Multi-spacecraft formations, evolving near the vicinity of the libration points of the Sun-Earth/Moon system, have drawn increased interest for a variety of applications. This is particularly true for space based interferometry missions such as Terrestrial Planet Finder (TPF) and the Micro Arcsecond X-Ray Imaging Mission (MAXIM). Recent studies in formation flight have focused, primarily, on the control of formations that evolve in the immediate vicinity of the Earth. However, the unique dynamical structure near the libration points requires that the effectiveness and feasibility of these methods be re-examined. The present study is divided into two main topics. First, a dynamical systems approach is employed to develop a better understanding of the natural uncontrolled formation dynamics in this region of space. The focus is formations that evolve near halo orbits and Lissajous trajectories, near the L1 and L2 libration points of the Sun-Earth/Moon system. This leads to the development of a Floquet controller designed to simplify the process of identifying naturally existing formations as well as the associated stable manifolds for deployment. The initial analysis is presented in the Circular Restricted Three-Body Problem, but the results are later transitioned into the more complete Ephemeris model. The next subject of interest in this investigation is non-natural formations. That is, formations that are not consistent with the natural dynamical flow near the libration points. Mathematically, precise formation keeping of a given nominal configuration requires continuous control. Hence, a detailed analysis is presented to contrast the effectiveness and issues associated with linear optimal control and feedback linearization methods. Of course, continuous operation of the thrusters, may not represent a feasible option for a particular mission. If discrete formation keeping is implemented, however, the formation keeping goal will be subject to increased tracking

  11. Libration Point Orbit Utilization for Tactical Advantage in Communications, Surveillance, and Risk Mitigation

    DTIC Science & Technology

    2014-10-27

    Ephemeris model in the orbit analysis software Satellite Took Kit ( STK ). As the first step, a study was conducted to find the visibility coverage using...northern L1 and L3 halo orbits. Figure 55. Average visibility by latitude at different ephemeris epochs for an L1 orbiter from STK analysis . Figure...56. Average visibility by latitude at different ephemeris epochs for an L3 orbiter from STK analysis . Figure 57. Average percent visibility of the

  12. Lunar Gravity-Assist Maneuver As a Way of Reducing the Orbit Amplitude in the Spectrum-Röntgen-Gamma Project

    NASA Astrophysics Data System (ADS)

    Kovalenko, I. D.; Eismont, N. A.

    2018-04-01

    Spectrum-Röntgen-Gamma (SRG) is a space observatory designed to observe astrophysical objects in the X-ray range of the electromagnetic spectrum. SRG is planned to be launched in 2019 by a Proton-M launch vehicle with a DM3 upper stage. The spacecraft will be delivered to an orbit around the Sun-Earth collinear libration point L2 located at a distance of 1.5 million km from the Earth. Although the SRG launch scheme has already been determined at present, in this paper we consider an alternative spacecraft transfer scenario using a lunar gravity-assist maneuver. The proposed scenario allows a oneimpulse transfer from a low Earth orbit to a small-amplitude orbit around the libration point to be performed while fulfilling the technical constraints and the scientific requirements of the mission.

  13. Abort Options for Human Missions to Earth-Moon Halo Orbits

    NASA Technical Reports Server (NTRS)

    Jesick, Mark C.

    2013-01-01

    Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.

  14. Impulsive time-free transfers between halo orbits

    NASA Astrophysics Data System (ADS)

    Hiday, L. A.; Howell, K. C.

    1992-08-01

    A methodology is developed to design optimal time-free impulsive transfers between three-dimensional halo orbits in the vicinity of the interior L1 libration point of the sun-earth/moon barycenter system. The transfer trajectories are optimal in the sense that the total characteristics velocity required to implement the transfer exhibits a local minimum. Criteria are established whereby the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The optimality of a reference two-impulse transfer can be determined by examining the slope at the endpoints of a plot of the magnitude of the primer vector on the reference trajectory. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The optimal time of flight on the time-free transfer, and consequently, the departure and arrival locations on the halo orbits are determined by the unconstrained minimization of a function of two variables using a multivariable search technique. Results indicate that the cost can be substantially diminished by the allowance for coasts in the initial and final libration-point orbits.

  15. Impulsive Time-Free Transfers Between Halo Orbits

    NASA Astrophysics Data System (ADS)

    Hiday-Johnston, L. A.; Howell, K. C.

    1996-12-01

    A methodology is developed to design optimal time-free impulsive transfers between three-dimensional halo orbits in the vicinity of the interior L 1 libration point of the Sun-Earth/Moon barycenter system. The transfer trajectories are optimal in the sense that the total characteristic velocity required to implement the transfer exhibits a local minimum. Criteria are established whereby the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The optimality of a reference two-impulse transfer can be determined by examining the slope at the endpoints of a plot of the magnitude of the primer vector on the reference trajectory. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The optimal time of flight on the time-free transfer, and consequently, the departure and arrival locations on the halo orbits are determined by the unconstrained minimization of a function of two variables using a multivariable search technique. Results indicate that the cost can be substantially diminished by the allowance for coasts in the initial and final libration-point orbits.

  16. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-Earth/Moon L2 libration point, 1.5 million km away from Earth. This paper describes the results of an orbit determination (OD) analysis of the JWST mission emphasizing the challenges specific to this mission in various mission phases. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate OD solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cm/sec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  17. A possible space VLBI constellation utilizing the stable orbits around the TLPs in the Earth-Moon system.

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Tang, Jingshi; Hou, Xiyun

    2016-07-01

    Current studies indicate that there are stable orbits around but far away from the triangular libration points .Two special quasi-periodic orbits around each triangular libration points L4 , L5 in the Earth-Moon sys-tem perturbed by Sun are gain , and the stable orbits discussed in this work are ideal places for space colonies because no orbit control is needed. These stable orbits can also be used as nominal orbits for space VLBI (Very Long Baseline Interferometry) stations. The two stations can also form baselines with stations on the Earth and the Moon, or with stations located around another TLP. Due to the long distance between the stations, the observation precision can be greatly enhanced compared with the VLBI stations on the Earth. Such a VLBI constellation not only can advance the radio astronomy, but also can be used as a navigation system for human activities in the Earth-Moon system and even in the solar system. This paper will focus on the navigation constellation coverage issues, and the orbit determination accuracy problems within the Earth-Moon sys-tem and interplanetary space.

  18. Librations and obliquity of Mercury from the BepiColombo laser altimetry, radio science and camera experiments

    NASA Astrophysics Data System (ADS)

    Pfyffer, G.; van Hoolst, T.; Dehant, V. M.

    2010-12-01

    use of an accurate model of the rotation of Mercury, which takes into account longitudinal librations additional to the main 88 day libration due to planetary perturbations on Mercury's orbit. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will only be sufficient to constrain the size and physical state of the core of Mercury if certain conditions are satisfied. If the orbiter follows the ESA baseline mission scenario, and at least 25 landmarks are imaged at least twice over the mission duration (360 days), the annual libration amplitude and obliquity can be determined with sufficient accuracy. Also the Jupiter induced libration amplitude can pose an additional constraint on the interior of the planet. We will discuss the relative contributions of the different methods will enable us to determine the optimum combinations of the observations with consequences for the mission planning and the instrument performances.

  19. Dynamics and Origin of the 2:1 Orbital Resonances of the GJ 876 Planets

    NASA Astrophysics Data System (ADS)

    Lee, Man Hoi; Peale, S. J.

    2002-03-01

    The discovery by Marcy and coworkers of two planets in 2:1 orbital resonance about the star GJ 876 has been supplemented by a dynamical fit to the data by Laughlin & Chambers, which places the planets in coplanar orbits deep in three resonances at the 2:1 mean-motion commensurability. The selection of this almost singular state by the dynamical fit means that the resonances are almost certainly real, and with the small amplitudes of libration of the resonance variables, indefinitely stable. Several unusual properties of the 2:1 resonances are revealed by the GJ 876 system. The libration of both lowest order mean-motion resonance variables and the secular resonance variable, θ1=λ1- 2λ2+ϖ1, θ2=λ1- 2λ22, and θ3=ϖ1-ϖ2, about 0° (where λ1,2 are the mean longitudes of the inner and outer planet and ϖ1,2 are the longitudes of periapse) differs from the familiar geometry of the Io-Europa pair, where θ2 and θ3 librate about 180°. By considering the condition that ϖ1=ϖ2 for stable simultaneous librations of θ1 and θ2, we show that the GJ 876 geometry results from the large orbital eccentricities ei, whereas the very small eccentricities in the Io-Europa system lead to the latter's geometry. Surprisingly, the GJ 876 configuration, with θ1, θ2, and θ3 all librating, remains stable for e1 up to 0.86 and for amplitude of libration of θ1 approaching 45° with the current eccentricities-further supporting the indefinite stability of the existing system. Any process that drives originally widely separated orbits toward each other could result in capture into the observed resonances at the 2:1 commensurability. We find that forced inward migration of the outer planet of the GJ 876 system results in certain capture into the observed resonances if initially e1<~0.06 and e2<~0.03 and the migration rate |a2/a2|<~3×10- 2(a2/AU)-3/2yr-1. Larger eccentricities lead to likely capture into higher order resonances before the 2:1 commensurability is reached. The

  20. Libration-driven flows in ellipsoidal shells

    NASA Astrophysics Data System (ADS)

    Lemasquerier, D.; Grannan, A. M.; Vidal, J.; Cébron, D.; Favier, B.; Le Bars, M.; Aurnou, J. M.

    2017-09-01

    Planets and satellites can undergo physical librations, which consist of forced periodic variations in their rotation rate induced by gravitational interactions with nearby bodies. This mechanical forcing may drive turbulence in interior fluid layers such as subsurface oceans and metallic liquid cores through a libration-driven elliptical instability (LDEI) that refers to the resonance of two inertial modes with the libration-induced base flow. LDEI has been studied in the case of a full ellipsoid. Here we address for the first time the question of the persistence of LDEI in the more geophysically relevant ellipsoidal shell geometries. In the experimental setup, an ellipsoidal container with spherical inner cores of different sizes is filled with water. Direct side view flow visualizations are made in the librating frame using Kalliroscope particles. A Fourier analysis of the light intensity fluctuations extracted from recorded movies shows that the presence of an inner core leads to spatial heterogeneities but does not prevent LDEI. Particle image velocimetry and direct numerical simulations are performed on selected cases to confirm our results. Additionally, our survey at a fixed forcing frequency and variable rotation period (i.e., variable Ekman number, E) shows that the libration amplitude at the instability threshold varies as ˜E0.65. This scaling is explained by a competition between surface and bulk dissipation. When extrapolating to planetary interior conditions, this leads to the E1/2 scaling commonly considered. We argue that Enceladus' subsurface ocean and the core of the exoplanet 55 CnC e should both be unstable to LDEI.

  1. Prospects For Earth-Based Measurements Of Europa's Librations

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Campbell, D. B.; Peale, S. J.

    2010-10-01

    The exploration of Europa is of great interest because it may be hospitable to certain life forms [1]. Several lines of evidence suggest that a subsurface ocean exists beneath an icy shell [2,3], but there is debate about the thickness of the shell [4], which impacts Europa's astrobiological potential. As in the case of Mercury, it may be possible to determine whether an outer shell is decoupled from the interior and to evaluate the shell thickness by measuring the amplitude of forced longitude librations [5,6]. In the simplest configuration of a rigid shell decoupled from a spherically symmetric interior, the libration amplitude is amplified from the nominal value of 18" by C/Cs, where C is the polar moment of inertia of the body and Cs is that of the outer shell that participates in the librations. For a 100-km thick shell, the libration amplitude would reach 200", an estimate that remains valid even in the presence of gravitational coupling between asymmetrical layers [7]. If there are significant departures from rigid behavior, the shell may deform with the ocean underneath and exhibit a libration amplitude of 52" [8]. Europa reaches closest approach in October 2011, offering a once-in-a-decade opportunity to measure spin rate variations by tracking radar speckles, as advocated by Holin [9,10]. Librations of a rigid shell thinner than 100 km would be detectable. We will describe the experimental design and expected sensitivity. References: [1] NRC, Europa Science Strategy, 1999. [2,3] Kivelson et al, Greeley et al, in Jupiter, CUP, 2004. [4] Greenberg, Unmasking Europa, Praxis, 2008. [5] Peale, Nature 262, 1976. [6] Margot et al, Science 316, 2007. [7] van Hoolst et al, Icarus 195, 2008. [8] Goldreich and Mitchell, Icarus, in press. [9] Green, in Radar Astronomy, McGraw-Hill, 1968. [10] Holin, Radiophys. Quant. Elec. 31, 1988.

  2. User and technical documentation

    NASA Astrophysics Data System (ADS)

    1988-09-01

    The program LIBRATE calculates velocities for trajectories from low earth orbit (LEO) to four of the five libration points (L2, L3, L4, and L5), and from low lunar orbit (LLO) to libration points L1 and L2. The flight to be analyzed departs from a circular orbit of any altitude and inclination about the Earth or Moon and finishes in a circular orbit about the Earth at the desired libration point within a specified flight time. This program produces a matrix of the delta V's needed to complete the desired flight. The user specifies the departure orbit, and the maximum flight time. A matrix is then developed with 10 inclinations, ranging from 0 to 90 degrees, forming the columns, and 19 possible flight times, ranging from the flight time (input) to 36 hours less than the input value, in decrements of 2 hours, forming the rows. This matrix is presented in three different reports including the total delta V's, and both of the delta V components discussed. The input required from the user to define the flight is discussed. The contents of the three reports that are produced as outputs are also described. The instructions are also included which are needed to execute the program.

  3. Two Approaches in the Lunar Libration Theory: Analytical vs. Numerical Methods

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Zagidullin, Arthur; Nefediev, Yurii; Kosulin, Valerii

    2016-10-01

    Observation of the physical libration of the Moon and the celestial bodies is one of the astronomical methods to remotely evaluate the internal structure of a celestial body without using expensive space experiments. Review of the results obtained due to the physical libration study, is presented in the report.The main emphasis is placed on the description of successful lunar laser ranging for libration determination and on the methods of simulating the physical libration. As a result, estimation of the viscoelastic and dissipative properties of the lunar body, of the lunar core parameters were done. The core's existence was confirmed by the recent reprocessing of seismic data Apollo missions. Attention is paid to the physical interpretation of the phenomenon of free libration and methods of its determination.A significant part of the report is devoted to describing the practical application of the most accurate to date the analytical tables of lunar libration built by comprehensive analytical processing of residual differences obtained when comparing the long-term series of laser observations with numerical ephemeris DE421 [1].In general, the basic outline of the report reflects the effectiveness of two approaches in the libration theory - numerical and analytical solution. It is shown that the two approaches complement each other for the study of the Moon in different aspects: numerical approach provides high accuracy of the theory necessary for adequate treatment of modern high-accurate observations and the analytic approach allows you to see the essence of the various kind manifestations in the lunar rotation, predict and interpret the new effects in observations of physical libration [2].[1] Rambaux, N., J. G. Williams, 2011, The Moon's physical librations and determination of their free modes, Celest. Mech. Dyn. Astron., 109, 85-100.[2] Petrova N., A. Zagidullin, Yu. Nefediev. Analysis of long-periodic variations of lunar libration parameters on the basis of

  4. Cislunar Near Rectilinear Halo Orbit for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan; Martinez, Roland; Condon, Gerald; Williams, Jacob; Lee, David; Davis, Diane; Barton, Gregg; Bhatt, Sagar; Jang, Jiann-Woei; Clark, Fred; hide

    2016-01-01

    . In fact, a given NRO is not identified by a set of Keplerian orbit parameters, and a valid epoch specific state vector must be first obtained from a multi-body dynamical model. In this paper, the significant performance and operational challenges of conducting human missions to the NRO are evaluated. First, a systematic process for generating full ephemeris based ballistic NROs of various families is outlined to demonstrate the relative ease in which a multi-­-revolution orbit can be found for any epoch and for various orbit geometries. In the Earth-­-Moon system, NROs, which are halo orbits with close passage over a lunar pole, can exist with respect to libration point 1 (L1) or libration point 2 (L2) and are either from a North or South family orbit class with respect to the ecliptic. Second, the ability to maintain the orbit over the lifetime of a habitat mission by applying a reliable station-keeping strategy is investigated. The NRO, while similar to the quasi-­-halo orbits that the Artemis mission flew, requires an updated station keeping strategy. This is due to several dynamical differences such as the increased relative stability of the NRO compared to other halo orbits and the close passage over the lunar surface as shown in Figure 1. Multiple station-keeping strategies are being investigated to ensure a human spacecraft remains on a predictable path. As the NRO is not described in simple two-­-body parameters, analysis must determine the best strategy for targeting a reference NRO as well as how closely a future state should be constrained. In addition, costs will be minimized by determining maneuver directionality based on an identified pattern in the optimal station-keeping solutions or an analytically derived relationship. The candidate station-keeping algorithm must be stable and robust to environmental and vehicle uncertainties as well to navigation estimation and flight control execution errors. To that end, navigation accuracies, the impact on

  5. Dynamics and control of three-body tethered system in large elliptic orbits

    NASA Astrophysics Data System (ADS)

    Shi, Gefei; Zhu, Zhanxia; Zhu, Zheng H.

    2018-03-01

    This paper investigates the dynamic characteristics a three-body tethered satellite system in large elliptic orbits and the control strategy to suppress the libration of the system in orbital transfer process. The system is modeled by a two-piece dumbbell model in the domain of true anomaly. The model consists of one main satellite and two subsatellites connected with two straight, massless and inextensible tethers. Two control strategies based on the sliding mode control are developed to control the libration to the zero state and the steady state respectively. The results of numerical simulations show that the proposed control scheme has good performance in controlling the libration motion of a three-body tethered satellite system in an elliptic orbit with large eccentricity by limited control inputs. Furthermore, Hamiltonians in both states are examined and it shows that less control input is required to control the libration motion to the steady state than that of zero state.

  6. Resonance and Capture of Jupiter Comets

    NASA Astrophysics Data System (ADS)

    Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D.

    A number of Jupiter family comets such as Oterma and Gehrels 3 make a rapid transition from heliocentric orbits outside the orbit of Jupiter to heliocentric orbits inside the orbit of Jupiter and vice versa. During this transition, the comet can be captured temporarily by Jupiter for one to several orbits around Jupiter. The interior heliocentric orbit is typically close to the 3:2 resonance while the exterior heliocentric orbit is near the 2:3 resonance. An important feature of the dynamics of these comets is that during the transition, the orbit passes close to the libration points L_1 and L_2, two of the equilibrium points for the restricted three-body problem for the Sun-Jupiter system. Studying the libration point invariant manifold structures for L_1 and L_2 is a starting point for understanding the capture and resonance transition of these comets. For example, the recently discovered heteroclinic connection between pairs of unstable periodic orbits (one around the L_1 and the other around L_2) implies a complicated dynamics for comets in a certain energy range. Furthermore, the stable and unstable invariant manifold `tubes' associated to libration point periodic orbits, of which the heteroclinic connections are a part, are phase space conduits transporting material to and from Jupiter and between the interior and exterior of Jupiter's orbit.

  7. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

    NASA Astrophysics Data System (ADS)

    Koon, Wang Sang; Lo, Martin W.; Marsden, Jerrold E.; Ross, Shane D.

    2000-06-01

    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L1 and the other around L2, with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the ``interior'' and ``exterior'' Hill's regions and other resonant phenomena.

  8. Libration and obliquity of Mercury from the BepiColombo radio science and camera experiments

    NASA Astrophysics Data System (ADS)

    Pfyffer, G.; van Hoolst, T.; Dehant, V.

    2008-12-01

    Mercury is the most enigmatic among the terrestrial planets, but the space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the 88-day forced libration, the obliquity and the degree-two coefficients of the gravity field of Mercury. Of those quantities, the libration is the most difficult to measure and will hence be a limiting factor We report here on aspects of the observational strategy to determine the libration amplitude and obliquity, taking into account the space and ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission. We simulated these measurements in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet, as a function of the amount of measurements made, the number of different targets considered and their locations on the surface of the planet. From this study, we determine criteria for the distribution and number of target positions to maximize the accuracy on the orientation and rotation determination, from which the obliquity and libration are extracted. We take into account the errors arising from the relative positions of the spacecraft, Mercury and the Earth. We consider various error sources such as the solar thermal influence on the spacecraft bus and the Earth based tracking constraint near solar conjunctions of Mercury. The accuracy on the retrieved parameters is then interpreted in terms of accuracy on the constraints on the interior structure of the planet. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will be sufficient to constrain Mercury interior structure models, if the orbiter

  9. Orbital evolution of small binary asteroids

    NASA Astrophysics Data System (ADS)

    Ćuk, Matija; Nesvorný, David

    2010-06-01

    About 15% of both near-Earth and main-belt asteroids with diameters below 10 km are now known to be binary. These small asteroid binaries are relatively uniform and typically contain a fast-spinning, flattened primary and a synchronously rotating, elongated secondary that is 20-40% as large (in diameter) as the primary. The principal formation mechanism for these binaries is now thought to be YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect induced spin-up of the primary followed by mass loss and accretion of the secondary from the released material. It has previously been suggested (Ćuk, M. [2007]. Astrophys. J. 659, L57-L60) that the present population of small binary asteroids is in a steady state between production through YORP and destruction through binary YORP (BYORP), which should increase or decrease secondary's orbit, depending on the satellite's shape. However, BYORP-driven evolution has not been directly modeled until now. Here we construct a simple numerical model of the binary's orbital as well the secondary's rotational dynamics which includes BYORP and selected terms representing main solar perturbations. We find that many secondaries should be vulnerable to chaotic rotation even for relatively low-eccentricity mutual orbits. We also find that the precession of the mutual orbit for typical small binary asteroids might be dominated by the perturbations from the prolate and librating secondary, rather than the oblate primary. When we evolve the mutual orbit by BYORP we find that the indirect effects on the binary's eccentricity (through the coupling between the orbit and the secondary's spin) dominate over direct ones caused by the BYORP acceleration. In particular, outward evolution causes eccentricity to increase and eventually triggers chaotic rotation of the secondary. We conclude that the most likely outcome will be reestablishing of the synchronous lock with a "flipped" secondary which would then evolve back in. For inward evolution we find

  10. Modern studies of the Lunar Physical libration at the Kazan University

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Hanada, Hideo; Nefedyev, Yuri; Gusev, Alexander

    Main results in investigation of the lunar physical libration in the Kazan University are presented in the report. Modern problems in the lunar spin-dynamics are considered. The accent is done on the fine phenomena of the lunar libration caused by complicated interior structure. Parameters of a free libration are discussed; geometrical interpretation of the chandler-like and free core nutation is given. Over the past 10 years a creative cooperation has been formed between scientists of the Kazan University and the National Astronomical Observatory of Japan (Mizusava). The project ILOM (In situ Lunar Orientation Measurement), planned in the frame of SELENE-2 or -3 missions is aimed at monitoring the physical libration of the Moon. The Russian side has taken over some of the theoretical tasks to ensure the planned observations. One of the important elements of the project is placing of a small optical telescope on the lunar surface with the purpose to detect the lunar physical libration with millisecond accuracy. Computer simulation of the future observations is being done with the purpose of their optimization: effective placement of measuring system on the lunar surface, testing of sensitivity of new observations to various features of the lunar interior structure. The results of the first stage of the simulation are presented in the paper. At this stage the software for the selection of stars and reduction of their coordinates onto the period of observations is developed, the tracks for the selected stars are constructed and analyzed, their sensitivity to the internal characteristics of the lunar body, in the first place, to the selenopotential coefficients, is tested. Inverse problem of lunar physical libration is formulated and solved. It is shown that selenographic coordinates of polar stars are insensitive to longitudinal librations tau(t). Comparing coordinates calculated for two models of a rigid and deformable Moon is carried out and components sensitive to

  11. The capture of lunar materials in low lunar orbit

    NASA Technical Reports Server (NTRS)

    Floyd, M. A.

    1981-01-01

    A scenario is presented for the retrieval of lunar materials sent into lunar orbit to be used as raw materials in space manufacturing operations. The proposal is based on the launch of material from the lunar surface by an electromagnetic mass driver and the capture of this material in low lunar orbit by a fleet of mass catchers which ferry the material to processing facilities when full. Material trajectories are analyzed using the two-body equations of motion, and intercept requirements and the sensitivity of the system to launch errors are determined. The present scenario is shown to be superior to scenarios that place a single mass catcher at the L2 libration point due to increased operations flexibility, decreased mass driver performance requirements and centralized catcher servicing.

  12. The effect of the Earth's oblateness on the Moon's physical libration in latitude

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.

    2013-05-01

    The Moon's physical libration in latitude generated by gravitational forces caused by the Earth's oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth's oblateness: a) has little effect on the instantaneous axis of Moon's rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon's celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse's axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon's poles of rotation move. The dynamical reason for the inclination of the Moon's mean equator with respect to the ecliptic is oblateness of the body of the Moon.

  13. Trajectory Optimization for Crewed Missions to an Earth-Moon L2 Halo Orbit

    NASA Astrophysics Data System (ADS)

    Dowling, Jennifer

    Baseline trajectories to an Earth-Moon L2 halo orbit and round trip trajectories for crewed missions have been created in support of an advanced Orion mission concept. Various transfer durations and orbit insertion locations have been evaluated. The trajectories often include a deterministic mid-course maneuver that decreases the overall change in velocity in the trajectory. This paper presents the application of primer vector theory to study the existence, location, and magnitude of the mid-course maneuver in order to understand how to build an optimal round trip trajectory to an Earth-Moon L2 halo orbit. The lessons learned about when to add mid-course maneuvers can be applied to other mission designs.

  14. Lissajous Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sarah; Reagoso, John

    2015-01-01

    DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes.

  15. Stationkeeping of Lissajous Trajectories in the Earth-Moon System with Applications to ARTEMIS

    NASA Technical Reports Server (NTRS)

    Folta, D. C.; Pavlak, T. A.; Howell, K. C.; Woodard, M. A.; Woodfork, D. W.

    2010-01-01

    In the last few decades, several missions have successfully exploited trajectories near the.Sun-Earth L1 and L2 libration points. Recently, the collinear libration points in the Earth-Moon system have emerged as locations with immediate application. Most libration point orbits, in any system, are inherently unstable. and must be controlled. To this end, several stationkeeping strategies are considered for application to ARTEMIS. Two approaches are examined to investigate the stationkeeping problem in this regime and the specific options. available for ARTEMIS given the mission and vehicle constraints. (I) A baseline orbit-targeting approach controls the vehicle to remain near a nominal trajectory; a related global optimum search method searches all possible maneuver angles to determine an optimal angle and magnitude; and (2) an orbit continuation method, with various formulations determines maneuver locations and minimizes costs. Initial results indicate that consistent stationkeeping costs can be achieved with both approaches and the costs are reasonable. These methods are then applied to Lissajous trajectories representing a baseline ARTEMIS libration orbit trajectory.

  16. Low-Latency Lunar Surface Telerobotics from Earth-Moon Libration Points

    NASA Technical Reports Server (NTRS)

    Lester, Daniel; Thronson, Harley

    2011-01-01

    Concepts for a long-duration habitat at Earth-Moon LI or L2 have been advanced for a number of purposes. We propose here that such a facility could also have an important role for low-latency telerobotic control of lunar surface equipment, both for lunar science and development. With distances of about 60,000 km from the lunar surface, such sites offer light-time limited two-way control latencies of order 400 ms, making telerobotic control for those sites close to real time as perceived by a human operator. We point out that even for transcontinental teleoperated surgical procedures, which require operational precision and highly dexterous manipulation, control latencies of this order are considered adequate. Terrestrial telerobots that are used routinely for mining and manufacturing also involve control latencies of order several hundred milliseconds. For this reason, an Earth-Moon LI or L2 control node could build on the technology and experience base of commercially proven terrestrial ventures. A lunar libration-point telerobotic node could demonstrate exploration strategies that would eventually be used on Mars, and many other less hospitable destinations in the solar system. Libration-point telepresence for the Moon contrasts with lunar telerobotic control from the Earth, for which two-way control latencies are at least six times longer. For control latencies that long, telerobotic control efforts are of the "move-and-wait" variety, which is cognitively inferior to near real-time control.

  17. Orbit determination of the Sentinel satellites - preparations for GPS L2C-tracking

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Fernández, Jaime; Fernández, Carlos; Féménias, Pierre

    2017-04-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus Processing Data Ground Segment (PDGS) of the Sentinel-1, -2 and -3 missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. Since April 2014 four Sentinel satellites have been launched (1A, 2A, 3A, and 1B). Sentinel-2B is expected to be launched in March 2017. Thus the CPOD Service will be operating five satellites simultaneously in spring 2017. The satellites of the Sentinel-1, -2, and -3 missions are all equipped with dual frequency high precision GPS receivers delivering the main observables for POD. Sentinel-3 satellites are additionally equipped with a laser retro reflector for Satellite Laser Ranging and a receiver for DORIS tracking. This allows an additional external validation of the Sentinel-3 orbit accuracy. The three missions require orbital products with various latencies from 30 minutes up to 20-30 days. The accuracy requirements are also different and partly very challenging, targeting 5 cm in 3D for Sentinel-1 and 2-3 cm in radial direction for Sentinel-3. The main quality control of the CPOD orbits is done by validating them with independent orbit solutions provided by the Copernicus POD Quality Working Group. The cross-comparison of orbit solutions from different institutions is essential to monitor and to improve the orbit accuracy. The GPS receivers on the B-satellites have the capability to track L2C signal. The option is, however, not yet activated, because if enabled the old L2 signal can no longer be tracked by the receiver. The measurements of many old GPS IIA and IIR satellites would have to be discarded because of the missing second frequency. To be prepared for the future, tests and simulations are foreseen to learn about the impact of the new observable on the POD results. This paper

  18. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    NASA Astrophysics Data System (ADS)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  19. Human Exploration of Earth's Neighborhood and Mars

    NASA Technical Reports Server (NTRS)

    Condon, Gerald

    2003-01-01

    The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.

  20. Stationkeeping Approach for the Microwave Anisotropy Probe (MAP)

    NASA Technical Reports Server (NTRS)

    Rohrbaugh, Dave; Schiff, Conrad

    2002-01-01

    The Microwave Anisotropy Probe was successfully launched on June 30, 2001 and placed into a Lissajous orbit about the L2 Sun-Earth-Moon libration point. However, the L2 libration point is unstable which necessitates occasional stationkeeping maneuvers in order to maintain the spacecraft s Lissajous orbit. Analyses were performed in order to develop a feasible L2 stationkeeping strategy for the MAP mission. The resulting strategy meets the allotted fuel budget, allowing for enough fuel to handle additional he1 taxes, while meeting the attitude requirements for the maneuvers. Results from the first two stationkeeping maneuvers are included.

  1. Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft

    NASA Technical Reports Server (NTRS)

    Blanchard, D. L.; Walden, H.

    1973-01-01

    A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.

  2. Natural motion around the Martian moon Phobos: the dynamical substitutes of the Libration Point Orbits in an elliptic three-body problem with gravity harmonics

    NASA Astrophysics Data System (ADS)

    Zamaro, M.; Biggs, J. D.

    2015-07-01

    The Martian moon Phobos is becoming an appealing destination for future scientific missions. The orbital dynamics around this planetary satellite is particularly complex due to the unique combination of both small mass-ratio and length-scale of the Mars-Phobos couple: the resulting sphere of influence of the moon is very close to its surface, therefore both the classical two-body problem and circular restricted three-body problem (CR3BP) do not provide an accurate approximation to describe the spacecraft's dynamics in the vicinity of Phobos. The aim of this paper is to extend the model of the CR3BP to consider the orbital eccentricity and the highly-inhomogeneous gravity field of Phobos, by incorporating the gravity harmonics series expansion into an elliptic R3BP, named ER3BP-GH. Following this, the dynamical substitutes of the Libration Point Orbits (LPOs) are computed in this more realistic model of the relative dynamics around Phobos, combining methodologies from dynamical systems theory and numerical continuation techniques. Results obtained show that the structure of the periodic and quasi-periodic LPOs differs substantially from the classical case without harmonics. Several potential applications of these natural orbits are presented to enable unique low-cost operations in the proximity of Phobos, such as close-range observation, communication, and passive radiation shielding for human spaceflight. Furthermore, their invariant manifolds are demonstrated to provide high-performance natural landing and take-off pathways to and from Phobos' surface, and transfers from and to Martian orbits. These orbits could be exploited in upcoming and future space missions targeting the exploration of this Martian moon.

  3. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette

    2016-01-01

    This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.

  4. ARTEMIS Mission Overview: From Concept to Operations

    NASA Technical Reports Server (NTRS)

    Folta, David; Sweetser, Theodore

    2011-01-01

    ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun) repurposed two spacecraft to extend their useful science (Angelopoulos, 2010) by moving them via lunar gravity assists from elliptical Earth orbits to L1 and L2 Earth-Moon libration orbits and then to lunar orbits by exploiting the Earth-Moon-Sun dynamical environment. This paper describes the complete design from conceptual plans using weak stability transfer options and lunar gravity assist to the implementation and operational support of the Earth-Moon libration and lunar orbits. The two spacecraft of the ARTEMIS mission will have just entered lunar orbit at this paper's presentation.

  5. Formation Control of the MAXIM L2 Libration Orbit Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Hartman, Kate; Howell, Kathleen; Marchand, Belinda

    2004-01-01

    The Micro-Arcsecond X-ray Imaging Mission (MAXIM), a proposed concept for the Structure and Evolution of the Universe (SEU) Black Hole Imager mission, is designed to make a ten million-fold improvement in X-ray image clarity of celestial objects by providing better than 0.1 micro-arcsecond imaging. Currently the mission architecture comprises 25 spacecraft, 24 as optics modules and one as the detector, which will form sparse sub-apertures of a grazing incidence X-ray interferometer covering the 0.3-10 keV bandpass. This formation must allow for long duration continuous science observations and also for reconfiguration that permits re-pointing of the formation. To achieve these mission goals, the formation is required to cooperatively point at desired targets. Once pointed, the individual elements of the MAXIM formation must remain stable, maintaining their relative positions and attitudes below a critical threshold. These pointing and formation stability requirements impact the control and design of the formation. In this paper, we provide analysis of control efforts that are dependent upon the stability and the configuration and dimensions of the MAXIM formation. We emphasize the utilization of natural motions in the Lagrangian regions to minimize the control efforts and we address continuous control via input feedback linearization (IFL). Results provide control cost, configuration options, and capabilities as guidelines for the development of this complex mission.

  6. Formation Control of the MAXIM L2 Libration Orbit Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Hartman, Kate; Howell, Kathleen; Marchand, Belinda

    2004-01-01

    The Micro-Arcsecond Imaging Mission (MAXIM), a proposed concept for the Structure and Evolution of the Universe (SEU) Black Hole Imaging mission, is designed to make a ten million-fold improvement in X-ray image clarity of celestial objects by providing better than 0.1 microarcsecond imaging. To achieve mission requirements, MAXIM will have to improve on pointing by orders of magnitude. This pointing requirement impacts the control and design of the formation. Currently the architecture is comprised of 25 spacecraft, which will form the sparse apertures of a grazing incidence X-ray interferometer covering the 0.3-10 keV bandpass. This configuration will deploy 24 spacecraft as optics modules and one as the detector. The formation must allow for long duration continuous science observations and also for reconfiguration that permits re-pointing of the formation. In this paper, we provide analysis and trades of several control efforts that are dependent upon the pointing requirements and the configuration and dimensions of the MAXIM formation. We emphasize the utilization of natural motions in the Lagrangian regions that minimize the control efforts and we address both continuous and discrete control via LQR and feedback linearization. Results provide control cost, configuration options, and capabilities as guidelines for the development of this complex mission.

  7. Preliminary Planar Formation: Flight Dynamics Near Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Segerman, Alan M.; Zedd, Michael F.

    2003-01-01

    NASA's Goddard Space Flight Center is planning a series of missions in the vicinity of the Sun-Earth L2 libration point. Some of these projects will involve a distributed space system of telescope spacecraft acting together as a single telescope for high-resolution. The individual telescopes will be configured in a plane, surrounding a hub, where the telescope plane can be aimed toward various astronomical targets of interest. In preparation for these missions, it is necessary to develop an improved understanding of the dynamical behavior of objects in a planar configuration near L2. The classical circular restricted three body problem is taken as the basis for the analysis. At first order, the motion of such a telescope relative to the hub is described by a system of linear second order differential equations. These equations are identical to the circular restricted problem's linear equations describing the hub motion about L2. Therefore, the fundamental frequencies, both parallel to and normal to the ecliptic plane, are the same for the relative telescope motion as for the hub motion. To maintain the telescope plane for the duration necessary for the planned observations, a halo-type orbit of the telescopes about the hub is investigated. By using a halo orbit, the individual telescopes remain in approximately the same plane over the observation duration. For such an orbit, the fundamental periods parallel to and normal to the ecliptic plane are forced to be the same by careful selection of the initial conditions in order to adjust the higher order forces. The relative amplitudes of the resulting oscillations are associated with the orientation of the telescope plane relative to the ecliptic. As in the circular restricted problem, initial conditions for the linearized equations must be selected so as not to excite the convergent or divergent linear modes. In a higher order analysis, the telescope relative motion equations include the effects of the position of the

  8. Determination of the free lunar libration modes from ephemeris DE430

    NASA Astrophysics Data System (ADS)

    Yang, Yong-Zhang; Li, Jin-Ling; Ping, Jin-Song; Hanada, Hideo

    2017-12-01

    The Moon’s physical librations have been extensively studied, and elaborate researches have been developed for the purpose of deriving accurate modes of free librations. Our motivation comes from the Planetary and Lunar Ephemeris DE430 by JPL/NASA, which was created in April 2013, and is reported to be the most accurate lunar ephemeris today using the data from Gravity Recovery and Interior Laboratory (GRAIL). Therefore, the residuals after fitting the model have reduced owing to improvement in the libration models, and the free librations embedded in the Euler angles have also improved. We use Fourier analysis to extract the approximate frequencies from DE430 and then a quadratic interpolation method is used to determine higher accuracy frequencies. With the frequencies, the linear least-squares fitting method is employed to fit the lunar physical librations to DE430. From this analysis we identified the three modes of free physical librations, and estimated the amplitudes as {1.471}\\prime\\prime in longitude, {0.025}\\prime\\prime in latitude and {8.19}\\prime\\prime× {3.31}\\prime\\prime for the wobble, with the respective periods of 1056.16, 8806.9 and 27262.99 d. Since the free librations damp with time, they require recent excitation or a continuous stimulating mechanism in order to sustain.

  9. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  10. Orbit Maintenance and Navigation of Human Spacecraft at Cislunar Near Rectilinear Halo Orbits

    NASA Technical Reports Server (NTRS)

    Davis, Diane; Bhatt, Sagar; Howell, Kathleen; Jang, Jiann-Woei; Whitley, Ryan; Clark, Fred; Guzzetti, Davide; Zimovan, Emily; Barton, Gregg

    2017-01-01

    Multiple studies have concluded that Earth-Moon libration point orbits are attractive candidates for staging operations. The Near Rectilinear Halo Orbit (NRHO), a member of the Earth-Moon halo orbit family, has been singularly demonstrated to meet multi-mission architectural constraints. In this paper, the challenges associated with operating human spacecraft in the NRHO are evaluated. Navigation accuracies and human vehicle process noise effects are applied to various station keeping strategies in order to obtain a reliable orbit maintenance algorithm. Additionally, the ability to absorb missed burns, construct phasing maneuvers to avoid eclipses and conduct rendezvous and proximity operations are examined.

  11. Applications of Multi-Body Dynamical Environments: The ARTEMIS Transfer Trajectory Design

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Woodard, Mark; Howell, Kathleen; Patterson, Chris; Schlei, Wayne

    2010-01-01

    The application of forces in multi-body dynamical environments to pennit the transfer of spacecraft from Earth orbit to Sun-Earth weak stability regions and then return to the Earth-Moon libration (L1 and L2) orbits has been successfully accomplished for the first time. This demonstrated transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecraft into EarthMoon libration orbits by means of these applications.

  12. Evidence for a Past High-Eccentricity Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Garrick-Betthell, Ian; Wisdom, Jack; Zuber, Maria T.

    2007-01-01

    The large differences between the Moon's three principal moments of inertia have been mystery since Laplace considered them in 1799. Here we present calculations that show how past high eccentricity orbits can account for the moment differences, represented by the low-order lunar gravity field and libration parameters. One of our solutions is that the Moon may have once been in a 3:2 resonance of the orbit period to spin-period, similar to Mercury's present state. The possibility of past high-eccentricity orbits suggests a rich dynamical history and may influence our understanding of the early thermal evolution of the Moon.

  13. Development of the program visualizing the lunar physical libration with Visual Basic

    NASA Astrophysics Data System (ADS)

    Zagidullin, Arthur; Petrova, Natalia

    Study of the Moon, of its spin-orbital characteristics and parameters of the lunar interior is one of the traditional fields of the Kazan astronomical school. However, despite the incredible successes in space investigations of the planets and of the Moon, in last years the interest to celestial mechanics, ephemerides astronomy and astrometry is significantly decreased, especially among the young scientists and students. Therefore, it is encouraging to see the work of the third-year student, which is devoted to the study of the physical libration of the Moon. This report presents the results of the first stage of the above study associated with the study of Cassini's laws in the rotation of the Moon and the visualization of these laws by means the programming language Visual Basic. The Earth moves on the Moon's orbit in selenocentric frame. Dynamic coordinate system is based on the principal axes of inertia of the Moon. The x-axis is directed along the largest principal axis of inertia A, the axis z is a dynamic pole of the Moon associated with the smallest principal axis of inertia C. According to the first Cassini’s law the lunar pole is inclined at a constant angle approximately equal to 1.5 degree. The ascending node of the orbit is coincides with descending node of the lunar equator (the second Cassini’s law) and, as a result, the ecliptic pole lies between the orbit pole and spin pole. Therefore the three vectors directed from the lunar centre of mass to orbit pole, ecliptic pole and spin pole form a single plane. The third Cassini’s law reflects the uniform rotation of the Moon synchronised with orbital motion of the Moon around the Earth (in the selenocentric frame the Earth moves around the Moon). It’s necessary a significant time to calculate the corresponding coordinates of points, which move synchronously on the orbit and on the equator. In any time t the Earth moves with the mean velocity n and forms the angle n*t in the orbit plane. At the

  14. Using Solar Radiation Pressure to Control L2 Orbits

    NASA Technical Reports Server (NTRS)

    Tene, Noam; Richon, Karen; Folta, David

    1998-01-01

    The main perturbations at the Sun-Earth Lagrange points L1 and L2 are from solar radiation pressure (SRP), the Moon and the planets. Traditional approaches to trajectory design for Lagrange-point orbits use maneuvers every few months to correct for these perturbations. The gravitational effects of the Moon and the planets are small and periodic. However, they cannot be neglected because small perturbations in the direction of the unstable eigenvector are enough to cause exponential growth within a few months. The main effect of a constant SRP is to shift the center of the orbit by a small distance. For spacecraft with large sun-shields like the Microwave Anisotropy Probe (MAP) and the Next Generation Space Telescope (NGST), the SRP effect is larger than all other perturbations and depends mostly on spacecraft attitude. Small variations in the spacecraft attitude are large enough to excite or control the exponential eigenvector. A closed-loop linear controller based on the SRP variations would eliminate one of the largest errors to the orbit and provide a continuous acceleration for use in controlling other disturbances. It is possible to design reference trajectories that account for the periodic lunar and planetary perturbations and still satisfy mission requirements. When such trajectories are used the acceleration required to control the unstable eigenvector is well within the capabilities of a continuous linear controller. Initial estimates show that by using attitude control it should be possible to minimize and even eliminate thruster maneuvers for station keeping.

  15. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.

    PubMed

    Correia, Alexandre C M; Laskar, Jacques

    2004-06-24

    Mercury is locked into a 3/2 spin-orbit resonance where it rotates three times on its axis for every two orbits around the sun. The stability of this equilibrium state is well established, but our understanding of how this state initially arose remains unsatisfactory. Unless one uses an unrealistic tidal model with constant torques (which cannot account for the observed damping of the libration of the planet) the computed probability of capture into 3/2 resonance is very low (about 7 per cent). This led to the proposal that core-mantle friction may have increased the capture probability, but such a process requires very specific values of the core viscosity. Here we show that the chaotic evolution of Mercury's orbit can drive its eccentricity beyond 0.325 during the planet's history, which very efficiently leads to its capture into the 3/2 resonance. In our numerical integrations of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-orbit resonant state was the most probable final outcome of the planet's evolution, occurring 55.4 per cent of the time.

  16. Simulating parameters of lunar physical libration on the basis of its analytical theory

    NASA Astrophysics Data System (ADS)

    Petrova, N.; Zagidullin, A.; Nefediev, Yu.

    2014-04-01

    Results of simulating behavior of lunar physical libration parameters are presented. Some features in the speed change of impulse variables are revealed: fast periodic changes in р2 and long periodic changes in р3. A problem of searching for a dynamic explanation of this phenomenon is put. The simulation was performed on the basis of the analytical libration theory [1] in the programming environment VBA.

  17. Librations and tides of icy satellites: model comparison for Enceladus

    NASA Astrophysics Data System (ADS)

    Trinh, A.; Van Hoolst, T.; Baland, R. M.; Beuthe, M.; Rivoldini, A.; Dehant, V. M. A.

    2015-12-01

    The latest measurements of the librations of Enceladus suggest that it could have a global subsurface ocean or a non-hydrostatic core (Thomas et al. 2014). Further observations should constrain the properties of the ice shell, and similar insights are expected from future investigation of Europa and Ganymede.Detailed models of the librations and tides are therefore required to properly interpret these measurements in terms of interior structure. Here we compare the `classical', separate tide and libration models (where spherical symmetry is assumed to compute the tides, Van Hoolst et al. 2013) with our combined tide+libration model (Trinh et al. 2013), both extended to account for non-hydrostatic structure.Even with a global ocean, different mechanisms act to prevent Enceladus's shell from moving independently from the rest. Among those, pressure coupling across the flattened boundaries of the ocean requires special care if the shape is not fully relaxed. We discuss how it should be modelled in the classical approach to be consistent with the combined model.

  18. Effect of mass variation on dynamics of tethered system in orbital maneuvering

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zhao, Guowei; Huang, Hai

    2018-05-01

    In orbital maneuvering, the mass variation due to fuel consumption has an obvious impact on the dynamics of tethered system, which cannot be neglected. The contributions of the work are mainly shown in two aspects: 1) the improvement of the model; 2) the analysis of dynamics characteristics. As the mass is variable, and the derivative of the mass is directly considered in the traditional Lagrange equation, the expression of generalized force is complicated. To solve this problem, the coagulated derivative is adopted in the paper; besides, the attitude dynamics equations derived in this paper take into account the effect of mass variation and the drift of orbital trajectory at the same time. The bifurcation phenomenon, the pendular motion angular frequency, and amplitudes of tether vibration revealed in this paper can provide a reference for the parameters and controller design in practical engineering. In the article, a dumbbell model is adopted to analyze the dynamics of tethered system, in which the mass variation of base satellite is fully considered. Considering the practical application, the case of orbital transfer under a transversal thrust is mainly studied. Besides, compared with the analytical solutions of librational angles, the effects of mass variation on stability and librational characteristic are studied. Finally, in order to make an analysis of the effect on vibrational characteristic, a lumped model is introduced, which reveals a strong coupling of librational and vibrational characteristics.

  19. The analytical and numerical approaches to the theory of the Moon's librations: Modern analysis and results

    NASA Astrophysics Data System (ADS)

    Petrova, N.; Zagidullin, A.; Nefedyev, Y.; Kosulin, V.; Andreev, A.

    2017-11-01

    Observing physical librations of celestial bodies and the Moon represents one of the astronomical methods of remotely assessing the internal structure of a celestial body without conducting expensive space experiments. The paper contains a review of recent advances in studying the Moon's structure using various methods of obtaining and applying the lunar physical librations (LPhL) data. In this article LPhL simulation methods of assessing viscoelastic and dissipative properties of the lunar body and lunar core parameters, whose existence has been recently confirmed during the seismic data reprocessing of ;Apollo; space mission, are described. Much attention is paid to physical interpretation of the free librations phenomenon and the methods for its determination. In the paper the practical application of the most accurate analytical LPhL tables (Rambaux and Williams, 2011) is discussed. The tables were built on the basis of complex analytical processing of the residual differences obtained when comparing long-term series of laser observations with the numerical ephemeris DE421. In the paper an efficiency analysis of two approaches to LPhL theory is conducted: the numerical and the analytical ones. It has been shown that in lunar investigation both approaches complement each other in various aspects: the numerical approach provides high accuracy of the theory, which is required for the proper processing of modern observations, the analytical approach allows to comprehend the essence of the phenomena in the lunar rotation, predict and interpret new effects in the observations of lunar body and lunar core parameters.

  20. Suitable configurations for triangular formation flying about collinear libration points under the circular and elliptic restricted three-body problems

    NASA Astrophysics Data System (ADS)

    Ferrari, Fabio; Lavagna, Michèle

    2018-06-01

    The design of formations of spacecraft in a three-body environment represents one of the most promising challenges for future space missions. Two or more cooperating spacecraft can greatly answer some very complex mission goals, not achievable by a single spacecraft. The dynamical properties of a low acceleration environment such as the vicinity of libration points associated to a three-body system, can be effectively exploited to design spacecraft configurations able of satisfying tight relative position and velocity requirements. This work studies the evolution of an uncontrolled formation orbiting in the proximity of periodic orbits about collinear libration points under the Circular and Elliptic Restricted Three-Body Problems. A three spacecraft triangularly-shaped formation is assumed as a representative geometry to be investigated. The study identifies initial configurations that provide good performance in terms of formation keeping, and investigates key parameters that control the relative dynamics between the spacecraft within the three-body system. Formation keeping performance is quantified by monitoring shape and size changes of the triangular formation. The analysis has been performed under five degrees of freedom to define the geometry, the orientation and the location of the triangle in the synodic rotating frame.

  1. The lunar libration: comparisons between various models - a model fitted to LLR observations

    NASA Astrophysics Data System (ADS)

    Chapront, J.; Francou, G.

    2005-09-01

    We consider 4 libration models: 3 numerical models built by JPL (ephemerides for the libration in DE245, DE403 and DE405) and an analytical model improved with numerical complements fitted to recent LLR observations. The analytical solution uses 3 angular variables (ρ1, ρ2, τ) which represent the deviations with respect to Cassini's laws. After having referred the models to a unique reference frame, we study the differences between the models which depend on gravitational and tidal parameters of the Moon, as well as amplitudes and frequencies of the free librations. It appears that the differences vary widely depending of the above quantities. They correspond to a few meters displacement on the lunar surface, reminding that LLR distances are precise to the centimeter level. Taking advantage of the lunar libration theory built by Moons (1984) and improved by Chapront et al. (1999) we are able to establish 4 solutions and to represent their differences by Fourier series after a numerical substitution of the gravitational constants and free libration parameters. The results are confirmed by frequency analyses performed separately. Using DE245 as a basic reference ephemeris, we approximate the differences between the analytical and numerical models with Poisson series. The analytical solution - improved with numerical complements under the form of Poisson series - is valid over several centuries with an internal precision better than 5 centimeters.

  2. Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Masdemont, J. J.; Gómez, G.; Macau, E. E.; Winter, O. C.

    2014-11-01

    Assume a constellation of satellites is flying near a given nominal trajectory around L4 or L5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4 or L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.

  3. Resonance Occupation in the Kuiper Belt: Case Examples of the 5:2 and Trojan Resonances

    NASA Astrophysics Data System (ADS)

    Chiang, E. I.; Jordan, A. B.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Elliot, J. L.; Kern, S. D.; Trilling, D. E.; Meech, K. J.; Wagner, R. M.

    2003-07-01

    As part of our ongoing Deep Ecliptic Survey (DES) of the Kuiper belt, we report on the occupation of the 1:1 (Trojan), 4:3, 3:2, 7:4, 2:1, and 5:2 Neptunian mean motion resonances (MMRs). The previously unrecognized occupation of the 1:1 and 5:2 MMRs is not easily understood within the standard model of resonance sweeping by a migratory Neptune over an initially dynamically cold belt. Among all resonant Kuiper belt objects (KBOs), the three observed members of the 5:2 MMR discovered by DES possess the largest semimajor axes (a~55.4 AU), the highest eccentricities (e~0.4), and substantial orbital inclinations (i~10deg). Objects (38084) 1999HB12 and possibly 2001KC77 can librate with modest amplitudes of ~90° within the 5:2 MMR for at least 1 Gyr. Their trajectories cannot be explained by close encounters with Neptune alone, given the latter's current orbit. The dynamically hot orbits of such 5:2 resonant KBOs, unlike hot orbits of previously known resonant KBOs, may imply that these objects were preheated to large inclination and large eccentricity prior to resonance capture by a migratory Neptune. Our first discovered Neptunian Trojan, 2001QR322, may not owe its existence to Neptune's migration at all. The trajectory of 2001QR322 is remarkably stable; the object can undergo tadpole-type libration about Neptune's leading Lagrange (L4) point for at least 1 Gyr with a libration amplitude of 24°. Trojan capture probably occurred while Neptune accreted the bulk of its mass. For an assumed albedo of 12%-4%, our Trojan is ~130-230 km in diameter. Model-dependent estimates place the total number of Neptune Trojans resembling 2001QR322 at ~20-60. Their existence helps to rule out violent orbital histories for Neptune.

  4. Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments

    NASA Astrophysics Data System (ADS)

    Vaquero Escribano, Tatiana Mar

    Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems. In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is

  5. Low-temperature matrix effects on orientational motion of Methyl radical trapped in gas solids: Angular tunneling vs. libration

    NASA Astrophysics Data System (ADS)

    Dmitriev, Yurij A.; Zelenetckii, Ilia A.; Benetis, Nikolas P.

    2018-05-01

    EPR investigation of the lineshape of matrix -isolated methyl radical, CH3, spectra recorded in solid N2O and CO2 was carried out. Reversible temperature-dependent line width anisotropy was observed in both matrices. This effect is a fingerprint of the extra-slow radical rotation about the in-plane C2 axes. The rotation was found to be anisotropic and closely correlated to the orientational dynamics of the matrix molecules. It was suggested that a recently discovered "hoping precession" effect of matrix molecules in solid CO2 is a common feature of matrices of the linear molecules CO, N2O, and CO2. A new low-temperature matrix effect, referred to as "libration trap", was proposed which accounts for the changing CH3 reorientational motion about the radical C3-axis from rotation to libration. Temperature dependence of the intensity of the EPR satellites produced by these nonrotating-but librating methyls was presented. This allowed for a rough estimation of the rotation hindering potential due to correlation mismatch between the radical and the nearest matrix molecules' librations.

  6. Numerical approach to constructing the lunar physical libration: results of the initial stage

    NASA Astrophysics Data System (ADS)

    Zagidullin, A.; Petrova, N.; Nefediev, Yu.; Usanin, V.; Glushkov, M.

    2015-10-01

    So called "main problem" it is taken as a model to develop the numerical approach in the theory of lunar physical libration. For the chosen model, there are both a good methodological basis and results obtained at the Kazan University as an outcome of the analytic theory construction. Results of the first stage in numerical approach are presented in this report. Three main limitation are taken to describe the main problem: -independent consideration of orbital and rotational motion of the Moon; - a rigid body model for the lunar body is taken and its dynamical figure is described by inertia ellipsoid, which gives us the mass distribution inside the Moon. - only gravitational interaction with the Earth and the Sun is considered. Development of selenopotential is limited on this stage by the second harmonic only. Inclusion of the 3-rd and 4-th order harmonics is the nearest task for the next stage.The full solution of libration problem consists of removing the below specified limitations: consideration of the fine effects, caused by planet perturbations, by visco-elastic properties of the lunar body, by the presence of a two-layer lunar core, by the Earth obliquity, by ecliptic rotation, if it is taken as a reference plane.

  7. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

    NASA Astrophysics Data System (ADS)

    Subbotin, Stanislav; Dyakova, Veronika

    2018-05-01

    The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

  8. Orbital Injection of the SEDSAT Satellite: Tethered Systems Dynamics and Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Ruiz, Manuel; Pelaez, Jesus

    1996-01-01

    This report deals with the following topics which are all related to the orbital injection of the SEDSAT satellite: Dynamics and Stability of Tether Oscillations after the First Cut. The dynamics of the tether after the first cut (i.e., without the Shuttle attached to it) is investigated. The tether oscillations with the free end are analyzed in order to assess the stability of the rectilinear configuration in between the two tether cuts; analysis of Unstable Modes. The unstable modes that appear for high libration angles are further investigated in order to determine their occurrences and the possible transition from bound librations to rotations; Orbital Release Strategies for SEDSAT. A parametric analysis of the orbital decay rate of the SEDSAT satellite after the two tether cuts has been carried out as a function of the following free parameters: libration amplitude at the end of deployment, deviation angle from LV at the first cut, and orbital anomaly at the second cut. The values of these parameters that provide a minimum orbital decay rate of the satellite (after the two cuts) have been computed; and Dynamics and Control of SEDSAT. The deployment control law has been modified to cope with the new ejection velocity of the satellite from the Shuttle cargo bay. New reference profiles have been derived as well as new control parameters. Timing errors at the satellite release as a function of the variations of the initial conditions and the tension model parameters have been estimated for the modified control law.

  9. Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph

    2015-04-01

    Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.

  10. Space Trajectory Error Analysis Program (STEAP) for halo orbit missions. Volume 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Byrnes, D. V.; Carney, P. C.; Underwood, J. W.; Vogt, E. D.

    1974-01-01

    The six month effort was responsible for the development, test, conversion, and documentation of computer software for the mission analysis of missions to halo orbits about libration points in the earth-sun system. The software consisting of two programs called NOMNAL and ERRAN is part of the Space Trajectories Error Analysis Programs. The program NOMNAL targets a transfer trajectory from earth on a given launch date to a specified halo orbit on a required arrival date. Either impulsive or finite thrust insertion maneuvers into halo orbit are permitted by the program. The transfer trajectory is consistent with a realistic launch profile input by the user. The second program ERRAN conducts error analyses of the targeted transfer trajectory. Measurements including range, doppler, star-planet angles, and apparent planet diameter are processed in a Kalman-Schmidt filter to determine the trajectory knowledge uncertainty.

  11. Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Arcs

    NASA Technical Reports Server (NTRS)

    Howell, K. C.; Marchand, B. G.

    2004-01-01

    Space based observatory and interferometry missions, such as Terrestrial Planet Finder (TPF), Stellar Imager, and MAXIM, have sparked great interest in multi-spacecraft formation flight in the vicinity of the Sun-Earth/Moon (SEM) libration points. The initial phase of this research considered the formation keeping problem from the perspective of continuous control as applied to non-natural formations. In the present study, closer inspection of the flow, corresponding to the stable and center manifolds near the reference orbit, reveals some interesting natural relative motions as well as some discrete control strategies for deployment. A hybrid control strategy is also employed that combines both the natural formation dynamics with non-natural motions via input feedback linearization techniques.

  12. Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 μm out-of-plane librational vibration.

    PubMed

    Cole, William T S; Fellers, Ray S; Viant, Mark R; Leforestier, Claude; Saykally, Richard J

    2015-10-21

    We report the first high-resolution spectra for the out-of-plane librational vibration in the water dimer. Three vibrational subbands comprising a total of 188 transitions have been measured by diode laser spectroscopy near 500 cm(-1) and assigned to (H2O)2 libration-rotation-tunneling eigenstates. The band origin for the Ka = 1 subband is ~524 cm(-1). Librational excitation increases the interchange and bifurcation hydrogen bond rearrangement tunneling splittings by factors of 3-5 and 4-40, respectively. Analysis of the rotational constants obtained from a nonlinear least squares fit indicates that additional external perturbations to the energy levels are likely.

  13. Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 μm out-of-plane librational vibration

    NASA Astrophysics Data System (ADS)

    Cole, William T. S.; Fellers, Ray S.; Viant, Mark R.; Leforestier, Claude; Saykally, Richard J.

    2015-10-01

    We report the first high-resolution spectra for the out-of-plane librational vibration in the water dimer. Three vibrational subbands comprising a total of 188 transitions have been measured by diode laser spectroscopy near 500 cm-1 and assigned to (H2O)2 libration-rotation-tunneling eigenstates. The band origin for the Ka = 1 subband is ˜524 cm-1. Librational excitation increases the interchange and bifurcation hydrogen bond rearrangement tunneling splittings by factors of 3-5 and 4-40, respectively. Analysis of the rotational constants obtained from a nonlinear least squares fit indicates that additional external perturbations to the energy levels are likely.

  14. Earth to Moon Transfers - Direct vs Via Libration Points (L1, L2)

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Wilson, Sam

    2002-01-01

    Recommend Direct Remote Ocean Area impact disposal for caseswithout hazardous (e.g., radioactive) material on LTV kickstage Controlled Earth contact. Relatively small disposal AV. Avoids close encounter with Moon. Trajectories can be very sensitive to initial conditions (at disposalmaneuver).V to correct for errors is small. Recommend Heliocentric Orbit disposal for cases with hazardousmaterial on LTV kickstage. No Earth or Lunar disposal issues (e.g.. impact location, debris footprint,litter). Relatively low disposal AV cost. Further study required to determine possibility of re-contact with Earth.

  15. Computer simulating observations of the Lunar physical libration for the Japanese Lunar project ILOM

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Hanada, Hideo

    2010-05-01

    In the frame of the second stage of the Japanese space mission SELENE-2 (Hanada et al. 2009) the project ILOM (In-situ Lunar Orientation Measurement) planned after 2017years is a kind of instrument for positioning on the Moon. It will be set near the lunar pole and will determine parameters of lunar physical libration by positioning of several tens of stars in the field of view regularly for longer than one year. Presented work is dedicated to analyses of computer simulating future observations. It's proposed that for every star crossing lunar prime meridian its polar distance will be to measure. The methods of optimal star observation are being developed for the future experiment. The equations are constructed to determine libration angles ? (t),ρ(t),σ(t)- on the basis of observed polar distances pobs: (| f1(?,ρ,Iσ,pobs) = 0 |{ f2(?,ρ,Iσ,pobs) = 0 | f3(?,ρ,Iσ,pobs) = 0 |( or f(X) = 0, where ; f = ? f1 ? | f2 | |? f3 |? X = ? ? ? | ρ | |? Iσ |? (1) At the present stage we have developed the software for selection of stars for these future polar observations. Stars were taken from various stellar catalogues, such as the UCAC2-BSS, Hipparcos, Tycho and FK6. The software reduces ICRS coordinates of star to selenographical system at the epoch of observation (Petrova et al., 2009). For example, to the epochs 2017 - 2018 more than 50 stars brighter than m = 12 were selected for the northern pole. In total, these stars give about 600 crossings of the prime meridian during one year. Nevertheless, only a few stars (2-5) may be observed in a vicinity of the one moment. This is not enough to have sufficient sample to exclude various kind of errors. The software includes programmes which can determine the moment of transition of star across the meridian and theoretical values of libration angles at this moments. A serious problem arises when we try to solve equations (1) with the purpose to determine libration angles on the basis of simulated pobs.. Polar distances

  16. Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 μm out-of-plane librational vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, William T. S.; Fellers, Ray S.; Viant, Mark R.

    We report the first high-resolution spectra for the out-of-plane librational vibration in the water dimer. Three vibrational subbands comprising a total of 188 transitions have been measured by diode laser spectroscopy near 500 cm{sup −1} and assigned to (H{sub 2}O){sub 2} libration-rotation-tunneling eigenstates. The band origin for the K{sub a} = 1 subband is ~524 cm{sup −1}. Librational excitation increases the interchange and bifurcation hydrogen bond rearrangement tunneling splittings by factors of 3-5 and 4-40, respectively. Analysis of the rotational constants obtained from a nonlinear least squares fit indicates that additional external perturbations to the energy levels are likely.

  17. Interpreting the librations of a synchronous satellite - How their phase assesses Mimas' global ocean

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoît

    2017-01-01

    Most of the main planetary satellites of our Solar System are expected to be in synchronous rotation, the departures from the strict synchronicity being a signature of the interior. Librations have been measured for the Moon, Phobos, and some satellites of Saturn. I here revisit the theory of the longitudinal librations in considering that part of the interior is not hydrostatic, i.e. has not been shaped by the rotational and tidal deformations, but is fossil. This consideration affects the rotational behavior. For that, I derive the tensor of inertia of the satellite in splitting these two parts, before proposing an analytical solution that I validate with numerical simulations. I apply this new theory on Mimas and Epimetheus, for which librations have been measured from Cassini data. I show that the large measured libration amplitude of these bodies can be explained by an excess of triaxiality that would not result from the hydrostatic theory. This theory cannot explain the phase shift which has been measured in the diurnal librations of Mimas. This speaks against a solid structure for Mimas, i.e. Mimas could have a global internal ocean.

  18. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.

    PubMed

    Ahmed, Mohammed; Namboodiri, V; Singh, Ajay K; Mondal, Jahur A

    2014-10-28

    The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water. Raman-MCR of aqueous Na-salt (NaCl, NaI, Na2SO4, and Na2CO3) solutions provides ion-correlated spectra (IC-spectrum) which predominantly bear the vibrational characteristics of water in the hydration shell of respective anions. Comparison of these IC-spectra with the Raman spectrum of bulk water in different spectral regions reveals that the water is vibrationally decoupled with its neighbors in the hydration shell. Hydrogen-bond strength and librational freedom also vary with the nature of anion: hydrogen-bond strength, for example, decreases as CO3(2-) > SO4(2-) > bulk water ≈ Cl(-) > I(-); and the librational freedom increases as CO3(2-) ≈ SO4(2-) < bulk water < Cl(-) < I(-). It is believed that these structural perturbations influence the dynamics of coherent energy transfer and librational reorientation of water in the hydration shell of anions.

  19. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Astrophysics Data System (ADS)

    Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.

    1986-10-01

    The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.

  20. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.

    1986-01-01

    The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.

  1. Lunar libration point flight dynamics study

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Two satellite concepts, Halo and Hummingbird, for a lunar libration point satellite to be used as a tracking and communications link with the far side of the moon were evaluated. Study areas included flight dynamics, communications, attitude control, propulsion, and system integration. Both concepts were proved feasible, but Halo was shown to be the better concept.

  2. Guidance of a Solar Sail Spacecraft to the Sun - L(2) Point.

    NASA Astrophysics Data System (ADS)

    Hur, Sun Hae

    The guidance of a solar sail spacecraft along a minimum-time path from an Earth orbit to a region near the Sun-Earth L_2 libration point is investigated. Possible missions to this point include a spacecraft "listening" for possible extra-terrestrial electromagnetic signals and a science payload to study the geomagnetic tail. A key advantage of the solar sail is that it requires no fuel. The control variables are the sail angles relative to the Sun-Earth line. The thrust is very small, on the order of 1 mm/s^2, and its magnitude and direction are highly coupled. Despite this limited controllability, the "free" thrust can be used for a wide variety of terminal conditions including halo orbits. If the Moon's mass is lumped with the Earth, there are quasi-equilibrium points near L_2. However, they are unstable so that some form of station keeping is required, and the sail can provide this without any fuel usage. In the two-dimensional case, regulating about a nominal orbit is shown to require less control and result in smaller amplitude error response than regulating about a quasi-equilibrium point. In the three-dimensional halo orbit case, station keeping using periodically varying gains is demonstrated. To compute the minimum-time path, the trajectory is divided into two segments: the spiral segment and the transition segment. The spiral segment is computed using a control law that maximizes the rate of energy increase at each time. The transition segment is computed as the solution of the time-optimal control problem from the endpoint of the spiral to the terminal point. It is shown that the path resulting from this approximate strategy is very close to the exact optimal path. For the guidance problem, the approximate strategy in the spiral segment already gives a nonlinear full-state feedback law. However, for large perturbations, follower guidance using an auxiliary propulsion is used for part of the spiral. In the transition segment, neighboring extremal feedback

  3. Orbital Architectures of Dynamically Complex Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Benjamin E.

    2015-01-01

    The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. We develop a differential evolution Markov chain Monte Carlo (RUN DMC) to tackle these difficult aspects of data analysis. We apply RUN DMC to two classic multi-planet systems from radial velocity surveys, 55 Cancri and GJ 876. For 55 Cancri, we find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet's orbit to cross the stellar surface. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50±610 degrees), but they are not orbiting in a mean-motion resonance. For GJ 876, we can meaningfully constrain the three-dimensional orbital architecture of all the planets based on the radial velocity data alone. By demanding orbital stability, we find the resonant planets have low mutual inclinations (Φ) so they must be roughly coplanar (Φcb = 1.41±0.620.57 degrees and Φbe = 3.87±1.991.86 degrees). The three-dimensional Laplace argument librates with an amplitude of 50.5±7.910.0 degrees, indicating significant past disk migration and ensuring long-term stability. These empirically derived models will provide new challenges for planet formation models and motivate the need for more sophisticated algorithms to analyze exoplanet data.

  4. Dynamics of axial torsional libration under the mantle-inner core gravitational interaction

    NASA Astrophysics Data System (ADS)

    Chao, B. F.

    2017-01-01

    The aims of this paper are (i) formulating the dynamics of the mantle-inner core gravitational (MICG) interaction in terms of the spherical-harmonic multipoles of mass density. The modeled MICG system is composed of two concentric rigid bodies (mantle and inner core) of near-spherical but otherwise heterogeneous configuration, with a fluid outer core in between playing a passive role. We derive the general equation of motion for the vector rotation but only focus on the polar component that describes the MICG axial torsional libration. The torsion constant and hence the square of the natural frequency of the libration is proportional to the product of the equatorial ellipticities of the mantle and inner-core geoid embodied in their multipoles (of two different types) of degree 2 and order 2 (such as the Large Low-Shear-Velocity Provinces above the core-mantle boundary) and (ii) studying the geophysical implications upon equating the said MICG libration to the steady 6 year oscillation that are observed in the Earth's spin rate or the length-of-day variation (ΔLOD). In particular, the MICG torsion constant is found to be Γ>˜z = CIC σz2 ≈ 6.5 × 1019 N m, while the inner core's (BIC - AIC) ≈ 1.08 × 1031 kg m2 gives the inner core triaxiality (BIC - AIC)/CIC ≈ 1.8 × 10-4, about 8 times the whole-Earth value. It is also asserted that the required inner-core ellipticity amounts to no more than 140 m in geoid height, much smaller than the sensitivity required for the seismic wave travel time to resolve the variation of the inner core.

  5. Trajectory analysis of transfers between L4 and L5 and low lunar orbit

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The flight characteristics and spacecraft performance during missions involving flight between the equilateral libration points and the Moon are discussed. The conclusions drawn will show that a minimum energy trajectory is the most efficient transfer technique for this type of flight.

  6. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    NASA Astrophysics Data System (ADS)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  7. Stability Analysis of the Planetary System Orbiting Upsilon Andromedae. 2; Simulations Using New Lick Observatory Fits

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on recent fits to the radial velocity data obtained by the planet search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. Our integrations using the 2000 February parameters show that if the system is nearly planar, then it is stable for at least 100 Myr for m(sub f) = 1/sin i less than or = 4. In some stable systems, the eccentricity of the inner planet experiences large oscillations. The relative periastra of the outer two planets' orbits librate about 0 deg. in most of the stable systems; if future observations imply that the periastron longitudes of these planets are very closely aligned at the present epoch, dynamical simulations may provide precise estimates for the masses and orbital inclinations of these two planets.

  8. Innovations in mission architectures for exploration beyond low Earth orbit

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.; Joosten, B. J.; Lo, M. W.; Ford, K. M.; Hansen, R. J.

    2003-01-01

    Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  9. Far-infrared laser vibration-rotation-tunneling spectroscopy of water clusters in the librational band region of liquid water

    NASA Astrophysics Data System (ADS)

    Keutsch, Frank N.; Fellers, Ray S.; Viant, Mark R.; Saykally, Richard J.

    2001-03-01

    We report the first high resolution spectrum of a librational vibration for a water cluster. Four parallel bands of (H2O)3 were measured between 510 and 525 cm-1 using diode laser vibration-rotation-tunneling (VRT) spectroscopy. The bands lie in the "librational band" region of liquid water and are assigned to the nondegenerate out of plane librational vibration. The observation of at least three distinct bands within 8 cm-1 originating in the vibrational ground state is explained by a dramatically increased splitting of the rovibrational levels relative to the ground state by bifurcation tunneling and is indicative of a greatly reduced barrier height in the excited state. This tunneling motion is of special significance, as it is the lowest energy pathway for breaking and reforming of hydrogen bonds, a salient aspect of liquid water dynamics.

  10. Control of asteroid retrieval trajectories to libration point orbits

    NASA Astrophysics Data System (ADS)

    Ceriotti, Matteo; Sanchez, Joan Pau

    2016-09-01

    The fascinating idea of shepherding asteroids for science and resource utilization is being considered as a credible concept in a not too distant future. Past studies identified asteroids which could be efficiently injected into manifolds which wind onto periodic orbits around collinear Lagrangian points of the Sun-Earth system. However, the trajectories are unstable, and errors in the capture maneuver would lead to complete mission failure, with potential danger of collision with the Earth, if uncontrolled. This paper investigates the controllability of some asteroids along the transfers and the periodic orbits, assuming the use of a solar-electric low-thrust system shepherding the asteroid. Firstly, an analytical approach is introduced to estimate the stability of the trajectories from a dynamical point of view; then, a numerical control scheme based on a linear quadratic regulator is proposed, where the gains are optimized for each trajectory through a genetic algorithm. A stochastic simulation with a Monte Carlo approach is used to account for different perturbed initial conditions and the epistemic uncertainty on the asteroid mass. Results show that only a small subset of the considered combinations of trajectories/asteroids are reliably controllable, and therefore controllability must be taken into account in the selection of potential targets.

  11. Orbital evolution and escape of Martian Trojans due to the Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos

    2017-06-01

    Recently it was shown that the Yarkovsky effect can lead to significant orbit change for Trojans of Mars [1,2] and that the orbital distribution of observed Trojans is consistent with a negative along-track acceleration of the same functional form as seasonal yarkovsky; this feature was used to constrain the age of the Eureka family of Mars Trojan asteroids [2]. In contrast, the Yarkovsky effect appears to have a negligible role in shaping observed families of Jupiter Trojans [3].To explore the evolution and end states of Trojans evolved by the Yarkosky effect, I have numerically integrated test particles under a model of the diurnal variant and for different values of the acceleration strength up to 10-2 AU/Myr for da/dt outside the resonance. I use as a starting point the orbits of the three largest Martian Trojans: 5261 Eureka, (101429) 1998 VF31 and (121514) 1999 UJ7.I find, as in [2], that the evolution of the inclination I and the libration amplitude L depends on the sign of the acceleration and is essentially deterministic. Considering the rate of change of the Tisserand constant [5,6] leads to a simple analytical expression that reproduces well the inclination evolution of the Trojans. The evolution of e is somewhat more stochastic, probably due to chaotic diffusion [4] and/or the influence of Mars’ eccentricity [2].Trojans escape upon reaching the boundaries of stability domains mapped out in [4], demarcated by resonances with principal secular modes and the Kozai resonance. The mechanism of escape is by increasing e and/or the libration amplitude to the point of allowing close encounters with Mars.During the presentation I will describe the ensemble evolution of Trojans under Yarkovsky, how it is related to the lifetime in the 1:1 resonance and discuss the implications for Trojan stability at Earth and Jupiter.[1] Christou, A.A., 2013, Icarus, 224, 144.[2] Ćuk, M., Christou, A.A., Hamilton, D.P., 2015, Icarus, 252, 339.[3] Milani, A., Knezević, Z

  12. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X

  13. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  14. Trajectory design for Saturnian Ocean Worlds orbiters using multidimensional Poincaré maps

    NASA Astrophysics Data System (ADS)

    Davis, Diane Craig; Phillips, Sean M.; McCarthy, Brian P.

    2018-02-01

    Missions based on low-energy orbits in the vicinity of planetary moons, such as Titan or Enceladus, involve significant end-to-end trajectory design challenges due to the gravitational effects of the distant larger primary. To address these challenges, the current investigation focuses on the visualization and use of multidimensional Poincaré maps to perform preliminary design of orbits with significant out-of-plane components, including orbits that provide polar coverage. Poincaré maps facilitate the identification of families of solutions to a given orbit problem and provide the ability to easily respond to changing inputs and requirements. A visual-based design process highlights a variety of trajectory options near Saturn's ocean worlds, including both moon-centered orbits and libration point orbits.

  15. Genealogy and stability of periodic orbit families around uniformly rotating asteroids

    NASA Astrophysics Data System (ADS)

    Hou, Xiyun; Xin, Xiaosheng; Feng, Jinglang

    2018-03-01

    Resonance orbits around a uniformly rotating asteroid are studied from the approach of periodic orbits in this work. Three periodic families (denoted as I, II, and III in the paper) are fundamental in organizing the resonance families. For the planar case: (1) Genealogy and stability of Families I, II and the prograde resonance families are studied. For extremely irregular asteroids, family genealogy close to the asteroid is greatly distorted from that of the two body-problem (2BP), indicating that it is inappropriate to treat the orbital motions as perturbed Keplerian orbits. (2) Genealogy and stability of Family III are also studied. Stability of this family may be destroyed by the secular resonance between the orbital ascending node's precession and the asteroid's rotation. For the spatial case: (1) Genealogy of the near circular three-dimensional periodic families are studied. The genealogy may be broken apart by families of eccentric frozen orbits whose argument of perigee is ;frozen; in space. (2) The joint effects between the secular resonance and the orbital resonances may cause instability to three-dimensional orbital motion with orbit inclinations close to the critical values. Applying the general methodology to a case study - the asteroid Eros and also considering higher order non-spherical terms, some extraordinary orbits are found, such as the ones with orbital plane co-rotating with the asteroid, and the stable frozen orbits with argument of perigee librating around values different from 0°, 90°, 180°, 270°.

  16. The librational band of water ice in AFGL 961: revisited

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Wright, C. M.

    2011-07-01

    Of all the water ice absorption bands seen in the laboratory, the librational band near 12-13 μ m has proven the most difficult to conclusively identify in observational spectra. Cox reported the detection of this band in the IRAS spectrum of the massive protostar AFGL 961 near 13.6 μ m; however, the details of the structure of the band were limited by the quality of the IRAS spectrum and the accuracy of the subtracted silicate absorption. AFGL 961 is also a double system comprising two point-like components separated by ˜6 arcsec (AFGL 961E and AFGL 961W) so the IRAS aperture included both components - it is unclear how the combination of the intrinsic spectra of these two sources may have affected the resultant IRAS spectrum. In this paper we report Spitzer and European Southern Observatory (ESO) 3.6-m mid-infrared spectroscopic observations of each component of AFGL 961. We find a broad absorption feature near 13.1 μ m common to both AFGL 961E and W. The profile and peak wavelength of this feature are well matched by the laboratory spectrum of the librational band of amorphous H2O ice in the temperature range 10-30 K, in agreement with the Cox result. Both AFGL 961E and W also have strong CO2 ice absorption near 15.2 μ m, indistinguishable in profile between the two. However, AFGL 961E shows silicates in absorption near 9.7 μ m, while AFGL 961W shows polycyclic aromatic hydrocarbons in emission and, in a small aperture, also silicates in emission. Uncertainty in where the true continuum lies in the 8-13 μ m spectral region for both AFGL 961E and W means we cannot rule out the possibility that a combination of silicate emission and absorption could be responsible for at least some of the features we see in this region. In this case, a much weaker librational band could still be present, but not as a distinct feature. In either case, the ice must be located in a cool, outer envelope surrounding both stars or a cool foreground cloud, far enough away that the

  17. Effect of catalogues coordinate errors of a star onto determination of the physical libration of the Moon from the observations of stars

    NASA Astrophysics Data System (ADS)

    Petrova, Natalia; Kocoulin, Valerii; Nefediev, Yurii

    2016-07-01

    In the Kazan University computer simulation is carried out for observation of lunar physical libration in projects planned installation of measuring equipment on the lunar surface. One such project is the project of ILOM (Japan), in which on the lunar pole an optical telescope with CCD will be equipped. As a result, the determining the selenographic coordinates (x and y) of a star with an accuracy of 1 ms of arc will be achieved. On the basis of the analytical theory of physical libration we developed a technique for solving the inverse problem of the libration. And we have already shown, for example, that the error in determining selenographic coordinates about ɛ seconds does not lead to errors in the determination of the libration angles ρ and Iσ larger than the 1.414ɛ. Libration in longitude is not determined from observations of the polar star (Petrova et al., 2012). The accuracy of the libration in the inverse problem depends on accuracy of the coordinates of the stars - α and δ - taken from the star catalogs. Checking this influence is the task of the present study. To do simulation we have developed that allows to choose the stars, falling in the field of view of the lunar telescope on observation period. Equatorial coordinates of stars were chosen by us from several fundamental catalogs: UCAC2-BSS, Hipparcos, Tycho, FK6 (part I, III) and the Astronomical Almanac. An analysis of these catalogues from the point of view accuracy of coordinates of stars represented in them was performed by Nefediev et al., 2013. The largest error, 20-70 ms, found in the catalogues UCAC2 and Tycho, the others have an error about a millisecond of arc. We simulated the observations with mentioned errors and got the following results. 1. The error in the declination Δδ of the star causes the same order error in libration parameters ρ and Iσ , while the sensitivity of libration to errors in Δα is ten time smaller. Fortunately, due to statistics (30 to 70, depending on

  18. Exploration of the region near the sun-earth collinear libration points for the control of large formations

    NASA Astrophysics Data System (ADS)

    Heritier, Aurelie

    Spacecraft formations possess many applications in the future of space exploration. During the last decade, due to the detection of a large number of extrasolar planets, new studies on formation flying in multi-body regimes have emerged to support searches for Earth-like planets in other solar systems. The L2 Sun-Earth libration point region has been a popular destination in creating an architecture for astronomical missions. It is a relatively cold environment, far from the disturbances of the Sun and, therefore, ideal for astronomical instruments. However, controlling multiple spacecraft in a multi-body environment is challenging and a good understanding of the natural dynamics in this regime is essential. The current investigation explores the dynamical environment near the L2 Sun-Earth libration point to aid in the control of formations of spacecraft. By exploiting the natural dynamics in the circular restricted three-body model (CR3BP), natural regions are determined that are particularly suitable for maintaining formations of spacecraft. The natural dynamics at small distances from a given reference trajectory are initially investigated for the placement of small formations of spacecraft. Some regions with low relative drift represent suitable locations to maintain small formations and are derived analytically using variational equations. Spacecraft located in such regions avoid large variations in their mutual distances while maintaining the orientation of the formation. These regions represent quadric surfaces, and the type of quadric surfaces, either ellipsoids or elliptic cylinders, depends on the eigenstructure reflecting the phase space along the given reference trajectory. The natural flow at large distances from a given reference trajectory is explored next to characterize regions that are suitable to maintain large formations, i.e., when the mutual distances between the spacecraft reaches tens of thousands of kilometers. Spheres of points at various

  19. Gaia Data Release 1. On-orbit performance of the Gaia CCDs at L2

    NASA Astrophysics Data System (ADS)

    Crowley, C.; Kohley, R.; Hambly, N. C.; Davidson, M.; Abreu, A.; van Leeuwen, F.; Fabricius, C.; Seabroke, G.; de Bruijne, J. H. J.; Short, A.; Lindegren, L.; Brown, A. G. A.; Sarri, G.; Gare, P.; Prusti, T.; Prod'homme, T.; Mora, A.; Martín-Fleitas, J.; Raison, F.; Lammers, U.; O'Mullane, W.; Jansen, F.

    2016-11-01

    The European Space Agency's Gaia satellite was launched into orbit around L2 in December 2013 with a payload containing 106 large-format scientific CCDs. The primary goal of the mission is to repeatedly obtain high-precision astrometric and photometric measurements of one thousand million stars over the course of five years. The scientific value of the down-linked data, and the operation of the onboard autonomous detection chain, relies on the high performance of the detectors. As Gaia slowly rotates and scans the sky, the CCDs are continuously operated in a mode where the line clock rate and the satellite rotation spin-rate are in synchronisation. Nominal mission operations began in July 2014 and the first data release is being prepared for release at the end of Summer 2016. In this paper we present an overview of the focal plane, the detector system, and strategies for on-orbit performance monitoring of the system. This is followed by a presentation of the performance results based on analysis of data acquired during a two-year window beginning at payload switch-on. Results for parameters such as readout noise and electronic offset behaviour are presented and we pay particular attention to the effects of the L2 radiation environment on the devices. The radiation-induced degradation in the charge transfer efficiency (CTE) in the (parallel) scan direction is clearly diagnosed; however, an extrapolation shows that charge transfer inefficiency (CTI) effects at end of mission will be approximately an order of magnitude less than predicted pre-flight. It is shown that the CTI in the serial register (horizontal direction) is still dominated by the traps inherent to the manufacturing process and that the radiation-induced degradation so far is only a few per cent. We also present results on the tracking of ionising radiation damage and hot pixel evolution. Finally, we summarise some of the detector effects discovered on-orbit which are still being investigated.

  20. Electron spin control and spin-libration coupling of a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  1. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  2. Near-Earth asteroid satellite spins under spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naidu, Shantanu P.; Margot, Jean-Luc

    We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaoticmore » regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.« less

  3. Orbital engineering near La2 NiO 4- La2 CuO 4 superlattice interfaces

    NASA Astrophysics Data System (ADS)

    Smadici, S.; Lee, J. C. T.; Morales, J.; Abbamonte, P.; Logvenov, G.; Gozar, A.; Bozovic, I.

    2011-03-01

    Orbital states of transition metal oxides present the opportunity of adjusting material properties to a specific purpose (orbital engineering). A comparison of the resonant soft x-ray reflectivity of La 2 Ni O4 - La 2 Cu O4 superlattices at Ni L and Cu L edges shows different spatial distributions of the occupation of Ni d x 2 -y 2 and d 3z 2 -r 2 orbitals in the LNO layers. This modulation of the Ni valence is possible through a pronounced modulation of the density of oxygen interstitial dopants within the structure which does not follow exactly the structure itself. This is the first observation of orbital engineering in a 214 oxide. This work was supported by Grants DE-FG02-06ER46285, DE-AC02-98CH10886, MA-509-MACA, DE-FG02-07ER46453 and DE-FG02-07ER46471.

  4. Stability of libration points in the restricted four-body problem with variable mass

    NASA Astrophysics Data System (ADS)

    Mittal, Amit; Aggarwal, Rajiv; Suraj, Md. Sanam; Bisht, Virender Singh

    2016-10-01

    We have investigated the stability of the Lagrangian solutions for the restricted four-body problem with variable mass. It has been assumed that the three primaries with masses m1, m2 and m3 form an equilateral triangle, wherein m2=m3. According to Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), the infinitesimal body varies its mass m with time. The space-time transformations of Meshcherskii (Studies on the Mechanics of Bodies of Variable Mass, GITTL, Moscow, 1949) are used by taking the values of the parameters q=1/2, k=0, n=1. The equations of motion of the infinitesimal body with variable mass have been determined. The equations of motion of the current problem differ from the ones of the restricted four-body problem with constant mass. There exist eight libration points, out of which two are collinear with the primary m1 and the rest are non-collinear for a fixed value of parameters γ (m {at time} t/m {at initial time}, 0<γ≤1 ), α (the proportionality constant in Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), 0≤α≤2.2) and μ=0.019 (the mass parameter). All the libration points are found to be unstable. The zero velocity surfaces (ZVS) are also drawn and regions of motion are discussed.

  5. Hydrogen bond breaking dynamics in the water pentamer: Terahertz VRT spectroscopy of a 20 μm libration

    NASA Astrophysics Data System (ADS)

    Cole, William T. S.; Fellers, Raymond S.; Viant, Mark R.; Saykally, Richard J.

    2017-01-01

    Hydrogen bonds in solid and liquid water are formed and broken via librational vibrations, hence characterizing the details of these motions is vital to understanding these important dynamics. Here we report the measurement and assignment of 875 transitions comprising 6 subbands originating from out-of-plane librational transitions of the water pentamer-d10 near 512 cm-1. The precisely measured (ca. 1 ppm) transitions reveal bifurcation splittings of ˜1884 MHz, a ˜4000× enhancement over ground state splittings and 100× greater than predicted by theory. The pentamer is thus the third water cluster to display greatly enhanced bifurcation tunneling upon single quantum excitation of librational vibrations. From the intensity pattern of the observed transitions, the mechanism of bifurcation is established by comparison with theoretical predictions.

  6. Hydrogen bond breaking dynamics in the water pentamer: Terahertz VRT spectroscopy of a 20 μm libration.

    PubMed

    Cole, William T S; Fellers, Raymond S; Viant, Mark R; Saykally, Richard J

    2017-01-07

    Hydrogen bonds in solid and liquid water are formed and broken via librational vibrations, hence characterizing the details of these motions is vital to understanding these important dynamics. Here we report the measurement and assignment of 875 transitions comprising 6 subbands originating from out-of-plane librational transitions of the water pentamer-d 10 near 512 cm -1 . The precisely measured (ca. 1 ppm) transitions reveal bifurcation splittings of ∼1884 MHz, a ∼4000× enhancement over ground state splittings and 100× greater than predicted by theory. The pentamer is thus the third water cluster to display greatly enhanced bifurcation tunneling upon single quantum excitation of librational vibrations. From the intensity pattern of the observed transitions, the mechanism of bifurcation is established by comparison with theoretical predictions.

  7. Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich's dynamical model

    NASA Astrophysics Data System (ADS)

    Williams, James G.; Efroimsky, Michael

    2012-12-01

    Spin-orbit coupling is often described in an approach known as " the MacDonald torque", which has long become the textbook standard due to its apparent simplicity. Within this method, a concise expression for the additional tidal potential, derived by MacDonald (Rev Geophys 2:467-541, 1994), is combined with a convenient assumption that the quality factor Q is frequency-independent (or, equivalently, that the geometric lag angle is constant in time). This makes the treatment unphysical because MacDonald's derivation of the said formula was, very implicitly, based on keeping the time lag frequency-independent, which is equivalent to setting Q scale as the inverse tidal frequency. This contradiction requires the entire MacDonald treatment of both non-resonant and resonant rotation to be rewritten. The non-resonant case was reconsidered by Efroimsky and Williams (Cel Mech Dyn Astron 104:257-289, 2009), in application to spin modes distant from the major commensurabilities. In the current paper, we continue this work by introducing the necessary alterations into the MacDonald-torque-based model of falling into a 1-to-1 resonance. (The original version of this model was offered by Goldreich (Astron J 71:1-7, 1996). Although the MacDonald torque, both in its original formulation and in its corrected version, is incompatible with realistic rheologies of minerals and mantles, it remains a useful toy model, which enables one to obtain, in some situations, qualitatively meaningful results without resorting to the more rigorous (and complicated) theory of Darwin and Kaula. We first address this simplified model in application to an oblate primary body, with tides raised on it by an orbiting zero-inclination secondary. (Here the role of the tidally-perturbed primary can be played by a satellite, the perturbing secondary being its host planet. A planet may as well be the perturbed primary, its host star acting as the tide-raising secondary). We then extend the model to a

  8. Independent Orbiter Assessment (IOA): Assessment of the orbital maneuvering subsystem, volume 2

    NASA Technical Reports Server (NTRS)

    Haufler, W. A.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbital Maneuvering System (OMS) hardware and electrical power distribution and control (EPD and C), generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter OMS hardware and EPD and C systems. Volume 2 continues the presentation of IOA worksheets and contains the critical items list and the NASA FMEA to IOA worksheet cross reference and recommendations.

  9. Computation provides chemical insight into the diverse hydride NMR chemical shifts of [Ru(NHC)4(L)H]0/+ species (NHC = N-heterocyclic carbene; L = vacant, H2, N2, CO, MeCN, O2, P4, SO2, H-, F- and Cl-) and their [Ru(R2PCH2CH2PR2)2(L)H]+ congeners.

    PubMed

    Häller, L Jonas L; Mas-Marzá, Elena; Cybulski, Mateusz K; Sanguramath, Rajashekharayya A; Macgregor, Stuart A; Mahon, Mary F; Raynaud, Christophe; Russell, Christopher A; Whittlesey, Michael K

    2017-02-28

    Relativistic density functional theory calculations, both with and without the effects of spin-orbit coupling, have been employed to model hydride NMR chemical shifts for a series of [Ru(NHC) 4 (L)H] 0/+ species (NHC = N-heterocyclic carbene; L = vacant, H 2 , N 2 , CO, MeCN, O 2 , P 4 , SO 2 , H - , F - and Cl - ), as well as selected phosphine analogues [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 (L)H] + (R = i Pr, Cy; L = vacant, O 2 ). Inclusion of spin-orbit coupling provides good agreement with the experimental data. For the NHC systems large variations in hydride chemical shift are shown to arise from the paramagnetic term, with high net shielding (L = vacant, Cl - , F - ) being reinforced by the contribution from spin-orbit coupling. Natural chemical shift analysis highlights the major orbital contributions to the paramagnetic term and rationalizes trends via changes in the energies of the occupied Ru d π orbitals and the unoccupied σ* Ru-H orbital. In [Ru(NHC) 4 (η 2 -O 2 )H] + a δ-interaction with the O 2 ligand results in a low-lying LUMO of d π character. As a result this orbital can no longer contribute to the paramagnetic shielding, but instead provides additional deshielding via overlap with the remaining (occupied) d π orbital under the L z angular momentum operator. These two effects account for the unusual hydride chemical shift of +4.8 ppm observed experimentally for this species. Calculations reproduce hydride chemical shift data observed for [Ru( i Pr 2 PCH 2 CH 2 P i Pr 2 ) 22 -O 2 )H] + (δ = -6.2 ppm) and [Ru(R 2 PCH 2 CH 2 PR 2 ) 2 H] + (ca. -32 ppm, R = i Pr, Cy). For the latter, the presence of a weak agostic interaction trans to the hydride ligand is significant, as in its absence (R = Me) calculations predict a chemical shift of -41 ppm, similar to the [Ru(NHC) 4 H] + analogues. Depending on the strength of the agostic interaction a variation of up to 18 ppm in hydride chemical shift is possible and this factor (that is not necessarily

  10. (T2L2) Time Transfer by Laser Link

    NASA Technical Reports Server (NTRS)

    Veillet, Christian; Fridelance, Patricia

    1995-01-01

    T2L2 (Time Transfer by Laser Link) is a new generation time transfer experiment based on the principles of LASSO (Laser Synchronization from Synchronous Orbit) and used with an operational procedure developed at OCA (Observatoire de la Cote d'Azur) during the active intercontinental phase of LASSO. The hardware improvements could lead to a precision better than 10 ps for time transfer (flying clock monitoring or ground based clock comparison). Such a package could fly on any spacecraft with a stable clock. It has been developed in France in the frame of the PHARAO project (cooled atom clock in orbit) involving CNES and different laboratories. But T2L2 could fly on any spacecraft carrying a stable oscillator. A GPS satellite would be a good candidate, as T2L2 could allow to link the flying clock directly to ground clocks using light, aiming to important accuracy checks, both for time and for geodesy. Radioastron (a flying VLBI antenna with a H-maser) is also envisioned, waiting for a PHARAO flight. The ultimate goal of T2L2 is to be part of more ambitious missions, as SORT (Solar Orbit Relativity Test), aiming to examine aspects of the gravitation in the vicinity of the Sun.

  11. Saturnʼs Inner Satellites: Orbits, Masses, and the Chaotic Motion of Atlas from New Cassini Imaging Observations

    NASA Astrophysics Data System (ADS)

    Cooper, N. J.; Renner, S.; Murray, C. D.; Evans, M. W.

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate G{{M}Atlas} = (0.384 ± 0.001) × 10-3 km3 s-2, a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find G{{M}Prometheus} = (10.677 ± 0.006) × 10-3 km3 s-2, G{{M}Pandora} = (9.133 ± 0.009) × 10-3 km3 s-2, G{{M}Janus} = (126.51 ± 0.03) × 10-3 km3 s-2, and G{{M}Epimetheus} = (35.110 ± 0.009) × 10-3 km3 s-2, consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon, and Methone, and possibly Neptune's ring arcs. We further demonstrate that Atlas's orbit is chaotic, with a Lyapunov time of ˜10 years, and show that its chaotic behavior is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora, and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not confined to times of apse anti-alignment.

  12. To development of analytical theory of rotational motion of the Moon

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.; Navarro, J. F.

    2009-04-01

    determination of Cassini's inclination and its solution has been obtained in the case of accurate orbit of the Moon. An dynamical explanation of Cassini's laws has been done for model of the Moon with liquid core [2]. 4. Compact formulae for perturbations of the first (and second) order have been constructed for general used variables and for different kinematical and dynamical characteristics of the Moon (23 variables and characteristics: Andoyer-Poincare variables, classical variables, components of angular velocity and angular momentums of the Moon and its core). 5. Analytical formulae for 4 periods of free librations of the Moon have been constructed: for librations in longitude, in pole wobble, for free precession, and "quasi-diurnal" librations, caused by the liquid core. 6. The dynamical effects in the Moon rotation, caused by secular orbital perturbations of the Earth and Sun, have been studied. 2 Structure perturbations of the first order and their tabulation. For example, perturbations (periodic and of mixed type) in inclination ?and in node h of angular momentum of the Moon are determined by formulae: ? = ?0 + ‘ ???(1) cosθv, h = ? + ‘ ¥?¥h?(1) sinθ?. Here ?0 = 1033′50" is the Cassini's inclination of the Moon; ??(1), h?(1)are constant coefficients; θv = v1lM + v2lS + v3F + v4D, ? = (v1,v2,v3,v4)Tare combinations of known classical arguments of the Moon orbital theory; v1,v2,v3 and v4 are integer. 3 Influence of the liquid core and its ellipticity ɛ on amplitudes of the Moon forced and free librations. An influence of the liquid core and its ellipticity is determined by positive correction to amplitudes of librations for model of the rigid Moon. If the amplitudes of librations of rigid Moon we note as 1, so the corresponding amplitudes of librations of the Moon with the liquid core will be characterized by parameter 1 + L, where correction for liquid core is determined by formula L = Cc(1- ɛ2)•C ? Cc•C = 0.5996 × 10-3, where Cand Ccis the

  13. On the first ν6 anti-aligned librating asteroid family of Tina

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Morbidelli, A.

    2011-04-01

    Asteroid families are groups of bodies identified in the space of proper elements or of frequencies that share a common origin in the collisional break-up of their progenitors. Their dynamical evolution is shaped by the interaction with the local web of mean-motion and secular resonances, and by non-gravitational effects, such as the 'Yarkovsky' and 'Yarkovsky-O'Keefe-Radzievskii-Paddack' (YORP) effects. Thus, obtaining information on their age and original ejection velocity field is generally a difficult task. Recently, two families were found to have a large fraction of members in the non-linear secular resonance z1: the Agnia and Padua families. Conserved quantities of the z1resonance allowed for a more precise determination of their ages and ejection velocity fields. So far, however, no family was known to be in a linear secular resonance, such as the ν6 resonance, although individual asteroids were known to be in ν6 anti-aligned librating states. The ν6 resonance occurs when there is a commensurability between the frequency of precession of the pericentre of an asteroid and that of Saturn. As a consequence, in librating states, the resonant argument oscillates around a stable point. In anti-aligned librating states, the resonant argument oscillates around the stable point at 180°. Here we show that the newly identified Tina family is characterized by having all its members in such a state, making it the only family in the asteroid belt known to be completely embedded in a secular resonance configuration. This rare dynamical configuration limits the maximum eccentricity of Tina members, preventing them from experiencing Martian close encounters and forming a stable island of a new dynamical type. The current dispersion of asteroid resonant elements suggests that the family should be at least 2.5 Myr old, while Monte Carlo simulations including the Yarkovsky and YORP effects suggest that the Tina family should be 170+20-30 Myr old.

  14. Real-time control of optimal low-thrust transfer to the Sun-Earth L 1 halo orbit in the bicircular four-body problem

    NASA Astrophysics Data System (ADS)

    Salmani, Majid; Büskens, Christof

    2011-11-01

    In this article, after describing a procedure to construct trajectories for a spacecraft in the four-body model, a method to correct the trajectory violations is presented. To construct the trajectories, periodic orbits as the solutions of the three-body problem are used. On the other hand, the bicircular model based on the Sun-Earth rotating frame governs the dynamics of the spacecraft and other bodies. A periodic orbit around the first libration-point L1 is the destination of the mission which is one of the equilibrium points in the Sun-Earth/Moon three-body problem. In the way to reach such a far destination, there are a lot of disturbances such as solar radiation and winds that make the plans untrustworthy. However, the solar radiation pressure is considered in the system dynamics. To prevail over these difficulties, considering the whole transfer problem as an optimal control problem makes the designer to be able to correct the unavoidable violations from the pre-designed trajectory and strategies. The optimal control problem is solved by a direct method, transcribing it into a nonlinear programming problem. This transcription gives an unperturbed optimal trajectory and its sensitivities with respect perturbations. Modeling these perturbations as parameters embedded in a parametric optimal control problem, one can take advantage of the parametric sensitivity analysis of nonlinear programming problem to recalculate the optimal trajectory with a very smaller amount of computation costs. This is obtained by evaluating a first-order Taylor expansion of the perturbed solution in an iterative process which is aimed to achieve an admissible solution. At the end, the numerical results show the applicability of the presented method.

  15. Prospects for tracking spacecrafts within 2 million Km of Earth with phased array antennas

    NASA Technical Reports Server (NTRS)

    Amoozegar, F.; Jamnejad, V.; Cesarone, R.

    2003-01-01

    Recent advances in space technology for Earth observations, global communications, and positioning systems have created heavy traffic at a variety of orbits. These include smart sensors in low Earth orbits (LEO), internet satellites in LEO and GEO orbits, Earth observing satellites in high Earth orbits (HEO), observatory class satellites at Lagrangian libration points, and those heading for deep space.

  16. Thersites: a `jumping' Trojan?

    NASA Astrophysics Data System (ADS)

    Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E.

    2000-02-01

    In this paper, we examine the dynamical evolution of the asteroid (1868) Thersites, a member of the Trojan belt. Thersites is librating around the Lagrangian point L_4, following, however, a chaotic orbit. The equations of motion for Thersites as well as for a distribution of neighboring initial conditions are integrated numerically for 50 million years in the Outer Solar System model (OSS), which consists of the Sun and the four giant planets. Our results indicate that the probability that this asteroid will eventually escape from the Trojan swarm is rather high. In fact, 20% from our initial distribution escaped within the integration time. Many of the remaining ones also show characteristic `jumps' in the orbital elements, especially the inclination. Secular resonances involving the nodes of the outer planets are found to be responsible for this chaotic behavior. The width of libration and eccentricity values that lead to grossly unstable orbits are calculated and compared with previously known results on the stability of the Trojans. Finally, a very interesting behavior has been observed for one of the escaping asteroids as he `jumped' from L_4 to L_5 where he remained performing a highly inclined libration for ~ 2 Myrs before escaping from the Trojan swarm. According to Homer, Thersites was not only the ugliest of all Greeks that took part in the Trojan war, but also had the most intolerable personality. His nasty habit of making fun of everybody cost him his life, as the last person for whom he spoke ironically about was Achilles, the mightiest warrior of all Greeks, who killed Thersites with just one punch!

  17. Design and Implementation of the ARTEMIS Lunar Transfer Using Multi-Body Dynamics

    NASA Technical Reports Server (NTRS)

    Folta, David; Woodard, Mark; Sweetser, Theodore; Broschart, Stephen B.; Cosgrove, Daniel

    2011-01-01

    The use of multi-body dynamics to design the transfer of spacecraft from Earth elliptical orbits to the Earth-Moon libration (L(sub 1) and L(sub 2)) orbits has been successfully demonstrated by the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission. Operational support of the two ARTEMIS spacecraft is a final step in the realization of a design process that can be used to transfer spacecraft with restrictive operational constraints and fuel limitations. The focus of this paper is to describe in detail the processes and implementation of this successful approach.

  18. SEL2 servicing: increased science return via on-orbit propellant replenishment

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin B.; DeWeese, Keith; Kienlen, Michael; Aranyos, Thomas; Pellegrino, Joseph; Bacon, Charles; Qureshi, Atif

    2016-07-01

    Spacecraft designers are driving observatories to the distant Sun-Earth Lagrange Point 2 (SEL2) to meet ever-increasing science requirements. The mass fraction dedicated to propellant for these observatories to reach and operate at SEL2 will be allocated with the upmost care, as it comes at the expense of optics and instrument masses. As such, these observatories could benefit from on-orbit refueling, allowing greater dry-to-wet mass ratio at launch and/or longer mission life. NASA is developing technologies, capabilities and integrated mission designs for multiple servicing applications in low Earth orbit (LEO), geosynchronous Earth orbit (GEO) and cisluner locations. Restore-L, a mission officially in formulation, will launch a free-flying robotic servicer to refuel a government-owned satellite in LEO by mid 2020. This paper will detail the results of a point design mission study to extend Restore-L servicing technologies from LEO to SEL2. This SEL2 mission would launch an autonomous, robotic servicer spacecraft equipped to extend the life of two space assets through refueling. Two space platforms were chosen to 1) drive the requirements for achieving SEL2 orbit and rendezvous with a spacecraft, and 2) to drive the requirements to translate within SEL2 to conduct a follow-on servicing mission. Two fuels, xenon and hydrazine, were selected to assess a multiple delivery system. This paper will address key mission drivers, such as servicer autonomy (necessitated due to communications latency at L2). Also discussed will be the value of adding cooperative servicing elements to the client observatories to reduce mission risk.

  19. De l'importance des orbites periodiques: Detection et applications

    NASA Astrophysics Data System (ADS)

    Doyon, Bernard

    L'ensemble des Orbites Periodiques Instables (OPIs) d'un systeme chaotique est intimement relie a ses proprietes dynamiques. A partir de l'ensemble (en principe infini) d'OPIs cachees dans l'espace des phases, on peut obtenir des quantites dynamiques importantes telles les exposants de Lyapunov, la mesure invariante, l'entropie topologique et la dimension fractale. En chaos quantique (i.e. l'etude de systemes quantiques qui ont un equivalent chaotique dans la limite classique), ces memes OPIs permettent de faire le pont entre le comportement classique et quantique de systemes non-integrables. La localisation de ces cycles fondamentaux est un probleme complexe. Cette these aborde dans un premier temps le probleme de la detection des OPIs dans les systemes chaotiques. Une etude comparative de deux algorithmes recents est presentee. Nous approfondissons ces deux methodes afin de les utiliser sur differents systemes dont des flots continus dissipatifs et conservatifs. Une analyse du taux de convergence des algorithmes est aussi realisee afin de degager les forces et les limites de ces schemes numeriques. Les methodes de detection que nous utilisons reposent sur une transformation particuliere de la dynamique initiale. Cette astuce nous a inspire une methode alternative pour cibler et stabiliser une orbite periodique quelconque dans un systeme chaotique. Le ciblage est en general combine aux methodes de controle pour stabiliser rapidement un cycle donne. En general, il faut connaitre la position et la stabilite du cycle en question. La nouvelle methode de ciblage que nous presentons ne demande pas de connaitre a priori la position et la stabilite des orbites periodiques. Elle pourrait etre un outil complementaire aux methodes de ciblage et de controle actuelles.

  20. Identification of New Orbits to Enable Future Missions for the Exploration of the Martian Moon Phobos

    NASA Astrophysics Data System (ADS)

    Zamaro, Mattia; Biggs, James D.

    One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. In this paper, a showcase of various classes of non-Keplerian orbits are identified and a number of potential mission applications in the Mars-Phobos system are proposed. These applications include: low-thrust hovering around Phobos for close-range observations; Libration Point Orbits in enhanced three-body dynamics to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation. Moreover, the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.

  1. The Propeller and the Frog

    NASA Astrophysics Data System (ADS)

    Pan, Margaret; Chiang, Eugene

    2010-10-01

    "Propellers" in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the "frog" resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Blériot in Saturn's A ring, our theory predicts a libration period of ~4 years, similar to the ~3.7 year period over which Blériot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  2. The Spin-Orbit Resonant Rotation of Mercury: A Two Degree of Freedom Hamiltonian Model

    NASA Astrophysics Data System (ADS)

    D'Hoedt, Sandrine; Lemaitre, Anne

    2004-04-01

    The paper develops a hamiltonian formulation describing the coupled orbital and spin motions of a rigid Mercury rotation about its axis of maximum moment of inertia in the frame of a 3:2 spin orbit resonance; the (ecliptic) obliquity is not constant, the gravitational potential of mercury is developed up to the second degree terms (the only ones for which an approximate numerical value can be given) and is reduced to a two degree of freedom model in the absence of planetary perturbations. Four equilibria can be calculated, corresponding to four different values of the (ecliptic) obliquity. The present situation of Mercury corresponds to one of them, which is proved to be stable. We introduce action-angle variables in the neighborhood of this stable equilibrium, by several successive canonical transformations, so to get two constant frequencies, the first one for the free spin-orbit libration, the other one for the 1:1 resonant precession of both nodes (orbital and rotational) on the ecliptic plane. The numerical values obtained by this simplified model are in perfect agreement with those obtained by Rambaux and Bois [Astron. Astrophys. 413, 381 393].

  3. Enceladus's ice shell thickness and ocean depth from gravity, topography, and libration measurements

    NASA Astrophysics Data System (ADS)

    Trinh, A.; Rivoldini, A.; Beuthe, M.; Rekier, J.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    One of Cassini's major achievements is the discovery of a global ocean a few kilometres beneath Enceladus's south polar terrain. Here we infer the thickness of Enceladus's ice shell and ocean from Cassini's observations using our latest models of isostatic compensation, shell libration, and ocean dynamics.

  4. Tidal deformation, Orbital Dynamics and JIMO

    NASA Astrophysics Data System (ADS)

    Ratcliff, J. T.; Wu, X.; Williams, J. G.

    2003-12-01

    Observations of Europa, Ganymede and Callisto obtained from encounters by the Galileo spacecraft strongly suggest the possibility of liquid oceans under the icy shells of these Jovian satellites. The strong tidal environments in which these moons are found and the fact that a planetary body with internal fluid undergoes greater deformation than an otherwise solid body make a compelling case for using tidal observations as a method for ocean detection. Given the high degree of uncertainty in our knowledge of the interiors of these moons, a comprehensive geodetic program measuring different physical signatures related to tidal deformation and interior structure is preferred to using separate and various interior parameters that may not be as closely tied to actual measurable quantities. Potential and displacement tidal Love numbers, libration amplitudes of the surface ice shell and rocky mantle, static topography and gravity fields and other quantities should all be included in the measurement objectives. Many geodetic techniques rely heavily upon orbital positions of the spacecraft. Their accurate determination depend on factors such as the orbital configuration, the gravity fields of the icy moons, as well as the duration and geometry of tracking. Given the competing science, engineering and planetary protection demands, orbital accuracy subject to constraints has become a critical mission design issue. Orbit determination simulations and covariance analyses will be used to investigate the achievable accuracies of spacecraft position and geodetic signatures under different orbital and tracking scenarios.

  5. Dynamical analysis of rendezvous and docking with very large space infrastructures in non-Keplerian orbits

    NASA Astrophysics Data System (ADS)

    Colagrossi, Andrea; Lavagna, Michèle

    2018-03-01

    A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth-Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.

  6. THE PROPELLER AND THE FROG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Margaret; Chiang, Eugene, E-mail: mpan@astro.berkeley.ed

    2010-10-20

    'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of themore » co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of {approx}4 years, similar to the {approx}3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.« less

  7. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-11

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen on launch Pad-0A, Friday, July 11, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  8. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  9. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The full Moon sets in the fog behind the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, Saturday, July 12, 2014, launch Pad-0A, NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  10. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen during sunrise, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  11. Quantitative Evidence for Lanthanide-Oxygen Orbital Mixing in CeO2, PrO2, and TbO2.

    PubMed

    Minasian, Stefan G; Batista, Enrique R; Booth, Corwin H; Clark, David L; Keith, Jason M; Kozimor, Stosh A; Lukens, Wayne W; Martin, Richard L; Shuh, David K; Stieber, S Chantal E; Tylisczcak, Tolek; Wen, Xiao-Dong

    2017-12-13

    Understanding the nature of covalent (band-like) vs ionic (atomic-like) electrons in metal oxides continues to be at the forefront of research in the physical sciences. In particular, the development of a coherent and quantitative model of bonding and electronic structure for the lanthanide dioxides, LnO 2 (Ln = Ce, Pr, and Tb), has remained a considerable challenge for both experiment and theory. Herein, relative changes in mixing between the O 2p orbitals and the Ln 4f and 5d orbitals in LnO 2 are evaluated quantitatively using O K-edge X-ray absorption spectroscopy (XAS) obtained with a scanning transmission X-ray microscope and density functional theory (DFT) calculations. For each LnO 2 , the results reveal significant amounts of Ln 5d and O 2p mixing in the orbitals of t 2g (σ-bonding) and e g (π-bonding) symmetry. The remarkable agreement between experiment and theory also shows that significant mixing with the O 2p orbitals occurs in a band derived from the 4f orbitals of a 2u symmetry (σ-bonding) for each compound. However, a large increase in orbital mixing is observed for PrO 2 that is ascribed to a unique interaction derived from the 4f orbitals of t 1u symmetry (σ- and π-bonding). O K-edge XAS and DFT results are compared with complementary L 3 -edge and M 5,4 -edge XAS measurements and configuration interaction calculations, which shows that each spectroscopic approach provides evidence for ground state O 2p and Ln 4f orbital mixing despite inducing very different core-hole potentials in the final state.

  12. Spin and orbital magnetic moments of Fe and Co in Co/Fe and Fe/Co multilayers on Si from L2,3 edge X-ray Magnetic Circular Dichroism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vemuru, Krishnamurthy; Rosenberg, Richard; Mankey, Gary

    Nanostructured FeCo thin films are interesting for magnetic recording applications due to their high saturation magnetization, high Curie temperature and low magnetocrystalline anisotropy. It is desirable to know how the magnetism is modified by the nanostructrure. We report Fe L 2 , 3 edge and Co L2 , 3 edge x-ray magnetic circular dichroism (XMCD) investigations of element specific spin and orbital magnetism of Fe and Co in two multilayer samples: (S1) Si/SiO2/[Co 0.8 nm/Fe 1.6 nm]x32/W (2nm) and (S2) Si/SiO2/[Co 1.6 nm/Fe 0.8 nm]x32/W (2nm) thin films at room temperature. Sum rule analysis of XMCD at Fe L2 , 3 edge in sample S1 shows that the orbital moment of Fe is strongly enhanced and the spin moment is strongly reduced as compared to the values found in bulk Fe. Details of sum rule analysis will be presented to compare and contrast spin magnetic moments and orbital magnetic moments of Fe and Co in the two multilayer samples. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  13. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    NASA Technical Reports Server (NTRS)

    Conn, Tracie R.; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping fuel expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total delta-v required for long-term station keeping and minimummaximummean spacecraft separation distances are also presented.

  14. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    NASA Astrophysics Data System (ADS)

    Renea Conn, Tracie; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping propellant expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total Δv required for long-term station keeping and minimum/maximum/mean spacecraft separation distances are also presented.

  15. Terahertz VRT spectroscopy of the water hexamer-d12 prism: Dramatic enhancement of bifurcation tunneling upon librational excitation

    NASA Astrophysics Data System (ADS)

    Cole, William T. S.; Farrell, James D.; Sheikh, Akber A.; Yönder, Öezlem; Fellers, Raymond S.; Viant, Mark R.; Wales, David J.; Saykally, Richard J.

    2018-03-01

    Using diode laser vibration-rotation-tunneling spectroscopy near 15 Thz (500 cm-1), we have measured and assigned 142 transitions to three a-type librational subbands of the water hexamer-d12 prism. These subbands reveal dramatically enhanced (ca. 1000×) tunneling splittings relative to the ground state. This enhancement is in agreement with that observed for the water dimer, trimer, and pentamer in this same frequency region. The water prism tunneling motion has been predicted to potentially describe the motions of water in interfacial and confined environments; hence, the results presented here indicate that excitation of librational vibrations has a significant impact on the hydrogen bond dynamics in these macroscopic environments.

  16. Sentinel-2A: Orbit Modelling Improvements and their Impact on the Orbit Prediction

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Otten, Michiel; Fernández Sánchez, Jaime; Fernández Martín, Carlos; Féménias, Pierre

    2016-07-01

    Sentinel-2A is the second satellite of the European Copernicus Programme. The satellite has been launched on 23rd June 2015 and it is operational since mid October 2015. This optical mission carries a GPS receiver for precise orbit determination. The Copernicus POD (Precise Orbit Determination) Service is in charge of generating precise orbital products and auxiliary files for Sentinel-2A as well as for the Sentinel-1 and -3 missions. The accuracy requirements for the Sentinel-2A orbit products are not very stringent with 3 m in 3D (3 sigma) for the near real-time (NRT) orbit and 10 m in 2D (3 sigma) for the predicted orbit. The fulfilment of the orbit accuracy requirements is normally not an issue. The Copernicus POD Service aims, however, to provide the best possible orbits for all three Sentinel missions. Therefore, a sophisticated box-wing model is generated for the Sentinel-2 satellite as it is done for the other two missions as well. Additionally, the solar wing of the satellite is rewound during eclipse, which has to be modelled accordingly. The quality of the orbit prediction is dependent on the results of the orbit estimation performed before it. The values of the last estimation of each parameter is taken for the orbit propagation, i.e. estimating ten atmospheric drag coefficients per 24h, the value of the last coefficient is used as a fix parameter for the subsequent orbit prediction. The question is whether the prediction might be stabilised by, e.g. using an average value of all ten coefficients. This paper presents the status and the quality of the Sentinel-2 orbit determination in the operational environment of the Copernicus POD Service. The impact of the orbit model improvements on the NRT and predicted orbits is studied in detail. Changes in the orbit parametrization as well as in the settings for the orbit propagation are investigated. In addition, the impact of the quality of the input GPS orbit and clock product on the Sentinel-2A orbit

  17. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs aftermore » several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.« less

  18. Pluto and Charon: A Case of Precession-Orbit Resonance?

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Smith, David E. (Technical Monitor)

    2000-01-01

    Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.

  19. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community

  20. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is

  1. Spaceflight mechanics 1992; Proceedings of the 2nd AAS/AIAA Meeting, Colorado Springs, CO, Feb. 24-26, 1992. Pts. 1 & 2

    NASA Astrophysics Data System (ADS)

    Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.

    The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.

  2. Spaceflight mechanics 1992; Proceedings of the 2nd AAS/AIAA Meeting, Colorado Springs, CO, Feb. 24-26, 1992. Pts. 1 & 2

    NASA Technical Reports Server (NTRS)

    Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)

    1992-01-01

    The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.

  3. An approach for finding long period elliptical orbits for precursor SEI missions

    NASA Technical Reports Server (NTRS)

    Fraietta, Michael F.; Bond, Victor R.

    1993-01-01

    Precursors for Solar System Exploration Initiative (SEI) missions may require long period elliptical orbits about a planet. These orbits will typically have periods on the order of tens to hundreds of days. Some potential uses for these orbits may include the following: studying the effects of galactic cosmic radiation, parking orbits for engineering and operational test of systems, and ferrying orbits between libration points and low altitude orbits. This report presents an approach that can be used to find these orbits. The approach consists of three major steps. First, it uses a restricted three-body targeting algorithm to determine the initial conditions which satisfy certain desired final conditions in a system of two massive primaries. Then the initial conditions are transformed to an inertial coordinate system for use by a special perturbation method. Finally, using the special perturbation method, other perturbations (e.g., sun third body and solar radiation pressure) can be easily incorporated to determine their effects on the nominal trajectory. An algorithm potentially suitable for on-board guidance will also be discussed. This algorithm uses an analytic method relying on Chebyshev polynomials to compute the desired position and velocity of the satellite as a function of time. Together with navigation updates, this algorithm can be implemented to predict the size and timing for AV corrections.

  4. High Fidelity Modeling of SRP and Its Effect on the Relative Motion of Starshade and WFIRST

    NASA Technical Reports Server (NTRS)

    Farres, Ariadna; Webster, Cassandra; Folta, Dave

    2018-01-01

    In this paper we perform a detailed analysis of how Solar Radiation Pressure (SRP) affects the relative motion of two spacecrafts, the Wide-Field Infrared Survey Telescope (WFIRST) and Starshade, orbiting in the vicinity of the Sun-Earth L2. While WFIRST orbits about its own Libration Point Orbit (LPO), Starshade will fly a specific trajectory to align with WFIRST and observe a Design Reference Mission of pre-determined target stars. In this analysis, we focus on the transfer orbit for Starshade from one observation to the other. We will describe how SRP affects the dynamics of the Starshade relative to WFIRSTand how relevant this effect is in order to get an accurate estimate of the total difference in velocity (delta v).

  5. Overstable librations can account for the paucity of mean motion resonances among exoplanet pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldreich, Peter; Schlichting, Hilke E., E-mail: pmg@ias.edu, E-mail: hilke@mit.edu

    2014-02-01

    We assess the multi-planet systems discovered by the Kepler satellite in terms of current ideas about orbital migration and eccentricity damping due to planet-disk interactions. Our primary focus is on first order mean motion resonances, which we investigate analytically to lowest order in eccentricity. Only a few percent of planet pairs are in close proximity to a resonance. However, predicted migration rates (parameterized by τ{sub n}=n/| n-dot |) imply that during convergent migration most planets would have been captured into first order resonances. Eccentricity damping (parameterized by τ{sub e}=e/| e-dot |) offers a plausible resolution. Estimates suggest τ {sub e}/τmore » {sub n} ∼ (h/a){sup 2} ∼ 10{sup –2}, where h/a is the ratio of disk thickness to radius. Together, eccentricity damping and orbital migration give rise to an equilibrium eccentricity, e {sub eq} ∼ (τ {sub e}/τ {sub n}){sup 1/2}. Capture is permanent provided e {sub eq} ≲ μ{sup 1/3}, where μ denotes the planet to star mass ratio. But for e {sub eq} ≳ μ{sup 1/3}, capture is only temporary because librations around equilibrium are overstable and lead to passage through resonance on timescale τ {sub e}. Most Kepler planet pairs have e {sub eq} > μ{sup 1/3}. Since τ {sub n} >> τ {sub e} is the timescale for migration between neighboring resonances, only a modest percentage of pairs end up trapped in resonances after the disk disappears. Thus the paucity of resonances among Kepler pairs should not be taken as evidence for in situ planet formation or the disruptive effects of disk turbulence. Planet pairs close to a mean motion resonance typically exhibit period ratios 1%-2% larger than those for exact resonance. The direction of this shift undoubtedly reflects the same asymmetry that requires convergent migration for resonance capture. Permanent resonance capture at these separations from exact resonance would demand μ(τ {sub n}/τ {sub e}){sup 1/2} ≳ 0.01, a value

  6. Triangular Libration Points in the CR3BP with Radiation, Triaxiality and Potential from a Belt

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Taura, Joel John

    2017-07-01

    In this paper the equations of motion of the circular restricted three body problem is modified to include radiation of the bigger primary, triaxiality of the smaller primary; and gravitational potential created by a belt. We have obtained that due to the perturbations, the locations of the triangular libration points and their linear stability are affected. The points move towards the bigger primary due to the resultant effect of the perturbations. Triangular libration points are stable for 0<μ<μc0<μ<μc and unstable for μc≤μ≤12μc≤μ≤12, where μcμc is the critical mass ratio affected by the perturbations. The radiation of the bigger primary and triaxiality of the smaller primary have destabilizing propensities, whereas the potential created by the belt has stabilizing propensity. This model could be applied in the study of the motion of a dust particle near radiating -triaxial binary system surrounded by a belt.

  7. Exploration Platform in the Earth-Moon Libration System Based on ISS

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Derechin, Alexander

    2012-01-01

    International Space Station (ISS) industry partners have been working for the past two years on concepts using ISS development methods and residual assets to support a broad range of exploration missions. These concepts have matured along with planning details for NASA's Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) to allow serious consideration for a platform located in the Earth-Moon Libration (EML) system. This platform would provide a flexible basis for future exploration missions and would significantly reduce costs because it will enable re-use of expensive spacecraft and reduce the total number of launches needed to accomplish these missions. ISS provides a robust set of methods which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. We will show how ISS can be used to reduce risk and improve operational flexibility for missions beyond low earth orbit through the development of a new Exploration Platform based in the EML system. The benefits of using the EML system as a gateway will be presented along with additional details of a lunar exploration mission concept. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. We will show how technology developed for ISS can be evolved and adapted to the new exploration challenge. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Finally, we will describe how the EML Platform could be built and deployed and how International access for crew and cargo could be provided.

  8. Stochastic analysis of the control of the movement of the spacecraft in the vicinity of the colinear libration point by means of the forces of luminous pressure

    NASA Technical Reports Server (NTRS)

    Lukyanov, S. S.

    1983-01-01

    This paper is dedicated to the possible investigation of the utilization of the solar radiation pressure for the spacecraft motion control in the vicinity of collinear libration point of planar restricted ring problem of three bodies. The control is realized by changing the solar sail area at its permanent orientation. In this problem the influence of the trajectory errors and the errors of the execution control is accounted. It is worked out, the estimation method of the solar sail sizes, which are necessary for spacecraft keeping in the vicinity of collinear libration point during the certain time with given probability. The main control parameters were calculated for some examples in case of libration points of the Sun-Earth and Earth-Moon systems.

  9. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jennette

    2016-01-01

    Enable future missions Any mission to a DRO or halo orbit could benefit from the capability to transfer between these orbits Chemical propulsion could be used for these transfers, but at high propellant cost Fill gaps in knowledge A variety of transfers using SEP or solar sails have been studied for the Earth-Moon system Most results in literature study a single transfer This is a step toward understanding the wide array of types of transfers available in an N-body force model.

  10. Solar Warning Architecture for Manned Missions to Mars

    DTIC Science & Technology

    2011-06-01

    public discussions of manned missions to return to the Moon, explore near-earth asteroids , and even visit Mars, a deep-space solar weather warning...mission planning, and libration points. In addition, the limited previous analysis on this problem was mined for information. 2.2 Radiation Effects...behind the Earth, on its orbital path. These two libration points are stable along all 3 axes, leading some to theorize there may be asteroids or

  11. Space Trajectory Error Analysis Program (STEAP) for halo orbit missions. Volume 1: Analytic and user's manual

    NASA Technical Reports Server (NTRS)

    Byrnes, D. V.; Carney, P. C.; Underwood, J. W.; Vogt, E. D.

    1974-01-01

    Development, test, conversion, and documentation of computer software for the mission analysis of missions to halo orbits about libration points in the earth-sun system is reported. The software consisting of two programs called NOMNAL and ERRAN is part of the Space Trajectories Error Analysis Programs (STEAP). The program NOMNAL targets a transfer trajectory from Earth on a given launch date to a specified halo orbit on a required arrival date. Either impulsive or finite thrust insertion maneuvers into halo orbit are permitted by the program. The transfer trajectory is consistent with a realistic launch profile input by the user. The second program ERRAN conducts error analyses of the targeted transfer trajectory. Measurements including range, doppler, star-planet angles, and apparent planet diameter are processed in a Kalman-Schmidt filter to determine the trajectory knowledge uncertainty. Execution errors at injection, midcourse correction and orbit insertion maneuvers are analyzed along with the navigation uncertainty to determine trajectory control uncertainties and fuel-sizing requirements. The program is also capable of generalized covariance analyses.

  12. Secular dynamics of an exterior test particle: the inverse Kozai and other eccentricity-inclination resonances

    NASA Astrophysics Data System (ADS)

    Vinson, Benjamin R.; Chiang, Eugene

    2018-03-01

    The behaviour of an interior test particle in the secular three-body problem has been studied extensively. A well-known feature is the Lidov-Kozai resonance in which the test particle's argument of periastron librates about ±90° and large oscillations in eccentricity and inclination are possible. Less explored is the inverse problem: the dynamics of an exterior test particle and an interior perturber. We survey numerically the inverse secular problem, expanding the potential to hexadecapolar order and correcting an error in the published expansion. Four secular resonances are uncovered that persist in full N-body treatments (in what follows, ϖ and Ω are the longitudes of periapse and of ascending node, ω is the argument of periapse, and subscripts 1 and 2 refer to the inner perturber and the outer test particle): (i) an orbit-flipping quadrupole resonance requiring a non-zero perturber eccentricity e1, in which Ω2 - ϖ1 librates about ±90°; (ii) a hexadecapolar resonance (the `inverse Kozai' resonance) for perturbers that are circular or nearly so and inclined by I ≃ 63°/117°, in which ω2 librates about ±90° and which can vary the particle eccentricity by Δe2 ≃ 0.2 and lead to orbit crossing; (iii) an octopole `apse-aligned' resonance at I ≃ 46°/107° wherein ϖ2 - ϖ1 librates about 0° and Δe2 grows with e1; and (iv) an octopole resonance at I ≃ 73°/134° wherein ϖ2 + ϖ1 - 2Ω2 librates about 0° and Δe2 can be as large as 0.3 for small but non-zero e1. Qualitatively, the more eccentric the perturber, the more the particle's eccentricity and inclination vary; also, more polar orbits are more chaotic. Our solutions to the inverse problem have potential application to the Kuiper belt and debris discs, circumbinary planets, and hierarchical stellar systems.

  13. Determination of the Minimum Delta V Transfer Trajectory from a Low Earth Orbit to a Stable Orbit Around the Lagrangian Point L4 in a Restricted Four-Body System.

    DTIC Science & Technology

    1979-12-01

    the Moon revolves around the Earth. T. A . Heppenheimer (Ref 5) and his colleagues B. O’Leary and D. Kaplan (Ref 7) have also examined the pro- blem of...colony location and transfer trajectories. Heppenheimer found a 2/1 resonant orbit around the Earth 2S that could be reached from L2 by a Hohmann...would not allow a catcher near either of these points. In their work together, O’Leary, Kaplan and Heppenheimer found a transfer trajectory from L2

  14. A note on an attempt at more efficient Poisson series evaluation. [for lunar libration

    NASA Technical Reports Server (NTRS)

    Shelus, P. J.; Jefferys, W. H., III

    1975-01-01

    A substantial reduction has been achieved in the time necessary to compute lunar libration series. The method involves eliminating many of the trigonometric function calls by a suitable transformation and applying a short SNOBOL processor to the FORTRAN coding of the transformed series, which obviates many of the multiplication operations during the course of series evaluation. It is possible to accomplish similar results quite easily with other Poisson series.

  15. Orbital ordering in FeV2O4: Spinel with two orbitally active sites

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumyajit; Saha-Dasgupta, T.

    2011-12-01

    By employing first-principles electronic structure calculations, we investigate orbital ordering in FeV2O4, a spinel with orbital degrees of freedom both at Fe and V sites that exhibits two tetragonal phases, one compressed at high temperature and another elongated at low temperature. Our first-principles study shows the ferro-orbital ordering of dx2-y2 and d3z2-r2 types at Fe sites at the high- and low-temperature phases, respectively. The orbital ordering at V sites is found to consist of orbital chains running along different directions with orbitals rotated alternatively within each chain, similar to that found for MnV2O4 [S. Sarkar , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.216405 102, 216405 (2009)]. Further, we find that the single-ion anisotropy effect with hard and easy c axis favors the compressed and elongated tetrahedral shapes. This gives rise to magnetocrystalline anisotropy-dependent shapes, similar to that reported in the context of rare-earth-based magnetic shape memory alloys.

  16. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiler, M.; Seiß, M.; Hoffmann, H.

    The reconstruction of the orbital evolution of the propeller structure Blériot orbiting in Saturn’s A ring from recurrent observations in Cassini ISS images yielded a considerable offset motion from the expected Keplerian orbit. This offset motion can be composed by three sinusoidal harmonics with amplitudes and periods of 1845, 152, 58 km and 11.1, 3.7, and 2.2 years, respectively. In this paper we present results from N -body simulations, where we integrated the orbital evolution of a moonlet, which is placed at the radial position of Blériot under the gravitational action of the Saturnian satellites. Our simulations yield that, especiallymore » the gravitational interactions with Prometheus, Pandora, and Mimas are forcing the moonlet to librate with the right frequencies, but the libration amplitudes are too small to explain the observations. Thus, further mechanisms are needed to explain the amplitudes of the forced librations—e.g., moonlet–ring interactions. Here, we develop a model, where the moonlet is allowed to be slightly displaced with respect to its created gaps breaking the point symmetry and causing a repulsive force in this way. As a result, the evolution of the moonlet’s longitude can be described by a harmonic oscillator. In the presence of external forcing by the outer moons, the libration amplitudes get the more amplified the closer the forcing frequency is to the eigenfrequency of the disturbed propeller oscillator. Applying our model to Blériot, it is possible to reproduce a libration period of 13 years with an amplitude of about 2000 km.« less

  18. CARE AND FEEDING OF FROGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Margaret; Chiang, Eugene, E-mail: mpan@astro.berkeley.edu

    2012-01-15

    'Propellers' are features in Saturn's A ring associated with moonlets that open partial gaps. They exhibit non-Keplerian motion (Tiscareno et al.); the longitude residuals of the best-observed propeller, 'Bleriot', appear consistent with a sinusoid of period {approx}4 years. Pan and Chiang proposed that propeller moonlets librate in 'frog resonances' with co-orbiting ring material. By analogy with the restricted three-body problem, they treated the co-orbital material as stationary in the rotating frame and neglected non-co-orbital material. Here we use simple numerical experiments to extend the frog model, including feedback due to the gap's motion, and drag associated with the Lindblad diskmore » torques that cause Type I migration. Because the moonlet creates the gap, we expect the gap centroid to track the moonlet, but only after a time delay t{sub delay}, the time for a ring particle to travel from conjunction with the moonlet to the end of the gap. We find that frog librations can persist only if t{sub delay} exceeds the frog libration period P{sub lib}, and if damping from Lindblad torques balances driving from co-orbital torques. If t{sub delay} << Pl{sub ib}, then the libration amplitude damps to zero. In the case of Bleriot, the frog resonance model can reproduce the observed libration period P{sub lib} {approx_equal} 4 yr. However, our simple feedback prescription suggests that Bleriot's t{sub delay} {approx} 0.01P{sub lib}, which is inconsistent with the observed libration amplitude of 260 km. We urge more accurate treatments of feedback to test the assumptions of our toy models.« less

  19. Orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films

    DOE PAGES

    Zhu, L. J.; Nie, S. H.; Xiong, P.; ...

    2016-02-24

    The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic-more » to square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less

  20. Orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, L. J.; Nie, S. H.; Xiong, P.

    The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic-more » to square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less

  1. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.

    PubMed

    Raven, Nicole; Rasche, Stefan; Kuehn, Christoph; Anderlei, Tibor; Klöckner, Wolf; Schuster, Flora; Henquet, Maurice; Bosch, Dirk; Büchs, Jochen; Fischer, Rainer; Schillberg, Stefan

    2015-02-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium. © 2014 Wiley Periodicals, Inc.

  2. The BepiColombo MORE gravimetry and rotation experiments with the ORBIT14 software

    NASA Astrophysics Data System (ADS)

    Cicalò, S.; Schettino, G.; Di Ruzza, S.; Alessi, E. M.; Tommei, G.; Milani, A.

    2016-04-01

    The BepiColombo mission to Mercury is an ESA/JAXA cornerstone mission, consisting of two spacecraft in orbit around Mercury addressing several scientific issues. One spacecraft is the Mercury Planetary Orbiter, with full instrumentation to perform radio science experiments. Very precise radio tracking from Earth, on-board accelerometer and optical measurements will provide large data sets. From these it will be possible to study the global gravity field of Mercury and its tidal variations, its rotation state and the orbit of its centre of mass. With the gravity field and rotation state, it is possible to constrain the internal structure of the planet. With the orbit of Mercury, it is possible to constrain relativistic theories of gravitation. In order to assess that all the scientific goals are achievable with the required level of accuracy, full cycle numerical simulations of the radio science experiment have been performed. Simulated tracking, accelerometer and optical camera data have been generated, and a long list of variables including the spacecraft initial conditions, the accelerometer calibrations and the gravity field coefficients have been determined by a least-squares fit. The simulation results are encouraging: the experiments are feasible at the required level of accuracy provided that some critical terms in the accelerometer error are moderated. We will show that BepiColombo will be able to provide at least an order of magnitude improvement in the knowledge of Love number k2, libration amplitudes and obliquity, along with a gravity field determination up to degree 25 with a signal-to-noise ratio of 10.

  3. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  4. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, C. H.; Medling, S. A.; Jiang, Yu

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These newmore » results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.« less

  5. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 2

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 2 continues the presentation of IOA worksheets.

  6. Cooperative motion in liquids: On librational dynamics of chloroform throughout its normal liquid-phase range

    NASA Astrophysics Data System (ADS)

    Rothschild, Walter G.; Cavagnat, Raymond M.

    1994-03-01

    We have extended the Raman spectral accumulations of the ν3 mode (A1, 367 cm-1) of liquid CHCl3-Cl-35 and its simulation in terms of an orientational equilibrium renewal process [W. G. Rothschild, R. M. Cavagnat, and P. Maraval, J. Chem. Phys. 99, 8922 (1993)] to a temperature of 338 K, about the normal boiling point of the system (335 K). The values of the best-fit parameters predict that the orientational motion of liquid chloroform, even at such a relatively high kinetic energy, is described predominantly by libratory states; their lifetime (˜1 ps) is four times longer than that of the free-rotational steps. The character of the orientational motion of the system, when traversing the range of 213 to 338 K from just above its melting to near its boiling point at about atmospheric pressure, reflects the softening of the liquid-cage structure in terms of an increasing dispersion and/or a decreasing value of the mean libration frequency, a lowering of the depth of its potential well, but near-invariance of its lifetime. Simultaneously, there is an approximately twofold increase in the lifetime of the much shorter stages of free-rotational motion. In essence, the system dynamics remain that of an assembly of librators.

  7. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Barnes, W.L.; Butler, J.J.

    2004-01-01

    A system to provide radiometric calibration of remote sensing imaging instruments on-orbit using the Moon has been developed by the US Geological Survey RObotic Lunar Observatory (ROLO) project. ROLO has developed a model for lunar irradiance which treats the primary geometric variables of phase and libration explicitly. The model fits hundreds of data points in each of 23 VNIR and 9 SWIR bands; input data are derived from lunar radiance images acquired by the project's on-site telescopes, calibrated to exoatmospheric radiance and converted to disk-equivalent reflectance. Experimental uncertainties are tracked through all stages of the data processing and modeling. Model fit residuals are ???1% in each band over the full range of observed phase and libration angles. Application of ROLO lunar calibration to SeaWiFS has demonstrated the capability for long-term instrument response trending with precision approaching 0.1% per year. Current work involves assessing the error in absolute responsivity and relative spectral response of the ROLO imaging systems, and propagation of error through the data reduction and modeling software systems with the goal of reducing the uncertainty in the absolute scale, now estimated at 5-10%. This level is similar to the scatter seen in ROLO lunar irradiance comparisons of multiple spacecraft instruments that have viewed the Moon. A field calibration campaign involving NASA and NIST has been initiated that ties the ROLO lunar measurements to the NIST (SI) radiometric scale.

  8. Pegasus XL CYGNSS Prepared for Launch Aboard Orbital ATK's L-101

    NASA Image and Video Library

    2016-12-10

    At Cape Canaveral Air Force Station's Skid Strip the Orbital ATK L-1011 Stargazer aircraft is being prepared to launch NASA's Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The eight micro satellites are aboard an Orbital ATK Pegasus XL rocket strapped to the underside of the Stargazer. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 12. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  9. Research on the transfers to Halo orbits from the view of invariant manifolds

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Tan, Tian; Xu, ShiJie

    2012-04-01

    This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of applying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evolutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all controlled manifolds are captured because they lie inside the boundary of Earth's gravity trap in the configuration space. The evolutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the altitude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate single- impulse flyby trajectories.

  10. Charged Particle Environment Definition for NGST: L2 Plasma Environment Statistics

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Blackwell, William C.; Neergaard, Linda F.; Evans, Steven W.; Hardage, Donna M.; Owens, Jerry K.

    2000-01-01

    The plasma environment encountered by the Next Generation Space Telescope satellite in a halo orbit about L2 can include the Earth's magnetotail and magnetosheath in addition to the solar wind depending on the orbital radius chosen for the mission. Analysis of plasma environment impacts on the satellite requires knowledge of the average and extreme plasma characteristics to assess the magnitude of spacecraft charging and materials degradation expected for the mission lifetime. This report describes the analysis of plasma data from instruments onboard the IMP 8 and Geotail spacecraft used to produce the plasma database for the LRAD engineering-level phenomenology code developed to provide the NGST L2 environment definition.

  11. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    NASA Astrophysics Data System (ADS)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  12. Use of Invariant Manifolds for Transfers Between Three-Body Systems

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Howell, Kathleen

    2003-01-01

    The Lunar L1 and L2 libration points have been proposed as gateways granting inexpensive access to interplanetary space. To date, only individual solutions to the transfer between three-body systems have been found. The methodology to solve the problem for arbitrary three-body systems and entire families of orbits does not exist. This paper presents the initial approaches to solve the general problem for single and multiple impulse transfers. Two different methods of representing and storing 7-dimensional invariant manifold data are presented. Some particular solutions are presented for the transfer problem, though the emphasis is on developing methodology for solving the general problem.

  13. Representations of Invariant Manifolds for Applications in Three-Body Systems

    NASA Technical Reports Server (NTRS)

    Howell, K.; Beckman, M.; Patterson, C.; Folta, D.

    2004-01-01

    The Lunar L1 and L2 libration points have been proposed as gateways granting inexpensive access to interplanetary space. To date, only individual solutions to the transfer between three-body systems have been found. The methodology to solve the problem for arbitrary three-body systems and entire families of orbits is currently being studied. This paper presents an initial approach to solve the general problem for single and multiple impulse transfers. Two different methods of representing and storing the invariant manifold data are presented. Some particular solutions are presented for two types of transfer problems, though the emphasis is on developing the methodology for solving the general problem.

  14. Minimum impulse three-body trajectories.

    NASA Technical Reports Server (NTRS)

    D'Amario, L.; Edelbaum, T. N.

    1973-01-01

    A rapid and accurate method of calculating optimal impulsive transfers in the restricted problem of three bodies has been developed. The technique combines a multi-conic method of trajectory integration with primer vector theory and an accelerated gradient method of trajectory optimization. A unique feature is that the state transition matrix and the primer vector are found analytical without additional integrations or differentiations. The method has been applied to the determination of optimal two and three impulse transfers between the L2 libration point and circular orbits about both the earth and the moon.

  15. Orbital resonances of Taiwan's FORMOSAT-2 remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Fa; Hwang, Cheinway

    2018-06-01

    Unlike a typical remote sensing satellite that has a global coverage and non-integral orbital revolutions per day, Taiwan's FORMOSAT-2 (FS-2) satellite has a non-global coverage due to the mission requirements of one-day repeat cycle and daily visit around Taiwan. These orbital characteristics result in an integer number of revolutions a day and orbital resonances caused by certain components of the Earth's gravity field. Orbital flight data indicated amplified variations in the amplitudes of FS-2's Keplerian elements. We use twelve years of orbital observations and maneuver data to analyze the cause of the resonances and explain the differences between the simulated (at the pre-launch stage) and real orbits of FS-2. The differences are quantified using orbital perturbation theories that describe secular and long-period orbital evolutions caused by resonances. The resonance-induced orbital rising rate of FS-2 reaches +1.425 m/day, due to the combined (modeled) effect of resonances and atmospheric drags (the relative modeling errors < 10%). The concave shapes in the time-evolution of the longitude of descending node (LonDN) coincide with the positive rates of daily semi-major axis (SMA) change, also caused by resonances. The non-zonal geopotential coefficients causing the resonance effects contributed up to 45% of FS-2's inclination decline. Our retrospective analysis of FS-2's resonant orbit can provide lessons for a remote sensing mission similar to FS-2, especially in the early mission design and planning phase.

  16. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  17. On the stability of dust orbits in mean-motion resonances perturbed by from an interstellar wind

    NASA Astrophysics Data System (ADS)

    Pástor, Pavol

    2014-09-01

    Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange's planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting-Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.

  18. Stability of the Nagaoka-type ferromagnetic state in a t2 g orbital system on a cubic lattice

    NASA Astrophysics Data System (ADS)

    Bobrow, Eric; Li, Yi

    2018-04-01

    We generalize the previous exact results of the Nagaoka-type itinerant ferromagnetic states in a three-dimensional t2 g orbital system to allow for multiple holes. The system is a simple cubic lattice with each site possessing dx y,dy z, and dx z orbitals, which allow two-dimensional hopping within each orbital plane. In the strong-coupling limit of U →∞ , the orbital-generalized Nagaoka ferromagnetic states are proved to be degenerate with the ground state in the thermodynamic limit when the hole number per orbital layer scales slower than L1/2. This result is valid for arbitrary values of the ferromagnetic Hund's coupling J >0 and interorbital repulsion V ≥0 . The stability of the Nagaoka-type state at finite electron densities with respect to a single spin flip is investigated. These results provide helpful guidance for studying the mechanism of itinerant ferromagnetism for the t2 g orbital materials.

  19. The Inherent Limitations of Spacepower: Fact or Fiction?

    DTIC Science & Technology

    1995-01-01

    advantageously to affect near-earth space, as well as the Earth, itself. These are termed the libration points . Collins writes: The five so-called libration ... Libration points allow for little or no energy expense for station keeping, while operating from atop the "gravity well" allows for high potential energy...navigation, communica- tions, earth resources, lift orbit transfer , and tracking and control systems. Integrating many aspects of these systems to serve both

  20. Analysis of direct transfer trajectories from LL2 halo orbits to LLOs

    NASA Astrophysics Data System (ADS)

    Cao, Pengfei; He, Boyong; Li, Haiyang

    2017-09-01

    A convenient procedure for designing the direct transfer trajectory from lunar L2 point (LL2) halo orbit to a low lunar orbit (LLO) is presented in this paper. The trajectory characteristics are analyzed to support the manned lunar missions design aimed at lunar surface global access. The concise procedure is established based on the circular restricted three-body problem (CR3BP) model. An analytical algorithm is employed to estimate an initial maneuver vector for approaching the Moon in its close vicinity. An iteration process is adopted to generate favorable trajectory that satisfies the constraints at perilune. By introducing a number of intermediate coordinate frames, an algorithm to compute the arriving LLO inclination and right ascension of ascending node (RAAN) is proposed. The orbital inclination and RAAN in this paper are defined and established in the J2000 frame rather than in the synodical frame. Numerical results show that, regardless of value of out-of-plane amplitude (Az) of the halo orbit, the overall maneuver cost of the trajectory largely depends on departure position, and it has two minima around 0.65 km/s. Further study shows that the values of the arriving LLO inclination and RAAN largely depend on the choices of the departure time and the value of Az. The periodicity, due to the natural motion of the Moon, is discovered to play a role in this time dependency. It is concluded that the fuel optimal trajectory permits access to almost any final lunar orbit, including a polar orbit, by means of varying the departure time and Az value.

  1. Effect of electromagnetic field on Kordylewski clouds formation

    NASA Astrophysics Data System (ADS)

    Salnikova, Tatiana; Stepanov, Sergey

    2018-05-01

    In previous papers the authors suggest a clarification of the phenomenon of appearance-disappearance of Kordylewski clouds - accumulation of cosmic dust mass in the vicinity of the triangle libration points of the Earth-Moon system. Under gravi-tational and light perturbation of the Sun the triangle libration points aren't the points of relative equilibrium. However, there exist the stable periodic motion of the particles, surrounding every of the triangle libration points. Due to this fact we can consider a probabilistic model of the dust clouds formation. These clouds move along the periodical orbits in small vicinity of the point of periodical orbit. To continue this research we suggest a mathematical model to investigate also the electromagnetic influences, arising under consideration of the charged dust particles in the vicinity of the triangle libration points of the Earth-Moon system. In this model we take under consideration the self-unduced force field within the set of charged particles, the probability distribution density evolves according to the Vlasov equation.

  2. Rotation-libration in a hierarchic supramolecular rotor-stator system: arrhenius activation and retardation by local interaction.

    PubMed

    Wahl, Markus; Stöhr, Meike; Spillmann, Hannes; Jung, Thomas A; Gade, Lutz H

    2007-04-07

    Fourfold symmetric zinc-octaethylporphyrin (OEP) has been incorporated in the holes of the hexagonal molecular network generated by thermal dehydrogenation of 4,9-diaminoperylene-quinone-3,10-diimine (DPDI) on a Cu(111) surface and displayed hindered rotation; the reorganization between the potential minima, a rotation-libration, which is characterized by an activation energy of ED=0.17+/-0.03 eV, has been monitored in the STM tunnelling currents as a bi-state "switching".

  3. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-29

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen at the Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  4. First Numerical Simulations of Turbulent Dynamos Driven by Libration, Precession and Tides in Triaxial Ellipsoids - An Alternative Route for Planetary Magnetism

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Kanuganti, S. R.; Favier, B.

    2017-12-01

    Most of the time, planetary dynamos are - tacitly or not - associated with thermo-solutal convection. The convective dynamo model has indeed proven successful to explain the current Earth's magnetic field. However, its results are sometimes difficult to reconcile with observational data and its validity can be questioned for several celestial bodies. For instance, the small size of the Moon and Ganymede makes it difficult to maintain a sufficient temperature gradient to sustain convection and to explain their past and present magnetic fields, respectively. The same caveat applies to the growing number of planetesimals shown to have generated magnetic fields in their early history. Finally, the energy budget of the early Earth is difficult to reconcile with a convective dynamo before the onset of inner core growth. Significant effort has thus been put into finding new routes for planetary dynamo. In particular, the rotational dynamics of planets, moons and small bodies, where their average spinning motion is periodically perturbed by the small mechanical forcings of libration, precession and/or tides, is now widely accepted as an efficient source of core turbulence. The underlying mechanism relies on a parametric instability where the inertial waves of the rotating fluid core are resonantly excited by the small forcing, leading to exponential growth and bulk filling intense motions, pumping their energy from the orbital dynamics. Dynamos driven by mechanical forcing have been suggested for the Moon, Mars, Io, the early Earth, etc. However, the real dynamo capacity of the corresponding flows has up-to-now been studied only in very limited cases, with simplified spherical/spheroidal geometries and/or overly viscous fluids. We will present here the first numerical simulations of dynamos driven by libration, precession and tides, in the triaxial ellipsoidal geometry and in the turbulent regime relevant for planetary cores. We will describe the numerical techniques

  5. NASA Human Spaceflight Architecture Team Cis-Lunar Analysis

    NASA Technical Reports Server (NTRS)

    Lupisella, M.; Bobskill, M. R.

    2012-01-01

    The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Teait1 (HAT) has been perfom1ing analyses of a number of cis-lunar locations to infom1 architecture development, transportation and destination elements definition, and operations. The cis-lunar domain is defined as that area of deep space under the gravitation influence of the earth-moon system, including a set of orbital locations (low earth orbit (LEO]. geosynchronous earth orbit [GEO]. highly elliptical orbits [HEO]); earth-moon libration or "Lagrange·· points (EMLl through EMLS, and in particular, EMLI and EML2), and low lunar orbit (LLO). We developed a set of cis-lunar mission concepts defined by mission duration, pre-deployment, type of mission, and location, to develop mission concepts and the associated activities, capabilities, and architecture implications. To date, we have produced two destination operations J concepts based on present human space exploration architectural considerations. We have recently begun defining mission activities that could be conducted within an EM LI or EM L2 facility.

  6. Solar heavy ion Heinrich fluence spectrum at low earth orbit.

    PubMed

    Croley, D R; Spitale, G C

    1998-01-01

    Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.

  7. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen as the launch gantry is moved at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  8. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen moments after the launch gantry was moved at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  9. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  10. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-29

    The upper levels of the launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, are seen at the Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  11. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-27

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen in this black and white infrared view at Space Launch Complex 2, Friday, June 27, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  12. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    NASA Administrator Charles Bolden, left, talks with an engineer at the base of the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, Monday, June 30, 2014, Space Launch Complex 2, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  13. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    Workers monitor the progress of the rollback of the launch gantry from the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, at Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  14. Spin-Orbit Evolution of Mercury Revisited

    DTIC Science & Technology

    2014-06-23

    Astronomy and Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA. cUS Naval...numerical simulations. So the principal novelty of our paper is that the 3:2 end-state is more ancient than the same end-state obtained when the constant...longitudinal librations (Margot et al., 2007), which are significantly larger in amplitude than what should be expected from a uniformly solid planet. As a

  15. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    A United Launch Alliance Delta II rocket launches with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  16. Backgrounds, radiation damage, and spacecraft orbits

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.

  17. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    NASA Administrator Charles Bolden answers social media attendees questions from just outside the launch pad where the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard sits ready to launch, Monday, June 30, 2014, Space Launch Complex 2 Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  18. Intial orbit determination results for Jason-1: towards a 1-cm orbit

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Haines, B.; Bertiger, W.; Desai, S.; Kuang, D.; Munson, T.; Reichert, A.; Young, L.; Willis, P.

    2002-01-01

    The U.S/France Jason-1 oceanographic mission is carrying state-of-the-art radiometric tracking systems (GPS and Doris) to support precise orbit determination (POD) requirements. The performance of the systems is strongly reflected in the early POD results. Results of both internal and external (e.g., satellite laser ranging) comparisons support that the 2.5 cm radial Rh4S requirement is being readily met, and provide reasons for optimism that 1 cm can be achieved. We discuss the POD strategy underlying these orbits, as well as the challenging issues that bear on the understanding and characterization of an orbit solution at the l-cm level. We also describe a system for producing science quality orbits in near real time in order to support emerging applications in operational oceanography.

  19. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ken Jucks, OCO-2 program scientist, NASA Headquarters talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  20. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Dave Crisp, OCO-2 science team leader, JPL talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  1. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Annmarie Eldering, OCO-2 deputy project scientist, JPL talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  2. Contingency study for the third international Sun-Earth Explorer (ISEE-3) satellite

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.

    1979-01-01

    The third satellite of the international Sun-Earth Explorer program was inserted into a periodic halo orbit about L sub 1, the collinear libration point between the Sun and the Earth-Moon barycenter. A plan is presented that was developed to enable insertion into the halo orbit in case there was a large underperformance of the Delta second or third stage during the maneuver to insert the spacecraft into the transfer trajectory. After one orbit of the Earth, a maneuver would be performed near perigee to increase the energy of the orbit. A relatively small second maneuver would put the spacecraft in a transfer trajectory to the halo orbit, into which it could be inserted for a total cost within the fuel budget. Overburns (hot transfer trajectory insertions) were also studied.

  3. A gravity model for crustal dynamics (GEM-L2)

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Klosko, S. M.; Patel, G. B.; Wagner, C. A.

    1985-01-01

    The Laser Geodynamics Satellite (Lageos) was the first NASA satellite which was placed into orbit exclusively for laser ranging applications. Lageos was designed to permit extremely accurate measurements of the earth's rotation and the movement of the tectonic plates. The Goddard earth model, GEM-L2, was derived mainly on the basis of the precise laser ranging data taken on many satellites. Douglas et al. (1984) have demonstrated the utility of GEM-L2 in detecting the broadest ocean circulations. As Lageos data constitute the most extensive set of satellite laser observations ever collected, the incorporation of 2-1/2 years of these data into the Goddard earth models (GEM) has substantially advanced the geodynamical objectives. The present paper discusses the products of the GEM-L2 solution.

  4. Use of the moon to support on-orbit sensor calibration for climate change measurements

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2006-01-01

    Production of reliable climate datasets from multiple observational measurements acquired by remote sensing satellite systems available now and in the future places stringent requirements on the stability of sensors and consistency among the instruments and platforms. Detecting trends in environmental parameters measured at solar reflectance wavelengths (0.3 to 2.5 microns) requires on-orbit instrument stability at a level of 1% over a decade. This benchmark can be attained using the Moon as a radiometric reference. The lunar calibration program at the U.S. Geological Survey has an operational model to predict the lunar spectral irradiance with precision ???1%, explicitly accounting for the effects of phase, lunar librations, and the lunar surface photometric function. A system for utilization of the Moon by on-orbit instruments has been established. With multiple lunar views taken by a spacecraft instrument, sensor response characterization with sub-percent precision over several years has been achieved. Meteorological satellites in geostationary orbit (GEO) capture the Moon in operational images; applying lunar calibration to GEO visible-channel image archives has the potential to develop a climate record extending decades into the past. The USGS model and system can provide reliable transfer of calibration among instruments that have viewed the Moon as a common source. This capability will be enhanced with improvements to the USGS model absolute scale. Lunar calibration may prove essential to the critical calibration needs to cover a potential gap in observational capabilities prior to deployment of NPP/NPOESS. A key requirement is that current and future instruments observe the Moon.

  5. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    Lights shine on the umbilical tower shortly after a United Launch Alliance Delta II rocket launched with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  6. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    NASA Technical Reports Server (NTRS)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the

  7. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.

    2002-01-01

    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  8. Launch Window Trade Analysis for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Yu, Wayne H.; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  9. James Webb Space Telescope Launch Window Trade Analysis

    NASA Technical Reports Server (NTRS)

    Yu, Wayne; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-EarthMoon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  10. Rare earth crystal field spectra as a probe of librational motions in BaY2F8 solid state laser crystals

    NASA Astrophysics Data System (ADS)

    Capelletti, R.; Baraldi, A.; Buffagni, E.; Magnani, N.; Mazzera, M.

    2010-11-01

    The fine structure (FS) accompanying a few lines, originated by crystal field (CF) transitions of rare earths (RE), as Er3+ and Tm3+, in BaY2F8 single crystals, is analyzed as a function of the RE3+ concentration (0.5÷20 at%) and temperature (9-300 K), by using high resolution (as fine as 0.02 cm-1) Fourier transform spectroscopy and linear dichroism measurements. The 9 K absorption spectra show that FS includes weak, narrow, and closely spaced (0.4÷0.8 cm-1) lines, covering a few cm-1 range on both sides of the narrowest among the CF lines. The FS increases by increasing the RE3+ concentration and vanishes at rather low temperature (40 and 60 K for Er3+ and Tm3+, respectively). The polarized light spectra confirm the association of a given set of FS lines to a specific CF line. The FS is ascribed to the simultaneous excitation of an electronic CF transition and of a local librational (or hindered rotation) mode of the RE3+-F- group. The attribution is supported 1) by specific features of the host matrix and guest rare earths, which allow some mobility of F- ions, and 2) by the spacing of the FS lines, which is in excellent agreement with the calculated RE3+-F- group rotational constant.

  11. Dynamic Portrait of the Retrograde 1:1 Mean Motion Resonance

    NASA Astrophysics Data System (ADS)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-06-01

    Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planet’s orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.

  12. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Annmarie Eldering, OCO-2 deputy project scientist, JPL is seen talking on the monitors during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  13. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    Members of the media are unable to see the launch of the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard due to heavy fog at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 launched at 2:56 a.m. PDT. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  14. Ofeq-2 orbit, attitude, and flight evaluation

    NASA Astrophysics Data System (ADS)

    Grumer, Michael; Komem, Joseph; Kronenfeld, Joseph; Kubitski, Ophir; Lorber, Vitaly; Shyldkrot, Haim

    1992-02-01

    The most significant events and phenomena that occurred during the Ofeq-2 flight are evaluated in this work. Particular attention is paid to the physical and technological factors which affected its orbital lifetime. Comparison of Ofeq-2 telemetry results with prelaunch estimations and with Ofeq-1 flight data are presented. The satellite's orbit and mission characteristics are defined and the principal systems of Ofeq-2 are described. Topics addressed include the interaction between the spinner's attitude with respect to the sun and consequent electric power generation. The coning angle development history, the role of the solar data evaluation, and the factors influencing drag are also analyzed. All of these affected the Ofeq-2 power outage-recovery event. The orbit determination and the coning angle evolution estimation methods are discussed in some detail. A brief report on radiation effects on computer RAM (random access memory) is also given. An integrative systems engineering approach summary of the telemetry data reconstruction and analysis concludes the paper.

  15. Vibrational spectra and natural bond orbital analysis of organic crystal L-prolinium picrate

    NASA Astrophysics Data System (ADS)

    Edwin, Bismi; Amalanathan, M.; Hubert Joe, I.

    2012-10-01

    Vibrational spectral analysis and quantum chemical computations based on density functional theory (DFT) have been performed on the organic crystal L-prolinium picrate (LPP). The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers of LPP have been investigated using B3LYP method. The calculated molecular geometry has been compared with the experimental data. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA 4 program. The various intramolecular interactions confirming the biological activity of the compound have been exposed by natural bond orbital analysis. The distribution of Mulliken atomic charges and bending of natural hybrid orbitals associated with hydrogen bonding also reflects the presence of intramolecular hydrogen bonding thereby enhancing bioactivity. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and low value of energy gap indicates electron transport in the molecule and thereby bioactivity. Vibrational analysis reveals the presence of strong O-H⋯O and N-H⋯O interaction between L-prolinium and picrate ions providing evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity.

  16. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    NASA Kennedy Space Center Public Affairs Officer George Diller, moderates a briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  17. Effect of Stellar Wind and Poynting-Robertson Drag on Photogravitational Elliptic Restricted Three Body Problem

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Narayan, A.

    2018-03-01

    The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting-Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L 1, L 2 and L 3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov's first method of stability.

  18. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Betsy Edwards, OCO-2 program executive, NASA Headquarters, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  19. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ralph Basilio, OCO-2 project manager, JPL, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  20. Pair 2-electron reduced density matrix theory using localized orbitals

    NASA Astrophysics Data System (ADS)

    Head-Marsden, Kade; Mazziotti, David A.

    2017-08-01

    Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O (r3) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.

  1. Distant retrograde orbits for the Moon's exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav

    We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large

  2. NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The first NEN supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into low earth orbit (LEO) in early 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configurationease of upgrade, to ensure compatibility with the IRIS radio.In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is

  3. Analysis of HY2A precise orbit determination using DORIS

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Peng, Bibo; Zhang, Yu; Evariste, Ngatchou Heutchi; Liu, Jihua; Wang, Xiaohui; Zhong, Min; Lin, Mingsen; Wang, Nazi; Chen, Runjing; Xu, Houze

    2015-03-01

    HY2A is the first Chinese marine dynamic environment satellite. The payloads include a radar altimeter to measure the sea surface height in combination with a high precision orbit to be determined from tracking data. Onboard satellite tracking includes GPS, SLR, and the DORIS DGXX receiver which delivers phase and pseudo-range measurements. CNES releases raw phase and pseudo-range measurements with RINEX DORIS 3.0 format and pre-processed Doppler range-rate with DORIS 2.2 data format. However, the VMSI software package developed by Van Martin Systems, Inc which is used to estimate HY2A DORIS orbits can only process Doppler range-rate but not the DORIS phase data which are available with much shorter latency. We have proposed a method of constructing the phase increment data, which are similar to range-rate data, from RINEX DORIS 3.0 phase data. We compute the HY2A orbits from June, 2013 to August, 2013 using the POD strategy described in this paper based on DORIS 2.2 range-rate data and our reconstructed phase increment data. The estimated orbits are evaluated by comparing with the CNES precise orbits and SLR residuals. Our DORIS-only orbits agree with the precise GPS + SLR + DORIS CNES orbits radially at 1-cm and about 3-cm in the other two directions. SLR test with the 50° cutoff elevation shows that the CNES orbit can achieve about 1.1-cm accuracy in radial direction and our DORIS-only POD solutions are slightly worse. In addition, other HY2A DORIS POD concerns are discussed in this paper. Firstly, we discuss the frequency offset values provided with the RINEX data and find that orbit accuracy for the case when the frequency offset is applied is worse than when it is not applied. Secondly, HY2A DORIS antenna z-offsets are estimated using two kinds of measurements from June, 2013 to August, 2013. The results show that the measurement errors contribute a total of about 2-cm difference of estimated z-offset. Finally, we estimate HY2A orbits selecting 3 days with

  4. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Tim Dunn, NASA launch director, Kennedy Space Center, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  5. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  6. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  7. Variations in Rotation Rate and Polar Motion of a Non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Van Hoolst, T.; Coyette, A.; Baland, R. M.

    2017-12-01

    Observations of the rotation of large synchronously rotating satellites such as Titan can help to probe their interior. Previous studies (Van Hoolst et al. 2013, Richard et al. 2014, Coyette et al. 2016) mostly assume that Titan is in hydrostatic equilibrium, although several measurements indicate that it deviates from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider (1) the periodic changes in Titan's rotation rate with a period equal to Titan's orbital period (diurnal librations) as a result of the gravitational torque exerted by Saturn, (2) the periodic changes in Titan's rotation rate with a main period equal to half the orbital period of Saturn (seasonal librations) and due to the dynamic variations in the atmosphere of Titan and (3) the periodic changes of the axis of rotation with respect to the figure axis of Titan (polar motion) with a main period equal to the orbital period of Saturn and due to the dynamic variations in the atmosphere of Titan. The non-hydrostatic mass distribution significantly influences the amplitude of the diurnal and seasonal librations. It is less important for polar motion, which is sensitive to flow in the subsurface ocean. The smaller than synchronous rotation rate measured by Cassini (Meriggiola 2016) can be explained by the atmospheric forcing.

  8. Independent Orbiter Assessment (IOA): Assessment of the extravehicular mobility unit, volume 2

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort performed an independent analysis of the Extravehicular Mobility Unit (EMU) hardware and system, generating draft failure modes criticalities and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the most recent proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EMU hardware. Volume 2 continues the presentation of IOA analysis worksheets and contains the potential critical items list and NASA FMEA to IOA worksheet cross references and recommendations.

  9. Roothaan-Hartree-Fock ground-state atomic wave functions: Slater-type orbital expansions and expectation values for Z = 2-54

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunge, C.F.; Barrientos, J.A.; Bunge, A.V.

    1993-01-01

    Roothaan-Hartree-Fock orbitals expressed in a Slater-type basis are reported for the ground states of He through Xe. Energy accuracy ranges between 8 and 10 significant figures, reducing by between 21 and 2,770 times the energy errors of the previous such compilation (E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177, 1974). For each atom, the total energy, kinetic energy, potential energy, virial ratio, electron density at the nucleus, and the Kato cusp are given together with radial expectation values [l angle]r[sup n][r angle] with n from [minus]3 to 2 for each orbital, orbital energies, and orbitalmore » expansion coefficients. 29 refs., 1 tab.« less

  10. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  11. Distant magnetic field effects associated with Birkeland currents /made possible by the evaluation of TRIAD's attitude oscillations/

    NASA Astrophysics Data System (ADS)

    Gustafsson, G.; Potemra, T. A.; Favin, S.; Saflekos, N. A.

    1981-10-01

    Principal oscillations of the TRIAD satellite are studied in 150 passes and are identified as the librations of a gravity-stabilized satellite. The libration periods are T(O)/2 and T(O)/(3) exp 1/2, where T(O) is the orbit period of about 100 min. The amplitude and phase change over periods of a few days, sometimes vanishing altogether, and these attitude changes are numerically evaluated and removed. Data from three consecutive passes spanning over three hours show a magnetic profile which extends as far as 10 deg in latitude from a single region 1 Birkeland current sheet, confirming the permanent and global nature of large-scale Birkeland currents.

  12. Applying the OTV to lunar logistics

    NASA Technical Reports Server (NTRS)

    Willcockson, W. H.

    1988-01-01

    The Orbit Transfer Vehicle (OTV), representing the next generation of upper stages, has recently been studied in a Phase A concept definition study managed by NASA's Marshall Space Flight Center. The vehicle has been previously defined as strictly an orbit-to-orbit type transfer device. Recently its application to the task of lunar surface logistics was investigated. Transfer options to the surface were considered which included direct transfer, and transfer via lunar orbit as well as the L1 libration point. The subsystem modifications required to enable lunar landings were established for the following elements: aerobrake, main propulsion system, landing legs, primary structure, and avionics. It is concluded that the majority of the basic systems required for efficient transfer to the lunar surface are already contained in the OTV.

  13. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Dave Crisp, OCO-2 science team leader, JPL, left, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, are seen during a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  14. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Vern Thorp, United Launch Alliance program manager, NASA missions, discusses the launch of NASA’s Orbiting Carbon Observatory-2 (OCO-2) onboard a ULA Delta II rocket, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  15. Lateral directional requirements for a low L/D aeromaneuvering orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Gamble, J. D.; Spratlin, K. M.; Skalecki, L. M.

    1984-01-01

    The lateral-directional aerodynamics and control requirements for a low L/D (0.3) aeromaneuvering orbital transfer vehicle are evaluated. A lateral directional RCS control concept that permits a linearized analysis is utilized to evaluate the effect of Dutch Roll frequency and damping on the atmospheric guidance and control performance. The bank rate and acceleration requirements for acceptable performance are defined and the sensitivity to a parameter similar to the lateral control departure parameter but involving the RCS jets is evaluated.

  16. LO2/LH2 propulsion for outer planet orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Garrison, P. W.; Sigurdson, K. B.

    1983-01-01

    Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.

  17. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Lt. Joseph Round, launch weather officer, USAF 30th Space Wing Weather Squadron, discusses the weather forecast for launch of NASA’s Orbiting Carbon Observatory-2 (OCO-2) onboard a ULA Delta II rocket, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  18. The rotation of Io

    NASA Astrophysics Data System (ADS)

    Henrard, Jacques

    2005-11-01

    The paper develops, in the framework of Hamiltonian mechanics, a theory of the rotation of Io, considered as a rigid body. The theory includes the perturbation due to Jupiter (considered as an oblate body) and the indirect perturbations due to the other Galilean satellites. In order to describe the orbit of Io around Jupiter, we use the synthetic theory of Lainey [2002, PhD dissertation, Observatoire de Paris], the result of a frequency analysis of a numerically integrated jovian system. The direct effects of the other Galilean satellites are found to be negligible, but their indirect effects are important. Our theory is consistent with the rigid body model and with Lainey's description of the orbit of Io, at least down to 10 rad (0.2 arc-second). Of course the effects of the nonrigidity of Io and of a probable liquid core should be considered. We find a mean obliquity of 7.619×10 rad (157 arc-second) and the period of the three free librations to be 13.25 days (free libration in longitude), 159.39 days (free libration in latitude), and 229.85 days (free wobble). Fourier series are produced describing, in the body frame, the motion of the polar axis of Jupiter, the motion of the unit vector pointing toward Jupiter, and the "motion of the pole" (the motion of the angular momentum with respect to the axis of largest inertia). Free librations (depending on three arbitrary parameters) are also computed.

  19. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ken Jucks, OCO-2 program scientist, NASA Headquarters, left, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, right, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  20. Time Variable Gravity modeling for Precise Orbits Across the TOPEX/Poseidon, Jason-l and Jason-2 Missions

    NASA Technical Reports Server (NTRS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas; Beckley, Brain D.; Melachroinos, Stavros; Rowlands, David D.; Luthcke, Scott B.

    2011-01-01

    Modeling of the Time Variable Gravity (TVG) is believed to constitute one of the the largest remaining source of orbit error for altimeter satellite POD. The GSFC operational TVG model consists of forward modeling the atmospheric gravity using ECMWF 6-hour pressure data, a GRACE derived 20x20 annual field to account for changes in the hydrology and ocean water mass, and linear rates for C20, C30, C40, based on 17 years of SLR data analysis (IERS 2003) using the EIGEN-GL04S1 (a GRACE+Lageos-based geopotential solution). Although the GSFC Operational model can be applied from 1987, there may be long-term variations not captured by these linear models, and more importantly the linear models may not be consistent with more recent surface mass trends due to global climate change, We have evaluated the impact of TVG in two different wavs: (1) by using the more recent EIGEN-6S gravity model developed by the GFZ/GRGS tearm, which consists of annual, semi-annual and secular changes in the coefficients to 50x50 determined over 8(?) years of GRACE+Lageos+GOCE data (2003-200?): (2) Application of 4x4 solutions developed from a multi satellite SLR+DORIS solution based on GGM03S that span the period from 1993 to 2011. We have evaluated the recently released EIGEN6s static and time-varying gravity field for Jason-2 (J2). Jason-I (J1), and TOPEX/Posiedon (TP) Precise Orbit Determination (POD) spanning 1993-2011. Although EIGEN6s shows significant improvement for J2POD spanning 2008 - 2011, it also shows significant degradation for TP POD from 1992. The GSFC 4x4 time SLR+DORIS-based series spans 1993 to mid 2011, and shows promise for POD. We evaluate the performance of the different TVG models based on analysis of tracking data residuals use of independent data such as altimeter crossovers, and through analysis of differences with internally-generated and externally generated orbits.

  1. Circumlunar Free-Return Cycler Orbits for a Manned Earth-Moon Space Station

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    Multiple free-return circumlunar cycler orbits were designed to allow regular travel between the Earth and Moon by a manned space station. The presented cycler orbits contain circumlunar free-return "figure-8" segments and yield lunar encounters every month. Smaller space "taxi" vehicles can rendezvous with (and depart from) the cycling Earth-Moon space station to enter lunar orbit (and/or land on the lunar surface), return to Earth, or reach destinations including Earth-Moon L1 and L2 halo orbits, near-Earth objects (NEOs), Venus, and Mars. To assess the practicality of the selected orbits, relevant cycler characteristics (including (Delta)V maintenance requirements) are presented and compared.

  2. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  3. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Mike Gunson, OCO-2 project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  4. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Betsy Edwards, OCO-2 program executive with the Science Mission Directorate at NASA Headquarters in Washington discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  5. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Mike Gunson, OCO-2 project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, listens to a question during a press briefing for the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  6. Applicability of meteor radiant determination methods depending on orbit type. II. Low-eccentric orbits

    NASA Astrophysics Data System (ADS)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1994-08-01

    All known parent bodies of meteor showers belong to bodies moving in high-eccentricity orbits (e => 0.5). Recently, asteroids in low-eccentricity orbits (e < 0.5) approaching the Earth's orbit, were suggested as another population of possible parent bodies of meteor streams. This paper deals with the problem of calculation of meteor radiants connected with the bodies in low-eccentricity orbits from the point of view of optimal results depending on the method applied. The paper is a continuation of our previous analysis of high-eccentricity orbits (Svoren, J., Neslusan, L., Porubcan, V.: 1993, Contrib. Astron. Obs. Skalnate Pleso 23, 23). Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys. 7, 261) was applied. D <= 0.1 indicates a very good fit of orbits, 0.1 < D <= 0.2 is considered for a good fit and D > 0.2 means that the fit is rather poor and the change of orbit unrealistic. The optimal method, i.e. the one which results in the smallest D values for the population of low-eccentricity orbits, is that of adjusting the orbit by varying both the eccentricity and perihelion distance. A comparison of theoretical radiants obtained by various methods was made for typical representatives from each group of the NEA (near-Earth asteroids) objects.

  7. HY-2A altimetry satellite GPS orbits processing and performances

    NASA Astrophysics Data System (ADS)

    Mercier, F.; Houry, S.; Couhert, A.; Cerri, L.

    2012-04-01

    The Chinese HY-2A altimetry satellite is on the mission orbit since 1st october 2011. This satellite uses a Doris receiver (French cooperation), a GPS receiver and a SLR retro-reflector for the precise orbit determination. The GPS is a dual frequency semi-codeless receiver. Precise orbits are computed at CNES on the basis of 7 days arcs since the beginning of the mission (repeat cycle is 14 days). This presentation describes the current processing performed at CNES for this satellite. The GPS only orbits perform very well and are compared with the Doris only orbits (floating ambiguity resolution, as for Jason 1 and 2). SLR measurements are also available at ILRS, and allow an external validation of the actual radial orbit performance. This talk adresses the current status of POE solutions and the prospects for improvement based on the preliminary analysis of the tracking data.

  8. Contingency Planning for the Microwave Anisotropy Probe Mission

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) utilized a phasing loop/lunar encounter strategy to achieve a small amplitude Lissajous orbit about the Sun-Earth/Moon L2 libration point. The use of phasing loops was key in minimizing MAP's overall deltaV needs while also providing ample opportunities for contingency resolution. This paper will discuss the different contingencies and responses studied for MAP. These contingencies included accommodating excessive launch vehicle errors (beyond 3 sigma), splitting perigee maneuvers to achieve ground station coverage through the Deep Space Network (DSN), delaying the start of a perigee maneuver, aborting a perigee maneuver in the middle of execution, missing a perigee maneuver altogether, and missing the lunar encounter (crucial to achieving the final Lissajous orbit). It is determined that using a phasing loop approach permits many opportunities to correct for a majority of these contingencies.

  9. Antiferromagnetic S=1/2 spin chain driven by p-orbital ordering in CsO2.

    PubMed

    Riyadi, Syarif; Zhang, Baomin; de Groot, Robert A; Caretta, Antonio; van Loosdrecht, Paul H M; Palstra, Thomas T M; Blake, Graeme R

    2012-05-25

    We demonstrate, using a combination of experiment and density functional theory, that orbital ordering drives the formation of a one-dimensional (1D) S=1/2 antiferromagnetic spin chain in the 3D rocksalt structure of cesium superoxide (CsO2). The magnetic superoxide anion (O2(-)) exhibits degeneracy of its 2p-derived molecular orbitals, which is lifted by a structural distortion on cooling. A spin chain is then formed by zigzag ordering of the half-filled superoxide orbitals, promoting a superexchange pathway mediated by the p(z) orbitals of Cs(+) along only one crystal direction. This scenario is analogous to the 3d-orbital-driven spin chain found in the perovskite KCuF3 and is the first example of an inorganic quantum spin system with unpaired p electrons.

  10. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, left, and Mike Gunson, OCO-2 project scientist at JPL, discuss the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  11. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    From left, NASA Kennedy Space Center Public Affairs Officer George Diller, Ken Jucks, OCO-2 program scientist, NASA Headquarters, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  12. NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Altunc, Serhat; Wong, Yen; Shelton, Marta; Celeste, Peter; Anderson, Michael; Perrotto, Trish

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats.The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration/ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is

  13. Guidebook for analysis of tether applications

    NASA Technical Reports Server (NTRS)

    Carroll, J. A.

    1985-01-01

    This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. Topics disscussed include: orbit and orbit transfer equations; orbital perturbations; aerodynamic drag; thermal balance; micrometeoroids; gravity gradient effects; tether control strategies; momentum transfer; orbit transfer by tethered release/rendezvous; impact hazards for tethers; electrodynamic tether principles; and electrodynamic libration control issues.

  14. Distant retrograde orbits and the asteroid hazard

    NASA Astrophysics Data System (ADS)

    Perozzi, Ettore; Ceccaroni, Marta; Valsecchi, Giovanni B.; Rossi, Alessandro

    2017-08-01

    Distant Retrograde Orbits (DROs) gained a novel wave of fame in space mission design because of their numerous advantages within the framework of the US plans for bringing a large asteroid sample in the vicinity of the Earth as the next target for human exploration. DROs are stable solutions of the three-body problem that can be used whenever an object, whether of natural or artificial nature, is required to remain in the neighborhood of a celestial body without being gravitationally captured by it. As such, they represent an alternative option to Halo orbits around the collinear Lagrangian points L1 and L2. Also known under other names ( e.g., quasi-satellite orbits, cis-lunar orbits, family- f orbits) these orbital configurations found interesting applications in several mission profiles, like that of a spacecraft orbiting around the small irregularly shaped satellite of Mars Phobos or the large Jovian moon Europa. In this paper a basic explanation of the DRO dynamics is presented in order to clarify some geometrical properties that characterize them. Their accessibility is then discussed from the point of view of mission analysis under different assumptions. Finally, their relevance within the framework of the present asteroid hazard protection programs is shown, stressing the significant increase in warning time they would provide in the prediction of impactors coming from the direction of the Sun.

  15. Combined orbits and clocks from the IGS 2nd reprocessing

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Ray, J.

    2016-12-01

    In early 2015, the Analysis Centers (ACs) of the International GNSS Service (IGS) completed their second reanalysis of the full history of globally distributed GPS and GLONASS data collected since 1994. The suite of reprocessed AC solutions includes daily product files containing station positions, Earth rotation parameters, satellite orbits and clocks. This second reprocessing—or repro2—provided the IGS contribution to ITRF2014; it follows the successful first reprocessing, which provided the IGS input for ITRF2008. For this poster, we will discuss the newly combined repro2 GPS orbits and clocks. We also revisit our previous analysis of orbit day-boundary discontinuities with several significant changes and improvements: 1) Orbit discontinuities for the contributing ACs were studied in addition to those for the IGS repro2 combined orbits. (2) Apart from homogeneous reprocessing with updated analysis models, the main difference compared to the IGS Final operational products is that NOAA/NGS inputs were not submitted for the IGS reprocessing, yet they contribute heavily in the operational orbits in recent years. (3) Also, during spring 2016, the ESA modified their orbit model so that it is no longer consistent with the one used for reprocessing. A much longer span of orbits was available now, up to 11.2 years for some individual satellites, which allows a far better resolution of spectral features. 4) The procedure to compute orbit discontinuities has been further refined to account for extrapolation edge effects, improved geopotential fields, and to allow for spectral analysis of a longer time series of jumps. The satellite position time series used are complete enough that linear interpolation is necessary for only sparse gaps. So the key results are based on standard FFT power spectra (stacked over the available constellation and lightly smoothed). However, we have also computed Lomb-Scargle periodgrams to provide higher frequency resolution of some spectral

  16. Precision orbit determination performance for CryoSat-2

    NASA Astrophysics Data System (ADS)

    Schrama, Ernst

    2018-01-01

    In this paper we discuss our efforts to perform precision orbit determination (POD) of CryoSat-2 which depends on Doppler and satellite laser ranging tracking data. A dynamic orbit model is set-up and the residuals between the model and the tracking data is evaluated. The average r.m.s. of the 10 s averaged Doppler tracking pass residuals is approximately 0.39 mm/s; and the average of the laser tracking pass residuals becomes 1.42 cm. There are a number of other tests to verify the quality of the orbit solution, we compare our computed orbits against three independent external trajectories provided by the CNES. The CNES products are part of the CryoSat-2 products distributed by ESA. The radial differences of our solution relative to the CNES precision orbits shows an average r.m.s. of 1.25 cm between Jun-2010 and Apr-2017. The SIRAL altimeter crossover difference statistics demonstrate that the quality of our orbit solution is comparable to that of the POE solution computed by the CNES. In this paper we will discuss three important changes in our POD activities that have brought the orbit performance to this level. The improvements concern the way we implement temporal gravity accelerations observed by GRACE; the implementation of ITRF2014 coordinates and velocities for the DORIS beacons and the SLR tracking sites. We also discuss an adjustment of the SLR retroreflector position within the satellite reference frame. An unexpected result is that we find a systematic difference between the median of the 10 s Doppler tracking residuals which displays a statistically significant pattern in the South Atlantic Anomaly (SSA) area where the median of the velocity residuals varies in the range of -0.15 to +0.15 mm/s.

  17. The Solar and Heliospheric Observatory (SOHO) Mission: An Overview of Flight Dynamics Support of the Early Mission Phase

    NASA Technical Reports Server (NTRS)

    Short, R.; Behuncik, J.

    1996-01-01

    The SOHO spacecraft was successfully launched by an Atlas 2AS from the Eastern Range on December 2, 1995. After a short time in a nearly circular parking orbit, the spacecraft was placed by the Centaur upper stage on a transfer trajectory to the L1 libration point where it was inserted into a class 1 Halo orbit. The nominal mission lifetime is two years which will be spent collecting data from the Sun using a complement of twelve instruments. An overview of the early phases of Flight Dynamics Facility support of the mission is given. Maneuvers required for the mission are discussed, and an evaluation of these maneuvers is given with the attendent effects on the resultant orbit. Thruster performance is presented as well as real time monitoring of thruster activity during maneuvers. Attitude areas presented are the star identification process and role angle determination, momentum management, operating constraints on the star tracker, and guide star switching. A brief description of the two Heads Up displays is given.

  18. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Vern Thorp, United Launch Alliance program manager, NASA missions,, left, Ralph Basilio, OCO-2 project manager, JPL, and Lt. Joseph Round, launch weather officer, USAF 30th Space Wing Weather Squadron, right, discuss the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  19. End of Life Disposal for Three Libration Point Missions through Manipulation of the Jacobi Constant and Zero Velocity Curves

    NASA Technical Reports Server (NTRS)

    Peterson, Jeremy D.; Brown, Jonathan M.

    2015-01-01

    The aim of this investigation is to determine the feasibility of mission disposal by inserting the spacecraft into a heliocentric orbit along the unstable manifold and then manipulating the Jacobi constant to prevent the spacecraft from returning to the Earth-Moon system. This investigation focuses around L1 orbits representative of ACE, WIND, and SOHO. It will model the impulsive delta-V necessary to close the zero velocity curves after escape through the L1 gateway in the circular restricted three body model and also include full ephemeris force models and higher fidelity finite maneuver models for the three spacecraft.

  20. Anomalous property of Ag(BO2)2 hyperhalogen: does spin-orbit coupling matter?

    PubMed

    Chen, Hui; Kong, Xiang-Yu; Zheng, Weijun; Yao, Jiannian; Kandalam, Anil K; Jena, Puru

    2013-10-07

    Hyperhalogens were recently identified as a new class of highly electronagative species which are composed of metals and superhalogens. In this work, high-level theoretical calculations and photoelectron spectroscopy experiments are systematically conducted to investigate a series of coinage-metal-containing hyperhalogen anions, Cu(BO(2))(2)(-), Ag(BO(2))(2)(-), and Au(BO(2))(2)(-). The vertical electron detachment energy (VDE) of Ag(BO(2))(2)(-) is anomalously higher than those of Au(BO(2))(2)(-) and Cu(BO(2))(2)(-). In quantitative agreement with the experiment, high-level ab initio calculations reveal that spin-orbit coupling (SOC) lowers the VDE of Au(BO(2))(2)(-) significantly. The sizable magnitude of about 0.5 eV of SOC effect on the VDE of Au(BO(2))(2)(-) demonstrates that SOC plays an important role in the electronic structure of gold hyperhalogens. This study represents a new paradigm for relativistic electronic structure calculations for the one-electron-removal process of ionic Au(I)L(2) complexes, which is characterized by a substantial SOC effect. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multi-Body Capture to Low-altitude Circular Orbits at Europa

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.

    2011-01-01

    For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.

  2. Moonport: Transportation node in lunar orbit

    NASA Technical Reports Server (NTRS)

    1987-01-01

    An orbital transporation system between the Earth and Moon was designed. The design work focused on the requirements and configuration of an orbiting lunar base. The design utilized current Space Station technologies, but also focused on the specific requirements involved with a permanently manned, orbiting lunar station. A model of the recommended configuration was constructed. In order to analyze Moonport activity and requirements, a traffic model was designed, defining traffic between the lunar port, or Moonport and low Earth orbit. Also, a lunar base model was used to estimate requirements of the surface base on Moonport traffic and operations. A study was conducted to compare Moonport traffic and operations based in low lunar orbit and the L (sub 2) equilibrium point, behind the Moon. The study compared delta-V requirements to each location and possible payload deliveries to low Earth orbit from each location. Products of the Moonport location study included number of flights annually to Moonport, net payload delivery to low Earth orbit, and Moonport storage requirement.

  3. Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    NASA Technical Reports Server (NTRS)

    Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2001-01-01

    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.

  4. STS-106 Orbit 2 Flight Team

    NASA Image and Video Library

    2000-09-14

    JSC2000-06244 (September 2000)--- Flight director Jeff Hanley, front center, and the fifty-odd flight controllers making up the ISS Orbit 2 Team pose for their group portrait in the ISS Flight Control Room of Houston's Mission Control Center.

  5. An Anomalous Force on the Map Spacecraft

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; ODonnell, James R., Jr.; Ward, David K.; Wollack, Edward J.; Bay, P. Michael; Fink, Dale R.; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) orbits the second Earth-Sun libration point (L2)-about 1.5 million kilometers outside Earth's orbit-mapping cosmic microwave background radiation. To achieve orbit near L2 on a small fuel budget, the MAP spacecraft needed to swing past the Moon for a gravity assist. Timing the lunar swing-by required MAP to travel in three high-eccentricity phasing loops with critical maneuvers at a minimum of two, but nominally all three, of the perigee passes. On the approach to the first perigee maneuver, MAP telemetry showed a considerable change in system angular momentum that threatened to cause on-board Failure Detection and Correction (FDC) to abort the critical maneuver. Fortunately, the system momentum did not reach the FDC limit; however, the MAP team did develop a contingency strategy should a stronger anomaly occur before or during subsequent perigee maneuvers, Simultaneously, members of the MAP team developed and tested various hypotheses for the cause of the anomalous force. The final hypothesis was that water was outgassing from the thermal blanketing and freezing to the cold side of the solar shield. As radiation from Earth warmed the cold side of the spacecraft, the uneven sublimation of frozen water created a torque on the spacecraft.

  6. Independent Orbiter Assessment (IOA): Assessment of the Electrical Power Distribution and Control Subsystem, Volume 2

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA first completed an analysis of the Electrical Power Distribution and Control (EPD and C) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPD and C hardware. Volume 2 continues the presentation of IOA worksheets.

  7. Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.

    2005-01-01

    In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.

  8. The dynamics and control of large flexible space structures. Volume 3, part B: The modelling, dynamics, and stability of large Earth pointing orbiting structures

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.

    1980-01-01

    The dynamics and stability of large orbiting flexible beams, and platforms and dish type structures oriented along the local horizontal are treated both analytically and numerically. It is assumed that such structures could be gravitationally stabilized by attaching a rigid light-weight dumbbell at the center of mass by a spring loaded hinge which also could provide viscous damping. For the beam, the small amplitude inplane pitch motion, dumbbell librational motion, and the anti-symmetric elastic modes are all coupled. The three dimensional equations of motion for a circular flat plate and shallow spherical shell in orbit with a two-degree-of freedom gimballed dumbbell are also developed and show that only those elastic modes described by a single nodal diameter line are influenced by the dumbbell motion. Stability criteria are developed for all the examples and a sensitivity study of the system response characteristics to the key system parameters is carried out.

  9. James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation using Task Parallelism

    NASA Technical Reports Server (NTRS)

    Petersen, Jeremy; Tichy, Jason; Wawrzyniak, Geoffrey; Richon, Karen

    2014-01-01

    The James Webb Space Telescope will be launched into a highly elliptical orbit that does not possess sufficient energy to achieve a proper Sun-Earth L2 libration point orbit. Three mid-course correction (MCC) maneuvers are planned to rectify the energy deficit: MCC-1a, MCC-1b, and MCC-2. To validate the propellant budget and trajectory design methods, a set of Monte Carlo analyses that incorporate MCC maneuver modeling and execution are employed. The first analysis focuses on the effects of launch vehicle injection errors on the magnitude of MCC-1a. The second on the spread of potential V based on the performance of the propulsion system as applied to all three MCC maneuvers. The final highlights the slight, but notable, contribution of the attitude thrusters during each MCC maneuver. Given the possible variations in these three scenarios, the trajectory design methods are determined to be robust to errors in the modeling of the flight system.

  10. James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation using Task Parallelism

    NASA Technical Reports Server (NTRS)

    Petersen, Jeremy; Tichy, Jason; Wawrzyniak, Geoffrey; Richon, Karen

    2014-01-01

    The James Webb Space Telescope will be launched into a highly elliptical orbit that does not possess sufficient energy to achieve a proper Sun-Earth/Moon L2 libration point orbit. Three mid-course correction (MCC) maneuvers are planned to rectify the energy deficit: MCC-1a, MCC-1b, and MCC-2. To validate the propellant budget and trajectory design methods, a set of Monte Carlo analyses that incorporate MCC maneuver modeling and execution are employed. The first analysis focuses on the effects of launch vehicle injection errors on the magnitude of MCC-1a. The second on the spread of potential V based on the performance of the propulsion system as applied to all three MCC maneuvers. The final highlights the slight, but notable, contribution of the attitude thrusters during each MCC maneuver. Given the possible variations in these three scenarios, the trajectory design methods are determined to be robust to errors in the modeling of the flight system.

  11. Generating precise and homogeneous orbits for Jason-1 and Jason-2

    NASA Astrophysics Data System (ADS)

    Flohrer, Claudia; Otten, Michiel; Springer, Tim; Dow, John

    2011-07-01

    Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are a necessity. With the launch of the TOPEX/Poseidon mission in 1992 a still on-going time series of high-accuracy altimetry measurements of ocean topography started, continued by the altimetry missions Jason-1 in 2001 and Jason-2/OSTM in 2008. This paper contributes to the on-going orbit reprocessing carried out by several groups and presents the efforts of the Navigation Support Office at ESA/ESOC using its NAPEOS software for the generation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. Data of all three tracking instruments on-board the satellites (beside the altimeter), i.e. GPS, DORIS, and SLR measurements, were used in a combined data analysis. About 7 years of Jason-1 data and more than 1 year of Jason-2 data were processed. Our processing strategy is close to the GDR-C standards. However, we estimated slightly different scaling factors for the solar radiation pressure model of 0.96 and 0.98 for Jason-1 and Jason-2, respectively. We used 30 s sampled GPS data and introduced 30 s satellite clocks stemming from ESOC's reprocessing of the combined GPS/GLONASS IGS solution. We present the orbit determination results, focusing on the benefits of adding GPS data to the solution. The fully combined solution was found to give the best orbit results. We reach a post-fit RMS of the GPS phase observation residuals of 6 mm for Jason-1 and 7 mm for Jason-2. The DORIS post-fit residuals clearly benefit from using GPS data in addition, as the DORIS data editing improves. The DORIS observation RMS for the fully combined solution is with 3.5 mm and 3.4 mm, respectively, 0.3 mm better than for the DORIS

  12. Space manufacturing facilities: Space colonies; Proceedings of the Princeton Conference, Princeton University, Princeton, N.J., May 7-9, 1975

    NASA Technical Reports Server (NTRS)

    Grey, J.

    1977-01-01

    Reports submitted to the conference encompass: administration and law relating to inhabited space facilities and colonies; space manufacturing and processing; organization and construction of space habitats and management of space colony farms; winning and acquisition of lunar and asteroidal materials for sustaining autonomous space colonies. Attention is given to trajectories between earth, low earth orbit, earth-moon libration points (specifically L5), circumlunar parking orbits, and trajectories in translunar space; effects of low gravity and zero gravity on human physiology and on materials processing; architecture and landscaping for space colonies; closed ecosystems of space colonies. Varieties of human cultures and value hierarchies around the earth are examined for broader perspectives on the social organization of space colonies.

  13. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites

    DOE PAGES

    Baker, Michael L.; Mara, Michael W.; Yan, James J.; ...

    2017-02-09

    Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as Kα resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3dmore » orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of σ and π donor bonding and π back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. Here, the application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.« less

  14. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Michael L.; Mara, Michael W.; Yan, James J.

    Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as Kα resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3dmore » orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of σ and π donor bonding and π back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. Here, the application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.« less

  15. Jason-2 systematic error analysis in the GPS derived orbits

    NASA Astrophysics Data System (ADS)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Chinn, D. S.

    2011-12-01

    Several results related to global or regional sea level changes still too often rely on the assumption that orbit errors coming from station coordinates adoption can be neglected in the total error budget (Ceri et al. 2010). In particular Instantaneous crust-fixed coordinates are obtained by adding to the linear ITRF model the geophysical high-frequency variations. In principle, geocenter motion should also be included in this computation, in order to reference these coordinates to the center of mass of the whole Earth. This correction is currently not applied when computing GDR orbits. Cerri et al. (2010) performed an analysis of systematic errors common to all coordinates along the North/South direction, as this type of bias, also known as Z-shift, has a clear impact on MSL estimates due to the unequal distribution of continental surface in the northern and southern hemispheres. The goal of this paper is to specifically study the main source of errors which comes from the current imprecision in the Z-axis realization of the frame. We focus here on the time variability of this Z-shift, which we can decompose in a drift and a periodic component due to the presumably omitted geocenter motion. A series of Jason-2 GPS-only orbits have been computed at NASA GSFC, using both IGS05 and IGS08. These orbits have been shown to agree radially at less than 1 cm RMS vs our SLR/DORIS std0905 and std1007 reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Melachroinos et al. 2011). Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR-crossover residuals provide the best performance indicator for independent validation of the NASA/GSFC GPS-only reduced dynamic orbits. Reduced

  16. Modal control of an unstable periodic orbit

    NASA Astrophysics Data System (ADS)

    Wiesel, W.; Shelton, W.

    1983-03-01

    Floquet theory is applied to the problem of designing a control system for a satellite in an unstable periodic orbit. Expansion about a periodic orbit produces a time-periodic linear system, which is augmented by a time-periodic control term. It is shown that this can be done such that (1) the application of control produces only inertial accelerations, (2) positive real Poincareexponents are shifted into the left half-plane, and (3) the shift of the exponent is linear with control gain. These developments are applied to an unstable orbit near the earth-moon L(3) point pertubed by the sun. Finally, it is shown that the control theory can be extended to include first order perturbations about the periodic orbit without increase in control cost.

  17. Modal control of an unstable periodic orbit

    NASA Technical Reports Server (NTRS)

    Wiesel, W.; Shelton, W.

    1983-01-01

    Floquet theory is applied to the problem of designing a control system for a satellite in an unstable periodic orbit. Expansion about a periodic orbit produces a time-periodic linear system, which is augmented by a time-periodic control term. It is shown that this can be done such that (1) the application of control produces only inertial accelerations, (2) positive real Poincareexponents are shifted into the left half-plane, and (3) the shift of the exponent is linear with control gain. These developments are applied to an unstable orbit near the earth-moon L(3) point pertubed by the sun. Finally, it is shown that the control theory can be extended to include first order perturbations about the periodic orbit without increase in control cost.

  18. First opportunity to synchronize the ILRS network thanks to T2L2 on Jason-2

    NASA Astrophysics Data System (ADS)

    Exertier, Pierre; Belli, Alexandre; Courde, Clément; Vernotte, François

    2016-07-01

    The Time Transfer by Laser Link (T2L2, on-board the oceanographic satellite Jason-2 at 1335 km) experiment allows us to synchronize remote clocks of Satellite Laser Ranging (SLR) stations throughout the whole ILRS (International Laser Ranging Service) network. We have developed a time transfer processing dedicated to non Common View (CV) cases, i.e. time transfer between stations from the Americas, Asia, Europe and Oceania. The main difficulty is to take into account the complex behaviour of the on-board Ultra Stable Oscillator (USO) over more than 1,500 s and up to a few thousands seconds. By integrating a recently published model describing the frequency responses of the USO to physical effects, as temperature and radiations, we show that it is possible to propagate the phase (time) of the on-board clock for an orbital revolution (1 rev = 6,700 s) or two with an error of a few nanoseconds (ns). Scheme of stages of this process is presented. The non CV time transfer process is applied in order to synchronize a plurality of remote stations involved in the T2L2/Jason-2 tracking by laser. The ground-to-space time transfers which we have processed over recent years (from 2013 to 2015) are all contributing to the development of a synthetic on-board time scale. The resulting ground-to-ground time transfers, computed between remote clocks of SLR stations, show differences of 250-300 ns up to a few microseconds ± 3-4 ns. The T2L2 space experiment is thus the first opportunity to estimate, quasi-instantaneously and to the ns level, time differences between clocks of the SLR stations which form one of the basis of the International Terrestrial Reference Frame (ITRF). This result would help the laser ranging community (time & frequency metrology of stations, analysis centres, and applications to the precise orbit and positioning) to achieve the GGOS (Global Geodetic Observing System) requirements in terms of accuracy and long-term stability of geodetic references.

  19. SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Focardi, Paolo; Horgan, Kevin; Knuble, Joseph; Ehsan, Negar; Lucey, Jared; Brambora, Clifford; Brown, Paula R.; Hoffman, Pamela J.; French, Richard T.; hide

    2017-01-01

    The Soil Moisture Active Passive (SMAP) L-band microwave radiometer is a conical scanning instrument designed to measure soil moisture with 4 percent volumetric accuracy at 40-kilometer spatial resolution. SMAP is NASA's first Earth Systematic Mission developed in response to its first Earth science decadal survey. Here, the design is reviewed and the results of its first year on orbit are presented. Unique features of radiometer include a large 6-meter rotating reflector, fully polarimetric radiometer receiver with internal calibration, and radio-frequency interference detection and filtering hardware. The radiometer electronics are thermally controlled to achieve good radiometric stability. Analyses of on-orbit results indicate the electrical and thermal characteristics of the electronics and internal calibration sources are very stable and promote excellent gain stability. Radiometer NEdT (Noise Equivalent differential Temperature) less than 1 degree Kelvin for 17-millisecond samples. The gain spectrum exhibits low noise at frequencies greater than 1 megahertz and 1 divided by f (pink) noise rising at longer time scales fully captured by the internal calibration scheme. Results from sky observations and global swath imagery of all four Stokes antenna temperatures indicate the instrument is operating as expected.

  20. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Annmarie Eldering, OCO-2 deputy project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, demonstrates with a few white beans in a container of black beans the small differences in carbon dioxide in the atmosphere that the Orbiting Carbon Observatory-2 (OCO-2) will be able to measure, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014, launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  1. Earth-Moon system: Dynamics and parameter estimation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1979-01-01

    The following topics are discussed: (1) the Unified Model of Lunar Translation/Rotation (UMLTR); (2) the effect of figure-figure interactions on lunar physical librations; (3) the effect of translational-rotational coupling on the lunar orbit; and(4) an error analysis for estimating lunar inertias from LURE (Lunar Laser Ranging Experiment) data.

  2. Evaluation de l'effet structurel de l'impact d'un micrometeorite ou d'un debris orbital sur le bras Canadien 2

    NASA Astrophysics Data System (ADS)

    Lanouette, Anne-Marie

    Space structures are more and more likely to be impacted at hypervelocities, velocities greater than 3km/s, as the number of orbital debris has rapidly grown in the last two decades. These debris are mostly composed of pieces jettisoned from a launcher or a satellite during the deployment of a structure, dead spacecrafts and fragmentation debris. Collision between two debris, generating many smaller new debris, are more likely to happen. Large space debris (diameter over 10cm) are tracked by different space organizations and their position at all time is known. It is however impossible to track the smaller debris while several studies have already demonstrated that they can also cause significant damage to structures. It is now more and more common to add a kind of protection against collisions to the space structures, but the great majority of space structures currently in orbit, as the Canadarm2, are not protected against hypervelocity impacts. Damage caused by such impacts to different space materials such as aluminum, sandwich panels and laminates has already been characterized during different studies since the end of the 1980s while no study, dedicated to the experimental evaluation of the mechanical properties of a space structure after an impact, relevant to the case of the Canadarm2, has been published. It is only possible to find, in the literature, studies determining the residual mechanical properties after an impact at much lower velocities; the energy of impact is generally three orders of magnitude smaller. The Canadarm2, or Space Station Remote Manipulator System (SSRMS), is installed on the International Space Station (ISS) since 2001. It had an initial 10-year lifespan, but it is still very useful today for maintenance operations and to capture and release incoming space capsules. Understanding the effects of an orbital debris impact on the Canadarm2 structure is now primordial in order to adequately redefine the load levels that can be applied on

  3. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    NASA Headquarters Public Affairs Officer Steve Cole, standing, moderates a Orbiting Carbon Observatory-2 (OCO-2) briefing with (from left), Betsy Edwards, OCO-2 program executive with the Science Mission Directorate at NASA Headquarters, Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, Mike Gunson, OCO-2 project scientist with JPL, and Annmarie Eldering, OCO-2 deputy project scientist JPL, , Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  4. Steady Motions of Rigid Body Satellites in a Central Gravitational Field

    DTIC Science & Technology

    1993-12-01

    been explored for several centuries. Orbiting bodies investigated include point masses, spheres, cylinders, rods, ball-and-socket connected objects...of the satellite model relative to its orbit radius could lead to 5 its treatment as a point mass, doing so would prevent analysis of satellite...8217 librational ’ motion ... and internal elastic forces in the structure balance the orbital dynamic accelerations tending to separate masses orbiting at

  5. Orbiting Carbon Observatory-2 Ready to Blast Off

    NASA Image and Video Library

    2014-06-30

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 OCO-2 satellite onboard, is seen at Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif.

  6. Spin orbital singlet system FeSc2S4 under pressure

    NASA Astrophysics Data System (ADS)

    Biffin, Alun; Chernyshov, Dmitry; Canevet, Emmanuel; Fennell, Tom; White, Jonathan S.; Khasanov, Rustem; Luetkens, Hubertus; Loidl, Alois; Tsurkan, Vladimir; Rüegg, Christian

    The role of orbital degrees of freedom in quantum magnets is receiving intense focus recently, with the understanding that spin-orbit coupled systems can display physics qualitatively different from their spin only counter parts. An example is the spin-orbital singlet (SOS) state, which can provide an alternative to the conventional spin and orbitally ordered groundstates of quantum magnets. In such a scenario, the relative strengths of the exchange interaction and spin orbit coupling parameters determine the low temperature structure, with the former preferring ordered moments and the latter a non-magnetic singlet. Moreover the quantum critical point separating these two phases is rather unique in that it marks the onset of criticality in both the spin and orbital sectors. This SOS picture has recently been applied to FeSc2S4, where despite strong antiferromagnetic exchange between Jahn-Teller active Fe2+ ions no experimental signature of spin or orbital order has been detected. Building on our previous neutron scattering measurements, we have used hydrostatic pressure in neutron scattering, muon spin rotation and x-ray diffraction measurements to probe the unique phase diagram of FeSc2S4. My talk will focus on the results and interpretation of these experiments SNF SCOPES project IZ73Z0_152734/1, the Marie Curie FP7 COFUND PSI Fellowship program, Swiss National Science Foundation.

  7. Probing 5 f -state configurations in URu 2 Si 2 with U L III -edge resonant x-ray emission spectroscopy

    DOE PAGES

    Booth, Corwin H.; Medling, S. A.; Tobin, J. G.; ...

    2016-07-15

    Resonant x-ray emission spectroscopy (RXES) was employed at the U LIII absorption edge and the L α1 emission line to explore the 5f occupancy, nf, and the degree of 5f-orbital delocalization in the hidden-order compound URu 2Si 2. By comparing to suitable reference materials such as UF 4, UCd 11, and α-U, we conclude that the 5f orbital in URu 2Si 2 is at least partially delocalized with n f=2.87±0.08, and does not change with temperature down to 10 K within the estimated error. These results place further constraints on theoretical explanations of the hidden order, especially those requiring amore » localized f 2 ground state.« less

  8. Generating precise and homogeneous orbits for Jason-1 and Jason-2

    NASA Astrophysics Data System (ADS)

    Flohrer, Claudia; Otten, Michiel; Springer, Tim; Dow, John M.

    Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are needed. Satellite altimetry missions meanwhile span over three decades, in which our understanding of the Earth has increased significantly. As also the models used for precise orbit determination (POD) have improved, the satellite orbits of the altimetry satellites are not available in an uniform reference system. Homogeneously determined orbits referring to the same global reference system are, however, needed to improve our understanding of the Earth system. With the launch of the TOPEX/Poseidon (T/P) mission in 1992 a still ongoing time series of high-altimetry measurements of ocean topography started. In 2001 the altimetry mission Jason-1 took over and in 2009 the follow-on program Jason-2/OSTM started. All three satellites follow the same ground-track by flying in the same orbit, thus ensuring a continuous time-series of centimetre-level ocean topography observations. Therefore a reprocessing of the orbit determination for these altimetry satellites would be highly beneficial for altimetry applications. The Navigation Support Office at ESA/ESOC has enhanced the GNSS processing capabilities of its NAPEOS software. Thus it is now in the unique position to do orbit determination by combining different types of data, and by using one single software system for different satellite types, including the most recent improvements in orbit and observation modelling and IERS conventions. Our presentation focuses on the re-processing efforts carried out by ESA/ESOC for the gener-ation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. At the same time ESOC carried out a re-processing of the com

  9. Wigner time delay and spin-orbit activated confinement resonances

    NASA Astrophysics Data System (ADS)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  10. On-orbit checkout of satellites, volume 2. Part 3 of on-orbit checkout study. [space maintenance

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1978-01-01

    Early satellite failures significantly degrading satellite operations are reviewed with emphasis on LANDSAT D, the Technology Demonstration Satellite, the ATREX/AEM spacecraft, STORMSAT 2, and the synchronous meteorological satellite. Candidates for correction with on-orbit checkout and appropriate actions are analyzed. On-orbit checkout subsystem level studies are summarized for electrical power, attitude control, thermal control, reaction control and propulsion, instruments, and angular rate matching for alignment of satellite IRU.

  11. Participation in the Mars Orbiting Laser Altimeter Experiment

    NASA Technical Reports Server (NTRS)

    Pettengil, Gordon H.; Ford, Peter

    2004-01-01

    The Mars Orbiting Laser Altimeter (MOLA) instrument [1,2] carried aboard the Mars Global Surveyor (MGS) spacecraft, has observed strong echoes from cloud tops at 1.064 microns on 61% of its orbital passes over the winter north pole (235deg L(sub S), < 315deg) and on 58% of the passes over the winter south pole (45deg < L(sub S), < 135deg). The clouds are unlikely to be composed of water ice since the vapor pressure of H2O is very low at the Martian nighttime polar temperatures measured by the Thermal Emission Spectrometer (TES) [3], and by an analysis of MGS radio occultations [4]. Dust clouds can also be ruled out since no correlation is seen between clouds and global dust storms. The virtually certain composition for the winter polar clouds is CO2 ice.

  12. The physical properties and orbital parameters of the triple system V402 Lac

    NASA Astrophysics Data System (ADS)

    Hoyman, B.; Kalomeni, B.; Yakut, K.

    2018-04-01

    We present first ground-based multi-colors photometric study of an eccentric, double-lined eclipsing binary system V402 Lac. Analyzing the data obtained in this study together with earlier studies in the literature we derived the orbital and physical parameters of this detached binary system of considerable interest. Derived physical parameters of the components are as follows; M1 = 2.95 ± 0.06M⊙ , M2 = 2.86 ± 0.06M⊙ , R1 = 2.61 ± 0.04R⊙ , R2 = 2.16 ± 0.03R⊙ , L1 = 98 ± 5L⊙ and L2 = 69 ± 3L⊙ . Using the newly obtained parameters the distance of the binary is determined to be 262 ± 33 pc. In addition, the system show apsidal motion whose period is determined to be 213 years. A possible third star (M3 sin i = 1.9M⊙) orbiting the binary system in an eccentric orbit (e = 0.23) with an orbital period of 20.5 years has been detected in this study with LTT.

  13. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    PubMed

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  14. Jovian Trojans: Orbital structures versus the WISE data

    NASA Astrophysics Data System (ADS)

    Rozehnal, Jakub; Broz, M.

    2013-10-01

    In this work, we study the relation between orbital characteristics of Jovian Trojans and their albedos and diameters as measured by the WISE/NEOWISE mission (Grav et al. 2011, 2012). In our previous work (Broz & Rozehnal 2011), we concluded that there is only one collisional family with parent body size larger than 100 km among Trojans, namely the Eurybates. This finding was based on the analysis of the observed size distributions, colour data from the Sloan Digital Sky Survey, and simulations of orbital evolution. The WISE albedos serve as an independent source of information which allows us to verify our previous results. We also update our database of suitable resonant elements (i.e. the libration amplidude D, eccentricity e, inclination I) of Trojans and we look for new (to-be-discovered) clusters by the Hierarchical Clustering Method. Using the WISE diameters, we can construct more precise size-frequency distributions of Trojans in both the leading/trailing clouds which we compare to SFD of the cluster(s) mentioned above. We then prepare a collisional model (based on the Boulder code, Morbidelli et al. 2009). Initial conditions of our model are based on an assumption that the Trojans were captured from a destabilised transplanetary disc while Jupiter jumped during its close encounter with a Neptune-mass planet - the so-called "jump capture" (Nesvorny et al. 2013). Within the framework of this model we try to constrain the age of the Eurybates family. The work of MB was supported by grant GACR 13-013085 of the Czech Science Foundation and the Research Programme MSM0021620860 of the Czech Ministry of Education.

  15. System technology analysis of aeroassisted orbital transfer vehicles - Moderate lift/drag

    NASA Technical Reports Server (NTRS)

    Florence, D. E.; Fischer, G.

    1983-01-01

    The utilization of procedures involving aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low-earth orbit makes it possible to realize significant performance benefits. The present study is concerned with a number of mission scenarios for Aeroassisted Orbital Transfer Vehicles (AOTV) and the impact of potential technology advances in the performance enhancement of the class of AOTV's having a hypersonic lift to drag ratio (L/D) of 0.75 to 1.5. It is found that the synergistic combination of a hypersonic L/D of 1.2, an advanced cryopropelled engine, and an LH2 drop tank (1-1/2 stage) leads to a single 65,000 pound shuttle, two-man geosynchronous mission with 2100 pounds of useful paylod. Additional payload enhancement is possible with AOTV dry weight reductions due to technology advances in the areas of vehicle structures and thermal protection systems and other subsystems.

  16. Gravitational Harmonics from Shallow Resonant Orbits. [GEOS 2 satellite - orbit calculation

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Klosko, S. M.

    1975-01-01

    Five gravitational constraints were derived for the GEOS 2 orbit (order 13, to 30th degree) whose principal resonant period is 6 days. The constraints explain the sinusoidal variation with argument of perigee of a lumped harmonic found from 41 6-day arcs of optical and laser data. The condition equations, derived from elementary perturbation theory are shown to account for almost all of the resonant information in the tracking data.

  17. Project ECHO: Electronic Communications from Halo Orbit

    NASA Technical Reports Server (NTRS)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    1994-01-01

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  18. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Im, J.; DeGottardi, W.

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  19. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE PAGES

    Fang, L.; Im, J.; DeGottardi, W.; ...

    2016-10-12

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  20. Orbital-plane precessional resonances for binary black-hole systems

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Zhao, Xinyu; Gerosa, Davide

    2016-03-01

    We derive a new class of post-Newtonian precessional resonances for binary black holes (BBHs) with misaligned spins. According to the orbit-averaged spin-precession equations, the angle between the orbital angular momentum L and the total angular momentum J oscillates with a period τ during which time L precesses about J by an angle α. If α is a rational multiple of 2 π, the precession of L will be closed indicating a resonance between the polar and azimuthal evolution of L . If α is an integer multiple of 2 π, the misalignment between the angular momentum ΔL radiated over the period τ and J will be minimized, as will the opening angle of the cone about which J precesses in an inertial frame. However, the direction of ΔL will remain nearly fixed in an inertial frame over many precessional periods, causing the direction of J to tilt as inspiraling BBHs pass through such a resonance. Generic BBHs encounter many such resonances during an inspiral from large separations. We derive the evolution of J near a resonance and assess their detectability by gravitational-wave detectors and astrophysical implications.

  1. On-orbit radiometric calibration over time and between spacecraft using the moon

    USGS Publications Warehouse

    Kieffer, H.H.; Stone, T.C.; Barnes, R.A.; Bender, S.; Eplee, R.E.; Mendenhall, J.; Ong, L.; ,

    2002-01-01

    The Robotic Lunar Observatory (ROLO) project has developed a spectral irradiance model of the Moon that accounts for variations with lunar phase through the bright half of a month, lunar librations, and the location of an Earth-orbiting spacecraft. The methodology of comparing spacecraft observations of the Moon with this model has been developed to a set of standardized procedures so that comparisons can be readily made. In the cases where observations extend over several years (e.g., SeaWiFS), instrument response degradation has been determined with precision of about 0.1% per year. Because of the strong dependence of lunar irradiance on geometric angles, observations by two spacecraft cannot be directly compared unless acquired at the same time and location. Rather, the lunar irradiance based on each spacecraft instrument calibration can be compared with the lunar irradiance model. Even single observations by an instrument allow inter-comparison of its radiometric scale with other instruments participating in the lunar calibration program. Observations by SeaWiFS, ALI, Hyperion and MTI are compared here.

  2. Contingency plans for the ISEE-3 libration-point mission

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.

    1979-01-01

    During the planning stage of the International Sun-Earth Explorer-3 (ISEE-3) mission, a recovery strategy was developed in case the Delta rocket underperformed during the launch phase. If a large underburn had occurred, the ISEE-3 spacecraft would have been allowed to complete one revolution of its highly elliptical earth orbit. The recovery plan called for a maneuver near perigee to increase the energy of the off-nominal orbit; a relatively small second maneuver would then insert the spacecraft into a new transfer trajectory toward the desired halo orbit target, and a third maneuver would place the spacecraft in the halo orbit. Results of the study showed that a large range of underburns could be corrected for a total nominal velocity deviation cost within the ISEE-3 fuel budget.

  3. On the origin of the unusual orbit of Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Terrell, Dirk; Wiegert, Paul A.; Dones, Luke; Duncan, Martin J.

    2006-05-01

    The orbit of Comet 2P/Encke is difficult to understand because it is decoupled from Jupiter—its aphelion distance is only 4.1 AU. We present a series of orbital integrations designed to determine whether the orbit of Comet 2P/Encke can simply be the result of gravitational interactions between Jupiter-family comets and the terrestrial planets. To accomplish this, we integrated the orbits of a large number of objects from the trans-neptunian region, through the realm of the giant planets, and into the inner Solar System. We find that at any one time, our model predicts that there should be roughly 12 objects in Encke-like orbits. However, it takes roughly 200 times longer to evolve onto an orbit like this than the typical cometary physical lifetime. Thus, we suggest that (i) 2P/Encke became dormant soon after it was kicked inward by Jupiter, (ii) it spent a significant amount of time inactive while rattling around the inner Solar System, and (iii) it only became active again as the ν secular resonance drove down its perihelion distance.

  4. QATAR-2: A K DWARF ORBITED BY A TRANSITING HOT JUPITER AND A MORE MASSIVE COMPANION IN AN OUTER ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Marta L.; Alsubai, Khalid A.; Latham, David W.

    We report the discovery and initial characterization of Qatar-2b, a hot Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short period, P{sub b} = 1.34 days. The mass and radius of Qatar-2b are M{sub P} = 2.49 M{sub J} and R{sub P} = 1.14 R{sub J}, respectively. Radial-velocity monitoring of Qatar-2 over a span of 153 days revealed the presence of a second companion in an outer orbit. The Systemic Console yielded plausible orbits for the outer companion, with periods on the order of a year and a companion mass of at leastmore » several M{sub J}. Thus, Qatar-2 joins the short but growing list of systems with a transiting hot Jupiter and an outer companion with a much longer period. This system architecture is in sharp contrast to that found by Kepler for multi-transiting systems, which are dominated by objects smaller than Neptune, usually with tightly spaced orbits that must be nearly coplanar.« less

  5. Identification of new orbits to enable future mission opportunities for the human exploration of the Martian moon Phobos

    NASA Astrophysics Data System (ADS)

    Zamaro, Mattia; Biggs, James D.

    2016-02-01

    One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BP-GH). In this paper, a showcase of various classes of non-keplerian orbits is identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk

  6. TV observations of Phobos - First results

    NASA Technical Reports Server (NTRS)

    Avanesov, G. A.; Bonev, B. I.; Boicheva, V.; Kempe, F.; Bazilevskii, A. T.; Duxbury, T.

    1990-01-01

    From February to March, 1989, Phobos-2 acquired 37 TV images of Phobos at distances from 200 to 1100 km. These images will be used to update the figure model and topographic and geological maps of Phobos, its spectral characteristics and scattering law, the surface composition and texture, and the parameters of the orbital motion and forced libration.

  7. Secondary resonances and the boundary of effective stability of Trojan motions

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Efthymiopoulos, Christos

    2018-02-01

    One of the most interesting features in the libration domain of co-orbital motions is the existence of secondary resonances. For some combinations of physical parameters, these resonances occupy a large fraction of the domain of stability and rule the dynamics within the stable tadpole region. In this work, we present an application of a recently introduced `basic Hamiltonian model' H_b for Trojan dynamics (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez et al. in Celest Mech Dyn Astron 126:519, 2016): we show that the inner border of the secondary resonance of lowermost order, as defined by H_b, provides a good estimation of the region in phase space for which the orbits remain regular regardless of the orbital parameters of the system. The computation of this boundary is straightforward by combining a resonant normal form calculation in conjunction with an `asymmetric expansion' of the Hamiltonian around the libration points, which speeds up convergence. Applications to the determination of the effective stability domain for exoplanetary Trojans (planet-sized objects or asteroids) which may accompany giant exoplanets are discussed.

  8. Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott

    2013-01-01

    WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.

  9. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  10. Stable orbits for lunar landing assistance

    NASA Astrophysics Data System (ADS)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

  11. Charon's Size And Orbit From Double Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Braga-Ribas, F.; Widemann, T.; Jehin, E.; Gillon, M.; Manfroid, J.; Ortiz, J. L.; Morales, N.; Maury, A.; Assafin, M.; Camargo, J. I. B.; Vieira Martins, R.; Dias Oliveira, A.; Ramos Gomes, A., Jr.; Vanzi, L.; Leiva, R.; Young, L. A.; Buie, M. W.; Olkin, C. B.; Young, E. F.; Howell, R. R.; French, R. G.; Bianco, F. B.; Fulton, B. J.; Lister, T. A.; Bode, H. J.; Barnard, B.; Merritt, J. C.; Shoemaker, K.; Vengel, T.; Tholen, D. J.; Hall, T.; Reitsema, H. J.; Wasserman, L. H.; Go, C.

    2012-10-01

    Stellar occultations of a same star by both Pluto and Charon (double events) yield instantaneous relative positions of the two bodies projected in the plane of the sky, at 10km-level accuracy. Assuming a given pole orientation for Charon's orbit, double events provide the satellite plutocentric distance r at a given orbital longitude L (counted from the ascending node on J2000 mean equator), and finally, constraints on its orbit. A double event observed on 22 June 2008 provides r=19,564+/-14 km at L=153.483+/-0.071 deg. (Sicardy et al. 2011), while another double event observed on 4 June 2011 yields: r=19,586+/-15 km at L = 343.211+/-0.072 deg. (all error bars at 1-sigma level). These two positions are consistent with a circular orbit for Charon, with a semi-major axis of a=19,575+\\-10 km. This can be compared to the circular orbit found by Buie et al. (2012), based on Hubble Space Telescope data, with a=19,573+/-2 km. The 4 June 2011 stellar occultation provides 3 chords across Charon, from which a radius of Rc= 602.4+/-1.6 km is derived. This value can be compared to that obtained from the 11 July 2005 occultation: Rc= 606.0+/-1.5 km (Person et al. 2006) and Rc= 603.6+/-1.4 km (Sicardy et al. 2006). A third double event, observed on 23 June 2011 is under ongoing analysis, and will be presented. Buie et al. (2012), AJ 144, 15-34 (2012) Person et al, AJ 132, 1575-1580 (2006) Sicardy et al., Nature 439, 52-54 (2006) Sicardy et al., AJ 141, 67-83 (2011) B.S. thanks ANR "Beyond Neptune II". L.A.Y. acknowledges support by NASA, New Horizons and National Geographic grants. We thank B. Barnard, M.J. Brucker, J. Daily, C. Erikson, W. Fukunaga, C. Harlinten, C. Livermore, C. Nance, J.R. Regester, L. Salas, P. Tamblyn, R. Westhoff for help in the observations.

  12. Orbital Magnetism in Band Structure Calculations

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.; Liechtenstein, A. I.; Terakura, K.

    1997-03-01

    We discuss abilities of the exact Fock exchange EX to deal with the phenomenon of the orbital magnetism in the density functional theories. The essence of our approach is to decompose the density matrix in terms of invariant (Rwidehatρ_i=widehatρ_i) and noninvariant (Rwidehatρ_n=-widehatρ_n) parts under the time reversal operation R. Stressing the short-range electron-electron interactions, we analyze the exchange enhancement of the orbital magnetization given by E_X[widehatρ_n]. For p-electrons it leads to the Stoner-like orbital exchange E_X[widehatρ_n]=-(1/4)Usum_α < widehatL_α >^2 driven by on-site Coulomb interaction U. More generally, E_X[widehatρ_n] can be expressed in terms of expectation values of the irreducible set of operators being odd order products of widehatL_x, widehatLy and widehatL_z. Local enhancement of the crystal field effects in E_X[widehatρ_i] as well as Hartree term E_H[widehatρ_i] relevant to the quenching of the orbital moments is driven by the same parameter (U) and should be considered on an equal footing with E_X[widehatρ_n]. We have implemented this formalism in the spirit of rotationally invariant LDA+U approach^1 in the fully relativistic LMTO method. Applications for Fe, Co and Ni as well as FeO and CoO will be given. - The work is partly supported by NEDO. ^1 I.V.Solovyev et al., Phys. Rev. B 50, 16861 (1994), A.I.Liechtenstein et al., Phys. Rev. B 52, R5467 (1995).

  13. Split Fermi Surfaces of the Spin-Orbit-Coupled Metal Cd2Re2O7 Probed by de Haas-van Alphen Effect

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Yasuhito; Sugii, Kaori; Hirose, Hishiro T.; Hirai, Daigorou; Sugiura, Shiori; Terashima, Taichi; Uji, Shinya; Hiroi, Zenji

    2018-05-01

    The superconducting pyrochlore oxide Cd2Re2O7 shows a structural transition with inversion symmetry breaking (ISB) at Ts1 = 200 K. A recent theory [L. Fu, Phys. Rev. Lett. 115, 026401 (2015)] suggests that the origin is an electronic instability that leads to a multipolar order in the spin-orbit-coupled metal. To observe the Fermi surface of the low-temperature phase of Cd2Re2O7, we perform de Haas-van Alphen effect measurements by means of magnetic torque. In reference to a calculated band structure, the spin-split Fermi surfaces with large cyclotron masses of 5-9m0 are revealed. The splitting is suggested to be due to an antisymmetric spin-orbit coupling induced by ISB, the strength of which is estimated to be approximately 67 K, which is rather smaller than those of typical non-centrosymmetric metals.

  14. Early Validation of Sentinel-2 L2A Processor and Products

    NASA Astrophysics Data System (ADS)

    Pflug, Bringfried; Main-Knorn, Magdalena; Bieniarz, Jakub; Debaecker, Vincent; Louis, Jerome

    2016-08-01

    Sentinel-2 is a constellation of two polar orbiting satellite units each one equipped with an optical imaging sensor MSI (Multi-Spectral Instrument). Sentinel-2A was launched on June 23, 2015 and Sentinel-2B will follow in 2017.The Level-2A (L2A) processor Sen2Cor implemented for Sentinel-2 data provides a scene classification image, aerosol optical thickness (AOT) and water vapour (WV) maps and the Bottom-Of-Atmosphere (BOA) corrected reflectance product. First validation results of Sen2Cor scene classification showed an overall accuracy of 81%. AOT at 550 nm is estimated by Sen2Cor with uncertainty of 0.035 for cloudless images and locations with dense dark vegetation (DDV) pixels present in the image. Aerosol estimation fails if the image contains no DDV-pixels. Mean difference between Sen2Cor WV and ground-truth is 0.29 cm. Uncertainty of up to 0.04 was found for the BOA- reflectance product.

  15. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  16. Independent Orbiter Assessment (IOA): Assessment of the life support and airlock support systems, volume 2

    NASA Technical Reports Server (NTRS)

    Barickman, K.

    1988-01-01

    The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. Volume 2 continues the presentation of IOA worksheets and contains the critical items list and NASA FMEA to IOA worksheet cross reference and recommendations.

  17. Normal modes of synchronous rotation

    NASA Astrophysics Data System (ADS)

    Varadi, Ferenc; Musotto, Susanna; Moore, William; Schubert, Gerald

    2005-07-01

    The dynamics of synchronous rotation and physical librations are revisited in order to establish a conceptually simple and general theoretical framework applicable to a variety of problems. Our motivation comes from disagreements between the results of numerical simulations and those of previous theoretical studies, and also because different theoretical studies disagree on basic features of the dynamics. We approach the problem by decomposing the orientation matrix of the body into perfectly synchronous rotation and deviation from the equilibrium state. The normal modes of the linearized equations are computed in the case of a circular satellite orbit, yielding both the periods and the eigenspaces of three librations. Libration in longitude decouples from the other two, vertical modes. There is a fast vertical mode with a period very close to the average rotational period. It corresponds to tilting the body around a horizontal axis while retaining nearly principal-axis rotation. In the inertial frame, this mode appears as nutation and free precession. The other vertical mode, a slow one, is the free wobble. The effects of the nodal precession of the orbit are investigated from the point of view of Cassini states. We test our theory using numerical simulations of the full equations of the dynamics and discuss the disagreements among our study and previous ones. The numerical simulations also reveal that in the case of eccentric orbits large departures from principal-axis rotation are possible due to a resonance between free precession and wobble. We also revisit the history of the Moon's rotational state and show that it switched from one Cassini state to another when it was at 46.2 Earth radii. This number disagrees with the value 34.2 derived in a previous study.

  18. Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data

    NASA Astrophysics Data System (ADS)

    Chapront, J.; Chapront-Touzé, M.; Francou, G.

    1999-03-01

    An analysis of Lunar Laser Ranging (LLR) observations from January 1972 till March 1998 is performed using the lunar theory ELP 2000-96 and the completed Moons' theory of the lunar libration. The LLR station coordinates, polar motion and Universal Time are provided by the International Earth Rotation Service (IERS). In Solution 1 the precession-nutation transformation is given by recent analytical theories, while in Solution 2 it is derived from the IERS daily corrections. Orbital and free libration parameters of the Moon, and coordinates of the reflectors are obtained in both cases. The position of the inertial mean ecliptic of J2000.0 with respect to the equator of the mean Celestial Ephemeris Pole (CEP) of J2000.0 (in Solution 1) and to the International Celestial Reference System (ICRS), the IERS celestial reference system, (in Solution 2) are fit. The position of the mean CEP equator of J2000.0 and of several dynamical reference planes and origins, with respect to ICRS, are derived from these fits (Fig. 1). The leading results are the following: 0farcs057 60+/- 0farcs000 20 (in the equator) for the separation of the origin of right ascensions in ICRS from the ascending node of the inertial mean ecliptic of J2000.0 on the reference plane of ICRS, -0farcs0460 +/- 0farcs0008 (in the ecliptic) for the separation of the latter point from the inertial dynamical mean equinox of J2000.0, -0farcs015 19+/- 0farcs000 35 (in the equator) for the separation of the inertial dynamical mean equinox of J2000.0 from the J2000.0 right ascension origin derived from IERS polar motion and Universal Time and from precise theories of precession-nutation, and 23degr26 arcmin21 farcs405 22+/- 0farcs000 07 for the inertial obliquity of J2000.0. A correction of -0farcs3437 +/- 0farcs0040 /cy to the IAU 1976 value of the precession constant is also obtained (the errors quoted are formal errors).

  19. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua

    2018-02-01

    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  20. Orbital operations study. Volume 2: Interfacing activities analysis. Part 2: Structural and mechanical group

    NASA Technical Reports Server (NTRS)

    Mattson, H. L.; Gianformaggio, A.; Anderson, N. R.

    1972-01-01

    The activities of the structural and mechanical activity group of the orbital operations study project are discussed. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) mating, (2) orbital assembly, (3) separation, EOS payload deployment, and EOS payload retraction.

  1. Requirements and capabilities for planetary missions. Volume 2: Mars polar orbiter penetrator 1981

    NASA Technical Reports Server (NTRS)

    Ball, G. G.; Bird, T. H.

    1976-01-01

    The Mars Polar Orbiter/Penetrator 1981 mission, intended to investigate the manner in which Mars has evolved, and which surveys its geochemistry, performs climatological investigations, and attempts to determine the planet's gravitational field, was described. The spacecraft, modified from the Viking Orbiter design, carries a new remote-sensing payload and six penetrators. The penetrators are released from a 2.46-h, 1000-km sun synchronous circular orbit and interrogated daily throughout the 2-year orbital mission. X-band telemetry is used to increase data return.

  2. Optical transmission for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Gallagher, Benjamin B.; Nickles, Neal; Copp, Tracy

    2012-09-01

    The fabrication and coating of the mirrors for the James Webb Space Telescope has been completed. The spectral reflectivity of the protected gold coated beryllium mirrors has been measured. The predicted end-of-life transmission through the telescope builds from these values. The additional phenomena that have been analyzed are contamination effects and effects of the environment for the JWST operation about the Earth-Sun L2 Lagrange libration point. The L2 environment analysis has been based on radiation testing of mirror samples and hypervelocity testing to assess the micrometeoroid impact effects. The mirror showed no change in reflectance over the VIS-SWIR wavelengths after exposure to 6-9 Grad (Si) that simulated 6 years orbiting the L2 Lagrange point. The effects of hypervelocity particle impacts on the mirrors from test data has been extrapolated to the to the anticipated flux characteristics for micrometeoroids at the L2 environment. The results show that the micrometeoroid effects are orders of magnitude below the particulate contamination effects. The final end-of-life transmission for the mirrors including all of these phenomena will meet the performance requirements for JWST.

  3. Orbital cellulitis: a rare complication after orbital blowout fracture.

    PubMed

    Ben Simon, Guy J; Bush, Steven; Selva, Dinesh; McNab, Alan A

    2005-11-01

    To report the incidence of orbital cellulitis after orbital blowout fracture. Retrospective, noncomparative, interventional case series. All patients with orbital cellulitis and a history of recent orbital fracture. A medical record review of clinical history, imaging studies, and surgical and treatment outcome was performed. Resolution of orbital cellulitis and surgical and imaging findings. Four patients (3 male; mean age, 30 years [range, 4.5-58]) were treated for orbital cellulitis complicating orbital fracture. All patients had evidence of paranasal sinusitis before or after the orbital injury, and 2 also reported forceful nose blowing after sustaining orbital trauma. Although 3 patients received prophylactic oral antibiotics after the fracture, this failed to prevent infection. Sinusitis commenced 1 to 2 weeks before and as late as 5 weeks after orbital injury. All patients were treated with IV antibiotics. Two developed an orbital abscess that required surgical drainage; 1 patient improved after an endonasal maxillary antrostomy. One patient improved on IV antibiotics alone and underwent fracture repair at a later stage. These 4 patients represent 0.8% of all cases of orbital fractures treated in the study period. Orbital cellulitis is a rare complication of orbital fracture, and seems to be more common when paranasal sinus infection preexists or occurs within several weeks of the injury. Oral antibiotics given after the orbital injury may not prevent orbital cellulitis or abscess formation. Surgery may be required to drain orbital abscess or in nonresolving cellulitis to drain the paranasal sinuses. Fracture repair, if indicated, should be delayed, particularly if an alloplastic implant is used.

  4. Orbital construction demonstration study. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The following items are discussed in reference to OCDA requirements; (1) flight mechanics and control, (2) effects of sun angle, (3) disturbance torques, (4) control system requirements, (5) OCDA orbit decay profile, and (6) aerodynamic drag forces. Structural design requirements are also given as well as basic design definition.

  5. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  6. Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb 2Pt 2Pb

    DOE PAGES

    L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; ...

    2016-06-03

    Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb 2Pt 2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutronmore » scattering. Furthermore, the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.« less

  7. Instability study for LOFT for L2-1, L2-2, and L2-3 pretest steady-state operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, S.A.

    The results are presented of a thermal-hydrodynamic flow instability study of the LOFT reactor for the L2-1, L2-2, and L2-3 pretest steady-state operating conditions. Comparison is made between the LOFT reactor and a typical PWR, and the effects on stability of differences in operating parameters and geometry are discussed. Results indicate that the LOFT reactor will be thermal-hydrodynamically stable for nominal and worst case operating conditions. The study supports the LOFT Experimental Safety Analyses for the L2-1, L2-2, and L2-3 tests.

  8. Future orbital transfer vehicle technology study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  9. Variable character of O—O and M—O bonding in side-on (η2) 1:1 metal complexes of O2

    PubMed Central

    Cramer, Christopher J.; Tolman, William B.; Theopold, Klaus H.; Rheingold, Arnold L.

    2003-01-01

    The structures and the O—O and M—O bonding characters of a series of reported side-on (η2) 1:1 metal complexes of O2 are analyzed by using density functional theory calculations. Comparison of the calculated and experimental systems with respect to O—O bond distance, O—O stretching frequency, and O—O and M—O bond orders provides new insights into subtle influences relevant to O2 activation processes in biology and catalysis. The degree of charge transfer from the generally electron-rich metals to the dioxygen fragment is found to be variable, such that there are species well described as superoxides, others well described as peroxides, and several cases having intermediate character. Increased charge transfer to dioxygen takes place via overlap of the metal dxy orbital with the in-plane π* orbital of O2 and results in increased M—O bond orders and decreased O—O bond orders. Comparison of theory and experiment over the full range of compounds studied suggests that reevaluation of the O—O bond lengths determined from certain x-ray crystal structures is warranted; in one instance, an x-ray crystal structure redetermination was performed at low temperature, confirming the theoretical prediction. Librational motion of the coordinated O2 is identified as a basis for significant underestimation of the O—O distance at high temperature. PMID:12634422

  10. ON THE DYNAMICS AND TIDAL DISSIPATION RATE OF THE WHITE DWARF IN 4U 1820-30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Murray, Norman, E-mail: sprodan@cita.utoronto.ca

    It has been suggested that the 170 day period in the light curve of the low-mass X-ray binary 4U 1820-30 arises from the presence of a third body with a large inclination to the binary orbit. We show that this long-period motion arises if the system is librating around the stable fixed point in a Kozai resonance. We demonstrate that mass transfer drives the system toward this fixed point and calculate, both analytically and via numerical integrations, that the period of libration is of order 170 days when the mutual inclination is near the Kozai critical value. The non-zero eccentricitymore » of the binary, combined with tidal dissipation, implies that the rate of change of the binary period would be slower than, or even of opposite sign to, that implied by standard mass transfer models. If the 170 day period results from libration, then, contrary to appearances, the orbital period of the inner binary is increasing with time; in that case, (e/0.009){sup 2} Q/k{sub 2} {approx}> 2.5 Multiplication-Sign 10{sup 9}, where k{sub 2} Almost-Equal-To 0.01 is the tidal Love number and e = 0.009 is the fiducial eccentricity of the inner binary. It appears unlikely that the observed negative period derivative results from the smaller than expected (but positive) value of P-dot combined with the previously suggested acceleration of the system in the gravitational field of the host globular cluster NGC 6624. The discrepancy between the observed and the expected period derivative requires further investigation.« less

  11. Orbital period changes in Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Rappaport, S.; Clark, G. W.; Petro, L. D.

    1983-01-01

    Two new times of mid-X-ray eclipse for Cen X-3 are presented on the basis of pulse arrival time analyses of pointed observations with SAS 3. When combined with all other published eclipse times based on Doppler delay measurements, the results show that the 2.1d binary period is decreasing at an average rate of 1.8 x 10 to the -6th/yr. The decrease, however, is seen as having significant fluctuations about a smooth, linear decrease. The changes observed in the orbital period can be accounted for by mass loss from the system through the L2 point, although the rates required are implausibly high. It is also shown that the long-term overall orbital decay can readily be interpreted as the result of torques exerted by the tidally distorted companion star (Krzeminski's star) on the orbiting neutron star. It is noted that the inferred asynchronism between the orbital frequency and the rotation frequency of the companion star may be maintained by mass and angular momentum loss in a stellar wind or by a tidal instability related to the Darwin effect. However, this would not provide a natural explanation for any short-term deviations from a constant rate of orbital decay.

  12. NASA Orbiting Carbon Observatory OCO-2 Artist Concept

    NASA Image and Video Library

    2014-05-15

    This most recent artist rendering shows NASA Orbiting Carbon Observatory OCO-2, one of five new NASA Earth science missions set to launch in 2014, and one of three managed by the Jet Propulsion Laboratory JPL.

  13. Orbital Engineering in Nickelate Heterostructures Driven by Anisotropic Oxygen Hybridization rather than Orbital Energy Levels

    NASA Astrophysics Data System (ADS)

    Fabbris, G.; Meyers, D.; Okamoto, J.; Pelliciari, J.; Disa, A. S.; Huang, Y.; Chen, Z.-Y.; Wu, W. B.; Chen, C. T.; Ismail-Beigi, S.; Ahn, C. H.; Walker, F. J.; Huang, D. J.; Schmitt, T.; Dean, M. P. M.

    2016-09-01

    Resonant inelastic x-ray scattering is used to investigate the electronic origin of orbital polarization in nickelate heterostructures taking LaTiO3-LaNiO3-3 ×(LaA l O3) , a system with exceptionally large polarization, as a model system. We find that heterostructuring generates only minor changes in the Ni 3 d orbital energy levels, contradicting the often-invoked picture in which changes in orbital energy levels generate orbital polarization. Instead, O K -edge x-ray absorption spectroscopy demonstrates that orbital polarization is caused by an anisotropic reconstruction of the oxygen ligand hole states. This provides an explanation for the limited success of theoretical predictions based on tuning orbital energy levels and implies that future theories should focus on anisotropic hybridization as the most effective means to drive large changes in electronic structure and realize novel emergent phenomena.

  14. Direct and indirect capture of near-Earth asteroids in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2017-09-01

    Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.

  15. Park Forest (L5) and the asteroidal source of shocked L chondrites

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Welten, Kees C.; Riebe, My E. I.; Caffee, Marc W.; Gritsevich, Maria; Maden, Colin; Busemann, Henner

    2017-08-01

    The Park Forest (L5) meteorite fell in a suburb of Chicago, Illinois (USA) on March 26, 2003. It is one of the currently 25 meteorites for which photographic documentation of the fireball enabled the reconstruction of the meteoroid orbit. The combination of orbits with pre-atmospheric sizes, cosmic-ray exposure (CRE), and radiogenic gas retention ages ("cosmic histories") is significant because they can be used to constrain the meteoroid's "birth region," and test models of meteoroid delivery. Using He, Ne, Ar, 10Be, and 26Al, as well as a dynamical model, we show that the Park Forest meteoroid had a pre-atmospheric size close to 180 g cm-2, 0-40% porosity, and a pre-atmospheric mass range of 2-6 tons. It has a CRE age of 14 ± 2 Ma, and (U, Th)-He and K-Ar ages of 430 ± 90 and 490 ± 70 Ma, respectively. Of the meteorites with photographic orbits, Park Forest is the second (after Novato) that was shocked during the L chondrite parent body (LCPB) break-up event approximately 470 Ma ago. The suggested association of this event with the formation of the Gefion family of asteroids has recently been challenged and we suggest the Ino family as a potential alternative source for the shocked L chondrites. The location of the LCPB break-up event close to the 5:2 resonance also allows us to put some constraints on the possible orbital migration paths of the Park Forest meteoroid.

  16. Measuring CO2 from Space: The NASA Orbiting Carbon Observatory-2

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    2010-01-01

    The Orbiting Carbon Observatory (OCO) was the first NASA satellite designed to measure atmospheric carbon dioxide (CO2) from space with the precision, resolution, and coverage needed to detect CO2 surface fluxes. OCO was designed to collect 0.5 to 1 million soundings each day. Typical measurements over land were expected to have precisions of 0.3% within surface footprints smaller less than 3 square km. This project suffered a major setback in February 2009 when the OCO launch vehicle failed to achieve orbit and the satellite was lost. The U.S. Congress has since authorized a restart of the OCO project, and the President's 2010 budget proposal includes funding to develop and fly a replacement for OCO that could be ready for launch no later than February 2013. This mission has been designated OCO-2. While this mission will be a near "carbon copy" of OCO, some changes were needed to replace components that were no longer available. Here, we describe the capabilities, of the OCO-2 mission, highlighting its differences from OCO.

  17. Orbital Debris Quarterly News, Vol. 13, No. 2

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics include: debris clouds left by satellite collision; debris flyby near the International Space Station; and break-up of an ullage motor from a Russian Proton launch vehicle. Findings from the analysis of the STS-126 Shuttle Endeavour window impact damage are provided. Abstracts from the NASA Orbital Debris program office are presented and address a variety of topics including: Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime; Shape Distribution of Fragments From Microsatellite Impact Tests; Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter; Space Debris Environment Remediation Concepts; and, In Situ Measurement Activities at the NASA Orbital Debris Program Office. Additionally, a Meeting Report is provided for the 12 meeting of the NASA/DoD Orbital Debris Working Group.

  18. On Space Warfare: A Space Power Doctrine

    DTIC Science & Technology

    1998-06-01

    called Panama Theory: that there are strategic places (geostationary orbits , libration points ) in space that have military value similar to the...initial training courses for the orbital analyst career field. In 1969, Lupton was transferred to the Headquarters Strategic Air Command, Directorate...over a point on the equator even though the satellite is moving in a circular orbit through space. This altitude (19,360 nautical miles) is the only

  19. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    GPS (Global Positioning System) Space Service Volume (SSV) signal environment is from 3,000-36,000 kilometers altitude. Current SSV specifications only capture performance provided by signals transmitted within 23.5(L1) or 26(L2-L5) off-nadir angle. Recent on-orbit data lessons learned show significant PNT (Positioning, Navigation and Timing) performance improvements when the full aggregate signal is used. Numerous military civil operational missions in High Geosynchronous Earth Orbit (HEOGEO) utilize the full signal to enhance vehicle PNT performance

  20. Time and Energy, Exploring Trajectory Options Between Nodes in Earth-Moon Space

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Condon, Gerald; Williams, Jacob

    2012-01-01

    The Global Exploration Roadmap (GER) was released by the International Space Exploration Coordination Group (ISECG) in September of 2011. It describes mission scenarios that begin with the International Space Station and utilize it to demonstrate necessary technologies and capabilities prior to deployment of systems into Earth-Moon space. Deployment of these systems is an intermediate step in preparation for more complex deep space missions to near-Earth asteroids and eventually Mars. In one of the scenarios described in the GER, "Asteroid Next", there are activities that occur in Earth-Moon space at one of the Earth-Moon Lagrange (libration) points. In this regard, the authors examine the possible role of an intermediate staging point in an effort to illuminate potential trajectory options for conducting missions in Earth-Moon space of increasing duration, ultimately leading to deep space missions. This paper will describe several options for transits between Low Earth Orbit (LEO) and the libration points, transits between libration points, and transits between the libration points and interplanetary trajectories. The solution space provided will be constrained by selected orbital mechanics design techniques and physical characteristics of hardware to be used in both crewed missions and uncrewed missions. The relationships between time and energy required to transfer hardware between these locations will provide a better understanding of the potential trade-offs mission planners could consider in the development of capabilities, individual missions, and mission series in the context of the ISECG GER.

  1. Orbital and attitude evolution of SCD-1 and SCD-2 Brazilian satellites

    NASA Astrophysics Data System (ADS)

    Murcia, J. O.; Carrara, V.; Kuga, H. K.

    2017-10-01

    The SCD-1 and SCD-2 satellites were launched in 1993 and 1998, respectively, with use of the Launcher “Pegasus” of the OSC (Orbital Sciences Corporation). 21 and 16 years later, the satellites are still in orbit around the Earth and providing data for users. Mission and Operational data from Satellite Tracking Center Network are stored in mission files in the Satellite Control Center (SCC) and made available to the users. The SCC also stores history files of the satellite orbit and attitude ephemeris, besides the on-board telemetry, temperatures, equipment status, etc. This work will present some analysis of the orbit ephemeris evolution based upon the Two-Line Elements sets (TLE’s) obtained from NORAD (North American Aerospace Defense Command). Attitude evolution along time is also presented for both satellites from SCC data. The orbit decay will be explained as resulting mainly due to the solar activity during the satellite lifetime. This work aims to report the history of more than 20 years of continuous operation of SCD-1 and SCD-2. At the end, an estimation of the orbital decay is forecast with the use of NASA’s DAS software.

  2. Asteroid-type orbit evolution near the 5:2 resonance

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.

    1992-01-01

    In this case of the 5:2 commensurability with the motion of Jupiter, an asteroid can reach the orbits of Mars, Earth, and Venus when eccentricity e is greater than 0.41, 0.65, and 0.74, respectively. For individual fictitious asteroids, Ipatov and Yoshikawa obtained a growth in e from 0.15 to 074-0.76. Rates of changes in orbital orientations are different for Mars, Earth, Venus, and the asteroid. Therefore, for corresponding values of e, the asteroid could encounter these planets and leave the gap at those encounters. In order to investigate this hypothesis of the 5:2 Kirkwood gap formation, Ipatov studied the regions of initial data for which the eccentricities of asteroids located near the 5:2 commensurability exceeded 0.41 during evolution. The orbit evolution for 500 fictitious asteroids was investigated by numerical integration of the complete (unaveraged) equations of motion for the three-body problem (Sun-Jupiter-asteroid). The equations of motion were integrated in the time intervals T is greater than or equal to 5(10)(exp 3)t(sub J) (t(sub J) is the heliocentric orbital period of Jupiter) in the planar model, T is greater than or equal to 10(exp 4)t(sub J) at initial inclination 5 deg is less than or equal to i(sub 0) is less than or equal to 20 deg and T = 10(exp 5)t(sub J) at i(sub 0) = 40 deg. The larger interval T was taken at i(sub 0) = 40 deg because in this case for the majority of runs maximum values of e and i were reached in the time delta(t) is greater than 2(10)(exp 4)t(sub J).

  3. Fully relativistic pseudopotential formalism under an atomic orbital basis: spin-orbit splittings and magnetic anisotropies.

    PubMed

    Cuadrado, R; Cerdá, J I

    2012-02-29

    We present an efficient implementation of the spin-orbit coupling within the density functional theory based SIESTA code (2002 J. Phys.: Condens. Matter 14 2745) using the fully relativistic and totally separable pseudopotential formalism of Hemstreet et al (1993 Phys. Rev. B 47 4238). First, we obtain the spin-orbit splittings for several systems ranging from isolated atoms to bulk metals and semiconductors as well as the Au(111) surface state. Next, and after extensive tests on the accuracy of the formalism, we also demonstrate its capability to yield reliable values for the magnetic anisotropy energy in magnetic systems. In particular, we focus on the L1(0) binary alloys and on two large molecules: Mn(6)O(2)(H -sao)(6)(O(2)CH)(2)(CH(3)OH)(4) and Co(4)(hmp)(4)(CH(3)OH)(4)Cl(4). In all cases our calculated anisotropies are in good agreement with those obtained with full-potential methods, despite the latter being, in general, computationally more demanding.

  4. Constraints on Titan rotation from Cassini radar

    NASA Astrophysics Data System (ADS)

    Bills, B. G.; Stiles, B. W.; Kirk, R. L.

    2014-12-01

    We give an update on efforts to model the rotation of Titan, subject to constraints from Cassini radar observations. The data we are currently using includes 670 tie-points, each of which is a pair of inertial positions of a single surface point, relative to the center of mass of Titan, and the corresponding pair of observation times. The positional accuracy is of order 1 km, in each Cartesian component. A reasonably good fit to the observations is obtained with a simple model which has a fixed spin pole and a rotation rate which is a sum of a constant value and a single sinusoidal oscillation. A better fit is obtained if we insist that Titan should behave as a synchronous rotator, in the dynamical sense of keeping its axis of least inertia oriented toward Saturn. At the level of accuracy required to fit the Cassini radar data, synchronous rotation is notably different than having a uniform rate of rotation. In this case, we need to model time variations in the orbital mean longitude, which is the longitude of periapse, plus the mean anomaly. That angle varies on a wide range of times scales, including Titan's periapse precession period (703 years), Saturn's heliocentric orbital period (29.47 years), perturbations from relatively large satellites Iapetus (79.3 days), and a 4:3 mean motion resonant interaction with Hyperion (640 and 6850 days), and a linear increase at Titan's mean orbital period (15.9455 day). Our rotation model for Titan has 4 free parameters. Two of them specify the orientation of the fixed spin pole, and the other two are the effective free libration period and viscous damping time. Our dynamical model includes a damped forced longitudinal libration, in which gravitational torques attempt to align the axis of least inertia with the instantaneous direction to Saturn. For a rigid tri-axial body, with Titan's moments of inertia, the free oscillation period for longitudinal librations would be 850 days. For a decoupled elastic shell, the effective

  5. The effect of geocenter motion on Jason-2 orbits and the mean sea level

    NASA Astrophysics Data System (ADS)

    Melachroinos, S. A.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Bordyugov, O.

    2013-04-01

    We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards (Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC's SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a - 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.

  6. The Effect of Geocenter Motion on Jason-2 Orbits and the Mean Sea Level

    NASA Technical Reports Server (NTRS)

    Melachroinos, S. A.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Bordyugov, O.

    2012-01-01

    We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards (Lemoine et al. 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC's SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a 4.67 plus or minus 3.40 mm error in the Z-component of the orbit frame which creates 1.06 plus or minus 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.

  7. On the period of the periodic orbits of the restricted three body problem

    NASA Astrophysics Data System (ADS)

    Perdomo, Oscar

    2017-09-01

    We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, 2 T=kπ +\\int _Ω g where k is an integer, Ω is the region enclosed by the periodic orbit and g:R^2→ R is a function that only depends on the constant C known as the Jacobian constant; it does not depend on Ω . This theorem has a Keplerian flavor in the sense that it relates the period with the space "swept" by the orbit. As an application we prove that there is a neighborhood around L_4 such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for L_5.

  8. Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1992-01-01

    The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.

  9. L2 Working Memory Capacity and L2 Reading Skill.

    ERIC Educational Resources Information Center

    Harrington, Mike; Sawyer, Mark

    1992-01-01

    Examines the sensitivity of second-language (L2) working memory (ability to store and process information simultaneously) to differences in reading skills among advanced L2 learners. Subjects with larger L2 working memory capacities scored higher on measures of L2 reading skills, but no correlation was found between reading and passive short-term…

  10. The impact of suction drainage on orbital compartment syndrome after craniofacial surgery.

    PubMed

    Fenzl, Carlton R; Golio, Dominick

    2014-07-01

    Postoperative orbital compartment syndrome is a potentially blinding complication of surgery in the orbital region. We describe the technique of orbital drain placement as a method of preventing vision loss resulting from orbital compartment syndrome. We present a retrospective case series of 29 patients who underwent orbital fracture, facial fracture, and orbital implant removal from 7/4/2008 to 5/3/2013 by the same craniofacial surgeon. An orbital drain was placed in each patient. The drainage was recorded daily until drain removal. Criteria for removal included less than or equal to 5 mL of drainage in 24 hours. Of the 29 patients included in this study, 21 were men and 8 were women. Ages ranged from 17 to 67 years. The postoperative drainage ranged from less than 1 mL to 71 mL of serosanguinous fluid. All drains were removed between the first and sixth postoperative days. No postoperative visual loss, infections, or additional antibiotics were recorded with follow-up reaching as far as 40 months. Postoperative orbital compartment syndrome is a dangerous complication of surgery in the orbital region. Its rapid onset necessitates immediate intervention to prevent permanent vision loss. Morphologic changes to the optic nerve as well as reductions in electroretinogram a- and b-wave amplitudes have been demonstrated with as little as 7 mL of fluid accumulation. Intraoperative orbital drain placement should be considered in all patients undergoing surgery in the orbital region as a preventative measure.

  11. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  12. The Orbit of the L Dwarf + T Dwarf Spectral Binary SDSS J080531.84+481233.0

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Blake, Cullen H.; Gelino, Christopher R.; Sahlmann, Johannes; Bardalez Gagliuffi, Daniella

    2016-08-01

    SDSS J080531.84+481233.0 is a closely separated, very-low-mass (VLM) binary identified through combined-light spectroscopy and confirmed as an astrometric variable. Here we report four years of radial velocity monitoring observations of the system that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02 ± 0.03 years, a semimajor axis of 0.76{}-0.06+0.05 au, and an eccenticity of 0.46 ± 0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4 ± 0.7 and T5.5 ± 1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90° ± 19°), and deduce a large system mass ratio (M 2/M 1 = {0.86}-0.12+0.10), substellar components (M 1 = {0.057}-0.014+0.016 M ⊙, M 2 = {0.048}-0.010+0.008 M ⊙), and a relatively old system age (minimum age = {4.0}-1.2+1.9 Gyr). The measured projected rotational velocity of the primary ({V}{rot}\\sin I = 34.1 ± 0.7 km s-1) implies that this inactive source is a rapid rotator (period ≲ 3 hr) and a viable system for testing spin-orbit alignment in VLM multiples. Robust model-independent constraints on the component masses may be possible through measurement of the reflex motion of the secondary at wavelengths in which it contributes a greater proportion of the combined luminence, while the system may also be resolvable through sparse-aperature mask interferometry with adaptive optics. The combination of well-determined component atmospheric properties and masses near and/or below the hydrogen minimum mass make SDSS J0805+4812AB an important system for future tests of brown dwarf evolutionary models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  13. Independent Orbiter Assessment (IOA): Assessment of the Orbiter Experiment (OEX) subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbiter Experiments (OEX) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter OEX hardware are documented. The IOA product for the OEX analysis consisted of 82 failure mode worksheets that resulted in two potential critical items being identified.

  14. An Astronomical Glossary.

    DTIC Science & Technology

    1980-02-12

    planet across the limb of the Sun at the end of a transit. Elements of an Orbit - See orbital elements . Elevation - The height of a point on the...That component of libration due to variations in the geometric position of the Earth relative to the Moon. 71 ś" Orbital Elements - The quantities which...completely describe the size, shape, and orientation of an object’s orbit as well as its location in it. The classical set consists of the semi-major

  15. Microscopic description of orbital-selective spin ordering in BaMn2As2

    NASA Astrophysics Data System (ADS)

    Craco, L.; Carara, S. S.

    2018-05-01

    Using generalized gradient approximation+dynamical mean-field theory, we provide a microscopic description of orbital-selective spin ordering in the tetragonal manganese pnictide BaMn2As2 . We demonstrate the coexistence of local moments and small band-gap electronic states in the parent compound. We also explore the role played by electron/hole doping, showing that the Mott insulating state is rather robust to small removal of electron charge carriers similar to cuprate oxide superconductors. Good qualitative accord between theory and angle-resolved photoemission as well as electrical transport provides support to our view of orbital-selective spin ordering in BaMn2As2 . Our proposal is expected to be an important step to understanding the emergent correlated electronic structure of materials with persisting ordered localized moments coexisting with Coulomb reconstructed nonmagnetic electronic states.

  16. Orbit determination performances using single- and double-differenced methods: SAC-C and KOMPSAT-2

    NASA Astrophysics Data System (ADS)

    Hwang, Yoola; Lee, Byoung-Sun; Kim, Haedong; Kim, Jaehoon

    2011-01-01

    In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.

  17. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  18. Rendezvous missions to temporarily captured near Earth asteroids

    NASA Astrophysics Data System (ADS)

    Brelsford, S.; Chyba, M.; Haberkorn, T.; Patterson, G.

    2016-04-01

    Missions to rendezvous with or capture an asteroid present significant interest both from a geophysical and safety point of view. They are key to the understanding of our solar system and are stepping stones for interplanetary human flight. In this paper, we focus on a rendezvous mission with 2006 RH120, an asteroid classified as a Temporarily Captured Orbiter (TCO). TCOs form a new population of near Earth objects presenting many advantages toward that goal. Prior to the mission, we consider the spacecraft hibernating on a Halo orbit around the Earth-Moon's L2 libration point. The objective is to design a transfer for the spacecraft from the parking orbit to rendezvous with 2006 RH120 while minimizing the fuel consumption. Our transfers use indirect methods, based on the Pontryagin Maximum Principle, combined with continuation techniques and a direct method to address the sensitivity of the initialization. We demonstrate that a rendezvous mission with 2006 RH120 can be accomplished with low delta-v. This exploratory work can be seen as a first step to identify good candidates for a rendezvous on a given TCO trajectory.

  19. Orbital stability analysis and chaotic dynamics of exoplanets in multi-stellar systems

    NASA Astrophysics Data System (ADS)

    Satyal, Suman

    The advancement in detection technology has substantially increased the discovery rate of exoplanets in the last two decades. The confirmation of thousands of exoplanets orbiting the solar type stars has raised new astrophysical challenges, including the studies of orbital dynamics and long-term stability of such planets. Continuous orbital stability of the planet in stellar habitable zone is considered vital for life to develop. Hence, these studies furthers one self-evident aim of mankind to find an answer to the century old question: Are we alone?. This dissertation investigates the planetary orbits in single and binary star systems. Within binaries, a planet could orbit either one or both stars as S-type or P-type, respectively. I have considered S-type planets in two binaries, gamma Cephei and HD 196885, and compute their orbits by using various numerical techniques to assess their periodic, quasi-periodic or chaotic nature. The Hill stability (HS) function, which measures the orbital perturbation induced by the nearby companion, is calculated for each system and then its efficacy as a new chaos indicator is tested against Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth factor of Nearby Orbits (MEGNO). The dynamics of HD 196885 AB is further explored with an emphasis on the planet's higher orbital inclination relative to the binary plane. I have quantitatively mapped out the chaotic and quasi-periodic regions of the system's phase space, which indicates a likely regime of the planet's inclination. In, addition, the resonant angle is inspected to determine whether alternation between libration and circulation occurs as a consequence of Kozai oscillations, a probable mechanism that can drive the planetary orbit to a large inclination. The studies of planetary system in GJ 832 shows potential of hosting multiple planets in close orbits. The phase space of GJ 832c (inner planet) and the Earth-mass test planet(s) are analyzed for periodic

  20. On the coplanar eccentric non-restricted co-orbital dynamics

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  1. Anti-sway control of tethered satellite systems using attitude control of the main satellite

    NASA Astrophysics Data System (ADS)

    Yousefian, Peyman; Salarieh, Hassan

    2015-06-01

    In this study a new method is introduced to suppress libration of a tethered satellite system (TSS). It benefits from coupling between satellites and tether libration dynamics. The control concept uses the main satellite attitude maneuvers to suppress librational motion of the tether, and the main satellite's actuators for attitude control are used as the only actuation in the system. The study considers planar motion of a two body TSS system in a circular orbit and it is assumed that the tether's motion will not change it. Governing dynamic equations of motion are derived using the extended Lagrange method. Controllability of the system around the equilibrium state is studied and a linear LQG controller is designed to regulate libration of the system. Tether tension and satellite attitude are assumed as only measurable outputs of the system. The Extended Kalman Filter (EKF) is used to estimate states of the system to be used as feedback to the controller. The designed controller and observer are implemented to the nonlinear plant and simulations demonstrate that the controller lead to reduction of the tether libration propoerly. By the way, because the controller is linear, it is applicable only at low amplitudes in the vicinity of equilibrium point. To reach global stability, a nonlinear controller is demanded.

  2. Internuclear separation dependent ionization of the valence orbitals of I2 by strong laser fields.

    PubMed

    Chen, H; Tagliamonti, V; Gibson, G N

    2012-11-09

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σ(g)(2)π(u)(4)π(g)(4)σ(u)(0). We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σ(g)) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  3. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  4. Relationships among L1 Print Exposure and Early L1 Literacy Skills, L2 Aptitude, and L2 Proficiency

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    Authors examined the relationship between individual differences in L1 print exposure and differences in early L1 skills and later L2 aptitude, L2 proficiency, and L2 classroom achievement. Participants were administered measures of L1 word decoding, spelling, phonemic awareness, reading comprehension, receptive vocabulary, and listening…

  5. Revisiting the Capture of Mercury into Its 3:2 Spin-orbit Resonance

    DTIC Science & Technology

    2014-01-01

    well before differentiation. Keywords. celestial mechanics, planets and satellites: individual ( Mercury ) 1. Previous studies In the literature hitherto...2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Revisiting the capture of Mercury into its 3:2 spin-orbit...Astronomical Union 2014 doi:10.1017/S1743921314007765 Revisiting the capture of Mercury into its 3:2 spin-orbit resonance Benôıt Noyelles1, Julien

  6. Electrochemical and spectroelectrochemical studies on UO(2)(saloph)L (saloph = N,N'-disalicylidene-o-phenylenediaminate, L=dimethyl sulfoxide or N,N-dimethylformamide).

    PubMed

    Mizuoka, Koichiro; Kim, Seong-Yun; Hasegawa, Miki; Hoshi, Toshihiko; Uchiyama, Gunzo; Ikeda, Yasuhisa

    2003-02-24

    To examine properties of pentavalent uranium, U(V), we have carried out electrochemical and spectroelectrochemical studies on UO(2)(saloph)L [saloph = N,N'-disalicylidene-o-phenylenediaminate, L = dimethyl sulfoxide (DMSO) or N,N-dimethylformamide (DMF)]. The electrochemical reactions of UO(2)(saloph)L complexes in L were found to occur quasireversibly. The reduction processes of UO(2)(saloph)L complexes were followed spectroelectrochemically by using an optical transparent thin layer electrode cell. It was found that the absorption spectra measured at the applied potentials from 0 to -1.650 V versus ferrocene/ferrocenium ion redox couple (Fc/Fc(+)) for UO(2)(saloph)DMSO in DMSO have clear isosbestic points and that the evaluated electron stoichiometry equals 1.08. These results indicate that the reduction product of UO(2)(saloph)DMSO is [U(V)O(2)(saloph)DMSO](-), which is considerably stable in DMSO. Furthermore, it was clarified that the absorption spectrum of the [U(V)O(2)(saloph)DMSO](-) complex has a very small molar absorptivity in the visible region and characteristic absorption bands due to the 5f(1) orbital at around 750 and 900 nm. For UO(2)(saloph)DMF in DMF, the clear isosbestic points were not observed in the similar spectral changes. It is proposed that the UO(2)(saloph)DMF complex is reduced to [U(V)O(2)(saloph)DMF](-) accompanied by the dissociation of DMF as a successive reaction. The formal redox potentials of UO(2)(saloph)L in L (E(0), vs Fc/Fc(+)) for U(VI)/U(V) couple were determined to be -1.550 V for L = DMSO and -1.626 V for L = DMF.

  7. STS-120 Orbit 2 Flight Control Team Photo

    NASA Image and Video Library

    2007-10-31

    JSC2007-E-095908 (31 Oct. 2007) --- The members of the STS-120 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Mike Moses holds the STS-120 mission logo.

  8. Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry. Part 2: Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Border, J. S.; Nandi, S.; Zukor, K. S.

    1993-01-01

    A new radio metric positioning technique has demonstrated improved orbit determination accuracy for the Magellan and Pioneer Venus Orbiter orbiters. The new technique, known as Same-Beam Interferometry (SBI), is applicable to the positioning of multiple planetary rovers, landers, and orbiters which may simultaneously be observed in the same beamwidth of Earth-based radio antennas. Measurements of carrier phase are differenced between spacecraft and between receiving stations to determine the plane-of-sky components of the separation vector(s) between the spacecraft. The SBI measurements complement the information contained in line-of-sight Doppler measurements, leading to improved orbit determination accuracy. Orbit determination solutions have been obtained for a number of 48-hour data arcs using combinations of Doppler, differenced-Doppler, and SBI data acquired in the spring of 1991. Orbit determination accuracy is assessed by comparing orbit solutions from adjacent data arcs. The orbit solution differences are shown to agree with expected orbit determination uncertainties. The results from this demonstration show that the orbit determination accuracy for Magellan obtained by using Doppler plus SBI data is better than the accuracy achieved using Doppler plus differenced-Doppler by a factor of four and better than the accuracy achieved using only Doppler by a factor of eighteen. The orbit determination accuracy for Pioneer Venus Orbiter using Doppler plus SBI data is better than the accuracy using only Doppler data by 30 percent.

  9. Spacecraft Formation Flying near Sun-Earth L2 Lagrange Point: Trajectory Generation and Adaptive Full-State Feedback Control

    NASA Technical Reports Server (NTRS)

    Wong, Hong; Kapila, Vikram

    2004-01-01

    In this paper, we present a method for trajectory generation and adaptive full-state feedback control to facilitate spacecraft formation flying near the Sun-Earth L2 Lagrange point. Specifically, the dynamics of a spacecraft in the neighborhood of a Halo orbit reveals that there exist quasi-periodic orbits surrounding the Halo orbit. Thus, a spacecraft formation is created by placing a leader spacecraft on a desired Halo orbit and placing follower spacecraft on desired quasi-periodic orbits. To produce a formation maintenance controller, we first develop the nonlinear dynamics of a follower spacecraft relative to the leader spacecraft. We assume that the leader spacecraft is on a desired Halo orbit trajectory and the follower spacecraft is to track a desired quasi-periodic orbit surrounding the Halo orbit. Then, we design an adaptive, full-state feedback position tracking controller for the follower spacecraft providing an adaptive compensation for the unknown mass of the follower spacecraft. The proposed control law is simulated for the case of the leader and follower spacecraft pair and is shown to yield global, asymptotic convergence of the relative position tracking errors.

  10. Binary asteroid population. 3. Secondary rotations and elongations

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Kušnirák, P.; Hornoch, K.; Galád, A.; Naidu, S. P.; Pray, D. P.; Világi, J.; Gajdoš, Š.; Kornoš, L.; Krugly, Yu. N.; Cooney, W. R.; Gross, J.; Terrell, D.; Gaftonyuk, N.; Pollock, J.; Husárik, M.; Chiorny, V.; Stephens, R. D.; Durkee, R.; Reddy, V.; Dyvig, R.; Vraštil, J.; Žižka, J.; Mottola, S.; Hellmich, S.; Oey, J.; Benishek, V.; Kryszczyńska, A.; Higgins, D.; Ries, J.; Marchis, F.; Baek, M.; Macomber, B.; Inasaridze, R.; Kvaratskhelia, O.; Ayvazian, V.; Rumyantsev, V.; Masi, G.; Colas, F.; Lecacheux, J.; Montaigut, R.; Leroy, A.; Brown, P.; Krzeminski, Z.; Molotov, I.; Reichart, D.; Haislip, J.; LaCluyze, A.

    2016-03-01

    We collected data on rotations and elongations of 46 secondaries of binary and triple systems among near-Earth, Mars-crossing and small main belt asteroids. 24 were found or are strongly suspected to be synchronous (in 1:1 spin-orbit resonance), and the other 22, generally on more distant and/or eccentric orbits, were found or are suggested to have asynchronous rotations. For 18 of the synchronous secondaries, we constrained their librational angles, finding that their long axes pointed to within 20° of the primary on most epochs. The observed anti-correlation of secondary synchroneity with orbital eccentricity and the limited librational angles agree with the theories by Ćuk and Nesvorný (Ćuk, M., Nesvorný, D. [2010]. Icarus 207, 732-743) and Naidu and Margot (Naidu, S.P., Margot, J.-L. [2015]. Astron. J. 149, 80). A reason for the asynchronous secondaries being on wider orbits than synchronous ones may be longer tidal circularization time scales at larger semi-major axes. The asynchronous secondaries show relatively fast spins; their rotation periods are typically < 10 h. An intriguing observation is a paucity of chaotic secondary rotations; with an exception of (35107) 1991 VH, the secondary rotations are single-periodic with no signs of chaotic rotation and their periods are constant on timescales from weeks to years. The secondary equatorial elongations show an upper limit of a2 /b2 ∼ 1.5 . The lack of synchronous secondaries with greater elongations appears consistent, considering uncertainties of the axis ratio estimates, with the theory by Ćuk and Nesvorný that predicts large regions of chaotic rotation in the phase space for a2 /b2 ≳√{ 2 } . Alternatively, secondaries may not form or stay very elongated in gravitational (tidal) field of the primary. It could be due to the secondary fission mechanism suggested by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D.J. [2011]. Icarus 214, 161-178), as its efficiency is correlated with the

  11. Characterizing K2 Planetary Systems Orbiting Cool Dwarfs

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua; Vanderburg, Andrew; Charbonneau, David; Knutson, Heather; K2C2

    2017-01-01

    The NASA K2 mission is using the repurposed Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. K2 observes 10,000 - 30,000 stars in each field for roughly 80 days, which is too short to observe multiple transits of planets in the habitable zones of Sun-like stars, but long enough to detect potentially habitable planets orbiting low-mass dwarfs. Accordingly, M and K dwarfs are frequently nominated as K2 Guest Observer targets and K2 has already observed significantly more low-mass stars than the original Kepler mission. While the K2 data are therefore an enticing resource for studying the properties and frequency of planetary systems orbiting low-mass stars, many K2 cool dwarfs are not well-characterized. We are refining the properties of K2 planetary systems orbiting cool dwarfs by acquiring medium-resolution NIR spectra with SpeX on the IRTF and TripleSpec on the Palomar 200". In our initial sample of 144 potential cool dwarfs hosting candidate planetary systems detected by K2, we noted a high contamination rate from giants (16%) and reddened hotter dwarfs (31%). After employing empirically-based relations to determine the temperatures, radii, masses, luminosities, and metallicities of K2 planet candidate host stars, we found that our new cool dwarf radius estimates were 10-40% larger than the initial values, indicating that the radii of the associated planet candidates were also underestimated. Refining the stellar parameters allows us to identify astrophysical false positives and better constrain the radii and insolation flux environments of bona fide transiting planets. I will present our resulting catalog of system properties and highlight the most attractive K2 planets for radial velocity mass measurement and atmospheric characterization with Spitzer, HST, JWST, and the next generation of extremely large ground- and space-based telescopes. We gratefully acknowledge funding from the NASA Sagan Fellowship Program

  12. Meteoroid Orbits from Observations

    NASA Astrophysics Data System (ADS)

    Campbell-Brown, Margaret

    2018-04-01

    Millions of orbits of meteoroids have been measured over the last few decades, and they comprise the largest sample of orbits of solar system bodies which exists. The orbits of these objects can shed light on the distribution and evolution of comets and asteroids in near-Earth space (e.g. Neslusan et al. 2016). If orbits can be measured at sufficiently high resolution, individual meteoroids can be traced back to their parent bodies and, in principle, even to their ejection time (Rudawska et al. 2012). Orbits can be measured with multi-station optical observations or with radar observations.The most fundamental measured quantities are the speed of the meteor and the two angles of the radiant, or point in the sky from which the meteor appears to come. There are many methods used to determine these from observations, but not all produce the most accurate results (Egal et al. 2017). These three measured quantities, along with the time and location of the observation, are sufficient to obtain an orbit (see, e.g., Clark & Wiegert 2011), but the measurements must be corrected for the deceleration of the meteoroid in the atmosphere before it was detected, the rotation of the Earth, and the gravitational attraction of the Earth (including higher order moments if great precision is necessary).Once meteor orbits have been determined, studies of the age and origin of meteor showers (Bruzzone et al., 2015), the parent bodies of sporadic sources (Pokorny et al. 2014), and the dynamics of the meteoroid complex as a whole can be constrained.Bruzzone, J. S., Brown, P., Weryk, R., Campbell-Brown, M., 2015. MNRAS 446, 1625.Clark, D., Wiegert, P., 2011. M&PS 46, 1217.Egal, A., Gural, P., Vaubaillon, J., Colas, F., Thuillot, W., 2017. Icarus 294, 43.Neslusan, L., Vaubaillon, J., Hajdukova, M., 2016. A&A 589, id.A100.Pokorny, P., Vokrouhlicky, D., Nesvorny, D., Campbell-Brown, M., Brown, P., 2014. ApJ 789, id.25.Rudawska, R., Vaubaillon, J., Atreya, P., 2012. A&A 541, id.A2

  13. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  14. Numerical model of the evolution of asteroid orbits at the 2:5 resonance

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.

    1992-12-01

    The interrelations of the variations in the orbital elements of asteroids at the 2:5 resonance and in its vicinity are investigated.. These investigations are based on the numerical integration of the complete equations of motion of the three-body problem (sun-Jupiter-asteroid) for 500 model asteroids. The time interval under consideration for most versions of the calculations equaled 10(4) orbital periods of Jupiter. The limits of the variations in the orbital elements and the regions of initial data corresponding to different types of interrelations of the variations in the eccentricity and longitude of perihelion are examined. It is shown that thr 2:5 gap may play a larger role than other gaps in the replenishment of the Apollo and Amor groups. The time over which the argument of perihelion changed by 360 degrees was usually equal to two periods of variation in the orbital inclination. When this interrelation was not found, the time over which the longitude of the ascending node changed by 360 degrees was equal, as a rule, to one period of variation in this inclination. For some asteroids moving along orbits of small eccentricity and inclination, interrelations were found between the periods of variation in four orbital elements: eccentricity, inclination, argument of perihelion, and longitude of the ascending node. For initial inclinations i° = 40° of asteroid orbits, the maximum values of inclinations of some model asteroids reached 160 degrees. Such asteroids could reach the sun or nearly parabolic orbits.

  15. A case report of orbital Langerhans cell histiocytosis presenting as a orbital cellulitis.

    PubMed

    Albert-Fort, M; González-Candial, M

    2018-04-08

    A 10-year-old girl was seen with a 3-week history of right upper lid swelling and with no other symptoms or fever. There was no recent history of sinusitis, trauma, or previous infection involving the periorbital area, or response to oral antibiotic treatment. Orbital computed tomography showed a lesion involving the upper margin of the orbit, and bone destruction at the orbital roof. Biopsy performed revealed the presence of Langerhans cell Histiocytosis. The lesion was surgically debulked and corticosteroids were used intra-operatively. The lesion responded to treatment. The orbital involvement of Langerhans cell histiocytosis, despite its low incidence, should be considered in the examination of acute peri-orbital swelling. It usually presents as an osteolytic lesion, and it is confirmed with a histological examination and immunohistochemical techniques for CD1a and S100. An interdisciplinary approach is recommended to rule out multifocal or multisystemic diseases, as well as to develop an appropriate treatment strategy. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Independent Orbiter Assessment (IOA): Assessment of the mechanical actuation subsystem, volume 2

    NASA Technical Reports Server (NTRS)

    Bradway, M. W.; Slaughter, W. T.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine draft failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline that was available. A resolution of each discrepancy from the comparison was provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. This report documents the results of that comparison for the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). Criticality was assigned based upon the severity of the effect for each failure mode. Volume 2 continues the presentation of IOA analysis worksheets and contains the potential critical items list, detailed analysis, and NASA FMEA/CIL to IOA worksheet cross reference and recommendations.

  17. A technician works on the Mars Climate Orbiter in SAEF-2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  18. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  19. On-Orbit Cross-Calibration of AM Satellite Remote Sensing Instruments using the Moon

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Kieffer, Hugh H.; Barnes, Robert A.; Stone, Thomas C.

    2003-01-01

    On April 14,2003, three Earth remote sensing spacecraft were maneuvered enabling six satellite instruments operating in the visible through shortwave infrared wavelength region to view the Moon for purposes of on-orbit cross-calibration. These instruments included the Moderate Resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer on the Earth Observing System (EOS) Terra spacecraft, the Advanced Land Imager (ALI) and Hyperion instrument on Earth Observing-1 (EO-1) spacecraft, and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the SeaStar spacecraft. Observations of the Moon were compared using a spectral photometric mode for lunar irradiance developed by the Robotic Lunar Observatory (ROLO) project located at the United States Geological Survey in Flagstaff, Arizona. The ROLO model effectively accounts for variations in lunar irradiance corresponding to lunar phase and libration angles, allowing intercomparison of observations made by instruments on different spacecraft under different time and location conditions. The spacecraft maneuvers necessary to view the Moon are briefly described and results of using the lunar irradiance model in comparing the radiometric calibration scales of the six satellite instruments are presented here.

  20. Reducing orbital eccentricity of precessing black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, Alessandra; Taracchini, Andrea; Kidder, Lawrence E.

    2011-05-15

    Building initial conditions for generic binary black-hole evolutions which are not affected by initial spurious eccentricity remains a challenge for numerical-relativity simulations. This problem can be overcome by applying an eccentricity-removal procedure which consists of evolving the binary black hole for a couple of orbits, estimating the resulting eccentricity, and then restarting the simulation with corrected initial conditions. The presence of spins can complicate this procedure. As predicted by post-Newtonian theory, spin-spin interactions and precession prevent the binary from moving along an adiabatic sequence of spherical orbits, inducing oscillations in the radial separation and in the orbital frequency. For single-spinmore » binary black holes these oscillations are a direct consequence of monopole-quadrupole interactions. However, spin-induced oscillations occur at approximately twice the orbital frequency, and therefore can be distinguished and disentangled from the initial spurious eccentricity which occurs at approximately the orbital frequency. Taking this into account, we develop a new eccentricity-removal procedure based on the derivative of the orbital frequency and find that it is rather successful in reducing the eccentricity measured in the orbital frequency to values less than 10{sup -4} when moderate spins are present. We test this new procedure using numerical-relativity simulations of binary black holes with mass ratios 1.5 and 3, spin magnitude 0.5, and various spin orientations. The numerical simulations exhibit spin-induced oscillations in the dynamics at approximately twice the orbital frequency. Oscillations of similar frequency are also visible in the gravitational-wave phase and frequency of the dominant l=2, m=2 mode.« less

  1. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis.

    PubMed

    Jain, Sumeet; Jain, Parul

    2016-01-01

    Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  2. Closedness of orbits in a space with SU(2) Poisson structure

    NASA Astrophysics Data System (ADS)

    Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad

    2014-06-01

    The closedness of orbits of central forces is addressed in a three-dimensional space in which the Poisson bracket among the coordinates is that of the SU(2) Lie algebra. In particular it is shown that among problems with spherically symmetric potential energies, it is only the Kepler problem for which all bounded orbits are closed. In analogy with the case of the ordinary space, a conserved vector (apart from the angular momentum) is explicitly constructed, which is responsible for the orbits being closed. This is the analog of the Laplace-Runge-Lenz vector. The algebra of the constants of the motion is also worked out.

  3. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  4. Astronaut Bean - Acrobatics - Orbital Workshop (OWS)

    NASA Image and Video Library

    1973-08-20

    S73-32632 (19 Aug. 1973) --- Astronaut Alan L. Bean, Skylab 3 commander, performs acrobatics and simulated gymnastics in the dome area of the Orbital Workshop in this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station in Earth orbit. Bean appears to be floating in a diving position. Photo credit: NASA

  5. Lattice dynamics of solid N2 with an ab initio intermolecular potential

    NASA Astrophysics Data System (ADS)

    Luty, T.; van der Avoird, A.; Berns, R. M.

    1980-11-01

    We have performed harmonic and self-consistent phonon lattice dynamics calculations for α and γ N2 crystals using an intermolecular potential from ab initio calculations. This potential contains electrostatic (multipole) interactions, up to all R-9 terms inclusive, anisotropic dispersion interactions up to all R-10 terms inclusive, and anisotropic overlap interactions caused by charge penetration and exchange between the molecules. The lattice constants, cohesion energy, the frequencies of the translational phonon modes and the Grüneisen parameters for the librational modes are in good agreement with experimental values, confirming the quality of the potential. The frequencies of the librational modes and those of the mixed modes are less well reproduced, especially at temperatures near the α-β phase transition. Probably, the self-consistent phonon method used does not fully account for the anharmonicity in the librations.

  6. THEOS-2 Orbit Design: Formation Flying in Equatorial Orbit and Damage Prevention Technique for the South Atlantic Magnetic Anomaly (SAMA)

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin

    2016-07-01

    Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.

  7. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 2: Supporting research and technology report, phase 1 and 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio (L/D) aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. The methodology employed to generate technology payoffs, the major payoffs identified, the urgency of the technology effort required, and the technology plans suggested are summarized for both study phases. Technology issues concerning aerodynamics, aerothermodynamics, thermal protection, propulsion, and guidance, navigation and control are addressed.

  8. Orbital ATK CRS-7 Live Launch Coverage - Part 2

    NASA Image and Video Library

    2017-04-18

    NASA Television conducted a live broadcast from Kennedy Space Center as Orbital ATK’s CRS-7 lifted off atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Orbital ATK’s Cygnus spacecraft carried more than 7,600 pounds of science research, crew supplies, and hardware to the orbiting laboratory as Orbital ATK’s seventh commercial resupply services mission to the International Space Station. Launch commentary conducted by: George Diller, NASA Communications. Special guests included: -Bob Cabana, Center Director of Kennedy Space Center and -Frank DeMauro, Vice President and General Manager for Human Space Systems with Orbital ATK.

  9. Thalidomide inhibits adipogenesis of orbital fibroblasts in Graves' ophthalmopathy.

    PubMed

    Zhang, Chu; Zhang, Xianfeng; Ma, Lizhen; Peng, Fengying; Huang, Jiao; Han, Hui

    2012-04-01

    The expansion of orbital adipose tissue is a main pathophysiology of Graves' ophthalmopathy (GO), which is an inflammatory autoimmune disease in the orbital region. The effects of immunosuppressive drugs on adipogenesis of orbital fibroblasts have not been determined. Thalidomide, as an immunosuppressive drug, has recently been used in the therapy of many autoimmune diseases. In this study, we analyzed the effects of thalidomide on adipogenesis and found that adipocyte differentiation from preadipocytes in the orbital region was enhanced, which was demonstrated by enhanced expression of peroxisome proliferator activated receptor γ (PPARγ), ap2, and thyroid-stimulating hormone receptor (TSHR). The expression of inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) was also increased in GO. Thalidomide dose-dependently inhibited adipogenesis of 3T3-L1 preadipocytes and orbital fibroblasts from GO patients. Along with the inhibited adipogenesis, the expression of TSHR, TNFα, and IL-6 was also down-regulated. We discovered that the mechanism for thalidomide inhibiting adipogenesis was the down-regulation of PPARγ, rather than C/EBPβ and C/EBPδ. We suggest that, besides its canonical anti-TNFα effect, thalidomide plays a role in inhibiting adipogenesis of orbital fibroblasts in GO patients.

  10. Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. E.; Calder, S.; Morrow, R.

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3LiOsO6 and Ba2YOsO6, which reveals a dramatic spitting of the t2g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5dmore » systems and introduces a new arena in the search for spin-orbit controlled phases of matter.« less

  11. Application of the GEM-T2 gravity field to altimetric satellite orbit computation

    NASA Technical Reports Server (NTRS)

    Haines, Bruce J.; Born, George H.; Williamson, Ronald G.; Koblinsky, Chester I.

    1994-01-01

    As part of a continuing effort to provide improved orbits for use with existing altimeter data, we have recomputed ephemerides for both the Seasat and Geosat Exact Repeat altimeter missions. The orbits were computed in a consistent fashion, using the Goddard Earth Model T2 (GEM-T2) gravity field along with available ground-based tracking data. Such an approach allows direct comparisons of sea level between the two altimeter systems. Evaluation of the resulting ephemerides indicates that root-mean-square accuracies of 30-50 cm have been achieved for the radial component of the orbits for both satellites. An exception occurs for the last year of the Geosat Exact Repeat Mission, when the rms radial orbit accuracy degrades to the 1-m level at times owing to the inability to adequately model the drag force arising from the increased solar activity.

  12. Reading Attitudes in L1 and L2, and Their Influence on L2 Extensive Reading

    ERIC Educational Resources Information Center

    Yamashita, Junko

    2004-01-01

    This study examines the relationship between both first language (L1) and second language (L2) reading attitudes, and learners' performance in L2 extensive reading. Four reading attitude variables were identified (Comfort, Anxiety, Value, Self-perception), both in L1 and L2, according to learners' responses to a questionnaire. Results of analyses…

  13. Halo orbit transfer trajectory design using invariant manifold in the Sun-Earth system accounting radiation pressure and oblateness

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kushvah, Badam Singh

    2018-01-01

    In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth L1 and L2-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold's approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth's parking orbit of the spacecraft and the manifold.

  14. End of Life Disposal for Three Libration Point Missions through Manipulation of the Jacobi Constant and Zero Velocity Curves

    NASA Technical Reports Server (NTRS)

    Petersen, Jeremy; Brown, Jonathan

    2015-01-01

    Flight Dynamics Facility (FDF) located at NASA Goddard Space Flight Center (GSFC) provides the flight dynamics expertise for three Sun-Earth Moon L1 missions. Advanced Composition Explorer (ACE) launched August 1997 Solar and Heliospheric Observatory (SOHO) launched December 1995 Global Geospace Science WIND satellite launched November 1994 entered Lagrange point orbit in 2004.

  15. Stable Orbits in the Didymos Binary Asteroid System - Useful Platforms for Exploration

    NASA Astrophysics Data System (ADS)

    Damme, Friedrich; Hussmann, Hauke; Wickhusen, Kai; Enrico, Mai; Oberst, Jürgen

    2016-04-01

    We have analyzed particle motion in binary asteroid systems to search for stable orbits. In particular, we studied the motion of particles near the asteroid 1996 GT (Didymos), proposed as a target for the AIDA mission. The combined gravity fields of the odd-shaped rotating objects moving about each other are complex. In addition, orbiting spacecraft or dust particles are affected by radiation pressure, possibly exceeding the faint gravitational forces. For the numerical integrations, we adopt parameters for size, shape, and rotation from telescopic observations. To simulate the effect of radiation pressure during a spacecraft mission, we apply a spacecraft wing-box shape model. Integrations were carried out beginning in near-circular orbits over 11 days, during which the motion of the particles were examined. Most orbits are unstable with particles escaping quickly or colliding with the asteroid bodies. However, with carefully chosen initial positions, we found stable motion (in the orbiting plane of the secondary) associated with the Lagrangian points (L4 and L5), in addition to horseshoe orbits, where particles move from one of the Lagrangian point to the other. Finally, we examined orbits in 1:2 resonances with the motion of the orbital period of the secondary. Stable conditions depend strongly on season caused by the inclination of the mutual orbit plane with respect to Didymos solar orbit. At larger distance from the asteroid pair, we find the well-known terminator orbits where gravitational attraction is balanced against radiation pressure. Stable orbits and long motion arcs are useful for long tracking runs by radio or Laser instruments and are well-suited for modelling of the ephemerides of the asteroid pair and gravity field mapping. Furthermore, these orbits may be useful as observing posts or as platforms for approach. These orbits may also represent traps for dust particles, an opportunity for dust collection - or possibly a hazard to spacecraft

  16. High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey

    2005-01-01

    High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.

  17. Investigation of probabilistic orbital evolution of near-Earth asteroids moving in the vicinity of resonances with Mercury

    NASA Astrophysics Data System (ADS)

    Galushina, T. Yu.; Titarenko, E. Yu

    2014-12-01

    clones distributed according to the normal law has been chosen in the initial probability domain. The nonlinear method by numerical integration of the differential equations of each clone motion has been used for study of probabilistic orbital evolution. The force model has corresponded to the model used in the improvement. The time interval has been limited by ephemeris DE406 and accuracy of integration and has been amounted for different objects from two to six thousand years. As a result of the orbit improvement from the available optical positional observations it has been turned out that the orbits of NEA 2006 SE6, 2009 KT4, 2013 CQ35, 2013 TH, 2002 CV46, 2013 CN35 and 2006 VY2 are poorly defined, that does not allow to conclude about their resonance capture. The remaining objects can be divided into two classes. Asteroids 172034 2001 WR1, 2008 VB1, 159608 2002 AC2 and 2006 UR216 move in the vicinity of the resonance over the entire interval of the study. Probability domains of NEA 52381 1993 HA, 142561 2002 TX68, 241370 2008 LW8 и 2009 XB2 are increase significantly under the influence of close encounters, and part of clones are out of resonance. It should be noted that for all the considered objects the critical argument varies around the moving center of libration or circulates that suggests instability resonance.

  18. The Effect of Geocenter Motion on Jason-2 and Jason-1 Orbits and the Mean Sea Level

    NASA Technical Reports Server (NTRS)

    Melachroinos, Stavros A.; Beckley, Brian D.; Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.

    2012-01-01

    We have investigated the impact of geocenter motion on Jason-2 orbits. This was accomplished by computing a series of Jason-1, Jason-2 GPS-based and SLR/DORIS-based orbits using ITRF2008 and the IGS repro1 framework based on the most recent GSFC standards. From these orbits, we extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. The fitted annual and seasonal terms of these time-series are compared to two different geocenter motion models. Subsequently, we included the geocenter motion corrections in the POD process as a degree-1 loading displacement correction to the tracking network. The analysis suggested that the GSFC's Jason-2 std0905 GPS-based orbits are closely tied to the center of mass (CM) of the Earth whereas the SLR/DORIS std0905 orbits are tied to the center of figure (CF) of the ITRF2005 (Melachroinos et al., 2012). In this study we extend the investigation to the centering of the GPS constellation and the way those are tied in the Jason-1 and Jason-2 POD process. With a new set of standards, we quantify the GPS and SLR/DORIS-based orbit centering during the Jason-1 and Jason-2 inter-calibration period and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the full term of the geocenter motion correction.

  19. Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; O'Shaughnessy, Richard; Kesden, Michael; Berti, Emanuele; Sperhake, Ulrich

    2014-06-01

    If binary black holes form following the successive core collapses of sufficiently massive binary stars, precessional dynamics may align their spins, Smathvariant="bold">1 and Smathvariant="bold">2, and the orbital angular momentum L into a plane in which they jointly precess about the total angular momentum J. These spin orientations are known as spin-orbit resonances since S1, S2, and L all precess at the same frequency to maintain their planar configuration. Two families of such spin-orbit resonances exist, differentiated by whether the components of the two spins in the orbital plane are either aligned or antialigned. The fraction of binary black holes in each family is determined by the stellar evolution of their progenitors, so if gravitational-wave detectors could measure this fraction they could provide important insights into astrophysical formation scenarios for binary black holes. In this paper, we show that even under the conservative assumption that binary black holes are observed along the direction of J (where precession-induced modulations to the gravitational waveforms are minimized), the waveforms of many members of each resonant family can be distinguished from all members of the other family in events with signal-to-noise ratios ρ ≃10, typical of those expected for the first detections with Advanced LIGO and Virgo. We hope that our preliminary findings inspire a greater appreciation of the capability of gravitational-wave detectors to constrain stellar astrophysics and stimulate further studies of the distinguishability of spin-orbit resonant families in more expanded regions of binary black-hole parameter space.

  20. Persistent three- and four-atom orbital molecules in the spinel Al V2O4

    NASA Astrophysics Data System (ADS)

    Browne, Alexander J.; Kimber, Simon A. J.; Attfield, J. Paul

    2017-10-01

    Electronic instabilities in transition-metal compounds may lead to ground states containing orbital molecules when direct metal-metal orbital interactions occur. The spinel Al V2O4 was reported to contain V717 + orbital heptamers that emerge below a 700 K charge ordering transition. Our x-ray total scattering analysis of Al V2O4 between 300 and 1100 K reveals a very different picture as the postulated heptamers are found to be pairs of spin-singlet V39 + trimers and V48 + tetramers, and these orbital molecules persist to at least 1100 K in a disordered high-temperature cubic phase.

  1. Orbits: Computer simulation

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    In rotating machinery dynamics an orbit (Lissajous curve) represents the dynamic path of the shaft centerline motion during shaft rotation and resulting precession. The orbit can be observed with an oscilloscope connected to XY promixity probes. The orbits can also be simulated by a computer. The software for HP computer simulates orbits for two cases: (1) Symmetric orbit with four frequency components with different radial amplitudes and relative phase angles; and (2) Nonsymmetric orbit with two frequency components with two different vertical/horizontal amplitudes and two different relative phase angles. Each orbit carries a Keyphasor mark (one-per-turn reference). The frequencies, amplitudes, and phase angles, as well as number of time steps for orbit computation, have to be chosen and introduced to the computer by the user. The orbit graphs can be observed on the computer screen.

  2. Analytical model of multi-planetary resonant chains and constraints on migration scenarios

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.

    2017-09-01

    Resonant chains are groups of planets for which each pair is in resonance, with an orbital period ratio locked at a rational value (2/1, 3/2, etc.). Such chains naturally form as a result of convergent migration of the planets in the proto-planetary disk. In this article, I present an analytical model of resonant chains of any number of planets. Using this model, I show that a system captured in a resonant chain can librate around several possible equilibrium configurations. The probability of capture around each equilibrium depends on how the chain formed, and especially on the order in which the planets have been captured in the chain. Therefore, for an observed resonant chain, knowing around which equilibrium the chain is librating allows for constraints to be put on the formation and migration scenario of the system. I apply this reasoning to the four planets orbiting Kepler-223 in a 3:4:6:8 resonant chain. I show that the system is observed around one of the six equilibria predicted by the analytical model. Using N-body integrations, I show that the most favorable scenario to reproduce the observed configuration is to first capture the two intermediate planets, then the outermost, and finally the innermost.

  3. On the restricted four-body problem with the effect of small perturbations in the Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Suraj, Md Sanam; Aggarwal, Rajiv; Arora, Monika

    2017-09-01

    We have studied the restricted four-body problem (R4BP) with the effect of the small perturbation in the Coriolis and centrifugal forces on the libration points and zero velocity curves (ZVCs). Further, we have supposed that all the primaries are set in an equilateral triangle configuration, moving in the circular orbits around their common centre of mass. We have observed that the effect of the small perturbation in centrifugal force has a substantial effect on the location of libration points but a small perturbation in the Coriolis force has no impact on the location of libration points. But the stability of the libration points is highly influenced by the effect of the small perturbation in the Coriolis force. It is observed that as the Coriolis parameter increases, the libration points become stable. Further, it is found that the effect of the small perturbation in the centrifugal force has a substantial influence on the regions of possible motion. Also, when the effect of small perturbation in the centrifugal force increases the forbidden region decreases; here the motion is not possible for the infinitesimal mass. It is observed when the value of the Jacobian constant decreases, the regions of possible motion increase. In addition, we have also discussed how small perturbations in the Coriolis and centrifugal forces influence the Newton-Raphson basins of convergence.

  4. Multi-technique combination of space geodesy observations: Impact of the Jason-2 satellite on the GPS satellite orbits estimation

    NASA Astrophysics Data System (ADS)

    Zoulida, Myriam; Pollet, Arnaud; Coulot, David; Perosanz, Félix; Loyer, Sylvain; Biancale, Richard; Rebischung, Paul

    2016-10-01

    In order to improve the Precise Orbit Determination (POD) of the GPS constellation and the Jason-2 Low Earth Orbiter (LEO), we carry out a simultaneous estimation of GPS satellite orbits along with Jason-2 orbits, using GINS software. Along with GPS station observations, we use Jason-2 GPS, SLR and DORIS observations, over a data span of 6 months (28/05/2011-03/12/2011). We use the Geophysical Data Records-D (GDR-D) orbit estimation standards for the Jason-2 satellite. A GPS-only solution is computed as well, where only the GPS station observations are used. It appears that adding the LEO GPS observations results in an increase of about 0.7% of ambiguities fixed, with respect to the GPS-only solution. The resulting GPS orbits from both solutions are of equivalent quality, agreeing with each other at about 7 mm on Root Mean Square (RMS). Comparisons of the resulting GPS orbits to the International GNSS Service (IGS) final orbits show the same level of agreement for both the GPS-only orbits, at 1.38 cm in RMS, and the GPS + Jason2 orbits at 1.33 cm in RMS. We also compare the resulting Jason-2 orbits with the 3-technique Segment Sol multi-missions d'ALTimétrie, d'orbitographie et de localisation précise (SSALTO) POD products. The orbits show good agreement, with 2.02 cm of orbit differences global RMS, and 0.98 cm of orbit differences RMS on the radial component.

  5. Mapping the stability field of Jupiter Trojans

    NASA Technical Reports Server (NTRS)

    Levison, H. F.; Shoemaker, E. M.; Wolfe, R. F.

    1991-01-01

    Jupiter Trojans are a remnant of outer solar system planetesimals captured into stable or quasistable libration about the 1:1 resonance with the mean motion of Jupiter. The observed swarms of Trojans may provide insight into the original mass of condensed solids in the zone from which the Jovian planets accumulated, provided that the mechanisms of capture can be understood. As the first step toward this understanding, the stability field of Trojans were mapped in the coordinate proper eccentricity, e(sub p), and libration amplitude, D. To accomplish this mapping, the orbits of 100 particles with e(sub p) in the range of 0 to 0.8 and D in the range 0 to 140 deg were numerically integrated. Orbits of the Sun, the four Jovian planets, and the massless particles were integrated as a full N-body system, in a barycentric frame using fourth order symplectic scheme.

  6. Integrating Meaning and Structure in L1-L2 and L2-L1 Translations

    ERIC Educational Resources Information Center

    Lim, Jung Hyun; Christianson, Kiel

    2013-01-01

    This article examined the integration of semantic and morphosyntactic information by Korean learners of English as a second language (L2). In Experiment 1, L2 learners listened to English active or passive sentences that were either plausible or implausible and translated them into Korean. A significant number of Korean translations maintained the…

  7. Early Paleogene Orbital Variations in Atmospheric CO2 and New Astronomical Solutions

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2017-12-01

    Geologic records across the globe show prominent variations on orbital time scales during numerous epochs going back hundreds of millions of years. The origin of the Milankovic cycles are variations in orbital parameters of the bodies of the Solar System. On long time scales, the orbital variations can not be computed analytically because of the chaotic nature of the Solar System. Thus, numerical solutions are used to estimate changes in, e.g., Earth's orbital parameters in the past. The orbital solutions represent the backbone of cyclostratigraphy and astrochronology, now widely used in geology and paleoclimatology. Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 Myr. In this presentation, I will touch on the basic physics behind, and present new results of, accurate Solar System integrations for Earth's eccentricity over the past hundred million years. I will discuss various limitations within the framework of the present simulations and compare the results to existing solutions. Furthermore, I will present new results from practical applications of such orbital solutions, including effects of orbital forcing on coupled climate- and carbon cycle variations. For instance, we have recently revealed a mechanism for a large lag between changes in carbon isotope ratios and eccentricity at the 400-kyr period, which has been observed in Paleocene, Oligocene, and Miocene sections. Finally, I will present the first estimates of orbital-scale variations in atmospheric CO2 during the early Paleogene.

  8. Role of spin-orbit coupling in the electronic structure of Ir O2

    NASA Astrophysics Data System (ADS)

    Das, Pranab Kumar; Sławińska, Jagoda; Vobornik, Ivana; Fujii, Jun; Regoutz, Anna; Kahk, Juhan M.; Scanlon, David O.; Morgan, Benjamin J.; McGuinness, Cormac; Plekhanov, Evgeny; Di Sante, Domenico; Huang, Ying-Sheng; Chen, Ruei-San; Rossi, Giorgio; Picozzi, Silvia; Branford, William R.; Panaccione, Giancarlo; Payne, David J.

    2018-06-01

    The delicate interplay of electronic charge, spin, and orbital degrees of freedom is in the heart of many novel phenomena across the transition metal oxide family. Here, by combining high-resolution angle-resolved photoemission spectroscopy and first principles calculations (with and without spin-orbit coupling), the electronic structure of the rutile binary iridate, Ir O2 , is investigated. The detailed study of electronic bands measured on a high-quality single crystalline sample and use of a wide range of photon energy provide a huge improvement over the previous studies. The excellent agreement between theory and experimental results shows that the single-particle DFT description of Ir O2 band structure is adequate, without the need of invoking any treatment of correlation effects. Although many observed features point to a 3D nature of the electronic structure, clear surface effects are revealed. The discussion of the orbital character of the relevant bands crossing the Fermi level sheds light on spin-orbit-coupling-driven phenomena in this material, unveiling a spin-orbit-induced avoided crossing, a property likely to play a key role in its large spin Hall effect.

  9. Orbital Debris: Quarterly News, Volume 14, Issue 2

    NASA Technical Reports Server (NTRS)

    Liou, J. C. (Editor); Shoots, Debi (Editor)

    2010-01-01

    This bulletin contains articles from the Orbital Debris Program office. This issue's articles are: "Orbital Debris Success Story --A Decade in the Making", "Old and New Satellite Breakups Identified," "Update on Three Major Debris Clouds," and "MMOD Inspection of the HST Bay 5 Multi-Layer Insulation Panel" about micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope (HST) insulation panel. A project review is also included (i.e., "Small Debris Observations from the Iridium 33/Cosmos 2251 Collision.") There are also abstra cts of conference papers from the staff of the program office.

  10. Independent Orbiter Assessment (IOA): CIL issues resolution report, volume 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes And Effects Analysis (FMEA) and Critical Items List (CIL) are presented. This report contains IOA assessment worksheets showing resolution of outstanding IOA CIL issues that were summarized in the IOA FMEA/CIL Assessment Interim Report, dated 9 March 1988. Each assessment worksheet has been updated with CIL issue resolution and rationale. Volume 2 contains the worksheets for the following subsystems: Nose Wheel Steering Subsystem; Remote Manipulator Subsystem; Atmospheric Revitalization Subsystem; Extravehicular Mobility Unit Subsystem; Power Reactant Supply and Distribution Subsystem; Main Propulsion Subsystem; and Orbital Maneuvering Subsystem.

  11. Spin-Orbital Excitations in Ca2 RuO4 Revealed by Resonant Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Das, L.; Forte, F.; Fittipaldi, R.; Fatuzzo, C. G.; Granata, V.; Ivashko, O.; Horio, M.; Schindler, F.; Dantz, M.; Tseng, Yi; McNally, D. E.; Rønnow, H. M.; Wan, W.; Christensen, N. B.; Pelliciari, J.; Olalde-Velasco, P.; Kikugawa, N.; Neupert, T.; Vecchione, A.; Schmitt, T.; Cuoco, M.; Chang, J.

    2018-01-01

    The strongly correlated insulator Ca2 RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K -edge resonant inelastic x-ray scattering study of the antiferromagnetic Mott insulating state of Ca2 RuO4 . A set of low-energy (about 80 and 400 meV) and high-energy (about 1.3 and 2.2 eV) excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modeling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveils the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2 RuO4 .

  12. [((H)L)2Fe6(NCMe)m]n+ (m = 0, 2, 4, 6; n = -1, 0, 1, 2, 3, 4, 6): an electron-transfer series featuring octahedral Fe6 clusters supported by a hexaamide ligand platform.

    PubMed

    Zhao, Qinliang; Harris, T David; Betley, Theodore A

    2011-06-01

    Using a trinucleating hexaamide ligand platform, the all-ferrous hexanuclear cluster ((H)L)(2)Fe(6) (1) is obtained from reaction of 3 equiv of Fe(2)(Mes)(4) (Mes = 2,4,6-Me(3)C(6)H(2)) with 2 equiv of the ligand ((H)L)H(6). Compound 1 was characterized by X-ray diffraction analysis, (57)Fe Mössbauer, SQUID magnetometry, mass spectrometry, and combustion analysis, providing evidence for an S=6 ground state and delocalized electronic structure. The cyclic voltammogram of [((H)L)(2)Fe(6)](n+) in acetonitrile reveals a rich redox chemistry, featuring five fully reversible redox events that span six oxidation states ([((H)L)(2)Fe(6)](n+), where n=-1→4) within a 1.3 V potential range. Accordingly, each of these species is readily accessed chemically to provide the electron-transfer series [((H)L)(2)Fe(6)(NCMe)(m)][PF(6)](n) (m=0, n=-1 (2); m=2, n=1 (3); m=4, n=2 (4); m=6, n=3 (5); m=6, n=4 (6)). Compounds 2-6 were isolated and characterized by X-ray diffraction, (57)Fe Mössbauer and multinuclear NMR spectroscopy, and combustion analysis. Two-electron oxidation of the tetracationic cluster in 6 by 2 equiv of [NO](+) generates the thermally unstable hexacationic cluster [((H)L)(2)Fe(6)(NCMe)(m)](6+), which is characterized by NMR and (57)Fe Mössbauer spectroscopy. Importantly, several stepwise systematic metrical changes accompany oxidation state changes to the [Fe(6)] core, namely trans ligation of solvent molecules and variation in Mössbauer spectra, spin ground state, and intracluster Fe-Fe separation. The observed metrical changes are rationalized by considering a qualitative, delocalized molecular orbital description, which provides a set of frontier orbitals populated by Fe 3d electrons. © 2011 American Chemical Society

  13. Site Selection and Deployment Scenarios for Servicing of Deep-Space Observatories

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Fruhwirth, Michael A.; Potter, Seth D.; Leete, Stephen J.; Moe, Rud V.

    2001-01-01

    The deep-space environment and relative transportation accessibility of the Weak Stability Boundary (WSB) region connecting the Earth-Moon and Sun-Earth libration points makes the Sun-Earth L2 an attractive operating location for future observatories. A summary is presented of key characteristics of future observatories designed to operate in this region. The ability to service observatories that operate within the region around the Lagrange points may greatly enhance their reliability, lifetime, and scientific return. The range of servicing missions might begin with initial deployment, assembly, test, and checkout. Post-assembly servicing missions might also include maintenance and repair, critical fluids resupply, and instrument upgrades. We define the range of servicing missions that can be performed with extravehicular activity, with teleoperated robots, and with autonomous robots. We then describe deployment scenarios that affect payload design. A trade study is summarized of the benefits and risks of alternative servicing sites, including at the International Space Station, at other low-Earth-orbit locations, at the Earth-Moon L1 location, and on-site at the Sun-Earth L2 location. Required technology trades and development issues for observatory servicing at each site, and with each level of autonomy, are summarized.

  14. The 1990 MB: The first Mars Trojan

    NASA Technical Reports Server (NTRS)

    Innanen, Kimmo A.; Mikkola, Seppo; Bowell, Edward; Muinonen, Karri; Shoemaker, Eugene M.

    1991-01-01

    Asteroid 1990 MB was discovered by D. H. Levy and H. E. Holt during the course of the Mars and Earth Crossing Asteroid and Comet Survey. An orbit based on a 9 day arc and the asteroid's location near Mars' L5 (trailing Lagrangean) longitude led E. Boswell to speculate that it might be in 1:1 resonance with Mars, analogous to the Trojan asteroids of Jupiter. Subsequent observations strengthened the possibility, and later calculations confirmed it. Thus 1990 MB is the first known asteroid in 1:1 resonance with a planet other than Jupiter. The existence of 1990 MB (a small body most likely between 2 and 4 km in diameter) provides remarkable confirmation of computer simulations. These self consistent n-body simulations demonstrated this sort of stability for Trojans of all the terrestrial planets over at least a 2 million year time base. The discovery of 1990 MB suggests that others of similar or smaller diameter may be found. Using hypothetical populations of Mars Trojans, their possible sky plane distributions were modeled as a first step in undertaking a systematic observational search of Mars' L4 and L5 libration regions.

  15. Heteroclinic, Homoclinic Connections Between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations

    NASA Technical Reports Server (NTRS)

    Llanos, Pedro J.; Hintz, Gerald R.; Lo, Martin W.; Miller, James K.

    2013-01-01

    Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L(sub 4) and L(sub 5) and the collinear point L(sub 3) of the Circular Restricted Three-Body Problem (CRTBP) in the Sun-Earth system.

  16. Extended duration orbiter study: CO2 removal and water recovery

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Ellis, G. S.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection.

  17. [Malignant Choroidal Melanoma in T4 Orbital Stage; Prosthesis of the Orbit].

    PubMed

    Furdová, A; Ferková, A; Krásnik, V; Krčová, I; Horkovičová, K

    2015-06-01

    Diagnosis and treatment of tumors of the eye is extremely difficul; surgical treatment in advanced stages, when the tumor grows in the orbit, leads to extensive radical surgery of the face. The extent and nature of surgical procedures depends on the nature of the tumor process, in advanced stages is indicated mutilating surgery--exenteration of the orbit. Exenteration of the orbit due to the extrascleral extension of malignant melanoma of the uvea is very rare, unfortunately, even today in certain cases it is necessary to make such a mutilating surgery. Case report--65 year old female patient, sent to our Departement in 2008 with the finding of the pigment deposits on the posterior pole of the left eye. Ultrasound study found elevations of up to 3 mm, she was asked to come for further control in three months interval. She did not coma, furthermore she sporadically attended another eye clinic. In 2011 she was treated for secondary glaucoma--cyclocryopexia. Due to pain another surgery--tarzoraphia was indicated. In 2012 she underwent surgery at St. Elisabeth Cancer Institute in Bratislava--Nefrectomia transperitoneally l. dx., excision hepatis. Histological examination in addition to the primary papillary renal carcinoma--mucinous tubular T1 Nx Mx type, found the metastasis of malignant melanoma to the liver and right kidney. She underwent the diagnostic procedure to find the origo of the melanoma. The patient was subsequently admitted to our clinic with blind painfull eye for enucleation. During the surgery the was found retrobulbar tumor ingrowth. Histopatholigical findings confirmed malignant melanoma. Indicated was exenteration of the orbit due to malignant melanoma T4 N0 M2 stage in June 2012. After healing of the cavity she was recommended to design an individual prosthesis. After completing several courses of palliative chemotherapy during a recent review in January 2015 the patient is without recurrence of the melanoma in the orbit Histological examination

  18. Orbital-Optimized MP3 and MP2.5 with Density-Fitting and Cholesky Decomposition Approximations.

    PubMed

    Bozkaya, Uğur

    2016-03-08

    Efficient implementations of the orbital-optimized MP3 and MP2.5 methods with the density-fitting (DF-OMP3 and DF-OMP2.5) and Cholesky decomposition (CD-OMP3 and CD-OMP2.5) approaches are presented. The DF/CD-OMP3 and DF/CD-OMP2.5 methods are applied to a set of alkanes to compare the computational cost with the conventional orbital-optimized MP3 (OMP3) [Bozkaya J. Chem. Phys. 2011, 135, 224103] and the orbital-optimized MP2.5 (OMP2.5) [Bozkaya and Sherrill J. Chem. Phys. 2014, 141, 204105]. Our results demonstrate that the DF-OMP3 and DF-OMP2.5 methods provide considerably lower computational costs than OMP3 and OMP2.5. Further application results show that the orbital-optimized methods are very helpful for the study of open-shell noncovalent interactions, aromatic bond dissociation energies, and hydrogen transfer reactions. We conclude that the DF-OMP3 and DF-OMP2.5 methods are very promising for molecular systems with challenging electronic structures.

  19. Hubble Space Telescope On-orbit NiH2 Battery Performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Krol, Stanley J., Jr.

    2002-01-01

    This paper summarizes the Hubble Space Telescope (HST) nickel-hydrogen (NiH2) battery performance from launch to the present time. Over the life of HST vehicle configuration, charge system degradation and failures together with thermal design limitations have had a significant effect on the capacity of the HST batteries. Changes made to the charge system configuration in order to protect against power system failures and to maintain battery thermal stability resulted in undercharging of the batteries. This undercharging resulted in decreased usable battery capacity as well as battery cell voltage/capacity divergence. This cell divergence was made evident during on-orbit battery capacity measurements by a relatively shallow slope of the discharge curve following the discharge knee. Early efforts to improve the battery performance have been successful. On-orbit capacity measurement data indicates increases in the usable battery capacity of all six batteries as well as improvements in the battery cell voltage/capacity divergence. Additional measures have been implemented to improve battery performance, however, failures within the HST Power Control Unit (PCU) have prevented verification of battery status. As this PCU fault prevents the execution of on-orbit capacity testing, the HST Project has based the battery capacity on trends, which utilizes previous on-orbit battery capacity test data, for science mission and servicing mission planning. The Servicing Mission 38 (SM-3B) in March 2002 replaced the faulty PCU. Following the servicing mission, on-orbit capacity test resumed. A summary of battery performance is reviewed since launch in this paper.

  20. Low lift-to-drag aero-assisted orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Savage, R. T.

    1984-01-01

    The results of systems analysis conducted on low life drag ratio (L/D) aero-assisted orbit transfer vehicle (AOTV's) are presented. The objectives for this class of vehicle and formulate technology development plans and funding levels to bring the required technologies to readiness levels, as well as develop a credible decision data base encompassing the entire range of low L/D concepts for use in future NASA Aeroassist Orbit Transfer Vehicles studies. Each candidate low L/D concept, the aerobrake, the lifting brake, and the aeromaneuvering concept could be made to work with technologies achievable by the early 1990's. All concepts require flexible structure with flexible thermal protection system (TPS) to be successfully integrated into the shuttle orbiter for launch, all required improvements in guidance and control to fly the dispersed atmospheres at high altitude, and all concepts had potential to evolve from ground-based to space-based operations.